WO2024142832A1 - Optical film and polarizing plate using same - Google Patents

Optical film and polarizing plate using same Download PDF

Info

Publication number
WO2024142832A1
WO2024142832A1 PCT/JP2023/043841 JP2023043841W WO2024142832A1 WO 2024142832 A1 WO2024142832 A1 WO 2024142832A1 JP 2023043841 W JP2023043841 W JP 2023043841W WO 2024142832 A1 WO2024142832 A1 WO 2024142832A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
meth
active energy
energy ray
optical film
Prior art date
Application number
PCT/JP2023/043841
Other languages
French (fr)
Japanese (ja)
Inventor
谷澤克也
畑中真吾
Original Assignee
大倉工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大倉工業株式会社 filed Critical 大倉工業株式会社
Publication of WO2024142832A1 publication Critical patent/WO2024142832A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to an optical film having a cured coating of an active energy ray-curable composition on the surface of a resin film containing a polymer with an alicyclic structure as a main component.
  • Cycloolefin-based films are non-polar films with no or very few polar groups, and therefore have poor adhesion.
  • a coating layer such as an easy-adhesion layer is laminated on the coating layer, and other components such as a polarizer are attached to the coating layer via an adhesive or pressure-sensitive adhesive, or an optically functional layer such as a hard coat layer is formed via the coating layer.
  • a polymer having an alicyclic structure is a polymer having an alicyclic structure in the structural unit of the polymer.
  • a polymer having an alicyclic structure may have an alicyclic structure in the main chain, or may have an alicyclic structure in the side chain. Among them, from the viewpoint of mechanical strength and heat resistance, a polymer having an alicyclic structure in the main chain is preferable.
  • the proportion of structural units having an alicyclic structure can be appropriately selected depending on the purpose of use.
  • the proportion of structural units having an alicyclic structure in a polymer having an alicyclic structure is preferably 55% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight or more.
  • the proportion of structural units having an alicyclic structure in a polymer having an alicyclic structure is within this range, the transparency and heat resistance of a resin film containing the polymer having an alicyclic structure will be good.
  • copolymerizable monomers may also be included.
  • the monomer include (meth)acrylic acid esters having a chain alkyl group such as methyl (meth)acrylate and ethyl (meth)acrylate, (meth)acrylic acid esters having an alicyclic structure such as isobornyl (meth)acrylate, (meth)acrylic acid esters having an aromatic ring such as ethoxylated o-phenylphenol acrylate, nitrogen-containing acrylic acid esters such as acryloylmorpholine, aromatic vinyl compounds such as (meth)acrylamide, acrylonitrile, styrene, ⁇ -methylstyrene, and vinyl toluene, vinyl acetate, and macromonomers having an unsaturated double bond at one end and not containing an epoxy group or a carboxyl group. These may be blended alone or in combination of two or more.
  • silica microparticles examples include colloidal silica produced by a wet method and fumed silica produced by a dry method.
  • colloidal silica include aqueous colloids using water as a dispersion medium, and organosols (e.g., organosilica sols) in which colloidal silica is dispersed in a hydrophilic solvent such as methyl alcohol, ethyl alcohol, isopropyl alcohol, ethylene glycol, or propylene glycol monomethyl ether.
  • Fumed silica is amorphous silica produced by a dry method, and can be obtained by reacting a volatile compound containing silicon in the gas phase.
  • inorganic fine particles are within the above range, it is possible to suppress the deterioration of optical properties during beautification using organic solvents or when an active energy ray curable coating agent using an organic solvent is applied onto the easy-adhesion layer, and to suppress the occurrence of fine cracks from the end face when cleaning with a hydrocarbon solvent such as hexane.
  • hydrocarbon solvent such as hexane.
  • inorganic fine particles such as silica-based fine particles form aggregates (secondary particles) with a particle size larger than the primary particle size when multiple primary particles aggregate and weld together like beads, and multiple such aggregates aggregate to form large particles that form pores.
  • Specific examples include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-cyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- ⁇ 4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]-phenyl ⁇ -2-methyl-propan-1-one, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, and 4-methylbenzophenone. These can be used alone or in combination of two or more.
  • the amount of polyfunctional (meth)acrylate (D) to be blended is not particularly limited, but is, for example, 5 parts by weight or more and 95 parts by weight or less per 100 parts by weight (solid content equivalent) of the total of the active energy ray-curable compound (A) and the inorganic fine particles (B).
  • the active energy ray curable composition may contain additives as necessary.
  • Additives include antioxidants, UV absorbers, light stabilizers, defoamers, surface conditioners, antifouling agents, pigments, antistatic agents, and metal oxide fine particle dispersions.
  • the total light transmittance is 85% or more, and more preferably 90% or more.
  • the light transmittance can be measured in accordance with JIS K0115 using a spectrophotometer (V-570 ultraviolet-visible-near infrared spectrophotometer manufactured by JASCO Corporation).
  • the haze of the optical film is not particularly limited, but is preferably 1.0% or less, more preferably 0.8% or less, and even more preferably 0.5% or less. Haze can be measured in accordance with JIS K7361-1997 using a turbidity meter NDH-300A manufactured by Nippon Denshoku Industries Co., Ltd.
  • the in-plane retardation Re and thickness direction retardation Rth of the optical film can be set arbitrarily depending on the application of the optical film.
  • a specific range of the in-plane retardation Re is preferably 1 nm or more and 200 nm or less.
  • a specific range of the thickness direction retardation Rth is preferably 50 nm or more and 300 nm or less.
  • the total thickness of the optical film is preferably 5 ⁇ m or more, more preferably 8 ⁇ m or more, even more preferably 10 ⁇ m or more, and is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and particularly preferably 70 ⁇ m or less.
  • the method for producing an optical film of the present invention includes a step of forming a coating film by applying a coating liquid of an active energy ray-curable composition containing an active energy ray-curable compound (A), inorganic fine particles (B), and optionally a solvent, to at least one surface of a resin film containing a polymer having an alicyclic structure as a main component, and a step of irradiating the coating film with active energy rays to form a cured coating film.
  • A active energy ray-curable compound
  • B inorganic fine particles
  • solvent optionally a solvent
  • the active energy ray curable composition may be diluted with a solvent as necessary.
  • a solvent various known solvents can be used without particular limitation, for example, water, dibutyl ether, dimethoxymethane, dimethoxyethane, diethoxyethane, propylene oxide, 1,4-dioxane, 1,3-dioxolane, 1,3,5-trioxane, tetrahydrofuran, acetone, methyl ethyl ketone (MEK), diethyl ketone, dipropyl ketone, diisobutyl ketone, cyclopentanone (CPN), cyclohexanone (CHN), methylcyclohexanone, ethyl formate, propyl formate, n-pentyl formate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, n-pentyl acetate,
  • the surface of the resin film may be subjected to a surface modification treatment in order to improve the adhesion between the resin film and the cured coating film.
  • surface modification treatments include energy ray irradiation treatment and chemical treatment.
  • energy ray irradiation treatments include corona discharge treatment, plasma treatment, electron beam irradiation treatment, and ultraviolet ray irradiation treatment. From the viewpoint of treatment efficiency, corona discharge treatment and plasma treatment are preferred, and corona discharge treatment is particularly preferred.
  • Examples of chemical treatments include saponification treatment, and a treatment in which the film is immersed in an aqueous solution of an oxidizing agent such as a potassium dichromate solution or concentrated sulfuric acid, followed by washing with water.
  • any suitable polarizer can be adopted depending on the purpose.
  • a hydrophilic polymer film such as a polyvinyl alcohol film, a partially formalized polyvinyl alcohol film, or an ethylene-vinyl acetate copolymer partially saponified film is uniaxially stretched after adsorbing a dichroic substance such as iodine or a dichroic dye, or a polyene-based oriented film such as a dehydrated polyvinyl alcohol or a dehydrochlorinated polyvinyl chloride.
  • a polarizer obtained by adsorbing a dichroic substance such as iodine to a polyvinyl alcohol film and uniaxially stretching the film is particularly preferred because it has a high polarization dichroic ratio.
  • the thickness of these polarizers is not particularly limited, but is generally about 1 to 80 ⁇ m.
  • any suitable adhesive can be adopted, and examples thereof include an adhesive composition containing a polyvinyl alcohol resin, a pressure-sensitive adhesive composition containing an acrylic resin, and an ultraviolet-curable adhesive composition containing an acrylic resin.
  • Example 1 A coating solution of an active energy ray curable composition (1) ["BS CH271" manufactured by Arakawa Chemical Industries, Ltd.] containing epoxy (meth)acrylate as an active energy ray curable compound and containing 65 parts by weight of silica-based fine particles having an average primary particle diameter of 5 to 100 nm per 100 parts by weight of the active energy ray curable compound was applied to one surface of a cycloolefin film (Tg: 135°C, thickness: 37 ⁇ m, stretch ratio: vertical 1.45 times) using a bar coater, and then placed in a hot air dryer and dried at 80°C for 60 seconds.
  • a cycloolefin film Tg: 135°C, thickness: 37 ⁇ m, stretch ratio: vertical 1.45 times
  • Examples 2 to 4 Comparative Examples 1 and 2 Optical films were produced under the same conditions as in Example 1, except that the thickness of the cured coating film was changed as shown in Table 1.
  • Example 6 An optical film was obtained under the same conditions as in Example 1, except that an active energy ray-curable composition (3) containing an epoxy (meth)acrylate as an active energy ray-curable compound and containing 85 parts by weight of silica-based fine particles having an average primary particle diameter of 5 to 100 nm per 100 parts by weight of the active energy ray-curable compound was used, and the thickness of the cured coating film was changed as shown in Table 1.
  • an active energy ray-curable composition (3) containing an epoxy (meth)acrylate as an active energy ray-curable compound and containing 85 parts by weight of silica-based fine particles having an average primary particle diameter of 5 to 100 nm per 100 parts by weight of the active energy ray-curable compound was used, and the thickness of the cured coating film was changed as shown in Table 1.
  • Example 7 An optical film was obtained under the same conditions as in Example 1, except that an active energy ray-curable composition (4) ["Z-773" manufactured by AICA Kogyo Co., Ltd.] containing urethane (meth)acrylate and silica-based fine particles was used as the active energy ray-curable compound, and the thickness of the cured coating film was changed as shown in Table 1.
  • Example 9 An optical film was produced under the same conditions as in Example 1, except that an emulsion of a water-dispersible urethane resin (polyester-based polyurethane, "Superflex (registered trademark) 210" manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) was used, a coating liquid containing 30 parts by weight of silica-based fine particles per 100 parts by weight of the solid content of the polyester-based polyurethane was used, and the thickness of the coating film after drying was changed as shown in Table 1.
  • a water-dispersible urethane resin polyester-based polyurethane, "Superflex (registered trademark) 210" manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.
  • a coating liquid containing 30 parts by weight of silica-based fine particles per 100 parts by weight of the solid content of the polyester-based polyurethane was used, and the thickness of the coating film after drying was changed as shown in Table 1.
  • the evaluation criteria were as follows: ⁇ : Residual rate of cross-cut mass is 100% ⁇ : Residual rate of cross-cut mass is less than 100% [blocking resistance]
  • the optical film after the formation of the cured coating film was held for 1 hour under conditions of 23°C and 50% relative humidity, and then cut into two pieces with a size of 5 cm x 5 cm.
  • the two films were overlapped so that the cured coating film of one film was in contact with the cycloolefin-based film surface of the other film, and the overlapped state was left to stand, and one of the films was pressed by hand and slid laterally to evaluate the blocking resistance of the optical film.
  • the evaluation criteria are as follows. ⁇ : Easily slips when force is applied in the lateral direction.
  • optical films of Comparative Examples 7 and 8 which contain urethane (meth)acrylate and erythritol (meth)acrylate as active energy ray curable compounds, both showed poor solvent resistance
  • optical film of Comparative Example 9 which contains polyester polyurethane instead of active energy ray curable compounds, also showed poor solvent resistance.
  • unstretched cycloolefin-based films on which no cured coating film is formed showed poor results in both blocking resistance and solvent resistance.
  • Stretched cycloolefin-based films on which no cured coating film is formed and stretched by a factor of 1.45 in the longitudinal direction, and stretched cycloolefin-based films on which no cured coating film is formed and stretched by a factor of 4.9 in the transverse direction showed poorer solvent resistance than unstretched cycloolefin-based films.
  • the inclusion of a resin film that has been subjected to a stretching process in the optical film of the present invention is an embodiment that can effectively solve problems that have been difficult to solve in the past, and is preferable because it allows the effects of the present invention to be effectively utilized.
  • Example 8 A coating solution of an active energy ray curable composition (1) ["BS CH271" manufactured by Arakawa Chemical Industries, Ltd.] containing epoxy (meth)acrylate as an active energy ray curable compound and containing 65 parts by weight of silica-based fine particles having an average primary particle diameter of 5 to 100 nm per 100 parts by weight of the active energy ray curable compound was applied to one surface of a cycloolefin film (Tg: 135°C, thickness: 37 ⁇ m, stretch ratio: vertical 1.45 times) using a bar coater, and then placed in a hot air dryer and dried at 80°C for 60 seconds.
  • a cycloolefin film Tg: 135°C, thickness: 37 ⁇ m, stretch ratio: vertical 1.45 times
  • the coating film after drying was irradiated with ultraviolet light from a high pressure mercury lamp so that the accumulated light amount was 500 mJ/ cm2 to cure the coating film, and an optical film having a cured coating film with a thickness of 350 nm was obtained.
  • Example 9 An optical film was produced under the same conditions as in Example 8, except that a cured coating film was formed on both sides of the cycloolefin film.
  • Example 10 Optical films were produced under the same conditions as in Example 8, except that the thickness of the cured coating film was changed as shown in Table 2.
  • Example 11 Cured coating films were formed on both sides of a cycloolefin film, and optical films were produced under the same conditions as in Example 8, except that the thickness of the cured coating film was changed as shown in Table 2.
  • the cycloolefin film of Reference Example 2 that does not have a cured coating on its surface had many fine cracks generated from the cut edge surface after immersion in hexane, approximately parallel to the stretching direction of the cycloolefin film. This phenomenon occurs because the shrinkage stress in the stretching direction of the cycloolefin film and the tensile stress of the protective film laminated to the cycloolefin film are perpendicular to each other, so it is presumed that solvent cracks are generated by the penetration of hexane from the edge surface, and edge cracks are generated by the tensile stress starting from the solvent cracks.
  • the cycloolefin films of Examples 8 to 11 that have a cured coating showed results that suppressed cracks from the cut edge surface after immersion in hexane. This is presumed to be because the cured coating has excellent solvent resistance to organic solvents, excellent adhesion to the cycloolefin film, and excellent restraining force, thereby suppressing solvent cracks caused by swelling and dissolution of the cycloolefin film, and restraining the shrinkage stress of the cycloolefin film, thereby suppressing the occurrence of cracks from the edge surface.
  • Optical film 2 Resin film 3: Cured coating film 4: Optical film 5: Adhesive layer 6: Polarizer 10: Polarizing plate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

[Problem] The purpose of the present invention is to provide an optical film having an easily adhesive layer that has excellent adhesiveness with respect to a cycloolefin-based film and blocking resistance when rolled into a roll, that has excellent solvent resistance, and that can suppress deterioration in optical characteristics caused by an organic solvent and can suppress occurrence of cracks at end portions in a solvent resistance test performed using a hydrocarbon solvent such as hexane. [Solution] This optical film has a cured coating of an active energy ray curable composition on the surface of a resin film containing, as a main component, a polymer having an alicyclic structure. The optical film is characterized in that: the active energy ray curable composition contains an active energy ray curable compound (A) and inorganic fine particles (B) having an average primary particle size of 5-100 nm; the active energy ray curable compound (A) contains an epoxy (meth)acrylate (a1); the inorganic fine particles (B) are contained in a range of 30-80 parts by weight with respect to 100 parts by weight of the active energy ray curable compound (A); and the thickness of the cured coating is more than 50 nm but less than 3500 nm.

