WO2024154298A1 - 核酸定量方法および核酸定量用試薬 - Google Patents

核酸定量方法および核酸定量用試薬 Download PDF

Info

Publication number
WO2024154298A1
WO2024154298A1 PCT/JP2023/001540 JP2023001540W WO2024154298A1 WO 2024154298 A1 WO2024154298 A1 WO 2024154298A1 JP 2023001540 W JP2023001540 W JP 2023001540W WO 2024154298 A1 WO2024154298 A1 WO 2024154298A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
wild
mutant
base sequence
target base
Prior art date
Application number
PCT/JP2023/001540
Other languages
English (en)
French (fr)
Inventor
周志 隅田
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2023/001540 priority Critical patent/WO2024154298A1/ja
Publication of WO2024154298A1 publication Critical patent/WO2024154298A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to a nucleic acid quantification method and a nucleic acid quantification reagent that quantifies the ratio of mutant base sequences to wild-type base sequences contained in a sample.
  • Malignant tumors are known to occur as a result of genetic mutations.
  • mutations in related genes are found in only a small percentage of the cells that make up the tissue. Mutations in the early stages are found at an extremely low frequency, and are often point mutations. The accumulation of such low-frequency mutations is thought to be related to the progression and risk of cancer.
  • Information on the occurrence of low-frequency mutations is an important indicator for determining the type and dosage of anticancer drugs to be used in treatment.
  • Data on quantification of low-frequency mutations is expected to contribute to monitoring of patient prognosis, prediction of disease state, development of treatment methods, and the efficiency of medical administration.
  • Low-frequency mutations occur only in extremely small amounts of abnormal cells among many wild-type normal cells. For this reason, accurate quantification is required by eliminating the effects of sample error, measurement error, replication error, etc.
  • One method for quantifying low-frequency mutations is to apply DNA sequencing technology to DNA or cDNA libraries created from samples. Wild-type and mutant base sequences amplified by PCR are quantified using fluorescent or radioactive labels. The occurrence of low-frequency mutations is calculated as the ratio of mutant base sequences to wild-type base sequences.
  • Patent document 1 describes a method that includes testing for the presence of alterations in a subject's proline-rich transmembrane protein 2 (PRRT2) gene.
  • Assays for testing for the presence of alterations in the PRRT2 gene include DNA sequencing, DNA hybridization, electrophoresis assays, etc.
  • Patent document 2 describes a method for determining the presence or absence of a mutation in an individual's human CD36 gene (see claim 40, etc.).
  • microarray screening is performed in which a specific probe is hybridized to the target nucleic acid.
  • the intensity of the signal generated by hybridization is measured by autoradiography, fluorescence analysis, etc., and the signals of the mutant and normal cDNA are quantitatively compared.
  • mutant base sequence contained in the sample is in high concentration, the mutant base sequence can be detected with high accuracy. However, if the wild-type base sequence is also contained in high concentration, the detection signal derived from the wild-type base sequence will overshoot the detectable range and accurate quantification will not be possible. On the other hand, if the sample is diluted, the relatively rare mutant base sequence cannot be quantified with high sensitivity. Insufficient detection sensitivity makes it susceptible to the effects of replication errors, making it impossible to accurately evaluate low-frequency mutations that exist in extremely small amounts among the abundant wild-type base sequences.
  • Patent Document 1 in an electrophoretic assay, primers for multiple exons are simultaneously amplified and evaluated simultaneously in a single electrophoretic gel. The amplified fragments across each exon are designed to be of different sizes.
  • Patent Documents 1 and 2 do not specifically disclose a method for quantifying the proportion of extremely minute base sequences such as low-frequency mutations.
  • the present invention aims to provide a method and a reagent for quantifying nucleic acid that can quantify with high accuracy the ratio of mutant base sequences to wild-type base sequences contained in a sample, even if the mutant base sequences are contained in an extremely small amount in the sample.
  • one embodiment of the nucleic acid quantification method is a nucleic acid quantification method for quantifying the ratio of mutant base sequences to wild-type base sequences contained in a sample, and the method includes: a wild-type primer set consisting of a plurality of wild-type forward primers complementary to a wild-type target base sequence and a reverse primer complementary to a complementary strand of the target base sequence; and a mutant primer set consisting of a mutant forward primer complementary to a mutant target base sequence and a reverse primer complementary to a complementary strand of the target base sequence;
  • the method includes a step of amplifying a heterologous polynucleotide by PCR, and a step of fractionating the wild-type polynucleotide and the mutant polynucleotide by electrophoresis to determine the ratio of the mutant polynucleotide to the wild-type polynucleotide, wherein the wild-type forward primer has a base
  • one embodiment of the nucleic acid quantification method according to the present invention is a nucleic acid quantification method for quantifying the ratio of mutant base sequences to wild-type base sequences contained in a sample, the method comprising the steps of hybridizing a wild-type probe set consisting of a plurality of wild-type probes complementary to a wild-type target base sequence and a fragment complementary to an adjacent base sequence adjacent to the 5' end of the target base sequence, and a mutant probe set consisting of a mutant probe complementary to a mutant target base sequence and a fragment complementary to an adjacent base sequence adjacent to the 5' end of the target base sequence, to a wild-type polynucleotide containing a wild-type target base sequence and a mutant polynucleotide containing a mutant target base sequence; and linking the wild-type probes hybridized to the wild-type polynucleotides to the fragments by ligation.
  • the mutant polynucleotide and a step of ligating the mutant polynucleotide to generate a wild-type polynucleotide containing a wild-type target base sequence, and the mutant polynucleotide hybridized to the mutant polynucleotide and the fragment to generate a wild-type polynucleotide containing a wild-type target base sequence; and a step of fractionating the wild-type polynucleotide and the mutant polynucleotide by electrophoresis to determine the ratio of the mutant polynucleotide to the wild-type polynucleotide, wherein the wild-type probe has a base sequence complementary to the wild-type target base sequence at its 3' end, the mutant probe has a base sequence complementary to the mutant target base sequence at its 3' end, and the multiple wild-type probes have molecular structures in which the mobility in the electrophoresis is different between the wild-type probes.
  • one embodiment of the nucleic acid quantification reagent according to the present invention is a nucleic acid quantification reagent for quantifying the ratio of mutant base sequences to wild-type base sequences contained in a sample, and includes a plurality of wild-type forward primers complementary to a wild-type target base sequence, a mutant forward primer complementary to a mutant target base sequence, and a reverse primer complementary to a complementary strand of the target base sequence, the wild-type forward primer having a base sequence complementary to the wild-type target base sequence at its 3' end, the mutant forward primer having a base sequence complementary to the mutant target base sequence at its 3' end, and the plurality of wild-type forward primers have molecular structures in which the mobility in electrophoresis differs between the wild-type forward primers.
  • nucleic acid quantification reagent for quantifying the ratio of mutant base sequences to wild-type base sequences contained in a sample, and includes a plurality of wild-type probes complementary to a wild-type target base sequence, a plurality of mutant probes complementary to a mutant target base sequence, and a fragment complementary to an adjacent base sequence adjacent to the 5' end of the target base sequence, the wild-type probe having a base sequence complementary to the wild-type target base sequence at its 3' end, the mutant probe having a base sequence complementary to the mutant target base sequence at its 3' end, and the plurality of wild-type probes have molecular structures in which the mobility in electrophoresis differs between the wild-type probes.
  • the present invention provides a nucleic acid quantification method and a nucleic acid quantification reagent that can quantify with high accuracy the ratio of mutant base sequences to wild-type base sequences contained in a sample, even if the mutant base sequences contained in the sample are in extremely small amounts.
  • FIG. 1 is a flow chart showing a nucleic acid quantification method according to a first embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing a wild-type detection system for detecting a wild-type target base sequence and a mutant-type detection system for detecting a mutant-type target base sequence.
  • FIG. 1 shows an example of the results of quantitative analysis of fractions separated by electrophoresis.
  • FIG. 2 is a schematic diagram showing a wild-type detection system for detecting a wild-type target base sequence and a mutant-type detection system for detecting a mutant target base sequence used in a test section.
  • FIG. 1 is a schematic diagram showing a wild-type detection system for detecting a wild-type target base sequence and a mutant-type detection system for detecting a mutant target base sequence used in a test section.
  • FIG. 2 is a schematic diagram showing a wild-type detection system for detecting a wild-type target base sequence and a mutant-type detection system for detecting a mutant-type target base sequence used in a control group.
  • FIG. 13 is a diagram showing an example of the results of quantitative analysis of a control group.
  • FIG. 13 is a diagram showing an example of the results of quantitative analysis of test plots.
  • FIG. 5 is a flow chart showing a nucleic acid quantification method according to a second embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing a wild-type detection system for detecting a wild-type target base sequence and a mutant-type detection system for detecting a mutant-type target base sequence.
  • FIG. 1 shows an example of the results of quantitative analysis of fractions separated by electrophoresis.
  • nucleic acid quantification method and a nucleic acid quantification reagent according to one embodiment of the present invention will be described with reference to the drawings. Note that the same reference numerals are used to designate components common to the following drawings, and duplicated descriptions will be omitted.
  • FIG. 1 is a flow chart showing a nucleic acid quantification method according to a first embodiment of the present invention.
  • the nucleic acid quantification method according to the first embodiment includes step S101 of preparing a sample containing a template, step S102 of amplifying a polynucleotide, step S103 of denaturing the amplified product, step S104 of fractionating the denatured product by electrophoresis, and step S105 of quantitatively analyzing the fractionated fraction.
  • the nucleic acid quantification method relates to a method for quantifying the ratio of mutant base sequences to wild-type base sequences contained in a sample.
  • samples include samples in which polynucleotides containing wild-type base sequences and polynucleotides containing mutant base sequences are mixed, such as a nucleic acid solution containing a mixture of nucleic acids derived from different cells.
  • the ratio of mutant to wild-type is determined for a specific target base sequence contained in the sample.
  • a wild-type base sequence refers to a normal base sequence that is relatively common in genes, intergenic regions, etc.
  • a wild-type base sequence is not limited to a base sequence that exists in nature, but may be an artificially designed base sequence.
  • a mutant base sequence refers to an abnormal base sequence that is relatively rare in which one or more bases have undergone substitution (point mutation), deletion, or insertion compared to a wild-type base sequence that is relatively common.
  • the target base sequence to be analyzed may be a base sequence on a gene, a base sequence on an intergenic region, or an artificially designed base sequence.
  • the length of the target base sequence is not particularly limited as long as it can be recognized by a complementary nucleic acid fragment.
  • the mutant base sequence may have a single base mutation, multiple consecutive base mutations, or multiple intermittent base mutations.
  • wild-type and mutant base sequences contained in a sample are detected using specific primers that are complementary to the respective base sequences.
  • PCR is then performed using the primer set, and the amplified PCR products are fractionated by electrophoresis and each fraction is quantified.
  • the primer set consists of a forward primer that is complementary to the target base sequence and the 3' end of that sequence, and a reverse primer that is complementary to the 3' end of a complementary base sequence that is complementary to the target base sequence.
  • the target base sequence to be analyzed is detected by the forward primer that selectively binds to that base sequence.
  • a plurality of primers having a base sequence complementary to the wild-type target base sequence and having different mobilities in electrophoresis are used as wild-type forward primers that recognize the wild-type base sequence.
  • a primer having a base sequence complementary to the mutant target base sequence and having a different mobility in electrophoresis from that of the wild-type is used as a mutant forward primer that recognizes the mutant base sequence.
  • a common nucleic acid quantification method is one that uses DNA sequencing technology, in which nucleic acids labeled with fluorescent labels or the like are spectroscopically analyzed. In quantitative methods that detect such labels and perform quantification, not only is there a lower limit to the detection sensitivity for trace components, but there is also an upper limit to the detection limit for abundant components. If the target is present in extremely large quantities, the signal intensity, such as the fluorescence intensity, will exceed the detection limit of the detector, making accurate quantification impossible.
  • multiple primers with different mobilities in electrophoresis are used as wild-type forward primers
  • multiple types of polynucleotides derived from the wild-type base sequence with different mobilities in electrophoresis can be generated by PCR using a polynucleotide containing the wild-type target base sequence as a template. Since the multiple types of polynucleotides can be fractionated into multiple fractions by electrophoresis, the detection signal derived from the wild-type base sequence, which is relatively abundant, can be divided into smaller detection signals for each fraction.
  • the detectable range of the detection target is limited by the performance of the detector, it is possible to simultaneously and collectively quantify the relatively abundant wild-type base sequences and the relatively rare mutant base sequences contained in the sample.
  • the detection signal derived from the relatively abundant wild-type base sequences can be easily brought within the detectable range of the detector while ensuring detection sensitivity for the relatively rare mutant base sequences. Therefore, the ratio of mutant base sequences to wild-type base sequences contained in the sample can be quantified with high accuracy.
  • Step S101 is a step of preparing a sample to be analyzed in which the ratio of mutant base sequences to wild-type base sequences is to be quantified, the sample containing a polynucleotide including a target base sequence that serves as a template for PCR.
  • a nucleic acid solution in which a polynucleotide containing a specific target base sequence is dissolved can be prepared as the sample to be analyzed.
  • the template polynucleotide only needs to contain at least one of a wild-type target base sequence and a mutant target base sequence.
  • the wild-type target base sequence and the mutant target base sequence may exist on different molecules, or may exist on the same molecule. For example, when the target base sequence constitutes a repeating sequence, the proportion of mutant base sequences existing on the same molecule can be determined.
  • the sample to be analyzed preferably contains a buffer that exhibits a pH buffering effect and a chelating agent such as EDTA in addition to a polynucleotide containing a target base sequence. It is preferable that nucleases in the sample to be analyzed are inactivated. It is preferable that the sample to be analyzed is adjusted to a pH of 7.5 or higher and 8.5 or lower.
  • the polynucleotide containing the target base sequence is preferably purified with respect to other cellular components such as proteins, lipids, and salts.
  • Polynucleotides can be purified using common purification methods such as alkaline extraction, phenol-chloroform extraction, and density gradient centrifugation, or using commercially available purification kits including purification columns, etc.
  • Polynucleotides containing a target base sequence may be extracted from a specimen, or may be artificially prepared.
  • polynucleotides containing a target base sequence can be prepared as a genomic DNA library, cDNA library, etc. by extracting and purifying DNA, RNA, or fragments thereof from tissue pieces or cell groups collected from a specimen. They can also be prepared as a DNA library, etc., by artificial processing or reactions.
  • a DNA library constructed targeting higher-level mutations such as chromosomal abnormalities and exon abnormalities can be used to analyze lower-level mutations such as base substitutions, deletions, and insertions.
  • An example of such a DNA library is a ligation product obtained by the Multiplex Ligation-dependent Probe Amplification (MLPA) method.
  • Step S102 is a step of amplifying a polynucleotide containing a target base sequence by PCR (polymerase chain reaction) using a template and a primer set.
  • step S102 a wild-type polynucleotide containing a wild-type target base sequence and a mutant polynucleotide containing a mutant target base sequence are amplified by PCR using a wild-type primer set and a mutant primer set.
  • the wild-type target base sequence is detected by the forward primer constituting the wild-type primer set.
  • the mutant target base sequence is detected by the forward primer constituting the mutant primer set.
  • Figure 2 is a schematic diagram showing a wild-type detection system for detecting a wild-type target base sequence and a mutant detection system for detecting a mutant target base sequence.
  • the upper part of Figure 2 shows a template containing a wild-type target base sequence, a wild-type primer set, and a PCR product amplified by these.
  • the lower part of Figure 2 shows a template containing a mutant target base sequence, a mutant primer set, and a PCR product amplified by these.
  • a wild-type polynucleotide (target strand) 101 containing a wild-type target base sequence 100 contained in a sample serves as a template for PCR in the wild-type detection system.
  • the wild-type detection system for detecting a wild-type target base sequence is composed of wild-type primer sets 110, 120.
  • the wild-type primer sets 110, 120 consist of multiple wild-type forward primers (F primers) 110 and reverse primers (R primers) 120.
  • the wild-type F primer 110 binds to the target strand 101 containing the wild-type target base sequence 100.
  • the wild-type F primer 110 has a base sequence complementary to the target strand 101.
  • the wild-type F primer 110 is composed of multiple types designed to have different mobilities in electrophoresis. Each of the multiple wild-type F primers 110 selectively binds to a region containing the wild-type target base sequence 100 of each target strand 101 contained in the sample.
  • the R primer 120 binds to a complementary strand 102 that is complementary to a target strand 101 that contains a wild-type target base sequence 100.
  • the R primer 120 has a sequence complementary to the complementary strand 102.
  • the R primer 120 selectively binds to the 3' end side of the complementary base sequence that is complementary to the target base sequence 100 of the complementary strand 102.
  • a mutant polynucleotide (target strand) 201 containing a mutant target base sequence 200 contained in a sample serves as a template for PCR in a mutation detection system.
  • the mutation detection system for detecting a mutant base sequence is composed of a mutation primer set 210, 220.
  • the mutation primer set 210, 220 consists of a mutation forward primer (F primer) 210 and a reverse primer (R primer) 220.
  • the mutant F primer 210 binds to the target strand 201 containing the mutant target base sequence 200.
  • the mutant F primer 210 has a base sequence complementary to the target strand 201.
  • the mutant F primer 210 is composed of at least one type designed to have a mobility in electrophoresis different from that of the wild-type F primer 110.
  • the mutant F primer 210 selectively binds to a region containing the mutant target base sequence 200 of each target strand 201 contained in the sample.
  • the R primer 220 binds to a complementary strand 202 that is complementary to a target strand 201 that has a mutant target base sequence 200.
  • the R primer 220 has a sequence complementary to the complementary strand 202.
  • the R primer 220 selectively binds to the 3' end side of the complementary base sequence that is complementary to the target base sequence 200 of the complementary strand 202.
  • step S102 the wild-type detection system and the mutant-type detection system are reacted in the same reaction system.
  • a plurality of wild-type F primers 110, mutant-type F primers 210, and at least one type of R primer 120, 220, each having different mobilities in electrophoresis, are added to the same reaction solution for carrying out PCR in substantially equal amounts.
  • At least one type of R primer 120, 220 that is used for both the wild-type and mutant types can be added.
  • step S102 wild-type polynucleotides 130 containing a wild-type target base sequence 100 are amplified by the wild-type primer sets 110 and 120.
  • wild-type polynucleotides 130 multiple species with different mobilities in electrophoresis are generated.
  • mutant polynucleotides 230 containing a mutant target base sequence 200 are amplified by the mutant primer sets 210 and 220.
  • PCR can be carried out according to standard methods by adding the template polynucleotide, wild-type primer set 110, 120, mutant-type primer set 210, 220, heat-resistant DNA polymerase, and dNTP mixture to a reaction buffer solution.
  • the reaction buffer solution can be an aqueous solution in which a buffering agent that exhibits pH buffering action, magnesium ions as a cofactor, additives that are added as necessary, etc. are dissolved.
  • the DNA polymerase any suitable type such as Taq DNA polymerase, Pfu DNA polymerase, Top DNA polymerase, etc. can be used.
  • the dNTP mixture is a mixture of deoxynucleoside triphosphates, and includes deoxyadenosine triphosphate (dATP), deoxythymidine triphosphate (dTTP), deoxyguanosine triphosphate (dGTP), and deoxycytidine triphosphate (dCTP).
  • dATP deoxyadenosine triphosphate
  • dTTP deoxythymidine triphosphate
  • dGTP deoxyguanosine triphosphate
  • dCTP deoxycytidine triphosphate
  • a typical thermal cycle reaction For PCR, a typical thermal cycle reaction can be used.
  • a typical thermal cycle includes a denaturation step in which a polynucleotide is denatured into a single strand, an annealing step in which a primer is annealed to the polynucleotide, and an extension step in which the polynucleotide is extended. By repeating these steps, a large amount of polynucleotide suitable for quantification is synthesized.
  • the denaturation step is, for example, at 96°C for 30 seconds.
  • the annealing step is, for example, at 50-60°C for 30 seconds.
  • the extension step is, for example, at 72°C for 30 seconds.
  • the denaturation step at the start of the cycle is, for example, at 96°C for 1-10 minutes to dissociate the template into single strands.
  • the number of cycles for each step is, for example, between 25 and 40.
  • the wild-type F primer 110 has a mutation recognition site 111, a target recognition site 112, a mobility correction site 113, and a labeling site 114.
  • the mutation recognition site 111, the target recognition site 112, the mobility correction site 113, and the labeling site 114 are arranged in this order, linked from the 3' end of the wild-type F primer 110.
  • the mutant type F primer 210 has a mutation identification site 211, a target recognition site 212, a mobility correction site 213, and a labeling site 214.
  • the mutation identification site 211, the target recognition site 212, the mobility correction site 213, and the labeling site 214 are arranged in this order, linked from the 3' end of the mutant type F primer 210.
  • the mutation identification sites 111 and 211 are sites that recognize the target base sequences 100 and 200 and identify the presence or absence of a mutation in the target base sequences 100 and 200.
  • the mutation identification sites 111 and 211 can be formed of a polynucleotide with any degree of polymerization.
  • the mutation identification site 111 of the wild-type F primer 110 is a base sequence complementary to the wild-type target base sequence 100.
  • the mutation identification site 111 of the wild-type F primer 110 is provided in a base sequence common to multiple wild-type F primers 110.
  • the mutation identification site 211 of the mutant F primer 210 is a base sequence complementary to the mutant target base sequence 200. It is preferable that the mutation identification site 211 of the mutant F primer 210 is formed with the same base sequence as the mutation identification site 111 of the wild-type F primer 110, except for the locus complementary to the locus where the mutation occurred. Such a base sequence makes it easier to adjust the mobility in electrophoresis.
  • the mutation identification sites 111, 211 identify whether the target base sequence of the polynucleotide contained in the sample is a wild-type base sequence or a mutant base sequence. If the mutation identification site 111 of the wild-type F primer 110 binds easily and the PCR products amplified by the wild-type primer set 110, 120 are relatively numerous, the target base sequence is wild-type. On the other hand, if the mutation identification site 211 of the mutant F primer 210 binds easily and the PCR products amplified by the mutant primer set 210, 220 are relatively numerous, the target base sequence is mutant.
  • the length of the mutation identification sites 111, 211 is not particularly limited, but is preferably 1 nt to 6 nt, and more preferably 1 nt to 5 nt. Such a length increases the efficiency of selective annealing, reducing errors in identifying wild-type and mutant types.
  • the mutation identification sites 111, 211 are provided at the 3' end of each F primer 110, 210.
  • the nucleotides at the 3' end of each F primer 110, 210 are preferably arranged to form hydrogen bonds with the bases that cause polymorphism due to mutation contained in the target base sequences 100, 200. With such an arrangement, if the mutation identification sites 111, 211 misanneal, the polynucleotide is less likely to extend. Since artifacts due to misannealing are reduced, wild type and mutant type can be accurately identified.
  • the target recognition sites 112 and 212 are sites that recognize common sequences other than the target base sequences 100 and 200 and identify the amplification position in PCR.
  • the target recognition sites 112 and 212 are linked to the 5' end side of the mutation identification sites 111 and 211.
  • the target recognition sites 112 and 212 can be formed of polynucleotides of any degree of polymerization.
  • the target recognition sites 112, 212 are complementary base sequences to the common sequence adjacent to the target base sequences 100, 200.
  • the common sequence is a base sequence that is present in common in the target strand 101 having the wild-type target base sequence 100 and the target strand 201 having the mutant-type target base sequence 200.
  • the target recognition site 112 of the wild-type F primer 110 is provided in a sequence common to multiple wild-type F primers 110. It is preferable that the target recognition site 212 of the mutant-type F primer 210 is formed with the same base sequence as the target recognition site 112 of the wild-type F primer 110. Such a base sequence makes it easier to adjust the mobility in electrophoresis.
  • the target recognition sites 112, 212 identify the target strands 101, 201 having the target base sequences 100, 200 contained in the sample, and the amplification start position in PCR.
  • the site-selective binding of each F primer 110, 210 to the template is ensured, so that the mutation recognition sites 111, 211 can appropriately identify the target base sequences 100, 200.
  • the length of the target recognition sites 112, 212 is not particularly limited, but is preferably 10 nt to 50 nt, and more preferably 10 nt to 30 nt. Such a length increases the efficiency of selective annealing to the target strands 101, 201, reducing errors in identifying the template and the amplification start position.
  • the mobility correction portion 113, 213 is a portion that corrects the mobility in electrophoresis of the polynucleotide 130, 230 to be quantified, which is a PCR product.
  • the mobility correction portion 113, 213 is linked to the 5' end side of the target recognition portion 112, 212.
  • the mobility correction portion 113, 213 can be formed of a polynucleotide of any degree of polymerization or a non-polynucleotide polymer of any degree of polymerization.
  • the mobility correction portion 113 of the wild-type F primer 110 is provided in a molecular structure in which the mobility in electrophoresis differs between the multiple wild-type F primers 110.
  • the mobility correction portion 213 of the mutant-type F primer 210 is provided in a molecular structure in which the mobility in electrophoresis differs from that of the mobility correction portion 113 of the wild-type F primer 110.
  • the mobility correction sites 113, 213 allow multiple types of polynucleotides 130, 230 with different electrophoretic mobilities to be synthesized by PCR using the primer sets 110, 120, 210, 220.
  • the PCR products are fractionated by electrophoresis and the labels of each fraction are detected and quantified, the wild-type polynucleotide 130 containing the relatively abundant wild-type target base sequence 100 can be divided into multiple fractions. Since the detection signal derived from the wild type is subdivided into fractions, the detection signal derived from the wild type can be easily brought within the range detectable by the detector. Furthermore, since the mobility in electrophoresis is different between the wild type and the mutant type, the relatively abundant wild type and the relatively rare mutant type can be easily distinguished.
  • the mobility correction sites 113, 213 can be provided with different molecular lengths, molecular weights, molecular structures, etc., so that the mobilities in electrophoresis are different between multiple wild-type F primers 110 or between a wild-type F primer 110 and a mutant-type F primer 210.
  • the mobility correction sites 113, 213 are preferably provided in a molecular structure having a common portion between multiple wild-type F primers 110 or between a wild-type F primer 110 and a mutant-type F primer 210.
  • the mobility in electrophoresis is preferably adjusted by an additional portion linked to the common portion.
  • the common portion is preferably provided on the side of the target recognition sites 112, 212 in the mobility correction sites 113, 213. With such a molecular structure, it is possible to easily adjust the mobility in electrophoresis while ensuring selective binding to the target base sequences 100, 200.
