WO2015098539A1 - Optical film and manufacturing method therefor - Google Patents

Optical film and manufacturing method therefor Download PDF

Info

Publication number
WO2015098539A1
WO2015098539A1 PCT/JP2014/082777 JP2014082777W WO2015098539A1 WO 2015098539 A1 WO2015098539 A1 WO 2015098539A1 JP 2014082777 W JP2014082777 W JP 2014082777W WO 2015098539 A1 WO2015098539 A1 WO 2015098539A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
easy
optical film
fine particles
meth
Prior art date
Application number
PCT/JP2014/082777
Other languages
French (fr)
Japanese (ja)
Inventor
正浩 吉澤
匡弘 松本
洋介 喜多
Original Assignee
大倉工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大倉工業株式会社 filed Critical 大倉工業株式会社
Priority to CN201480065002.7A priority Critical patent/CN105765426B/en
Priority to JP2015554732A priority patent/JP6163564B2/en
Priority to KR1020167014758A priority patent/KR102303580B1/en
Publication of WO2015098539A1 publication Critical patent/WO2015098539A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid

Definitions

  • This invention relates to the optical film which has an easily bonding layer on the surface of a (meth) acrylic-type resin film, and its manufacturing method.
  • acrylic resin containing a (meth) acrylic polymer typified by polymethyl methacrylate is known to have excellent optical properties such as light transmittance and excellent balance between mechanical strength and moldability. For this reason, acrylic resin is used for optical related applications in recent years, and acrylic resin is being applied to optical films incorporated in image display devices such as liquid crystal display devices, plasma display panels, and organic EL display devices. .
  • Optical films are often used in a state of being laminated with other functional films.
  • a polarizer protective film which is a kind of optical film is usually used in an image display device in the state of a polarizer and a polarizing plate laminated on at least one surface of the polarizer via an adhesive layer. .
  • an easy-adhesion layer may be formed on the surface of the optical film in consideration of lamination with other functional films.
  • an optical film made of an acrylic resin provided with an easy-adhesion layer has a problem that blocking occurs in the step of winding on a roll.
  • JP 2010-55062 A includes acrylic resin film and fine particles such as urethane resin and colloidal silica fine particles for the purpose of suppressing blocking when the optical film made of acrylic resin is wound around a roll.
  • a polarizer protective film having an easy adhesion layer formed from an easy adhesion composition has been proposed. The surface of this easy-adhesion layer is described as being capable of reducing the frictional force at the contact surface between the acrylic resin film and the easy-adhesion layer because minute irregularities are formed on the surface.
  • an acrylic resin film formed with an easy-adhesion layer containing fine particles such as colloidal silica has unevenness on the surface of the easy-adhesion layer due to the fine particles, so that the frictional force at the contact surface between the acrylic resin film and the easy-adhesion layer is reduced.
  • it can reduce and can suppress the blocking which arises at the time of winding of a film, it turned out that there exists a problem that the intensity
  • the present invention has been made in view of such problems, and it is an object to improve the strength and easy adhesion of an optical film composed of an acrylic resin film having an easy adhesion layer containing fine particles, It aims at providing the optical film which is excellent in adhesiveness with another functional film, suppressing the blocking produced at the time of winding of a film.
  • (1) It has an easy-adhesion layer containing a urethane resin obtained by reacting a polyol and a polyisocyanate and (meth) acrylonitrile-based fine particles on at least one surface of a (meth) acrylic resin film.
  • An optical film is provided.
  • the present invention also provides (2) The optical film according to (1), wherein the easy adhesion layer contains 0.1 to 15 parts by weight of the fine particles with respect to 100 parts by weight of the urethane resin. (3) The optical film according to (1) or (2), wherein the urethane resin has an anionic functional group in the molecule, (4) The optical film according to any one of (1) to (3), wherein the polyol is at least one selected from polyester polyol, polyacryl polyol, polyether polyol, and polycarbonate polyol, (5) The optical film according to any one of (1) to (4), wherein the fine particles have a particle size of 50 to 350 nm.
  • the present invention further provides: (6) The method for producing an optical film according to any one of (1) to (5), wherein a urethane resin and (meth) acrylonitrile-based fine particles are included on at least one surface of the (meth) acrylic resin film.
  • a method for producing an optical film wherein an easy-adhesive composition is applied to form a coating film, and the coating film is dried to form an easy-adhesion layer.
  • the optical film of the present invention has an easy-adhesion layer containing a urethane resin and (meth) acrylonitrile-based fine particles, thereby effectively suppressing blocking that occurs during winding, and the strength and easy adhesion of the easy-adhesion layer. Improved, and excellent adhesion to other functional films.
  • the term “(meth) acryl” is used as a general term for methacryl, acryl or a mixture thereof.
  • the term “(meth) acrylonitrile” is also used as a general term for methacrylonitrile, acrylonitrile, or a mixture thereof.
  • the (meth) acrylic resin film used for the optical film of the present invention contains a (meth) acrylic resin (hereinafter sometimes abbreviated as MAR).
  • the MAR film can be obtained, for example, by molding a molding material containing a resin component containing MAR as a main component by extrusion molding.
  • the glass transition temperature (Tg) of the MAR is preferably 115 ° C. or higher, more preferably 120 ° C. or higher, still more preferably 125 ° C. or higher, and particularly preferably 130 ° C. or higher.
  • the MAR film can be excellent in durability by containing MAR having a glass transition temperature (Tg) of 115 ° C. or higher as a main component.
  • the upper limit of the glass transition temperature (Tg) of the MAR is not particularly limited, but is preferably 170 ° C. or lower from the viewpoint of moldability and the like.
  • any appropriate MAR conventionally used can be adopted.
  • poly (meth) acrylate such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymer Polymer, methyl methacrylate- (meth) acrylic acid ester copolymer, methyl methacrylate-acrylic acid ester- (meth) acrylic acid copolymer, (meth) methyl acrylate-styrene copolymer (MS resin, etc.),
  • polymers having an alicyclic hydrocarbon group for example, methyl methacrylate-cyclohexyl methacrylate copolymer resistance, methyl methacrylate-norbornyl (meth) acrylate copolymer).
  • poly (meth) acrylate C 1-6 alkyl such as poly (meth) acrylate is preferable, and methyl methacrylate is the main component (50 to 100% by weight, preferably 70 to 100% by weight).
  • a methyl methacrylate resin is more preferable.
  • MAR examples include, for example, Acrypet VH and Acrypet VRL20A manufactured by Mitsubishi Rayon Co., and high Tg MAR obtained by intramolecular crosslinking and intramolecular cyclization reaction.
  • the MAR since the MAR is excellent in terms of heat resistance, transparency, and mechanical strength, it may be a MAR having a ring structure in the main chain.
  • a MAR having a glutaric anhydride structure or a glutarimide structure WO2007 / 26659, WO2005 / 108438
  • a MAR having a maleic anhydride structure or an N-substituted maleimide structure JP-A-57-153008 and JP-A-2007-31537
  • MARs having a lactone ring structure JP-A-2006-96960, JP-A-2006-171464, JP-A-2007-63541, No. 2008-191426).
  • the MAR content in the MAR film is preferably 50 to 100% by weight, more preferably 50 to 99% by weight, still more preferably 60 to 98% by weight, and particularly preferably 70 to 97% by weight.
  • the MAR content in the MAR film is less than 50% by weight, the high heat resistance and high transparency inherent in MAR may not be sufficiently reflected.
  • the MAR film may contain other thermoplastic resins in addition to the MAR.
  • Other thermoplastic resins include, for example, olefin polymers such as polyethylene, polypropylene, ethylene-propylene copolymer, poly (4-methyl-1-pentene); vinyl chloride, vinylidene chloride, chlorinated vinyl resins, etc.
  • Vinyl halide polymers acrylic polymers such as polymethyl methacrylate; styrene polymers such as polystyrene, styrene-methyl methacrylate copolymer, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene block copolymer
  • Polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; polyamides such as nylon 6, nylon 66 and nylon 610; polyacetals; polycarbonates; polyphenylene oxides; ; Polyether ether ketone; polysulfones; polyethersulfones; polyoxyethylene benzylidene alkylene; polyamideimide; polybutadiene rubber, rubber-like polymer such as ABS resin or ASA resin containing an acrylic rubber.
  • the content ratio of the other thermoplastic resin in the MAR film is preferably 0 to 50% by weight, more preferably 0 to 40% by weight, still more preferably 0 to 30% by weight, and particularly preferably 0 to 20% by weight.
  • MAR film may contain an additive.
  • additives include hindered phenol-based, phosphorus-based and sulfur-based antioxidants; light-resistant stabilizers, weather-resistant stabilizers, heat stabilizers and other stabilizers; reinforcing materials such as glass fibers and carbon fibers; phenyls UV absorbers such as salicylate, (2,2′-hydroxy-5-methylphenyl) benzotriazole, 2-hydroxybenzophenone; near infrared absorbers; tris (dibromopropyl) phosphate, triallyl phosphate, antimony oxide, etc.
  • Antistatic agents such as anionic, cationic and nonionic surfactants
  • Colorants such as inorganic pigments, organic pigments and dyes; Organic fillers and inorganic fillers; Resin modifiers; Organic fillers and inorganic fillers Plasticizer; Lubricant; Antistatic agent; Flame retardant; Retardation reducing agent and the like.
  • the content of the additive in the MAR film is preferably 0 to 5% by weight, more preferably 0 to 2% by weight, and still more preferably 0 to 0.5% by weight.
  • the method for producing the MAR film is not particularly limited.
  • MAR and other polymers and additives are sufficiently mixed by any appropriate mixing method, and the thermoplastic resin composition is previously prepared. Then, this can be formed into a film.
  • the MAR and other polymers, additives, and the like may be made into separate solutions and mixed to form a uniform mixed solution, and then formed into a film.
  • the film raw material is pre-blended with any suitable mixer such as an omni mixer, and then the obtained mixture is extruded and kneaded.
  • the kneader used for extrusion kneading is not particularly limited.
  • any suitable mixer such as an extruder such as a single screw extruder or a twin screw extruder or a pressure kneader may be used. Can do.
  • the film forming method examples include any appropriate film forming methods such as a solution casting method (solution casting method), a melt extrusion method, a calendar method, and a compression molding method.
  • a solution casting method solution casting method
  • a melt extrusion method melt extrusion method
  • a calendar method calendar method
  • a compression molding method a film forming method
  • the solution casting method (solution casting method) and the melt extrusion method are preferable.
  • Examples of the apparatus for performing the solution casting method include a drum casting machine, a band casting machine, and a spin coater.
  • melt extrusion method examples include a T-die method and an inflation method.
  • the molding temperature is preferably 150 to 350 ° C., more preferably 200 to 300 ° C.
  • a roll is formed by attaching a T-die to the tip of a known single-screw extruder or twin-screw extruder, forming a film with the T-die, and then winding the film. Film can be obtained.
  • the MAR film may be either an unstretched film or a stretched film.
  • a stretched film either a uniaxially stretched film or a biaxially stretched film may be used.
  • a biaxially stretched film either a simultaneous biaxially stretched film or a sequential biaxially stretched film may be used.
  • biaxial stretching the mechanical strength is improved and the film performance is improved.
  • the stretching temperature is preferably in the vicinity of the glass transition temperature of the thermoplastic resin composition as the film raw material, and specifically, preferably (glass transition temperature ⁇ 30 ° C.) to (glass transition temperature + 100 ° C.), more preferably Is in the range of (glass transition temperature ⁇ 20 ° C.) to (glass transition temperature + 80 ° C.). If the stretching temperature is less than (glass transition temperature-30 ° C.), a sufficient stretching ratio may not be obtained. On the other hand, if the stretching temperature exceeds (glass transition temperature + 100 ° C.), the resin composition may flow, and stable stretching may not be performed.
  • the draw ratio defined by the area ratio is preferably 1.1 to 25 times, more preferably 1.3 to 10 times. There exists a possibility that it may not lead to the improvement of the toughness accompanying extending
  • the stretching speed is unidirectional, preferably 10 to 20,000% / min, more preferably 100 to 10,000% / min. When the stretching speed is less than 10% / min, it takes time to obtain a sufficient stretching ratio, and the production cost may increase. If the stretching speed exceeds 20,000% / min, the stretched film may be broken.
  • the MAR film can be subjected to a heat treatment (annealing) or the like after the stretching treatment in order to stabilize its optical isotropy and mechanical properties.
  • Arbitrary appropriate conditions can be employ
  • the thickness of the MAR film is preferably 5 to 200 ⁇ m, more preferably 10 to 100 ⁇ m. If the thickness is less than 5 ⁇ m, sufficient strength as an optical film may not be obtained. When the thickness exceeds 200 ⁇ m, the transparency is lowered and there is a possibility that it is not suitable for use as an optical film.
  • the surface tension of the MAR film is preferably 40 mN / m or more, more preferably 50 mN / m or more, and further preferably 55 mN / m or more.
  • Any suitable surface treatment can be applied to adjust the surface wetting tension. Examples of the surface treatment include corona discharge treatment, plasma treatment, ozone spraying, ultraviolet irradiation, flame treatment, and chemical treatment. Of these, corona discharge treatment and plasma treatment are preferable.
  • the easy-adhesion layer includes a urethane resin obtained by reacting a polyol and polyisocyanate and (meth) acrylonitrile-based fine particles.
  • the fine particles are excellent in transparency, do not cause haze, and are not colored.
  • the fine particles when used as a polarizer protective film, the fine particles have an advantage that the optical properties of the polarizer are small.
  • the strength and easy adhesion of the easy-adhesion layer are reduced by adding fine particles.
  • the easy-adhesion layer of this invention can improve the intensity
  • the reason for this is not clear, but the present inventors have inferred that there is an electrostatic charge between the nitrile group, which is an electron-withdrawing functional group of (meth) acrylonitrile, and the carbonyl group or carboxyl group in the urethane resin.
  • the strength of the easy-adhesion layer is improved by the action of a strong force, and further, an electrostatic force works between the nitrile group and the layer adjacent to the easy-adhesion layer, thereby improving the easy adhesion property.
  • the urethane resin can be obtained by reacting polyol and polyisocyanate.
  • the polyol is not particularly limited as long as it has two or more hydroxyl groups in the molecule, and any appropriate polyol can be adopted.
  • polyacryl polyol, polyester polyol, polyether polyol, polycarbonate polyol and the like can be mentioned. These can be used alone or in combination of two or more.
  • the urethane resin is preferably obtained by reacting one or two or more polyols selected from polyacryl polyol, polyester polyol and polycarbonate polyol with polyisocyanate.
  • the urethane resin obtained by reacting the above polyol and polyisocyanate has a large polarity and has many carbonyl groups in the molecule, so that it can more effectively improve the strength and easy adhesion of the easy adhesion layer. it can.
  • urethane resins obtained by reacting polyester polyols with polyisocyanates are preferred because of their particularly high polarity.
  • the urethane resin preferably has an anionic functional group in the molecule.
  • the anionic functional group include a carboxyl group, a sulfonic acid group, a phosphoric acid group, and a phenolic hydroxyl group.
  • the urethane resin having an anionic functional group can be obtained, for example, by reacting a diol having an anionic functional group as a chain extender in addition to the polyol and the isocyanate.
  • the urethane resin particularly preferably has a carboxyl group as an anionic functional group in the molecule.
  • a carboxyl group By having a carboxyl group, it is possible to provide an optical film that is excellent in adhesion to other functional films (particularly under high temperature and high humidity).
  • the urethane resin having a carboxyl group can be obtained, for example, by reacting a chain extender having a free carboxyl group in addition to the polyol and the polyisocyanate. Examples of the chain extender having a free carboxyl group include dihydroxycarboxylic acid and dihydroxysuccinic acid.
  • dihydroxycarboxylic acid examples include dialkylolalkanoic acids such as dimethylolalkanoic acid (for example, dimethylolacetic acid, dimethylolbutanoic acid, dimethylolpropionic acid, dimethylolbutyric acid, dimethylolpentanoic acid). These can be used alone or in combination of two or more.
  • dimethylolalkanoic acid for example, dimethylolacetic acid, dimethylolbutanoic acid, dimethylolpropionic acid, dimethylolbutyric acid, dimethylolpentanoic acid.
  • the number average molecular weight of the urethane resin is preferably 5,000 to 600,000, more preferably 10,000 to 400,000.
  • the acid value of the urethane resin is preferably 10 or more, more preferably 10 to 50, and particularly preferably 20 to 45. When the acid value is within such a range, the adhesiveness with other functional films is excellent.
  • any appropriate method can be adopted as a method for producing the urethane resin.
  • Specific examples include a one-shot method in which the above components are reacted at once and a multi-stage method in which the components are reacted in stages.
  • the urethane resin has a carboxyl group
  • a carboxyl group can be easily introduced.
  • any suitable urethane reaction catalyst can be used.
  • the (meth) acrylonitrile-based fine particles are obtained by polymerizing monomer (meth) acrylonitrile or copolymerizing (meth) acrylonitrile and another monomer.
  • monomer (meth) acrylonitrile or copolymerizing (meth) acrylonitrile and another monomer As the other monomer, any appropriate monomer can be adopted as long as copolymerization is possible.
  • unsaturated monocarboxylic acids such as (meth) acrylic acid esters and (meth) acrylic acids; unsaturated dicarboxylic acids such as maleic acid and anhydrides and mono- or diesters thereof; (meth) acrylamide, N- Unsaturated amides such as methylol (meth) acrylamide; Vinyl esters such as vinyl acetate and vinyl propionate; Vinyl ethers such as methyl vinyl ether; ⁇ -olefins such as ethylene and propylene; Halogenation such as vinyl chloride and vinylidene chloride ⁇ , ⁇ -unsaturated aliphatic monomers; ⁇ , ⁇ -unsaturated aromatic monomers such as styrene and ⁇ -methylstyrene; These can be used alone or in combination of two or more.