Description

光学フィルム及びそれを用いた偏光板Optical film and polarizing plate using the same
 本発明は、脂環式構造を有する重合体を主成分として含有する樹脂フィルムの表面に、活性エネルギー線硬化性組成物の硬化塗膜を有する光学フィルムに関する。 The present invention relates to an optical film having a cured coating of an active energy ray-curable composition on the surface of a resin film containing a polymer with an alicyclic structure as a main component.
 近年、有機エレクトロルミネッセンス表示装置、タッチパネル等の用途が拡大している。このようなデバイスでは保護フィルムや位相差フィルム等に、各種の樹脂フィルムが用いられている。中でもシクロオレフィン重合体からなるシクロオレフィン系フィルムは、耐熱性が高く、寸法安定性に優れるとともに、低光弾性係数であるために複屈折を低く抑えることができ、光学特性にも優れた素材であることから好ましく用いられている。 In recent years, applications for organic electroluminescence displays, touch panels, etc. are expanding. In such devices, various resin films are used as protective films, retardation films, etc. Among them, cycloolefin-based films made from cycloolefin polymers are preferably used because they have high heat resistance, excellent dimensional stability, and a low photoelastic coefficient that keeps birefringence low, making them a material with excellent optical properties.
シクロオレフィン系フィルムは、極性基がない、もしくは極性基が極めて少ない非極性なフィルムであるため、密着性に乏しく、易接着層などの被覆層を積層し、被覆層上に接着剤や粘着剤を介して偏光子等の他の構成要素と貼り合わせること、被覆層を介してハードコート層等の光学機能層を形成することが行われている。 Cycloolefin-based films are non-polar films with no or very few polar groups, and therefore have poor adhesion. To address this problem, a coating layer such as an easy-adhesion layer is laminated on the coating layer, and other components such as a polarizer are attached to the coating layer via an adhesive or pressure-sensitive adhesive, or an optically functional layer such as a hard coat layer is formed via the coating layer.
 例えば、特許文献1には、シクロオレフィン重合体からなる延伸フィルムと偏光子との接着性を改善することを目的に、延伸フィルム上に乾燥状態での単体皮膜伸度が300%~1000%であるポリウレタンからなる易接着層を設けた複層フィルムが記載されている。 For example, Patent Document 1 describes a multilayer film in which an easy-adhesion layer made of polyurethane with a single-layer film elongation of 300% to 1000% in a dry state is provided on a stretched film made of a cycloolefin polymer in order to improve adhesion between the film and a polarizer.
 例えば、特許文献2には、シクロオレフィンポリマーフィルムにハードコート層との易接着性を付与することを目的に、変性ポリオレフィン系からなるプライマー層を設け、プライマー層を介して電離放射線硬化型樹脂を含有するハードコート層が積層されたハードコートフィルムが記載されている。 For example, Patent Document 2 describes a hard coat film in which a primer layer made of a modified polyolefin is provided for the purpose of imparting easy adhesion to a hard coat layer to a cycloolefin polymer film, and a hard coat layer containing an ionizing radiation curable resin is laminated on the primer layer.
 また、シクロオレフィン系フィルム及び易接着層を有する光学フィルムは、保管時や搬送時においてはロール状に巻き取られるが、ロール状に巻き取った際に光学フィルム同士のブロッキングが生じ、ロールフィルムの取り扱い性が悪化するといった問題があり、易接着層に微粒子を配合し、易接着層に耐ブロッキング性を付与することが行われる。 In addition, optical films having a cycloolefin-based film and an easy-adhesion layer are wound into rolls during storage and transportation, but when wound into a roll, blocking occurs between the optical films, which can cause problems such as poor handling of the roll film. To address this problem, fine particles are added to the easy-adhesion layer to impart blocking resistance to the easy-adhesion layer.
 例えば、特許文献3には、環状オレフィン系樹脂からなる基材および易接着層を有する光学フィルムの耐ブロッキング性を高めることを目的に、ガラス転移温度が50℃以上のポリウレタン樹脂と平均粒径が易接着層の厚みの1~5倍である微粒子と界面活性剤とを含む易接着層を設けた光学フィルムが記載されている。 For example, Patent Document 3 describes an optical film having an easy-adhesion layer that contains a polyurethane resin with a glass transition temperature of 50°C or higher, fine particles with an average particle size 1 to 5 times the thickness of the easy-adhesion layer, and a surfactant, with the aim of increasing the blocking resistance of the optical film having a substrate and an easy-adhesion layer made of a cyclic olefin resin.
特開2019-116640Patent Publication 2019-116640 特開2020-055185Patent Publication No. 2020-055185 WO16/047359WO16/047359
ところで、保護フィルムや位相差フィルムを偏光子等の他の構成要素と貼り合わせる場合、貼り合わせ前に保護フィルムや位相差フィルムの表面についた汚れをアセトンや酢酸エチル等の有機溶媒で美装することが行われる。しかしながら、シクロオレフィン系フィルムの表面を有機溶媒で美装すると、有機溶媒がシクロオレフィン系フィルムを膨潤・溶解させ、シクロオレフィン系フィルムが白化し、光学特性が低下する。また、ハードコート層等の機能層を形成する活性エネルギー線硬化性組成物は、メチルイソブチルケトン(MIBK)やシクロヘキサノン(CHN)等の有機溶媒が用いられており、有機溶媒を含む活性エネルギー線硬化性組成物をシクロオレフィン系フィルムの易接着層上に塗布した際、有機溶媒がシクロオレフィン系フィルムを膨潤・溶解させ、シクロオレフィン系フィルム上に光学特性に優れる機能層を形成できない。このためシクロオレフィン系フィルムの易接着層は耐溶剤性に優れることが望ましい。 When a protective film or a retardation film is laminated to other components such as a polarizer, dirt on the surface of the protective film or the retardation film is removed with an organic solvent such as acetone or ethyl acetate before lamination. However, when the surface of a cycloolefin film is laminated with an organic solvent, the organic solvent swells and dissolves the cycloolefin film, causing the cycloolefin film to whiten and resulting in a decrease in optical properties. In addition, an organic solvent such as methyl isobutyl ketone (MIBK) or cyclohexanone (CHN) is used as an active energy ray curable composition for forming a functional layer such as a hard coat layer. When an active energy ray curable composition containing an organic solvent is applied onto an easy-adhesion layer of a cycloolefin film, the organic solvent swells and dissolves the cycloolefin film, making it impossible to form a functional layer with excellent optical properties on the cycloolefin film. For this reason, it is desirable for the easy-adhesion layer of a cycloolefin film to have excellent solvent resistance.
 一方、上記文献に開示される易接着層を有するシクロオレフィン系フィルムは、易接着層の耐溶剤性に劣り、有機溶剤が易接着層及びシクロオレフィン系フィルムを膨潤・溶解させ、シクロオレフィン系フィルムが白化し、光学特性が低下する。 On the other hand, the cycloolefin-based film having an easy-adhesion layer disclosed in the above document has poor solvent resistance in the easy-adhesion layer, and organic solvents swell and dissolve the easy-adhesion layer and the cycloolefin-based film, causing the cycloolefin-based film to whiten and resulting in reduced optical properties.
 また、シクロオレフィン系フィルムからなる位相差フィルムは、一般に偏光子と貼り合わせて用いられ、偏光子と位相差フィルムとを粘着層を介して積層した偏光板を液晶セルや有機エレクトロルミネッセンスセル等の画像表示セルに貼り合わせることにより、画像表示パネルが形成されるが、画像表示パネルや該パネルを用いた画像表示装置の組み立てにおいてヘキサン等の炭化水素系溶媒を用いて偏光板を洗浄した場合にシクロオレフィン系フィルムの端面から微細なクラックが生じることがあり、ヘキサン等の炭化水素系溶媒による耐溶剤試験においても端部クラックが生じ難いことが求められている。 Furthermore, retardation films made of cycloolefin-based films are generally used by laminating them with polarizers, and an image display panel is formed by laminating a polarizer and retardation film with an adhesive layer between them and an image display cell such as a liquid crystal cell or an organic electroluminescence cell to form a polarizing plate. However, when the polarizing plate is washed with a hydrocarbon solvent such as hexane during the assembly of an image display panel or an image display device using said panel, fine cracks may occur from the edge of the cycloolefin-based film, and it is therefore required that edge cracks are unlikely to occur even in a solvent resistance test using a hydrocarbon solvent such as hexane.
 本発明はこのような問題に鑑みなされたものであり、シクロオレフィン系フィルムとの密着性、ロール状に巻き取った際の耐ブロッキング性に優れるとともに、耐溶剤性にも優れ、有機溶媒による光学特性の低下及びヘキサン等の炭化水素系溶媒による耐溶剤試験における端部クラックの発生を抑制し得る硬化塗膜を有する光学フィルムを提供することを目的とする。 The present invention has been made in consideration of these problems, and aims to provide an optical film having a cured coating that has excellent adhesion to cycloolefin-based films, excellent blocking resistance when wound into a roll, and excellent solvent resistance, and can suppress the deterioration of optical properties due to organic solvents and the occurrence of edge cracks in solvent resistance tests using hydrocarbon solvents such as hexane.
 本発明者等は、密着性、耐ブロッキング性に優れ、有機溶媒による光学特性の低下を抑制し得る易接着層について鋭意検討した結果、エポキシ(メタ)アクリレート系の活性エネルギー線硬化性化合物と無機微粒子とを含み、活性エネルギー線硬化性化合物の全量に対して無機微粒子を特定量の範囲で含む活性エネルギー線硬化性組成物の硬化塗膜からなる易接着層とすることにより上記課題を解決できることを見出し、本発明を完成するに至ったものである。 The inventors of the present invention have conducted extensive research into an easy-to-adhere layer that has excellent adhesion and blocking resistance and can suppress deterioration of optical properties caused by organic solvents. As a result, they have discovered that the above problems can be solved by forming an easy-to-adhere layer from a cured coating film of an active energy ray-curable composition that contains an epoxy (meth)acrylate-based active energy ray-curable compound and inorganic fine particles, and that contains a specific amount of inorganic fine particles relative to the total amount of the active energy ray-curable compound, thereby completing the present invention.
 本発明によれば、
(1)脂環式構造を有する重合体を主成分として含有する樹脂フィルムの表面に、活性エネルギー線硬化性組成物の硬化塗膜を有する光学フィルムであって、前記活性エネルギー線硬化性組成物は、活性エネルギー線硬化性化合物(A)と平均一次粒子径が5nm以上100nm以下の無機微粒子(B)とを含有し、前記活性エネルギー線硬化性化合物(A)は、エポキシ(メタ)アクリレート(a1)を含み、前記無機微粒子(B)は、前記活性エネルギー線硬化性化合物(A)100重量部に対して30重量部以上80重量部以下の範囲にあり、前記硬化塗膜の厚さは、50nmを超え3500nm未満であることを特徴とする光学フィルムが提供され、
(2)前記エポキシ(メタ)アクリレート(a1)は、分子内に複数の(メタ)アクリロイル基と水酸基とを含有することを特徴とする(1)に記載の光学フィルムが提供され、
(3)前記エポキシ(メタ)アクリレート(a1)は、エポキシ基含有モノ(メタ)アクリレートを含むモノマー成分のラジカル重合体及びα,β-不飽和カルボン酸の反応物である水酸基含有(メタ)アクリル共重合体であることを特徴とする(1)に記載の光学フィルムが提供され、
(4)前記活性エネルギー線硬化性化合物(A)は、少なくとも3つの(メタ)アクリロイル基を有する水酸基含有多官能(メタ)アクリレート(a2)を含むことを特徴とする(1)に記載の光学フィルムが提供され、
(5)前記無機微粒子(B)は、シリカ微粒子であることを特徴とする(1)に記載の光学フィルムが提供され、
(6)前記樹脂フィルムは、延伸フィルムであることを特徴とする(1)に記載の光学フィルムが提供される。
According to the present invention,
(1) There is provided an optical film having a cured coating film of an active energy ray curable composition on a surface of a resin film containing a polymer having an alicyclic structure as a main component, the active energy ray curable composition containing an active energy ray curable compound (A) and inorganic fine particles (B) having an average primary particle diameter of 5 nm or more and 100 nm or less, the active energy ray curable compound (A) contains an epoxy (meth)acrylate (a1), the inorganic fine particles (B) are in the range of 30 parts by weight or more and 80 parts by weight or less with respect to 100 parts by weight of the active energy ray curable compound (A), and the thickness of the cured coating film is more than 50 nm and less than 3,500 nm,
(2) There is provided the optical film according to (1), wherein the epoxy (meth)acrylate (a1) contains a plurality of (meth)acryloyl groups and a hydroxyl group in the molecule;
(3) There is provided the optical film according to (1), wherein the epoxy (meth)acrylate (a1) is a hydroxyl group-containing (meth)acrylic copolymer which is a reaction product of a radical polymer of a monomer component containing an epoxy group-containing mono(meth)acrylate and an α,β-unsaturated carboxylic acid;
(4) There is provided the optical film according to (1), wherein the active energy ray-curable compound (A) contains a hydroxyl group-containing polyfunctional (meth)acrylate (a2) having at least three (meth)acryloyl groups;
(5) The optical film according to (1), wherein the inorganic fine particles (B) are silica fine particles,
(6) There is provided the optical film according to (1), wherein the resin film is a stretched film.
 本発明の光学フィルムは、エポキシ(メタ)アクリレート系の活性エネルギー線硬化性化合物と無機微粒子とを含み、活性エネルギー線硬化性化合物の全量に対して無機微粒子を特定量の範囲で含む活性エネルギー線硬化性組成物の硬化塗膜からなる易接着層とすることにより、シクロオレフィン系フィルムとの密着性に優れるとともに、ロール状に巻き取った際の光学フィルム同士のブロッキングを抑制し、耐ブロッキング性に優れる。また、本発明の光学フィルムは、有機溶媒に対する耐溶剤性に優れ、有機溶媒による美装の際や、有機溶媒を使用した活性エネルギー線硬化型のコート剤を易接着層上に塗布した際に光学特性の低下を抑制することが可能であるとともに、画像表示パネルや該パネルを用いた画像表示装置の組み立てにおいてヘキサン等の炭化水素系溶媒を用いて偏光板を洗浄した場合にシクロオレフィン系フィルムの端面から微細なクラックが生じることを抑制することが可能である。 The optical film of the present invention contains an epoxy (meth)acrylate-based active energy ray curable compound and inorganic fine particles, and has an easy-adhesion layer made of a cured coating of an active energy ray curable composition containing a specific amount of inorganic fine particles relative to the total amount of the active energy ray curable compound, which provides excellent adhesion to the cycloolefin-based film and excellent blocking resistance by suppressing blocking between the optical films when wound into a roll. In addition, the optical film of the present invention has excellent solvent resistance to organic solvents, and can suppress deterioration of optical properties when beautifying with organic solvents or when an active energy ray curable coating agent using an organic solvent is applied to the easy-adhesion layer, and can suppress the occurrence of fine cracks from the end face of the cycloolefin-based film when a polarizing plate is washed with a hydrocarbon solvent such as hexane during the assembly of an image display panel or an image display device using the panel.
本発明の光学フィルムの一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view illustrating an example of an optical film of the present invention. 本発明の偏光板の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view illustrating an example of the polarizing plate of the present invention.
 以下、本発明を詳細に説明する。なお、本発明は以下の形態に限定されるものではなく、本発明の効果を奏する範囲において種々の形態とすることができる。 The present invention will be described in detail below. Note that the present invention is not limited to the following form, and various forms are possible as long as the effects of the present invention are achieved.
[樹脂フィルム]
 樹脂フィルムは、脂環式構造を有する重合体を主成分として含む熱可塑性樹脂からなる。ここで「主成分」とは、樹脂フィルムを構成する成分のうち、構成比率が50重量%以上であることを意味するものであり、好ましくは60重量%以上であり、より好ましくは80重量%以上であり、さらに好ましくは90重量%以上であり、特に好ましくは95重量%以上である。
[Resin film]
The resin film is made of a thermoplastic resin containing a polymer having an alicyclic structure as a main component. Here, the term "main component" means that the composition ratio of the components constituting the resin film is 50% by weight or more, preferably 60% by weight or more, more preferably 80% by weight or more, even more preferably 90% by weight or more, and particularly preferably 95% by weight or more.
 脂環式構造を有する重合体は、重合体の構造単位に脂環式構造を有する重合体である。脂環式構造を有する重合体は、主鎖に脂環式構造を有していてもよく、側鎖に脂環式構造を有していてもよい。中でも、機械的強度及び耐熱性の観点から、主鎖に脂環式構造を有する重合体が好ましい。 A polymer having an alicyclic structure is a polymer having an alicyclic structure in the structural unit of the polymer. A polymer having an alicyclic structure may have an alicyclic structure in the main chain, or may have an alicyclic structure in the side chain. Among them, from the viewpoint of mechanical strength and heat resistance, a polymer having an alicyclic structure in the main chain is preferable.