  • the mobility compensation sites 113, 213 may be formed only of polynucleotides, or only of non-polynucleotide polymers, or a combination of these.
  • Non-polynucleotides include polyamino acids, polyalkylene glycols such as polyethylene glycol and polypropylene glycol, polysaccharides that form sugar chains, and sugar nucleotides such as poly ADP ribose.
  • the mobility correction sites 113, 213 may be provided in a linear molecular structure or in a branched molecular structure, but it is preferable that at least some of the multiple wild-type F primers 110 are provided in a branched molecular structure having branches. If they are branched, differences in mobility in electrophoresis can be more reliably formed. Therefore, it becomes possible to analyze multiple mutations in a single electrophoresis. In addition, the effects of charge and conformation during electrophoresis are reduced, thereby reducing mobility errors.
  • branched polynucleotides can be formed by modifying the phosphate groups of nucleotides or the hydroxyl groups of ribose.
  • Branched polyamino acids can also be formed by introducing lysine residues, aspartic acid residues, glutamic acid residues, polyamines, polycarboxylic acids, etc., into polyamino acids.
  • Branched polyalkylene glycols can also be formed by introducing polyvalent amino groups, polyvalent carboxyl groups such as maleimide groups, etc., into polyalkylene glycols.
  • the length is not particularly limited, but is preferably 10 nt or more and 100 nt or less. With such a length, misannealing of each F primer 110, 210 via the mobility compensation portion 113, 213 can be reduced.
  • the degree of polymerization difference between multiple wild-type F primers 110 or between the wild-type F primer 110 and the mutant-type F primer 210 can be set to an appropriate degree of polymerization difference of at least 1 nt.
  • the degree of polymerization difference is preferably 5 nt or more, and more preferably 10 nt or more.
  • the wild-type F primer 110 can be composed of multiple types such as 20 nt, 40 nt, and 60 nt.
  • the length of the mobility correction portion 213 of the mutant F primer 210 is preferably longer than the length of the mobility correction portion 113 of the wild-type F primer 110.
  • the longer the molecular chain the more likely it is that the electrophoretic mobility will vary, and the more likely it is that noise will occur in the detection signal.
  • the mobility correction portion 213 of the mutant F primer 210 is relatively long, the relatively short PCR product amplified by the wild-type F primer 110 is less likely to generate noise. Since it is possible to avoid mixing of noise due to multiple types of PCR products, accurate quantification can be performed.
  • the labeling site 114, 214 is a site that labels the polynucleotide to be quantified, which is a PCR product.
  • the labeling site 114, 214 can be formed with a fluorescent dye, a radioisotope, or the like. When a fluorescent dye is used, the labeling site 114, 214 is preferably linked to the end of the mobility compensation site 113, 213 opposite the target recognition site 112, 212.
  • a wild-type polynucleotide 130 or a mutant polynucleotide 230 labeled with a fluorescent dye, a radioisotope, or the like can be obtained by PCR using each primer set 110, 120, 210, and 220.
  • the labels of each fraction can be detected and quantified.
  • the fluorescent dye can be of any type that can bind to the mobility compensation moiety 113, 213 and generate fluorescence of any wavelength.
  • the use of a fluorescent dye makes it easier to prepare and handle each F primer 110, 210 than when a radioisotope is used.
  • Fluorescent dyes include coumarin dyes such as aminomethylcoumarin, 7-hydroxy-4-methylcoumarin, 7-amino-4-methylcoumarin, and 7-acetoxy-4-methylcoumarin; fluorescein dyes such as 5-carboxyfluorescein, 6-carboxyfluorescein, 5-aminofluorescein, 6-aminofluorescein, fluorescein-5-isothiocyanate, fluorescein-6-isothiocyanate, and fluorescein-5-maleimide; rhodamine dyes such as rhodamine B, rhodamine 110, rhodamine 6G, 5-carboxyrhodamine 110, and 6-carboxyrhodamine 110; nitrobenzoxadiazole, cyanine dyes, pyrene dyes, and dansyl dyes.
  • fluorescein dyes such as 5-carboxyfluorescein, 6-carboxyfluorescein, 5-aminofluorescein
  • radioisotope any suitable type can be used, such as a radioisotope of an atom that constitutes the atomic group that binds to the mobility compensation portion 113, 213, or a radioisotope of an atom that constitutes the wild-type F primer 110 or the mutant-type F primer 210.
  • a radioisotope When a radioisotope is used, a less expensive detector can be used to detect the label, compared to when a fluorescent dye is used.
  • radioisotopes that label the phosphate group of a nucleotide include phosphorus-32 ( 32 P) and phosphorus-33 ( 33 P).
  • radioisotopes that label an amino acid or the like linked to a nucleotide include sulfur-35 ( 35 S) and iodine-125 ( 125 I).
  • radioisotopes that label a polyalkylene glycol or the like linked to a nucleotide include tritium ( 3 H) and carbon-14 ( 14 C).
  • the labeling site 114 of the wild-type F primer 110 may be labeled with a fluorescent dye that emits fluorescence of different wavelengths among multiple wild-type F primers 110, or may be labeled with a fluorescent dye that emits fluorescence of the same wavelength.
  • the detection signal derived from the relatively abundant wild-type base sequences can be divided into smaller detection signals for each wavelength by spectroscopic analysis for each wavelength. This makes it possible to use a wider variety of primers, and simultaneously quantify the relatively abundant wild-type base sequences and the relatively rare mutant base sequences contained in the sample, making it possible to quantify with high precision the ratio of mutant base sequences to wild-type base sequences contained in the sample.
  • the labeling site 114 of the wild-type F primer 110 may be labeled with a fluorescent dye that emits fluorescence of a different wavelength from the labeling site 214 of the mutant-type F primer 210, or may be labeled with a fluorescent dye that emits fluorescence of the same wavelength.
  • detection signals derived from the wild type and mutant types can be accurately distinguished by spectroscopic analysis for each wavelength. This allows the use of a wider variety of primers, and even if the labeled site 114 of the wild-type F primer 110 and the labeled site 214 of the mutant F primer 210 have similar mobilities in electrophoresis, the amount of wild-type base sequence and the amount of mutant base sequence contained in the sample can be accurately quantified.
  • the length of the R primers 120 and 220 is not particularly limited, but is preferably 10 nt to 50 nt, and more preferably 10 nt to 30 nt. Such a length increases the efficiency of selective annealing to the complementary strands 102 and 202, reducing errors in identifying the template and the amplification end position.
  • Step S103 is a step of denaturing the polynucleotides amplified by PCR into single strands to prepare a sample for electrophoresis.
  • step S103 the wild-type polynucleotide 130 containing the wild-type target base sequence 100 amplified by the wild-type primer set 110, 120, and the mutant polynucleotide 230 containing the mutant target base sequence 200 amplified by the mutant primer set 210, 220 are dissociated into single strands suitable for electrophoresis.
  • ions and the like contained in the reaction solution are separated or diluted to prepare a sample suitable for electrophoresis.
  • Polynucleotides can be denatured by common methods such as chemical treatment, heat treatment, or a combination of these, or by using commercially available purification kits that include purification columns.
  • Chemical treatments include adding a denaturant, adding a salt, adjusting the pH, etc.
  • Denaturants include formamide, urea, etc.
  • the sample for electrophoresis preferably contains, in addition to the polynucleotides 130 and 230 that are the amplified products, a buffer that exhibits a pH buffering effect and a chelating agent such as EDTA.
  • the sample for electrophoresis can be prepared by diluting a reaction buffer solution containing the amplified products with a buffer solution to which a denaturing agent has been added.
  • the sample for electrophoresis is preferably adjusted to a pH of 7.5 or higher and 8.5 or lower.
  • As the buffer Tris-acetate buffer or Tris-borate buffer is preferable.
  • Step S104 is a step of fractionating the polynucleotides amplified by PCR by electrophoresis.
  • step S104 the wild-type polynucleotide 130 containing the wild-type target base sequence 100 amplified by the wild-type primer set 110, 120, and the mutant polynucleotide 230 containing the mutant target base sequence 200 amplified by the mutant primer set 210, 220 are separated into fractions based on molecular weight by electrophoresis.
  • Polynucleotide electrophoresis can be performed by capillary electrophoresis, gel electrophoresis, etc.
  • Capillary electrophoresis can be performed using a capillary-type electrophoresis device such as a sequencer equipped with an autosampler.
  • Gel electrophoresis can be performed using an electrophoresis tank or the like with agarose gel, polyacrylamide gel, etc. as a separation medium.
  • Polynucleotide electrophoresis is preferably performed by capillary electrophoresis, which has high resolution and quantitation, and allows PCR products to be loaded and detected all at once. Furthermore, from the viewpoint of utilizing the molecular sieve effect, it is more preferable to perform it by capillary gel electrophoresis, which uses gel as a separation medium. Capillary gel electrophoresis can be performed using a capillary filled with gel or a sample with a polymer dispersed therein.
  • a capillary-type electrophoresis device a device equipped with a separation section made of a capillary, a power supply section that applies voltage to both ends of the capillary, and a detection section that detects the label of the sample fractionated by the capillary is preferable, since it allows for continuous fractionation and quantitative analysis.
  • the separation section is a capillary in which a thin tube made of silica glass, borosilicate glass, or the like is coated with polyimide or the like, and either a capillary with an unmodified inner surface or a capillary with a modified inner surface can be used.
  • Step S105 is a step of quantitatively analyzing the fractions separated by electrophoresis.
  • step S105 the wild-type polynucleotide 130 containing the wild-type target base sequence 100 and the mutant polynucleotide 230 containing the mutant target base sequence 200, which have been fractionated by molecular weight by electrophoresis, are quantified for each fraction fractionated by electrophoresis, and the ratio of the mutant base sequence to the wild-type base sequence is determined.
  • the ratio of the mutant base sequence to the wild-type base sequence can be derived by dividing the amount of the mutant polynucleotide by the sum of the amount of the wild-type polynucleotide and the amount of the mutant polynucleotide, based on the quantitative results of the wild-type polynucleotide and the mutant polynucleotide.
  • the peak height or the peak area of the detection signal may be used as the quantification result, but from the viewpoint of performing highly accurate quantification, it is preferable to use the peak area of the detection signal.
  • the ratio of the mutant base sequence to the wild-type base sequence can be derived by dividing the peak height or peak area of the detection signal of the mutant polynucleotide by the sum of the peak heights or the sum of the peak areas of all the detected detection signals.
  • Figure 3 shows an example of the results of quantitative analysis of fractions separated by electrophoresis.
  • Figure 3 shows the results of performing PCR using a fluorescently labeled primer set, fractionating the amplified PCR products by electrophoresis, and then spectroscopically analyzing the fluorescence of each fraction.
  • the horizontal axis shows the base length of the PCR product.
  • the vertical axis shows the fluorescence intensity of the PCR product.
  • Reference numeral 11 indicates the PCR product amplified by the wild-type primer set 110, 120, which is a wild-type polynucleotide 130 containing a relatively large amount of the wild-type target base sequence 100.
  • Reference numeral 12 indicates the PCR product amplified by the mutant primer set 210, 220, which is a mutant polynucleotide 230 containing a relatively small amount of the mutant target base sequence 200.
  • the PCR product amplified by the wild-type primer set 110, 120 produces multiple detection signals by using multiple wild-type F primers 110.
  • the detection signal derived from the wild-type target base sequence 100 is split into multiple small signals. Therefore, the detection signal for each fraction can be easily kept within a range that exceeds the detection sensitivity, which is the lower limit of the detectable range, and is below the detection limit, which is the upper limit.
  • the PCR products amplified by the mutant primer sets 210, 220 produce a different signal from the PCR products amplified by the wild-type primer sets 110, 120.
  • the mutant F primer 210 which has a different mobility in electrophoresis from the wild-type F primer 110, is used, the detection signal derived from the wild-type target base sequence 100 and the detection signal derived from the mutant target base sequence 200 can be distinguished, allowing accurate quantification.
  • BRAF Wild Type Reference Standard (Horizon discovery)
  • BRAFV600K (Horizon discovery)
  • a genomic DNA containing a mutant BRAF gene will be used.
  • the 140453136th base from the end of the short arm (p arm) of chromosome 7 is adenine and the 140453137th base is cytosine.
  • these loci are mutated to thymine.
  • a wild-type polynucleotide containing the wild-type target base sequence and a mutant polynucleotide containing the mutant target base sequence are amplified by PCR using a wild-type primer set and a mutant primer set.
  • the amplified polynucleotides are then fractionated by electrophoresis, and the fractionated fractions are quantitatively analyzed to determine the ratio of the mutant base sequence to the wild-type base sequence.
  • the sample to be analyzed is a nucleic acid solution that simulates low-frequency mutations with a mutation rate of 10%.
  • the nucleic acid solution is prepared by adding 9 ng of wild-type polynucleotide and 1 ng of mutant polynucleotide to a reaction buffer solution. Electrophoresis and quantitative analysis are performed using a capillary electrophoresis device capable of quantitatively detecting fluorescence of 10 to 100 RFU.
  • the effectiveness of the test section is evaluated by comparing the test section with the control section.
  • multiple types of wild-type F primers designed to have different mobilities in electrophoresis are used as forward primers that make up the wild-type primer set.
  • one type of wild-type F primer is used as the forward primer that makes up the wild-type primer set.
  • Table 1 shows specific examples of primer sets for wild-type detection and mutant-type detection used in the test sections.
  • wild-type F primers with different lengths of mobility compensation portion can be used in the test group.
  • One type of mutant F primer with a mobility compensation portion longer than that of the wild-type F primer can be used.
  • Each mobility compensation portion is formed from DNA.
  • Each labeling portion is formed from the same type of fluorescein isothiocyanate (FITC).
  • Table 2 shows specific examples of primer sets for wild-type detection and mutant-type detection used in the control group.
  • one type of wild-type F primer is used in the control group.
  • One type of mutant F primer with a longer mobility correction portion than the wild-type F primer is used.
  • Each mobility correction portion is formed from DNA.
  • Each labeling portion is formed from the same type of fluorescein isothiocyanate (FITC).
  • Figure 4 is a schematic diagram showing a wild-type detection system for detecting a wild-type target base sequence and a mutant detection system for detecting a mutant target base sequence used in the test section.
  • the upper side of Figure 2 shows a template containing a wild-type target base sequence, a wild-type primer set, and a PCR product amplified by these.
  • the lower side of Figure 2 shows a template containing a mutant target base sequence, a mutant primer set, and a PCR product amplified by these.
  • the wild-type detection system in the test group uses five types of wild-type F primers 110 and an R primer 120, so that five types of wild-type polynucleotides 130 containing the wild-type target base sequence 100 are amplified when PCR is performed.
  • the wild-type polynucleotides 130 are obtained in a state in which their mobilities in electrophoresis are different from one another.
  • mutant detection system of the test group one type of mutant F primer 210 and one type of R primer 220 are used, so when PCR is performed, one type of mutant polynucleotide 230 containing the mutant target base sequence 200 is amplified.
  • the mutant polynucleotide 230 is obtained in a state in which its mobility in electrophoresis is different from that of the wild-type polynucleotide 130.
  • Figure 5 is a schematic diagram showing a wild-type detection system for detecting a wild-type target base sequence used in a control group, and a mutant detection system for detecting a mutant target base sequence.
  • the upper part of Figure 5 shows a template containing a wild-type target base sequence, a wild-type primer set, and a PCR product amplified by these.
  • the lower part of Figure 5 shows a template containing a mutant target base sequence, a mutant primer set, and a PCR product amplified by these.
  • control wild-type detection system uses one wild-type F primer 110 and one R primer 120, so when PCR is performed, one wild-type polynucleotide 130 containing the wild-type target base sequence 100 is amplified.
  • the mutant detection system in the test section uses one type of mutant F primer 210 and one type of R primer 220, so when PCR is performed, one type of mutant polynucleotide 230 containing the mutant target base sequence 200 is amplified.
  • Figure 6 shows an example of the results of quantitative analysis of the control group.
  • Figure 7 shows an example of the results of quantitative analysis of the test group.
  • Figures 6 and 7 show the results of performing PCR using a fluorescently labeled primer set, fractionating the amplified PCR products by electrophoresis, and then spectroscopically analyzing the fluorescence of each fraction.
  • the horizontal axis shows the base length [nt] of the PCR product.
  • the vertical axis shows the fluorescence intensity [cfu] of the PCR product.
  • Reference numeral 21 indicates the PCR product amplified by the wild-type primer set 110, 120 in the control group, which is a wild-type polynucleotide 130 containing a relatively high amount of the wild-type target base sequence 100.
  • Reference numeral 22 indicates the PCR product amplified by the mutant primer set 210, 220 in the control group, which is a mutant polynucleotide 230 containing a relatively low amount of the mutant target base sequence 200.
  • the dashed line indicates a specific example of the lower limit of the detectable range of fluorescence intensity.
  • Reference numeral 31 indicates the PCR product amplified by the wild-type primer set 110, 120 in the test area, which is a wild-type polynucleotide 130 containing a relatively high amount of the wild-type target base sequence 100.
  • Reference numeral 32 indicates the PCR product amplified by the mutant primer set 210, 220 in the test area, which is a mutant polynucleotide 230 containing a relatively low amount of the mutant target base sequence 200.
  • the dashed line indicates a specific example of the lower limit of the detectable range of fluorescence intensity.
  • one type of wild-type F primer 110 is used in the control group, and when the PCR products are fractionated by electrophoresis and the fluorescence of each fraction is spectroscopically analyzed, one signal derived from one type of wild-type polynucleotide 130 containing the wild-type target base sequence 100 is detected.
  • the signal derived from the wild type is detected from one fraction, and therefore has a large peak height and peak area.
  • the fluorescence intensity from the wild type will be 180 RFU.
  • the detection signal from the relatively abundant wild type will exceed the detection limit of fluorescence intensity. In such cases, it is difficult to simultaneously and collectively quantify the relatively abundant wild type base sequence and the relatively rare mutant type base sequence.
  • the test section uses multiple types of wild-type F primers 110 designed to have different mobilities in electrophoresis, so when the PCR products are fractionated by electrophoresis and the fluorescence of each fraction is spectroscopically analyzed, multiple signals derived from multiple types of wild-type polynucleotides 130 including the wild-type target base sequence 100 are detected. Since the signals derived from the wild type are detected from multiple fractions, they are separated into multiple signals, and the peak height and peak area of each signal are small.
  • the fluorescence intensity derived from the wild type will decrease from 180 RFU to 36 RFU.
  • the detection signals derived from the relatively abundant wild type can easily be kept within the detectable range of fluorescence intensity. Therefore, the relatively abundant wild type base sequences and the relatively rare mutant type base sequences can be quantified simultaneously and in a lump, and the ratio of mutant type base sequences to wild type base sequences can be determined with high accuracy.
  • the nucleic acid quantification reagent according to the first embodiment includes as its components a plurality of wild-type forward primers (F primers) 110 complementary to a wild-type target base sequence 100, a mutant-type forward primer (F primer) 210 complementary to a mutant-type target base sequence 200, and reverse primers (R primers) 120, 220 complementary to the complementary strands of the target base sequences 100, 200.
  • F primers wild-type forward primers
  • F primer mutant-type forward primer
  • R primers reverse primers
  • the nucleic acid quantification reagent according to the first embodiment can be provided as a reagent for each analyte, with any target base sequence 100, 200 as the analyte.
  • the wild-type F primer 110, the mutant-type F primer 210, and the R primers 120, 220 are provided in a molecular structure that selectively amplifies a polynucleotide containing a specific target base sequence 100, 200.
  • the wild-type F primers 110 may include any number of types designed so that the mobility in electrophoresis differs between the multiple wild-type F primers 110.
  • the number of types of wild-type F primers 110 is preferably 2 to 10, more preferably 4 to 10, and even more preferably 6 to 10. The greater the number of types, the easier it is for the detection signal to fall within the range detectable by the detector. However, if the number of types is too large, there is a risk that the reaction rate between the wild-type F primers 110 will be biased, resulting in detection errors.
  • the mutant type F primer 210 may include at least one type designed to have a different mobility in electrophoresis from the wild type F primer 110.
  • the R primers 120, 220 may include at least one type that is used for both the wild type and the mutant type.
  • the nucleic acid quantification reagent according to the first embodiment may contain, in addition to the wild-type F primer 110, the mutant-type F primer 210, and the R primers 120 and 220, one or more of a heat-resistant DNA polymerase, a dNTP mixture, and a PCR reaction buffer solution as components. These components may include the same types as those in step S102 described above.
  • the nucleic acid quantification reagent may also include, as a reference for the target base sequences 100 and 200 to be analyzed, a polynucleotide having a wild-type target base sequence 100 or a polynucleotide having a mutant target base sequence 200 as a component. These references may be included as genomic DNA or as DNA fragments.
  • the components of the nucleic acid quantification reagent can be provided by dissolving each component in a storage buffer solution and sealing it in a container such as a microtube or a microvial.
  • the components of the nucleic acid quantification reagent may be sealed at the concentration used during analysis, or may be sealed in a more concentrated state than during analysis.
  • the buffer solution in which the polynucleotide is dissolved preferably contains a buffering agent that exhibits a pH buffering effect or a chelating agent such as EDTA, and nucleases are preferably inactivated.
  • the concentrations of the components are not particularly limited.
  • the wild-type F primer 110, the mutant-type F primer 210, the R primers 120, 220, and the reference can be prepared to 0.1 ng/ ⁇ L or more and 10 ng/ ⁇ L or less.
  • the DNA polymerase can be prepared to 1 unit/ ⁇ L or more and 50 units/ ⁇ L or less.
  • the dNTP mixture and reaction buffer solution can be prepared so that each component is 1 mM or more and 100 mM or less.
  • the nucleic acid quantification reagent according to the first embodiment may be provided with the labeling site 114 of the wild-type forward primer 110 and the labeling site 214 of the mutant-type forward primer 210 already bound, or may be provided unbound.
  • the labeling sites 114 and 214 can be included as components of the nucleic acid quantification reagent and can be bound to the mobility correction sites 113 and 213, etc. immediately before PCR.
  • FIG. 8 is a flow chart showing a nucleic acid quantification method according to the second embodiment of the present invention.
  • the nucleic acid quantification method according to the second embodiment includes step S201 of preparing a sample containing a probe target, step S202 of hybridizing the probe and fragment to the target, step S203 of ligating the probe and fragment, step S204 of amplifying the ligation product, step S205 of denaturing the amplified product, step S206 of fractionating the denatured product by electrophoresis, and step S207 of quantitatively analyzing the fractionated fraction.
  • the nucleic acid quantification method relates to a method for quantifying the ratio of mutant base sequences to wild-type base sequences contained in a sample.
  • samples include samples containing a mixture of polynucleotides containing wild-type base sequences and polynucleotides containing mutant base sequences, such as a nucleic acid solution containing a mixture of nucleic acids derived from different cells.
  • the ratio of mutant to wild-type is determined for a specific target base sequence contained in the sample.
  • nucleic acid quantification method In the nucleic acid quantification method according to the second embodiment, wild-type and mutant base sequences contained in a sample are detected using specific probes that are complementary to the respective base sequences. Ligation is then performed using a probe set, and the linked ligation products are fractionated by electrophoresis and each fraction is quantified.
  • the probe set consists of a target base sequence, a probe complementary to the 3' end of the sequence, and a fragment complementary to an adjacent base sequence adjacent to the 5' end of the target base sequence.
  • the target base sequence to be analyzed is detected by a probe that selectively binds to the base sequence.
  • a plurality of probes having a base sequence complementary to the wild-type base sequence and having different mobilities in electrophoresis are used as wild-type probes that recognize the wild-type base sequence.
  • a probe having a base sequence complementary to the mutant target base sequence and having a different mobility in electrophoresis from that of the wild-type is used as a mutant-type probe that recognizes the mutant-type base sequence.
  • the ligation products are fractionated by electrophoresis and each fraction is quantified to obtain quantitative results for the ligation products of the wild-type probe and fragments, and quantitative results for the ligation products of the mutant probe and fragments. Based on these quantitative results, the ratio of mutant base sequences to wild-type base sequences can be calculated.
  • Step S201 is a step of preparing a sample to be analyzed, in which the ratio of mutant base sequences to wild-type base sequences is to be quantified, containing a polynucleotide including a target base sequence that is the target of the probe.
  • the sample to be analyzed may be the same as that used in step S101. From the viewpoint of ensuring the binding efficiency of the probe, it is preferable to use a single-stranded polynucleotide as the polynucleotide containing the target base sequence.
  • Step S202 is a step of hybridizing the probe and fragment to the target using a target and probe set.
  • step S202 the wild-type probe set and the mutant probe set are hybridized to a wild-type polynucleotide containing a target wild-type base sequence, which is the target, and a mutant polynucleotide containing a target mutant base sequence, which is the target.
  • the wild-type target base sequence is detected by the wild-type probe constituting the wild-type probe set.
  • the mutant target base sequence is detected by the mutant probe constituting the mutant probe set.
  • Figure 9 is a schematic diagram showing a wild-type detection system for detecting a wild-type target base sequence and a mutant detection system for detecting a mutant target base sequence.
  • the upper part of Figure 9 shows a target containing a wild-type target base sequence, a probe set for the wild type, and a ligation product generated by these.
  • the lower part of Figure 9 shows a target containing a mutant target base sequence, a probe set for the mutant type, and a ligation product generated by these.
  • a wild-type polynucleotide (target strand) 301 containing a wild-type target base sequence 100 contained in a sample is the target of the probe in the wild-type detection system.
  • the wild-type detection system for detecting a wild-type target base sequence is composed of wild-type probe sets 310, 320.
  • the wild-type probe sets 310, 320 are composed of multiple wild-type probes 310 and fragments 320.
  • the wild-type probe 310 binds to a target strand 301 that contains a wild-type target base sequence 300.
  • the wild-type probe 310 has a base sequence complementary to the target strand 301.
  • the wild-type probe 310 is composed of multiple types that are designed to have different mobilities in electrophoresis. Each of the multiple wild-type probes 310 selectively binds to a region that contains the wild-type target base sequence 300 of each target strand 301 contained in the sample.
  • Fragment 320 binds to target strand 301 containing wild-type target base sequence 300. Fragment 320 has a sequence complementary to target strand 301. Fragment 320 selectively binds to an adjacent base sequence adjacent to the 5' end of target base sequence 300 so as to be adjacent to wild-type probe 310. Fragment 320 is preferably phosphorylated at the 5' end for ligation.
  • a mutant polynucleotide (target strand) 401 containing a mutant target base sequence 400 contained in a sample is the target of the probe in the mutation detection system.
  • the mutation detection system that detects a mutant target base sequence is composed of mutant probe sets 410, 420.
  • the mutant probe sets 410, 420 are composed of a mutant probe 410 and a fragment 420.
  • the mutant type probe 410 binds to a target strand 401 containing a mutant type target base sequence 400.
  • the mutant type probe 410 has a base sequence complementary to the target strand 401.
  • the mutant type probe 410 is composed of at least one type designed to have a mobility in electrophoresis different from that of the wild type probe 310.
  • the mutant type probe 410 selectively binds to a region containing the mutant type target base sequence 400 of each target strand 401 contained in the sample.
  • Fragment 420 binds to target strand 401 containing mutant target base sequence 400.
  • Fragment 420 has a sequence complementary to target strand 401.
  • Fragment 420 selectively binds to an adjacent base sequence adjacent to the 5' end of target base sequence 400 so as to be adjacent to mutant probe 410.
  • Fragment 420 is preferably phosphorylated at the 5' end for ligation.
