WO2019244915A1 - Polarizing film, polarizing film with adhesive layer, and image display device - Google Patents
Polarizing film, polarizing film with adhesive layer, and image display device Download PDFInfo
- Publication number
- WO2019244915A1 WO2019244915A1 PCT/JP2019/024221 JP2019024221W WO2019244915A1 WO 2019244915 A1 WO2019244915 A1 WO 2019244915A1 JP 2019024221 W JP2019024221 W JP 2019024221W WO 2019244915 A1 WO2019244915 A1 WO 2019244915A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- polarizing film
- polarizer
- adhesive layer
- protective film
- Prior art date
Links
- 239000012790 adhesive layer Substances 0.000 title claims abstract description 37
- 230000001681 protective effect Effects 0.000 claims abstract description 96
- 230000035939 shock Effects 0.000 abstract description 9
- 239000010408 film Substances 0.000 description 256
- 239000010410 layer Substances 0.000 description 72
- 229920000642 polymer Polymers 0.000 description 49
- 230000001070 adhesive effect Effects 0.000 description 48
- 229920005989 resin Polymers 0.000 description 47
- 239000011347 resin Substances 0.000 description 47
- 239000000853 adhesive Substances 0.000 description 46
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 31
- 239000000203 mixture Substances 0.000 description 27
- 229920002451 polyvinyl alcohol Polymers 0.000 description 21
- 239000004372 Polyvinyl alcohol Substances 0.000 description 20
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 18
- 239000000463 material Substances 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 16
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 16
- 239000008188 pellet Substances 0.000 description 16
- -1 polyethylene terephthalate Polymers 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 15
- 239000004327 boric acid Substances 0.000 description 15
- 229960002645 boric acid Drugs 0.000 description 15
- 235000010338 boric acid Nutrition 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 15
- 238000005259 measurement Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 15
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 13
- 239000007864 aqueous solution Substances 0.000 description 13
- 238000000576 coating method Methods 0.000 description 13
- 238000006116 polymerization reaction Methods 0.000 description 13
- 239000011248 coating agent Substances 0.000 description 12
- 239000002994 raw material Substances 0.000 description 12
- 229920002284 Cellulose triacetate Polymers 0.000 description 11
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 11
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 11
- 238000001035 drying Methods 0.000 description 11
- 238000004043 dyeing Methods 0.000 description 10
- 239000004925 Acrylic resin Substances 0.000 description 9
- 229920000178 Acrylic resin Polymers 0.000 description 9
- 230000008859 change Effects 0.000 description 9
- 150000002596 lactones Chemical group 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 8
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 8
- 229920001893 acrylonitrile styrene Polymers 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000008602 contraction Effects 0.000 description 8
- 229910052740 iodine Inorganic materials 0.000 description 8
- 239000011630 iodine Substances 0.000 description 8
- 239000004816 latex Substances 0.000 description 8
- 229920000126 latex Polymers 0.000 description 8
- 239000000178 monomer Substances 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 229920000139 polyethylene terephthalate Polymers 0.000 description 8
- 239000005020 polyethylene terephthalate Substances 0.000 description 8
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 8
- 238000010992 reflux Methods 0.000 description 8
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 7
- 229920001971 elastomer Polymers 0.000 description 7
- 239000004973 liquid crystal related substance Substances 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 239000005060 rubber Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- KDGNCLDCOVTOCS-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy propan-2-yl carbonate Chemical compound CC(C)OC(=O)OOC(C)(C)C KDGNCLDCOVTOCS-UHFFFAOYSA-N 0.000 description 6
- 235000010724 Wisteria floribunda Nutrition 0.000 description 6
- 238000006482 condensation reaction Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 230000009477 glass transition Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 229920001296 polysiloxane Polymers 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 229920006254 polymer film Polymers 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 150000001925 cycloalkenes Chemical class 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 229920000578 graft copolymer Polymers 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000002346 layers by function Substances 0.000 description 4
- 239000012788 optical film Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920006255 plastic film Polymers 0.000 description 4
- 239000002985 plastic film Substances 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 4
- OLSDAJRAVOVKLG-UHFFFAOYSA-N 3-hydroxymandelic acid Chemical compound OC(=O)C(O)C1=CC=CC(O)=C1 OLSDAJRAVOVKLG-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- FRXGWNKDEMTFPL-UHFFFAOYSA-N dioctadecyl hydrogen phosphate Chemical compound CCCCCCCCCCCCCCCCCCOP(O)(=O)OCCCCCCCCCCCCCCCCCC FRXGWNKDEMTFPL-UHFFFAOYSA-N 0.000 description 3
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- UHGIMQLJWRAPLT-UHFFFAOYSA-N octadecyl dihydrogen phosphate Chemical compound CCCCCCCCCCCCCCCCCCOP(O)(O)=O UHGIMQLJWRAPLT-UHFFFAOYSA-N 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000003505 polymerization initiator Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000007363 ring formation reaction Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- XLPJNCYCZORXHG-UHFFFAOYSA-N 1-morpholin-4-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCOCC1 XLPJNCYCZORXHG-UHFFFAOYSA-N 0.000 description 2
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 229920005601 base polymer Polymers 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 210000002858 crystal cell Anatomy 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- 239000013013 elastic material Substances 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 2
- 238000006358 imidation reaction Methods 0.000 description 2
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- UUORTJUPDJJXST-UHFFFAOYSA-N n-(2-hydroxyethyl)prop-2-enamide Chemical compound OCCNC(=O)C=C UUORTJUPDJJXST-UHFFFAOYSA-N 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- FBCQUCJYYPMKRO-UHFFFAOYSA-N prop-2-enyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC=C FBCQUCJYYPMKRO-UHFFFAOYSA-N 0.000 description 2
- 238000007127 saponification reaction Methods 0.000 description 2
- 108700004121 sarkosyl Proteins 0.000 description 2
- KSAVQLQVUXSOCR-UHFFFAOYSA-M sodium lauroyl sarcosinate Chemical compound [Na+].CCCCCCCCCCCC(=O)N(C)CC([O-])=O KSAVQLQVUXSOCR-UHFFFAOYSA-M 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- PUGOMSLRUSTQGV-UHFFFAOYSA-N 2,3-di(prop-2-enoyloxy)propyl prop-2-enoate Chemical class C=CC(=O)OCC(OC(=O)C=C)COC(=O)C=C PUGOMSLRUSTQGV-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- CBECDWUDYQOTSW-UHFFFAOYSA-N 2-ethylbut-3-enal Chemical compound CCC(C=C)C=O CBECDWUDYQOTSW-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 125000002339 acetoacetyl group Chemical group O=C([*])C([H])([H])C(=O)C([H])([H])[H] 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 230000003373 anti-fouling effect Effects 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 229920005994 diacetyl cellulose Polymers 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- JTHNLKXLWOXOQK-UHFFFAOYSA-N n-propyl vinyl ketone Natural products CCCC(=O)C=C JTHNLKXLWOXOQK-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 125000003518 norbornenyl group Chemical group C12(C=CC(CC1)C2)* 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 150000004291 polyenes Chemical class 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920006264 polyurethane film Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229940096992 potassium oleate Drugs 0.000 description 1
- MLICVSDCCDDWMD-KVVVOXFISA-M potassium;(z)-octadec-9-enoate Chemical compound [K+].CCCCCCCC\C=C/CCCCCCCC([O-])=O MLICVSDCCDDWMD-KVVVOXFISA-M 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- XWGJFPHUCFXLBL-UHFFFAOYSA-M rongalite Chemical compound [Na+].OCS([O-])=O XWGJFPHUCFXLBL-UHFFFAOYSA-M 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- 229960001939 zinc chloride Drugs 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/8791—Arrangements for improving contrast, e.g. preventing reflection of ambient light
Definitions
- the present invention relates to a polarizing film and a polarizing film with an adhesive layer having the polarizing film and an adhesive layer. Further, the present invention relates to an image display device including the polarizing film or the polarizing film with an adhesive layer.