脂環式構造としては、例えば、飽和脂環式炭化水素(シクロアルカン)構造、不飽和脂環式炭化水素(シクロアルケン、シクロアルキン)構造などが挙げられる。中でも、例えば機械強度、耐熱性などの観点から、シクロアルカン構造及びシクロアルケン構造が好ましく、中でもシクロアルカン構造が特に好ましい。 Examples of alicyclic structures include saturated alicyclic hydrocarbon (cycloalkane) structures and unsaturated alicyclic hydrocarbon (cycloalkene, cycloalkyne) structures. Among these, from the standpoint of mechanical strength, heat resistance, etc., cycloalkane structures and cycloalkene structures are preferred, and cycloalkane structures are particularly preferred.
 脂環式構造を構成する炭素原子数は、一つの脂環式構造あたり、好ましくは4個以上、より好ましくは5個以上であり、好ましくは30個以下、より好ましくは20個以下、特に好ましくは15個以下の範囲である。脂環式構造を構成する炭素原子数をこの範囲にすることにより、当該脂環式構造を有する重合体を含む樹脂フィルムの機械強度、耐熱性、及び成形性に優れる。 The number of carbon atoms constituting the alicyclic structure is preferably 4 or more, more preferably 5 or more, and preferably 30 or less, more preferably 20 or less, and particularly preferably 15 or less per alicyclic structure. By setting the number of carbon atoms constituting the alicyclic structure within this range, the resin film containing the polymer having the alicyclic structure has excellent mechanical strength, heat resistance, and moldability.
 脂環式構造を有する重合体において、脂環式構造を有する構造単位の割合は、使用目的に応じて適宜選択することができる。脂環式構造を有する重合体における脂環式構造を有する構造単位の割合は、好ましくは55重量%以上、さらに好ましくは70重量%以上、特に好ましくは90重量%以上である。脂環式構造を有する重合体における脂環式構造を有する構造単位の割合がこの範囲にあると、当該脂環式構造を有する重合体を含む樹脂フィルムの透明性及び耐熱性が良好となる。 In a polymer having an alicyclic structure, the proportion of structural units having an alicyclic structure can be appropriately selected depending on the purpose of use. The proportion of structural units having an alicyclic structure in a polymer having an alicyclic structure is preferably 55% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight or more. When the proportion of structural units having an alicyclic structure in a polymer having an alicyclic structure is within this range, the transparency and heat resistance of a resin film containing the polymer having an alicyclic structure will be good.
 脂環式構造を有する重合体の中でも、シクロオレフィン重合体が好ましい。シクロオレフィン重合体は、シクロオレフィン単量体を重合して得られる構造を有する重合体である。また、シクロオレフィン単量体は、炭素原子で形成される環構造を有し、かつ該環構造中に重合性の炭素-炭素二重結合を有する化合物である。重合性の炭素-炭素二重結合としては、例えば、開環重合等の重合可能な炭素-炭素二重結合が挙げられる。また、シクロオレフィン単量体の環構造としては、例えば、単環、多環、縮合多環、橋かけ環及びこれらを組み合わせた多環等が挙げられる。中でも、脂環式構造を有する重合体の誘電特性及び耐熱性等の特性を高度にバランスさせる観点から、多環のシクロオレフィン単量体が好ましい。 Among the polymers having an alicyclic structure, cycloolefin polymers are preferred. Cycloolefin polymers are polymers having a structure obtained by polymerizing cycloolefin monomers. Cycloolefin monomers are compounds having a ring structure formed of carbon atoms and having a polymerizable carbon-carbon double bond in the ring structure. Examples of the polymerizable carbon-carbon double bond include polymerizable carbon-carbon double bonds such as those of ring-opening polymerization. Examples of the ring structure of cycloolefin monomers include monocyclic, polycyclic, condensed polycyclic, bridged rings, and polycyclic combinations of these. Among these, polycyclic cycloolefin monomers are preferred from the viewpoint of achieving a high level of balance between the dielectric properties, heat resistance, and other properties of the polymer having an alicyclic structure.
 シクロオレフィン重合体の中でも好ましいものとしては、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、及び、これらの水素添加物等が挙げられる。これらの中でも、ノルボルネン系重合体は、成形性が良好なため、特に好適である。 Preferred cycloolefin polymers include norbornene-based polymers, monocyclic olefin-based polymers, cyclic conjugated diene-based polymers, and hydrogenated versions of these. Of these, norbornene-based polymers are particularly suitable due to their good moldability.
ノルボルネン系重合体の例としては、ノルボルネン構造を有する単量体の開環重合体及びその水素添加物;ノルボルネン構造を有する単量体の付加重合体及びその水素添加物が挙げられる。また、ノルボルネン構造を有する単量体の開環重合体の例としては、ノルボルネン構造を有する1種類の単量体の開環単独重合体、ノルボルネン構造を有する2種類以上の単量体の開環共重合体、並びに、ノルボルネン構造を有する単量体及びこれと共重合する他の単量体との開環共重合体が挙げられる。さらに、ノルボルネン構造を有する単量体の付加重合体の例としては、ノルボルネン構造を有する1種類の単量体の付加単独重合体、ノルボルネン構造を有する2種類以上の単量体の付加共重合体、並びに、ノルボルネン構造を有する単量体及びこれと共重合する他の単量体との付加共重合体が挙げられる。これらの中で、ノルボルネン構造を有する単量体の開環重合体の水素添加物は、成形性、耐熱性、低吸湿性、寸法安定性、軽量性などの観点から、特に好適である。 Examples of norbornene-based polymers include ring-opening polymers of monomers having a norbornene structure and hydrogenated products thereof; addition polymers of monomers having a norbornene structure and hydrogenated products thereof. Examples of ring-opening polymers of monomers having a norbornene structure include ring-opening homopolymers of one type of monomer having a norbornene structure, ring-opening copolymers of two or more types of monomers having a norbornene structure, and ring-opening copolymers of a monomer having a norbornene structure and other monomers copolymerized therewith. Examples of addition polymers of monomers having a norbornene structure include addition homopolymers of one type of monomer having a norbornene structure, addition copolymers of two or more types of monomers having a norbornene structure, and addition copolymers of a monomer having a norbornene structure and other monomers copolymerized therewith. Among these, hydrogenated products of ring-opening polymers of monomers having a norbornene structure are particularly suitable from the viewpoints of moldability, heat resistance, low moisture absorption, dimensional stability, light weight, etc.
 ノルボルネン構造を有する単量体としては、例えば、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、7,8-ベンゾトリシクロ[4.3.0.12,5]デカ-3-エン(慣用名:メタノテトラヒドロフルオレン)、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)、およびこれらの化合物の誘導体(例えば、環に置換基を有するもの)などを挙げることができる。ここで、置換基としては、例えばアルキル基、アルキレン基、極性基などを挙げることができる。また、これらの置換基は、同一または相異なって、複数個が環に結合していてもよい。ノルボルネン構造を有する単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of monomers having a norbornene structure include bicyclo[2.2.1]hept-2-ene (common name: norbornene), tricyclo[4.3.0.1 2,5 ]deca-3,7-diene (common name: dicyclopentadiene), 7,8-benzotricyclo[4.3.0.1 2,5 ]deca-3-ene (common name: methanotetrahydrofluorene), tetracyclo[4.4.0.1 2,5 .1 7,10 ]dodeca-3-ene (common name: tetracyclododecene), and derivatives of these compounds (for example, those having a substituent on the ring). Here, examples of the substituent include an alkyl group, an alkylene group, a polar group, and the like. In addition, these substituents may be the same or different, and a plurality of them may be bonded to the ring. The monomer having a norbornene structure may be used alone or in combination of two or more kinds at any ratio.
極性基の種類としては、例えば、ヘテロ原子、またはヘテロ原子を有する原子団などが挙げられる。ヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子、ケイ素原子、ハロゲン原子などが挙げられる。極性基の具体例としては、カルボキシル基、カルボニルオキシカルボニル基、エポキシ基、ヒドロキシル基、オキシ基、エステル基、シラノール基、シリル基、アミノ基、ニトリル基、スルホン酸基などが挙げられる。 Types of polar groups include, for example, heteroatoms and atomic groups having heteroatoms. Examples of heteroatoms include oxygen atoms, nitrogen atoms, sulfur atoms, silicon atoms, and halogen atoms. Specific examples of polar groups include carboxyl groups, carbonyloxycarbonyl groups, epoxy groups, hydroxyl groups, oxy groups, ester groups, silanol groups, silyl groups, amino groups, nitrile groups, and sulfonic acid groups.
 ノルボルネン構造を有する単量体と開環共重合可能な他の単量体としては、例えば、シクロヘキセン、シクロヘプテン、シクロオクテン等のモノ環状オレフィン類及びその誘導体;シクロヘキサジエン、シクロヘプタジエン等の環状共役ジエン及びその誘導体;などが挙げられる。ノルボルネン構造を有する単量体と開環共重合可能な他の単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。ノルボルネン構造を有する単量体の開環重合体は、例えば、単量体を開環重合触媒の存在下に重合又は共重合することにより製造することができる。 Other monomers capable of ring-opening copolymerization with a monomer having a norbornene structure include, for example, monocyclic olefins such as cyclohexene, cycloheptene, and cyclooctene, and derivatives thereof; cyclic conjugated dienes such as cyclohexadiene and cycloheptadiene, and derivatives thereof; and the like. The other monomers capable of ring-opening copolymerization with a monomer having a norbornene structure may be used alone or in combination of two or more types in any ratio. A ring-opening polymer of a monomer having a norbornene structure can be produced, for example, by polymerizing or copolymerizing the monomer in the presence of a ring-opening polymerization catalyst.
 ノルボルネン構造を有する単量体と付加共重合可能な単量体としては、例えば、エチレン、プロピレン、1-ブテン等の炭素原子数2~20のα-オレフィン及びこれらの誘導体;シクロブテン、シクロペンテン、シクロヘキセン等のシクロオレフィン及びこれらの誘導体;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン等の非共役ジエン;などが挙げられる。これらの中でも、α-オレフィンが好ましく、エチレンがより好ましい。また、ノルボルネン構造を有する単量体と付加共重合可能な単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。ノルボルネン構造を有する単量体の付加重合体は、例えば、単量体を付加重合触媒の存在下に重合又は共重合することにより製造することができる。 Examples of monomers capable of addition copolymerization with a monomer having a norbornene structure include α-olefins having 2 to 20 carbon atoms, such as ethylene, propylene, and 1-butene, and derivatives thereof; cycloolefins, such as cyclobutene, cyclopentene, and cyclohexene, and derivatives thereof; and non-conjugated dienes, such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, and 5-methyl-1,4-hexadiene. Among these, α-olefins are preferred, and ethylene is more preferred. Furthermore, the monomers capable of addition copolymerization with a monomer having a norbornene structure may be used alone, or two or more types may be used in combination in any ratio. An addition polymer of a monomer having a norbornene structure can be produced, for example, by polymerizing or copolymerizing the monomer in the presence of an addition polymerization catalyst.
 上述した開環重合体及び付加重合体の水素添加物は、例えば、開環重合体及び付加重合体の溶液において、ニッケル、パラジウム等の遷移金属を含む水素添加触媒の存在下で、炭素-炭素不飽和結合を、好ましくは90%以上水素添加することによって製造することができる。 The hydrogenated products of the ring-opening polymer and addition polymer described above can be produced, for example, by hydrogenating the carbon-carbon unsaturated bonds, preferably to 90% or more, in a solution of the ring-opening polymer and addition polymer in the presence of a hydrogenation catalyst containing a transition metal such as nickel or palladium.
 ノルボルネン系重合体の中でも、構造単位として、X:ビシクロ[3.3.0]オクタン-2,4-ジイル-エチレン構造と、Y:トリシクロ[4.3.0.12,5]デカン-7,9-ジイル-エチレン構造とを有し、これらの構造単位の量が、ノルボルネン系重合体の構造単位全体に対して90重量%以上であり、かつ、Xの割合とYの割合との比が、X:Yの重量比で100:0~40:60であるものが好ましい。このような重合体を用いることにより、当該ノルボルネン系重合体を含む樹脂フィルムを、長期的に寸法変化がなく、光学特性の安定性に優れるものにすることができる。 Among norbornene-based polymers, those having structural units of X: bicyclo[3.3.0]octane-2,4-diyl-ethylene structure and Y: tricyclo[ 4.3.0.12,5 ]decane-7,9-diyl-ethylene structure, the amount of these structural units being 90% by weight or more based on the total structural units of the norbornene-based polymer, and the ratio of the proportion of X to the proportion of Y being 100:0 to 40:60 by weight ratio of X:Y are preferred. By using such a polymer, a resin film containing the norbornene-based polymer can be made to have no dimensional change over the long term and excellent stability of optical properties.
 単環の環状オレフィン系重合体としては、例えば、シクロヘキセン、シクロヘプテン、シクロオクテン等の単環を有する環状オレフィン系モノマーの付加重合体を挙げることができる。 Examples of monocyclic olefin polymers include addition polymers of monocyclic olefin monomers such as cyclohexene, cycloheptene, and cyclooctene.
 環状共役ジエン系重合体としては、例えば、1,3-ブタジエン、イソプレン、クロロプレン等の共役ジエン系モノマーの付加重合体を環化反応して得られる重合体;シクロペンタジエン、シクロヘキサジエン等の環状共役ジエン系モノマーの1,2-または1,4-付加重合体;およびこれらの水素添加物;などを挙げることができる。 Examples of cyclic conjugated diene polymers include polymers obtained by cyclization reaction of addition polymers of conjugated diene monomers such as 1,3-butadiene, isoprene, and chloroprene; 1,2- or 1,4-addition polymers of cyclic conjugated diene monomers such as cyclopentadiene and cyclohexadiene; and hydrogenated products of these.
 脂環式構造を有する重合体の重量平均分子量(Mw)は、通常30,000以上、好ましくは35,000以上、より好ましくは40,000以上であり、好ましくは80,000以下、より好ましくは60,000以下、特に好ましくは50,000以下である。脂環式構造を有する重合体の重量平均分子量(Mw)を上記範囲の下限値以上にすることにより、易接着層によって樹脂フィルムの凝集破壊を効果的に防止できるので、光学フィルムと偏光子との密着性を高めることができる。また、上限値以下にすることにより、樹脂フィルムの機械的強度及び成型加工性を高めることができる。したがって、脂環式構造を有する重合体の重量平均分子量(Mw)を上記範囲に収めることにより、光学フィルムの凝集力、機械的強度および成型加工性に優れたものとすることができる。 The weight average molecular weight (Mw) of the polymer having an alicyclic structure is usually 30,000 or more, preferably 35,000 or more, more preferably 40,000 or more, and preferably 80,000 or less, more preferably 60,000 or less, and particularly preferably 50,000 or less. By making the weight average molecular weight (Mw) of the polymer having an alicyclic structure equal to or greater than the lower limit of the above range, the adhesive layer can effectively prevent cohesive failure of the resin film, thereby improving the adhesion between the optical film and the polarizer. By making it equal to or less than the upper limit, the mechanical strength and moldability of the resin film can be improved. Therefore, by making the weight average molecular weight (Mw) of the polymer having an alicyclic structure fall within the above range, the optical film can be made excellent in cohesive force, mechanical strength, and moldability.
 脂環式構造を有する重合体のガラス転移温度(Tg)は、好ましくは100℃以上、より好ましくは110℃以上、特に好ましくは120℃以上であり、好ましくは190℃以下、より好ましくは180℃以下、特に好ましくは170℃以下である。熱可塑性樹脂のガラス転移温度を上記範囲の下限値以上にすることにより、高温環境下における樹脂フィルムの耐久性を高めることができる。また、上限値以下にすることにより、延伸処理を容易に行うことができる。 The glass transition temperature (Tg) of the polymer having an alicyclic structure is preferably 100°C or higher, more preferably 110°C or higher, particularly preferably 120°C or higher, and is preferably 190°C or lower, more preferably 180°C or lower, particularly preferably 170°C or lower. By making the glass transition temperature of the thermoplastic resin equal to or higher than the lower limit of the above range, the durability of the resin film in a high-temperature environment can be increased. Also, by making it equal to or lower than the upper limit, the stretching process can be easily performed.
 樹脂フィルムは、本発明の効果を阻害しない範囲において、脂環式構造を有する重合体以外の樹脂成分を含んでいても良い。脂環式構造を有する重合体以外の樹脂成分としては、例えば、セルロース系樹脂、ポリエステル系樹脂、ポリエーテルスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、ポリアリーレート系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂等が挙げられる。これらは、単独或いは2種以上を組合わせて用いることができる。樹脂フィルムにおける他の樹脂成分の含有割合は、特に制限するものではないが、好ましくは0~50重量%、より好ましくは0~30重量%、さらに好ましくは0~20重量%である。 The resin film may contain resin components other than the polymer having an alicyclic structure, as long as the effects of the present invention are not impaired. Examples of resin components other than the polymer having an alicyclic structure include cellulose-based resins, polyester-based resins, polyethersulfone-based resins, polycarbonate-based resins, polyamide-based resins, polyolefin-based resins, (meth)acrylic-based resins, polyarylate-based resins, polystyrene-based resins, and polyvinyl alcohol-based resins. These may be used alone or in combination of two or more. The content of other resin components in the resin film is not particularly limited, but is preferably 0 to 50% by weight, more preferably 0 to 30% by weight, and even more preferably 0 to 20% by weight.