  • step S202 the wild-type detection system and the mutant-type detection system are reacted in the same reaction system.
  • a plurality of wild-type probes 310, mutant-type probes 410, and at least one type of fragment 410, 420, each having different mobilities in electrophoresis, are added to the same reaction solution for hybridization in substantially equal amounts.
  • At least one type of fragment 410, 420 that is both for the wild-type and the mutant can be added.
  • Hybridization can be carried out in the usual manner by adding the target polynucleotide, the wild-type probe set 310, 320, and the mutant-type probe set 410, 420 to a reaction buffer solution.
  • the reaction buffer solution can be an aqueous solution in which a buffering agent that exhibits a pH buffering effect, a denaturing agent that denatures the polynucleotide, and additives that are added as necessary are dissolved.
  • Buffers include sodium chloride-acetate buffer, Tris-HCl buffer, Tris-acetate buffer, HEPES buffer, phosphate buffer, etc.
  • Denaturants include formamide, urea, etc.
  • Additives include surfactants such as Triton X-100 and Tween 20, and BSA, etc.
  • Hybridization reaction conditions are, for example, 50°C to 60°C and 30 seconds to 60 seconds.
  • the hybridization reaction conditions can be adjusted as appropriate depending on the base length and GC content of the probes and fragments.
  • the hybridization reaction conditions include the concentrations of the target, wild-type probe set 310, 320, mutant-type probe set 410, 420, additives, etc., as well as temperature, time, etc.
  • the wild-type probe 310 has a mutation identification site 311, a target recognition site 312, a mobility compensation site 313, and a labeling site 314.
  • the mutation identification site 311, the target recognition site 312, the mobility compensation site 313, and the labeling site 314 are arranged in this order and linked from the 3' end of the wild-type probe 310.
  • the mutant probe 410 also has a mutation identification portion 411, a target recognition portion 412, a mobility compensation portion 413, and a labeling portion 414.
  • the mutation identification portion 411, the target recognition portion 412, the mobility compensation portion 413, and the labeling portion 414 are arranged linked in this order from the 3' end of the mutant probe 410.
  • the mutation identification sites 311, 411 are sites that recognize the target base sequences 300, 400 and identify the presence or absence of a mutation in the target base sequences 300, 400.
  • the mutation identification sites 311, 411 can be formed of a polynucleotide with any degree of polymerization.
  • the mutation identification site 311 of the wild-type probe 310 is a base sequence complementary to the wild-type target base sequence 300.
  • the mutation identification site 311 of the wild-type probe 310 is provided in a base sequence common to multiple wild-type probes 310.
  • the mutation identification site 411 of the mutant type probe 410 is a base sequence complementary to the mutant type target base sequence 400. It is preferable that the mutation identification site 411 of the mutant type probe 410 is formed with the same base sequence as the mutation identification site 311 of the wild type probe 310, except for the locus complementary to the locus where the mutation has occurred. Such a base sequence makes it easier to adjust the mobility in electrophoresis.
  • the mutation identification sites 311, 411 identify whether the target base sequence of the polynucleotide contained in the sample is a wild-type base sequence or a mutant base sequence. If the mutation identification site 311 of the wild-type probe 310 is easily bound and the ligation products generated by the wild-type probe set 310, 320 are relatively numerous, the target base sequence is wild-type. On the other hand, if the mutation identification site 411 of the mutant type probe 410 is easily bound and the ligation products generated by the mutant type probe set 410, 420 are relatively numerous, the target base sequence is mutant.
  • the length of the mutation identification sites 311, 411 is not particularly limited, but is preferably 1 nt to 6 nt, and more preferably 1 nt to 5 nt. Such a length increases the efficiency of selective hybridization, reducing errors in identifying wild-type and mutant types.
  • the mutation identification sites 311, 411 are provided at the 3' end of each probe 310, 410.
  • the nucleotides at the 3' end of each probe 310, 410 are preferably arranged to form hydrogen bonds with the bases that cause polymorphism due to mutation contained in the target base sequence 300, 400. With such an arrangement, ligation is less likely to occur when the mutation identification sites 311, 411 mishybridize. Since artifacts due to mishybridization are reduced, wild type and mutant type can be accurately identified.
  • the target recognition sites 312, 412 are sites that recognize a common sequence other than the target base sequences 300, 400 and identify the binding position in hybridization.
  • the target recognition sites 312, 412 are linked to the 5' end side of the mutation identification sites 311, 411.
  • the target recognition sites 312, 412 can be formed of polynucleotides of any degree of polymerization.
  • the target recognition sites 312, 412 are complementary base sequences to the common sequence adjacent to the target base sequences 300, 400.
  • the common sequence is a base sequence that is present in common in the target strand 301 having the wild-type target base sequence 300 and the target strand 401 having the mutant-type target base sequence 400.
  • the target recognition site 312 of the wild-type probe 310 is provided in a sequence common to the multiple wild-type probes 310. It is preferable that the target recognition site 412 of the mutant-type probe 410 is formed with the same base sequence as the target recognition site 312 of the wild-type probe 310. Such a base sequence makes it easier to adjust the mobility in electrophoresis.
  • the target recognition sites 312, 412 identify the target strands 301, 401 having the target base sequences 300, 400 contained in the sample, and the binding positions in hybridization. Site-selective binding of each probe 310, 410 to the target is ensured, allowing the mutation recognition sites 311, 411 to appropriately identify the target base sequences 300, 400 and ligate with the fragments 320, 420.
  • the length of the target recognition sites 312, 412 is not particularly limited, but is preferably 10 nt to 50 nt, and more preferably 10 nt to 30 nt. Such a length increases the efficiency of selective hybridization to the target strands 301, 401, reducing misidentification of the target or the binding position.
  • the mobility correction portion 313, 413 is a portion that corrects the mobility in electrophoresis of the polynucleotide 330, 430 to be quantified, which is the ligation product.
  • the mobility correction portion 313, 413 is linked to the 5' end side of the target recognition portion 312, 412.
  • the mobility correction portion 313, 413 can be formed of a polynucleotide of any degree of polymerization or a non-polynucleotide polymer of any degree of polymerization.
  • the mobility compensation portion 313 of the wild-type probe 310 is provided in a molecular structure in which the mobility in electrophoresis differs between the multiple wild-type probes 310.
  • the mobility compensation portion 413 of the mutant-type probe 410 is provided in a molecular structure in which the mobility in electrophoresis differs from that of the mobility compensation portion 313 of the wild-type probe 310.
  • the mobility compensation sites 313, 413 allow multiple types of polynucleotides 330, 430 with different electrophoretic mobilities to be synthesized by ligation using each of the probe sets 310, 320, 410, 420.
  • the ligation product is fractionated by electrophoresis and the label for each fraction is detected and quantified
  • the wild-type polynucleotide 330 containing the relatively abundant wild-type target base sequence 300 can be divided into multiple fractions. Since the detection signal derived from the wild-type is subdivided for each fraction, the detection signal derived from the wild-type can be easily brought within the range detectable by the detector. Furthermore, since the mobility in electrophoresis is different between the wild-type and the mutant type, the relatively abundant wild-type and the relatively rare mutant type can be easily distinguished.
  • the mobility correction sites 313, 413 can be provided with different molecular lengths, molecular weights, molecular structures, etc., so that the mobilities in electrophoresis are different between multiple wild-type probes 310 or between a wild-type probe 310 and a mutant-type probe 410.
  • the mobility correction sites 313, 413 are preferably provided in a molecular structure having a common portion between multiple wild-type probes 310 or between a wild-type probe 310 and a mutant-type probe 410.
  • the mobility in electrophoresis is preferably adjusted by an additional portion linked to the common portion.
  • the common portion is preferably provided on the side of the target recognition site 312, 412. With such a molecular structure, it is possible to easily adjust the mobility in electrophoresis while ensuring selective binding to the target base sequences 300, 400.
  • the mobility compensation regions 313 and 413 may be formed only of polynucleotides, may be formed only of non-polynucleotide polymers, or may be formed of a combination of these. In addition, they may be provided in a linear molecular structure or in a branched molecular structure.
  • the length is not particularly limited, but is preferably 10 nt or more and 100 nt or less. With such a length, mishybridization of each probe 310, 410 via the mobility compensation portion 313, 413 can be reduced.
  • the degree of polymerization difference between multiple wild-type probes 310 or between a wild-type probe 310 and a mutant-type probe 410 can be set to an appropriate degree of polymerization difference of at least 1 nt or more. From the viewpoint of separation in electrophoresis, the degree of polymerization difference is preferably 5 nt or more, and more preferably 10 nt or more.
  • the length of the mobility correction portion 413 of the mutant probe 410 is preferably longer than the length of the mobility correction portion 313 of the wild-type probe 310.
  • the longer the molecular chain the more likely it is that the electrophoretic mobility will vary, and the more likely it is that noise will occur in the detection signal.
  • the mobility correction portion 413 of the mutant probe 410 is relatively long, the relatively short ligation product amplified by the wild-type probe 310 is less likely to generate noise. Since it is possible to avoid mixing of noise due to multiple types of ligation products, accurate quantification can be performed.
  • the labeling site 314, 414 is a site for labeling the polynucleotide to be quantified, which is the ligation product.
  • the labeling site 314, 414 can be formed with a fluorescent dye, a radioisotope, or the like. When a fluorescent dye is used, the labeling site 314, 414 is preferably linked to the end of the mobility compensation site 313, 413 opposite the target recognition site 312, 412.
  • the labeling sites 314 and 414 it is possible to obtain wild-type polynucleotides 330 and mutant polynucleotides 430 labeled with fluorescent dyes, radioisotopes, etc., by ligation using each of the probe sets 310, 320, 410, and 420.
  • the ligation products are fractionated by electrophoresis, the labels of each fraction can be detected and quantified.
  • the fluorescent dyes and radioisotopes forming the labeling sites 314, 414 can be of the same type as the labeling sites 114, 214.
  • the labeling sites 314 of the wild-type probe 310 may be labeled with fluorescent dyes that emit fluorescence of different wavelengths among the multiple wild-type probes 310, or may be labeled with fluorescent dyes that emit fluorescence of the same wavelength among the multiple wild-type probes 310.
  • the labeling sites 314 of the wild-type probe 310 may be labeled with fluorescent dyes that emit fluorescence of different wavelengths among the multiple wild-type probes 310, or may be labeled with fluorescent dyes that emit fluorescence of the same wavelength among the multiple wild-type probes 310.
  • the length of the fragments 320, 420 is not particularly limited, but is preferably 10 nt to 50 nt, and more preferably 10 nt to 30 nt. Such a length increases the efficiency of selective hybridization to the target strand complementary strands 301, 401, reducing misidentification of the target and misidentification of the linking position.
  • Step S203 is a step in which the probe hybridized on the target and the fragment are linked to each other by ligation.
  • step S203 the wild-type probe 310 and fragment 320 hybridized to the target polynucleotide (target strand 301) containing the wild-type target base sequence 300 are linked together by ligase, and the mutant-type probe 410 and fragment 420 hybridized to the target polynucleotide (target strand 401) containing the mutant-type target base sequence 400 are linked together by ligase. Only properly hybridized probes 310, 410 serve as substrates for the ligase, making it possible to distinguish between the wild-type target base sequence and the mutant-type target base sequence.
  • Ligation can be carried out according to standard methods by dissolving the wild-type probe 310 and fragment 320 hybridized to the target strand 301, the mutant-type probe 410 and fragment 420 hybridized to the target strand 401, and ligase in a reaction buffer solution.
  • the reaction buffer solution can be an aqueous solution in which a buffering agent that exhibits pH buffering action, magnesium ions as cofactors, ATP, a reducing agent such as dithiothreitol, and additives that are added as necessary are dissolved.
  • Examples of ligases include T4 DNA ligase and Taq DNA ligase.
  • Examples of buffers include Tris-EDTA buffer.
  • additives include molecular crowding promoters that promote the association of molecules such as polyethylene glycol, dextran, and albumin. When a molecular crowding promoter is added, the reaction field is limited by the high concentration of molecules, improving activity, and therefore the binding rate between the probe and fragments can be increased.
  • the ligation reaction conditions are, for example, 16°C to 42°C and 30 minutes or more.
  • the ligation reaction conditions can be adjusted as appropriate depending on the base length and concentration of the probes and fragments.
  • the ligation reaction conditions include the concentrations of the target, the wild-type probe set 310, 320, the mutant-type probe set 410, 420, the ligase, additives, etc., as well as the temperature and time.
  • Step S204 is a step of amplifying a polynucleotide containing a target base sequence, which is a ligation product, by PCR using a template and a primer set. Step S204 can be omitted if a large amount of ligation product suitable for quantification is obtained.
  • step S204 a wild-type polynucleotide 330 containing the wild-type target base sequence 300, which is the ligation product, and a mutant polynucleotide 430 containing the mutant target base sequence 400 are amplified by PCR using a predetermined primer set.
  • step S204 a large amount of polynucleotide suitable for quantification is synthesized by amplifying the ligation product.
  • PCR can be carried out according to standard methods by adding template polynucleotides 330 and 430, a wild-type primer set, a mutant-type primer set, a heat-resistant DNA polymerase, and a dNTP mixture to a reaction buffer solution.
  • a typical thermal cycle reaction can be used for PCR.
  • a combination of a forward primer complementary to the adjacent base sequence adjacent to the 5' end of the complementary base sequence complementary to fragment 320 and a reverse primer complementary to the adjacent base sequence adjacent to the 3' end of the complementary base sequence complementary to mobility compensation site 313 can be used.
  • a primer set for the mutant type a combination of a forward primer complementary to the adjacent base sequence adjacent to the 5' end of the complementary base sequence complementary to fragment 420 and a reverse primer complementary to the adjacent base sequence adjacent to the 3' end of the complementary base sequence complementary to mobility compensation site 413 can be used.
  • a primer labeled with a labeling site similar to the labeling sites 314 and 414 can be used as the forward primer.
  • the labeling sites 314 and 414 do not need to be linked to the respective probes 310 and 410.
  • Step S205 is a step of denaturing the polynucleotide, which is the ligation product or the PCR amplification product obtained after the ligation, into a single strand to prepare a sample for electrophoresis.
  • step S205 the wild-type polynucleotide 330 containing the wild-type target base sequence 300 generated by ligation, the mutant polynucleotide 430 containing the mutant target base sequence 400 generated by ligation, or the PCR products obtained by amplifying these are dissociated into single strands suitable for electrophoresis.
  • ions and the like contained in the reaction solution are separated or diluted to prepare a sample suitable for electrophoresis.
  • the denaturation of the polynucleotides can be carried out by common methods such as chemical treatment, heat treatment, or a combination of these, or by using a commercially available purification kit including a purification column.
  • the sample for electrophoresis preferably contains a buffer that exhibits a pH buffering effect and a chelating agent such as EDTA.
  • the sample for electrophoresis is preferably adjusted to a pH of 7.5 or higher and a pH of 8.5 or lower.
  • the buffer Tris-acetate buffer or Tris-borate buffer is preferable.
  • Step S206 is a step of fractionating, by electrophoresis, the ligated product produced by ligation or the polynucleotide amplified by PCR after ligation.
  • step S206 the wild-type polynucleotide 330 containing the wild-type target base sequence 300 generated by ligation, the mutant polynucleotide 430 containing the mutant target base sequence 400 generated by ligation, or the PCR products obtained by amplifying these are separated into fractions based on molecular weight by electrophoresis.
  • polynucleotide electrophoresis can be performed by capillary electrophoresis, gel electrophoresis, or the like.
  • Polynucleotide electrophoresis is preferably performed by capillary electrophoresis, which has high resolution and quantitation and allows PCR products to be loaded and detected all at once. Furthermore, from the viewpoint of utilizing the molecular sieve effect, it is more preferable to perform capillary gel electrophoresis, which uses gel as a separation medium.
  • Step S207 is a step of quantitatively analyzing the fractions separated by electrophoresis.
  • step S207 the wild-type polynucleotide 330 containing the wild-type target base sequence 300 and the mutant polynucleotide 430 containing the mutant target base sequence 400, which have been fractionated by molecular weight by electrophoresis, or the PCR products obtained by amplifying these, are quantified for each fraction fractionated by electrophoresis, and the ratio of the mutant base sequence to the wild-type base sequence is determined.
  • the ratio of the mutant base sequence to the wild-type base sequence can be derived by dividing the amount of mutant polynucleotide by the sum of the amount of wild-type polynucleotide and the amount of mutant polynucleotide, based on the quantitative results of the wild-type polynucleotide and the mutant polynucleotide, as in step S105.
  • the polynucleotide containing the wild-type target base sequence is BRAF Wild Type Reference Standard (Horizon discovery), a genomic DNA containing a wild-type BRAF gene.
  • BRAF Wild Type Reference Standard Horizon discovery
  • a genomic DNA containing a wild-type BRAF gene As the polynucleotide containing the mutant target base sequence is BRAFV600K (Horizon discovery), a genomic DNA containing a mutant BRAF gene.
  • a wild-type polynucleotide containing the wild-type target base sequence and a mutant polynucleotide containing the mutant target base sequence are generated by ligation using a wild-type probe set and a mutant probe set.
  • the amplified polynucleotides are then fractionated by electrophoresis, and the fractions are quantitatively analyzed to determine the ratio of the mutant base sequence to the wild-type base sequence.
  • Table 3 shows specific examples of probe sets for wild-type detection and mutant-type detection.
  • each mobility compensation portion is made of DNA.
  • Each labeled portion is made of the same type of fluorescein isothiocyanate (FITC).
  • Figure 10 shows an example of the results of quantitative analysis of fractions separated by electrophoresis.
  • Figure 10 shows the results of spectroscopic analysis of the fluorescence of each fraction after ligation using a fluorescently labeled probe set and fractionation of the linked ligation products by electrophoresis.
  • the horizontal axis shows the base length of the ligation product.
  • the vertical axis shows the fluorescence intensity of the ligation product.
  • Reference numeral 41 indicates the result of a wild-type polynucleotide 330 that is a ligation product linked by the wild-type probe sets 310 and 320 and contains a relatively large amount of the wild-type target base sequence 300.
  • Reference numeral 42 indicates the result of a mutant polynucleotide 430 that is a ligation product linked by the mutant probe sets 410 and 420 and contains a relatively small amount of the mutant target base sequence 400.
  • the ligation product linked by the wild-type probe set 310, 320 produces multiple detection signals by using multiple wild-type probes 310.
  • the detection signal derived from the wild-type target base sequence 300 is split into multiple small signals. Therefore, the detection signal for each fraction can be easily kept within a range that exceeds the detection sensitivity, which is the lower limit of the detectable range, and is below the detection limit, which is the upper limit.
  • the ligation products ligated by the mutant probe sets 410, 420 produce a signal different from the PCR products amplified by the wild-type probe sets 310, 320.
  • the mutant probe 410 which has a different mobility in electrophoresis than the wild-type probe 310, is used, the detection signal derived from the wild-type target base sequence 300 and the detection signal derived from the mutant target base sequence 400 can be distinguished, allowing accurate quantification.
  • the wild-type probe sets 310, 420 and mutant-type probe sets 410, 420 used in the nucleic acid quantification method of the second embodiment are nucleic acid quantification reagents for quantifying the ratio of mutant base sequences to wild-type base sequences contained in a sample, and can be provided as reagents with certain components assembled into a kit.
  • the nucleic acid quantification reagent according to the second embodiment includes as its components a plurality of wild-type probes 310 complementary to the wild-type target base sequence 300, a mutant-type probe 410 complementary to the mutant-type target base sequence 400, and fragments 320, 420 complementary to adjacent base sequences adjacent to the 5' ends of the target base sequences 300, 400.
  • the nucleic acid quantification reagent according to the second embodiment can be provided as a reagent for each analyte, with any target base sequence 300, 400 as the analyte.
  • the wild-type probe 310, the mutant-type probe 410, and the fragments 320, 420 are provided in a molecular structure that selectively hybridizes to a polynucleotide containing a specific target base sequence 300, 400.
  • the wild-type probes 310 may include any number of types designed so that the mobility in electrophoresis differs between the multiple wild-type probes 310.
  • the number of types of wild-type probes 310 is preferably 2 to 10, more preferably 4 to 10, and even more preferably 6 to 10. The greater the number of types, the easier it is for the detection signal to fall within the range detectable by the detector. However, if the number of types is too large, there is a risk that the reaction rate will be biased between the wild-type probes 310, resulting in detection errors.
  • the mutant probe 410 may include at least one type designed to have a different mobility in electrophoresis than the wild-type probe 310.
  • the fragments 320, 420 may include at least one type that is used for both the wild-type and mutant types.
  • the nucleic acid quantification reagent according to the second embodiment may contain, in addition to the wild-type probe 310, the mutant-type probe 410, and the fragments 320 and 420, one or more of ligase, ATP, and a reaction buffer solution for ligation as components. These components may include the same types as those in step S203 described above.
  • the nucleic acid quantification reagent may also include, as a reference for the target base sequences 300, 400 to be analyzed, a polynucleotide having a wild-type target base sequence 300 or a polynucleotide having a mutant target base sequence 400 as a component. These references may be included as genomic DNA or as DNA fragments.
  • the components of the nucleic acid quantification reagent can be provided by dissolving each component in a storage buffer solution and sealing it in a container such as a microtube or a microvial.
  • the components of the nucleic acid quantification reagent may be sealed at the concentration used during analysis, or may be sealed in a more concentrated state than during analysis.
  • the buffer solution in which the polynucleotide is dissolved preferably contains a buffering agent that exhibits a pH buffering effect or a chelating agent such as EDTA, and nucleases are preferably inactivated.
  • the concentrations of the components are not particularly limited.
  • the wild-type probe 310, the mutant-type probe 410, the fragments 320, 420, and the reference can be prepared to 0.1 ng/ ⁇ L or more and 10 ng/ ⁇ L or less.
  • the ligase can be prepared to 1 unit/ ⁇ L or more and 50 units/ ⁇ L or less.
  • the reaction buffer solution can be prepared to have each component at 1 mM or more and 100 mM or less.
  • the nucleic acid quantification reagent according to the second embodiment may be provided with the labeling site 314 of the wild-type probe 310 and the labeling site 414 of the mutant-type probe 410 already bound, or may be provided unbound.
  • the labeling sites 314, 414 can be included as components of the nucleic acid quantification reagent and can be bound to the mobility correction sites 313, 413, etc. immediately before PCR.
  • the nucleic acid quantification reagent according to the second embodiment and the nucleic acid quantification method using the same can perform ligation using multiple probes with different electrophoretic mobilities by a simple operation. Multiple polynucleotides derived from wild-type base sequences and polynucleotides derived from mutant base sequences with different electrophoretic mobilities can be easily prepared in a mutually distinguishable state by general ligation, so that the ratio of mutant base sequences to wild-type base sequences contained in a sample can be quantified quickly and with high accuracy.
  • the present invention has been described above, the present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the present invention.
  • the present invention is not necessarily limited to having all of the configurations of the above-described embodiments. It is possible to replace part of the configuration of an embodiment with another configuration, add part of the configuration of an embodiment to another form, or omit part of the configuration of an embodiment.
  • the nucleic acid quantification method using PCR can include the steps of amplifying a wild-type polynucleotide containing a wild-type target base sequence and a mutant polynucleotide containing a mutant target base sequence by PCR using a wild-type primer set consisting of a plurality of wild-type forward primers complementary to a wild-type target base sequence and a reverse primer complementary to the complementary strand of the target base sequence, and a mutant primer set consisting of a mutant forward primer complementary to a mutant target base sequence and a reverse primer complementary to the complementary strand of the target base sequence, a step of fractionating the wild-type polynucleotide and the mutant polynucleotide by electrophoresis, a step of detecting the label of the wild-type polynucleotide to quantify the wild-type polynucleotide and a step of detecting the label of the mutant polynucleotide to quantify the mutant polynucleotide, and a step of
  • the nucleic acid quantification method using ligation includes the steps of hybridizing a wild-type probe set consisting of a plurality of wild-type probes complementary to a wild-type target base sequence and a fragment complementary to an adjacent base sequence adjacent to the 5' end of the target base sequence, and a mutant probe set consisting of a mutant probe complementary to a mutant target base sequence and a fragment complementary to an adjacent base sequence adjacent to the 5' end of the target base sequence, to a wild-type polynucleotide containing a wild-type target base sequence and a mutant polynucleotide containing a mutant target base sequence; and linking the wild-type probes hybridized to the wild-type polynucleotide and the fragment by ligation to obtain a wild-type polynucleotide containing a wild-type target base sequence.
  • the method may include the steps of generating a target nucleotide sequence of a wild-type polynucleotide containing a wild-type target base sequence by ligating the mutant probe hybridized to the mutant polynucleotide and the fragment, fractionating the wild-type polynucleotide and the mutant polynucleotide by electrophoresis, detecting the label of the wild-type polynucleotide to quantify the wild-type polynucleotide and detecting the label of the mutant polynucleotide to quantify the mutant polynucleotide, and determining the ratio of the mutant polynucleotide to the wild-type polynucleotide based on the quantification results of the wild-type polynucleotide and the quantification results of the mutant polynucleotide.
  • the nucleic acid quantification method using ligation includes the steps of hybridizing a wild-type probe set consisting of a plurality of wild-type probes complementary to a wild-type target base sequence and a fragment complementary to an adjacent base sequence adjacent to the 5' end of the target base sequence, and a mutant probe set consisting of a mutant probe complementary to a mutant target base sequence and a fragment complementary to an adjacent base sequence adjacent to the 5' end of the target base sequence, to a wild-type polynucleotide containing a wild-type target base sequence and a mutant polynucleotide containing a mutant target base sequence, and linking the wild-type probes hybridized to the wild-type polynucleotide and the fragments by ligation to generate a wild-type polynucleotide containing a wild-type target base sequence and a mutant polynucleotide hybridized to the mutant polynucleotide.
  • the method may include a step of linking the hybridized mutant probe and the fragment by ligation to generate a wild-type polynucleotide containing a wild-type target base sequence, a step of amplifying the wild-type polynucleotide and the mutant polynucleotide by PCR, a step of fractionating the amplified wild-type polynucleotide and the amplified mutant polynucleotide by electrophoresis, a step of detecting the label of the wild-type polynucleotide to quantify the wild-type polynucleotide and a step of detecting the label of the mutant polynucleotide to quantify the mutant polynucleotide, and a step of determining the ratio of the mutant polynucleotide to the wild-type polynucleotide based on the quantitative results of the wild-type polynucleotide and the quantitative results of the mutant polynucleotide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本発明は、試料に含まれる変異型の塩基配列が極めて微量であっても、試料に含まれる野生型の塩基配列に対する変異型の塩基配列の割合を高精度に定量することが可能な核酸定量方法および核酸定量用試薬を提供するものである。核酸定量方法は、野生型用プライマセット(110,120)と、変異型用プライマセット(210,220)とを用いて、ポリヌクレオチド(130,230)を増幅するステップと、ポリヌクレオチド(130,230)を電気泳動によって分画して、野生型ポリヌクレオチド(130)に対する変異型ポリヌクレオチド(230)の割合を求めるステップとを含み、野生型用フォワードプライマ(110)は、3'末端に野生型の標的塩基配列(100)と相補的な塩基配列を有し、変異型用フォワードプライマ(210)は、3'末端に変異型の標的塩基配列(200)と相補的な塩基配列を有し、複数の野生型用フォワードプライマ(110)は、電気泳動における移動度が野生型用フォワードプライマ同士で異なる分子構造を有する。核酸定量用試薬は、複数の野生型用フォワードプライマ(110)と、変異型用フォワードプライマ(210)と、リバースプライマ(120,220)とを含む。