- a polarizing film is used for image display.
- a liquid crystal display LCD
- a circularly polarizing film in which a polarizing film and a quarter-wave plate are laminated is disposed on the viewing side of the organic light emitting layer in order to shield specular reflection of external light on the metal electrode.
- polarizing film generally, a polyvinyl alcohol-based film and a polarizer made of a dichroic material such as iodine, on one or both sides thereof, a protective film bonded with a polyvinyl alcohol-based adhesive or the like is used. ing.
- the polarizing film In a severe environment of a thermal shock (for example, a heat shock test in which a temperature condition of ⁇ 40 ° C. and 85 ° C. is repeated), the polarizing film is entirely formed in the absorption axis direction of the polarizer due to a change in shrinkage stress of the polarizer. There is a problem that cracks (through cracks) easily occur.
- Patent Document 1 discloses a polarizing plate in which a transparent protective film is disposed on both sides of a polarizing film for the purpose of providing a polarizing plate having excellent durability even under a thermal shock environment.
- the difference between the linear expansion coefficient in the direction perpendicular to the direction of the polarizing film and the linear expansion coefficient in the direction perpendicular to the absorption axis of the polarizing plate of the transparent protective film disposed on at least one surface of the polarizing film is 1.3 ⁇ 10
- a polarizing plate characterized by being at most ⁇ 4 / ° C. has been proposed.
- An object of the present invention is to provide a polarizing film in which cracks are less likely to occur in the polarizer even under severe thermal shock environment.
- Another object of the present invention is to provide a polarizing film with an adhesive layer having the polarizing film and the adhesive layer, and an image display device including the polarizing film or the polarizing film with the adhesive layer.
- the present invention is a polarizing film provided with a protective film on one or both sides of the polarizer via an adhesive layer, At least one of the protective films provided on the polarizer satisfies the following formula (1).
- Y 1.26 ⁇ lnX + 3.5
- Y Coefficient of linear expansion of protective film ( ⁇ 10 ⁇ 5 / K)
- X Elongation at break of protective film (%)
- the Y ( ⁇ 10 ⁇ 5 / K) is preferably 4 or less.
- the thickness of the polarizer is preferably 10 ⁇ m or less.
- the present invention also relates to a polarizing film with an adhesive layer having the polarizing film and the adhesive layer.
- the present invention also relates to an image display device in which the polarizing film or the polarizing film with an adhesive layer is disposed in an image display cell.
- At least one protective film that satisfies the above formula (1) as a protective film provided on one or both surfaces of the polarizer, the stress caused by the expansion and contraction of the polarizer due to the stress based on the expansion and contraction of the protective film. Since it can be alleviated, cracks hardly occur in the polarizer.
- the stress caused by expansion and contraction of the polarizer can be more effectively reduced, and thus the cracks in the polarizer can be reduced. Can be more effectively suppressed.
- a protective film having low moisture permeability tends to have a large coefficient of linear expansion, and it is difficult to alleviate the stress caused by expansion and contraction of the polarizer, so that the polarizer is easily cracked.
- a protective film having a large elongation at break and satisfying the above formula (1) can effectively reduce the stress caused by expansion and contraction of the polarizer. Therefore, cracks hardly occur in the polarizer. Therefore, the polarizing film of the present invention can achieve both suppression of deterioration of the polarizer due to humidification (improvement of humidification reliability) and suppression of occurrence of cracks.
- the polarizing film of the present invention has a protective film provided on one or both sides of a polarizer via an adhesive layer, and at least one of the protective films provided on the polarizer has the following formula (1): To satisfy. Y ⁇ 1.26 ⁇ lnX + 3.5 (1) Y: Coefficient of linear expansion of protective film ( ⁇ 10 ⁇ 5 / K) X: Elongation at break of protective film (%)
- Polarizer Known polarizers can be used without particular limitation, but it is preferable to use a polarizer having a thickness of 10 ⁇ m or less from the viewpoint of reducing the thickness and suppressing the occurrence of cracks.
- the thickness of the polarizer is more preferably 8 ⁇ m or less, further preferably 7 ⁇ m or less, and still more preferably 6 ⁇ m or less.
- the thickness of the polarizer is preferably 2 ⁇ m or more, and more preferably 3 ⁇ m or more.
- a polarizer using a polyvinyl alcohol-based resin is used.
- the polarizer include, for example, a polyvinyl alcohol-based film, a partially formalized polyvinyl alcohol-based film, a hydrophilic polymer film such as an ethylene-vinyl acetate copolymer-based partially saponified film, and dichroic properties of iodine and a dichroic dye.
- examples thereof include a uniaxially stretched film obtained by adsorbing a substance, and a polyene-based oriented film such as a dehydrated product of polyvinyl alcohol and a dehydrochlorinated product of polyvinyl chloride.
- a polarizer composed of a polyvinyl alcohol-based film and a dichroic substance such as iodine is preferable.
- Stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be dyed with iodine after stretching. Stretching can be performed in an aqueous solution of boric acid or potassium iodide or in a water bath.
- the polarizer preferably contains boric acid from the viewpoint of stretching stability and humidification reliability. Further, the content of boric acid contained in the polarizer is preferably 22% by weight or less, more preferably 20% by weight or less, based on the total amount of the polarizer, from the viewpoint of suppressing the occurrence of cracks. From the viewpoint of stretching stability and humidification reliability, the boric acid content based on the total amount of the polarizer is preferably 10% by weight or more, and more preferably 12% by weight or more.
- Japanese Patent No. 4751486 and Patent Document 4 disclose that, among manufacturing methods including a step of stretching in a state of a laminate and a step of dyeing, it is possible to stretch at a high magnification and improve polarization performance.
- Preferred are those obtained by a production method including a step of stretching in a boric acid aqueous solution as described in JP-B-47515481 and JP-B-4815544, and particularly described in JP-B-4775481 and JP-B-4815544.
- stretching in a boric-acid aqueous solution with a certain thing is preferable.
- These thin polarizers can be obtained by a manufacturing method including a step of stretching a polyvinyl alcohol-based resin (hereinafter, also referred to as a PVA-based resin) layer and a resin substrate for stretching in a laminate state and a step of dyeing.
- a manufacturing method including a step of stretching a polyvinyl alcohol-based resin (hereinafter, also referred to as a PVA-based resin) layer and a resin substrate for stretching in a laminate state and a step of dyeing.
- a manufacturing method including a step of stretching a polyvinyl alcohol-based resin (hereinafter, also referred to as a PVA-based resin) layer and a resin substrate for stretching in a laminate state and a step of dyeing.
- polyester polymers such as polyethylene terephthalate and polyethylene naphthalate
- cellulosic polymers such as diacetyl cellulose and triacetyl cellulose
- acrylic polymers such as polymethyl methacrylate
- styrene such as polystyrene and acrylonitrile-styrene copolymer (AS resin) Polymers
- AS resin acrylonitrile-styrene copolymer
- the content of the polymer in the protective film is preferably 50 to 100% by weight, more preferably 50 to 99% by weight, further preferably 60 to 98% by weight, and still more preferably 70 to 97% by weight. If the content of the polymer in the protective film is less than 50% by weight, the high transparency or the like inherent in the polymer may not be sufficiently exhibited.
- a retardation film As the protective film, a retardation film, a brightness enhancement film, a diffusion film and the like can also be used.
- the retardation film include those having a front retardation of 40 nm or more and / or a thickness direction retardation of 80 nm or more.
- the front phase difference is usually controlled in the range of 40 to 200 nm
- the thickness direction phase difference is usually controlled in the range of 80 to 300 nm.
- the thickness of the protective film can be determined as appropriate, but it is about 1 to 500 ⁇ m from the viewpoint of workability such as strength and handleability, and thinness.
- the thickness of the protective film is preferably 1 to 300 ⁇ m, more preferably 5 to 200 ⁇ m, still more preferably 5 to 150 ⁇ m, and still more preferably 20 to 100 ⁇ m.