 樹脂フィルムは、本発明の効果を阻害しない範囲において、任意の添加剤等を含んでいても良い。添加剤としては、例えば、顔料、染料等の着色剤;可塑剤;蛍光増白剤;分散剤;熱安定剤;光安定剤;紫外線吸収剤;耐電防止剤;酸化防止剤;微粒子;界面活性剤等を挙げることができる。これらは、単独或いは2種以上を組合わせて用いることができる。樹脂フィルムにおける添加剤の配合量は、特に制限するものではないが、好ましくは0~5重量%、より好ましくは0~3重量%、さらに好ましくは0~0.5重量%である。 The resin film may contain any additives, etc., as long as they do not impair the effects of the present invention. Examples of additives include colorants such as pigments and dyes; plasticizers; fluorescent whitening agents; dispersants; heat stabilizers; light stabilizers; UV absorbers; static electricity inhibitors; antioxidants; fine particles; surfactants, etc. These can be used alone or in combination of two or more kinds. The amount of additives in the resin film is not particularly limited, but is preferably 0 to 5% by weight, more preferably 0 to 3% by weight, and even more preferably 0 to 0.5% by weight.
 樹脂フィルムは、延伸処理が施されていても、施されていなくてもいずれでも良いが、延伸処理が施されていることが好ましい。延伸処理は、一軸延伸又は二軸延伸のいずれでも良いが、延伸倍率は面積比で1.2倍以上であることが好ましく、1.4倍以上であることがより好ましい。一般に、樹脂フィルムの耐溶剤性はその材質によるものとされ、樹脂フィルムの耐溶剤性と延伸処理には密接な関係がないとされているが、本発明者等は、シクロオレフィン重合体等の脂環式構造を有する重合体を含む樹脂フィルムにおいては延伸処理により耐溶剤性が変化すること、ヘキサン等の炭化水素系溶媒を用いて洗浄した際に延伸方向と略平行に端部から微細なクラックが発生することを見出した。具体的には、延伸処理を施したシクロオレフィン重合体等の脂環式構造を有する重合体を含む樹脂フィルムは、延伸処理を施すことにより耐溶剤性が低下する。したがって、本発明の光学フィルムが延伸処理を施された樹脂フィルム(延伸フィルムと称することがある)を備えることは、解決が困難であった従来の課題を有効に解決できる態様であり、本発明の効果を有効に活用できることから好ましい。 The resin film may or may not have been stretched, but it is preferable that it has been stretched. The stretching may be uniaxial or biaxial, but the stretching ratio is preferably 1.2 times or more in terms of area ratio, and more preferably 1.4 times or more. In general, the solvent resistance of a resin film is considered to depend on its material, and there is no close relationship between the solvent resistance of a resin film and the stretching treatment. However, the present inventors have found that the solvent resistance of a resin film containing a polymer having an alicyclic structure such as a cycloolefin polymer changes due to the stretching treatment, and that when the resin film is washed with a hydrocarbon solvent such as hexane, fine cracks occur from the end approximately parallel to the stretching direction. Specifically, the solvent resistance of a resin film containing a polymer having an alicyclic structure such as a cycloolefin polymer that has been stretched decreases due to the stretching treatment. Therefore, the optical film of the present invention is preferably provided with a resin film that has been subjected to a stretching process (sometimes referred to as a stretched film) because this effectively solves problems that have been difficult to solve in the past and allows the effects of the present invention to be effectively utilized.
樹脂フィルムの1mm厚換算での全光線透過率は、好ましくは80%以上、より好ましくは90%以上である。全光線透過率は、JIS K0115に準拠して、分光光度計(日本分光社製、紫外可視近赤外分光光度計「V-570」)を用いて測定することができる。また、樹脂フィルムの1mm厚換算でのヘイズは、好ましくは0.3%以下、より好ましくは0.2%以下である。ヘイズを上記範囲内に収めることにより、光学フィルムを偏光子と貼り合わせた場合に、偏光解消を防止することができる。ヘイズは、JIS K7361-1997に準拠して、日本電色工業社製「濁度計 NDH-300A」を用いて測定することができる。 The total light transmittance of the resin film converted to a thickness of 1 mm is preferably 80% or more, and more preferably 90% or more. The total light transmittance can be measured in accordance with JIS K0115 using a spectrophotometer (V-570 ultraviolet-visible-near infrared spectrophotometer manufactured by JASCO Corporation). The haze of the resin film converted to a thickness of 1 mm is preferably 0.3% or less, and more preferably 0.2% or less. By keeping the haze within the above range, it is possible to prevent depolarization when the optical film is bonded to a polarizer. The haze can be measured in accordance with JIS K7361-1997 using a turbidity meter NDH-300A manufactured by Nippon Denshoku Industries Co., Ltd.
樹脂フィルムの厚みは、好ましくは5μm以上、より好ましくは8μm以上、特に好ましくは10μm以上であり、好ましくは100μm以下、より好ましくは70μm以下、特に好ましくは60μm以下である。樹脂フィルムの厚みを上記範囲の下限値以上にすることにより、樹脂フィルムの機械的強度を高めることができる。また、上限値以下にすることにより、樹脂フィルムの厚みを薄くできる。 The thickness of the resin film is preferably 5 μm or more, more preferably 8 μm or more, particularly preferably 10 μm or more, and is preferably 100 μm or less, more preferably 70 μm or less, particularly preferably 60 μm or less. By making the thickness of the resin film equal to or greater than the lower limit of the above range, the mechanical strength of the resin film can be increased. Also, by making the thickness equal to or less than the upper limit, the thickness of the resin film can be reduced.
[活性エネルギー線硬化性組成物]
 活性エネルギー線硬化性組成物は、下述の活性エネルギー線硬化性化合物(A)と下述の無機微粒子(B)とを含有する。活性エネルギー線硬化性組成物からなる硬化塗膜は、シクロオレフィン系フィルムとの密着性に優れるとともに、ロール状に巻き取った際の光学フィルム同士のブロッキングを抑制し、耐ブロッキング性に優れる。また、該硬化塗膜は、有機溶媒に対する耐溶剤性に優れ、有機溶媒による美装の際や、有機溶媒を使用した活性エネルギー線硬化型のコート剤を易接着層上に塗布した際に光学特性の低下を抑制することが可能であるとともに、ヘキサン等の炭化水素系溶媒を用いて洗浄した際に端面から微細なクラックが発生することを抑制することができる。
[Active energy ray-curable composition]
The active energy ray curable composition contains the active energy ray curable compound (A) and the inorganic fine particles (B) described below. The cured coating film made of the active energy ray curable composition has excellent adhesion to a cycloolefin-based film, and suppresses blocking between optical films when wound into a roll, resulting in excellent blocking resistance. In addition, the cured coating film has excellent solvent resistance to organic solvents, and can suppress the deterioration of optical properties when beautifying with an organic solvent or when an active energy ray curable coating agent using an organic solvent is applied onto the easy-adhesion layer, and can suppress the occurrence of fine cracks from the end face when washed with a hydrocarbon solvent such as hexane.
 活性エネルギー線硬化性化合物(A)は、エポキシ(メタ)アクリレート(a1)を含む。エポキシ(メタ)アクリレートは、反応性が高く、架橋構造の形成に優れるため、硬化後に優れた耐溶剤性を有する。エポキシ(メタ)アクリレートとしては、特に制限されるものではないが、分子内に複数の(メタ)アクリロイル基と水酸基とを含有することが好ましい。分子内に複数の(メタ)アクリロイル基と水酸基とを含有するエポキシ(メタ)アクリレートは、高い表面張力を有し、シクロオレフィン系フィルムとの密着性に優れるとともに、架橋構造の形成に優れ、優れた耐溶剤性を有する。なお、本明細書において「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味する。 The active energy ray curable compound (A) contains an epoxy (meth)acrylate (a1). Epoxy (meth)acrylate has high reactivity and excellent crosslinking structure formation, and therefore has excellent solvent resistance after curing. There are no particular limitations on the epoxy (meth)acrylate, but it is preferable that the epoxy (meth)acrylate contains multiple (meth)acryloyl groups and hydroxyl groups in the molecule. Epoxy (meth)acrylate containing multiple (meth)acryloyl groups and hydroxyl groups in the molecule has high surface tension, excellent adhesion to cycloolefin-based films, excellent crosslinking structure formation, and excellent solvent resistance. In this specification, "(meth)acrylic" means acrylic and/or methacrylic.
 エポキシ(メタ)アクリレート(a1)の水酸基濃度は、特に制限するものではないが、0.8mmol/g以上であることが好ましく、1.6~4.7mmol/gであることがより好ましく、2.0~4.7mmol/gであることがさらに好ましい。ここでいう水酸基濃度は、(a1)成分中の水酸基数と分子量から算出される値である。具体的には、(a1)成分がポリマー以外の場合は、{(a1)成分1mol中に含まれる水酸基mol数/(a1)成分の分子量}から算出される値である。(a1)成分がポリマーならば、{(a1)成分の繰り返し構造1mol中に含まれる水酸基mol数/(a1)成分の繰り返し構造の式量}から算出される値である。水酸基濃度が上記範囲であれば、シクロオレフィン系フィルムとの密着性、他の光学部材との接着性に優れる。 The hydroxyl group concentration of the epoxy (meth)acrylate (a1) is not particularly limited, but is preferably 0.8 mmol/g or more, more preferably 1.6 to 4.7 mmol/g, and even more preferably 2.0 to 4.7 mmol/g. The hydroxyl group concentration here is a value calculated from the number of hydroxyl groups in the (a1) component and the molecular weight. Specifically, when the (a1) component is other than a polymer, the value is calculated from {the number of moles of hydroxyl groups contained in 1 mole of the (a1) component/the molecular weight of the (a1) component}. When the (a1) component is a polymer, the value is calculated from {the number of moles of hydroxyl groups contained in 1 mole of the repeating structure of the (a1) component/the formula weight of the repeating structure of the (a1) component}. When the hydroxyl group concentration is within the above range, the adhesion to cycloolefin-based films and adhesion to other optical members are excellent.
エポキシ(メタ)アクリレート(a1)の重量平均分子量は、特に制限するものではないが、耐溶剤性の観点から、1,000~100,000程度、好ましくは10,000~50,000程度となる範囲であることが好ましい。ここでいう重量平均分子量は、ゲルパーメーションクロマトグラフィー(GPC)法によるポリスチレン換算値である。 The weight average molecular weight of the epoxy (meth)acrylate (a1) is not particularly limited, but from the viewpoint of solvent resistance, it is preferably in the range of about 1,000 to 100,000, and more preferably about 10,000 to 50,000. The weight average molecular weight here is a polystyrene-equivalent value measured by gel permeation chromatography (GPC).
 エポキシ(メタ)アクリレート(a1)は、エポキシ基含有モノ(メタ)アクリレートを含むモノマー成分のラジカル重合体及びα,β-不飽和カルボン酸の付加反応物である水酸基含有(メタ)アクリル共重合体であることが好ましい。 The epoxy (meth)acrylate (a1) is preferably a hydroxyl group-containing (meth)acrylic copolymer which is an addition reaction product of a radical polymer of a monomer component containing an epoxy group-containing mono(meth)acrylate and an α,β-unsaturated carboxylic acid.
 エポキシ基含有モノ(メタ)アクリレートは、分子内に少なくとも1個のエポキシ基と1個の重合性不飽和二重結合を有する化合物である。具体的には、グリシジル(メタ)アクリレート、β-メチルグリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、ビニルシクロヘキセンモノオキサイド(すなわち、1,2-エポキシ-4-ビニルシクロヘキサン)などが挙げられる。これらはそれぞれを単独で、または2種以上を併用して配合してもよい。これらのうち、入手容易性と調達コストの面から、グリシジル(メタ)アクリレートが好ましい。また、エポキシ基含有モノ(メタ)アクリレートの他に共重合可能なモノマーを含めてもよい。該モノマーとしては、具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチルなどの鎖状アルキル基を有する(メタ)アクリル酸エステル類、(メタ)アクリル酸イソボルニルなどの脂環構造を有する(メタ)アクリル酸エステル類、エトキシ化o-フェニルフェノールアクリレートなどの芳香環を有する(メタ)アクリル酸エステル類、アクリロイルモルフォリンなどの窒素含有アクリル酸エステル類、(メタ)アクリルアミド、アクリロニトリル、スチレン、α-メチルスチレン、ビニルトルエン等の芳香族系ビニル化合物、酢酸ビニル、及びいずれか一方の末端に不飽和二重結合を有し、エポキシ基及びカルボキシル基を含有しないマクロモノマー等が挙げられる。これらは単独で、または2種以上を併用して配合してもよい。 Epoxy group-containing mono(meth)acrylates are compounds that have at least one epoxy group and one polymerizable unsaturated double bond in the molecule. Specific examples include glycidyl (meth)acrylate, β-methylglycidyl (meth)acrylate, 3,4-epoxycyclohexylmethyl (meth)acrylate, vinylcyclohexene monoxide (i.e., 1,2-epoxy-4-vinylcyclohexane), and the like. These may be used alone or in combination of two or more. Of these, glycidyl (meth)acrylate is preferred in terms of availability and procurement costs. In addition to the epoxy group-containing mono(meth)acrylate, copolymerizable monomers may also be included. Specific examples of the monomer include (meth)acrylic acid esters having a chain alkyl group such as methyl (meth)acrylate and ethyl (meth)acrylate, (meth)acrylic acid esters having an alicyclic structure such as isobornyl (meth)acrylate, (meth)acrylic acid esters having an aromatic ring such as ethoxylated o-phenylphenol acrylate, nitrogen-containing acrylic acid esters such as acryloylmorpholine, aromatic vinyl compounds such as (meth)acrylamide, acrylonitrile, styrene, α-methylstyrene, and vinyl toluene, vinyl acetate, and macromonomers having an unsaturated double bond at one end and not containing an epoxy group or a carboxyl group. These may be blended alone or in combination of two or more.
α,β-不飽和カルボン酸は、エポキシ基と付加反応できるα,β-不飽和カルボン酸ならば、各種公知のものを特に限定なく使用することができる。具体的には、(メタ)アクリル酸等のα,β-不飽和モノカルボン酸、マレイン酸やフマル酸等のα,β-不飽和ジカルボン酸などが挙げられる。これらはそれぞれを単独で、または2種以上を併用してもよい。これらのうち、反応性や貯蔵安定性の観点から、(メタ)アクリル酸が好ましい。 As the α,β-unsaturated carboxylic acid, various known α,β-unsaturated carboxylic acids can be used without any particular limitation, so long as they are capable of undergoing an addition reaction with an epoxy group. Specific examples include α,β-unsaturated monocarboxylic acids such as (meth)acrylic acid, and α,β-unsaturated dicarboxylic acids such as maleic acid and fumaric acid. These may be used alone or in combination of two or more. Of these, (meth)acrylic acid is preferred from the viewpoints of reactivity and storage stability.
活性エネルギー線硬化性化合物(A)は、さらに少なくとも3つの(メタ)アクリロイル基を有する水酸基含有多官能(メタ)アクリレート(a2)を含むことが好ましい。水酸基含有多官能(メタ)アクリレート(a2)は、1分子中に少なくとも3つの(メタ)アクリロイル基と、少なくとも1つの水酸基を含有する(メタ)アクリレートであり、各種公知のものを特に制限なく使用することができる。具体的には、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等の分子中に1つ以上の水酸基及び3つ以上の(メタ)アクリロイル基を含むポリペンタエリスリトールポリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート等の分子中に1つ以上の水酸基及び3つ以上の(メタ)アクリロイル基を含むポリトリメチロールプロパンポリ(メタ)アクリレート等が挙げられる。これらはそれぞれを単独で、または2種以上を併用して配合してもよい。2種以上使用する場合の各多官能(メタ)アクリレート成分の使用割合は、特に制限されない。市販品としては、例えば、アロニックスM-303、M-305、M-306、M-400、M-402、M-403、M-404、M-405、M-406(全て東亞合成(株)製)、NKエステルA-9530、A-9550、A-9550W、A-9570W、A-TMM-3、A-TMM-3L、A-TMM-3LM-N(全て新中村化学工業(株)製)等が挙げられ、これらはそれぞれを単独で、または二種以上を併用できる。 It is preferable that the active energy ray curable compound (A) further contains a hydroxyl group-containing polyfunctional (meth)acrylate (a2) having at least three (meth)acryloyl groups. The hydroxyl group-containing polyfunctional (meth)acrylate (a2) is a (meth)acrylate containing at least three (meth)acryloyl groups and at least one hydroxyl group in one molecule, and various known ones can be used without particular restrictions. Specific examples include polypentaerythritol poly(meth)acrylates containing one or more hydroxyl groups and three or more (meth)acryloyl groups in the molecule, such as pentaerythritol tri(meth)acrylate and dipentaerythritol penta(meth)acrylate, and polytrimethylolpropane poly(meth)acrylates containing one or more hydroxyl groups and three or more (meth)acryloyl groups in the molecule, such as ditrimethylolpropane tri(meth)acrylate. These may be blended alone or in combination of two or more. When two or more types are used, the proportion of each polyfunctional (meth)acrylate component is not particularly limited. Commercially available products include, for example, Aronix M-303, M-305, M-306, M-400, M-402, M-403, M-404, M-405, and M-406 (all manufactured by Toagosei Co., Ltd.), NK Ester A-9530, A-9550, A-9550W, A-9570W, A-TMM-3, A-TMM-3L, and A-TMM-3LM-N (all manufactured by Shin-Nakamura Chemical Co., Ltd.), and each of these can be used alone or in combination of two or more types.
 水酸基含有多官能(メタ)アクリレート(a2)の水酸基濃度は、特に制限するものではないが、0.8mmol/g以上であることが好ましく、1.6~4.7mmol/gであることがより好ましく、2.0~4.7mmol/gであることがさらに好ましい。 The hydroxyl group concentration of the hydroxyl group-containing polyfunctional (meth)acrylate (a2) is not particularly limited, but is preferably 0.8 mmol/g or more, more preferably 1.6 to 4.7 mmol/g, and even more preferably 2.0 to 4.7 mmol/g.