  • the (meth) acrylonitrile-based fine particles are a copolymer of (meth) acrylonitrile and another monomer, it is preferable that (meth)
  • the average particle size of the fine particles is preferably 50 to 350 nm, more preferably 75 to 300 nm, and still more preferably 100 to 250 nm.
  • the method for forming the easy-adhesion layer on the surface of the MAR film is not particularly limited, and a known method can be used.
  • the easy-adhesion layer is formed by applying an easy-adhesive composition containing urethane resin and (meth) acrylonitrile-based fine particles to the surface of an acrylic resin film to form a coating film of the composition, and then forming the formed coating film. It is preferable to form by drying.
  • the easy-adhesion composition is preferably a water-based composition, and the water-based composition has a smaller work load on the environment when forming the easy-adhesion layer than an organic solvent, and is excellent in workability.
  • the aqueous composition is, for example, a urethane resin dispersion.
  • the dispersion of urethane resin is typically an emulsion of urethane resin.
  • the urethane resin emulsion becomes a resin layer by drying. The fine particles contained in the emulsion remain in the resin layer as they are.
  • a neutralizing agent is preferably used in the production of the urethane resin.
  • a neutralizing agent By using a neutralizing agent, the stability of the urethane resin in water can be improved.
  • the neutralizing agent include ammonia, N-methylmorpholine, triethylamine, dimethylethanolamine, methyldiethanolamine, triethanolamine, morpholine, tripropylamine, ethanolamine, triisopropanolamine, 2-amino-2-methyl-1 -Propanol and the like. These can be used alone or in combination of two or more.
  • an organic solvent which is preferably inert to the polyisocyanate and compatible with water can be used in the production of the urethane resin.
  • the organic solvent include ester solvents such as ethyl acetate, butyl acetate, and ethyl cellosolve acetate; ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; ether solvents such as dioxane, tetrahydrofuran, and propylene glycol monomethyl ether.
  • ester solvents such as ethyl acetate, butyl acetate, and ethyl cellosolve acetate
  • ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone
  • ether solvents such as dioxane, tetrahydrofuran, and propylene glycol monomethyl ether.
  • the fine particles are preferably blended as an aqueous dispersion.
  • An aqueous easy-adhesion composition containing an aqueous dispersion of fine particles can be more excellent in workability when forming an easy-adhesion layer.
  • the above easy-adhesive composition preferably contains a crosslinking agent.
  • Arbitrary appropriate crosslinking agents can be employ
  • the crosslinking agent preferably includes a polymer having a group capable of reacting with the carboxyl group. Examples of the group that can react with a carboxyl group include an organic amino group, an oxazoline group, an epoxy group, and a carbodiimide group.
  • the crosslinking agent has an oxazoline group.
  • the crosslinking agent having an oxazoline group has a long pot life at room temperature when mixed with the urethane resin, and the crosslinking reaction proceeds by heating, so that workability is improved.
  • the above easy-adhesion composition may further contain any appropriate additive.
  • the additive include a dispersion stabilizer, a thixotropic agent, an antioxidant, an ultraviolet absorber, an antifoaming agent, a thickener, a dispersant, a surfactant, a catalyst, a filler, a lubricant, and an antistatic agent. It is done.
  • the easy-adhesion composition is preferably aqueous.
  • the concentration of the urethane resin in the easy-adhesion composition is preferably 1.5 to 15% by weight, more preferably 2 to 10% by weight. If the density
  • the content of the crosslinking agent (solid content) in the easy-adhesion composition is preferably 1 to 30 parts by weight with respect to 100 parts by weight of the urethane resin (solid content). More preferably, it is 3 to 20 parts by weight.
  • the content of the fine particles (solid content) in the easy-adhesion composition is preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of the urethane resin (solid content: solid content including the crosslinking agent if a crosslinking agent is included).
  • the amount is 15 parts by weight, more preferably 0.3 to 5 parts by weight, still more preferably 0.5 to 3 parts by weight.
  • the content of the fine particles in the easy-adhesion layer is preferably 0.1 to 15 parts by weight, more preferably 0.3 to 5 parts by weight, and still more preferably 0 to 100 parts by weight of the resin solid content. .5-3 parts by weight.
  • the unevenness is appropriately formed on the surface of the easy-adhesion layer, the frictional force on the contact surface between the MAR film and the easy-adhesion layer and / or the easy-adhesion layer is effectively reduced, and blocking is achieved.
  • the influence which it has on the optical characteristic of a polarizing plate can be suppressed more.
  • the thickness of the easy-adhesion layer can be set to any appropriate value.
  • the thickness is preferably 0.1 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m, and particularly preferably 0.2 to 1.0 ⁇ m. By setting to such a range, it is excellent in adhesiveness with another functional film, and it can suppress that a phase difference expresses in an easily bonding layer.
  • the ratio r / d between the thickness d of the easy adhesion layer and the average particle diameter r of the fine particles contained in the easy adhesion layer is preferably 0.3 to 1.4, more preferably 0.4 to 1.1, 0.5 to 1.0 is more preferable. By setting to such a range, blocking resistance in the optical film of the present invention can be ensured.
  • the particle diameter r of the fine particles is smaller than the ratio r / d compared to the thickness d of the easy adhesion layer, the fine particles are included in the easy adhesion layer but are not exposed on the surface of the easy adhesion layer, that is, blocking resistance. Although it does not contribute to the improvement of the property, there is a risk of increasing the haze ratio of the optical film.
  • the average particle diameter r of the fine particles is larger than the ratio r / d compared to the thickness d of the easy-adhesive layer, the strength of the easy-adhesive layer is lowered and the fine particles are easily removed from the easy-adhesive layer. There is a fear.
  • FIG. 1 shows an example of the optical film of the present invention.
  • An optical film 1 shown in FIG. 1 has a structure in which an easy adhesion layer 3 is formed on one surface of a MAR film 2.
  • Specific configurations of the MAR film 2 and the easy adhesion layer 3 are as described above.
  • an easy adhesion layer may be formed on both surfaces of the MAR film.
  • the haze ratio of the optical film of the present invention is preferably 1.0% or less. Note that the haze ratio is measured based on the provisions of JISK7105.
  • the static friction coefficient on the surface of the easily adhesive layer of the optical film of the present invention is preferably 0.1 to 0.60, more preferably 0.1 to 0.55, and more preferably 0.1 to 0.50. More preferably. If a static friction coefficient is the said range, it can be excellent in the blocking capability which arises at the time of winding of a film.
  • the optical film of the present invention is excellent in blocking resistance when wound on a roll, it may be wound on a roll (may be a film roll). Since the film roll of the optical film of the present invention is excellent in blocking resistance, the film can be excellent in handling properties at the time of winding up the optical film and at the time of unwinding the post-processing.
  • Functional coating layers may be formed on the surface of the optical film of the present invention opposite to the surface on which the easy adhesion layer is formed, if necessary.
  • Functional coating layers include, for example, antistatic layers, adhesive layers, adhesive layers, easy adhesion layers, antiglare (non-glare) layers, antifouling layers such as photocatalyst layers, antireflection layers, hard coat layers, and UV shielding layers. Layer, heat ray shielding layer, electromagnetic wave shielding layer, gas barrier layer and the like.
  • the optical film of the present invention is, for example, a polarizer protective film, a retardation film, a viewing angle compensation film, a light diffusion film, a reflection film, an antireflection film, an antiglare film, a brightness enhancement film, and a conductive film for a touch panel. Moreover, among these, it is particularly preferable to use it as a polarizer protective film.
  • the retardation exhibited by the optical film of the present invention can be controlled by the composition and stretched state of the acrylic resin film.
  • the optical film of the present invention may be an optically isotropic film or an optically anisotropic film (for example, exhibiting birefringence such as retardation).
  • FIG. 2 shows an example of the polarizing plate of the present invention.
  • the polarizing plate 10 shown in FIG. 2 has a structure in which a polarizer 6 is laminated on the surface of the polarizer protective film 4 having the easy adhesion layer 3 on one surface of the MAR film 2 via the adhesive 5.
  • the polarizing plate 10 may have a second polarizer protective film laminated on the opposite side of the polarizer 6 from the polarizer protective film 4 via an adhesive layer.
  • the polarizing plate has a structure in which a polarizer is laminated on an easy-adhesive layer surface of a polarizer protective film having an easy-adhesive layer on the surface of the MAR film via an adhesive layer. Since the easy-adhesion layer formed on the polarizer protective film is excellent in the strength and easy adhesion of the easy-adhesion layer, it can be a polarizing plate excellent in adhesion and durability between the polarizer and the polarizer protective film. .
  • the average particle diameter of the organic fine particles contained in the easy-adhesion layer of the polarizer protective film is smaller than the visible light wavelength, light scattering by the particles can be suppressed, and a polarizing plate having excellent optical properties can be obtained.
  • any appropriate polarizer can be adopted depending on the purpose.
  • dichroic substances such as iodine and dichroic dyes are adsorbed on hydrophilic polymer films such as polyvinyl alcohol films, partially formalized polyvinyl alcohol films, and ethylene-vinyl acetate copolymer partially saponified films.
  • polyene-based oriented films such as a uniaxially stretched product, a polyvinyl alcohol dehydrated product and a polyvinyl chloride dehydrochlorinated product.
  • a polarizer obtained by adsorbing a dichroic substance such as iodine on a polyvinyl alcohol film and uniaxially stretching is particularly preferable because of its high polarization dichroic ratio.
  • the thickness of these polarizers is not particularly limited, but is generally about 1 to 80 ⁇ m.
  • the adhesive layer is formed from an adhesive composition containing a polyvinyl alcohol-based resin.
  • any appropriate protective film can be adopted as the second polarizer protective film.
  • Typical examples of the material forming the second polarizer protective film include cellulose polymers such as diacetyl cellulose and triacetyl cellulose.
  • the second polarizer protective film may be formed of the same material as the above-described MAR film.
  • the image display device of the present invention includes the polarizing plate of the present invention.
  • Specific examples of the image display device can be used for a self-luminous display device such as an electroluminescence (EL) display, a plasma display (PD), and a field emission display (FED), and a liquid crystal display (LCD).
  • EL electroluminescence
  • PD plasma display
  • FED field emission display
  • LCD liquid crystal display
  • a liquid crystal display (LCD) has a liquid crystal cell and the polarizing plate disposed on at least one side of the liquid crystal cell.
  • the method for producing the optical film of the present invention is not particularly limited and can be produced by a known method.
  • a urethane resin and a (meth) acrylonitrile-based material are formed on at least one surface of the MAR film.
  • An easy-adhesion composition containing fine particles is applied to form a coating film of the easy-adhesion composition (application process), and the formed coating film is dried to form an easy-adhesion layer containing the fine particles on the surface ( It is preferable to perform a drying step).
  • any appropriate method can be adopted as a method of applying the easy-adhesion composition in the application step.
  • Examples thereof include a bar coating method, a roll coating method, a gravure coating method, a rod coating method, a slot orifice coating method, a curtain coating method, and a fountain coating method.
  • the thickness of the coating film formed in the coating process can be appropriately adjusted according to the thickness required when the coating film becomes an easy-adhesion layer.
  • the surface to which the easy-adhesion composition in the (meth) acrylic resin film is applied is preferably subjected to a surface treatment.
  • the surface treatment is preferably corona discharge treatment or plasma treatment.
  • the corona discharge treatment can be performed under any appropriate conditions.
  • the amount of corona discharge electron irradiation is, for example, preferably 10 to 150 W / m 2 / min, and more preferably 10 to 100 W / m 2 / min.
  • the drying process is not particularly limited, and a conventionally known method can be used.
  • the drying temperature is typically 50 ° C. or higher, preferably 90 ° C. or higher, more preferably 110 ° C. or higher. By setting the drying temperature in such a range, an optical film excellent in color resistance (particularly under high temperature and high humidity) can be obtained.
  • the upper limit of the drying temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower.
  • the MAR film When producing an optical film that is a stretched film from an unstretched MAR film, and when producing an optical film that is a biaxially stretched film from a uniaxially stretched MAR film by the method for producing an optical film of the present invention, these The MAR film needs to be stretched at some point.
  • the MAR film may be stretched before the easy-adhesion layer is formed or after the easy-adhesion layer is formed. Moreover, you may perform formation of an easily bonding layer and extending
  • the MAR film on which the coating film of the easy-adhesion composition is formed may be stretched in a heated atmosphere. Due to the heat applied to the film for stretching, the coating film of the easy-adhesive composition formed on the surface of the MAR film is dried to form an easy-adhesive layer. If it does in this way, since the extending
  • the MAR used for the optical film often has a glass transition temperature (Tg) of 100 ° C. or higher, and the above-described stretching temperature forms an easy-adhesion layer from the coating film of the easy-adhesive composition. The temperature is high enough.
  • the polarizing plate of the present invention is typically produced by laminating the optical film and the polarizer through an adhesive layer.
  • the optical film is laminated so that the easy-adhesion layer is on the polarizer side.
  • Production Example 3 An easy-adhesive composition (2) was obtained in the same manner as in Production Example 2, except that the amount of the emulsion containing the fine particles A was increased to 0.44 g.
  • Production Example 4 An easy-adhesive composition (3) was obtained in the same manner as in Production Example 2, except that the amount of the emulsion containing the fine particles A was increased to 1.09 g.
  • Production Example 5 An easy-adhesive composition (4) was obtained in the same manner as in Production Example 2 except that the amount of the emulsion containing the fine particles A was increased to 2.19 g.
  • Production Example 8 Instead of 0.22 g of the emulsion containing fine particles A, 0.88 g of an emulsion containing colloidal silica fine particles (fine particles C) [manufactured by Fuso Chemical Industry, Quartron PL-7, average primary particle size 75 nm, solid content 25 wt%] is used.
  • An easy-adhesive composition (7) was obtained in the same manner as in Production Example 2 except that
  • Production Example 9 An easy-adhesive composition (8) was obtained in the same manner as in Production Example 8, except that the amount of the emulsion containing the fine particles C was increased to 1.75 g.
  • Manufacturability 11 An easy-adhesive composition (10) was obtained in the same manner as in Production Example 10 except that the amount of the emulsion containing the fine particles D was increased to 2.19 g.
  • Manufacturability 12 An easy-adhesion composition (11), which is an emulsion-like dispersion, was obtained in the same manner as in Production Example 10 except that the emulsion containing the fine particles D was not used.
  • Example 1 The easy-adhesion composition (1) created in Production Example 2 was applied to one surface of the methacrylic resin film produced in Production Example 1 using a bar coater, and then charged into a hot air dryer at 100 ° C. Dry for 90 seconds. Next, the film is uniaxially stretched using a table stretching machine (stretching ratio: 2.5 times), and the surface of a methacrylic resin film having a thickness of 40 ⁇ m has a thickness of 0.3 ⁇ m including urethane resin and fine particles. An optical film having an easy adhesion layer was obtained. Content of the microparticles
  • Examples 2 to 6 and Comparative Examples 1 to 5 An optical film was obtained in the same manner as in Example 1 except that the easy-adhesive composition shown in Table 1 was used instead of the easy-adhesive composition (1).
  • Table 1 shows the content (parts by weight) of fine particles with respect to 100 parts by weight of the urethane resin in the easy adhesion layer.
  • Adhesion A polyvinyl alcohol-based adhesive composition is applied to the easy-adhesion layer side of the optical films obtained in the respective Examples and Comparative Examples, and an iodine-based polarized light having a thickness of 30 ⁇ m is interposed through the adhesive composition. After laminating with the polarizer, it was put into a hot air dryer (70 ° C.) and dried for 5 minutes to obtain a laminate bonded with the polarizer. A sample piece having a size of 25 mm ⁇ 250 mm was cut out from the laminate obtained above, subjected to adhesion processing on the surface of the optical film, and attached to a glass plate.
  • the optical films of Examples 1 to 6 having an easy-adhesion layer containing a urethane resin and acrylonitrile-based fine particles are excellent in blocking resistance and compared with the optical film of Comparative Example 5 that does not contain fine particles. The results showed high adhesion to other functional films.
  • the optical films of Comparative Examples 1 to 4 in which an easy-adhesion layer containing urethane resin and colloidal silica fine particles are formed are excellent in blocking resistance, but other functionalities than Comparative Example 5 in which no fine particles are blended. The results showed low adhesion to the film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Paints Or Removers (AREA)