- a functional layer such as a hard coat layer, an anti-reflection layer, an anti-sticking layer, a diffusion layer or an anti-glare layer can be provided on the surface of the protective film on which the polarizer is not adhered.
- the functional layers such as the hard coat layer, the antireflection layer, the anti-sticking layer, the diffusion layer and the antiglare layer can be provided on the protective film itself, or separately provided separately from the protective film. it can.
- At least one of the protective films (which may include the functional layer) provided on the polarizer satisfies the following formula (1).
- the protective films provided on both surfaces of the polarizer each satisfy the following formula (1).
- the method for measuring the coefficient of linear expansion and the elongation at break of the protective film is as described in Examples. Y ⁇ 1.26 ⁇ lnX + 3.5 (1) Y: Coefficient of linear expansion of protective film ( ⁇ 10 ⁇ 5 / K) X: Elongation at break of protective film (%)
- the protective film satisfying the above formula (1) can be produced, for example, by stretching a cycloolefin-based polymer film to a thickness of about 17 to 18 ⁇ m.
- protective films satisfying the above formula (1) include, for example, TJ25UL (manufactured by Fuji Film, raw material: triacetylcellulose-based polymer, thickness: 25 ⁇ m), ZT12 (manufactured by Zeon Corporation, raw material: cycloolefin-based polymer, thickness) : 17 ⁇ m), KC2UA (manufactured by Konica Minolta, raw material: triacetylcellulose-based polymer, thickness: 20 ⁇ m), and KC2UGR-HC (manufactured by Konica Minolta, triacetylcellulose-based polymer film provided with an acrylic resin-based hard coat layer) , Thickness: 37 ⁇ m).
- TJ25UL manufactured by Fuji Film, raw material: triacetylcellulose-based polymer, thickness: 25 ⁇ m
- ZT12 manufactured by Zeon Corporation, raw material: cycloolefin-based polymer, thickness) : 17 ⁇ m
- KC2UA manufactured by
- the protective film satisfying the above formula (1) preferably has a linear expansion coefficient Y ( ⁇ 10 ⁇ 5 / K) of 4 or less, more preferably 3.5 or less, and still more preferably 3.1 or less. is there.
- the adhesive layer is formed by an adhesive.
- the type of the adhesive is not particularly limited, and various adhesives can be used.
- the adhesive layer is not particularly limited as long as it is optically transparent. Examples of the adhesive include water-based, solvent-based, hot-melt, and active energy ray-curable adhesives. Alternatively, an active energy ray-curable adhesive is suitable.
- water-based adhesive examples include an isocyanate-based adhesive, a polyvinyl alcohol-based adhesive, a gelatin-based adhesive, a vinyl latex-based adhesive, and an aqueous polyester.
- the water-based adhesive is usually used as an adhesive composed of an aqueous solution, and usually contains a solid content of 0.5 to 60% by weight.
- the active energy ray-curable adhesive is an adhesive whose curing progresses with an active energy ray such as an electron beam or an ultraviolet ray (radical-curable or cationically-curable). Can be used.
- an active energy ray such as an electron beam or an ultraviolet ray (radical-curable or cationically-curable).
- an active energy ray such as an electron beam or an ultraviolet ray (radical-curable or cationically-curable).
- an active energy ray-curable adhesive for example, a photo-radical curable adhesive can be used.
- the adhesive contains a radical polymerizable compound and a photopolymerization initiator.
- the method of applying the adhesive is appropriately selected depending on the viscosity of the adhesive and the desired thickness.
- the coating method include, for example, a reverse coater, a gravure coater (direct, reverse or offset), a bar reverse coater, a roll coater, a die coater, a bar coater, a rod coater, and the like.
- a method such as a dipping method can be appropriately used for coating.
- the adhesive when using an aqueous adhesive or the like, the adhesive is preferably applied so that the thickness of the finally formed adhesive layer is 30 to 300 nm.
- the thickness of the adhesive layer is more preferably 60 to 250 nm.
- the thickness of the adhesive layer is preferably set to 0.1 to 200 ⁇ m. More preferably, it is 0.5 to 50 ⁇ m, further preferably 0.5 to 10 ⁇ m.
- an easy-adhesion layer can be provided between the protective film and the adhesive layer.
- the easy-adhesion layer can be formed of, for example, various resins having a polyester skeleton, polyether skeleton, polycarbonate skeleton, polyurethane skeleton, silicone, polyamide skeleton, polyimide skeleton, polyvinyl alcohol skeleton, and the like. These polymer resins can be used alone or in combination of two or more. Further, other additives may be added to the formation of the easily adhesive layer. Specifically, stabilizers such as tackifiers, ultraviolet absorbers, antioxidants, and heat stabilizers may be used.
- the easy-adhesion layer is usually provided in advance on the protective film, and the easy-adhesion layer side of the protective film and the polarizer are laminated with an adhesive layer.
- the easy-adhesion layer is formed by applying and drying the material for forming the easy-adhesion layer on the protective film by a known technique.
- the material for forming the easily adhesive layer is usually adjusted as a solution diluted to an appropriate concentration in consideration of the thickness after drying, the smoothness of coating, and the like.
- the thickness of the easy-adhesion layer after drying is preferably 0.01 to 5 ⁇ m, more preferably 0.02 to 2 ⁇ m, and still more preferably 0.05 to 1 ⁇ m. Note that a plurality of easy-adhesion layers can be provided. In this case, it is preferable that the total thickness of the easy-adhesion layers be in the above range.
- the polarizing film with the pressure-sensitive adhesive layer of the present invention has the polarizing film and the pressure-sensitive adhesive layer.
- both protective polarizing films in which protective films are provided on both surfaces of a polarizer, an adhesive layer is provided on one surface of both protective polarizing films directly or via another layer.
- a surface protection film may be provided directly or via another layer on the other surface of both protective polarizing films.
- an adhesive layer is provided directly or via another layer on the side of the one-sided protective polarizing film on the polarizer side.
- a surface protective film may be provided directly or via another layer on the protective film side of the one-side protective polarizing film.
- the other layers are not particularly limited, and include known functional layers and optical layers provided on the polarizing film.
- the optical layer include a reflection plate, a semi-transmission plate, a retardation plate (including a wavelength plate such as ⁇ or 4), a viewing angle compensation film, and a brightness enhancement film.
- the other layer may be provided as one layer, or may be provided as two or more layers.
- the pressure-sensitive adhesive layer is provided on one side of the polarizing film in order to attach the polarizing film to a cell substrate such as a liquid crystal cell.
- the thickness of the pressure-sensitive adhesive layer is not particularly limited, and is, for example, about 1 to 100 ⁇ m, preferably 2 to 50 ⁇ m, more preferably 2 to 40 ⁇ m, and further preferably 5 to 35 ⁇ m.
- a suitable pressure-sensitive adhesive can be used, and the type thereof is not particularly limited.
- the adhesive a rubber-based adhesive, an acrylic-based adhesive, a silicone-based adhesive, a urethane-based adhesive, a vinylalkyl ether-based adhesive, a polyvinyl alcohol-based adhesive, a polyvinylpyrrolidone-based adhesive, a polyacrylamide-based adhesive, Cellulose-based adhesives and the like can be mentioned.
- acrylic pressure-sensitive adhesives having such characteristics are preferably used.
- Examples of the method for forming the pressure-sensitive adhesive layer include, for example, a method in which the pressure-sensitive adhesive is applied to a separator or the like that has been subjected to a release treatment, and a polymerization solvent or the like is dried and removed to form a pressure-sensitive adhesive layer.
- a method of forming a pressure-sensitive adhesive layer on a polarizing film by applying a pressure-sensitive adhesive and removing a polymerization solvent by drying is exemplified. In applying the pressure-sensitive adhesive, one or more solvents other than the polymerization solvent may be newly added as appropriate.
- ⁇ ⁇ ⁇ ⁇ ⁇ Silicone release liners are preferably used as the release-treated separator.