Description

核酸定量方法および核酸定量用試薬
 本発明は、試料に含まれる野生型の塩基配列に対する変異型の塩基配列の割合を定量する核酸定量方法および核酸定量用試薬に関する。
 悪性腫瘍は、遺伝子の変異によって起こることが知られている。がんの初期段階では、組織を構成する細胞の極一部に関連遺伝子の変異が見出される。初期段階の変異は、極めて低頻度に見出される突然変異であり、点変異であることが多い。このような低頻度変異の蓄積が、がんの進行やリスクに関係していると考えられている。
 低頻度変異の発生状態に関する情報は、治療に用いる抗がん剤の種類や投与量を決定するための重要な指標となる。低頻度変異を定量したデータは、患者の予後の経過観察や病態予測、治療法の開発や、医療行政の効率化等に資すると期待される。低頻度変異は、多くの野生型の正常細胞がある中で、極めて微量の異常細胞のみが生じる。そのため、試料誤差、測定誤差、複製エラー等の影響を排除して、正確に定量する必要がある。
 低頻度変異を定量する方法としては、検体から作成したDNAやcDNAのライブラリに対して、DNAシークエンス技術を適用する方法がある。PCRによって増幅された野生型の塩基配列や変異型の塩基配列が、蛍光標識、放射性標識等を利用して定量されている。低頻度変異の発生状態は、野生型の塩基配列に対する変異型の塩基配列の割合として求められる。
 特許文献1には、対象のプロリンリッチ膜貫通タンパク質2(PRRT2)遺伝子中の変化の存在について検査することを含む方法が記載されている。PRRT2遺伝子中の変化の存在について検査するためのアッセイとしては、DNAシーケンシング、DNAハイブリダイゼーション、電気泳動アッセイ等が挙げられている。
 特許文献2には、個体のヒトCD36遺伝子における突然変異の存在または不存在を決定する方法が記載されている(請求項40等参照)。この方法では、所定のプローブを対象となる核酸にハイブリダイズさせるマイクロアレイスクリーニングを行っている。ハイブリッド形成から生じたシグナルの強度を、オートラジオグラフィ、蛍光分析等で測定し、突然変異体と正常cDNAとのシグナルを定量的に比較している。
特表2014-533939号公報 特表2003-529315号公報
 塩基配列に生じた低頻度変異の発生状態を評価するためには、野生型の塩基配列に対する変異型の塩基配列の割合を正確に定量する必要がある。定量方法には、試料に含まれる相対的に多い野生型の塩基配列と相対的に少ない変異型の塩基配列とを同時に定量する性能が要求される。測定系が異なると、試料誤差、測定誤差等の影響を受けるためである。例えば、10%の誤差がある場合、発生率が10%以下の低頻度変異を同定できなくなる。また、相対的に少ない微量成分に対する検出感度を確保することが要求される。
 しかし、DNAシークエンス技術を利用した方法をはじめ、従来の核酸定量方法では、検出対象の検出可能範囲が検出器の性能上で限定されているという問題がある。蛍光標識、放射性標識等で標識された定量対象を分析する際に、微量成分に対する検出感度が下限として存在するだけでなく、多量成分に対する検出限界が上限として存在する。微量成分に対する検出感度を確保しようとすると、多量成分の検出シグナルが、検出器による検出可能範囲をオーバーシュートすることがある。
 試料に含まれる変異型の塩基配列が高濃度であれば、変異型の塩基配列を高精度に検出できる。しかし、野生型の塩基配列も高濃度に含まれていた場合、野生型の塩基配列に由来する検出シグナルが検出可能範囲外にオーバーシュートして正確に定量できなくなる。一方、試料を希釈すると、相対的に少ない変異型の塩基配列を高感度に定量できなくなる。検出感度が不足すると、複製エラーの影響を受け易くなるため、多量に存在する野生型の塩基配列の中で極めて微量にしか存在しない低頻度変異を正確に評価できなくなる。
 特許文献1では、電気泳動アッセイにおいて、複数のエキソンに対するプライマを同時に増幅し、単一の電気泳動ゲルで同時に評価している。各エキソンにわたる増幅フラグメントは、異なるサイズになるように設計されている。しかし、特許文献1、2には、低頻度変異のような極めて微量な塩基配列の割合を定量する方法について、具体的に開示されていない。
 そこで、本発明は、試料に含まれる変異型の塩基配列が極めて微量であっても、試料に含まれる野生型の塩基配列に対する変異型の塩基配列の割合を高精度に定量することが可能な核酸定量方法および核酸定量用試薬を提供することを目的とする。
 前記課題を解決するために本発明に係る核酸定量方法の一形態は、試料に含まれる野生型の塩基配列に対する変異型の塩基配列の割合を定量する核酸定量方法であって、野生型の標的塩基配列と相補的な複数の野生型用フォワードプライマ、および、前記標的塩基配列の相補鎖と相補的なリバースプライマからなる野生型用プライマセットと、変異型の標的塩基配列と相補的な変異型用フォワードプライマ、および、前記標的塩基配列の相補鎖と相補的なリバースプライマからなる変異型用プライマセットと、を用いて、野生型の標的塩基配列を含む野生型ポリヌクレオチド、および、変異型の標的塩基配列を含む変異型ポリヌクレオチドをPCRによって増幅するステップと、前記野生型ポリヌクレオチド、および、前記変異型ポリヌクレオチドを電気泳動によって分画して、前記野生型ポリヌクレオチドに対する前記変異型ポリヌクレオチドの割合を求めるステップと、を含み、前記野生型用フォワードプライマは、3’末端に前記野生型の標的塩基配列と相補的な塩基配列を有し、前記変異型用フォワードプライマは、3’末端に前記変異型の標的塩基配列と相補的な塩基配列を有し、複数の前記野生型用フォワードプライマは、前記電気泳動における移動度が前記野生型用フォワードプライマ同士で異なる分子構造を有する。
 また、本発明に係る核酸定量方法の一形態は、試料に含まれる野生型の塩基配列に対する変異型の塩基配列の割合を定量する核酸定量方法であって、野生型の標的塩基配列と相補的な複数の野生型用プローブ、および、前記標的塩基配列の5’末端側に隣接した隣接塩基配列と相補的なフラグメントからなる野生型用プローブセットと、変異型の標的塩基配列と相補的な変異型用プローブ、および、前記標的塩基配列の5’末端側に隣接した隣接塩基配列と相補的なフラグメントからなる変異型用プローブセットとを、野生型の標的塩基配列を含む野生型ポリヌクレオチド、および、変異型の標的塩基配列を含む変異型ポリヌクレオチドにハイブリダイズさせるステップと、前記野生型ポリヌクレオチドにハイブリダイズした前記野生型用プローブと前記フラグメントをライゲーションによって連結させて、野生型の標的塩基配列を含む野生型ポリヌクレオチドを生成すると共に、前記変異型ポリヌクレオチドにハイブリダイズした前記変異型用プローブと前記フラグメントをライゲーションによって連結させて、野生型の標的塩基配列を含む野生型ポリヌクレオチドを生成するステップと、前記野生型ポリヌクレオチド、および、前記変異型ポリヌクレオチドを、電気泳動によって分画して、前記野生型ポリヌクレオチドに対する前記変異型ポリヌクレオチドの割合を求めるステップと、を含み、前記野生型用プローブは、3’末端に前記野生型の標的塩基配列と相補的な塩基配列を有し、前記変異型用プローブは、3’末端に前記変異型の標的塩基配列と相補的な塩基配列を有し、複数の前記野生型用プローブは、前記電気泳動における移動度が前記野生型用プローブ同士で異なる分子構造を有する。
 また、本発明に係る核酸定量用試薬の一形態は、試料に含まれる野生型の塩基配列に対する変異型の塩基配列の割合を定量する核酸定量用試薬であって、野生型の標的塩基配列と相補的な複数の野生型用フォワードプライマと、変異型の標的塩基配列と相補的な変異型用フォワードプライマと、前記標的塩基配列の相補鎖と相補的なリバースプライマと、を含み、前記野生型用フォワードプライマは、3’末端に前記野生型の標的塩基配列と相補的な塩基配列を有し、前記変異型用フォワードプライマは、3’末端に前記変異型の標的塩基配列と相補的な塩基配列を有し、複数の前記野生型用フォワードプライマは、前記電気泳動における移動度が前記野生型用フォワードプライマ同士で異なる分子構造を有する。
 また、本発明に係る核酸定量用試薬の一形態は、試料に含まれる野生型の塩基配列に対する変異型の塩基配列の割合を定量する核酸定量用試薬であって、野生型の標的塩基配列と相補的な複数の野生型用プローブと、変異型の標的塩基配列と相補的な複数の変異型用プローブと、前記標的塩基配列の5’末端側に隣接した隣接塩基配列と相補的なフラグメントと、を含み、前記野生型用プローブは、3’末端に前記野生型の標的塩基配列と相補的な塩基配列を有し、前記変異型用プローブは、3’末端に前記変異型の標的塩基配列と相補的な塩基配列を有し、複数の前記野生型用プローブは、前記電気泳動における移動度が前記野生型用プローブ同士で異なる分子構造を有する。
 本発明によると、試料に含まれる変異型の塩基配列が極めて微量であっても、試料に含まれる野生型の塩基配列に対する変異型の塩基配列の割合を高精度に定量することが可能な核酸定量方法および核酸定量用試薬を提供することができる。
本発明の第1実施形態に係る核酸定量方法を示すフロー図である。 野生型の標的塩基配列を検出する野生型検出系および変異型の標的塩基配列を検出する変異型検出系を模式的に示す図である。 電気泳動によって分画されたフラクションの定量分析の結果の一例を示す図である。 試験区に用いる野生型の標的塩基配列を検出する野生型検出系および変異型の標的塩基配列を検出する変異型検出系を模式的に示す図である。 対照区に用いる野生型の標的塩基配列を検出する野生型検出系および変異型の標的塩基配列を検出する変異型検出系を模式的に示す図である。 対照区の定量分析の結果の一例を示す図である。 試験区の定量分析の結果の一例を示す図である。 本発明の第2実施形態に係る核酸定量方法を示すフロー図である。 野生型の標的塩基配列を検出する野生型検出系および変異型の標的塩基配列を検出する変異型検出系を模式的に示す図である。 電気泳動によって分画されたフラクションの定量分析の結果の一例を示す図である。
 以下、本発明の一実施形態に係る核酸定量方法および核酸定量用試薬について、図を参照しながら説明する。なお、以下の各図において共通する構成については同一の符号を付し、重複した説明を省略する。
<第1実施形態:核酸定量方法>
 図1は、本発明の第1実施形態に係る核酸定量方法を示すフロー図である。
 図1に示すように、第1実施形態に係る核酸定量方法は、テンプレートを含む試料を調製するステップS101と、ポリヌクレオチドを増幅するステップS102と、増幅物を変性させるステップS103と、変性物を電気泳動によって分画するステップS104と、分画されたフラクションを定量分析するステップS105と、を含む。
 第1実施形態に係る核酸定量方法は、試料に含まれる野生型の塩基配列に対する変異型の塩基配列の割合を定量する方法に関する。試料としては、互いに異なる細胞に由来する核酸が混在した核酸溶液のように、野生型の塩基配列を含むポリヌクレオチドと変異型の塩基配列を含むポリヌクレオチドとが混在した試料が挙げられる。この核酸定量方法では、試料に含まれる所定の標的塩基配列について、野生型に対する変異型の割合を求める。
 本明細書において、野生型の塩基配列とは、遺伝子、遺伝子間領域等に関して、相対的に多く存在する正常な塩基配列を意味する。野生型の塩基配列は、自然に存在する塩基配列に限定されるものではなく、人為的に設計された塩基配列であってもよい。変異型の塩基配列とは、相対的に多く存在する野生型の塩基配列に対して、1以上の塩基が、置換(点変異)、欠失または挿入を生じている相対的に少ない異常な塩基配列を意味する。
 分析対象の標的塩基配列は、遺伝子上の塩基配列であってもよいし、遺伝子間領域上の塩基配列であってもよいし、人為的に設計された塩基配列であってもよい。標的塩基配列の長さは、相補的な核酸断片によって認識できる限り、特に限定されるものではない。変異型の塩基配列は、1塩基の変異を有してもよいし、連続的な複数の塩基の変異を有してもよいし、間欠的な複数の塩基の変異を有してもよい、
 第1実施形態に係る核酸定量方法では、試料に含まれる野生型の塩基配列および変異型の塩基配列を、それぞれ、当該塩基配列に相補的な所定のプライマによって検出する。そして、プライマセットによってPCRを行い、増幅されたPCR産物を電気泳動によって分画して各フラクションを定量する。
 プライマセットは、標的塩基配列および当該配列の3’末端側に相補的なフォワードプライマと、標的塩基配列に相補的な相補塩基配列の3’末端側に相補的なリバースプライマとからなる。分析対象の標的塩基配列は、当該塩基配列に選択的に結合するフォワードプライマによって検出される。
 第1実施形態に係る核酸定量方法では、野生型の塩基配列を認識する野生型用フォワードプライマとして、野生型の標的塩基配列に相補的な塩基配列を有し、電気泳動における移動度が互いに異なる複数のプライマを用いる。また、変異型の塩基配列を認識する変異型用フォワードプライマとして、変異型の標的塩基配列に相補的な塩基配列を有し、電気泳動における移動度が野生型用と異なるプライマを用いる。
 PCR産物を電気泳動によって分画し、各フラクションを定量すると、野生型用フォワードプライマとリバースプライマによるPCR産物の定量結果と、変異型用フォワードプライマとリバースプライマによるPCR産物の定量結果とが得られる。これらの定量結果に基づいて、野生型の塩基配列に対する変異型の塩基配列の割合を求めることができる。
 一般に、がんの初期段階等で見出される低頻度変異は、多くの野生型の正常細胞がある中で、極めて微量の異常細胞のみが生じているため、正確な定量には困難を伴う。低頻度変異の発生状態を評価するためには、野生型の塩基配列に対する変異型の塩基配列の割合を正確に定量する必要がある。低頻度変異を生じた核酸は極めて微量にしか存在しないため、高い検出感度が要求される。また、試料誤差、測定誤差等の影響を排除する観点からは、相対的に多い野生型の塩基配列と相対的に少ない変異型の塩基配列とを同時に一括的に定量することが望まれる。
 しかし、従来の核酸定量方法では、検出対象の検出可能範囲が検出器の性能上で限定されている。一般的な核酸定量方法としては、DNAシークエンス技術を利用した方法があり、蛍光標識等で標識された核酸が分光分析されている。このような標識を検出して定量を行う定量方法では、微量成分に対する検出感度が下限として存在するだけでなく、多量成分に対する検出限界が上限として存在する。検出対象が極端に多量に含まれていた場合、蛍光強度等のシグナル強度が検出器による検出限界を超えるため、正確な定量が不能になる。
 そのため、従来の核酸定量方法では、試料に含まれる相対的に多い野生型の塩基配列と相対的に少ない変異型の塩基配列とを同時に一括的に定量することが困難である。微量成分に対する検出感度を確保しようとすると、多量成分の検出シグナルが検出限界をオーバーシュートして、検出器による検出可能範囲内に収まらなくなる。一方、多量成分を正確に定量するために試料を希釈すると、微量成分に対する検出感度が得られなくなる。
 これに対し、野生型用フォワードプライマとして、電気泳動における移動度が互いに異なる複数のプライマを用いると、野生型の標的塩基配列を含むポリヌクレオチドを鋳型としたPCRによって、電気泳動における移動度が互いに異なる野生型の塩基配列に由来する複数種のポリヌクレオチドを生成できる。複数種のポリヌクレオチドは、電気泳動によって複数のフラクションに分画できるため、相対的に多い野生型の塩基配列に由来する検出シグナルを、フラクション毎の小さい検出シグナルに分割できる。
 そのため、検出対象の検出可能範囲が検出器の性能上で限定されている場合であっても、試料に含まれる相対的に多い野生型の塩基配列と相対的に少ない変異型の塩基配列とを同時に一括的に定量することが可能になる。極めて低頻度に生じる低頻度変異を評価する場合であっても、相対的に少ない変異型の塩基配列に対する検出感度を確保しつつ、相対的に多い野生型の塩基配列に由来する検出シグナルを検出器による検出可能範囲内に容易に収めることができる。よって、試料に含まれる野生型の塩基配列に対する変異型の塩基配列の割合を高精度に定量することができる。
(ステップS101)
 ステップS101は、野生型の塩基配列に対する変異型の塩基配列の割合を定量しようとする分析対象の試料であって、PCRのテンプレートとなる標的塩基配列を含むポリヌクレオチドを含有する試料を調製するステップである。
 分析対象の試料としては、所定の標的塩基配列を含むポリヌクレオチドが溶解した核酸溶液を用意することができる。テンプレートとなるポリヌクレオチドは、野生型の標的塩基配列および変異型の標的塩基配列のうちの少なくとも一方を含んでいればよい。野生型の標的塩基配列および変異型の標的塩基配列は、互いに異なる分子上に存在してもよいし、互いに同じ分子上に存在してもよい。例えば、標的塩基配列が繰り返し配列を構成する場合、互いに同じ分子上に存在する変異型の塩基配列の割合を求めることができる。
 分析対象の試料は、標的塩基配列を含むポリヌクレオチドに加え、pHの緩衝作用を示す緩衝剤や、EDTA等のキレート剤を含むことが好ましい。分析対象の試料は、ヌクレアーゼが不活化されることが好ましい。分析対象の試料は、pH7.5以上pH8.5以下に調整されることが好ましい。
 標的塩基配列を含むポリヌクレオチドは、タンパク質、脂質、塩等の他の細胞成分に対して精製されていることが好ましい。ポリヌクレオチドの精製は、アルカリ抽出法、フェノール-クロロホルム抽出法、密度勾配遠心分離法等の一般的な精製方法や、精製カラム等を含む商業的に利用可能な精製キットを用いて行うことができる。
 標的塩基配列を含むポリヌクレオチドは、検体から抽出されたものであってもよいし、人為的に調製されたものであってもよい。例えば、標的塩基配列を含むポリヌクレオチドは、検体から採取された組織片や細胞群等から、DNA、RNA、これらの断片等を抽出・精製することによって、ゲノムDNAライブラリ、cDNAライブラリ等として用意できる。また、人為的な処理や反応によって、DNAライブラリ等として用意できる。
 例えば、人為的な処理や反応によって、任意の目的で選抜されたテンプレートを用意することが可能である。染色体異常、エクソン異常等の上位の変異を対象として構築したDNAライブラリを、塩基の置換、欠失、挿入等の下位の変異の分析に供することができる。このようなDNAライブラリとしては、MLPA(Multiplex Ligation-dependent Probe Amplification)法によるライゲーション産物が挙げられる。
(ステップS102)
 ステップS102は、テンプレートとプライマセットを用いて、PCR(polymerase chain reaction:ポリメラーゼ連鎖反応)によって、標的塩基配列を含むポリヌクレオチドを増幅するステップである。
 ステップS102では、野生型用プライマセットと変異型用プライマセットを用いたPCRによって、野生型の標的塩基配列を含む野生型ポリヌクレオチド、および、変異型の標的塩基配列を含む変異型ポリヌクレオチドを増幅する。ステップS102では、野生型用プライマセットを構成するフォワードプライマによって、野生型の標的塩基配列が検出される。また、変異型用プライマセットを構成するフォワードプライマによって、変異型の標的塩基配列が検出される。
 図2は、野生型の標的塩基配列を検出する野生型検出系および変異型の標的塩基配列を検出する変異型検出系を模式的に示す図である。図2の上側には、野生型の標的塩基配列を含むテンプレートと、野生型用プライマセットと、これらによって増幅されるPCR産物を示す。図2の下側には、変異型の標的塩基配列を含むテンプレートと、変異型用プライマセットと、これらによって増幅されるPCR産物を示す。
 図2の上側に示すように、試料に含まれる野生型の標的塩基配列100を含む野生型ポリヌクレオチド(標的鎖)101が、野生型検出系におけるPCRのテンプレートとなる。野生型の標的塩基配列を検出する野生型検出系は、野生型用プライマセット110,120によって構成される。野生型用プライマセット110,120は、複数の野生型用フォワードプライマ(Fプライマ)110、および、リバースプライマ(Rプライマ)120からなる。
 野生型用Fプライマ110は、野生型の標的塩基配列100を含む標的鎖101に結合する。野生型用Fプライマ110は、標的鎖101に相補的な塩基配列を有している。野生型用Fプライマ110は、電気泳動における移動度が互いに異なるように設計された複数種によって構成される。複数の野生型用Fプライマ110は、それぞれ、試料に含まれる各標的鎖101が持つ野生型の標的塩基配列100を含む領域に選択的に結合する。
 Rプライマ120は、野生型の標的塩基配列100を含む標的鎖101に相補的な相補鎖102に結合する。Rプライマ120は、相補鎖102に相補的な配列を有している。Rプライマ120は、或る程度の長さを増幅させるために、相補鎖102の標的塩基配列100に相補的な相補塩基配列よりも3’末端側に選択的に結合する。
 図2の下側に示すように、試料に含まれる変異型の標的塩基配列200を含む変異型ポリヌクレオチド(標的鎖)201が、変異型検出系におけるPCRのテンプレートとなる。変異型の塩基配列を検出する変異型検出系は、変異型用プライマセット210,220によって構成される。変異型用プライマセット210,220は、変異型用フォワードプライマ(Fプライマ)210、および、リバースプライマ(Rプライマ)220からなる。
 変異型用Fプライマ210は、変異型の標的塩基配列200を含む標的鎖201に結合する。変異型用Fプライマ210は、標的鎖201に相補的な塩基配列を有している。変異型用Fプライマ210は、電気泳動における移動度が野生型用Fプライマ110と異なるように設計された少なくとも1種によって構成される。変異型用Fプライマ210は、試料に含まれる各標的鎖201が持つ変異型の標的塩基配列200を含む領域に選択的に結合する。
 Rプライマ220は、変異型の標的塩基配列200を持つ標的鎖201に相補的な相補鎖202に結合する。Rプライマ220は、相補鎖202に相補的な配列を有している。Rプライマ220は、或る程度の長さを増幅させるために、相補鎖202の標的塩基配列200に相補的な相補塩基配列よりも3’末端側に選択的に結合する。
 ステップS102では、野生型検出系および変異型検出系を同一の反応系で反応させる。PCRを行うための同一の反応液に、電気泳動における移動度が互いに異なる複数の野生型用Fプライマ110、変異型用Fプライマ210、および、少なくとも1種のRプライマ120,220を、互いに実質的に等量となるように添加する。Rプライマ120,220としては、野生型用と変異型用を兼ねた少なくとも1種を添加できる。
 ステップS102では、野生型用プライマセット110,120によって、野生型の標的塩基配列100を含む野生型ポリヌクレオチド130が増幅される。野生型ポリヌクレオチド130としては、電気泳動における移動度が互いに異なる複数種が生成される。また、変異型用プライマセット210,220によって、変異型の標的塩基配列200を含む変異型ポリヌクレオチド230が増幅される。
 PCRは、テンプレートのポリヌクレオチド、野生型用プライマセット110,120、変異型用プライマセット210,220、耐熱性を有するDNAポリメラーゼ、および、dNTP混合物を、反応バッファ液に添加して、常法にしたがって行うことができる。反応バッファ液としては、pHの緩衝作用を示す緩衝剤、補因子であるマグネシウムイオン、必要に応じて添加される添加剤等を溶解させた水溶液を用いることができる。
 DNAポリメラーゼとしては、TaqDNAポリメラーゼ、PfuDNAポリメラーゼ、TopDNAポリメラーゼ等の適宜の種類を用いることができる。dNTP混合物は、デオキシヌクレオシド三リン酸の混合物であり、デオキシアデノシン三リン酸(dATP)、デオキシチミジン三リン酸(dTTP)、デオキシグアノシン三リン酸(dGTP)、および、デオキシシチジン三リン酸(dCTP)を含む。
 緩衝剤としては、Tris-HClバッファ、Tris-酢酸バッファ、HEPESバッファや、リン酸水素二ナトリウム、リン酸二水素ナトリウム、リン酸水素二カリウム、リン酸二水素カリウム等のリン酸バッファ等が挙げられる。添加剤としては、2-メルカプトエタノール、ジチオスレイトール等の還元剤や、TritonX-100、Tween20等の界面活性剤や、ポリエチレングリコール、グリセロールや、BSA、ゼラチンベタイン、ホルムアミド、ジメチルスルホキシド等が挙げられる。
 PCRとしては、一般的なサーマルサイクルによる反応を用いることができる。一般的なサーマルサイクルは、ポリヌクレオチドを一本鎖に変性する変性ステップと、ポリヌクレオチドにプライマをアニーリングさせるアニーリングステップと、ポリヌクレオチドを伸長させる伸長ステップと、を含む。これらのステップの繰り返しによって、定量に適した多量のポリヌクレオチドを合成する。