Abstract

[Problem] To provide an optical film that adheres well to another functional film while minimizing blocking during take-up of said optical film. [Solution] An optical film characterized by having, on at least one surface of a (meth)acrylic resin film, a readily adhering layer containing both (meth)acrylonitrile-based microparticles and a urethane resin obtained by reacting a polyol with a polyisocyanate. Said optical film can be used as a polarizer-protecting film.

Description

光学フィルム及びその製造方法Optical film and manufacturing method thereof
 本発明は、(メタ)アクリル系樹脂フィルムの表面に易接着層を有する光学フィルム、およびその製造方法に関する。 This invention relates to the optical film which has an easily bonding layer on the surface of a (meth) acrylic-type resin film, and its manufacturing method.
 ポリメタクリル酸メチルに代表される(メタ)アクリル重合体を含むアクリル樹脂は、光線透過率などの光学特性に優れるとともに、機械的強度および成形加工性のバランスに優れることが知られている。このため、アクリル樹脂は、近年、光学関連用途に使用され、液晶表示装置、プラズマディスプレイパネル、有機EL表示装置のような画像表示装置に組み込まれる光学フィルムへのアクリル樹脂の応用が進められている。 An acrylic resin containing a (meth) acrylic polymer typified by polymethyl methacrylate is known to have excellent optical properties such as light transmittance and excellent balance between mechanical strength and moldability. For this reason, acrylic resin is used for optical related applications in recent years, and acrylic resin is being applied to optical films incorporated in image display devices such as liquid crystal display devices, plasma display panels, and organic EL display devices. .
 光学フィルムは、他の機能性フィルムと積層された状態で使用されることが多い。例えば、光学フィルムの一種である偏光子保護フィルムは、通常、偏光子と、当該偏光子の少なくとも一方の面に接着層を介して積層された偏光板の状態で画像表示装置に使用されている。 Optical films are often used in a state of being laminated with other functional films. For example, a polarizer protective film which is a kind of optical film is usually used in an image display device in the state of a polarizer and a polarizing plate laminated on at least one surface of the polarizer via an adhesive layer. .
 アクリル樹脂をこのような光学フィルムに使用する際、他の機能性フィルムとの積層を考慮して、当該光学フィルムの表面に易接着層を形成することがある。しかしながら、易接着層を設けたアクリル樹脂からなる光学フィルムは、ロールに巻き取る工程において、ブロッキングが生じるという問題がある。 When an acrylic resin is used for such an optical film, an easy-adhesion layer may be formed on the surface of the optical film in consideration of lamination with other functional films. However, an optical film made of an acrylic resin provided with an easy-adhesion layer has a problem that blocking occurs in the step of winding on a roll.
 そこで、特開2010-55062号公報には、アクリル樹脂からなる光学フィルムをロールに巻き取る際のブロッキングを抑制することを目的に、アクリル樹脂フィルムと、ウレタン樹脂およびコロイダルシリカ微粒子などの微粒子を含む易接着組成物から形成された易接着層とを有する偏光子保護フィルムが提案されている。この易接着層の表面には、微小な凹凸が形成されるため、アクリル樹脂フィルムと易接着層の接触面における摩擦力を低減できると記載されている。 Therefore, JP 2010-55062 A includes acrylic resin film and fine particles such as urethane resin and colloidal silica fine particles for the purpose of suppressing blocking when the optical film made of acrylic resin is wound around a roll. A polarizer protective film having an easy adhesion layer formed from an easy adhesion composition has been proposed. The surface of this easy-adhesion layer is described as being capable of reducing the frictional force at the contact surface between the acrylic resin film and the easy-adhesion layer because minute irregularities are formed on the surface.
 しかしながら、コロイダルシリカ等の微粒子を配合した易接着層が形成されたアクリル樹脂フィルムは、微粒子により易接着層表面に凹凸が形成されることでアクリル樹脂フィルムと易接着層の接触面における摩擦力を低減し、フィルムの巻き取り時に生じるブロッキングを抑制し得るが、微粒子を配合することにより、易接着層の強度および易接着性が低下するという問題があることが判った。 However, an acrylic resin film formed with an easy-adhesion layer containing fine particles such as colloidal silica has unevenness on the surface of the easy-adhesion layer due to the fine particles, so that the frictional force at the contact surface between the acrylic resin film and the easy-adhesion layer is reduced. Although it can reduce and can suppress the blocking which arises at the time of winding of a film, it turned out that there exists a problem that the intensity | strength and easy adhesiveness of an easily bonding layer fall by mix | blending microparticles | fine-particles.
 本発明はこのような問題に鑑みなされたもので、微粒子を配合した易接着層を有するアクリル樹脂フィルムから構成される光学フィルムの易接着層の強度および易接着性を向上させることを課題とし、フィルムの巻き取り時に生じるブロッキングを抑制しつつも、他の機能性フィルムとの密着性に優れる光学フィルムを提供することを目的とする。 The present invention has been made in view of such problems, and it is an object to improve the strength and easy adhesion of an optical film composed of an acrylic resin film having an easy adhesion layer containing fine particles, It aims at providing the optical film which is excellent in adhesiveness with another functional film, suppressing the blocking produced at the time of winding of a film.
 本発明によれば、
(1)(メタ)アクリル系樹脂フィルムの少なくとも一方の表面に、ポリオールとポリイソシアネートとを反応して得られるウレタン樹脂と(メタ)アクリロニトリル系微粒子とを含む易接着層を有することを特徴とする光学フィルムが提供される。
According to the present invention,
(1) It has an easy-adhesion layer containing a urethane resin obtained by reacting a polyol and a polyisocyanate and (meth) acrylonitrile-based fine particles on at least one surface of a (meth) acrylic resin film. An optical film is provided.
 本発明は、また、
(2)前記易接着層は、前記ウレタン樹脂100重量部に対して、前記微粒子を0.1~15重量部含むことを特徴とする(1)記載の光学フィルム、
(3)前記ウレタン樹脂が、分子中にアニオン性官能基を有することを特徴とする(1)または(2)記載の光学フィルム、
(4)前記ポリオールが、ポリエステルポリオール、ポリアクリルポリオール、ポリエーテルポリオール、及びポリカーボネートポリオールから選ばれる1種以上であることを特徴とする(1)乃至(3)のいずれか記載の光学フィルム、
(5)前記微粒子の粒子径が、50~350nmであることを特徴とする(1)乃至(4)のいずれか記載の光学フィルムを提供する。
The present invention also provides
(2) The optical film according to (1), wherein the easy adhesion layer contains 0.1 to 15 parts by weight of the fine particles with respect to 100 parts by weight of the urethane resin.
(3) The optical film according to (1) or (2), wherein the urethane resin has an anionic functional group in the molecule,
(4) The optical film according to any one of (1) to (3), wherein the polyol is at least one selected from polyester polyol, polyacryl polyol, polyether polyol, and polycarbonate polyol,
(5) The optical film according to any one of (1) to (4), wherein the fine particles have a particle size of 50 to 350 nm.
 本発明は、更に、
(6)(1)乃至(5)のいずれか記載の光学フィルムの製造方法であって、(メタ)アクリル系樹脂フィルムの少なくとも一方の表面に、ウレタン樹脂と(メタ)アクリロニトリル系微粒子とを含む易接着組成物を塗布して塗膜を形成し、前記塗膜を乾燥して易接着層を形成することを特徴とする光学フィルムの製造方法を提供する。
The present invention further provides:
(6) The method for producing an optical film according to any one of (1) to (5), wherein a urethane resin and (meth) acrylonitrile-based fine particles are included on at least one surface of the (meth) acrylic resin film. Provided is a method for producing an optical film, wherein an easy-adhesive composition is applied to form a coating film, and the coating film is dried to form an easy-adhesion layer.
 本発明の光学フィルムは、ウレタン樹脂と(メタ)アクリロニトリル系微粒子とを含む易接着層を有することにより、巻き取り時に生じるブロッキングを効果的に抑制しつつも、易接着層の強度および易接着性が向上し、他の機能性フィルムとの密着性に優れる。なお、本明細書において、「(メタ)アクリル」の用語はメタクリル、アクリル又はこれらの混合物の総称として使用している。また、「(メタ)アクリロニトリル」の用語も同様、メタクリロニトリル、アクリロニトリル又はこれらの混合物の総称として使用している。 The optical film of the present invention has an easy-adhesion layer containing a urethane resin and (meth) acrylonitrile-based fine particles, thereby effectively suppressing blocking that occurs during winding, and the strength and easy adhesion of the easy-adhesion layer. Improved, and excellent adhesion to other functional films. In the present specification, the term “(meth) acryl” is used as a general term for methacryl, acryl or a mixture thereof. The term “(meth) acrylonitrile” is also used as a general term for methacrylonitrile, acrylonitrile, or a mixture thereof.
本発明の光学フィルムの一例を模式的に示す断面図である。It is sectional drawing which shows an example of the optical film of this invention typically. 本発明の偏光板の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the polarizing plate of this invention.
 [(メタ)アクリル系樹脂フィルム]
 本発明の光学フィルムに用いられる(メタ)アクリル系樹脂フィルムは、(メタ)アクリル系樹脂(以下MARと略すことがある)を含む。MARフィルムは、例えば、MARを主成分として含む樹脂成分を含有する成形材料を押出し成形にて成形して得ることができる。
[(Meth) acrylic resin film]
The (meth) acrylic resin film used for the optical film of the present invention contains a (meth) acrylic resin (hereinafter sometimes abbreviated as MAR). The MAR film can be obtained, for example, by molding a molding material containing a resin component containing MAR as a main component by extrusion molding.
 上記MARのガラス転移温度(Tg)は、115℃以上であることが好ましく、より好ましくは120℃以上、さらに好ましくは125℃以上、特に好ましくは130℃以上である。上記MARフィルムは、ガラス転移温度(Tg)が115℃以上であるMARを主成分として含むことにより、耐久性に優れたものとすることができる。また、上記MARのガラス転移温度(Tg)の上限値は特に制限するものではないが、成形性等の観点から、170℃以下であることが好ましい。 The glass transition temperature (Tg) of the MAR is preferably 115 ° C. or higher, more preferably 120 ° C. or higher, still more preferably 125 ° C. or higher, and particularly preferably 130 ° C. or higher. The MAR film can be excellent in durability by containing MAR having a glass transition temperature (Tg) of 115 ° C. or higher as a main component. The upper limit of the glass transition temperature (Tg) of the MAR is not particularly limited, but is preferably 170 ° C. or lower from the viewpoint of moldability and the like.
 上記MARとしては、従来から慣用されている任意の適切なMARを採用することができ、例えば、ポリメタクリル酸メチルなどのポリ(メタ)アクリル酸エステル、メタクリル酸メチル-(メタ)アクリル酸共重合体、メタクリル酸メチル-(メタ)アクリル酸エステル共重合体、メタクリル酸メチル-アクリル酸エステル-(メタ)アクリル酸共重合体、(メタ)アクリル酸メチル-スチレン共重合体(MS樹脂など)、脂環族炭化水素基を有する重合体、(例えば、メタクリル酸メチルーメタクリル酸シクロヘキシル共重合耐、メタクリル酸メチル-(メタ)アクリル酸ノルボルニル共重合体など)が挙げられる。上記の中でも、ポリ(メタ)アクリル酸メチルなどのポリ(メタ)アクリル酸C1-6アルキルが好ましく、メタクリル酸メチルを主成分(50~100重量%、好ましくは70~100重量%)とするメタクリル酸メチル系樹脂がより好ましい。 As the MAR, any appropriate MAR conventionally used can be adopted. For example, poly (meth) acrylate such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymer Polymer, methyl methacrylate- (meth) acrylic acid ester copolymer, methyl methacrylate-acrylic acid ester- (meth) acrylic acid copolymer, (meth) methyl acrylate-styrene copolymer (MS resin, etc.), And polymers having an alicyclic hydrocarbon group (for example, methyl methacrylate-cyclohexyl methacrylate copolymer resistance, methyl methacrylate-norbornyl (meth) acrylate copolymer). Among these, poly (meth) acrylate C 1-6 alkyl such as poly (meth) acrylate is preferable, and methyl methacrylate is the main component (50 to 100% by weight, preferably 70 to 100% by weight). A methyl methacrylate resin is more preferable.
 上記MARの具体例としては、例えば、三菱レイヨン社製のアクリペットVHやアクリペットVRL20A、分子内架橋や分子内環化反応により得られる高TgMARが挙げられる。 Specific examples of the MAR include, for example, Acrypet VH and Acrypet VRL20A manufactured by Mitsubishi Rayon Co., and high Tg MAR obtained by intramolecular crosslinking and intramolecular cyclization reaction.
 また、上記MARは、耐熱性、透明性、機械的強度の点で優れることから、主鎖に環構造を有するMARであっても良い。主鎖に環構造を有するMARとしては、無水グルタル酸構造あるいはグルタルイミド構造を有するMAR(WO2007/26659号公報、WO2005/108438号公報)、無水マレイン酸構造あるいはN-置換マレイミド構造を有するMAR(特開昭57-153008号公報、特開2007-31537号公報)、ラクトン環構造を有するMAR(特開2006-96960号公報、特開2006-171464号公報、特開2007-63541号公報、特開2008-191426号公報)等が挙げられる。 Further, since the MAR is excellent in terms of heat resistance, transparency, and mechanical strength, it may be a MAR having a ring structure in the main chain. As the MAR having a ring structure in the main chain, a MAR having a glutaric anhydride structure or a glutarimide structure (WO2007 / 26659, WO2005 / 108438), a MAR having a maleic anhydride structure or an N-substituted maleimide structure ( JP-A-57-153008 and JP-A-2007-31537), MARs having a lactone ring structure (JP-A-2006-96960, JP-A-2006-171464, JP-A-2007-63541, No. 2008-191426).
 MARフィルム中の上記MARの含有量は、好ましくは50~100重量%、より好ましくは50~99重量%、さらに好ましくは60~98重量%、特に好ましくは70~97重量%である。MARフィルム中の上記MARの含有量が50重量%未満の場合には、MARが本来有する高耐熱性、高透明性が十分に反映できないおそれがある。 The MAR content in the MAR film is preferably 50 to 100% by weight, more preferably 50 to 99% by weight, still more preferably 60 to 98% by weight, and particularly preferably 70 to 97% by weight. When the MAR content in the MAR film is less than 50% by weight, the high heat resistance and high transparency inherent in MAR may not be sufficiently reflected.
 MARフィルムは、上記MAR以外に、他の熱可塑性樹脂を含有していてもよい。他の熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、ポリ(4-メチル-1-ペンテン)等のオレフィン系重合体;塩化ビニル、塩化ビニリデン、塩素化ビニル樹脂等のハロゲン化ビニル系重合体;ポリメタクリル酸メチル等のアクリル系重合体;ポリスチレン、スチレン-メタクリル酸メチル共重合体、スチレン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン-スチレンブロック共重合体等のスチレン系重合体;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ナイロン6、ナイロン66、ナイロン610等のポリアミド;ポリアセタール;ポリカーボネート;ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリエーテルエーテルケトン;ポリスルホン;ポリエーテルスルホン;ポリオキシベンジレン;ポリアミドイミド;ポリブタジエン系ゴム、アクリル系ゴムを配合したABS樹脂やASA樹脂等のゴム質重合体等が挙げられる。 The MAR film may contain other thermoplastic resins in addition to the MAR. Other thermoplastic resins include, for example, olefin polymers such as polyethylene, polypropylene, ethylene-propylene copolymer, poly (4-methyl-1-pentene); vinyl chloride, vinylidene chloride, chlorinated vinyl resins, etc. Vinyl halide polymers; acrylic polymers such as polymethyl methacrylate; styrene polymers such as polystyrene, styrene-methyl methacrylate copolymer, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene block copolymer Polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; polyamides such as nylon 6, nylon 66 and nylon 610; polyacetals; polycarbonates; polyphenylene oxides; ; Polyether ether ketone; polysulfones; polyethersulfones; polyoxyethylene benzylidene alkylene; polyamideimide; polybutadiene rubber, rubber-like polymer such as ABS resin or ASA resin containing an acrylic rubber.
 MARフィルムにおける他の熱可塑性樹脂の含有割合は、好ましくは0~50重量%、より好ましくは0~40重量%、さらに好ましくは0~30重量%、特に好ましくは0~20重量%である。 The content ratio of the other thermoplastic resin in the MAR film is preferably 0 to 50% by weight, more preferably 0 to 40% by weight, still more preferably 0 to 30% by weight, and particularly preferably 0 to 20% by weight.
 MARフィルムは、添加剤を含有していてもよい。添加剤としては、例えば、ヒンダードフェノール系、リン系、イオウ系等の酸化防止剤;耐光安定剤、耐候安定剤、熱安定剤等の安定剤;ガラス繊維、炭素繊維等の補強材;フェニルサリチレート、(2,2’-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-ヒドロキシベンゾフェノン等の紫外線吸収剤;近赤外線吸収剤;トリス(ジブロモプロピル)ホスフェート、トリアリルホスフェート、酸化アンチモン等の難燃剤;アニオン系、カチオン系、ノニオン系の界面活性剤等の帯電防止剤;無機顔料、有機顔料、染料等の着色剤;有機フィラーや無機フィラー;樹脂改質剤;有機充填剤や無機充填剤;可塑剤;滑剤;帯電防止剤;難燃剤;位相差低減剤等が挙げられる。 MAR film may contain an additive. Examples of additives include hindered phenol-based, phosphorus-based and sulfur-based antioxidants; light-resistant stabilizers, weather-resistant stabilizers, heat stabilizers and other stabilizers; reinforcing materials such as glass fibers and carbon fibers; phenyls UV absorbers such as salicylate, (2,2′-hydroxy-5-methylphenyl) benzotriazole, 2-hydroxybenzophenone; near infrared absorbers; tris (dibromopropyl) phosphate, triallyl phosphate, antimony oxide, etc. Flame retardants; Antistatic agents such as anionic, cationic and nonionic surfactants; Colorants such as inorganic pigments, organic pigments and dyes; Organic fillers and inorganic fillers; Resin modifiers; Organic fillers and inorganic fillers Plasticizer; Lubricant; Antistatic agent; Flame retardant; Retardation reducing agent and the like.
 MARフィルムにおける添加剤の含有割合は、好ましくは0~5重量%、より好ましくは0~2重量%、さらに好ましくは0~0.5重量%である。 The content of the additive in the MAR film is preferably 0 to 5% by weight, more preferably 0 to 2% by weight, and still more preferably 0 to 0.5% by weight.
 MARフィルムの製造方法としては、特に限定されるものではないが、例えば、MARと、その他の重合体や添加剤等を、任意の適切な混合方法で充分に混合し、予め熱可塑性樹脂組成物としてから、これをフィルム成形することができる。あるいは、MARと、その他の重合体や添加剤等を、それぞれ別々の溶液にしてから混合して均一な混合液とした後、フィルム成形してもよい。 The method for producing the MAR film is not particularly limited. For example, MAR and other polymers and additives are sufficiently mixed by any appropriate mixing method, and the thermoplastic resin composition is previously prepared. Then, this can be formed into a film. Alternatively, the MAR and other polymers, additives, and the like may be made into separate solutions and mixed to form a uniform mixed solution, and then formed into a film.