- a method for drying the pressure-sensitive adhesive may be appropriately selected depending on the purpose.
- a method of heating and drying the coating film is used.
- the heating and drying temperature is preferably from 40 ° C to 200 ° C, more preferably from 50 ° C to 180 ° C, and particularly preferably from 70 ° C to 170 ° C.
- the drying time is preferably 5 seconds to 20 minutes, more preferably 5 seconds to 10 minutes, and particularly preferably 10 seconds to 5 minutes.
- Various methods are used for forming the pressure-sensitive adhesive layer. Specifically, for example, roll coat, kiss roll coat, gravure coat, reverse coat, roll brush, spray coat, dip roll coat, bar coat, knife coat, air knife coat, curtain coat, lip coat, die coater, etc. Examples include a method such as an extrusion coating method.
- the pressure-sensitive adhesive layer When the pressure-sensitive adhesive layer is exposed, the pressure-sensitive adhesive layer may be protected by a sheet (separator) that has been subjected to a release treatment until it is practically used.
- a constituent material of the separator for example, polyethylene, polypropylene, polyethylene terephthalate, a plastic film such as a polyester film, paper, cloth, a porous material such as a nonwoven fabric, a net, a foamed sheet, a metal foil, and a laminate of these as appropriate
- a plastic film is preferably used because of its excellent surface smoothness.
- the plastic film is not particularly limited as long as it can protect the pressure-sensitive adhesive layer.
- the plastic film include polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, and vinyl chloride film.
- examples include a polymer film, a polyethylene terephthalate film, a polybutylene terephthalate film, a polyurethane film, and an ethylene-vinyl acetate copolymer film.
- the thickness of the separator is usually about 5 to 200 ⁇ m, preferably about 5 to 100 ⁇ m.
- the separator if necessary, silicone-based, fluorine-based, long-chain alkyl-based or fatty acid amide-based release agent, release and antifouling treatment with silica powder, etc., coating type, kneading type, evaporation type It is also possible to perform an antistatic treatment such as the following. In particular, by appropriately performing a release treatment such as a silicone treatment, a long-chain alkyl treatment, or a fluorine treatment on the surface of the separator, the releasability from the pressure-sensitive adhesive layer can be further improved.
- the surface protective film usually has a base film and an adhesive layer, and protects the polarizing film via the adhesive layer.
- a film material having or near isotropy is selected from the viewpoint of testability and manageability.
- the film material include a polyester resin such as a polyethylene terephthalate film, a cellulose resin, an acetate resin, a polyether sulfone resin, a polycarbonate resin, a polyamide resin, a polyimide resin, a polyolefin resin, and an acrylic resin.
- a transparent polymer such as a resin can be used. Of these, polyester resins are preferred.
- the base film can be used as a laminate of one or more film materials, and a stretched product of the film can also be used.
- the thickness of the substrate film is generally 500 ⁇ m or less, preferably 10 to 200 ⁇ m.
- Examples of the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer of the surface protective film include a pressure-sensitive adhesive having a base polymer of (meth) acrylic polymer, silicone polymer, polyester, polyurethane, polyamide, polyether, fluorine-based or rubber-based polymer.
- the agent can be appropriately selected and used. From the viewpoints of transparency, weather resistance, heat resistance, and the like, an acrylic pressure-sensitive adhesive containing an acrylic polymer as a base polymer is preferable.
- the thickness (dry film thickness) of the pressure-sensitive adhesive layer is determined according to the required pressure-sensitive adhesive strength. Usually, it is about 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
- a release treatment layer can be provided on the surface opposite to the surface on which the pressure-sensitive adhesive layer of the base film is provided, using a low-adhesion material such as silicone treatment, long-chain alkyl treatment, or fluorine treatment. .
- the image display device of the present invention may be any one including the polarizing film or the polarizing film with an adhesive layer of the present invention, and other configurations may be the same as those of the conventional image display device. it can.
- the polarizing film or the polarizing film with a pressure-sensitive adhesive layer is applied to an image display cell.
- the image display device is a liquid crystal display device
- the polarizing film or the polarizing film with an adhesive layer can be applied to both the viewing side and the backlight side of an image display cell (liquid crystal cell).
- the image display device is an organic EL display device
- the polarizing film or the polarizing film with an adhesive layer can be applied to the viewing side of the image display cell.
- the image display device of the present invention has high reliability because it includes the polarizing film or the polarizing film with the pressure-sensitive adhesive layer.
- a corona treatment is applied to one surface of an amorphous isophthalic acid copolymerized polyethylene terephthalate (IPA copolymerized PET) film (thickness: 100 ⁇ m) having a water absorption of 0.75% and Tg of 75 ° C.
- Alcohol degree of polymerization: 4200, degree of saponification: 99.2 mol%
- acetoacetyl-modified PVA degree of polymerization: 1200, degree of acetoacetyl modification: 4.6%, degree of saponification: 99.0 mol% or more, Japan An aqueous solution containing Synthetic Chemical Industry Co., Ltd.
- the laminate was immersed in a washing bath at a liquid temperature of 30 ° C. (an aqueous solution obtained by mixing 4 parts by weight of potassium iodide with 100 parts by weight of water) (washing treatment).
- a washing bath at a liquid temperature of 30 ° C.
- washing treatment washing treatment
- an optical film laminate including a 5 ⁇ m-thick polarizer was obtained.
- the obtained polarizer had a boric acid content of 20% by weight.
- Example 1 (Production of one-sided protective polarizing film)
- the protective film 1 (HC) was coated on the surface of the polarizer (thickness: 5 ⁇ m) of the optical film laminate so that the thickness of the cured adhesive layer was 0.1 ⁇ m.
- 25 ⁇ m TAC film: TJ25UL manufactured by Fuji Film, raw material: triacetylcellulose-based polymer, thickness: 25 ⁇ m
- a film provided with an acrylic resin-based hard coat layer and then irradiated with ultraviolet rays as active energy rays.
- the adhesive was cured. Thereafter, the amorphous PET substrate provided on one side of the polarizer was peeled off to produce a one-sided protective polarizing film.
- Example 2 A one-sided protective polarizing film was produced in the same manner as in Example 1 except that the protective film 1 shown in Table 1 was used.
- Example 4 production of both protective polarizing films
- the protective film 1 (HC) was coated on the surface of the polarizer (thickness: 5 ⁇ m) of the optical film laminate so that the thickness of the cured adhesive layer was 0.1 ⁇ m.
- 25 ⁇ m TAC film: TJ25UL manufactured by Fuji Film, raw material: triacetylcellulose-based polymer, thickness: 25 ⁇ m
- a film provided with an acrylic resin-based hard coat layer and then irradiated with ultraviolet rays as active energy rays.
- the adhesive was cured.
- the amorphous PET substrate provided on one surface of the polarizer is peeled off, and the ultraviolet curable adhesive is cured on the peeled surface so that the thickness of the adhesive layer becomes 0.1 ⁇ m.
- a protective film 2 25 ⁇ m TAC film: TJ25UL (manufactured by Fuji Film, raw material: triacetylcellulose-based polymer, thickness: 25 ⁇ m)
- the adhesive is cured by irradiating ultraviolet rays as active energy rays. In this way, both protective polarizing films were produced.
- TAC film with HC TJ25UL (manufactured by Fuji Film, raw material: triacetylcellulose-based polymer, thickness: 25 ⁇ m) with a film provided with an acrylic resin-based hard coat layer
- TAC film 25 ⁇ m
- TJ25UL Fluji Film, raw material: triacetyl cellulose polymer, thickness: 25 ⁇ m
- 17 ⁇ m COP film ZT12 (manufactured by Zeon Corporation, a biaxially stretched cycloolefin-based polymer film having a front phase difference of 116 nm and a thickness difference of 81 nm, a thickness of 17 ⁇ m)
- TAC film 20 ⁇ m TAC film: KC2UA (manufactured by Konica Minolta, raw material: triacetyl cellulose polymer, thickness: 20 ⁇ m)
- t-butyl peroxyisopropyl carbonate (Kayacarbon BIC-7, manufactured by Kayaku Akzo Co., Ltd.) was added as a polymerization initiator, and at the same time, 10.0 g of t-butyl peroxyisopropyl carbonate and 230 g were added.