 変性ステップは、例えば、96℃で30秒間とする。アニーリングステップは、例えば、50~60℃で30秒間とする。伸長ステップは、例えば、72℃で30秒間とする。サイクルの開始時の変性ステップは、テンプレートを1本鎖に解離させるために、例えば、96℃で1~10分間とする。各ステップのサイクル数は、例えば、25回以上40回以下とする。
 PCRの反応条件は、テンプレートやプライマの塩基長、GC含量、定量に用いる検出器の性能等に応じて、適宜の条件に調整できる。PCRの反応条件としては、テンプレート、野生型用プライマセット110,120、変異型用プライマセット210,220、DNAポリメラーゼ、添加剤等の濃度や、各ステップの温度や時間、各ステップを繰り返すサイクル数等が挙げられる。
 図2に示すように、野生型用Fプライマ110は、変異識別部位111と、標的認識部位112と、移動度補正部位113と、標識部位114と、を有している。変異識別部位111、標的認識部位112、移動度補正部位113および標識部位114は、野生型用Fプライマ110の3’末端側から、この順に連結した状態に配置される。
 また、変異型用Fプライマ210は、変異識別部位211と、標的認識部位212と、移動度補正部位213と、標識部位214と、を有している。変異識別部位211、標的認識部位212、移動度補正部位213および標識部位214は、変異型用Fプライマ210の3’末端側から、この順に連結した状態に配置される。
 変異識別部位111,211は、標的塩基配列100,200を認識して、標的塩基配列100,200の変異の有無を識別する部位である。変異識別部位111,211は、任意の重合度のポリヌクレオチドで形成できる。
 野生型用Fプライマ110の変異識別部位111は、野生型の標的塩基配列100と相補的な塩基配列とされる。野生型用Fプライマ110の変異識別部位111は、複数の野生型用Fプライマ110同士で共通の塩基配列に設けられる。
 変異型用Fプライマ210の変異識別部位211は、変異型の標的塩基配列200と相補的な塩基配列とされる。変異型用Fプライマ210の変異識別部位211は、変異を生じた座位に相補的な座位を除いて、野生型用Fプライマ110の変異識別部位111と同じ塩基配列で形成されることが好ましい。このような塩基配列であると、電気泳動における移動度の調整が容易になる。
 変異識別部位111,211によると、試料に含まれるポリヌクレオチドが持つ標的塩基配列が、野生型の塩基配列および変異型の塩基配列のいずれであるかが識別される。野生型用Fプライマ110の変異識別部位111が結合し易く、野生型用プライマセット110,120によって増幅されたPCR産物が相対的に多い場合、当該標的塩基配列は野生型である。一方、変異型用Fプライマ210の変異識別部位211が結合し易く、変異型用プライマセット210,220によって増幅されたPCR産物が相対的に多い場合、当該標的塩基配列は変異型である。
 変異識別部位111,211の長さは、特に限定されるものではないが、1nt以上6nt以下が好ましく、1nt以上5nt以下がより好ましい。このような長さであると、選択的なアニーリングの効率が高くなるため、野生型および変異型の識別ミスを低減できる。
 変異識別部位111,211は、各Fプライマ110,210の3’末端に設けられる。各Fプライマ110,210の3’末端のヌクレオチドは、標的塩基配列100,200に含まれる変異による多型を生じる塩基と水素結合を形成する配置であることが好ましい。このような配置であると、変異識別部位111,211がミスアニーリングした場合に、ポリヌクレオチドが伸長し難くなる。ミスアニーリングによるアーティファクトが低減するため、野生型および変異型を正確に識別できる。
 標的認識部位112,212は、標的塩基配列100,200以外の共通配列を認識して、PCRにおける増幅位置を識別する部位である。標的認識部位112,212は、変異識別部位111,211の5’末端側に連結される。標的認識部位112,212は、任意の重合度のポリヌクレオチドで形成できる。
 標的認識部位112,212は、標的塩基配列100,200に隣接した共通配列に相補的な塩基配列とされる。共通配列は、野生型の標的塩基配列100を持つ標的鎖101と変異型の標的塩基配列200を持つ標的鎖201に共通して存在する塩基配列である。
 野生型用Fプライマ110の標的認識部位112は、複数の野生型用Fプライマ110同士で共通の配列に設けられる。変異型用Fプライマ210の標的認識部位212は、野生型用Fプライマ110の標的認識部位112と同じ塩基配列で形成されることが好ましい。このような塩基配列であると、電気泳動における移動度の調整が容易になる。
 標的認識部位112,212によると、試料に含まれる標的塩基配列100,200を持つ標的鎖101,201や、PCRにおける増幅開始位置が識別される。テンプレートに対する各Fプライマ110,210の位置選択的な結合が確保されるため、変異識別部位111,211による標的塩基配列100,200の識別を適切に行うことができる。
 標的認識部位112,212の長さは、特に限定されるものではないが、10nt以上50nt以下が好ましく、10nt以上30nt以下がより好ましい。このような長さであると、標的鎖101,201に対する選択的なアニーリングの効率が高くなるため、テンプレートの識別ミスや増幅開始位置の識別ミスを低減できる。
 移動度補正部位113,213は、PCR産物である定量対象のポリヌクレオチド130,230について電気泳動における移動度を補正する部位である。移動度補正部位113,213は、標的認識部位112,212の5’末端側に連結される。移動度補正部位113,213は、任意の重合度のポリヌクレオチドや、任意の重合度の非ポリヌクレオチドである高分子で形成できる。
 野生型用Fプライマ110の移動度補正部位113は、電気泳動における移動度が複数の野生型用Fプライマ110同士で異なる分子構造に設けられる。変異型用Fプライマ210の移動度補正部位213は、電気泳動における移動度が野生型用Fプライマ110の移動度補正部位113と異なる分子構造に設けられる。
 移動度補正部位113,213によると、各プライマセット110,120,210,220を用いたPCRによって、電気泳動における移動度が互いに異なる複数種のポリヌクレオチド130,230を合成できる。PCR産物を電気泳動によってフラクション毎に分画し、フラクション毎の標識を検出して定量を行う場合に、相対的に多い野生型の標的塩基配列100を含む野生型ポリヌクレオチド130を複数のフラクションに分割できる。野生型に由来する検出シグナルがフラクション毎に細分化されるため、野生型に由来する検出シグナルを検出器による検出可能範囲内に容易に収めることができる。また、電気泳動における移動度が野生型と変異型で異なることによって、相対的に多い野生型と相対的に少ない変異型とを容易に区別できる。
 移動度補正部位113,213は、複数の野生型用Fプライマ110同士や、野生型用Fプライマ110と変異型用Fプライマ210との間で、電気泳動における移動度が互いに異なるように、互いに異なる分子長、分子量、分子構造等に設けることができる。
 移動度補正部位113,213は、複数の野生型用Fプライマ110同士や、野生型用Fプライマ110と変異型用Fプライマ210との間で、共通部分を有する分子構造に設けられることが好ましい。電気泳動における移動度は、共通部分に連結される付加部分によって調整されることが好ましい。共通部分は、移動度補正部位113,213における標的認識部位112,212の側に設けられることが好ましい。このような分子構造であると、標的塩基配列100,200に対する選択的な結合性を確保しつつ、電気泳動における移動度の調整を容易に行うことができる。
 移動度補正部位113,213は、ポリヌクレオチドのみで形成されてもよいし、非ポリヌクレオチドである高分子のみで形成されてもよいし、これらの組み合わせで形成されてもよい。非ポリヌクレオチドとしては、ポリアミノ酸や、ポリエチレングリコール、ポリプロピレングリコール等のポリアルキレングリコールや、糖鎖を形成する多糖や、ポリADPリボース等の糖ヌクレオチド等が挙げられる。
 移動度補正部位113,213は、直鎖状の分子構造に設けられてもよいし、分枝状の分子構造に設けられてもよいが、複数の野生型用Fプライマ110のうちの少なくとも一部について、分枝を有する分枝状の分子構造に設けられることが好ましい。分枝状であると、電気泳動における移動度の差異をより確実に形成できる。そのため、1回の電気泳動において、複数の変異を解析することが可能になる。また、電気泳動時に電荷やコンフォメーションの影響が小さくなるため、移動度の誤差を低減できる。
 分枝状の分子構造としては、例えば、ヌクレオチドのリン酸基や、リボースの水酸基の修飾によって、分枝状ポリヌクレオチドを形成できる。また、リジン残基、アスパラギン酸残基、グルタミン酸残基や、多価アミン、多価カルボン酸等をポリアミノ酸に導入することによって、分枝状ポリアミノ酸を形成できる。また、多価アミノ基、マレイミド基等の多価カルボキシル基等をポリアルキレングリコールに導入することによって、分枝状ポリアルキレングリコールを形成できる。
 移動度補正部位113,213の長さは、ポリヌクレオチドで形成する場合、特に限定されるものではないが、10nt以上100nt以下が好ましい。このような長さであると、移動度補正部位113,213を介した各Fプライマ110,210のミスアニーリングを低減できる。
 移動度補正部位113,213は、ポリヌクレオチドで形成する場合、複数の野生型用Fプライマ110同士や、野生型用Fプライマ110と変異型用Fプライマ210との間における重合度差を、少なくとも1nt以上の適宜の重合度差に設けることができる。重合度差は、電気泳動における分離性の観点からは、5nt以上が好ましく、10nt以上がより好ましい。例えば、野生型用Fプライマ110は、20nt、40nt、60nt等の複数種で構成できる。
 変異型用Fプライマ210の移動度補正部位213の長さは、野生型用Fプライマ110の移動度補正部位113の長さよりも長く設けられることが好ましい。一般に、分子鎖が長いほど、電気泳動の移動度がバラつき易く、検出シグナルのノイズを生じ易くなる。これに対し、変異型用Fプライマ210の移動度補正部位213が相対的に長いと、野生型用Fプライマ110によって増幅される相対的に短いPCR産物がノイズを生じ難くなる。複数種のPCR産物によるノイズの混成を回避できるため、正確な定量を行うことができる。
 標識部位114,214は、PCR産物である定量対象のポリヌクレオチドを標識する部位である。標識部位114,214は、蛍光色素、放射性同位体等で形成できる。標識部位114,214は、蛍光色素を用いる場合、移動度補正部位113,213の標的認識部位112,212とは反対側の末端に連結されることが好ましい。
 標識部位114,214によると、各プライマセット110,120,210,220を用いたPCRによって、蛍光色素、放射性同位体等で標識された野生型ポリヌクレオチド130や変異型ポリヌクレオチド230を得ることができる。PCR産物を電気泳動によってフラクション毎に分画した場合に、フラクション毎の標識を検出して定量を行うことができる。
 蛍光色素としては、移動度補正部位113,213に結合可能であり、任意の波長の蛍光を生じる適宜の種類を用いることができる。蛍光色素によると、放射性同位体を用いる場合と比較して、各Fプライマ110,210の調製や取り扱いが容易になる。
 蛍光色素としては、アミノメチルクマリン、7-ヒドロキシ-4-メチルクマリン、7-アミノ-4-メチルクマリン、7-アセトキシ-4-メチルクマリン等のクマリン系色素や、5-カルボキシフルオレセイン、6-カルボキシフルオレセイン、5-アミノフルオレセイン、6-アミノフルオレセイン、フルオレセイン-5-イソチオシアネート、フルオレセイン-6-イソチオシアネート、フルオレセイン-5-マレイミド等のフルオレセイン系色素や、ローダミンB、ローダミン110、ローダミン6G、5-カルボキシローダミン110、6-カルボキシローダミン110等のローダミン系色素や、ニトロベンゾオキサジアゾール、シアニン系色素、ピレン系色素、ダンシル系色素等が挙げられる。
 放射性同位体としては、移動度補正部位113,213に結合する原子団を構成する原子の放射性同位体や、野生型用Fプライマ110や変異型用Fプライマ210を構成する原子の放射性同位体等、適宜の種類を用いることができる。放射性同位体によると、蛍光色素を用いる場合と比較して、標識の検出に安価な検出器を使用できる。
 放射性同位体としては、ヌクレオチドのリン酸基を標識する放射性同位体として、リン32(32P)、リン33(33P)等が挙げられる。また、ヌクレオチドに連結されたアミノ酸等を標識する放射性同位体として、硫黄35(35S)、ヨウ素125(125I)等が挙げられる。また、ヌクレオチドに連結されたポリアルキレングリコール等を標識する放射性同位体として、三重水素(H)、炭素14(14C)等が挙げられる。
 野生型Fプライマ110の標識部位114は、複数の野生型用Fプライマ110同士で、互いに異なる波長の蛍光を生じる蛍光色素で標識されてもよいし、互いに同じ波長の蛍光を生じる蛍光色素で標識されてもよい。
 異なる波長の蛍光を生じる蛍光色素で標識されていると、波長毎の分光分析によって、相対的に多い野生型の塩基配列に由来する検出シグナルを、波長毎の小さい検出シグナルに分割できる。より多種類のプライマに使用が可能になり、試料に含まれる相対的に多い野生型の塩基配列と相対的に少ない変異型の塩基配列とを同時に一括的に定量することが可能になるため、試料に含まれる野生型の塩基配列に対する変異型の塩基配列の割合を高精度に定量することができる。
 野生型Fプライマ110の標識部位114は、変異型用Fプライマ210の標識部位214に対して、互いに異なる波長の蛍光を生じる蛍光色素で標識されてもよいし、互いに同じ波長の蛍光を生じる蛍光色素で標識されてもよい。
 異なる波長の蛍光を生じる蛍光色素で標識されていると、波長毎の分光分析によって、野生型に由来する検出シグナルと変異型に由来する検出シグナルとを正確に識別できる。より多種類のプライマに使用が可能になり、野生型Fプライマ110の標識部位114と変異型用Fプライマ210の標識部位214とについて、電気泳動における移動度が互いに類似している場合であっても、試料に含まれる野生型の塩基配列の量や変異型の塩基配列の量を正確に定量することができる。
 Rプライマ120,220の長さは、特に限定されるものではないが、10nt以上50nt以下が好ましく、10nt以上30nt以下がより好ましい。このような長さであると、相補鎖102,202に対する選択的なアニーリングの効率が高くなるため、テンプレートの識別ミスや増幅終了位置の識別ミスを低減できる。
(ステップS103)
 ステップS103は、PCRによって増幅された増幅物であるポリヌクレオチドを一本鎖に変性させて、電気泳動用の試料を調製するステップである。
 ステップS103では、野生型用プライマセット110,120によって増幅された野生型の標的塩基配列100を含む野生型ポリヌクレオチド130、および、変異型用プライマセット210,220によって増幅された変異型の標的塩基配列200を含む変異型ポリヌクレオチド230を、電気泳動に適した一本鎖に解離させる。また、反応液に含まれるイオン等を分離または希釈して、電気泳動に適した試料を調製する。
 ポリヌクレオチドの変性は、化学処理、熱処理、これらの組み合わせ等の一般的な方法や、精製カラム等を含む商業的に利用可能な精製キットを用いて行うことができる。化学処理としては、変性剤を添加する処理、塩を添加する処理、pHを調整する処理等が挙げられる。変性剤としては、ホルムアミド、尿素等が挙げられる。
 電気泳動用の試料は、増幅物であるポリヌクレオチド130,230に加え、pHの緩衝作用を示す緩衝剤や、EDTA等のキレート剤を含むことが好ましい。例えば、電気泳動用の試料は、増幅物を含む反応バッファ液を、変性剤を添加したバッファ液で希釈することによって調製できる。電気泳動用の試料は、pH7.5以上pH8.5以下に調整されることが好ましい。緩衝剤としては、Tris-酢酸バッファや、Tris-ホウ酸バッファが好ましい。
(ステップS104)
 ステップS104は、PCRによって増幅された増幅物であるポリヌクレオチドを電気泳動によって分画するステップである。
 ステップS104では、野生型用プライマセット110,120によって増幅された野生型の標的塩基配列100を含む野生型ポリヌクレオチド130、および、変異型用プライマセット210,220によって増幅された変異型の標的塩基配列200を含む変異型ポリヌクレオチド230を、電気泳動によって分子量毎のフラクションに分離する。
 ポリヌクレオチドの電気泳動は、キャピラリ電気泳動、ゲル電気泳動等によって行うことができる。キャピラリ電気泳動は、オートサンプラを備えたシークエンサ等のキャピラリ式の電気泳動装置を用いて行うことができる。ゲル電気泳動は、アガロースゲル、ポリアクリルアミドゲル等を分離媒体として泳動槽等を用いて行うことができる。
 ポリヌクレオチドの電気泳動は、分解能や定量性が高く、PCR産物を一括的にロードおよび検出できる観点からは、キャピラリ電気泳動によって行うことが好ましい。また、分子ふるい効果を利用する観点からは、分離媒体としてゲルを用いたキャピラリゲル電気泳動によって行うことがより好ましい。キャピラリゲル電気泳動は、ゲルを充填したキャピラリや、高分子を分散させた試料によって行うことができる。
 キャピラリ式の電気泳動装置としては、分画と定量分析を連続的に行える点で、キャピラリで構成される分離部と、キャピラリの両末端に電圧を印加する電源部と、キャピラリで分画された試料の標識を検出する検出部と、を備えた装置が好ましい。分離部としては、シリカガラス、ホウケイ酸ガラス等で形成された細管がポリイミド等で被覆されたキャピラリであって、内面が非修飾のキャピラリや、内面が修飾されたキャピラリを用いることができる。
(ステップS105)
 ステップS105は、電気泳動によって分画されたフラクションを定量分析するステップである。
 ステップS105では、電気泳動によって分子量毎に分画された野生型の標的塩基配列100を含む野生型ポリヌクレオチド130、および、変異型の標的塩基配列200を含む変異型ポリヌクレオチド230を、電気泳動によって分画されたフラクション毎に定量し、野生型の塩基配列に対する変異型の塩基配列の割合を求める。
 野生型の塩基配列に対する変異型の塩基配列の割合は、野生型ポリヌクレオチドの定量結果および変異型ポリヌクレオチドの定量結果に基づいて、変異型ポリヌクレオチドの量を、野生型ポリヌクレオチドの量と変異型ポリヌクレオチドの量との合計で除算することによって導出できる。
 定量結果としては、フラクション毎の標識を検出して定量を行う場合、検出シグナルのピーク高さを用いてもよいし、検出シグナルのピーク面積を用いてもよいが、高精度な定量を行う観点からは、検出シグナルのピーク面積を用いることが好ましい。野生型の塩基配列に対する変異型の塩基配列の割合は、変異型ポリヌクレオチドの検出シグナルのピーク高さまたはピーク面積を、検出された全ての検出シグナルのピーク高さの合計またはピーク面積の合計で除算することによって導出できる。
 図3は、電気泳動によって分画されたフラクションの定量分析の結果の一例を示す図である。図3には、蛍光標識されたプライマセットを用いてPCRを行い、増幅されたPCR産物を電気泳動によって分画した後に、フラクション毎の蛍光を分光分析した結果を示す。図3において、横軸は、PCR産物の塩基長を示す。縦軸は、PCR産物の蛍光強度を示す。
 符号11は、野生型用プライマセット110,120によって増幅されたPCR産物であって、相対的に多い野生型の標的塩基配列100を含む野生型ポリヌクレオチド130の結果を示す。符号12は、変異型用プライマセット210,220によって増幅されたPCR産物の結果であって、相対的に少ない変異型の標的塩基配列200を含む変異型ポリヌクレオチド230の結果を示す。
 図3に示すように、野生型用プライマセット110,120によって増幅されたPCR産物は、複数の野生型用Fプライマ110を用いることによって、複数の検出シグナルを生じる。電気泳動における移動度が互いに異なる複数の野生型用Fプライマ110を用いると、野生型の標的塩基配列100に由来する検出シグナルが複数の小さいシグナルに分割される。そのため、フラクション毎の検出シグナルを、検出可能範囲の下限である検出感度を超える範囲、且つ、上限である検出限界以下の範囲に容易に収めることができる。
 また、図3に示すように、変異型用プライマセット210,220によって増幅されたPCR産物は、野生型用プライマセット110,120によって増幅されたPCR産物とは異なるシグナルを生じる。電気泳動における移動度が野生型用Fプライマ110と異なる変異型用Fプライマ210を用いると、野生型の標的塩基配列100に由来する検出シグナルと変異型の標的塩基配列200に由来する検出シグナルとが区別されるため、正確な定量を行うことができる。
 ここで、ゲノムDNAを対象として野生型の塩基配列に対する変異型の塩基配列の割合を定量する方法をより具体的に説明する。
 野生型の標的塩基配列を含むポリヌクレオチドとしては、野生型のBRAF遺伝子を持つゲノムDNA BRAF Wild Type Reference Standard(Horizon discovery社製)を用いるものとする。変異型の標的塩基配列を含むポリヌクレオチドとしては、変異型のBRAF遺伝子を持つゲノムDNA BRAFV600K(Horizon discovery社製)を用いるものとする。
 野生型の標的塩基配列を含むポリヌクレオチドでは、7番染色体の短腕(p腕)の末端から140453136番目の塩基がアデニン、140453137番目の塩基がシトシンである。一方、変異型の標的塩基配列を含むポリヌクレオチドでは、これらの座位がチミンに変異している。
 定量解析では、はじめに、野生型用プライマセットおよび変異型用プライマセットを用いて、PCRによって、野生型の標的塩基配列を含む野生型ポリヌクレオチド、および、変異型の標的塩基配列を含む変異型ポリヌクレオチドを増幅させる。そして、増幅物であるポリヌクレオチドを電気泳動によって分画し、分画されたフラクションを定量分析して、野生型の塩基配列に対する変異型の塩基配列の割合を求める。
 分析対象の試料としては、変異率が10%である低頻度変異を模擬した核酸溶液を用いるものとする。核酸溶液は、9ngの野生型ポリヌクレオチドと、1ngの変異型ポリヌクレオチドを反応バッファ液に添加して調製した。電気泳動および定量分析は、10~100RFUの蛍光を定量的に検出可能なキャピラリ電気泳動装置を使用して行うものとする。
 定量解析では、試験区と対照区とを比較して、試験区の有効性を評価する。試験区では、野生型用プライマセットを構成するフォワードプライマとして、電気泳動における移動度が互いに異なるように設計された複数種の野生型用Fプライマを用いる。対照区では、野生型用プライマセットを構成するフォワードプライマとして、1種の野生型用Fプライマを用いる。
 表1に、試験区に用いる野生型検出系のプライマセット、および、変異型検出系のプライマセットの具体例を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、試験区において、野生型用Fプライマとしては、移動度補正部位の長さを変えた5種類を用いることができる。変異型用Fプライマとしては、野生型用Fプライマよりも移動度補正部位が長い1種類を用いることができる。各移動度補正部位は、DNAで形成する。各標識部位は、同種のフルオレセインイソチオシアネート(FITC)で形成する。これらのプライマセットによると、159~171ntの野生型ポリヌクレオチドと、180ntの変異型ポリヌクレオチドが得られる。
 表2に、対照区に用いる野生型検出系のプライマセット、および、変異型検出系のプライマセットの具体例を示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、対照区において、野生型用Fプライマとしては、1種類を用いる。変異型用Fプライマとしては、野生型用Fプライマよりも移動度補正部位が長い1種類を用いる。各移動度補正部位は、DNAで形成する。各標識部位は、同種のフルオレセインイソチオシアネート(FITC)で形成する。これらのプライマセットによると、159ntの野生型ポリヌクレオチドと、180ntの変異型ポリヌクレオチドが得られる。