 上記熱可塑性樹脂組成物を製造するには、例えば、オムニミキサー等、任意の適切な混合機で上記のフィルム原料をプレブレンドした後、得られた混合物を押出混練する。この場合、押出混練に用いられる混練機は、特に限定されるものではなく、例えば、単軸押出機、二軸押出機等の押出機や加圧ニーダー等、任意の適切な混合機を用いることができる。 In order to produce the thermoplastic resin composition, for example, the film raw material is pre-blended with any suitable mixer such as an omni mixer, and then the obtained mixture is extruded and kneaded. In this case, the kneader used for extrusion kneading is not particularly limited. For example, any suitable mixer such as an extruder such as a single screw extruder or a twin screw extruder or a pressure kneader may be used. Can do.
 上記フィルム成形の方法としては、例えば、溶液キャスト法(溶液流延法)、溶融押出法、カレンダー法、圧縮成形法等、任意の適切なフィルム成形法が挙げられる。これらのフィルム成形法のうち、溶液キャスト法(溶液流延法)、溶融押出法が好ましい。 Examples of the film forming method include any appropriate film forming methods such as a solution casting method (solution casting method), a melt extrusion method, a calendar method, and a compression molding method. Among these film forming methods, the solution casting method (solution casting method) and the melt extrusion method are preferable.
 上記溶液キャスト法(溶液流延法)を行うための装置としては、例えば、ドラム式キャスティングマシン、バンド式キャスティングマシン、スピンコーター等が挙げられる。 Examples of the apparatus for performing the solution casting method (solution casting method) include a drum casting machine, a band casting machine, and a spin coater.
 上記溶融押出法としては、例えば、Tダイ法、インフレーション法等が挙げられる。成形温度は、好ましくは150~350 ℃、より好ましくは200~300 ℃である。 Examples of the melt extrusion method include a T-die method and an inflation method. The molding temperature is preferably 150 to 350 ° C., more preferably 200 to 300 ° C.
 上記Tダイ法でフィルム成形する場合は、公知の単軸押出機や二軸押出機の先端部にTダイを取り付け、当該Tダイによりフィルムを製膜した後、フィルムを巻取ることでロール状のフィルムを得ることができる。 When forming a film by the T-die method, a roll is formed by attaching a T-die to the tip of a known single-screw extruder or twin-screw extruder, forming a film with the T-die, and then winding the film. Film can be obtained.
 MARフィルムは、未延伸フィルムまたは延伸フィルムのいずれでもよい。延伸フィルムである場合は、1軸延伸フィルムまたは2軸延伸フィルムのいずれでもよい。2軸延伸フィルムである場合は、同時2軸延伸フィルムまたは逐次2軸延伸フィルムのいずれでもよい。2軸延伸した場合は、機械的強度が向上し、フィルム性能が向上する。 The MAR film may be either an unstretched film or a stretched film. In the case of a stretched film, either a uniaxially stretched film or a biaxially stretched film may be used. In the case of a biaxially stretched film, either a simultaneous biaxially stretched film or a sequential biaxially stretched film may be used. In the case of biaxial stretching, the mechanical strength is improved and the film performance is improved.
 延伸温度は、フィルム原料である熱可塑性樹脂組成物のガラス転移温度近傍であることが好ましく、具体的には、好ましくは(ガラス転移温度-30℃)~(ガラス転移温度+100℃)、より好ましくは(ガラス転移温度-20℃)~(ガラス転移温度+80℃)の範囲内である。延伸温度が(ガラス転移温度-30℃)未満であると、充分な延伸倍率が得られないおそれがある。逆に、延伸温度が(ガラス転移温度+100℃)超えると、樹脂組成物の流動(フロー)が起こり、安定な延伸が行えないおそれがある。 The stretching temperature is preferably in the vicinity of the glass transition temperature of the thermoplastic resin composition as the film raw material, and specifically, preferably (glass transition temperature−30 ° C.) to (glass transition temperature + 100 ° C.), more preferably Is in the range of (glass transition temperature−20 ° C.) to (glass transition temperature + 80 ° C.). If the stretching temperature is less than (glass transition temperature-30 ° C.), a sufficient stretching ratio may not be obtained. On the other hand, if the stretching temperature exceeds (glass transition temperature + 100 ° C.), the resin composition may flow, and stable stretching may not be performed.
 面積比で定義した延伸倍率は、好ましくは1.1~25倍、より好ましくは1.3~10倍である。延伸倍率が1.1倍未満であると、延伸に伴う靭性の向上につながらないおそれがある。延伸倍率が25倍を超えると、延伸倍率を上げるだけの効果(靱性の向上)が認められないおそれがある。 The draw ratio defined by the area ratio is preferably 1.1 to 25 times, more preferably 1.3 to 10 times. There exists a possibility that it may not lead to the improvement of the toughness accompanying extending | stretching that a draw ratio is less than 1.1 times. When the draw ratio exceeds 25 times, there is a possibility that the effect of only increasing the draw ratio (improvement of toughness) is not recognized.
 延伸速度は、一方向で、好ましくは10~20,000%/min、より好ましく100~10,000%/minである。延伸速度が10%/min未満であると、充分な延伸倍率を得るために時間がかかり、製造コストが高くなるおそれがある。延伸速度が20,000%/minを超えると、延伸フィルムの破断等が起こるおそれがある。 The stretching speed is unidirectional, preferably 10 to 20,000% / min, more preferably 100 to 10,000% / min. When the stretching speed is less than 10% / min, it takes time to obtain a sufficient stretching ratio, and the production cost may increase. If the stretching speed exceeds 20,000% / min, the stretched film may be broken.
 MARフィルムは、その光学的等方性や機械的特性を安定化させるために、延伸処理後に熱処理(アニーリング)等を行うことができる。熱処理の条件は、任意の適切な条件を採用し得る。 The MAR film can be subjected to a heat treatment (annealing) or the like after the stretching treatment in order to stabilize its optical isotropy and mechanical properties. Arbitrary appropriate conditions can be employ | adopted for the conditions of heat processing.
 MARフィルムの厚さは、好ましくは5~200μm、より好ましくは10~100μmである。厚さが5μm未満であると、光学フィルムとしての十分な強度が得られなくなるおそれがある。厚さが200μmを超えると、透明性が低下し、光学フィルムとしての使用に適さなくなるおそれがある。 The thickness of the MAR film is preferably 5 to 200 μm, more preferably 10 to 100 μm. If the thickness is less than 5 μm, sufficient strength as an optical film may not be obtained. When the thickness exceeds 200 μm, the transparency is lowered and there is a possibility that it is not suitable for use as an optical film.
 MARフィルムの表面の濡れ張力は、好ましくは40mN/m以上、より好ましくは50mN/m以上、さらに好ましくは55mN/m以上である。表面の濡れ張力が少なくとも40mN/m以上とすることにより、MARフィルムと易接着層との接着強度がさらに向上する。表面の濡れ張力を調整するために、任意の適切な表面処理を施すことができる。表面処理としては、例えば、コロナ放電処理、プラズマ処理、オゾン吹き付け、紫外線照射、火炎処理、化学薬品処理が挙げられる。これらの中でも、好ましくは、コロナ放電処理、プラズマ処理である。 The surface tension of the MAR film is preferably 40 mN / m or more, more preferably 50 mN / m or more, and further preferably 55 mN / m or more. By setting the surface wetting tension to at least 40 mN / m or more, the adhesive strength between the MAR film and the easy adhesion layer is further improved. Any suitable surface treatment can be applied to adjust the surface wetting tension. Examples of the surface treatment include corona discharge treatment, plasma treatment, ozone spraying, ultraviolet irradiation, flame treatment, and chemical treatment. Of these, corona discharge treatment and plasma treatment are preferable.
 [易接着層]
 上記易接着層は、ポリオールとポリイソシアネートとを反応して得られるウレタン樹脂と(メタ)アクリロニトリル系微粒子とを含むことを特徴とする。上記微粒子は、透明性に優れ、ヘイズを生じず、着色もないので、例えば、偏光子保護フィルムとして使用した場合、偏光子の光学特性に与える影響が小さいという利点を有する。
[Easily adhesive layer]
The easy-adhesion layer includes a urethane resin obtained by reacting a polyol and polyisocyanate and (meth) acrylonitrile-based fine particles. The fine particles are excellent in transparency, do not cause haze, and are not colored. For example, when used as a polarizer protective film, the fine particles have an advantage that the optical properties of the polarizer are small.
 一般に、易接着層の強度および易接着性は、微粒子を配合することにより低下する。しかしながら、本発明の易接着層は、ウレタン樹脂と(メタ)アクリロニトリル系微粒子とを含むことにより、易接着層の強度および易接着性を向上させることができる。この理由は明らかではないが、本発明者らが推察するに、(メタ)アクリロニトリルの電子求引性の官能基であるニトリル基とウレタン樹脂中のカルボニル基あるいはカルボキシル基との間に静電的な力が働くことにより易接着層の強度が向上し、さらには、当該ニトリル基と易接着層に隣接する層との間においても静電的な力が働き、易接着性が向上するものと考える。 Generally, the strength and easy adhesion of the easy-adhesion layer are reduced by adding fine particles. However, the easy-adhesion layer of this invention can improve the intensity | strength and easy-adhesiveness of an easy-adhesion layer by including a urethane resin and (meth) acrylonitrile type microparticles | fine-particles. The reason for this is not clear, but the present inventors have inferred that there is an electrostatic charge between the nitrile group, which is an electron-withdrawing functional group of (meth) acrylonitrile, and the carbonyl group or carboxyl group in the urethane resin. The strength of the easy-adhesion layer is improved by the action of a strong force, and further, an electrostatic force works between the nitrile group and the layer adjacent to the easy-adhesion layer, thereby improving the easy adhesion property. Think.
 上記ウレタン樹脂は、ポリオールとポリイソシアネートとを反応させることにより得られる。ポリオールとしては、分子中にヒドロキシル基を2個以上有するものであれば特に限定されず、任意の適切なポリオールを採用することができる。例えば、ポリアクリルポリオール、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール等が挙げられる。これらは単独、或いは2種以上を組み合わせて用いることができる。 The urethane resin can be obtained by reacting polyol and polyisocyanate. The polyol is not particularly limited as long as it has two or more hydroxyl groups in the molecule, and any appropriate polyol can be adopted. For example, polyacryl polyol, polyester polyol, polyether polyol, polycarbonate polyol and the like can be mentioned. These can be used alone or in combination of two or more.
 上記ウレタン樹脂は、ポリアクリルポリオール、ポリエステルポリオール、ポリカーボネートポリオールから選ばれる1種、或いは2種以上のポリオールとポリイソシアネートとを反応して得られるものであることが好ましい。上記のポリオールとポリイソシアネートとを反応して得られるウレタン樹脂は、極性が大きく、分子中にカルボニル基を多数有することから、より効果的に易接着層の強度及び易接着性を向上させることができる。また、これらの中でも、ポリエステルポリオールとポリイソシアネートとを反応して得られるウレタン樹脂は、特に極性が大きいことから好ましい。 The urethane resin is preferably obtained by reacting one or two or more polyols selected from polyacryl polyol, polyester polyol and polycarbonate polyol with polyisocyanate. The urethane resin obtained by reacting the above polyol and polyisocyanate has a large polarity and has many carbonyl groups in the molecule, so that it can more effectively improve the strength and easy adhesion of the easy adhesion layer. it can. Of these, urethane resins obtained by reacting polyester polyols with polyisocyanates are preferred because of their particularly high polarity.
 上記ウレタン樹脂は、分子中にアニオン性官能基を有することが好ましい。アニオン性官能基としては、カルボキシル基、スルホン酸基、リン酸基、フェノール系水酸基等が挙げられる。アニオン性官能基を有するウレタン樹脂は、例えば、上記ポリオールと上記イソシアネートとに加え、鎖延長剤としてアニオン性官能基を有するジオール等を反応させることにより得られる。 The urethane resin preferably has an anionic functional group in the molecule. Examples of the anionic functional group include a carboxyl group, a sulfonic acid group, a phosphoric acid group, and a phenolic hydroxyl group. The urethane resin having an anionic functional group can be obtained, for example, by reacting a diol having an anionic functional group as a chain extender in addition to the polyol and the isocyanate.
 上記ウレタン樹脂は、分子中にアニオン性官能基としてカルボキシル基を有することが特に好ましい。カルボキシル基を有することにより、他の機能性フィルムとの密着性(特に、高温・高湿下における)に優れた光学フィルムを提供することできる。カルボキシル基を有するウレタン樹脂は、例えば、上記ポリオールと上記ポリイソシアネートとに加え、遊離カルボキシル基を有する鎖延長剤を反応させることにより得られる。遊離カルボキシル基を有する鎖延長剤は、例えば、ジヒドロキシカルボン酸、ジヒドロキシスクシン酸等が挙げられる。ジヒドロキシカルボン酸は、例えば、ジメチロールアルカン酸(例えば、ジメチロール酢酸、ジメチロールブタン酸、ジメチロールプロピオン酸、ジメチロール酪酸、ジメチロールペンタン酸)等のジアルキロールアルカン酸が挙げられる。これらは単独、或いは2種以上を組み合わせて用いることができる。 The urethane resin particularly preferably has a carboxyl group as an anionic functional group in the molecule. By having a carboxyl group, it is possible to provide an optical film that is excellent in adhesion to other functional films (particularly under high temperature and high humidity). The urethane resin having a carboxyl group can be obtained, for example, by reacting a chain extender having a free carboxyl group in addition to the polyol and the polyisocyanate. Examples of the chain extender having a free carboxyl group include dihydroxycarboxylic acid and dihydroxysuccinic acid. Examples of the dihydroxycarboxylic acid include dialkylolalkanoic acids such as dimethylolalkanoic acid (for example, dimethylolacetic acid, dimethylolbutanoic acid, dimethylolpropionic acid, dimethylolbutyric acid, dimethylolpentanoic acid). These can be used alone or in combination of two or more.
 上記ウレタン樹脂の数平均分子量は、好ましくは5000~600000、さらに好ましくは10000~400000である。上記ウレタン樹脂の酸価は、好ましくは10以上、さらに好ましくは10~50、特に好ましくは20~45である。酸価がこのような範囲内であることにより、他の機能性フィルムとの密着性に優れる。 The number average molecular weight of the urethane resin is preferably 5,000 to 600,000, more preferably 10,000 to 400,000. The acid value of the urethane resin is preferably 10 or more, more preferably 10 to 50, and particularly preferably 20 to 45. When the acid value is within such a range, the adhesiveness with other functional films is excellent.
 上記ウレタン樹脂の製造方法は、任意の適切な方法を採用することができる。具体的には、上記各成分を一度に反応させるワンショット法、段階的に反応させる多段法が挙げられる。ウレタン樹脂がカルボキシル基を有する場合、多段法を用いるのが好ましい。多段法を用いることにより、カルボキシル基を容易に導入することができる。なお、上記ウレタン樹脂の製造に際し、任意の適切なウレタン反応触媒を用いることができる。 Any appropriate method can be adopted as a method for producing the urethane resin. Specific examples include a one-shot method in which the above components are reacted at once and a multi-stage method in which the components are reacted in stages. When the urethane resin has a carboxyl group, it is preferable to use a multistage method. By using a multistage method, a carboxyl group can be easily introduced. In the production of the urethane resin, any suitable urethane reaction catalyst can be used.
 上記(メタ)アクリロニトリル系微粒子は、単量体の(メタ)アクリロニトリルを重合または(メタ)アクリロニトリルと他の単量体とを共重合させて得られる。他の単量体としては、共重合可能な限り、任意の適切な単量体を採用することができる。具体的には、(メタ)アクリル酸エステル、(メタ)アクリル酸等の不飽和モノカルボン酸;マレイン酸等の不飽和ジカルボン酸ならびにその無水物およびモノまたはジエステル類;(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド等の不飽和アミド類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;メチルビニルエーテル等のビニルエーテル類;エチレン、プロピレン等のα-オレフィン類;塩化ビニル、塩化ビニリデン等のハロゲン化α,β-不飽和脂肪族単量体;スチレン、 α-メチルスチレン等のα,β-不飽和芳香族単量体等が挙げられる。これらは単独、或いは2種以上を組み合わせて用いることができる。上記(メタ)アクリロニトリル系微粒子が(メタ)アクリロニトリルと他の単量体との共重合である場合、(メタ)アクリロニトリルを主成分とすることが好ましい。 The (meth) acrylonitrile-based fine particles are obtained by polymerizing monomer (meth) acrylonitrile or copolymerizing (meth) acrylonitrile and another monomer. As the other monomer, any appropriate monomer can be adopted as long as copolymerization is possible. Specifically, unsaturated monocarboxylic acids such as (meth) acrylic acid esters and (meth) acrylic acids; unsaturated dicarboxylic acids such as maleic acid and anhydrides and mono- or diesters thereof; (meth) acrylamide, N- Unsaturated amides such as methylol (meth) acrylamide; Vinyl esters such as vinyl acetate and vinyl propionate; Vinyl ethers such as methyl vinyl ether; α-olefins such as ethylene and propylene; Halogenation such as vinyl chloride and vinylidene chloride α, β-unsaturated aliphatic monomers; α, β-unsaturated aromatic monomers such as styrene and α-methylstyrene; These can be used alone or in combination of two or more. When the (meth) acrylonitrile-based fine particles are a copolymer of (meth) acrylonitrile and another monomer, it is preferable that (meth) acrylonitrile is a main component.
 上記微粒子の平均粒子径は、好ましくは50~350nm、より好ましくは75~300nm、さらに好ましくは100~250nmである。このような粒子径の微粒子を用いることにより、易接着層表面に適切に凹凸を形成して、MARフィルムと易接着層および/または易接着層どうしの接触面における摩擦力を効果的に低減することができ、ブロッキングを抑制することができる。 The average particle size of the fine particles is preferably 50 to 350 nm, more preferably 75 to 300 nm, and still more preferably 100 to 250 nm. By using fine particles having such a particle size, irregularities are appropriately formed on the surface of the easy-adhesion layer, and the frictional force at the contact surface between the MAR film and the easy-adhesion layer and / or the easy-adhesion layer is effectively reduced. And blocking can be suppressed.
 MARフィルムの表面に易接着層を形成する方法は特に限定されず、公知の方法を用いることができる。例えば、易接着層は、ウレタン樹脂と(メタ)アクリロニトリル系微粒子とを含む易接着組成物をアクリル樹脂フィルムの表面に塗布して、当該組成物の塗布膜を形成した後、形成した塗布膜を乾燥させて形成することが好ましい。 The method for forming the easy-adhesion layer on the surface of the MAR film is not particularly limited, and a known method can be used. For example, the easy-adhesion layer is formed by applying an easy-adhesive composition containing urethane resin and (meth) acrylonitrile-based fine particles to the surface of an acrylic resin film to form a coating film of the composition, and then forming the formed coating film. It is preferable to form by drying.
 上記易接着組成物は、水系の組成物であることが好ましく、水系の組成物は、有機系溶剤に比べて、易接着層を形成する際に生じる環境への負荷が小さく、作業性に優れる。水系の組成物は、例えば、ウレタン樹脂の分散体である。ウレタン樹脂の分散体は、典型的には、ウレタン樹脂のエマルジョンである。ウレタン樹脂のエマルジョンは、乾燥により樹脂層となる。また、当該エマルジョンに含まれる微粒子は、そのまま樹脂層に残留する。 The easy-adhesion composition is preferably a water-based composition, and the water-based composition has a smaller work load on the environment when forming the easy-adhesion layer than an organic solvent, and is excellent in workability. . The aqueous composition is, for example, a urethane resin dispersion. The dispersion of urethane resin is typically an emulsion of urethane resin. The urethane resin emulsion becomes a resin layer by drying. The fine particles contained in the emulsion remain in the resin layer as they are.