- MIBK MIBK was added dropwise over 4 hours while refluxing for about 1 hour. Perform solution polymerization at 5 ⁇ 120 ° C., the mixture was aged over an additional 4 hours.
- a stearyl phosphate / distearyl phosphate mixture (Phoslex A-18, manufactured by Sakai Chemical Industry Co., Ltd.) was added, and the mixture was refluxed at about 90 to 120 ° C. for 5 hours under reflux. A condensation reaction was performed.
- the obtained polymer solution is subjected to a vent-type screw twin-screw extruder having a barrel temperature of 260 ° C., a rotation speed of 100 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), one rear vent and four forevents.
- the lactone ring-containing polymer had a weight average molecular weight of 133,000, a melt flow rate of 6.5 g / 10 min, and a glass transition temperature of 131 ° C.
- the obtained pellets and acrylonitrile-styrene (AS) resin (Toyo AS AS20, manufactured by Toyo Styrene Co., Ltd.) are kneaded and extruded at a mass ratio of 90/10 using a single screw extruder (screw 30 mm ⁇ ). As a result, transparent pellets were obtained.
- the glass transition temperature of the obtained pellet was 127 ° C.
- the pellets were melt-extruded from a coat hanger type T die having a width of 400 mm using a 50 mm ⁇ single screw extruder to produce a film having a thickness of 80 ⁇ m.
- the resin was melt-extruded while supplying 0.66 parts by weight of an ultraviolet absorber (product name: LA-F70, manufactured by ADEKA) with respect to 100 parts by weight of the resin in the pellets.
- the produced film was stretched 2.0 times at a temperature of 150 ° C. using a biaxial stretching apparatus to obtain a stretched film (20 ⁇ m acrylic film) having a thickness of 20 ⁇ m.
- the total light transmittance was 93%
- the in-plane retardation ⁇ nd was 0.8 nm
- the thickness direction retardation Rth was 1.5 nm.
- the polymerization conversion ratio (polymerization production amount / monomer preparation amount) of the obtained innermost layer crosslinked methacrylic polymer latex was 98%.
- the obtained innermost layer polymer latex was kept at 80 ° C. in a nitrogen stream, and 0.1 part of potassium persulfate was added. Then, a simple mixture comprising 41 parts of n-butyl acrylate, 9 parts of styrene, and 1 part of allyl methacrylate was obtained. The monomer mixture was added continuously over 5 hours. During this time, 0.1 part of potassium oleate was added in three portions.
- the polymerization conversion of the obtained rubber particles was 99%, and the particle size was 225 nm.
- the obtained rubber particle latex was kept at 80 ° C., and after adding 0.02 parts of potassium persulfate, a monomer mixture of 14 parts of methyl methacrylate and 1 part of n-butyl acrylate was continuously added over 1 hour. After completion of the addition of the monomer mixture, the mixture was kept for 1 hour to obtain a graft copolymer latex. The polymerization conversion was 99%.
- the obtained graft copolymer latex was kept at 80 ° C., and a monomer mixture of 5 parts of methyl methacrylate and 5 parts of n-butyl acrylate was continuously added over 0.5 hours. After the completion of the addition of the monomer mixture, the mixture was kept for 1 hour to obtain a rubber-containing graft copolymer latex. The polymerization conversion was 99%.
- the obtained rubber-containing graft copolymer latex was subjected to salting out and coagulation with calcium chloride, heat treatment, and drying to obtain a white powdery crosslinked elastic body.
- the imidization was carried out using a co-rotating twin-screw extruder having a diameter of 15 mm.
- the set temperature of each temperature control zone of the extruder was 230 ° C.
- the screw rotation speed was 150 rpm
- the MS resin was supplied at 2.0 kg / hr
- the supply amount of monomethylamine was 2 parts by weight based on 100 parts by weight of the MS resin. .
- KC2UGR-HC manufactured by Konica Minolta, a film in which an acrylic resin hard coat layer is provided on a triacetyl cellulose polymer film, thickness: 37 ⁇ m
- a stearyl phosphate / distearyl phosphate mixture (Phoslex A-18, manufactured by Sakai Chemical Industry Co., Ltd.) was added, and the mixture was refluxed at about 90 to 120 ° C. for 5 hours under reflux. A condensation reaction was performed.
- the obtained polymer solution is subjected to a vent-type screw twin-screw extruder having a barrel temperature of 260 ° C., a rotation speed of 100 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), one rear vent and four forevents.
- the lactone ring-containing polymer had a weight average molecular weight of 133,000, a melt flow rate of 6.5 g / 10 min, and a glass transition temperature of 131 ° C.
- the obtained pellets and acrylonitrile-styrene (AS) resin (Toyo AS AS20, manufactured by Toyo Styrene Co., Ltd.) are kneaded and extruded at a mass ratio of 90/10 using a single screw extruder (screw 30 mm ⁇ ). As a result, transparent pellets were obtained.
- the glass transition temperature of the obtained pellet was 127 ° C.
- the pellet was melt-extruded from a coat hanger type T die having a width of 400 mm using a 50 mm ⁇ single screw extruder to produce a film having a thickness of 160 ⁇ m.
- the produced film was stretched 2.0 times using a biaxial stretching device at a temperature of 150 ° C.
- a stretched film having a thickness of 40 ⁇ m When the optical properties of this stretched film were measured, the total light transmittance was 93%, the in-plane retardation ⁇ nd was 0.8 nm, and the thickness direction retardation Rth was 1.5 nm.
- a resin contained in the coating liquid a UV-curable resin (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: “NK oligomer UA-53H-80BK”, solid content concentration: 80%), 70 parts by weight of solid content, UV curable resin 30 parts by weight of a resin (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name “A-GLY-9E”, solid content concentration 100%) was prepared.
- the prepared hard coat layer forming material was applied on a 30 ⁇ m acrylic film containing the crosslinked elastic material so that the thickness of the hard coat layer after curing became 10 ⁇ m to form a coating film. Thereafter, the coating film is dried at 90 ° C. for 1 minute, and further irradiated with ultraviolet light having an integrated light amount of 200 mJ / cm 2 by a high-pressure mercury lamp, and the coating film is cured to form a hard coat layer, and to form a hard coat layer.
- a 30 ⁇ m acrylic film containing a crosslinked elastic body was produced.
- t-butyl peroxyisopropyl carbonate (Kayacarbon BIC-7, manufactured by Kayaku Akzo Co., Ltd.) was added as a polymerization initiator, and at the same time, 10.0 g of t-butyl peroxyisopropyl carbonate and 230 g were added.
- MIBK MIBK was added dropwise over 4 hours while refluxing for about 1 hour. Perform solution polymerization at 5 ⁇ 120 ° C., the mixture was aged over an additional 4 hours.
- a stearyl phosphate / distearyl phosphate mixture (Phoslex A-18, manufactured by Sakai Chemical Industry Co., Ltd.) was added, and the mixture was refluxed at about 90 to 120 ° C. for 5 hours under reflux. A condensation reaction was performed.
- the obtained polymer solution is subjected to a vent-type screw twin-screw extruder having a barrel temperature of 260 ° C., a rotation speed of 100 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), one rear vent and four forevents.
- the lactone ring-containing polymer had a weight average molecular weight of 133,000, a melt flow rate of 6.5 g / 10 min, and a glass transition temperature of 131 ° C.
- the obtained pellets and acrylonitrile-styrene (AS) resin (Toyo AS AS20, manufactured by Toyo Styrene Co., Ltd.) are kneaded and extruded at a mass ratio of 90/10 using a single screw extruder (screw 30 mm ⁇ ). As a result, transparent pellets were obtained.