 図4は、試験区に用いる野生型の標的塩基配列を検出する野生型検出系および変異型の標的塩基配列を検出する変異型検出系を模式的に示す図である。図2の上側には、野生型の標的塩基配列を含むテンプレートと、野生型用プライマセットと、これらによって増幅されるPCR産物を示す。図2の下側には、変異型の標的塩基配列を含むテンプレートと、変異型用プライマセットと、これらによって増幅されるPCR産物を示す。
 図4に示すように、試験区の野生型検出系では、5種の野生型用Fプライマ110、および、Rプライマ120を用いるため、PCRを行うと、野生型の標的塩基配列100を含む5種の野生型ポリヌクレオチド130が増幅される。野生型ポリヌクレオチド130は、電気泳動における移動度が互いに異なる状態で得られる。
 一方、試験区の変異型検出系では、1種の変異型用Fプライマ210、および、Rプライマ220を用いるため、PCRを行うと、変異型の標的塩基配列200を含む1種の変異型ポリヌクレオチド230が増幅される。変異型ポリヌクレオチド230は、電気泳動における移動度が野生型ポリヌクレオチド130と異なる状態で得られる。
 図5は、対照区に用いる野生型の標的塩基配列を検出する野生型検出系および変異型の標的塩基配列を検出する変異型検出系を模式的に示す図である。図5の上側には、野生型の標的塩基配列を含むテンプレートと、野生型用プライマセットと、これらによって増幅されるPCR産物を示す。図5の下側には、変異型の標的塩基配列を含むテンプレートと、変異型用プライマセットと、これらによって増幅されるPCR産物を示す。
 図5に示すように、対照区の野生型検出系では、1種の野生型用Fプライマ110、および、Rプライマ120を用いるため、PCRを行うと、野生型の標的塩基配列100を含む1種の野生型ポリヌクレオチド130が増幅される。
 一方、試験区の変異型検出系では、1種の変異型用Fプライマ210、および、Rプライマ220を用いるため、PCRを行うと、変異型の標的塩基配列200を含む1種の変異型ポリヌクレオチド230が増幅される。
 図6は、対照区の定量分析の結果の一例を示す図である。図7は、試験区の定量分析の結果の一例を示す図である。図6および図7には、蛍光標識されたプライマセットを用いてPCRを行い、増幅されたPCR産物を電気泳動によって分画した後に、フラクション毎の蛍光を分光分析した結果を示す。図6および図7において、横軸は、PCR産物の塩基長[nt]を示す。縦軸は、PCR産物の蛍光強度[cfu]を示す。
 符号21は、対照区の野生型用プライマセット110,120によって増幅されたPCR産物であって、相対的に多い野生型の標的塩基配列100を含む野生型ポリヌクレオチド130の結果を示す。符号22は、対照区の変異型用プライマセット210,220によって増幅されたPCR産物の結果であって、相対的に少ない変異型の標的塩基配列200を含む変異型ポリヌクレオチド230の結果を示す。破線は、蛍光強度の検出可能範囲の下限の具体例を示す。
 符号31は、試験区の野生型用プライマセット110,120によって増幅されたPCR産物であって、相対的に多い野生型の標的塩基配列100を含む野生型ポリヌクレオチド130の結果を示す。符号32は、試験区の変異型用プライマセット210,220によって増幅されたPCR産物の結果であって、相対的に少ない変異型の標的塩基配列200を含む変異型ポリヌクレオチド230の結果を示す。破線は、蛍光強度の検出可能範囲の下限の具体例を示す。
 図6に示すように、対照区では、1種の野生型用Fプライマ110を用いるため、PCR産物を電気泳動によって分画した後に、フラクション毎の蛍光を分光分析すると、野生型の標的塩基配列100を含む1種の野生型ポリヌクレオチド130に由来する一つのシグナルが検出される。野生型に由来するシグナルは、1つのフラクションから検出されるため、ピーク高さやピーク面積が大きくなる。
 例えば、変異率が10%であり、変異型に由来する蛍光強度が20RFUであった場合、野生型に由来する蛍光強度が180RFUとなる。相対的に少ない変異型に由来する検出シグナルに対して検出感度を確保しようとすると、相対的に多い野生型に由来する検出シグナルが蛍光強度の検出限界を超える虞がある。このような場合、相対的に多い野生型の塩基配列と相対的に少ない変異型の塩基配列とを同時に一括的に定量することが困難である。
 一方、図7に示すように、試験区では、電気泳動における移動度が互いに異なるように設計された複数種の野生型用Fプライマ110を用いるため、PCR産物を電気泳動によって分画した後に、フラクション毎の蛍光を分光分析すると、野生型の標的塩基配列100を含む複数種の野生型ポリヌクレオチド130に由来する複数のシグナルが検出される。野生型に由来するシグナルは、複数のフラクションから検出されるため、複数のシグナルに分離されて、シグナル毎のピーク高さやピーク面積が小さくなる。
 例えば、変異率が10%であり、変異型に由来する蛍光強度が20RFUであった場合、野生型に由来する蛍光強度が180RFUから36RFUに小さくなる。相対的に少ない変異型に由来する検出シグナルに対して検出感度を確保しようとしたとき、相対的に多い野生型に由来する検出シグナルを蛍光強度の検出可能範囲内に容易に収めることができる。そのため、相対的に多い野生型の塩基配列と相対的に少ない変異型の塩基配列とを同時に一括的に定量して、野生型の塩基配列に対する変異型の塩基配列の割合を高精度に求めることができる。
<第1実施形態:核酸定量用試薬>
 第1実施形態に係る核酸定量方法に用いる野生型用プライマセット110,120および変異型用プライマセット210,220は、試料に含まれる野生型の塩基配列に対する変異型の塩基配列の割合を定量するための核酸定量用試薬であって、所定の構成要素がキット化された試薬として提供できる。
 第1実施形態に係る核酸定量用試薬は、野生型の標的塩基配列100と相補的な複数の野生型用フォワードプライマ(Fプライマ)110と、変異型の標的塩基配列200と相補的な変異型用フォワードプライマ(Fプライマ)210と、標的塩基配列100,200の相補鎖と相補的なリバースプライマ(Rプライマ)120,220とを、構成要素として含む。
 第1実施形態に係る核酸定量用試薬は、任意の標的塩基配列100,200を分析対象とした分析対象毎の試薬として提供できる。野生型用Fプライマ110、変異型用Fプライマ210、および、Rプライマ120,220は、所定の標的塩基配列100,200を含むポリヌクレオチドを選択的に増幅する分子構造に設けられる。
 野生型用Fプライマ110としては、電気泳動における移動度が複数の野生型用Fプライマ110同士で異なるように設計された任意の種類数を含むことができる。野生型用Fプライマ110の種類数は、2種以上10種以下が好ましく、4種以上10種以下がより好ましく、6種以上10種以下が更に好ましい。種類数が多いほど、検出シグナルが検出器による検出可能範囲内に収まり易くなる。但し、種類数が多すぎると、野生型用Fプライマ110同士で反応率が偏り、検出誤差を生じる虞がある。
 変異型用Fプライマ210としては、電気泳動における移動度が野生型用Fプライマ110と異なるように設計された少なくとも1種を含むことができる。Rプライマ120,220としては、野生型用と変異型用を兼ねた少なくとも1種を含むことができる。
 第1実施形態に係る核酸定量用試薬は、野生型用Fプライマ110、変異型用Fプライマ210、および、Rプライマ120,220に加え、耐熱性を有するDNAポリメラーゼ、dNTP混合物、および、PCR用の反応バッファ液のうちの1種以上を構成要素として含んでもよい。これらの構成要素としては、前記のステップS102と同様の種類を含むことができる。
 核酸定量用試薬には、分析対象の標的塩基配列100,200のリファレンスとして、野生型の標的塩基配列100を持つポリヌクレオチドや、変異型の標的塩基配列200を持つポリヌクレオチドを構成要素として付属させることもできる。これらのリファレンスは、ゲノムDNAとして付属させてもよいし、DNA断片として付属させてもよい。
 核酸定量用試薬の構成要素は、各構成要素を保存用バッファ液に溶解させて、マイクロチューブ、マイクロバイアル等の容器に封入した状態で提供できる。核酸定量用試薬の構成要素は、解析時の濃度で封入されてもよいし、解析時よりも濃縮された状態で封入されてもよい。ポリヌクレオチドを溶解させたバッファ液は、pHの緩衝作用を示す緩衝剤や、EDTA等のキレート剤を含み、ヌクレアーゼが不活化されていることが好ましい。
 構成要素の濃度は、特に限定されるものではない。例えば、野生型用Fプライマ110、変異型用Fプライマ210、Rプライマ120,220およびリファレンスは、0.1ng/μL以上10ng/μL以下に調製できる。DNAポリメラーゼは、1unit/μL以上50unit/μL以下に調製できる。dNTP混合物や反応バッファ液は、各成分を1mM以上100mM以下に調製できる。
 第1実施形態に係る核酸定量用試薬は、野生型用フォワードプライマ110の標識部位114や、変異型用フォワードプライマ210の標識部位214が、予め結合した状態で提供されてもよいし、結合していない状態で提供されてもよい。標識部位114,214は、核酸定量用試薬の構成要素として付属させて、PCRの直前に移動度補正部位113,213等に結合させることもできる。
 このような第1実施形態に係る核酸定量用試薬や、これを用いた核酸定量方法によると、電気泳動における移動度が互いに異なる複数種のプライマを用いたPCRを、簡単な操作によって行うことができる。電気泳動における移動度が互いに異なる野生型の塩基配列に由来する複数種のポリヌクレオチドや、変異型の塩基配列に由来するポリヌクレオチドを、一般的なPCRによって、互いに識別可能な状態で簡単且つ多量に調製できるため、試料に含まれる野生型の塩基配列に対する変異型の塩基配列の割合を迅速且つ高精度に定量できる。
<第2実施形態:核酸定量方法>
 図8は、本発明の第2実施形態に係る核酸定量方法を示すフロー図である。
 図8に示すように、第2実施形態に係る核酸定量方法は、プローブターゲットを含む試料を調製するステップS201と、プローブとフラグメントをターゲットにハイブリダイズさせるステップS202と、プローブとフラグメントをライゲートするステップS203と、ライゲーション産物を増幅するステップS204と、増幅物を変性させるステップS205と、変性物を電気泳動によって分画するステップS206と、分画されたフラクションを定量分析するステップS207と、を含む。
 第2実施形態に係る核酸定量方法は、第1実施形態と同様に、試料に含まれる野生型の塩基配列に対する変異型の塩基配列の割合を定量する方法に関する。試料としては、互いに異なる細胞に由来する核酸が混在した核酸溶液のように、野生型の塩基配列を含むポリヌクレオチドと変異型の塩基配列を含むポリヌクレオチドとが混在した試料が挙げられる。この核酸定量方法では、試料に含まれる所定の標的塩基配列について、野生型に対する変異型の割合を求める。
 第2実施形態に係る核酸定量方法では、試料に含まれる野生型の塩基配列および変異型の塩基配列を、それぞれ、当該塩基配列に相補的な所定のプローブによって検出する。そして、プローブセットによってライゲーションを行い、連結されたライゲーション産物を電気泳動によって分画して各フラクションを定量する。
 プローブセットは、標的塩基配列および当該配列の3’末端側に相補的なプローブと、標的塩基配列の5’末端側に隣接した隣接塩基配列に相補的なフラグメントとからなる。分析対象の標的塩基配列は、当該塩基配列に選択的に結合するプローブによって検出される。
 第2実施形態に係る核酸定量方法では、野生型の塩基配列を認識する野生型用プローブとして、野生型の塩基配列に相補的な塩基配列を有し、電気泳動における移動度が互いに異なる複数のプローブを用いる。また、変異型の塩基配列を認識する変異型用プローブとして、変異型の標的塩基配列に相補的な塩基配列を有し、電気泳動における移動度が野生型用と異なるプローブを用いる。
 ライゲーション産物を電気泳動によって分画し、各フラクションを定量すると、野生型用プローブとフラグメントによるライゲーション産物の定量結果と、変異型用プローブとフラグメントによるライゲーション産物の定量結果とが得られる。これらの定量結果に基づいて、野生型の塩基配列に対する変異型の塩基配列の割合を求めることができる。
(ステップS201)
 ステップS201は、野生型の塩基配列に対する変異型の塩基配列の割合を定量しようとする分析対象の試料であって、プローブのターゲットとなる標的塩基配列を含むポリヌクレオチドを含有する試料を調製するステップである。
 分析対象の試料としては、前記のステップS101と同様の試料を用いることができる。標的塩基配列を含むポリヌクレオチドとしては、プローブの結合効率を確保する観点からは、1本鎖のポリヌクレオチドを用いることが好ましい。
(ステップS202)
 ステップS202は、ターゲットとプローブセットを用いて、プローブとフラグメントをターゲットにハイブリダイズさせるステップである。
 ステップS202では、野生型用プローブセットと変異型用プローブセットとを、それぞれ、ターゲットである野生型の標的塩基配列を含む野生型ポリヌクレオチド、および、ターゲットである変異型の標的塩基配列を含む変異型ポリヌクレオチドに対してハイブリダイズさせる。ステップS202では、野生型用プローブセットを構成する野生型用プローブによって、野生型の標的塩基配列が検出される。また、変異型用プローブセットを構成する変異型用プローブによって、変異型の標的塩基配列が検出される。
 図9は、野生型の標的塩基配列を検出する野生型検出系および変異型の標的塩基配列を検出する変異型検出系を模式的に示す図である。図9の上側には、野生型の標的塩基配列を含むターゲットと、野生型用プローブセットと、これらによって生成されるライゲーション産物を示す。図9の下側には、変異型の標的塩基配列を含むターゲットと、変異型用プローブセットと、これらによって生成されるライゲーション産物を示す。
 図9の上側に示すように、試料に含まれる野生型の標的塩基配列100を含む野生型ポリヌクレオチド(標的鎖)301が、野生型検出系におけるプローブのターゲットとなる。野生型の標的塩基配列を検出する野生型検出系は、野生型用プローブセット310,320によって構成される。野生型用プローブセット310,320は、複数の野生型用プローブ310、および、フラグメント320からなる。
 野生型用プローブ310は、野生型の標的塩基配列300を含む標的鎖301に結合する。野生型用プローブ310は、標的鎖301に相補的な塩基配列を有している。野生型用プローブ310は、電気泳動における移動度が互いに異なるように設計された複数種によって構成される。複数の野生型用プローブ310は、それぞれ、試料に含まれる各標的鎖301が持つ野生型の標的塩基配列300を含む領域に選択的に結合する。
 フラグメント320は、野生型の標的塩基配列300を含む標的鎖301に結合する。フラグメント320は、標的鎖301に相補的な配列を有している。フラグメント320は、標的塩基配列300の5’末端側に隣接した隣接塩基配列に、野生型用プローブ310と隣接するように選択的に結合する。フラグメント320は、ライゲーションのために、5’末端がリン酸化されることが好ましい。
 図9の下側に示すように、試料に含まれる変異型の標的塩基配列400を含む変異型ポリヌクレオチド(標的鎖)401が、変異型検出系におけるプローブのターゲットとなる。変異型の標的塩基配列を検出する変異型検出系は、変異型用プローブセット410,420によって構成される。変異型用プローブセット410,420は、変異型用プローブ410、および、フラグメント420からなる。
 変異型用プローブ410は、変異型の標的塩基配列400を含む標的鎖401に結合する。変異型用プローブ410は、標的鎖401に相補的な塩基配列を有している。変異型用プローブ410は、電気泳動における移動度が野生型用プローブ310と異なるように設計された少なくとも1種によって構成される。変異型用プローブ410は、試料に含まれる各標的鎖401が持つ変異型の標的塩基配列400を含む領域に選択的に結合する。
 フラグメント420は、変異型の標的塩基配列400を含む標的鎖401に結合する。フラグメント420は、標的鎖401に相補的な配列を有している。フラグメント420は、標的塩基配列400の5’末端側に隣接した隣接塩基配列に、変異型用プローブ410と隣接するように選択的に結合する。フラグメント420は、ライゲーションのために、5’末端がリン酸化されることが好ましい。
 ステップS202では、野生型検出系および変異型検出系を同一の反応系で反応させる。ハイブリダイゼーションを行う同一の反応液に、電気泳動における移動度が互いに異なる複数の野生型用プローブ310、変異型用プローブ410、および、少なくとも1種のフラグメント410,420を、互いに実質的に等量となるように添加する。フラグメント410,420としては、野生型用と変異型用を兼ねた少なくとも1種を添加できる。
 ハイブリダイゼーションは、ターゲットのポリヌクレオチド、野生型用プローブセット310,320、および、変異型用プローブセット410,420を、反応バッファ液に添加して、常法にしたがって行うことができる。反応バッファ液としては、pHの緩衝作用を示す緩衝剤、ポリヌクレオチドを変性させる変性剤、必要に応じて添加される添加剤等を溶解させた水溶液を用いることができる。
 緩衝剤としては、塩化ナトリウム-酢酸バッファ、Tris-HClバッファ、Tris-酢酸バッファ、HEPESバッファ、リン酸バッファ等が挙げられる。変性剤としては、ホルムアミド、尿素等が挙げられる。添加剤としては、TritonX-100、Tween20等の界面活性剤や、BSA等が挙げられる。
 ハイブリダイゼーションの反応条件は、例えば、50℃以上60℃以下、30秒以上60秒以下とする。ハイブリダイゼーションの反応条件は、プローブやフラグメントの塩基長、GC含量等に応じて、適宜の条件に調整できる。ハイブリダイゼーションの反応条件としては、ターゲット、野生型用プローブセット310,320、変異型用プローブセット410,420、添加剤等の濃度や、温度や時間等が挙げられる。
 図9に示すように、野生型用プローブ310は、変異識別部位311と、標的認識部位312と、移動度補正部位313と、標識部位314と、を有している。変異識別部位311、標的認識部位312、移動度補正部位313および標識部位314は、野生型用プローブ310の3’末端側から、この順に連結した状態に配置される。
 また、変異型用プローブ410は、変異識別部位411と、標的認識部位412と、移動度補正部位413と、標識部位414と、を有している。変異識別部位411、標的認識部位412、移動度補正部位413および標識部位414は、変異型用プローブ410の3’末端側から、この順に連結した状態に配置される。
 変異識別部位311,411は、標的塩基配列300,400を認識して、標的塩基配列300,400の変異の有無を識別する部位である。変異識別部位311,411は、任意の重合度のポリヌクレオチドで形成できる。
 野生型用プローブ310の変異識別部位311は、野生型の標的塩基配列300と相補的な塩基配列とされる。野生型用プローブ310の変異識別部位311は、複数の野生型用プローブ310同士で共通の塩基配列に設けられる。
 変異型用プローブ410の変異識別部位411は、変異型の標的塩基配列400と相補的な塩基配列とされる。変異型用プローブ410の変異識別部位411は、変異を生じた座位に相補的な座位を除いて、野生型用プローブ310の変異識別部位311と同じ塩基配列で形成されることが好ましい。このような塩基配列であると、電気泳動における移動度の調整が容易になる。
 変異識別部位311,411によると、試料に含まれるポリヌクレオチドが持つ標的塩基配列が、野生型の塩基配列および変異型の塩基配列のいずれであるかが識別される。野生型用プローブ310の変異識別部位311が結合し易く、野生型用プローブセット310,320によって生成されたライゲーション産物が相対的に多い場合、当該標的塩基配列は野生型である。一方、変異型用プローブ410の変異識別部位411が結合し易く、変異型用プローブセット410,420によって生成されたライゲーション産物が相対的に多い場合、当該標的塩基配列は変異型である。
 変異識別部位311,411の長さは、特に限定されるものではないが、1nt以上6nt以下が好ましく、1nt以上5nt以下がより好ましい。このような長さであると、選択的なハイブリダイズの効率が高くなるため、野生型および変異型の識別ミスを低減できる。
 変異識別部位311,411は、各プローブ310,410の3’末端に設けられる。各プローブ310,410の3’末端のヌクレオチドは、標的塩基配列300,400に含まれる変異による多型を生じる塩基と水素結合を形成する配置であることが好ましい。このような配置であると、変異識別部位311,411がミスハイブリダイズした場合に、ライゲーションが起こり難くなる。ミスハイブリダイズによるアーティファクトが低減するため、野生型および変異型を正確に識別できる。
 標的認識部位312,412は、標的塩基配列300,400以外の共通配列を認識して、ハイブリダイゼーションにおける結合位置を識別する部位である。標的認識部位312,412は、変異識別部位311,411の5’末端側に連結される。標的認識部位312,412は、任意の重合度のポリヌクレオチドで形成できる。
 標的認識部位312,412は、標的塩基配列300,400に隣接した共通配列に相補的な塩基配列とされる。共通配列は、野生型の標的塩基配列300を持つ標的鎖301と変異型の標的塩基配列400を持つ標的鎖401に共通して存在する塩基配列である。
 野生型用プローブ310の標的認識部位312は、複数の野生型用プローブ310同士で共通の配列に設けられる。変異型用プローブ410の標的認識部位412は、野生型用プローブ310の標的認識部位312と同じ塩基配列で形成されることが好ましい。このような塩基配列であると、電気泳動における移動度の調整が容易になる。
 標的認識部位312,412によると、試料に含まれる標的塩基配列300,400を持つ標的鎖301,401や、ハイブリダイゼーションにおける結合位置が識別される。ターゲットに対する各プローブ310,410の位置選択的な結合が確保されるため、変異識別部位311,411による標的塩基配列300,400の識別や、フラグメント320,420とのライゲーションを適切に行うことができる。
 標的認識部位312,412の長さは、特に限定されるものではないが、10nt以上50nt以下が好ましく、10nt以上30nt以下がより好ましい。このような長さであると、標的鎖301,401に対する選択的なハイブリダイズの効率が高くなるため、ターゲットの識別ミスや結合位置の識別ミスを低減できる。
 移動度補正部位313,413は、ライゲーション産物である定量対象のポリヌクレオチド330,430について電気泳動における移動度を補正する部位である。移動度補正部位313,413は、標的認識部位312,412の5’末端側に連結される。移動度補正部位313,413は、任意の重合度のポリヌクレオチドや、任意の重合度の非ポリヌクレオチドである高分子で形成できる。
 野生型用プローブ310の移動度補正部位313は、電気泳動における移動度が複数の野生型用プローブ310同士で異なる分子構造に設けられる。変異型用プローブ410の移動度補正部位413は、電気泳動における移動度が野生型用プローブ310の移動度補正部位313と異なる分子構造に設けられる。
 移動度補正部位313,413によると、各ブロープセット310,320,410,420を用いたライゲーションによって、電気泳動における移動度が互いに異なる複数種のポリヌクレオチド330,430を合成できる。ライゲーション産物を電気泳動によってフラクション毎に分画し、フラクション毎の標識を検出して定量を行う場合に、相対的に多い野生型の標的塩基配列300を含む野生型ポリヌクレオチド330を複数のフラクションに分割できる。野生型に由来する検出シグナルがフラクション毎に細分化されるため、野生型に由来する検出シグナルを検出器による検出可能範囲に容易に収めることができる。また、電気泳動における移動度が野生型と変異型で異なることによって、相対的に多い野生型と相対的に少ない変異型とを容易に区別できる。
 移動度補正部位313,413は、複数の野生型用プローブ310同士や、野生型用プローブ310と変異型用プローブ410との間で、電気泳動における移動度が互いに異なるように、互いに異なる分子長、分子量、分子構造等に設けることができる。