 上記易接着組成物が水系の場合、好ましくは、上記ウレタン樹脂の製造において中和剤を用いる。中和剤を用いることにより、水中におけるウレタン樹脂の安定性が向上し得る。中和剤としては、例えば、アンモニア、N-メチルモルホリン、トリエチルアミン、ジメチルエタノールアミン、メチルジエタノールアミン、トリエタノールアミン、モルホリン、トリプロピルアミン、エタノールアミン、トリイソプロパノールアミン、2-アミノ-2-メチル-1-プロパノール等が挙げられる。これらは単独、或いは2種以上を組み合わせて用いることができる。 When the easy-adhesion composition is water-based, a neutralizing agent is preferably used in the production of the urethane resin. By using a neutralizing agent, the stability of the urethane resin in water can be improved. Examples of the neutralizing agent include ammonia, N-methylmorpholine, triethylamine, dimethylethanolamine, methyldiethanolamine, triethanolamine, morpholine, tripropylamine, ethanolamine, triisopropanolamine, 2-amino-2-methyl-1 -Propanol and the like. These can be used alone or in combination of two or more.
 上記易接着組成物が水系の場合、ウレタン樹脂の製造に際し、好ましくは、上記ポリイソシアネートに対して不活性で、水と相溶する有機溶剤を用いることができる。当該有機溶剤としては、例えば、酢酸エチル、酢酸ブチル、エチルセロソルブアセテート等のエステル系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤;ジオキサン、テトラハイドロフラン、プロピレングリコールモノメチルエーテル等のエーテル系溶剤等が挙げられる。これらは単独、或いは2種以上を組み合わせて用いることができる。 When the easy-adhesion composition is water-based, an organic solvent which is preferably inert to the polyisocyanate and compatible with water can be used in the production of the urethane resin. Examples of the organic solvent include ester solvents such as ethyl acetate, butyl acetate, and ethyl cellosolve acetate; ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; ether solvents such as dioxane, tetrahydrofuran, and propylene glycol monomethyl ether. A solvent etc. are mentioned. These can be used alone or in combination of two or more.
 上記易接着組成物が水系の場合、微粒子は水分散体として配合されていることが好ましい。微粒子の水分散体を配合した水系の易接着組成物は、易接着層形成時の作業性により優れ得る。 When the easy-adhesion composition is aqueous, the fine particles are preferably blended as an aqueous dispersion. An aqueous easy-adhesion composition containing an aqueous dispersion of fine particles can be more excellent in workability when forming an easy-adhesion layer.
 上記易接着組成物は、架橋剤を含むことが好ましい。当該架橋剤は、任意の適切な架橋剤を採用することができる。具体的には、上記ウレタン樹脂がカルボキシル基を有する場合、架橋剤としては、好ましくは、カルボキシル基と反応し得る基を有するポリマーが挙げられる。カルボキシル基と反応し得る基としては、例えば、有機アミノ基、オキサゾリン基、エポキシ基、カルボジイミド基等が挙げられる。好ましくは、架橋剤は、オキサゾリン基を有する。これらの中でも、オキサゾリン基を有する架橋剤は、上記ウレタン樹脂と混合したときの室温でのポットライフが長く、加熱することによって架橋反応が進行するため、作業性が良好となる。 The above easy-adhesive composition preferably contains a crosslinking agent. Arbitrary appropriate crosslinking agents can be employ | adopted for the said crosslinking agent. Specifically, when the urethane resin has a carboxyl group, the crosslinking agent preferably includes a polymer having a group capable of reacting with the carboxyl group. Examples of the group that can react with a carboxyl group include an organic amino group, an oxazoline group, an epoxy group, and a carbodiimide group. Preferably, the crosslinking agent has an oxazoline group. Among these, the crosslinking agent having an oxazoline group has a long pot life at room temperature when mixed with the urethane resin, and the crosslinking reaction proceeds by heating, so that workability is improved.
 上記易接着組成物は、任意の適切な添加剤をさらに含むことができる。添加剤としては、例えば、分散安定剤、揺変剤、酸化防止剤、紫外線吸収剤、消泡剤、増粘剤、分散剤、界面活性剤、触媒、フィラー、滑剤、帯電防止剤等が挙げられる。 The above easy-adhesion composition may further contain any appropriate additive. Examples of the additive include a dispersion stabilizer, a thixotropic agent, an antioxidant, an ultraviolet absorber, an antifoaming agent, a thickener, a dispersant, a surfactant, a catalyst, a filler, a lubricant, and an antistatic agent. It is done.
 上述したように、易接着組成物は、好ましくは水系である。易接着組成物におけるウレタン樹脂の濃度は、好ましくは1.5~15重量%、さらに好ましくは2~10重量%である。易接着組成物におけるウレタン樹脂の濃度が上記範囲であれば、易接着層形成時の作業性に優れることから好ましい。また、易接着組成物が架橋剤を含む場合、易接着組成物中の架橋剤(固形分)の含有量は、ウレタン樹脂(固形分)100重量部に対して、好ましくは1~30重量部、さらに好ましくは3~20重量部である。1重量部以上とすることにより、偏光子との密着性に優れ、30重量部以下とすることにより、易接着層に位相差が発現するのを抑制することができる。易接着組成物中の微粒子(固形分)の含有量は、ウレタン樹脂(固形分:架橋剤を含む場合は架橋剤をも含めた固形分)100重量部に対して、好ましくは0.1~15重量部、より好ましくは0.3~5重量部、さらに好ましくは0.5~3重量部である。具体的には、易接着層における微粒子の含有量は、樹脂固形分100重量部に対して、好ましくは0.1~15重量部、より好ましくは0.3~5重量部、さらに好ましくは0.5~3重量部である。このような範囲に設定することにより、易接着層表面に適切に凹凸を形成して、MARフィルムと易接着層および/または易接着層どうしの接触面における摩擦力を効果的に低減し、ブロッキング抑制能に優れるとともに、易接着層の強度と易接着性が向上し、他の機能性フィルムとの接着力を十分に確保することができる。また、偏光子保護フィルムとして使用した場合、偏光板の光学特性に与える影響をより抑制することができる。 As described above, the easy-adhesion composition is preferably aqueous. The concentration of the urethane resin in the easy-adhesion composition is preferably 1.5 to 15% by weight, more preferably 2 to 10% by weight. If the density | concentration of the urethane resin in an easily bonding composition is the said range, it is preferable from being excellent in the workability | operativity at the time of easily bonding layer formation. When the easy-adhesion composition contains a crosslinking agent, the content of the crosslinking agent (solid content) in the easy-adhesion composition is preferably 1 to 30 parts by weight with respect to 100 parts by weight of the urethane resin (solid content). More preferably, it is 3 to 20 parts by weight. By setting it as 1 weight part or more, it is excellent in adhesiveness with a polarizer, and it can suppress that a phase difference expresses in an easily bonding layer by setting it as 30 weight part or less. The content of the fine particles (solid content) in the easy-adhesion composition is preferably 0.1 to 100 parts by weight with respect to 100 parts by weight of the urethane resin (solid content: solid content including the crosslinking agent if a crosslinking agent is included). The amount is 15 parts by weight, more preferably 0.3 to 5 parts by weight, still more preferably 0.5 to 3 parts by weight. Specifically, the content of the fine particles in the easy-adhesion layer is preferably 0.1 to 15 parts by weight, more preferably 0.3 to 5 parts by weight, and still more preferably 0 to 100 parts by weight of the resin solid content. .5-3 parts by weight. By setting in such a range, the unevenness is appropriately formed on the surface of the easy-adhesion layer, the frictional force on the contact surface between the MAR film and the easy-adhesion layer and / or the easy-adhesion layer is effectively reduced, and blocking is achieved. While being excellent in suppression ability, the intensity | strength and easy adhesiveness of an easily bonding layer improve, and adhesive force with another functional film can fully be ensured. Moreover, when it uses as a polarizer protective film, the influence which it has on the optical characteristic of a polarizing plate can be suppressed more.
 上記易接着層の厚みは、任意の適切な値に設定することができる。好ましくは0.1~10μm、さらに好ましくは0.1~5μm、特に好ましくは0.2~1.0μmである。このような範囲に設定することにより、他の機能性フィルムとの密着性に優れ、易接着層に位相差が発現するのを抑制することができる。 The thickness of the easy-adhesion layer can be set to any appropriate value. The thickness is preferably 0.1 to 10 μm, more preferably 0.1 to 5 μm, and particularly preferably 0.2 to 1.0 μm. By setting to such a range, it is excellent in adhesiveness with another functional film, and it can suppress that a phase difference expresses in an easily bonding layer.
 易接着層の厚さdと、易接着層に含まれる微粒子の平均粒子径rとの比r/dは、0.3~1.4が好ましく、0.4~1.1がより好ましく、0.5~1.0がさらに好ましい。このような範囲に設定することにより、本発明の光学フィルムにおける耐ブロッキング性を確実とすることができる。易接着層の厚さdに比べて微粒子の粒子径rが、上記比r/dの範囲を超えて小さい場合、易接着層に含まれるが易接着層の表面に露出しない微粒子、すなわち耐ブロッキング性の向上に寄与しないが光学フィルムのヘイズ率を上昇させるおそれがある。易接着層の厚さdに比べて微粒子の平均粒子径rが、上記比r/dの範囲を超えて大きい場合、易接着層の強度が低下し、微粒子が易接着層から脱落しやすくなるおそれがある。 The ratio r / d between the thickness d of the easy adhesion layer and the average particle diameter r of the fine particles contained in the easy adhesion layer is preferably 0.3 to 1.4, more preferably 0.4 to 1.1, 0.5 to 1.0 is more preferable. By setting to such a range, blocking resistance in the optical film of the present invention can be ensured. When the particle diameter r of the fine particles is smaller than the ratio r / d compared to the thickness d of the easy adhesion layer, the fine particles are included in the easy adhesion layer but are not exposed on the surface of the easy adhesion layer, that is, blocking resistance. Although it does not contribute to the improvement of the property, there is a risk of increasing the haze ratio of the optical film. When the average particle diameter r of the fine particles is larger than the ratio r / d compared to the thickness d of the easy-adhesive layer, the strength of the easy-adhesive layer is lowered and the fine particles are easily removed from the easy-adhesive layer. There is a fear.
 [光学フィルム]
 図1に本発明の光学フィルムの一例を示す。図1に示す光学フィルム1は、MARフィルム2の一方の表面に易接着層3が形成された構造を有する。MARフィルム2および易接着層3の具体的な構成については上述のとおりである。なお、本発明の光学フィルムは、MARフィルムの双方の表面に易接着層が形成されていてもよい。
[Optical film]
FIG. 1 shows an example of the optical film of the present invention. An optical film 1 shown in FIG. 1 has a structure in which an easy adhesion layer 3 is formed on one surface of a MAR film 2. Specific configurations of the MAR film 2 and the easy adhesion layer 3 are as described above. In the optical film of the present invention, an easy adhesion layer may be formed on both surfaces of the MAR film.
 本発明の光学フィルムのヘイズ率としては1.0%以下であることが好ましい。なお、ヘイズ率はJISK7105の規定に基づいて測定される。 The haze ratio of the optical film of the present invention is preferably 1.0% or less. Note that the haze ratio is measured based on the provisions of JISK7105.
 本発明の光学フィルムの易接着層表面における静摩擦係数としては、0.1~0.60であることが好ましく、0.1~0.55であることがより好ましく、0.1~0.50であることがさらに好ましい。静摩擦係数が上記範囲であれば、フィルムの巻き取り時に生じるブロッキングの抑制能に優れ得る。 The static friction coefficient on the surface of the easily adhesive layer of the optical film of the present invention is preferably 0.1 to 0.60, more preferably 0.1 to 0.55, and more preferably 0.1 to 0.50. More preferably. If a static friction coefficient is the said range, it can be excellent in the blocking capability which arises at the time of winding of a film.
 本発明の光学フィルムは、ロールに巻回する際の耐ブロッキング性に優れるため、ロールに巻回されていてもよい(フィルムロールであってもよい)。本発明の光学フィルムのフィルムロールは、耐ブロッキング性に優れるため、光学フィルムの巻き取り時および後加工の繰り出し時において、フィルムのハンドリング性に優れ得る。 Since the optical film of the present invention is excellent in blocking resistance when wound on a roll, it may be wound on a roll (may be a film roll). Since the film roll of the optical film of the present invention is excellent in blocking resistance, the film can be excellent in handling properties at the time of winding up the optical film and at the time of unwinding the post-processing.
 本発明の光学フィルムにおける易接着層が形成されている表面と反対側の表面には、必要に応じて、各種の機能性コーティング層が形成されていてもよい。機能性コーティング層は、例えば、帯電防止層、粘接着剤層、接着層、易接着層、防眩(ノングレア)層、光触媒層などの防汚層、反射防止層、ハードコート層、紫外線遮蔽層、熱線遮蔽層、電磁波遮蔽層、ガスバリヤー層等が挙げられる。 Various functional coating layers may be formed on the surface of the optical film of the present invention opposite to the surface on which the easy adhesion layer is formed, if necessary. Functional coating layers include, for example, antistatic layers, adhesive layers, adhesive layers, easy adhesion layers, antiglare (non-glare) layers, antifouling layers such as photocatalyst layers, antireflection layers, hard coat layers, and UV shielding layers. Layer, heat ray shielding layer, electromagnetic wave shielding layer, gas barrier layer and the like.
 本発明の光学フィルムは、例えば、偏光子保護フィルム、位相差フィルム、視野角補償フィルム、光拡散フィルム、反射フィルム、反射防止フィルム、防眩フィルム、輝度向上フィルム、タッチパネル用導電フィルムである。また、上記の中でも、偏光子保護フィルムとして使用することが特に好ましい。本発明の光学フィルムが示す位相差は、アクリル樹脂フィルムの組成および延伸状態により制御することができる。本発明の光学フィルムは、光学的に等方なフィルムであっても良く、光学的に異方性を有する(例えば、位相差のような複屈折を発現する)フィルムであっても良い。 The optical film of the present invention is, for example, a polarizer protective film, a retardation film, a viewing angle compensation film, a light diffusion film, a reflection film, an antireflection film, an antiglare film, a brightness enhancement film, and a conductive film for a touch panel. Moreover, among these, it is particularly preferable to use it as a polarizer protective film. The retardation exhibited by the optical film of the present invention can be controlled by the composition and stretched state of the acrylic resin film. The optical film of the present invention may be an optically isotropic film or an optically anisotropic film (for example, exhibiting birefringence such as retardation).
 [偏光板]
 図2に本発明の偏光板の一例を示す。図2に示す偏光板10は、MARフィルム2の一方の表面に易接着層3を有する偏光子保護フィルム4の易接着層側の表面に接着剤5を介し、偏光子6が積層された構造を有する。なお、図示しないが、偏光板10は、偏光子6の偏光子保護フィルム4と反対側に、接着剤層を介して積層された第2の偏光子保護フィルムを有していても良い。
[Polarizer]
FIG. 2 shows an example of the polarizing plate of the present invention. The polarizing plate 10 shown in FIG. 2 has a structure in which a polarizer 6 is laminated on the surface of the polarizer protective film 4 having the easy adhesion layer 3 on one surface of the MAR film 2 via the adhesive 5. Have Although not shown, the polarizing plate 10 may have a second polarizer protective film laminated on the opposite side of the polarizer 6 from the polarizer protective film 4 via an adhesive layer.
 上記偏光板は、MARフィルムの表面に易接着層を有する偏光子保護フィルムの易接着層表面に接着剤層を介して偏光子が積層された構造を有する。当該偏光子保護フィルムに形成された易接着層は、易接着層の強度および易接着性に優れる為、偏光子と偏光子保護フィルムとの密着性及び耐久性に優れる偏光板とすることができる。また、偏光子保護フィルムの易接着層に含まれる有機微粒子の平均粒子径が可視光波長よりも小さい為、粒子による光散乱を抑制でき、光学特性に優れる偏光板とすることができる。 The polarizing plate has a structure in which a polarizer is laminated on an easy-adhesive layer surface of a polarizer protective film having an easy-adhesive layer on the surface of the MAR film via an adhesive layer. Since the easy-adhesion layer formed on the polarizer protective film is excellent in the strength and easy adhesion of the easy-adhesion layer, it can be a polarizing plate excellent in adhesion and durability between the polarizer and the polarizer protective film. . Moreover, since the average particle diameter of the organic fine particles contained in the easy-adhesion layer of the polarizer protective film is smaller than the visible light wavelength, light scattering by the particles can be suppressed, and a polarizing plate having excellent optical properties can be obtained.
 上記偏光子としては、目的に応じて任意の適切な偏光子を採用することができる。例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン-酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。これらの中でも、ポリビニルアルコール系フィルムにヨウ素などの二色性物質を吸着させて一軸延伸した偏光子が、偏光二色比が高く特に好ましい。これら偏光子の厚さは特に制限されないが、一般的に、1~80 μm程度である。 As the polarizer, any appropriate polarizer can be adopted depending on the purpose. For example, dichroic substances such as iodine and dichroic dyes are adsorbed on hydrophilic polymer films such as polyvinyl alcohol films, partially formalized polyvinyl alcohol films, and ethylene-vinyl acetate copolymer partially saponified films. And polyene-based oriented films such as a uniaxially stretched product, a polyvinyl alcohol dehydrated product and a polyvinyl chloride dehydrochlorinated product. Among these, a polarizer obtained by adsorbing a dichroic substance such as iodine on a polyvinyl alcohol film and uniaxially stretching is particularly preferable because of its high polarization dichroic ratio. The thickness of these polarizers is not particularly limited, but is generally about 1 to 80 μm.
 上記接着剤層を形成する接着剤としては、任意の適切な接着剤を採用することができる。好ましくは、接着剤層は、ポリビニルアルコール系樹脂を含む接着剤組成物から形成される。 Any appropriate adhesive can be adopted as the adhesive forming the adhesive layer. Preferably, the adhesive layer is formed from an adhesive composition containing a polyvinyl alcohol-based resin.
 上記第2の偏光子保護フィルムとしては、任意の適切な保護フィルムを採用することができる。第2の偏光子保護フィルムを形成する材料の代表例としては、ジアセチルセルロース、トリアセチルセルロース等のセルロース系ポリマーが挙げられる。第2の偏光子保護フィルムは、上述したMARフィルムと同様の材料で形成されていてもよい。 Any appropriate protective film can be adopted as the second polarizer protective film. Typical examples of the material forming the second polarizer protective film include cellulose polymers such as diacetyl cellulose and triacetyl cellulose. The second polarizer protective film may be formed of the same material as the above-described MAR film.