- the glass transition temperature of the obtained pellet was 127 ° C.
- the pellet was melt-extruded from a coat hanger type T die having a width of 400 mm using a 50 mm ⁇ single screw extruder to produce a film having a thickness of 160 ⁇ m. The produced film was stretched 2.0 times at a temperature of 150 ° C.
- a stretched film 40 ⁇ m acrylic film having a thickness of 40 ⁇ m.
- the total light transmittance was 93%
- the in-plane retardation ⁇ nd was 0.8 nm
- the thickness direction retardation Rth was 1.5 nm.
- APF Brightness improving film (Sumitomo 3M, product name: APF, thickness 26 ⁇ m)
- AP APF with HC A film in which an acrylic resin-based hard coat layer is provided on a brightness enhancement film (Sumitomo 3M, trade name: APF, thickness: 20 ⁇ m)
- the polarizing films of Examples 1 to 10 in which at least one of the protective films provided on the polarizer satisfies the above formula (1) have a thermal shock (heat shock test in which the temperature conditions of -40 ° C and 85 ° C are repeated) It can be seen that cracks hardly occur in the polarizer even under the severe environment, and that the polarizer is excellent in crack resistance. On the other hand, it can be seen that the polarizing films of Comparative Examples 1 to 9 in which the protective film provided on the polarizer does not satisfy the above formula (1) are liable to cracks in the polarizer due to thermal shock and have poor crack resistance.
- the polarizing film of the present invention is used alone or as an optical film obtained by laminating the polarizing film on an image display device such as a liquid crystal display (LCD) and an organic EL display.
- an image display device such as a liquid crystal display (LCD) and an organic EL display.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
Abstract
The purpose of the present invention is to provide a polarizing film which is not susceptible to the occurrence of a crack in a polarizer even under severe thermal shock conditions. A polarizing film according to the present invention is obtained by providing one surface or both surfaces of a polarizer with a protective film, with an adhesive layer being interposed therebetween; and at least one protective film provided on the polarizer satisfies formula (1). (1): Y ≤ 1.26 × lnX + 3.5 (In the formula, Y is the linear expansion coefficient (× 10-5/K) of the protective film; and X is the elongation (%) at break of the protective film.)
Description
本発明は、偏光フィルム、及び当該偏光フィルムと粘着剤層を有する粘着剤層付き偏光フィルムに関する。また、本発明は、前記偏光フィルムまたは前記粘着剤層付き偏光フィルムを含む画像表示装置に関する。
The present invention relates to a polarizing film and a polarizing film with an adhesive layer having the polarizing film and an adhesive layer. Further, the present invention relates to an image display device including the polarizing film or the polarizing film with an adhesive layer.
各種画像表示装置においては、画像表示のために偏光フィルムが用いられている。例えば、液晶表示装置(LCD)は、その画像形成方式から液晶パネル表面を形成するガラス基板の両側に偏光フィルムを配置することが必要不可欠である。また、有機EL表示装置では、金属電極での外光の鏡面反射を遮蔽するために、有機発光層の視認側に、偏光フィルムと1/4波長板を積層した円偏光フィルムが配置される。
偏光 In various image display devices, a polarizing film is used for image display. For example, in a liquid crystal display (LCD), it is indispensable to arrange polarizing films on both sides of a glass substrate forming the surface of a liquid crystal panel due to its image forming method. In the organic EL display device, a circularly polarizing film in which a polarizing film and a quarter-wave plate are laminated is disposed on the viewing side of the organic light emitting layer in order to shield specular reflection of external light on the metal electrode.
前記偏光フィルムとしては、一般的には、ポリビニルアルコール系フィルムとヨウ素等の二色性材料からなる偏光子の片面又は両面に、保護フィルムをポリビニルアルコール系接着剤等により貼り合わせたものが用いられている。
As the polarizing film, generally, a polyvinyl alcohol-based film and a polarizer made of a dichroic material such as iodine, on one or both sides thereof, a protective film bonded with a polyvinyl alcohol-based adhesive or the like is used. ing.
前記偏光フィルムは、熱衝撃(例えば、-40℃と85℃の温度条件を繰り返すヒートショック試験)の過酷な環境下では、偏光子の収縮応力の変化によって、偏光子の吸収軸方向の全体にクラック(貫通クラック)が生じやすいという問題がある。
In a severe environment of a thermal shock (for example, a heat shock test in which a temperature condition of −40 ° C. and 85 ° C. is repeated), the polarizing film is entirely formed in the absorption axis direction of the polarizer due to a change in shrinkage stress of the polarizer. There is a problem that cracks (through cracks) easily occur.
特許文献1では、冷熱衝撃環境下においても耐久性に優れる偏光板を提供することを目的として、偏光フィルムの両面に透明保護フィルムが配置されてなる偏光板であって、前記偏光フィルムの吸収軸に直交する方向の線膨張係数と、前記偏光フィルムの少なくとも一方の面に配置される前記透明保護フィルムの偏光板の吸収軸に直交する方向の線膨張係数との差が、1.3×10-4/℃以下であることを特徴とする偏光板が提案されている。
Patent Document 1 discloses a polarizing plate in which a transparent protective film is disposed on both sides of a polarizing film for the purpose of providing a polarizing plate having excellent durability even under a thermal shock environment. The difference between the linear expansion coefficient in the direction perpendicular to the direction of the polarizing film and the linear expansion coefficient in the direction perpendicular to the absorption axis of the polarizing plate of the transparent protective film disposed on at least one surface of the polarizing film is 1.3 × 10 A polarizing plate characterized by being at most −4 / ° C. has been proposed.
しかしながら、特許文献1の偏光板であっても、透明保護フィルムの種類によっては、透明保護フィルムの膨張・収縮に基づく応力が偏光フィルムの膨張・収縮に大きな影響を与えるため、偏光フィルムにクラックが生じる場合がある。
However, even with the polarizing plate of Patent Document 1, depending on the type of the transparent protective film, the stress based on the expansion and contraction of the transparent protective film greatly affects the expansion and contraction of the polarizing film. May occur.
本発明は、熱衝撃の過酷な環境下においても偏光子にクラックが発生し難い偏光フィルムを提供することを目的とする。
An object of the present invention is to provide a polarizing film in which cracks are less likely to occur in the polarizer even under severe thermal shock environment.
また本発明は、前記偏光フィルム及び粘着剤層を有する粘着剤層付き偏光フィルム、及び前記偏光フィルムまたは前記粘着剤層付き偏光フィルムを含む画像表示装置を提供することを目的とする。
Another object of the present invention is to provide a polarizing film with an adhesive layer having the polarizing film and the adhesive layer, and an image display device including the polarizing film or the polarizing film with the adhesive layer.
本発明者らは、鋭意検討の結果、下記の偏光フィルムにより上記課題を解決し得ることを見出し、本発明を完成するに至った。
(4) The present inventors have made intensive studies and found that the above-mentioned problems can be solved by the following polarizing film, and have completed the present invention.
すなわち、本発明は、偏光子の片面又は両面に接着剤層を介して保護フィルムが設けられている偏光フィルムであって、
偏光子に設けられる前記保護フィルムの少なくとも1つは、下記式(1)を満たすものであることを特徴とする偏光フィルム、に関する。
Y≦1.26×lnX+3.5 (1)
Y:保護フィルムの線膨張係数(×10-5/K)
X:保護フィルムの破断伸度(%) That is, the present invention is a polarizing film provided with a protective film on one or both sides of the polarizer via an adhesive layer,
At least one of the protective films provided on the polarizer satisfies the following formula (1).
Y ≦ 1.26 × lnX + 3.5 (1)
Y: Coefficient of linear expansion of protective film (× 10 −5 / K)
X: Elongation at break of protective film (%)
偏光子に設けられる前記保護フィルムの少なくとも1つは、下記式(1)を満たすものであることを特徴とする偏光フィルム、に関する。
Y≦1.26×lnX+3.5 (1)
Y:保護フィルムの線膨張係数(×10-5/K)
X:保護フィルムの破断伸度(%) That is, the present invention is a polarizing film provided with a protective film on one or both sides of the polarizer via an adhesive layer,
At least one of the protective films provided on the polarizer satisfies the following formula (1).