 移動度補正部位313,413は、複数の野生型用プローブ310同士や、野生型用プローブ310と変異型用プローブ410との間で、共通部分を有する分子構造に設けられることが好ましい。電気泳動における移動度は、共通部分に連結される付加部分によって調整されることが好ましい。共通部分は、標的認識部位312,412の側に設けられることが好ましい。このような分子構造であると、標的塩基配列300,400に対する選択的な結合性を確保しつつ、電気泳動における移動度の調整を容易に行うことができる。
 移動度補正部位313,413は、前記の移動度補正部位113,213と同様に、ポリヌクレオチドのみで形成されてもよいし、非ポリヌクレオチドである高分子のみで形成されてもよいし、これらの組み合わせで形成されてもよい。また、直鎖状の分子構造に設けられてもよいし、分枝状の分子構造に設けられてもよい。
 移動度補正部位313,413の長さは、ポリヌクレオチドで形成する場合、特に限定されるものではないが、10nt以上100nt以下が好ましい。このような長さであると、移動度補正部位313,413を介した各プローブ310,410のミスハイブリダイズを低減できる。
 移動度補正部位313,413は、ポリヌクレオチドで形成する場合、複数の野生型用プローブ310同士や、野生型用プローブ310と変異型用プローブ410との間における重合度差を、少なくとも1nt以上の適宜の重合度差に設けることができる。重合度差は、電気泳動における分離性の観点からは、5nt以上が好ましく、10nt以上がより好ましい。
 変異型用プローブ410の移動度補正部位413の長さは、野生型用プローブ310の移動度補正部位313の長さよりも長く設けられることが好ましい。一般に、分子鎖が長いほど、電気泳動の移動度がバラつき易く、検出シグナルのノイズを生じ易くなる。これに対し、変異型用プローブ410の移動度補正部位413が相対的に長いと、野生型用プローブ310によって増幅される相対的に短いライゲーション産物がノイズを生じ難くなる。複数種のライゲーション産物によるノイズの混成を回避できるため、正確な定量を行うことができる。
 標識部位314,414は、ライゲーション産物である定量対象のポリヌクレオチドを標識する部位である。標識部位314,414は、蛍光色素、放射性同位体等で形成できる。標識部位314,414は、蛍光色素を用いる場合、移動度補正部位313,413の標的認識部位312,412とは反対側の末端に連結されることが好ましい。
 標識部位314,414によると、各プローブセット310,320,410,420を用いたライゲーションによって、蛍光色素、放射性同位体等で標識された野生型ポリヌクレオチド330や変異型ポリヌクレオチド430を得ることができる。ライゲーション産物を電気泳動によってフラクション毎に分画した場合に、フラクション毎の標識を検出して定量を行うことができる。
 標識部位314,414を形成する蛍光色素や放射性同位体としては、前記の標識部位114,214と同様の種類を用いることができる。野生型用プローブ310の標識部位314は、複数の野生型用プローブ310同士で、互いに異なる波長の蛍光を生じる蛍光色素で標識されてもよいし、互いに同じ波長の蛍光を生じる蛍光色素で標識されてもよい。また、野生型用プローブ310の標識部位314は、変異型用プローブ410の標識部位414に対して、互いに異なる波長の蛍光を生じる蛍光色素で標識されてもよいし、互いに同じ波長の蛍光を生じる蛍光色素で標識されてもよい。
 フラグメント320,420の長さは、特に限定されるものではないが、10nt以上50nt以下が好ましく、10nt以上30nt以下がより好ましい。このような長さであると、標的鎖相補鎖301,401に対する選択的なハイブリダイズの効率が高くなるため、ターゲットの識別ミスや連結位置の識別ミスを低減できる。
(ステップS203)
 ステップS203は、ターゲット上にハイブリダイズしたプローブとフラグメントをライゲーションによって互いに連結させるステップである。
 ステップS203では、野生型の標的塩基配列300を含むターゲットのポリヌクレオチド(標的鎖301)にハイブリダイズさせた野生型用プローブ310とフラグメント320とをリガーゼによって互いに連結させると共に、変異型の標的塩基配列400を含むターゲットのポリヌクレオチド(標的鎖401)にハイブリダイズさせた変異型用プローブ410とフラグメント420とをリガーゼによって互いに連結させる。適正にハイブリダイズしたプローブ310,410のみがリガーゼの基質となるため、野生型の標的塩基配列と変異型の標的塩基配列とを識別できる。
 ライゲーションは、ターゲットである標的鎖301にハイブリダイズさせた野生型用プローブ310およびフラグメント320、ターゲットである標的鎖401にハイブリダイズさせた変異型用プローブ410およびフラグメント420、および、リガーゼを、反応バッファ液に溶解させて、常法にしたがって行うことができる。反応バッファ液としては、pHの緩衝作用を示す緩衝剤、補因子であるマグネシウムイオン、ATP、ジチオスレイトール等の還元剤、必要に応じて添加される添加剤等を溶解させた水溶液を用いることができる。
 リガーゼとしては、T4DNAリガーゼ、TaqDNAリガーゼ等が挙げられる。緩衝剤としては、Tris-EDTAバッファ等が挙げられる。添加剤としては、ポリエチレングリコール、デキストラン、アルブミン等の分子同士の会合を促進する分子クラウディング促進剤等が挙げられる。分子クラウディング促進剤を添加すると、高濃度の分子によって反応場が限定されて活量が向上するため、プローブとフラグメントとの結合率を高めることができる。
 ライゲーションの反応条件は、例えば、16℃以上42℃以下、30分以上とする。ライゲーションの反応条件は、プローブやフラグメントの塩基長、濃度等に応じて、適宜の条件に調整できる。ライゲーションの反応条件としては、ターゲット、野生型用プローブセット310,320、変異型用プローブセット410,420、リガーゼ、添加剤等の濃度や、温度や時間等が挙げられる。
(ステップS204)
 ステップS204は、テンプレートとプライマセットを用いて、PCRによって、ライゲーション産物である標的塩基配列を含むポリヌクレオチドを増幅するステップである。ステップS204は、定量に適した多量のライゲーション産物が得られる場合、実施を省略することもできる。
 ステップS204では、所定のプライマセットを用いたPCRによって、ライゲーション産物である野生型の標的塩基配列300を含む野生型ポリヌクレオチド330、および、変異型の標的塩基配列400を含む変異型ポリヌクレオチド430を増幅する。ステップS204では、ライゲーション産物の増幅によって、定量に適した多量のポリヌクレオチドを合成する。
 PCRは、ステップS102と同様に、テンプレートのポリヌクレオチド330,430、野生型用プライマセット、変異型用プライマセット、耐熱性を有するDNAポリメラーゼ、および、dNTP混合物を、反応バッファ液に添加して、常法にしたがって行うことができる。PCRとしては、一般的なサーマルサイクルによる反応を用いることができる。
 野生型用プライマセットとしては、フラグメント320に相補的な相補塩基配列の5’末端側に隣接した隣接塩基配列に相補的なフォワードプライマと、移動度補正部位313に相補的な相補塩基配列の3’末端側に隣接した隣接塩基配列に相補的なリバースプライマとの組み合わせを用いることができる。
 変異型用プライマセットとしては、フラグメント420に相補的な相補塩基配列の5’末端側に隣接した隣接塩基配列に相補的なフォワードプライマと、移動度補正部位413に相補的な相補塩基配列の3’末端側に隣接した隣接塩基配列に相補的なリバースプライマとの組み合わせを用いることができる。
 なお、ライゲーション産物をPCRによって増幅させる場合、フォワードプライマとしては、標識部位314,414と同様の標識部位によって標識されたプライマを用いることができる。このような場合、各プローブ310,410には標識部位314,414が連結していなくてもよい。
(ステップS205)
 ステップS205は、ライゲーションによって生成された連結物、ないし、ライゲーションの後にPCRによって増幅された増幅物であるポリヌクレオチドを一本鎖に変性させて、電気泳動用の試料を調製するステップである。
 ステップS205では、ライゲーションによって生成された野生型の標的塩基配列300を含む野生型ポリヌクレオチド330、および、ライゲーションによって生成された変異型の標的塩基配列400を含む変異型ポリヌクレオチド430、ないし、これらを増幅させたPCR産物を、電気泳動に適した一本鎖に解離させる。また、反応液に含まれるイオン等を分離または希釈して、電気泳動に適した試料を調製する。
 ポリヌクレオチドの変性は、ステップS103と同様に、化学処理、熱処理、これらの組み合わせ等の一般的な方法や、精製カラム等を含む商業的に利用可能な精製キットを用いて行うことができる。電気泳動用の試料は、増幅物であるポリヌクレオチド330,430に加え、pHの緩衝作用を示す緩衝剤や、EDTA等のキレート剤を含むことが好ましい。電気泳動用の試料は、pH7.5以上pH8.5以下に調整されることが好ましい。緩衝剤としては、Tris-酢酸バッファや、Tris-ホウ酸バッファが好ましい。
(ステップS206)
 ステップS206は、ライゲーションによって生成された連結物、ないし、ライゲーションの後にPCRによって増幅された増幅物であるポリヌクレオチドを電気泳動によって分画するステップである。
 ステップS206では、ライゲーションによって生成された野生型の標的塩基配列300を含む野生型ポリヌクレオチド330、および、ライゲーションによって生成された変異型の標的塩基配列400を含む変異型ポリヌクレオチド430、ないし、これらを増幅させたPCR産物を、電気泳動によって分子量毎のフラクションに分離する。
 ポリヌクレオチドの電気泳動は、ステップS104と同様に、キャピラリ電気泳動、ゲル電気泳動等によって行うことができる。ポリヌクレオチドの電気泳動は、分解能や定量性が高く、PCR産物を一括的にロードおよび検出できる観点からは、キャピラリ電気泳動によって行うことが好ましい。また、分子ふるい効果を利用する観点からは、分離媒体としてゲルを用いたキャピラリゲル電気泳動によって行うことがより好ましい。
(ステップS207)
 ステップS207は、電気泳動によって分画されたフラクションを定量分析するステップである。
 ステップS207では、電気泳動によって分子量毎に分画された野生型の標的塩基配列300を含む野生型ポリヌクレオチド330、および、変異型の標的塩基配列400を含む変異型ポリヌクレオチド430、ないし、これらを増幅させたPCR産物を、電気泳動によって分画されたフラクション毎に定量し、野生型の塩基配列に対する変異型の塩基配列の割合を求める。
 野生型の塩基配列に対する変異型の塩基配列の割合は、ステップS105と同様に、野生型ポリヌクレオチドの定量結果および変異型ポリヌクレオチドの定量結果に基づいて、変異型ポリヌクレオチドの量を、野生型ポリヌクレオチドの量と変異型ポリヌクレオチドの量との合計で除算することによって導出できる。
 ここで、ゲノムDNAを対象として野生型の塩基配列に対する変異型の塩基配列の割合を定量する方法をより具体的に説明する。
 野生型の標的塩基配列を含むポリヌクレオチドとしては、前記のPCRを用いた解析例と同様に、野生型のBRAF遺伝子を持つゲノムDNA BRAF Wild Type Reference Standard(Horizon discovery社製)を用いるものとする。変異型の標的塩基配列を含むポリヌクレオチドとしては、変異型のBRAF遺伝子を持つゲノムDNA BRAFV600K(Horizon discovery社製)を用いるものとする。
 定量解析では、はじめに、野生型用プローブセットおよび変異型用プローブセットを用いて、ライゲーションによって、野生型の標的塩基配列を含む野生型ポリヌクレオチド、および、変異型の標的塩基配列を含む変異型ポリヌクレオチドを生成させる。そして、増幅物であるポリヌクレオチドを電気泳動によって分画し、分画されたフラクションを定量分析して、野生型の塩基配列に対する変異型の塩基配列の割合を求める。
 表3に、野生型検出系のプローブセット、および、変異型検出系のプローブセットの具体例を示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、試験区において、野生型用プローブとしては、移動度補正部位の長さを変えた5種類を用いることができる。変異型用プローブとしては、野生型用プローブよりも移動度補正部位が長い1種類を用いることができる。各移動度補正部位は、DNAで形成する。各標識部位は、同種のフルオレセインイソチオシアネート(FITC)で形成する。これらのプローブによると、159~171ntの野生型ポリヌクレオチドと、180ntの変異型ポリヌクレオチドが得られる。
 図10は、電気泳動によって分画されたフラクションの定量分析の結果の一例を示す図である。図10には、蛍光標識されたプローブセットを用いてライゲーションを行い、連結されたライゲーション産物を電気泳動によって分画した後に、フラクション毎の蛍光を分光分析した結果を示す。図4において、横軸は、ライゲーション産物の塩基長を示す。縦軸は、ライゲーション産物の蛍光強度を示す。
 符号41は、野生型用プローブセット310,320によって連結されたライゲーション産物であって、相対的に多い野生型の標的塩基配列300を含む野生型ポリヌクレオチド330の結果を示す。符号42は、変異型用プローブセット410,420によって連結されたライゲーション産物であって、相対的に少ない変異型の標的塩基配列400を含む変異型ポリヌクレオチド430の結果を示す。
 図10に示すように、野生型用プローブセット310,320によって連結されたライゲーション産物は、複数の野生型用プローブ310を用いることによって、複数の検出シグナルを生じる。電気泳動における移動度が互いに異なる複数の野生型用プローブ310を用いると、野生型の標的塩基配列300に由来する検出シグナルが複数の小さいシグナルに分割される。そのため、フラクション毎の検出シグナルを、検出可能範囲の下限である検出感度を超える範囲、且つ、上限である検出限界以下の範囲に容易に収めることができる。
 また、図10に示すように、変異型用プローブセット410,420によって連結されたライゲーション産物は、野生型用プローブセット310,320によって増幅されたPCR産物とは異なるシグナルを生じる。電気泳動における移動度が野生型用プローブ310と異なる変異型用プローブ410を用いると、野生型の標的塩基配列300に由来する検出シグナルと変異型の標的塩基配列400に由来する検出シグナルとが区別されるため、正確な定量を行うことができる。
<第2実施形態:核酸定量用試薬>
 第2実施形態に係る核酸定量方法に用いる野生型用プローブセット310,420および変異型用プローブセット410,420は、試料に含まれる野生型の塩基配列に対する変異型の塩基配列の割合を定量するための核酸定量用試薬であって、所定の構成要素がキット化された試薬として提供できる。
 第2実施形態に係る核酸定量用試薬は、野生型の標的塩基配列300と相補的な複数の野生型用プローブ310と、変異型の標的塩基配列400と相補的な変異型用プローブ410と、標的塩基配列300,400の5’末端側に隣接した隣接塩基配列と相補的なフラグメント320,420とを、構成要素として含む。
 第2実施形態に係る核酸定量用試薬は、任意の標的塩基配列300,400を分析対象とした分析対象毎の試薬として提供できる。野生型用プローブ310、変異型用プローブ410、および、フラグメント320,420は、所定の標的塩基配列300,400を含むポリヌクレオチドに選択的にハイブリダイズする分子構造に設けられる。
 野生型用プローブ310としては、電気泳動における移動度が複数の野生型用プローブ310同士で異なるように設計された任意の種類数を含むことができる。野生型用プローブ310の種類数は、2種以上10種以下が好ましく、4種以上10種以下がより好ましく、6種以上10種以下が更に好ましい。種類数が多いほど、検出シグナルが検出器による検出可能範囲内に収まり易くなる。但し、種類数が多すぎると、野生型用プローブ310同士で反応率が偏り、検出誤差を生じる虞がある。
 変異型用プローブ410としては、電気泳動における移動度が野生型用プローブ310と異なるように設計された少なくとも1種を含むことができる。フラグメント320,420としては、野生型用と変異型用を兼ねた少なくとも1種を含むことができる。
 第2実施形態に係る核酸定量用試薬は、野生型用プローブ310、変異型用プローブ410、および、フラグメント320,420に加え、リガーゼ、ATP、および、ライゲーション用の反応バッファ液のうちの1種以上を構成要素として含んでもよい。これらの構成要素としては、前記のステップS203と同様の種類を含むことができる。
 核酸定量用試薬には、分析対象の標的塩基配列300,400のリファレンスとして、野生型の標的塩基配列300を持つポリヌクレオチドや、変異型の標的塩基配列400を持つポリヌクレオチドを構成要素として付属させることもできる。これらのリファレンスは、ゲノムDNAとして付属させてもよいし、DNA断片として付属させてもよい。
 核酸定量用試薬の構成要素は、各構成要素を保存用バッファ液に溶解させて、マイクロチューブ、マイクロバイアル等の容器に封入した状態で提供できる。核酸定量用試薬の構成要素は、解析時の濃度で封入されてもよいし、解析時よりも濃縮された状態で封入されてもよい。ポリヌクレオチドを溶解させたバッファ液は、pHの緩衝作用を示す緩衝剤や、EDTA等のキレート剤を含み、ヌクレアーゼが不活化されていることが好ましい。
 構成要素の濃度は、特に限定されるものではない。例えば、野生型用プローブ310、変異型用プローブ410、フラグメント320,420およびリファレンスは、0.1ng/μL以上10ng/μL以下に調製できる。リガーゼは、1unit/μL以上50unit/μL以下に調製できる。反応バッファ液は、各成分を1mM以上100mM以下に調製できる。
 第2実施形態に係る核酸定量用試薬は、野生型用プローブ310の標識部位314や、変異型用プローブ410の標識部位414が、予め結合した状態で提供されてもよいし、結合していない状態で提供されてもよい。標識部位314,414は、核酸定量用試薬の構成要素として付属させて、PCRの直前に移動度補正部位313,413等に結合させることもできる。
 このような第2実施形態に係る核酸定量用試薬や、これを用いた核酸定量方法によると、電気泳動における移動度が互いに異なる複数種のブローブを用いたライゲーションを、簡単な操作によって行うことができる。電気泳動における移動度が互いに異なる野生型の塩基配列に由来する複数種のポリヌクレオチドや、変異型の塩基配列に由来するポリヌクレオチドを、一般的なライゲーションによって、互いに識別可能な状態で簡単に調製できるため、試料に含まれる野生型の塩基配列に対する変異型の塩基配列の割合を迅速且つ高精度に定量できる。
 以上、本発明について説明したが、本発明は、前記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更が可能である。例えば、本発明は、必ずしも前記の実施形態が備える全ての構成を備えるものに限定されない。或る実施形態の構成の一部を他の構成に置き換えたり、或る実施形態の構成の一部を他の形態に追加したり、或る実施形態の構成の一部を省略したりすることができる。
 前記のPCRを利用した核酸定量方法は、野生型の標的塩基配列と相補的な複数の野生型用フォワードプライマ、および、前記標的塩基配列の相補鎖と相補的なリバースプライマからなる野生型用プライマセットと、変異型の標的塩基配列と相補的な変異型用フォワードプライマ、および、前記標的塩基配列の相補鎖と相補的なリバースプライマからなる変異型用プライマセットと、を用いて、野生型の標的塩基配列を含む野生型ポリヌクレオチド、および、変異型の標的塩基配列を含む変異型ポリヌクレオチドをPCRによって増幅するステップと、前記野生型ポリヌクレオチド、および、前記変異型ポリヌクレオチドを電気泳動によって分画するステップと、前記野生型ポリヌクレオチドの標識を検出して前記野生型ポリヌクレオチを定量すると共に、前記変異型ポリヌクレオチドの標識を検出して前記変異型ポリヌクレオチを定量するステップと、前記野生型ポリヌクレオチドの定量結果および前記変異型ポリヌクレオチドの定量結果に基づいて、前記野生型ポリヌクレオチドに対する前記変異型ポリヌクレオチドの割合を求めるステップと、を含むことができる。
 前記のライゲーションを利用した核酸定量方法は、野生型の標的塩基配列と相補的な複数の野生型用プローブ、および、前記標的塩基配列の5’末端側に隣接した隣接塩基配列と相補的なフラグメントからなる野生型用プローブセットと、変異型の標的塩基配列と相補的な変異型用プローブ、および、前記標的塩基配列の5’末端側に隣接した隣接塩基配列と相補的なフラグメントからなる変異型用プローブセットとを、野生型の標的塩基配列を含む野生型ポリヌクレオチド、および、変異型の標的塩基配列を含む変異型ポリヌクレオチドにハイブリダイズさせるステップと、前記野生型ポリヌクレオチドにハイブリダイズした前記野生型用プローブと前記フラグメントをライゲーションによって連結させて、野生型の標的塩基配列を含む野生型ポリヌクレオチドを生成すると共に、前記変異型ポリヌクレオチドにハイブリダイズした前記変異型用プローブと前記フラグメントをライゲーションによって連結させて、野生型の標的塩基配列を含む野生型ポリヌクレオチドを生成するステップと、前記野生型ポリヌクレオチド、および、前記変異型ポリヌクレオチドを、電気泳動によって分画するステップと、前記野生型ポリヌクレオチドの標識を検出して前記野生型ポリヌクレオチを定量すると共に、前記変異型ポリヌクレオチドの標識を検出して前記変異型ポリヌクレオチを定量するステップと、前記野生型ポリヌクレオチドの定量結果および前記変異型ポリヌクレオチドの定量結果に基づいて、前記野生型ポリヌクレオチドに対する前記変異型ポリヌクレオチドの割合を求めるステップと、を含むことができる。
 また、前記のライゲーションを利用した核酸定量方法は、野生型の標的塩基配列と相補的な複数の野生型用プローブ、および、前記標的塩基配列の5’末端側に隣接した隣接塩基配列と相補的なフラグメントからなる野生型用プローブセットと、変異型の標的塩基配列と相補的な変異型用プローブ、および、前記標的塩基配列の5’末端側に隣接した隣接塩基配列と相補的なフラグメントからなる変異型用プローブセットとを、野生型の標的塩基配列を含む野生型ポリヌクレオチド、および、変異型の標的塩基配列を含む変異型ポリヌクレオチドにハイブリダイズさせるステップと、前記野生型ポリヌクレオチドにハイブリダイズした前記野生型用プローブと前記フラグメントをライゲーションによって連結させて、野生型の標的塩基配列を含む野生型ポリヌクレオチドを生成すると共に、前記変異型ポリヌクレオチドにハイブリダイズした前記変異型用プローブと前記フラグメントをライゲーションによって連結させて、野生型の標的塩基配列を含む野生型ポリヌクレオチドを生成するステップと、前記野生型ポリヌクレオチド、および、前記変異型ポリヌクレオチドをPCRによって増幅するステップと、増幅された前記野生型ポリヌクレオチド、および、増幅された前記変異型ポリヌクレオチドを、電気泳動によって分画するステップと、前記野生型ポリヌクレオチドの標識を検出して前記野生型ポリヌクレオチを定量すると共に、前記変異型ポリヌクレオチドの標識を検出して前記変異型ポリヌクレオチを定量するステップと、前記野生型ポリヌクレオチドの定量結果および前記変異型ポリヌクレオチドの定量結果に基づいて、前記野生型ポリヌクレオチドに対する前記変異型ポリヌクレオチドの割合を求めるステップと、を含むことができる。
100,200,300,400…標的塩基配列、101,201,301,401…標的鎖、102,202…相補鎖、110…野生型用フォワードプライマ(Fプライマ)210…変異型用フォワードプライマ(Fプライマ)、120,220…リバースプライマ(Rプライマ)、130…野生型ポリヌクレオチド(PCR産物)、230…変異型ポリヌクレオチド(PCR産物)、310…野生型用プローブ、410…変異型用プローブ、320,420…フラグメント、330…野生型ポリヌクレオチド(ライゲーション産物)、430…変異型ポリヌクレオチド(ライゲーション産物)、111,211,311,411…変異識別部位、112,212,312,412…標的認識部位、113,213,313,413…移動度補正部位、114,214,314,414…標識部位