 活性エネルギー線硬化性化合物(A)は、上記に加え、水酸基を含まないポリ(メタ)アクリレート類を含んでもよい。ポリ(メタ)アクリレート類としては、具体的には、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の分子中に水酸基を含まないポリペンタエリスリトールポリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート等の分子中に水酸基を含まないポリトリメチロールプロパンポリ(メタ)アクリレート等が挙げられる。 In addition to the above, the active energy ray curable compound (A) may contain poly(meth)acrylates that do not contain hydroxyl groups. Specific examples of poly(meth)acrylates include polypentaerythritol poly(meth)acrylates that do not contain hydroxyl groups in the molecule, such as pentaerythritol tetra(meth)acrylate and dipentaerythritol hexa(meth)acrylate, and polytrimethylolpropane poly(meth)acrylates that do not contain hydroxyl groups in the molecule, such as ditrimethylolpropane tetra(meth)acrylate.
 エポキシ(メタ)アクリレート(a1)と水酸基含有多官能(メタ)アクリレート(a2)は、それぞれを単独で、または併用して使用することが出来る。併用する場合、それらの質量比は特に限定されないが、ハードコート性や硬化性の観点から通常1/99~80/20程度、好ましくは5/95~50/50程度となる範囲であればよい。 The epoxy (meth)acrylate (a1) and the hydroxyl group-containing polyfunctional (meth)acrylate (a2) can be used alone or in combination. When used in combination, their mass ratio is not particularly limited, but from the viewpoint of hard coat properties and curing properties, it is usually in the range of about 1/99 to 80/20, preferably about 5/95 to 50/50.
 無機微粒子(B)としては、例えば、シリカ、チタニア、アルミナ、ジルコニア等の無機酸化物、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和珪酸カルシウム、珪酸アルミニウム、珪酸マグネシウム、燐酸カルシウム等が挙げられる。これらの中でも、シリカ系微粒子が好ましい。シリカ系微粒子は、ブロッキング抑制能に優れ、かつ、透明性に優れ、ヘイズを生じず、着色もないので、易接層が光学特性に与える影響がより小さい。 Examples of inorganic fine particles (B) include inorganic oxides such as silica, titania, alumina, and zirconia, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate, and calcium phosphate. Among these, silica-based fine particles are preferred. Silica-based fine particles have excellent blocking suppression ability, excellent transparency, do not cause haze, and are not colored, so that the adhesion layer has a smaller effect on the optical properties.
 シリカ系微粒子としては、各種公知のものを特に制限なく使用することができるが、表面に存在するシラノール基の濃度が特定の範囲の親水性シリカ微粒子であることが好ましい。表面に存在するシラノール基濃度は、60~200μmol/gであることが好ましく、より好ましくは100~200μmol/g、さらに好ましくは120~200μmol/g程度となる範囲であればよい。表面に存在するシラノール基濃度が上記範囲であれば、硬化塗膜は高い親水性を有するため、シクロオレフィン系フィルムとの密着性、他の光学部材との接着性に優れる。ここでいう表面に存在するシラノール基濃度は、メチルレッド吸着法から求めた値である。メチルレッド吸着法は、例えば、The Journal of the American Chemical Society, 72, 776~782 (1950)、工業化学雑誌 第68巻 第3号 429~432(1965)等に記載されている方法である。 Any of the known silica-based microparticles can be used without particular restrictions, but hydrophilic silica microparticles with a specific range of silanol group concentration on the surface are preferred. The silanol group concentration on the surface is preferably in the range of 60 to 200 μmol/g, more preferably 100 to 200 μmol/g, and even more preferably about 120 to 200 μmol/g. If the silanol group concentration on the surface is in the above range, the cured coating film has high hydrophilicity and therefore excellent adhesion to cycloolefin-based films and adhesion to other optical components. The silanol group concentration on the surface referred to here is a value determined by the methyl red adsorption method. The methyl red adsorption method is described, for example, in The Journal of the American Chemical Society, 72, 776-782 (1950) and Industrial Chemistry Journal, Vol. 68, No. 3, 429-432 (1965).
 シリカ微粒子としては、湿式法で製造されるコロイダルシリカや、乾式法で製造されるフュームドシリカなどが挙げられる。コロイダルシリカは、具体的には水を分散媒とした水性コロイド、またはメチルアルコール、エチルアルコール、イソプロピルアルコール、エチレングリコールもしくはプロピレングリコールモノメチルエーテルなどの親水性溶媒にコロイド状に分散させたオルガノゾルの形態であるもの(例えば、オルガノシリカゾル)等が挙げられる。フュームドシリカは、乾式法で作製された非晶質のシリカであり、ケイ素を含む揮発性化合物を気相で反応させることにより得ることができる。具体的には、例えば、四塩化ケイ素(SiCl4)等のケイ素化合物を酸素と水素の炎中で加水分解して生成されたもの等が挙げられる。コロイダルシリカの市販品としては、例えば、スノーテックス、MA-ST-M、MA-ST-L、IPA-ST、IPA-ST-L、IPA-ST-ZL、IPA-ST-UP、PGM-ST(全て日産化学工業(株)製)、クォートロン(扶桑化学工業(株)製)、アエロジル(日本アエロジル(株)製)、シルデックス(旭硝子(株)製)、シリシア470(富士シリシア化学(株)製)等が挙げられる。 Examples of silica microparticles include colloidal silica produced by a wet method and fumed silica produced by a dry method. Specific examples of colloidal silica include aqueous colloids using water as a dispersion medium, and organosols (e.g., organosilica sols) in which colloidal silica is dispersed in a hydrophilic solvent such as methyl alcohol, ethyl alcohol, isopropyl alcohol, ethylene glycol, or propylene glycol monomethyl ether. Fumed silica is amorphous silica produced by a dry method, and can be obtained by reacting a volatile compound containing silicon in the gas phase. Specific examples include those produced by hydrolyzing a silicon compound such as silicon tetrachloride (SiCl4) in a flame of oxygen and hydrogen. Commercially available colloidal silica products include, for example, Snowtex, MA-ST-M, MA-ST-L, IPA-ST, IPA-ST-L, IPA-ST-ZL, IPA-ST-UP, PGM-ST (all manufactured by Nissan Chemical Industries, Ltd.), Quattron (manufactured by Fuso Chemical Industries, Ltd.), Aerosil (manufactured by Nippon Aerosil Co., Ltd.), Sildex (manufactured by Asahi Glass Co., Ltd.), and Silysia 470 (manufactured by Fuji Silysia Chemical Co., Ltd.).
 無機微粒子の平均一次粒子径は、5nm以上100nm以下である。平均一次粒子径は、好ましくは10nm以上75nm以下であり、より好ましくは10nm以上50nm以下であり、さらに好ましくは10nm以上25nm以下である。上記範囲であれば、ロール状に巻き取った際のブロッキング抑制能に優れる。平均一次粒子径は、BET法によって計測されたものである。 The average primary particle diameter of the inorganic fine particles is 5 nm or more and 100 nm or less. The average primary particle diameter is preferably 10 nm or more and 75 nm or less, more preferably 10 nm or more and 50 nm or less, and even more preferably 10 nm or more and 25 nm or less. If it is in the above range, it has excellent blocking suppression ability when wound into a roll. The average primary particle diameter is measured by the BET method.
 活性エネルギー線硬化性組成物における無機微粒子(B)の配合量は、活性エネルギー線硬化性化合物(A)100重量部(固形分換算)に対して30重量部以上80重量部以下である。配合量の下限は、35重量部以上であることが好ましく、40重量部以上であることがより好ましく、45重量部以上であることがさらに好ましい。配合量の上限は、75重量部以下であることが好ましく、70重量部以下であることがより好ましく、65重量部以下であることがさらに好ましい。無機微粒子の配合量が上記範囲であれば、有機溶媒に対する耐溶剤性に優れ、有機溶媒による美装の際や有機溶媒を使用した活性エネルギー線硬化型のコート剤を易接着層上に塗布した際に光学特性の低下を抑制すること、ヘキサン等の炭化水素系溶媒を用いて洗浄した際に端面から微細なクラックが発生することを抑制可能である。この理由は定かではないが、シリカ系微粒子等の無機微粒子は、複数の一次粒子が数珠状に凝集・溶着して一次粒子径よりも粒子径が嵩高い凝集体(二次粒子)を形成し、この凝集体が複数凝集して集隗粒子となって細孔を形成することから、無機微粒子の配合量が増加すると硬化塗膜中の無機微粒子による細孔体積が相対的に増加するため、有機溶媒が細孔に侵入し易くなり、この細孔を通じてシクロオレフィン系フィルムを溶解・膨潤することによるものと推測される。 The amount of inorganic fine particles (B) in the active energy ray curable composition is 30 parts by weight or more and 80 parts by weight or less per 100 parts by weight (solid content equivalent) of the active energy ray curable compound (A). The lower limit of the amount is preferably 35 parts by weight or more, more preferably 40 parts by weight or more, and even more preferably 45 parts by weight or more. The upper limit of the amount is preferably 75 parts by weight or less, more preferably 70 parts by weight or less, and even more preferably 65 parts by weight or less. If the amount of inorganic fine particles is within the above range, it is possible to suppress the deterioration of optical properties during beautification using organic solvents or when an active energy ray curable coating agent using an organic solvent is applied onto the easy-adhesion layer, and to suppress the occurrence of fine cracks from the end face when cleaning with a hydrocarbon solvent such as hexane. The reason for this is unclear, but it is speculated that inorganic fine particles such as silica-based fine particles form aggregates (secondary particles) with a particle size larger than the primary particle size when multiple primary particles aggregate and weld together like beads, and multiple such aggregates aggregate to form large particles that form pores. Therefore, when the amount of inorganic fine particles is increased, the pore volume of the inorganic fine particles in the cured coating film increases relatively, making it easier for organic solvents to penetrate into the pores, and dissolving and swelling the cycloolefin-based film through these pores.
 活性エネルギー線硬化性組成物は、必要に応じて重合開始剤(C)を配合してもよい。重合開始剤(C)は、活性エネルギー線により分解してラジカルを発生して重合を開始させることができるものであれば、各種公知のものを特に限定なく使用することができる。具体的には、例えば、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-シクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、4-メチルベンゾフェノン等が挙げられる。これらは1種を単独で、あるいは2種以上を組合せて用いることができる。 The active energy ray curable composition may contain a polymerization initiator (C) as necessary. As the polymerization initiator (C), any of various known initiators may be used without any particular limitation, so long as they are capable of being decomposed by active energy rays to generate radicals and initiate polymerization. Specific examples include 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-cyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1-{4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]-phenyl}-2-methyl-propan-1-one, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, and 4-methylbenzophenone. These can be used alone or in combination of two or more.
 重合開始剤(C)の市販品としては、Irgacure 651、Irgacure 184、Irgacure 1173、Irgacure 2959、Irgacure 127、Irgacure 907、Irgacure 369、Irgacure 819、Irgacure TPO(全てBASF社製)、Omnirad 651、Omnirad 184、Omnirad 1173、Omnirad 2959、Omnirad 127、Omnirad 907、Omnirad 369、Omnirad 819、Omnirad TPO(全てIGM Resins社製)、Speedcure TPO、Speedcure MBP(全てLambson社製)等が挙げられ、これらはそれぞれを単独で、または二種以上を併用できる。 Commercially available polymerization initiators (C) include Irgacure 651, Irgacure 184, Irgacure 1173, Irgacure 2959, Irgacure 127, Irgacure 907, Irgacure 369, Irgacure 819, Irgacure TPO (all manufactured by BASF), Omnirad 651, Omnirad 184, Om Examples include nirad 1173, Omnirad 2959, Omnirad 127, Omnirad 907, Omnirad 369, Omnirad 819, Omnirad TPO (all manufactured by IGM Resins), Speedcure TPO, Speedcure MBP (all manufactured by Lambson), etc. These can be used alone or in combination of two or more types.
 重合開始剤(C)の配合量は、特に制限するものではないが、例えば、活性エネルギー線硬化性化合物(A)及び無機微粒子(B)の合計100重量部(固形分換算)に対して、0.1重量部以上20重量部以下である。 The amount of the polymerization initiator (C) is not particularly limited, but is, for example, 0.1 parts by weight or more and 20 parts by weight or less per 100 parts by weight (solid content equivalent) of the total of the active energy ray-curable compound (A) and the inorganic fine particles (B).
 活性エネルギー線硬化性組成物は、必要に応じて上記以外の多官能(メタ)アクリレート(D)を配合してもよい。多官能(メタ)アクリレート(D)は、1分子中に(メタ)アクリロイル基を少なくとも2個有する(メタ)アクリレートであれば、各種公知のものを特に限定なく使用することができる。具体的には、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、ε-カプロラクトン変性トリス-(2-(メタ)アクリロキシエチル)イソシアヌレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレートが挙げられる。 The active energy ray curable composition may contain a polyfunctional (meth)acrylate (D) other than those mentioned above, if necessary. As the polyfunctional (meth)acrylate (D), any known polyfunctional (meth)acrylate having at least two (meth)acryloyl groups in one molecule may be used without any particular limitation. Specific examples include pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, glycerin propoxy tri(meth)acrylate, ε-caprolactone modified tris-(2-(meth)acryloxyethyl)isocyanurate, urethane (meth)acrylate, and polyester (meth)acrylate.
 多官能(メタ)アクリレート(D)を配合量は、特に制限するものではないが、例えば、活性エネルギー線硬化性化合物(A)及び無機微粒子(B)の合計100重量部(固形分換算)に対して、5重量部以上95重量部以下である。 The amount of polyfunctional (meth)acrylate (D) to be blended is not particularly limited, but is, for example, 5 parts by weight or more and 95 parts by weight or less per 100 parts by weight (solid content equivalent) of the total of the active energy ray-curable compound (A) and the inorganic fine particles (B).
 活性エネルギー線硬化性組成物は、必要に応じて添加剤を配合してもよい。添加剤としては、酸化防止剤、紫外線吸収剤、光安定剤、消泡剤、表面調整剤、防汚染剤、顔料、帯電防止剤、金属酸化物微粒子分散体が挙げられる。 The active energy ray curable composition may contain additives as necessary. Additives include antioxidants, UV absorbers, light stabilizers, defoamers, surface conditioners, antifouling agents, pigments, antistatic agents, and metal oxide fine particle dispersions.
 硬化塗膜の厚さは、50nmを超え3500nm未満である。下限値は、好ましくは65nmを超え、より好ましくは75nmを超え、さらに好ましくは85nmを超え、特に好ましくは100nmを超える。上限値は、好ましくは3000nm未満であり、より好ましくは2000nm未満であり、さらに好ましくは1000nm未満であり、特に好ましくは500nm以下である。上記範囲であれば、ロール状に巻き取った際の光学フィルム同士のブロッキング抑制能に優れるとともに、有機溶媒に対する耐溶剤性に優れ、有機溶媒による美装の際や、有機溶媒を使用した活性エネルギー線硬化型のコート剤を易接着層上に塗布した際に光学特性が低下すること、ヘキサン等の炭化水素系溶媒を用いて洗浄した際に端面から微細なクラックが発生することを抑制することが可能である。 The thickness of the cured coating film is more than 50 nm and less than 3500 nm. The lower limit is preferably more than 65 nm, more preferably more than 75 nm, even more preferably more than 85 nm, and particularly preferably more than 100 nm. The upper limit is preferably less than 3000 nm, more preferably less than 2000 nm, even more preferably less than 1000 nm, and particularly preferably 500 nm or less. Within the above range, the optical film has excellent blocking suppression ability when wound into a roll, and has excellent solvent resistance to organic solvents, and can suppress the deterioration of optical properties when beautified with organic solvents or when an active energy ray curable coating agent using an organic solvent is applied to the easy-adhesion layer, and the occurrence of fine cracks from the end face when washed with a hydrocarbon solvent such as hexane.
[光学フィルム]
図1に本発明の光学フィルムの一例を示す。図1に示す光学フィルム1は、脂環式構造を有する重合体を主成分として含有する樹脂フィルム2の一方の表面に、活性エネルギー線硬化性化合物(A)と無機微粒子(B)とを含む活性エネルギー線硬化性組成物の硬化塗膜3を有する。樹脂フィルム2及び硬化塗膜3の具体的な構成については上記の通りである。なお、硬化塗膜3は樹脂フィルム2の少なくとも一方の表面に形成されていればよく、樹脂フィルム2の双方の表面に形成されていても良い。
[Optical film]
An example of the optical film of the present invention is shown in Figure 1. The optical film 1 shown in Figure 1 has a cured coating film 3 of an active energy ray curable composition containing an active energy ray curable compound (A) and inorganic fine particles (B) on one surface of a resin film 2 containing a polymer having an alicyclic structure as a main component. The specific configurations of the resin film 2 and the cured coating film 3 are as described above. It is sufficient that the cured coating film 3 is formed on at least one surface of the resin film 2, and it may be formed on both surfaces of the resin film 2.