 [画像表示装置]
 本発明の画像表示装置は、本発明の偏光板を備える。画像表示装置の具体例としては、エレクトロルミネッセンス(EL)ディスプレイ、プラズマディスプレイ(PD)、電界放出ディスプレイ(FED)のような自発光型表示装置、液晶表示装置(LCD)に使用できる。液晶表示装置(LCD)は、液晶セルと、当該液晶セルの少なくとも片側に配置された上記偏光板とを有する。
[Image display device]
The image display device of the present invention includes the polarizing plate of the present invention. Specific examples of the image display device can be used for a self-luminous display device such as an electroluminescence (EL) display, a plasma display (PD), and a field emission display (FED), and a liquid crystal display (LCD). A liquid crystal display (LCD) has a liquid crystal cell and the polarizing plate disposed on at least one side of the liquid crystal cell.
 [光学フィルムの製造方法]
 本発明の光学フィルムの製造方法は、特に制限するものではなく、公知の方法により製造することができるものであるが、例えば、MARフィルムの少なくとも一方の表面に、ウレタン樹脂と(メタ)アクリロニトリル系微粒子とを含む易接着組成物を塗布して当該易接着組成物の塗布膜を形成し(塗布工程)、形成した塗布膜を乾燥させて、上記微粒子を含む易接着層を上記表面に形成(乾燥工程)することが好ましい。
[Method for producing optical film]
The method for producing the optical film of the present invention is not particularly limited and can be produced by a known method. For example, a urethane resin and a (meth) acrylonitrile-based material are formed on at least one surface of the MAR film. An easy-adhesion composition containing fine particles is applied to form a coating film of the easy-adhesion composition (application process), and the formed coating film is dried to form an easy-adhesion layer containing the fine particles on the surface ( It is preferable to perform a drying step).
 塗布工程において易接着組成物を塗布する方法としては、任意の適切な方法を採用することができる。例えば、バーコート法、ロールコート法、グラビアコート法、ロッドコート法、スロットオリフィスコート法、カーテンコート法、ファウンテンコート法等が挙げられる。塗布工程において形成する塗布膜の厚さは、当該塗布膜が易接着層となったときに必要な厚さに応じて、適宜調整することができる。 Any appropriate method can be adopted as a method of applying the easy-adhesion composition in the application step. Examples thereof include a bar coating method, a roll coating method, a gravure coating method, a rod coating method, a slot orifice coating method, a curtain coating method, and a fountain coating method. The thickness of the coating film formed in the coating process can be appropriately adjusted according to the thickness required when the coating film becomes an easy-adhesion layer.
 (メタ)アクリル樹脂フィルムにおける易接着組成物が塗布される表面は、表面処理が施されていることが好ましい。表面処理としては、コロナ放電処理、プラズマ処理であることが好ましい。コロナ放電処理を施すことにより、MARフィルムと易接着層との密着性を向上させることができる。コロナ放電処理は、任意の適切な条件で施すことができる。コロナ放電電子照射量としては、例えば、10~150W/m/minであることが好ましく、10~100W/m/minであることがさらに好ましい。 The surface to which the easy-adhesion composition in the (meth) acrylic resin film is applied is preferably subjected to a surface treatment. The surface treatment is preferably corona discharge treatment or plasma treatment. By performing the corona discharge treatment, the adhesion between the MAR film and the easy adhesion layer can be improved. The corona discharge treatment can be performed under any appropriate conditions. The amount of corona discharge electron irradiation is, for example, preferably 10 to 150 W / m 2 / min, and more preferably 10 to 100 W / m 2 / min.
 乾燥工程は、特に制限するものではなく、従来公知の方法を用いることができる。乾燥温度としては、代表的には50℃以上、好ましくは90℃以上、さらに好ましくは110℃以上である。乾燥温度をこのような範囲とすることにより、耐色性(特に、高温高湿下における)に優れた光学フィルムとすることができる。乾燥温度の上限は、好ましくは200℃以下、さらに好ましくは180℃以下である。 The drying process is not particularly limited, and a conventionally known method can be used. The drying temperature is typically 50 ° C. or higher, preferably 90 ° C. or higher, more preferably 110 ° C. or higher. By setting the drying temperature in such a range, an optical film excellent in color resistance (particularly under high temperature and high humidity) can be obtained. The upper limit of the drying temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower.
 本発明の光学フィルムの製造方法によって、未延伸のMARフィルムから延伸フィルムである光学フィルムを製造する場合、ならびに一軸延伸されたMARフィルムから二軸延伸フィルムである光学フィルムを製造する場合、これらのMARフィルムをいずれかの時点で延伸する必要がある。MARフィルムの延伸は、易接着層の形成前に行っても良く、易接着層の形成後に行っても良い。また、易接着層の形成と、MARフィルムの延伸とを同時に行っても良い。 When producing an optical film that is a stretched film from an unstretched MAR film, and when producing an optical film that is a biaxially stretched film from a uniaxially stretched MAR film by the method for producing an optical film of the present invention, these The MAR film needs to be stretched at some point. The MAR film may be stretched before the easy-adhesion layer is formed or after the easy-adhesion layer is formed. Moreover, you may perform formation of an easily bonding layer and extending | stretching of a MAR film simultaneously.
 易接着層の形成と、MARフィルムの延伸とを同時に行う場合、例えば、塗布工程の後に、易接着組成物の塗布膜を形成したMARフィルムを加熱雰囲気下で延伸すればよい。延伸のために当該フィルムに加える熱により、MARフィルムの表面に形成された易接着組成物の塗布膜が乾燥し、易接着層となる。このようにすれば、フィルムの延伸処理と易接着組成物の乾燥とを同時に実施できることから生産性に優れることから好ましい。なお、通常、光学フィルムに使用されるMARは、ガラス転移温度(Tg)が100℃以上である場合が多く、上述した延伸温度は、易接着組成物の塗布膜から易接着層が形成されるのに十分高い温度である。 When forming the easy-adhesion layer and stretching the MAR film at the same time, for example, after the coating process, the MAR film on which the coating film of the easy-adhesion composition is formed may be stretched in a heated atmosphere. Due to the heat applied to the film for stretching, the coating film of the easy-adhesive composition formed on the surface of the MAR film is dried to form an easy-adhesive layer. If it does in this way, since the extending | stretching process of a film and drying of an easily bonding composition can be implemented simultaneously, it is preferable from being excellent in productivity. Usually, the MAR used for the optical film often has a glass transition temperature (Tg) of 100 ° C. or higher, and the above-described stretching temperature forms an easy-adhesion layer from the coating film of the easy-adhesive composition. The temperature is high enough.
 本発明の偏光板は、代表的には、上記光学フィルムと上記偏光子とを接着剤層を介して積層することにより製造される。ここで、上記光学フィルムを、その易接着層が偏光子側となるように積層する。具体的には、偏光子または光学フィルムのいずれか一方の片側に上記接着剤組成物を塗布した後、偏光子と光学フィルムとを貼り合わせて乾燥させる方法が挙げられる。 The polarizing plate of the present invention is typically produced by laminating the optical film and the polarizer through an adhesive layer. Here, the optical film is laminated so that the easy-adhesion layer is on the polarizer side. Specifically, there is a method of applying the adhesive composition on one side of either a polarizer or an optical film, and then bonding the polarizer and the optical film to dry.
 以下、実施例により、本発明をさらに詳細に説明する。なお、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples.
 製造例1
 メタクリル系樹脂[Tg:135℃]のペレットを、単軸押出機(φ=20.0mm、L/D=25)及びコートハンガータイプTダイ(幅150mm)を用いて280 ℃で溶融押出し、押出物を110 ℃に保持した冷却ロールを用いて冷却して、厚さ100μmのメタクリル系樹脂フィルムを形成した。
Production Example 1
Pellets of methacrylic resin [Tg: 135 ° C] were melt extruded at 280 ° C using a single screw extruder (φ = 20.0mm, L / D = 25) and a coat hanger type T die (width 150mm). The product was cooled using a cooling roll maintained at 110 ° C. to form a methacrylic resin film having a thickness of 100 μm.
 製造例2
 ウレタン樹脂[第一工業製薬製、スーパーフレックス210、固形分35重量%]10g、アクリロニトリル系微粒子(微粒子A)を含むエマルジョン[積水化学工業製、ADVANCELL NS K-001、平均粒子径150nm、固形分20重量%]0.22gおよび純水30gを混合して、エマルジョン状の分散体である易接着組成物(1)を得た。
Production Example 2
Urethane resin [Daiichi Kogyo Seiyaku, Superflex 210, solid content 35% by weight] 10 g, emulsion containing acrylonitrile-based fine particles (fine particles A) [manufactured by Sekisui Chemical Co., Ltd., ADVANCEL NS K-001, average particle size 150 nm, solid content 20 wt%] 0.22 g and 30 g of pure water were mixed to obtain an easy-adhesion composition (1) as an emulsion dispersion.
 製造例3
 前記微粒子Aを含むエマルジョンの量を0.44gに増やした以外は製造例2と同様にして易接着組成物(2)を得た。
Production Example 3
An easy-adhesive composition (2) was obtained in the same manner as in Production Example 2, except that the amount of the emulsion containing the fine particles A was increased to 0.44 g.
 製造例4
 前記微粒子Aを含むエマルジョンの量を1.09gに増やした以外は製造例2と同様にして易接着組成物(3)を得た。
Production Example 4
An easy-adhesive composition (3) was obtained in the same manner as in Production Example 2, except that the amount of the emulsion containing the fine particles A was increased to 1.09 g.
 製造例5
 前記微粒子Aを含むエマルジョンの量を2.19gに増やした以外は製造例2と同様にして易接着組成物(4)を得た。
Production Example 5
An easy-adhesive composition (4) was obtained in the same manner as in Production Example 2 except that the amount of the emulsion containing the fine particles A was increased to 2.19 g.
 製造例6
 ウレタン樹脂[第一工業製薬製、スーパーフレックス210、固形分35重量%]に代えてウレタン樹脂[DIC製、ハイドランAP-40N、固形分35重量%]を用いた以外は製造例2と同様にして易接着組成物(5)を得た。
Production Example 6
Similar to Production Example 2, except that urethane resin [manufactured by DIC, Hydran AP-40N, solid content 35% by weight] was used instead of urethane resin [Daiichi Kogyo Seiyaku, Superflex 210, solid content 35% by weight]. Thus, an easy-adhesion composition (5) was obtained.
 製造例7
 前記微粒子Aを含むエマルジョンに代えてアクリロニトリル系微粒子(微粒子B)を含むエマルジョン[東洋紡製、タフチックF-120、平均粒子径200nm、固形分20重量%]を用いた以外は製造例2と同様にして易接着組成物(6)を得た。
Production Example 7
Instead of the emulsion containing the fine particles A, an emulsion containing acrylonitrile-based fine particles (fine particles B) [Toyobo, Tuftic F-120, average particle size 200 nm, solid content 20 wt%] was used in the same manner as in Production Example 2. Thus, an easy-adhesion composition (6) was obtained.
 製造例8
 前記微粒子Aを含むエマルジョン0.22gに代えてコロイダルシリカ微粒子(微粒子C)を含むエマルジョン[扶桑化学工業製、クォートロンPL-7、平均一次粒子径75nm、固形分25重量%]0.88gを用いた以外は製造例2と同様にして易接着組成物(7)を得た。
Production Example 8
Instead of 0.22 g of the emulsion containing fine particles A, 0.88 g of an emulsion containing colloidal silica fine particles (fine particles C) [manufactured by Fuso Chemical Industry, Quartron PL-7, average primary particle size 75 nm, solid content 25 wt%] is used. An easy-adhesive composition (7) was obtained in the same manner as in Production Example 2 except that
 製造例9
 微粒子Cを含むエマルジョンの量を1.75gに増やした以外は製造例8と同様にして易接着組成物(8)を得た。
Production Example 9
An easy-adhesive composition (8) was obtained in the same manner as in Production Example 8, except that the amount of the emulsion containing the fine particles C was increased to 1.75 g.
 製造例10
 前記微粒子Aを含むエマルジョン0.22gに代えてコロイダルシリカ微粒子(微粒子D)を含むエマルジョン[扶桑化学工業製、クォートロンPL-20、平均一次粒子径220nm、固形分20重量%]1.09gを用いた以外は製造例2と同様にして易接着組成物(9)を得た。
Production Example 10
Instead of 0.22 g of the emulsion containing fine particles A, 1.09 g of an emulsion containing colloidal silica fine particles (fine particles D) [manufactured by Fuso Chemical Industries, Quartron PL-20, average primary particle size 220 nm, solid content 20 wt%] is used. An easy-adhesive composition (9) was obtained in the same manner as in Production Example 2 except that
 製造性11
 前記微粒子Dを含むエマルジョンの量を2.19gに増やした以外は製造例10と同様にして易接着組成物(10)を得た。
Manufacturability 11
An easy-adhesive composition (10) was obtained in the same manner as in Production Example 10 except that the amount of the emulsion containing the fine particles D was increased to 2.19 g.
 製造性12
 前記微粒子Dを含むエマルジョンを使用しない以外は、製造例10と同様にして、エマルジョン状の分散体である易接着組成物(11)を得た。
Manufacturability 12
An easy-adhesion composition (11), which is an emulsion-like dispersion, was obtained in the same manner as in Production Example 10 except that the emulsion containing the fine particles D was not used.
 実施例1
 製造例1で作成したメタクリル系樹脂フィルムの一方の表面に、製造例2で作成した易接着組成物(1)を、バーコーターを用いて塗布した後、熱風乾燥機に投入して100℃で90秒間乾燥した。次に、テーブル延伸機を用いて当該フィルムを一軸延伸(延伸倍率:2.5倍)し、厚さ40μmのメタクリル系樹脂フィルムの表面に、ウレタン樹脂と微粒子とを含む厚さ0.3μmの易接着層を有する光学フィルムを得た。易接着層における微粒子の含有量は、ウレタン樹脂100重量部に対して、1.25重量部であった。
Example 1
The easy-adhesion composition (1) created in Production Example 2 was applied to one surface of the methacrylic resin film produced in Production Example 1 using a bar coater, and then charged into a hot air dryer at 100 ° C. Dry for 90 seconds. Next, the film is uniaxially stretched using a table stretching machine (stretching ratio: 2.5 times), and the surface of a methacrylic resin film having a thickness of 40 μm has a thickness of 0.3 μm including urethane resin and fine particles. An optical film having an easy adhesion layer was obtained. Content of the microparticles | fine-particles in an easily bonding layer was 1.25 weight part with respect to 100 weight part of urethane resins.
 実施例2~6、比較例1~5
 易接着組成物(1)の代わりに、表1に示す易接着組成物を用いた以外は実施例1と同様にして光学フィルムを得た。易接着層における、ウレタン樹脂100重量部に対する微粒子の含有量(重量部)は、表1に示す通りである。
Examples 2 to 6 and Comparative Examples 1 to 5
An optical film was obtained in the same manner as in Example 1 except that the easy-adhesive composition shown in Table 1 was used instead of the easy-adhesive composition (1). Table 1 shows the content (parts by weight) of fine particles with respect to 100 parts by weight of the urethane resin in the easy adhesion layer.
 各実施例および比較例で得られた光学フィルムについて、以下に示す評価を行った。評価結果を表1に示す。
(1)静摩擦係数(易接着層とMARフィルムとの間)
測定装置:トライボギア TYPE14[新東科学製]
ガラス板上に固定した各実施例および比較例で得られた光学フィルムと、10mm φのステンレス製の円盤に固定した製造例1で得られたメタクリル系樹脂フィルムを密着させ、円盤に固定したアクリル樹脂フィルムの上から200gの加重をかけて6.0mm/分の速度で水平方向に移動させたときの動き出しの最大負荷から静摩擦係数を求めた。
(2)密着性
各実施例および比較例で得られた光学フィルムの易接着層側に、ポリビニルアルコール系接着剤組成物を塗布し、当該接着剤組成物を介して厚さ30μmのヨウ素系偏光子と積層した後、熱風乾燥機(70 ℃)に投入して5分乾燥し、偏光子と貼り合わせた積層体を得た。上記で得られた積層体から25mm ×250mmの寸法のサンプル片を切り出し、光学フィルムの表面に粘着加工を施し、ガラス板に貼り付けた。その後、積層体の偏光子を掴み、日本接着剤工業規格JAI 13-1996の浮動ローラー法に準じて、90度でのはく離接着強さを測定した。なお、はく離接着強さの単位を(N/25mm)として表した。
The following evaluation was performed about the optical film obtained by each Example and the comparative example. The evaluation results are shown in Table 1.
(1) Coefficient of static friction (between easy adhesion layer and MAR film)
Measuring device: Tribogear TYPE14 [made by Shinto Kagaku]
The acrylic film fixed in the disk by bringing the optical film obtained in each Example and Comparative Example fixed on a glass plate into close contact with the methacrylic resin film obtained in Production Example 1 fixed in a 10 mmφ stainless steel disk. The static friction coefficient was determined from the maximum load at the start of movement when a load of 200 g was applied from the top of the resin film and moved horizontally at a speed of 6.0 mm / min.
(2) Adhesion A polyvinyl alcohol-based adhesive composition is applied to the easy-adhesion layer side of the optical films obtained in the respective Examples and Comparative Examples, and an iodine-based polarized light having a thickness of 30 μm is interposed through the adhesive composition. After laminating with the polarizer, it was put into a hot air dryer (70 ° C.) and dried for 5 minutes to obtain a laminate bonded with the polarizer. A sample piece having a size of 25 mm × 250 mm was cut out from the laminate obtained above, subjected to adhesion processing on the surface of the optical film, and attached to a glass plate. Thereafter, the polarizer of the laminate was grasped, and the peel adhesion strength at 90 degrees was measured according to the floating roller method of Japan Adhesive Industry Standard JAI 13-1996. The unit of peel adhesion strength was expressed as (N / 25 mm).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、ウレタン樹脂とアクリロニトリル系微粒子とを含む易接着層を有する実施例1乃至6の光学フィルムは、耐ブロッキング性に優れるとともに、微粒子を含まない比較例5の光学フィルムと比べ、他の機能性フィルムとの密着性が高い結果を示した。一方、ウレタン樹脂とコロイダルシリカ微粒子とを含む易接着層が形成された比較例1乃至4の光学フィルムは、耐ブロッキング性には優れるが、微粒子を配合しない比較例5と比べ、他の機能性フィルムとの密着性が低い結果を示した。 As shown in Table 1, the optical films of Examples 1 to 6 having an easy-adhesion layer containing a urethane resin and acrylonitrile-based fine particles are excellent in blocking resistance and compared with the optical film of Comparative Example 5 that does not contain fine particles. The results showed high adhesion to other functional films. On the other hand, the optical films of Comparative Examples 1 to 4 in which an easy-adhesion layer containing urethane resin and colloidal silica fine particles are formed are excellent in blocking resistance, but other functionalities than Comparative Example 5 in which no fine particles are blended. The results showed low adhesion to the film.