Claims (15)

  1.  試料に含まれる野生型の塩基配列に対する変異型の塩基配列の割合を定量する核酸定量方法であって、
     野生型の標的塩基配列と相補的な複数の野生型用フォワードプライマ、および、前記標的塩基配列の相補鎖と相補的なリバースプライマからなる野生型用プライマセットと、変異型の標的塩基配列と相補的な変異型用フォワードプライマ、および、前記標的塩基配列の相補鎖と相補的なリバースプライマからなる変異型用プライマセットと、を用いて、野生型の標的塩基配列を含む野生型ポリヌクレオチド、および、変異型の標的塩基配列を含む変異型ポリヌクレオチドをPCRによって増幅するステップと、
     前記野生型ポリヌクレオチド、および、前記変異型ポリヌクレオチドを電気泳動によって分画して、前記野生型ポリヌクレオチドに対する前記変異型ポリヌクレオチドの割合を求めるステップと、を含み、
     前記野生型用フォワードプライマは、3’末端に前記野生型の標的塩基配列と相補的な塩基配列を有し、
     前記変異型用フォワードプライマは、3’末端に前記変異型の標的塩基配列と相補的な塩基配列を有し、
     複数の前記野生型用フォワードプライマは、前記電気泳動における移動度が前記野生型用フォワードプライマ同士で異なる分子構造を有する核酸定量方法。
  2.  請求項1に記載の核酸定量方法であって、
     前記野生型用フォワードプライマは、前記電気泳動における移動度を補正する移動度補正部位を有し、
     前記移動度補正部位は、ポリヌクレオチドで形成されている核酸定量方法。
  3.  請求項1に記載の核酸定量方法であって、
     前記野生型用フォワードプライマは、前記電気泳動における移動度を補正する移動度補正部位を有し、
     前記移動度補正部位は、非ポリヌクレオチドである高分子で形成されている核酸定量方法。
  4.  請求項3に記載の核酸定量方法であって、
     前記非ポリヌクレオチドである高分子は、分枝を有する分子構造である核酸定量方法。
  5.  請求項1に記載の核酸定量方法であって、
     前記野生型用フォワードプライマ、および、前記変異型用フォワードプライマは、それぞれ、蛍光色素で標識されている核酸定量方法。
  6.  請求項5に記載の核酸定量方法であって、
     複数の前記野生型用フォワードプライマは、前記野生型用フォワードプライマ同士で、互いに異なる波長の蛍光を生じる蛍光色素で標識されている核酸定量方法。
  7.  請求項5に記載の核酸定量方法であって、
     複数の前記野生型用フォワードプライマは、前記変異型用フォワードプライマに対して、互いに異なる波長の蛍光を生じる蛍光色素で標識されている核酸定量方法。
  8.  請求項1に記載の核酸定量方法であって、
     前記野生型用フォワードプライマ、および、前記変異型用フォワードプライマは、それぞれ、放射性同位体で標識されている核酸定量方法。
  9.  試料に含まれる野生型の塩基配列に対する変異型の塩基配列の割合を定量する核酸定量方法であって、
     野生型の標的塩基配列と相補的な複数の野生型用プローブ、および、前記標的塩基配列の5’末端側に隣接した隣接塩基配列と相補的なフラグメントからなる野生型用プローブセットと、変異型の標的塩基配列と相補的な変異型用プローブ、および、前記標的塩基配列の5’末端側に隣接した隣接塩基配列と相補的なフラグメントからなる変異型用プローブセットとを、野生型の標的塩基配列を含む野生型ポリヌクレオチド、および、変異型の標的塩基配列を含む変異型ポリヌクレオチドにハイブリダイズさせるステップと、
     前記野生型ポリヌクレオチドにハイブリダイズした前記野生型用プローブと前記フラグメントをライゲーションによって連結させて、野生型の標的塩基配列を含む野生型ポリヌクレオチドを生成すると共に、前記変異型ポリヌクレオチドにハイブリダイズした前記変異型用プローブと前記フラグメントをライゲーションによって連結させて、野生型の標的塩基配列を含む野生型ポリヌクレオチドを生成するステップと、
     前記野生型ポリヌクレオチド、および、前記変異型ポリヌクレオチドを、電気泳動によって分画して、前記野生型ポリヌクレオチドに対する前記変異型ポリヌクレオチドの割合を求めるステップと、を含み、
     前記野生型用プローブは、3’末端に前記野生型の標的塩基配列と相補的な塩基配列を有し、
     前記変異型用プローブは、3’末端に前記変異型の標的塩基配列と相補的な塩基配列を有し、
     複数の前記野生型用プローブは、前記電気泳動における移動度が前記野生型用プローブ同士で異なる分子構造を有する核酸定量方法。
  10.  請求項9に記載の核酸定量方法であって、
     前記野生型用プローブは、前記電気泳動における移動度を補正する移動度補正部位を有し、
     前記移動度補正部位は、ポリヌクレオチドで形成されている核酸定量方法。
  11.  請求項9に記載の核酸定量方法であって、
     前記野生型用プローブは、前記電気泳動における移動度を補正する移動度補正部位を有し、
     前記移動度補正部位は、非ポリヌクレオチドである高分子で形成されている核酸定量方法。
  12.  請求項9に記載の核酸定量方法であって、
     前記野生型用プローブ、および、前記変異型用プローブは、それぞれ、蛍光色素で標識されている核酸定量方法。
  13.  請求項9に記載の核酸定量方法であって、
     前記野生型用プローブ、および、前記変異型用プローブは、それぞれ、放射性同位体で標識されている核酸定量方法。
  14.  試料に含まれる野生型の塩基配列に対する変異型の塩基配列の割合を定量する核酸定量用試薬であって、
     野生型の標的塩基配列と相補的な複数の野生型用フォワードプライマと、
     変異型の標的塩基配列と相補的な変異型用フォワードプライマと、
     前記標的塩基配列の相補鎖と相補的なリバースプライマと、を含み、
     前記野生型用フォワードプライマは、3’末端に前記野生型の標的塩基配列と相補的な塩基配列を有し、
     前記変異型用フォワードプライマは、3’末端に前記変異型の標的塩基配列と相補的な塩基配列を有し、
     複数の前記野生型用フォワードプライマは、前記電気泳動における移動度が前記野生型用フォワードプライマ同士で異なる分子構造を有する核酸定量用試薬。
  15.  試料に含まれる野生型の塩基配列に対する変異型の塩基配列の割合を定量する核酸定量用試薬であって、
     野生型の標的塩基配列と相補的な複数の野生型用プローブと、
     変異型の標的塩基配列と相補的な複数の変異型用プローブと、
     前記標的塩基配列の5’末端側に隣接した隣接塩基配列と相補的なフラグメントと、を含み、
     前記野生型用プローブは、3’末端に前記野生型の標的塩基配列と相補的な塩基配列を有し、
     前記変異型用プローブは、3’末端に前記変異型の標的塩基配列と相補的な塩基配列を有し、
     複数の前記野生型用プローブは、前記電気泳動における移動度が前記野生型用プローブ同士で異なる分子構造を有する核酸定量用試薬。
PCT/JP2023/001540 2023-01-19 2023-01-19 核酸定量方法および核酸定量用試薬 WO2024154298A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/001540 WO2024154298A1 (ja) 2023-01-19 2023-01-19 核酸定量方法および核酸定量用試薬

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/001540 WO2024154298A1 (ja) 2023-01-19 2023-01-19 核酸定量方法および核酸定量用試薬

Publications (1)

Publication Number Publication Date
WO2024154298A1 true WO2024154298A1 (ja) 2024-07-25

Family

ID=91955632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001540 WO2024154298A1 (ja) 2023-01-19 2023-01-19 核酸定量方法および核酸定量用試薬

Country Status (1)

Country Link
WO (1) WO2024154298A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09511653A (ja) * 1994-08-19 1997-11-25 パーキン−エルマー コーポレイション 増幅及び連結反応の共役法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09511653A (ja) * 1994-08-19 1997-11-25 パーキン−エルマー コーポレイション 増幅及び連結反応の共役法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANAZAWA TAKASHI, MATSUNAGA HIROKO, YAMAMOTO SHUHEI, INABA RYOJI: "Highly sensitive mutation quantification by high-dynamic-range capillary-array electrophoresis (HiDy CE)", LAB ON A CHIP, ROYAL SOCIETY OF CHEMISTRY, UK, vol. 20, no. 6, 17 March 2020 (2020-03-17), UK , pages 1083 - 1091, XP093149967, ISSN: 1473-0197, DOI: 10.1039/C9LC00853E *
BOTTEMA, C.D.K. ; SOMMER, S.S.: "PCR amplification of specific alleles: Rapid detection of known mutations and polymorphisms", MUTATION RESEARCH, ELSEVIER, AMSTERDAM, NL, vol. 288, no. 1, 1 July 1993 (1993-07-01), AMSTERDAM, NL , pages 93 - 102, XP025422123, ISSN: 0027-5107, DOI: 10.1016/0027-5107(93)90211-W *
NEWTON C. R., ET AL.: "ANALYSIS OF ANY POINT MUTATION IN DNA. THE AMPLIFICATION REFRACTORY MUTATION SYSTEM (ARMS).", NUCLEIC ACIDS RESEARCH, OXFORD UNIVERSITY PRESS, GB, vol. 17., no. 07., 11 April 1989 (1989-04-11), GB , pages 2503 - 2516., XP000141596, ISSN: 0305-1048 *
SUEMIZU HIROSHI, SUEMIZU HIROSHI, OHNISHI YASUYUKI, MARUYAMA CHIKA, TAMAOKI NORIKAZU: "Two-Color Allele-Specific Polymerase Chain Reaction (PCR-SSP) Assay of the Leptin Receptor Gene (Leprdb) for Genotyping Mouse Diabetes Mutation", EXPERIMENTAL ANIMALS, TOKYO, JP, vol. 50, no. 5, 1 January 2001 (2001-01-01), JP , pages 435 - 439, XP093192827, ISSN: 1341-1357, DOI: 10.1538/expanim.50.435 *

Similar Documents

Publication Publication Date Title
CN111032881B (zh) 核酸的精确和大规模平行定量
JP4683922B2 (ja) 遺伝子発現の定量方法
US20230119938A1 (en) Methods of Preparing Dual-Indexed DNA Libraries for Bisulfite Conversion Sequencing
CN103923975B (zh) 一种检测egfr基因外显子19缺失突变的试剂盒和方法
JP2008513011A (ja) 低分子量rna分子を識別し、かつ定量するための組成物、方法ならびにキット
US20200140933A1 (en) Polymorphism detection with increased accuracy
ES2942546T3 (es) Métodos de alta sensibilidad para la cuantificación paralela precisa de ácidos nucleicos
CN110541033A (zh) Egfr基因突变检测用组合物及检测方法
Butz et al. Brief summary of the most important molecular genetic methods (PCR, qPCR, microarray, next-generation sequencing, etc.)
KR20180001893A (ko) 표적핵산의 검출방법
US6558929B2 (en) PCR reaction mixture for fluorescence-based gene expression and gene mutation analyses
KR101358416B1 (ko) 리가제 반응과 절단효소 증폭반응을 이용한 표적 유전자 또는 이의 돌연변이 검출방법
WO2024154298A1 (ja) 核酸定量方法および核酸定量用試薬
US9689867B2 (en) Assays for affinity profiling of nucleic acid binding proteins
WO2023243147A1 (ja) 遺伝子分析方法、遺伝子分析装置、及び遺伝子分析用キット
WO2024209765A1 (ja) 遺伝子分析方法、遺伝子分析装置、及び遺伝子分析用キット
US20240344125A1 (en) Nucleotide Sequence Identification Method
KR102486630B1 (ko) 중합효소연쇄반응을 기반으로 한 표적 점 돌연변이의 검출 방법
WO2024106109A1 (ja) 電気泳動の移動度を改変する修飾基質を用いた遺伝子検出
EP4332238A1 (en) Methods for accurate parallel detection and quantification of nucleic acids
JP4235881B2 (ja) ヒトチトクロームp4502d6遺伝子欠損の簡易検出方法および検出用試薬
CN101812515A (zh) 一种核酸突变的检测方法
KR20140000734A (ko) 비결합성 변형염기가 포함된 dna 라이게이션 단편을 사용한 고효율의 리가아제 기반 snp분석
JP2024122135A (ja) 遺伝子分析方法、遺伝子分析用キット
JP2024035110A (ja) 変異核酸の正確な並行定量するための高感度方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23917511

Country of ref document: EP

Kind code of ref document: A1