 光学フィルムは、光学部材としての機能を安定して発揮させる観点から、全光線透過率が、85%以上であることが好ましく、90%以上であることがより好ましい。光線透過率は、JIS K0115に準拠して、分光光度計(日本分光社製、紫外可視近赤外分光光度計「V-570」)を用いて測定することができる。 In order for the optical film to stably perform its functions as an optical component, it is preferable that the total light transmittance is 85% or more, and more preferably 90% or more. The light transmittance can be measured in accordance with JIS K0115 using a spectrophotometer (V-570 ultraviolet-visible-near infrared spectrophotometer manufactured by JASCO Corporation).
 光学フィルムのヘイズは、特に制限するものではないが、好ましくは1.0%以下、より好ましくは0.8%以下、さらに好ましくは0.5%以下である。ヘイズは、JIS K7361-1997に準拠して、日本電色工業社製「濁度計 NDH-300A」を用いて測定することができる。 The haze of the optical film is not particularly limited, but is preferably 1.0% or less, more preferably 0.8% or less, and even more preferably 0.5% or less. Haze can be measured in accordance with JIS K7361-1997 using a turbidity meter NDH-300A manufactured by Nippon Denshoku Industries Co., Ltd.
 光学フィルムの面内レターデーションRe及び厚み方向のレターデーションRthは、光学フィルムの用途に応じて任意に設定することができる。具体的な面内レターデーションReの範囲は、好ましくは1nm以上200nm以下である。また、具体的な厚み方向のレターデーションRthは、好ましくは50nm以上300nm以下である。 The in-plane retardation Re and thickness direction retardation Rth of the optical film can be set arbitrarily depending on the application of the optical film. A specific range of the in-plane retardation Re is preferably 1 nm or more and 200 nm or less. Also, a specific range of the thickness direction retardation Rth is preferably 50 nm or more and 300 nm or less.
 光学フィルムの総厚みは、好ましくは5μm以上、より好ましくは8μm以上、さらに好ましくは10μm以上であり、好ましくは200μm以下、より好ましくは100μm以下、特に好ましくは70μm以下である。光学フィルムの総厚みを下限値以上にすることにより、光学フィルムの機械的強度を高くできる。また、上限値以下にすることにより、光学フィルム全体の厚みを薄くできる。 The total thickness of the optical film is preferably 5 μm or more, more preferably 8 μm or more, even more preferably 10 μm or more, and is preferably 200 μm or less, more preferably 100 μm or less, and particularly preferably 70 μm or less. By making the total thickness of the optical film equal to or greater than the lower limit, the mechanical strength of the optical film can be increased. Also, by making it equal to or less than the upper limit, the overall thickness of the optical film can be reduced.
 本発明の光学フィルムは、例えば、偏光子保護フィルム、位相差フィルム、視野角補償フィルム、光拡散フィルム、反射フィルム、反射防止フィルム、防眩フィルム、輝度向上フィルム、タッチパネル用導電フィルムである。本発明の光学フィルムは、光学的に等方なフィルムであっても良く、光学的に異方性を有する(例えば、位相差のような複屈折を発現する)フィルムであっても良い。 The optical film of the present invention is, for example, a polarizer protection film, a phase difference film, a viewing angle compensation film, a light diffusion film, a reflection film, an anti-reflection film, an anti-glare film, a brightness enhancement film, or a conductive film for a touch panel. The optical film of the present invention may be an optically isotropic film, or may be an optically anisotropic film (for example, a film that exhibits birefringence such as phase difference).
[光学フィルムの製造方法]
 本発明の光学フィルムの製造方法は、活性エネルギー線硬化性化合物(A)と無機微粒子(B)と必要に応じて溶媒とを含む活性エネルギー線硬化性組成物の塗布液を、脂環式構造を有する重合体を主成分として含有する樹脂フィルムの少なくとも一方の表面に塗布して塗布膜を形成する工程と、塗膜に活性エネルギー線を照射して硬化塗膜を形成する工程とを有するものである。
[Method of manufacturing optical film]
The method for producing an optical film of the present invention includes a step of forming a coating film by applying a coating liquid of an active energy ray-curable composition containing an active energy ray-curable compound (A), inorganic fine particles (B), and optionally a solvent, to at least one surface of a resin film containing a polymer having an alicyclic structure as a main component, and a step of irradiating the coating film with active energy rays to form a cured coating film.
(塗布工程)
 上記塗布工程は、活性エネルギー線硬化性組成物の塗布液を、脂環式構造を有する重合体を主成分として含有する樹脂フィルムに塗布する工程である。塗布工程における塗布方法としては、任意の適切な方法を採用することができ、例えば、バーコート法、ディップ法、スプレー法、スピンコート法、ロールコート法、グラビアコート法、エアーナイフコート法、カーテンコート法、スライドコート法、エクストルージョンコート法などが挙げられる。塗布工程において形成する塗布膜の厚さは、当該塗布膜が硬化塗膜となったときに必要な厚さに応じて、適宜調整することができる。
(Coating process)
The coating step is a step of coating a coating solution of an active energy ray curable composition onto a resin film containing a polymer having an alicyclic structure as a main component. Any suitable method can be adopted as the coating method in the coating step, and examples thereof include a bar coating method, a dip method, a spray method, a spin coating method, a roll coating method, a gravure coating method, an air knife coating method, a curtain coating method, a slide coating method, and an extrusion coating method. The thickness of the coating film formed in the coating step can be appropriately adjusted according to the thickness required when the coating film becomes a cured coating film.
 活性エネルギー線硬化性組成物は、必要に応じて溶媒で希釈されていてもよく、溶媒としては、各種公知のものを特に制限なく使用することができるが、例えば、水、ジブチルエーテル、ジメトキシメタン、ジメトキシエタン、ジエトキシエタン、プロピレンオキシド、1,4-ジオキサン、1,3-ジオキソラン、1,3,5-トリオキサン、テトラヒドロフラン、アセトン、メチルエチルケトン(MEK)、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、シクロペンタノン(CPN)、シクロヘキサノン(CHN)、メチルシクロヘキサノン、蟻酸エチル、蟻酸プロピル、蟻酸n-ペンチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酢酸n-ペンチル、アセチルアセトン、ジアセトンアルコール、アセト酢酸メチル、アセト酢酸エチル、トルエン、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、1-ペンタノール、2-メチル-2-ブタノール、シクロヘキサノール、イソプロピルアルコール(IPA)、酢酸イソブチル、メチルイソブチルケトン(MIBK)、2-オクタノン、2-ペンタノン、2-ヘキサノン、2-ヘプタノン、3-ヘプタノン、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル等が挙げられる。これらは単独、或いは2種以上を組み合わせて用いることができる。 The active energy ray curable composition may be diluted with a solvent as necessary. As the solvent, various known solvents can be used without particular limitation, for example, water, dibutyl ether, dimethoxymethane, dimethoxyethane, diethoxyethane, propylene oxide, 1,4-dioxane, 1,3-dioxolane, 1,3,5-trioxane, tetrahydrofuran, acetone, methyl ethyl ketone (MEK), diethyl ketone, dipropyl ketone, diisobutyl ketone, cyclopentanone (CPN), cyclohexanone (CHN), methylcyclohexanone, ethyl formate, propyl formate, n-pentyl formate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, n-pentyl acetate, acetylacetone, di Examples of the solvent include acetone alcohol, methyl acetoacetate, ethyl acetoacetate, toluene, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1-pentanol, 2-methyl-2-butanol, cyclohexanol, isopropyl alcohol (IPA), isobutyl acetate, methyl isobutyl ketone (MIBK), 2-octanone, 2-pentanone, 2-hexanone, 2-heptanone, 3-heptanone, ethylene glycol monoethyl ether acetate, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, and propylene glycol monomethyl ether. These can be used alone or in combination of two or more.
 樹脂フィルムの表面には、樹脂フィルムと硬化塗膜との密着性を向上させるために、表面改質処理を施してもよい。表面改質処理としては、例えば、エネルギー線照射処理及び薬品処理等が挙げられる。エネルギー線照射処理としては、例えば、コロナ放電処理、プラズマ処理、電子線照射処理、紫外線照射処理等が挙げられ、処理効率の点等から、コロナ放電処理及びプラズマ処理が好ましく、コロナ放電処理が特に好ましい。また、薬品処理としては、例えば、ケン化処理、並びに、重クロム酸カリウム溶液及び濃硫酸等の酸化剤水溶液中にフィルムを浸漬し、その後、水で洗浄する処理、などが挙げられる。 The surface of the resin film may be subjected to a surface modification treatment in order to improve the adhesion between the resin film and the cured coating film. Examples of surface modification treatments include energy ray irradiation treatment and chemical treatment. Examples of energy ray irradiation treatments include corona discharge treatment, plasma treatment, electron beam irradiation treatment, and ultraviolet ray irradiation treatment. From the viewpoint of treatment efficiency, corona discharge treatment and plasma treatment are preferred, and corona discharge treatment is particularly preferred. Examples of chemical treatments include saponification treatment, and a treatment in which the film is immersed in an aqueous solution of an oxidizing agent such as a potassium dichromate solution or concentrated sulfuric acid, followed by washing with water.
(乾燥工程)
 上記塗布工程の後、必要に応じて塗布膜を乾燥する乾燥工程を有していてもよい。乾燥工程は、特に制限するものではなく、従来公知の方法を用いることができる。乾燥温度としては、代表的には60℃以上、好ましくは80℃以上、さらに好ましくは100℃以上である。乾燥温度の上限は、好ましくは200℃以下、さらに好ましくは180℃以下である。
(Drying process)
After the coating step, a drying step of drying the coating film may be included as necessary. The drying step is not particularly limited, and a conventionally known method can be used. The drying temperature is typically 60° C. or higher, preferably 80° C. or higher, and more preferably 100° C. or higher. The upper limit of the drying temperature is preferably 200° C. or lower, and more preferably 180° C. or lower.
(硬化工程)
 上記硬化工程は、塗布膜に紫外線、電子線等の活性エネルギー線を照射して活性エネルギー線硬化性組成物の塗布膜を硬化させる工程である。活性エネルギー線としては、紫外線が好ましく、紫外線照射においては、400nm以下の波長を含む光であれば特に制限するものではないが、例えば、超高圧水銀灯、高圧水銀灯、中圧水銀灯、低圧水銀灯、キセノンランプ、ハロゲンランプ、メタルハライドランプ等を用いることができる。照射条件としては、紫外線照射量は、通常、100~800mJ/cmが好ましい。
(Curing process)
The curing step is a step of curing the coating film of the active energy ray curable composition by irradiating the coating film with active energy rays such as ultraviolet rays and electron beams. As the active energy rays, ultraviolet rays are preferred, and the ultraviolet irradiation is not particularly limited as long as it is light having a wavelength of 400 nm or less, but for example, an ultra-high pressure mercury lamp, a high pressure mercury lamp, a medium pressure mercury lamp, a low pressure mercury lamp, a xenon lamp, a halogen lamp, a metal halide lamp, etc. can be used. As the irradiation conditions, the ultraviolet irradiation amount is usually preferably 100 to 800 mJ/ cm2 .
[偏光板]
 次に、本発明の光学部材の一例として、偏光板を説明する。図2は本発明の光学部材の一例である偏光板を示す。図2に示す偏光板10は、脂環式構造を有する重合体を主成分として含有する樹脂フィルム2の一方の表面に活性エネルギー線硬化性組成物からなる硬化塗膜3を有する光学フィルム4の硬化塗膜側の表面に接着剤5を介し、偏光子6が積層された構造を有する。なお、図示しないが、偏光板は、偏光子の光学フィルムと反対側に、接着剤層を介して積層された他の偏光子保護フィルムや位相差フィルム等を有していても良い。
[Polarizer]
Next, a polarizing plate will be described as an example of the optical member of the present invention. Fig. 2 shows a polarizing plate as an example of the optical member of the present invention. The polarizing plate 10 shown in Fig. 2 has a structure in which a polarizer 6 is laminated via an adhesive 5 on the surface of the cured coating film side of an optical film 4 having a cured coating film 3 made of an active energy ray curable composition on one surface of a resin film 2 containing a polymer having an alicyclic structure as a main component. Although not shown, the polarizing plate may have another polarizer protective film, a retardation film, etc. laminated via an adhesive layer on the opposite side of the polarizer to the optical film.
偏光子としては、目的に応じて任意の適切な偏光子を採用することができる。例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン-酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。これらの中でも、ポリビニルアルコール系フィルムにヨウ素などの二色性物質を吸着させて一軸延伸した偏光子が、偏光二色比が高く特に好ましい。これら偏光子の厚さは特に制限されないが、一般的に、1~80μm程度である。接着剤層を形成する接着剤としては、任意の適切な接着剤を採用することができ、例えば、ポリビニルアルコール系樹脂を含む接着剤組成物、アクリル系樹脂を含む粘着剤組成物、アクリル系樹脂を含む紫外線硬化型接着剤組成物が挙げられる。 As the polarizer, any suitable polarizer can be adopted depending on the purpose. For example, a hydrophilic polymer film such as a polyvinyl alcohol film, a partially formalized polyvinyl alcohol film, or an ethylene-vinyl acetate copolymer partially saponified film is uniaxially stretched after adsorbing a dichroic substance such as iodine or a dichroic dye, or a polyene-based oriented film such as a dehydrated polyvinyl alcohol or a dehydrochlorinated polyvinyl chloride. Among these, a polarizer obtained by adsorbing a dichroic substance such as iodine to a polyvinyl alcohol film and uniaxially stretching the film is particularly preferred because it has a high polarization dichroic ratio. The thickness of these polarizers is not particularly limited, but is generally about 1 to 80 μm. As the adhesive for forming the adhesive layer, any suitable adhesive can be adopted, and examples thereof include an adhesive composition containing a polyvinyl alcohol resin, a pressure-sensitive adhesive composition containing an acrylic resin, and an ultraviolet-curable adhesive composition containing an acrylic resin.
 以下、実施例により、本発明をさらに詳細に説明する。なお、本発明は、以下の実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples. Note that the present invention is not limited to the following examples.
(実施例1)
 シクロオレフィン系フィルム(Tg:135℃、厚み:37μm、延伸倍率:縦1.45倍)の一方の表面に、活性エネルギー線硬化性化合物としてエポキシ(メタ)アクリレートを含み、活性エネルギー線硬化性化合物100重量部に対して平均一次粒子径が5~100nmのシリカ系微粒子を65重量部含む活性エネルギー線硬化性組成物(1)[荒川化学工業株式会社製「BS CH271」]の塗布液を、バーコーターを用いて塗布した後、熱風乾燥機に投入して80℃で60秒間乾燥した。次いで、乾燥後の塗布膜に高圧水銀ランプにて積算光量が500mJ/cmとなるよう紫外線を照射して塗布膜を硬化させ、厚さ100nmの硬化塗膜を有する光学フィルムを得た。
Example 1
A coating solution of an active energy ray curable composition (1) ["BS CH271" manufactured by Arakawa Chemical Industries, Ltd.] containing epoxy (meth)acrylate as an active energy ray curable compound and containing 65 parts by weight of silica-based fine particles having an average primary particle diameter of 5 to 100 nm per 100 parts by weight of the active energy ray curable compound was applied to one surface of a cycloolefin film (Tg: 135°C, thickness: 37 μm, stretch ratio: vertical 1.45 times) using a bar coater, and then placed in a hot air dryer and dried at 80°C for 60 seconds. Next, the coating film after drying was irradiated with ultraviolet light from a high pressure mercury lamp so that the accumulated light amount was 500 mJ/ cm2 to cure the coating film, and an optical film having a cured coating film with a thickness of 100 nm was obtained.
(実施例2乃至4、比較例1及び2)
 硬化塗膜の厚さを表1に記載のように変更した以外、実施例1と同様の条件で光学フィルムを作製した。
(Examples 2 to 4, Comparative Examples 1 and 2)
Optical films were produced under the same conditions as in Example 1, except that the thickness of the cured coating film was changed as shown in Table 1.
(実施例5乃至7、比較例3)
 活性エネルギー線硬化性化合物としてエポキシ(メタ)アクリレートを含み、活性エネルギー線硬化性化合物100重量部に対して平均一次粒子径が5~100nmのシリカ系微粒子を45重量部含む活性エネルギー線硬化性組成物(2)とし、硬化塗膜の厚さを表1に記載のように変更した以外、実施例1と同様の条件で光学フィルムを得た。
(Examples 5 to 7, Comparative Example 3)
An optical film was obtained under the same conditions as in Example 1, except that an active energy ray-curable composition (2) containing an epoxy (meth)acrylate as an active energy ray-curable compound and containing 45 parts by weight of silica-based fine particles having an average primary particle diameter of 5 to 100 nm per 100 parts by weight of the active energy ray-curable compound was used, and the thickness of the cured coating film was changed as shown in Table 1.
(比較例4乃至6)
活性エネルギー線硬化性化合物としてエポキシ(メタ)アクリレートを含み、活性エネルギー線硬化性化合物100重量部に対して平均一次粒子径が5~100nmのシリカ系微粒子を85重量部含む活性エネルギー線硬化性組成物(3)とし、硬化塗膜の厚さを表1に記載のように変更した以外、実施例1と同様の条件で光学フィルムを得た。
(Comparative Examples 4 to 6)
An optical film was obtained under the same conditions as in Example 1, except that an active energy ray-curable composition (3) containing an epoxy (meth)acrylate as an active energy ray-curable compound and containing 85 parts by weight of silica-based fine particles having an average primary particle diameter of 5 to 100 nm per 100 parts by weight of the active energy ray-curable compound was used, and the thickness of the cured coating film was changed as shown in Table 1.