Claims (6)

  1.  (メタ)アクリル系樹脂フィルムの少なくとも一方の表面に、ポリオールとポリイソシアネートとを反応して得られるウレタン樹脂と(メタ)アクリロニトリル系微粒子とを含む易接着層を有することを特徴とする光学フィルム。 An optical film comprising an easy-adhesion layer containing a urethane resin obtained by reacting polyol and polyisocyanate and (meth) acrylonitrile fine particles on at least one surface of a (meth) acrylic resin film.
  2.  前記易接着層は、前記ウレタン樹脂100重量部に対して、前記微粒子を0.1~15重量部含むことを特徴とする請求項1記載の光学フィルム。 2. The optical film according to claim 1, wherein the easy adhesion layer contains 0.1 to 15 parts by weight of the fine particles with respect to 100 parts by weight of the urethane resin.
  3.  前記ウレタン樹脂が、分子中にアニオン性官能基を有することを特徴とする請求項1または2記載の光学フィルム。 3. The optical film according to claim 1, wherein the urethane resin has an anionic functional group in the molecule.
  4.  前記ポリオールが、ポリエステルポリオール、ポリアクリルポリオール、ポリエーテルポリオール、及びポリカーボネートポリオールから選ばれる1種以上であることを特徴とする請求項1または2記載の光学フィルム。 3. The optical film according to claim 1, wherein the polyol is at least one selected from polyester polyol, polyacryl polyol, polyether polyol, and polycarbonate polyol.
  5.  前記微粒子の粒子径が、50~350nmであることを特徴とする請求項1または2記載の光学フィルム。 3. The optical film according to claim 1, wherein the fine particles have a particle size of 50 to 350 nm.
  6.  請求項1または2記載の光学フィルムの製造方法であって、(メタ)アクリル系樹脂フィルムの少なくとも一方の表面に、ウレタン樹脂と(メタ)アクリロニトリル系微粒子とを含む易接着組成物を塗布して塗膜を形成し、前記塗膜を乾燥して易接着層を形成することを特徴とする光学フィルムの製造方法。 It is a manufacturing method of the optical film of Claim 1 or 2, Comprising: The easily bonding composition containing a urethane resin and (meth) acrylonitrile type microparticles | fine-particles is apply | coated to the at least one surface of a (meth) acrylic-type resin film. A method for producing an optical film, comprising forming a coating film and drying the coating film to form an easy-adhesion layer.
PCT/JP2014/082777 2013-12-28 2014-12-11 Optical film and manufacturing method therefor WO2015098539A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480065002.7A CN105765426B (en) 2013-12-28 2014-12-11 Optical thin film and its manufacturing method
JP2015554732A JP6163564B2 (en) 2013-12-28 2014-12-11 Optical film and manufacturing method thereof
KR1020167014758A KR102303580B1 (en) 2013-12-28 2014-12-11 Optical film and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-273651 2013-12-28
JP2013273651 2013-12-28