Y ≦ 1.26 × lnX + 3.5 (1)
Y: Coefficient of linear expansion of protective film (× 10 −5 / K)
X: Elongation at break of protective film (%)
前記偏光フィルムにおいて、前記Y(×10-5/K)は、4以下であることが好ましい。
In the polarizing film, the Y (× 10 −5 / K) is preferably 4 or less.
また、前記偏光フィルムにおいて、前記偏光子の厚さは10μm以下であることが好ましい。
に お い て In the polarizing film, the thickness of the polarizer is preferably 10 μm or less.
また本発明は、前記偏光フィルムおよび粘着剤層を有する粘着剤層付き偏光フィルム、に関する。
The present invention also relates to a polarizing film with an adhesive layer having the polarizing film and the adhesive layer.
また本発明は、前記偏光フィルムまたは前記粘着剤層付き偏光フィルムが、画像表示セルに配置されている画像表示装置、に関する。
The present invention also relates to an image display device in which the polarizing film or the polarizing film with an adhesive layer is disposed in an image display cell.
偏光子の片面又は両面に設けられる保護フィルムとして前記式(1)を満たす保護フィルムを少なくとも1つ用いることにより、保護フィルムの膨張・収縮に基づく応力によって、偏光子の膨張・収縮によって生じる応力を緩和することができるため、偏光子にクラックが生じ難くなる。
By using at least one protective film that satisfies the above formula (1) as a protective film provided on one or both surfaces of the polarizer, the stress caused by the expansion and contraction of the polarizer due to the stress based on the expansion and contraction of the protective film. Since it can be alleviated, cracks hardly occur in the polarizer.
線膨張係数Y(×10-5/K)が4以下である保護フィルムを用いることにより、偏光子の膨張・収縮によって生じる応力をより効果的に緩和することができるため、偏光子中のクラックの発生をより効果的に抑制することができる。
By using a protective film having a linear expansion coefficient Y (× 10 −5 / K) of 4 or less, the stress caused by expansion and contraction of the polarizer can be more effectively reduced, and thus the cracks in the polarizer can be reduced. Can be more effectively suppressed.
また、近年、液晶表示装置等の画像表示装置の薄型化が進み、それに伴い、偏光子にも薄型化が求められている。しかし、厚み10μm以下の薄型偏光子は、加湿環境下において(水分によって)光学特性が低下しやすいという問題がある。水分による薄型偏光子の劣化を抑制する目的で、薄型偏光子に貼り合わされる保護フィルムとして、透湿度が低い(具体的には、100g/(m2・day)以下の)樹脂フィルムを使用することが検討されている。透湿度が低い樹脂フィルムを保護フィルムとして使用した場合には、加湿環境下における偏光子の劣化を抑制することができる。しかし、透湿度が低い保護フィルムは、線膨張係数が大きい傾向があり、偏光子の膨張・収縮によって生じる応力を緩和し難くなるため、偏光子にクラックが生じやすくなる。しかし、線膨張係数が大きい保護フィルムであっても、破断伸度が大きく、前記式(1)を満たす保護フィルムであれば、偏光子の膨張・収縮によって生じる応力を効果的に緩和することができるため、偏光子にクラックが生じ難くなる。したがって、本発明の偏光フィルムは、加湿による偏光子の劣化抑制(加湿信頼性の向上)とクラックの発生抑制を両立することができる。
In recent years, image display devices such as liquid crystal display devices have become thinner, and accordingly, polarizers have also been required to be thinner. However, a thin polarizer having a thickness of 10 μm or less has a problem in that the optical characteristics are likely to deteriorate (due to moisture) in a humid environment. For the purpose of suppressing the deterioration of the thin polarizer due to moisture, a resin film having low moisture permeability (specifically, 100 g / (m 2 · day) or less) is used as a protective film to be attached to the thin polarizer. That is being considered. When a resin film having low moisture permeability is used as the protective film, the deterioration of the polarizer in a humid environment can be suppressed. However, a protective film having low moisture permeability tends to have a large coefficient of linear expansion, and it is difficult to alleviate the stress caused by expansion and contraction of the polarizer, so that the polarizer is easily cracked. However, even if the protective film has a large linear expansion coefficient, a protective film having a large elongation at break and satisfying the above formula (1) can effectively reduce the stress caused by expansion and contraction of the polarizer. Therefore, cracks hardly occur in the polarizer. Therefore, the polarizing film of the present invention can achieve both suppression of deterioration of the polarizer due to humidification (improvement of humidification reliability) and suppression of occurrence of cracks.
1.偏光フィルム
本発明の偏光フィルムは、偏光子の片面又は両面に接着剤層を介して保護フィルムが設けられており、偏光子に設けられる前記保護フィルムの少なくとも1つは、下記式(1)を満たすものである。
Y≦1.26×lnX+3.5 (1)
Y:保護フィルムの線膨張係数(×10-5/K)
X:保護フィルムの破断伸度(%) 1. Polarizing Film The polarizing film of the present invention has a protective film provided on one or both sides of a polarizer via an adhesive layer, and at least one of the protective films provided on the polarizer has the following formula (1): To satisfy.
Y ≦ 1.26 × lnX + 3.5 (1)
Y: Coefficient of linear expansion of protective film (× 10 −5 / K)
X: Elongation at break of protective film (%)
本発明の偏光フィルムは、偏光子の片面又は両面に接着剤層を介して保護フィルムが設けられており、偏光子に設けられる前記保護フィルムの少なくとも1つは、下記式(1)を満たすものである。
Y≦1.26×lnX+3.5 (1)
Y:保護フィルムの線膨張係数(×10-5/K)
X:保護フィルムの破断伸度(%) 1. Polarizing Film The polarizing film of the present invention has a protective film provided on one or both sides of a polarizer via an adhesive layer, and at least one of the protective films provided on the polarizer has the following formula (1): To satisfy.
Y ≦ 1.26 × lnX + 3.5 (1)
Y: Coefficient of linear expansion of protective film (× 10 −5 / K)
X: Elongation at break of protective film (%)
以下、それぞれの構成要素について説明する。
Each component will be described below.
(1)偏光子
偏光子は公知のものを特に制限なく使用することができるが、薄型化及びクラックの発生を抑える観点から厚みが10μm以下の偏光子を用いることが好ましい。偏光子の厚みは、より好ましくは8μm以下、更に好ましくは7μm以下、より更に好ましくは6μm以下である。一方、偏光子の厚みは2μm以上、さらには3μm以上であるのが好ましい。 (1) Polarizer Known polarizers can be used without particular limitation, but it is preferable to use a polarizer having a thickness of 10 μm or less from the viewpoint of reducing the thickness and suppressing the occurrence of cracks. The thickness of the polarizer is more preferably 8 μm or less, further preferably 7 μm or less, and still more preferably 6 μm or less. On the other hand, the thickness of the polarizer is preferably 2 μm or more, and more preferably 3 μm or more.
偏光子は公知のものを特に制限なく使用することができるが、薄型化及びクラックの発生を抑える観点から厚みが10μm以下の偏光子を用いることが好ましい。偏光子の厚みは、より好ましくは8μm以下、更に好ましくは7μm以下、より更に好ましくは6μm以下である。一方、偏光子の厚みは2μm以上、さらには3μm以上であるのが好ましい。 (1) Polarizer Known polarizers can be used without particular limitation, but it is preferable to use a polarizer having a thickness of 10 μm or less from the viewpoint of reducing the thickness and suppressing the occurrence of cracks. The thickness of the polarizer is more preferably 8 μm or less, further preferably 7 μm or less, and still more preferably 6 μm or less. On the other hand, the thickness of the polarizer is preferably 2 μm or more, and more preferably 3 μm or more.