(比較例7)
活性エネルギー線硬化性化合物としてウレタン(メタ)アクリレートを含み、シリカ系微粒子を含む活性エネルギー線硬化性組成物(4)[アイカ工業株式会社製「Z-773」]とし、硬化塗膜の厚さを表1に記載のように変更した以外、実施例1と同様の条件で光学フィルムを得た。
(Comparative Example 7)
An optical film was obtained under the same conditions as in Example 1, except that an active energy ray-curable composition (4) ["Z-773" manufactured by AICA Kogyo Co., Ltd.] containing urethane (meth)acrylate and silica-based fine particles was used as the active energy ray-curable compound, and the thickness of the cured coating film was changed as shown in Table 1.
(比較例8)
活性エネルギー線硬化性化合物としてエリスリトール(メタ)アクリレートを含み、活性エネルギー線硬化性化合物100重量部に対してシリカ系微粒子を10~20重量部含む活性エネルギー線硬化性組成物(5)[日本ペイントオートモーティブ株式会社製「UT-1121」]とし、硬化塗膜の厚さを表1に記載のように変更した以外、実施例1と同様の条件で光学フィルムを得た。
(Comparative Example 8)
An optical film was obtained under the same conditions as in Example 1, except that an active energy ray curable composition (5) ["UT-1121" manufactured by Nippon Paint Automotive Co., Ltd.] containing erythritol (meth)acrylate as an active energy ray curable compound and containing 10 to 20 parts by weight of silica-based fine particles per 100 parts by weight of the active energy ray curable compound was used, and the thickness of the cured coating film was changed as shown in Table 1.
(比較例9)
 水分散性ウレタン樹脂のエマルジョン(ポリエステル系ポリウレタン、第一工業製薬株式会社製「スーパーフレックス(登録商標)210」)を用い、ポリエステル系ポリウレタンの固形分量100重量部に対し、シリカ系微粒子を30重量部含む塗布液とし、乾燥後の塗布膜の厚さを表1に記載のように変更した以外、実施例1と同様の条件で光学フィルムを作製した。
(Comparative Example 9)
An optical film was produced under the same conditions as in Example 1, except that an emulsion of a water-dispersible urethane resin (polyester-based polyurethane, "Superflex (registered trademark) 210" manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) was used, a coating liquid containing 30 parts by weight of silica-based fine particles per 100 parts by weight of the solid content of the polyester-based polyurethane was used, and the thickness of the coating film after drying was changed as shown in Table 1.
 実施例及び比較例で得られた光学フィルムについて、以下の評価を行った。評価結果を表1に示す。
[密着性]
 JIS K5400のクロスカット法に従い、碁盤目剥離試験治具を用い1mm2のクロスカットマスを100個作製し、ニチバン株式会社製粘着テープ(CT405AP-18)を、その上に貼り付け、ヘラ等を用いて均一に押し付けた後、90度方向に剥離し、硬化塗膜の残存率(残存個数/100)を評価した。評価基準は下記の通りである。
○:クロスカットマスの残存率が、100%
×:クロスカットマスの残存率が、100%未満
[耐ブロッキング性]
硬化塗膜形成後の光学フィルムを、23℃、相対湿度50%の条件で1時間保持した後、5cm×5cmのサイズに2枚裁断した。2枚のフィルムを一方のフィルムの硬化塗膜が他方のフィルムのシクロオレフィン系フィルム表面と接触するように重ね合わせ、これらを重ね合わせた状態で静置し、一方のフィルムを手で押付けながら横方向に滑らせて光学フィルムの耐ブロッキング性を評価した。評価基準は以下の通りである。
○:横方向に力を加えることで容易に滑る
△:横方向に強く力を加えることで滑る
×:横方向に強く力を加えても滑らない
[耐溶剤性]
 光学フィルムの硬化塗膜上に有機溶媒(アセトン、酢酸エチル、MIBK、CHN)をスポイトで数滴滴下して1分間保持した後、ウエスで有機溶媒を拭き取り、有機溶媒を滴下した箇所のフィルム外観を評価した。外観に変化がないものは耐溶剤性があると判断した。
The optical films obtained in the examples and comparative examples were evaluated as follows. The evaluation results are shown in Table 1.
[Adhesion]
According to the cross-cut method of JIS K5400, 100 cross-cut masses of 1 mm2 were prepared using a checkerboard peel test jig, and adhesive tape (CT405AP-18) manufactured by Nichiban Co., Ltd. was attached onto the masses, which were then pressed evenly with a spatula or the like, and peeled off at a 90 degree angle to evaluate the remaining rate of the cured coating (number of remaining masses/100). The evaluation criteria were as follows:
○: Residual rate of cross-cut mass is 100%
×: Residual rate of cross-cut mass is less than 100% [blocking resistance]
The optical film after the formation of the cured coating film was held for 1 hour under conditions of 23°C and 50% relative humidity, and then cut into two pieces with a size of 5 cm x 5 cm. The two films were overlapped so that the cured coating film of one film was in contact with the cycloolefin-based film surface of the other film, and the overlapped state was left to stand, and one of the films was pressed by hand and slid laterally to evaluate the blocking resistance of the optical film. The evaluation criteria are as follows.
○: Easily slips when force is applied in the lateral direction. △: Slips when strong force is applied in the lateral direction. ×: Does not slip even when strong force is applied in the lateral direction. [Solvent resistance]
A few drops of an organic solvent (acetone, ethyl acetate, MIBK, CHN) were dropped onto the cured coating of the optical film using a dropper and held for 1 minute, after which the organic solvent was wiped off with a rag and the appearance of the film at the point where the organic solvent was dropped was evaluated. Films that showed no change in appearance were judged to have solvent resistance.
また、参考例として硬化塗膜が形成されていない未延伸のシクロオレフィン系フィルム、硬化塗膜が形成されていない延伸倍率が縦方向に1.45倍の延伸シクロオレフィン系フィルム、硬化塗膜が形成されていない延伸倍率が横方向に4.9倍の延伸シクロオレフィン系フィルムについても耐ブロッキング性、耐溶剤性を評価した。 As reference examples, the blocking resistance and solvent resistance were also evaluated for an unstretched cycloolefin film with no cured coating formed, a stretched cycloolefin film with no cured coating formed and stretched by 1.45 times in the longitudinal direction, and a stretched cycloolefin film with no cured coating formed and stretched by 4.9 times in the transverse direction.
 表1に示すように、活性エネルギー線硬化性化合物としてエポキシ(メタ)アクリレートを含み、活性エネルギー線硬化性化合物の100重量部に対して無機微粒子が30重量部以上80重量部以下の範囲にあり、硬化塗膜の厚さが50nmを超え3500nm未満の範囲にある実施例1乃至7の光学フィルムは、シクロオレフィン系フィルムと硬化塗膜との密着性、耐ブロッキング性に優れるとともに、有機溶媒に対する耐溶剤性にも優れる結果を示した。 As shown in Table 1, the optical films of Examples 1 to 7, which contain epoxy (meth)acrylate as an active energy ray curable compound, have inorganic fine particles in the range of 30 parts by weight to 80 parts by weight per 100 parts by weight of the active energy ray curable compound, and have a cured coating thickness in the range of more than 50 nm and less than 3500 nm, showed excellent adhesion between the cycloolefin film and the cured coating, excellent blocking resistance, and excellent solvent resistance to organic solvents.
 一方、表1に示すように、活性エネルギー線硬化性化合物としてエポキシ(メタ)アクリレートを含み、活性エネルギー線硬化性化合物の100重量部に対して無機微粒子が30重量部以上80重量部以下の範囲にあり、硬化塗膜の厚さが50nmの比較例1及び3の光学フィルムは、耐溶剤性に劣る結果を示した。活性エネルギー線硬化性化合物としてエポキシ(メタ)アクリレートを含み、活性エネルギー線硬化性化合物の100重量部に対して無機微粒子が30重量部以上80重量部以下の範囲にあり、硬化塗膜の厚さが3500nmの比較例2の光学フィルムは、耐ブロッキング性に劣る結果を示した。さらに、活性エネルギー線硬化性化合物としてエポキシ(メタ)アクリレートを含み、活性エネルギー線硬化性化合物の100重量部に対して無機微粒子が80重量部超の範囲にある比較例4乃至6の光学フィルムは、硬化塗膜の厚さに関係なく、耐溶剤性に劣る結果を示した。 On the other hand, as shown in Table 1, the optical films of Comparative Examples 1 and 3, which contain epoxy (meth)acrylate as the active energy ray curable compound, have inorganic fine particles in the range of 30 parts by weight to 80 parts by weight to 100 parts by weight of the active energy ray curable compound, and have a cured coating thickness of 50 nm, showed poor solvent resistance. The optical film of Comparative Example 2, which contains epoxy (meth)acrylate as the active energy ray curable compound, has inorganic fine particles in the range of 30 parts by weight to 80 parts by weight to 100 parts by weight of the active energy ray curable compound, and has a cured coating thickness of 3500 nm, showed poor blocking resistance. Furthermore, the optical films of Comparative Examples 4 to 6, which contain epoxy (meth)acrylate as the active energy ray curable compound, and have inorganic fine particles in the range of more than 80 parts by weight to 100 parts by weight of the active energy ray curable compound, showed poor solvent resistance regardless of the thickness of the cured coating.
また、活性エネルギー線硬化性化合物としてウレタン(メタ)アクリレート、エリスリトール(メタ)アクリレートを含む比較例7及び8の光学フィルムは、いずれも耐溶剤性に劣る結果を示すとともに、活性エネルギー線硬化性の代わりにポリエステルポリウレタンを含む比較例9の光学フィルムについても、耐溶剤性に劣る結果を示した。 In addition, the optical films of Comparative Examples 7 and 8, which contain urethane (meth)acrylate and erythritol (meth)acrylate as active energy ray curable compounds, both showed poor solvent resistance, and the optical film of Comparative Example 9, which contains polyester polyurethane instead of active energy ray curable compounds, also showed poor solvent resistance.
 なお、硬化塗膜が形成されていない未延伸のシクロオレフィン系フィルムは、耐ブロッキング性、耐溶剤性のいずれも劣る結果を示した。硬化塗膜が形成されていない延伸倍率が縦方向に1.45倍の延伸シクロオレフィン系フィルム、硬化塗膜が形成されていない延伸倍率が横方向に4.9倍の延伸シクロオレフィン系フィルムは、未延伸のシクロオレフィン系フィルムに比べ、耐溶剤性に劣る結果を示した。このことからもわかるように、本発明の光学フィルムが延伸処理を施された樹脂フィルムを備えることは、解決が困難であった従来の課題を有効に解決できる態様であり、本発明の効果を有効に活用できることから好ましい。 In addition, unstretched cycloolefin-based films on which no cured coating film is formed showed poor results in both blocking resistance and solvent resistance. Stretched cycloolefin-based films on which no cured coating film is formed and stretched by a factor of 1.45 in the longitudinal direction, and stretched cycloolefin-based films on which no cured coating film is formed and stretched by a factor of 4.9 in the transverse direction showed poorer solvent resistance than unstretched cycloolefin-based films. As can be seen from this, the inclusion of a resin film that has been subjected to a stretching process in the optical film of the present invention is an embodiment that can effectively solve problems that have been difficult to solve in the past, and is preferable because it allows the effects of the present invention to be effectively utilized.
 次に、ヘキサンを用いた耐溶剤性試験により、端部クラックの発生状況を評価した。 Next, a solvent resistance test using hexane was conducted to evaluate the occurrence of edge cracks.
(実施例8)
シクロオレフィン系フィルム(Tg:135℃、厚み:37μm、延伸倍率:縦1.45倍)の一方の表面に、活性エネルギー線硬化性化合物としてエポキシ(メタ)アクリレートを含み、活性エネルギー線硬化性化合物100重量部に対して平均一次粒子径が5~100nmのシリカ系微粒子を65重量部含む活性エネルギー線硬化性組成物(1)[荒川化学工業株式会社製「BS CH271」]の塗布液を、バーコーターを用いて塗布した後、熱風乾燥機に投入して80℃で60秒間乾燥した。次いで、乾燥後の塗布膜に高圧水銀ランプにて積算光量が500mJ/cmとなるよう紫外線を照射して塗布膜を硬化させ、厚さ350nmの硬化塗膜を有する光学フィルムを得た。
(Example 8)
A coating solution of an active energy ray curable composition (1) ["BS CH271" manufactured by Arakawa Chemical Industries, Ltd.] containing epoxy (meth)acrylate as an active energy ray curable compound and containing 65 parts by weight of silica-based fine particles having an average primary particle diameter of 5 to 100 nm per 100 parts by weight of the active energy ray curable compound was applied to one surface of a cycloolefin film (Tg: 135°C, thickness: 37 μm, stretch ratio: vertical 1.45 times) using a bar coater, and then placed in a hot air dryer and dried at 80°C for 60 seconds. Next, the coating film after drying was irradiated with ultraviolet light from a high pressure mercury lamp so that the accumulated light amount was 500 mJ/ cm2 to cure the coating film, and an optical film having a cured coating film with a thickness of 350 nm was obtained.
(実施例9)
シクロオレフィン系フィルムの両面に硬化塗膜を形成した以外、実施例8と同様の条件で光学フィルムを作製した。
Example 9
An optical film was produced under the same conditions as in Example 8, except that a cured coating film was formed on both sides of the cycloolefin film.
(実施例10)
硬化塗膜の厚さを表2に記載のように変更した以外、実施例8と同様の条件で光学フィルムを作製した。
Example 10
Optical films were produced under the same conditions as in Example 8, except that the thickness of the cured coating film was changed as shown in Table 2.
(実施例11)
 シクロオレフィン系フィルムの両面に硬化塗膜を形成し、硬化塗膜の厚さを表2に記載のように変更した以外、実施例8と同様の条件で光学フィルムを作製した。
(Example 11)
Cured coating films were formed on both sides of a cycloolefin film, and optical films were produced under the same conditions as in Example 8, except that the thickness of the cured coating film was changed as shown in Table 2.
 実施例8乃至11で得られた光学フィルム、参考例2のシクロオレフィン系フィルムについて、以下の評価を行った。評価結果を表2に示す。
[耐溶剤性(端部クラック)]
 光学フィルムの両面に粘着層付きのポリエチレンテレフタレート系プロテクトフィルム(藤森工業株式会社社製、NBO-0424、厚み38μm)を貼り合わせた後、50mm×50mmのサイズにカットし、試料を作製した。次いで、この試料を95℃で10分間加熱した直後にヘキサン溶媒中に3分間浸漬させ、該試料に発生した端部クラックを目視にて評価した。評価基準は以下の通りである。
 ◎:端部クラックの発生がない
 〇:端部クラックの発生数が1本以上10本以下
 △:端部クラックの発生数が11本以上30本以下
 ×:端部クラックの発生数が31本以上
The following evaluations were carried out on the optical films obtained in Examples 8 to 11 and the cycloolefin-based film of Reference Example 2. The evaluation results are shown in Table 2.
[Solvent resistance (edge cracks)]
A polyethylene terephthalate-based protective film with an adhesive layer (manufactured by Fujimori Kogyo Co., Ltd., NBO-0424, thickness 38 μm) was attached to both sides of the optical film, and then cut to a size of 50 mm x 50 mm to prepare a sample. Next, this sample was heated at 95°C for 10 minutes and immediately immersed in a hexane solvent for 3 minutes, and edge cracks generated in the sample were visually evaluated. The evaluation criteria are as follows.
◎: No edge cracks occurred. ◯: The number of edge cracks occurred was 1 to 10. △: The number of edge cracks occurred was 11 to 30. ×: The number of edge cracks occurred was 31 or more.
 表2に示すように、参考例2の表面に硬化塗膜を有さないシクロオレフィン系フィルムは、ヘキサン浸漬後にカット端面からシクロオレフィン系フィルムの延伸方向と略平行に微細なクラックが多数発生した。この現象は、シクロオレフィン系フィルムの延伸方向の収縮応力と、シクロオレフィン系フィルムに積層されたプロテクトフィルム等の引張応力とが直交する方向に発生するため、端面からヘキサンが浸透することでソルベントクラックが発生し、ソルベントクラックを起点として引張応力により端部クラックが発生するものと推測される。一方、表2に示すように、実施例8乃至11の硬化塗膜を有するシクロオレフィン系フィルムは、ヘキサン浸漬後にカット端面からのクラックが抑制される結果を示した。これは、有機溶媒に対する耐溶剤性に優れるとともに、シクロオレフィン系フィルムとの密着性に優れ、拘束力に優れる硬化塗膜を設けることにより、シクロオレフィン系フィルムの膨潤・溶解によるソルベントクラックを抑え、シクロオレフィン系フィルムの収縮応力を拘束することで端面からのクラックの発生を抑制するものと推測される。 As shown in Table 2, the cycloolefin film of Reference Example 2 that does not have a cured coating on its surface had many fine cracks generated from the cut edge surface after immersion in hexane, approximately parallel to the stretching direction of the cycloolefin film. This phenomenon occurs because the shrinkage stress in the stretching direction of the cycloolefin film and the tensile stress of the protective film laminated to the cycloolefin film are perpendicular to each other, so it is presumed that solvent cracks are generated by the penetration of hexane from the edge surface, and edge cracks are generated by the tensile stress starting from the solvent cracks. On the other hand, as shown in Table 2, the cycloolefin films of Examples 8 to 11 that have a cured coating showed results that suppressed cracks from the cut edge surface after immersion in hexane. This is presumed to be because the cured coating has excellent solvent resistance to organic solvents, excellent adhesion to the cycloolefin film, and excellent restraining force, thereby suppressing solvent cracks caused by swelling and dissolution of the cycloolefin film, and restraining the shrinkage stress of the cycloolefin film, thereby suppressing the occurrence of cracks from the edge surface.
1:光学フィルム
2:樹脂フィルム
3:硬化塗膜
4:光学フィルム
5:接着剤層
6:偏光子
10:偏光板