Publications (1)

Publication Number Publication Date
WO2015098539A1 true WO2015098539A1 (en) 2015-07-02

Family

ID=53478403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082777 WO2015098539A1 (en) 2013-12-28 2014-12-11 Optical film and manufacturing method therefor

Country Status (5)

Country Link
JP (1) JP6163564B2 (en)
KR (1) KR102303580B1 (en)
CN (1) CN105765426B (en)
TW (1) TWI629170B (en)
WO (1) WO2015098539A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088633A1 (en) * 2014-12-04 2016-06-09 大倉工業株式会社 Highly-adhesive composition, optical film using same, and production method therefor
WO2018030461A1 (en) * 2016-08-10 2018-02-15 株式会社日本触媒 Laminated resin film
JP2019139204A (en) * 2018-02-07 2019-08-22 日東電工株式会社 Polarizing plate and image display unit
KR20230029528A (en) 2021-08-23 2023-03-03 오꾸라 고교 가부시키가이샤 Method for producing optical film
WO2024070623A1 (en) * 2022-09-26 2024-04-04 富士フイルム株式会社 Film, layered film, and method for producing film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7274976B2 (en) * 2019-08-09 2023-05-17 日東電工株式会社 Easy-adhesive film and its manufacturing method, polarizing plate, and image display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06286295A (en) * 1993-03-31 1994-10-11 Toppan Printing Co Ltd Transfer sheet
JPH0789225A (en) * 1993-09-28 1995-04-04 Toppan Printing Co Ltd Transferring sheet
JPH1134545A (en) * 1997-07-15 1999-02-09 Toppan Printing Co Ltd Transparent image forming body
JP2010055062A (en) * 2008-07-29 2010-03-11 Nitto Denko Corp Polarizer-protecting film, and polarizing plate and image display device using polarizer-protecting film
JP2012032768A (en) * 2010-03-31 2012-02-16 Nippon Shokubai Co Ltd Optical film and method for producing the same, optical member and image display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060144514A1 (en) * 2005-01-03 2006-07-06 Yongcai Wang Polarizing plate laminated with an improved glue composition and a method of manufacturing the same
KR101771716B1 (en) * 2010-03-31 2017-08-25 가부시기가이샤 닛뽕쇼꾸바이 Optical film and method for manufacturing the same, optical member and image display device
JP5593932B2 (en) * 2010-07-30 2014-09-24 東レ株式会社 Resin fine particles and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06286295A (en) * 1993-03-31 1994-10-11 Toppan Printing Co Ltd Transfer sheet
JPH0789225A (en) * 1993-09-28 1995-04-04 Toppan Printing Co Ltd Transferring sheet
JPH1134545A (en) * 1997-07-15 1999-02-09 Toppan Printing Co Ltd Transparent image forming body
JP2010055062A (en) * 2008-07-29 2010-03-11 Nitto Denko Corp Polarizer-protecting film, and polarizing plate and image display device using polarizer-protecting film
JP2012032768A (en) * 2010-03-31 2012-02-16 Nippon Shokubai Co Ltd Optical film and method for producing the same, optical member and image display device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088633A1 (en) * 2014-12-04 2016-06-09 大倉工業株式会社 Highly-adhesive composition, optical film using same, and production method therefor
JPWO2016088633A1 (en) * 2014-12-04 2017-09-14 大倉工業株式会社 Easy-adhesive composition, optical film using the same, and production method thereof
WO2018030461A1 (en) * 2016-08-10 2018-02-15 株式会社日本触媒 Laminated resin film
JPWO2018030461A1 (en) * 2016-08-10 2019-04-11 株式会社日本触媒 Laminated resin film
JP2020108966A (en) * 2016-08-10 2020-07-16 株式会社日本触媒 Laminate resin film
JP2019139204A (en) * 2018-02-07 2019-08-22 日東電工株式会社 Polarizing plate and image display unit
KR20230029528A (en) 2021-08-23 2023-03-03 오꾸라 고교 가부시키가이샤 Method for producing optical film
WO2024070623A1 (en) * 2022-09-26 2024-04-04 富士フイルム株式会社 Film, layered film, and method for producing film

Also Published As

Publication number Publication date
KR20160105390A (en) 2016-09-06
CN105765426B (en) 2018-08-21
JPWO2015098539A1 (en) 2017-03-23
TWI629170B (en) 2018-07-11
JP6163564B2 (en) 2017-07-12
KR102303580B1 (en) 2021-09-16
TW201536548A (en) 2015-10-01
CN105765426A (en) 2016-07-13

Similar Documents

Publication Publication Date Title
JP6163564B2 (en) Optical film and manufacturing method thereof
JP5354733B2 (en) Polarizer protective film and polarizing plate and image display device using polarizer protective film
US20160209548A1 (en) Method for manufacturing polarizing plate
TWI383183B (en) A polarizing element protective film, a polarizing plate and an image display device
KR101588167B1 (en) Protective film and polarizing plate comprising the same
WO2016088633A1 (en) Highly-adhesive composition, optical film using same, and production method therefor
WO2019244916A1 (en) Polarization film, adhesive layer-provided polarization film, and image display device
JP2009163216A (en) Set of polarizing plate, and liquid crystal panel and liquid crystal display using the same
JP6527878B2 (en) Adhesive composition, optical film using the same, and method for producing the same
JP4881105B2 (en) Optical film, polarizing plate, and image display device
TW201730594A (en) Convex side polarizing plate for curved surface image display panel
TW201504694A (en) Polarizer protective film, method for producing same, polarizing plate, optical film and image display device
JP2018158987A (en) Easily-adhesive composition, and polarizer protective film, polarization film and image display device containing the same
US9611411B2 (en) Radically curable adhesive composition and polarizing plate including the same
WO2019244915A1 (en) Polarizing film, polarizing film with adhesive layer, and image display device
JP2023095953A (en) Easily adhesive film
TWI815466B (en) Optical film and manufacturing method thereof, polarizing plate, and image display device
JP5410770B2 (en) Polarizer outer surface protective film, polarizing plate, and liquid crystal display element
EP2840124B1 (en) Radical-curable adhesive composition and polarizing plate comprising same
JP7499743B2 (en) Polarizing plate, polarizing plate with adhesive, and image display device
JP2018159784A (en) Polarizer protective film, polarizing film, and image display device
JP2021033064A (en) Polarizing plate, manufacturing method thereof and liquid crystal display unit
JP2009169393A (en) Polarizing plate and liquid crystal display device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874686

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167014758

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015554732

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14874686

Country of ref document: EP

Kind code of ref document: A1