 
1: Optical film 2: Resin film 3: Cured coating film 4: Optical film 5: Adhesive layer 6: Polarizer 10: Polarizing plate

Claims (6)

  1.  脂環式構造を有する重合体を主成分として含有する樹脂フィルムの表面に、活性エネルギー線硬化性組成物の硬化塗膜を有する光学フィルムであって、
    前記活性エネルギー線硬化性組成物は、活性エネルギー線硬化性化合物(A)と平均一次粒子径が5nm以上100nm以下の無機微粒子(B)とを含有し、
    前記活性エネルギー線硬化性化合物(A)は、エポキシ(メタ)アクリレート(a1)を含み、
    前記無機微粒子(B)は、前記活性エネルギー線硬化性化合物(A)100重量部に対して30重量部以上80重量部以下の範囲にあり、
    前記硬化塗膜の厚さは、50nmを超え3500nm未満であることを特徴とする光学フィルム。
    An optical film having a cured coating film of an active energy ray-curable composition on a surface of a resin film containing a polymer having an alicyclic structure as a main component,
    The active energy ray-curable composition contains an active energy ray-curable compound (A) and inorganic fine particles (B) having an average primary particle diameter of 5 nm or more and 100 nm or less,
    The active energy ray-curable compound (A) contains an epoxy (meth)acrylate (a1),
    the inorganic fine particles (B) are in the range of 30 parts by weight or more and 80 parts by weight or less based on 100 parts by weight of the active energy ray-curable compound (A);
    The optical film has a thickness of more than 50 nm and less than 3,500 nm.
  2.  前記エポキシ(メタ)アクリレート(a1)は、分子内に複数の(メタ)アクリロイル基と水酸基とを含有することを特徴とする請求項1に記載の光学フィルム。 The optical film according to claim 1, characterized in that the epoxy (meth)acrylate (a1) contains multiple (meth)acryloyl groups and hydroxyl groups in the molecule.
  3.  前記エポキシ(メタ)アクリレート(a1)は、エポキシ基含有モノ(メタ)アクリレートを含むモノマー成分のラジカル重合体及びα,β-不飽和カルボン酸の反応物である水酸基含有(メタ)アクリル共重合体であることを特徴とする請求項1に記載の光学フィルム。 The optical film described in claim 1, characterized in that the epoxy (meth)acrylate (a1) is a hydroxyl group-containing (meth)acrylic copolymer that is a reaction product of a radical polymer of a monomer component containing an epoxy group-containing mono(meth)acrylate and an α,β-unsaturated carboxylic acid.
  4.  前記活性エネルギー線硬化性化合物(A)は、少なくとも3つの(メタ)アクリロイル基を有する水酸基含有多官能(メタ)アクリレート(a2)を含むことを特徴とする請求項1に記載の光学フィルム。 The optical film according to claim 1, characterized in that the active energy ray curable compound (A) contains a hydroxyl group-containing polyfunctional (meth)acrylate (a2) having at least three (meth)acryloyl groups.
  5.  前記無機微粒子(B)は、シリカ微粒子であることを特徴とする請求項1に記載の光学フィルム。 The optical film according to claim 1, characterized in that the inorganic fine particles (B) are silica fine particles.
  6.  前記樹脂フィルムは、延伸フィルムであることを特徴とする請求項1に記載の光学フィルム。

     
    The optical film according to claim 1 , wherein the resin film is a stretched film.

PCT/JP2023/043841 2022-12-26 2023-12-07 Optical film and polarizing plate using same WO2024142832A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022207902 2022-12-26
JP2022-207902 2022-12-26

Publications (1)

Publication Number Publication Date
WO2024142832A1 true WO2024142832A1 (en) 2024-07-04

Family

ID=91717486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/043841 WO2024142832A1 (en) 2022-12-26 2023-12-07 Optical film and polarizing plate using same

Country Status (1)

Country Link
WO (1) WO2024142832A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004017410A (en) * 2002-06-14 2004-01-22 Nippon Arc Co Ltd Method for manufacturing hard-coated amorphous polyolefin resin and resin article
JP2005007741A (en) * 2003-06-19 2005-01-13 Toppan Printing Co Ltd Laminate
WO2005037901A1 (en) * 2003-10-22 2005-04-28 Nippon Arc Co., Ltd. Method for producing resin article coated with anti-staining film
JP2021099476A (en) * 2019-12-20 2021-07-01 学校法人東京理科大学 Method of manufacturing article with moth-eye structure, article with moth-eye structure, moth-eye structure-forming composition for oxygen ion beam processing, method of manufacturing article with protrusions, and structure for forming article with moth-eye structure
JP7020579B1 (en) * 2021-08-20 2022-02-16 荒川化学工業株式会社 Coating agent for cyclic olefin resin, cured product and laminate
JP2022051220A (en) * 2020-09-18 2022-03-31 荒川化学工業株式会社 Coating agent for cyclic olefin resin, coating agent kit, cured product, and laminate
CN114397797A (en) * 2022-01-11 2022-04-26 上海玟昕科技有限公司 Negative photoresist composition containing nano particles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004017410A (en) * 2002-06-14 2004-01-22 Nippon Arc Co Ltd Method for manufacturing hard-coated amorphous polyolefin resin and resin article
JP2005007741A (en) * 2003-06-19 2005-01-13 Toppan Printing Co Ltd Laminate
WO2005037901A1 (en) * 2003-10-22 2005-04-28 Nippon Arc Co., Ltd. Method for producing resin article coated with anti-staining film
JP2021099476A (en) * 2019-12-20 2021-07-01 学校法人東京理科大学 Method of manufacturing article with moth-eye structure, article with moth-eye structure, moth-eye structure-forming composition for oxygen ion beam processing, method of manufacturing article with protrusions, and structure for forming article with moth-eye structure
JP2022051220A (en) * 2020-09-18 2022-03-31 荒川化学工業株式会社 Coating agent for cyclic olefin resin, coating agent kit, cured product, and laminate
JP7020579B1 (en) * 2021-08-20 2022-02-16 荒川化学工業株式会社 Coating agent for cyclic olefin resin, cured product and laminate
CN114397797A (en) * 2022-01-11 2022-04-26 上海玟昕科技有限公司 Negative photoresist composition containing nano particles

Similar Documents

Publication Publication Date Title
JP6935463B2 (en) Protective film for polarizing plate and polarizing plate using it
KR101931212B1 (en) Optical film, anti-glare film, and polarizing plate
WO2011129354A1 (en) Hard coat film, polarizing film, image display device, and hard coat film manufacturing method
JP4868915B2 (en) Method for producing optical member with adhesive layer, optical member with adhesive layer, and image display device
JP6797567B2 (en) Light diffusing film and its manufacturing method and display device
KR20160098751A (en) High durable polarizing plate and display device comprising thereof
JP2008134624A (en) Polarizing plate protective film, polarizing plate and liquid crystal display device
JP2015024511A (en) Multilayer film, polarizing plate protective film, and polarizing plate
JP2009163216A (en) Set of polarizing plate, and liquid crystal panel and liquid crystal display using the same
JP6143917B2 (en) Convex-side polarizing plate for curved image display panel
JP7542414B2 (en) Curable adhesive composition and polarizing plate
JP2010217844A (en) Polarizing plate set, liquid crystal panel using the same, and liquid crystal display device
JP5258016B2 (en) Set of polarizing plates, and liquid crystal panel and liquid crystal display device using the same
WO2010093030A1 (en) Polarizer, and liquid-crystal panel and liquid-crystal display device each including same
WO2015098539A1 (en) Optical film and manufacturing method therefor
TW201425045A (en) Optical layered object, polarizer obtained using same, and image display device
KR101949558B1 (en) Optical laminate and method for manufacturing thereof
WO2024142832A1 (en) Optical film and polarizing plate using same
JP2013050641A (en) Hard coat film, polarizing plate, front plate and image display apparatus
KR101910206B1 (en) Optical laminate, method for manufacturing thereof, and polarizing plate and image display device using the same
TW201712376A (en) Polarizing plate for curved image display panel
TW202001308A (en) Polarizing film, polarizing film with adhesive layer, and image display device
TW201615773A (en) Polarizing plate protective film, polarizing plate, liquid crystal display device, and manufacturing method of polarizing plate protective film
JP2014160164A (en) Polarizing plate
TW202432374A (en) Optical film and polarizing plate using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23911613

Country of ref document: EP

Kind code of ref document: A1