偏光子は、ポリビニルアルコール系樹脂を用いたものが使用される。偏光子としては、例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。これらの中でも、ポリビニルアルコール系フィルムとヨウ素等の二色性物質からなる偏光子が好適である。
A polarizer using a polyvinyl alcohol-based resin is used. Examples of the polarizer include, for example, a polyvinyl alcohol-based film, a partially formalized polyvinyl alcohol-based film, a hydrophilic polymer film such as an ethylene-vinyl acetate copolymer-based partially saponified film, and dichroic properties of iodine and a dichroic dye. Examples thereof include a uniaxially stretched film obtained by adsorbing a substance, and a polyene-based oriented film such as a dehydrated product of polyvinyl alcohol and a dehydrochlorinated product of polyvinyl chloride. Among these, a polarizer composed of a polyvinyl alcohol-based film and a dichroic substance such as iodine is preferable.
ポリビニルアルコール系フィルムをヨウ素で染色し一軸延伸した偏光子は、例えば、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の3~7倍に延伸することで作製することができる。必要に応じてホウ酸や硫酸亜鉛、塩化亜鉛等を含んでいても良いし、ヨウ化カリウム等の水溶液に浸漬することもできる。さらに必要に応じて染色前にポリビニルアルコール系フィルムを水に浸漬して水洗してもよい。ポリビニルアルコール系フィルムを水洗することでポリビニルアルコール系フィルム表面の汚れやブロッキング防止剤を洗浄することができるほかに、ポリビニルアルコール系フィルムを膨潤させることで染色のムラ等の不均一を防止する効果もある。延伸はヨウ素で染色した後に行っても良いし、染色しながら延伸しても良いし、また延伸してからヨウ素で染色しても良い。ホウ酸やヨウ化カリウム等の水溶液や水浴中でも延伸することができる。
偏光 A polarizer obtained by dyeing a polyvinyl alcohol-based film with iodine and uniaxially stretching can be produced, for example, by dyeing polyvinyl alcohol by immersing it in an aqueous solution of iodine and stretching the film to 3 to 7 times its original length. If necessary, it may contain boric acid, zinc sulfate, zinc chloride, or the like, or may be immersed in an aqueous solution of potassium iodide or the like. Further, if necessary, the polyvinyl alcohol-based film may be immersed in water and washed with water before dyeing. By washing the polyvinyl alcohol-based film with water, dirt on the surface of the polyvinyl alcohol-based film and an anti-blocking agent can be washed off.Also, by swelling the polyvinyl alcohol-based film, the effect of preventing unevenness such as uneven dyeing can be obtained. is there. Stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be dyed with iodine after stretching. Stretching can be performed in an aqueous solution of boric acid or potassium iodide or in a water bath.
偏光子はホウ酸を含有していることが延伸安定性や加湿信頼性の点から好ましい。また、偏光子に含まれるホウ酸含有量は、クラックの発生抑制の観点から、偏光子全量に対して22重量%以下であるのが好ましく、20重量%以下であるのがさらに好ましい。延伸安定性や加湿信頼性の観点から、偏光子全量に対するホウ酸含有量は10重量%以上であることが好ましく、さらには12重量%以上であることが好ましい。
The polarizer preferably contains boric acid from the viewpoint of stretching stability and humidification reliability. Further, the content of boric acid contained in the polarizer is preferably 22% by weight or less, more preferably 20% by weight or less, based on the total amount of the polarizer, from the viewpoint of suppressing the occurrence of cracks. From the viewpoint of stretching stability and humidification reliability, the boric acid content based on the total amount of the polarizer is preferably 10% by weight or more, and more preferably 12% by weight or more.
薄型の偏光子としては、代表的には、
特許第4751486号明細書、
特許第4751481号明細書、
特許第4815544号明細書、
特許第5048120号明細書、
国際公開第2014/077599号パンフレット、
国際公開第2014/077636号パンフレット、
等に記載されている薄型偏光子又はこれらに記載の製造方法から得られる薄型偏光子を挙げることができる。 As a thin polarizer, typically,
Patent No. 4751486,
Patent No. 4,751,481,
Patent No. 4815544,
Patent No. 5048120,
WO 2014/077599 pamphlet,
WO 2014/077636 pamphlet,
And the like, and a thin polarizer obtained from the production method described therein.
特許第4751486号明細書、
特許第4751481号明細書、
特許第4815544号明細書、
特許第5048120号明細書、
国際公開第2014/077599号パンフレット、
国際公開第2014/077636号パンフレット、
等に記載されている薄型偏光子又はこれらに記載の製造方法から得られる薄型偏光子を挙げることができる。 As a thin polarizer, typically,
Patent No. 4751486,
Patent No. 4,751,481,
Patent No. 4815544,
Patent No. 5048120,
WO 2014/077599 pamphlet,
WO 2014/077636 pamphlet,
And the like, and a thin polarizer obtained from the production method described therein.
前記薄型偏光子としては、積層体の状態で延伸する工程と染色する工程を含む製法の中でも、高倍率に延伸できて偏光性能を向上させることのできる点で、特許第4751486号明細書、特許第4751481号明細書、特許4815544号明細書に記載のあるようなホウ酸水溶液中で延伸する工程を含む製法で得られるものが好ましく、特に特許第4751481号明細書、特許4815544号明細書に記載のあるホウ酸水溶液中で延伸する前に補助的に空中延伸する工程を含む製法により得られるものが好ましい。これら薄型偏光子は、ポリビニルアルコール系樹脂(以下、PVA系樹脂ともいう)層と延伸用樹脂基材を積層体の状態で延伸する工程と染色する工程を含む製法による得ることができる。この製法であれば、PVA系樹脂層が薄くても、延伸用樹脂基材に支持されていることにより延伸による破断等の不具合なく延伸することが可能となる。
Among the thin polarizers, Japanese Patent No. 4751486 and Patent Document 4 disclose that, among manufacturing methods including a step of stretching in a state of a laminate and a step of dyeing, it is possible to stretch at a high magnification and improve polarization performance. Preferred are those obtained by a production method including a step of stretching in a boric acid aqueous solution as described in JP-B-47515481 and JP-B-4815544, and particularly described in JP-B-4775481 and JP-B-4815544. What is obtained by the manufacturing method including the process of auxiliary | assistant air-stretching before extending | stretching in a boric-acid aqueous solution with a certain thing is preferable. These thin polarizers can be obtained by a manufacturing method including a step of stretching a polyvinyl alcohol-based resin (hereinafter, also referred to as a PVA-based resin) layer and a resin substrate for stretching in a laminate state and a step of dyeing. According to this manufacturing method, even if the PVA-based resin layer is thin, it can be stretched without any trouble such as breakage due to stretching because it is supported by the stretching resin base material.
(2)保護フィルム
保護フィルムの材料としては、透明性、機械的強度、熱安定性、水分遮断性、等方性などに優れるものが好ましい。例えば、ポリエチレンテレフタレートやポリエチレンナフタレートなどのポリエステル系ポリマー、ジアセチルセルロースやトリアセチルセルロースなどのセルロース系ポリマー、ポリメチルメタクリレートなどのアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)などのスチレン系ポリマー、ポリカーボネート系ポリマー等が挙げられる。また、ポリエチレン、ポリプロピレン、シクロ系ないしはノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体の如きポリオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミドなどのアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、または上記ポリマーのブレンド物なども上記保護フィルムを形成するポリマーの例として挙げられる。 (2) Protective film As the material of the protective film, those having excellent transparency, mechanical strength, heat stability, moisture barrier properties, isotropy, and the like are preferable. For example, polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, cellulosic polymers such as diacetyl cellulose and triacetyl cellulose, acrylic polymers such as polymethyl methacrylate, and styrene such as polystyrene and acrylonitrile-styrene copolymer (AS resin) Polymers, polycarbonate polymers and the like. In addition, polyethylene, polypropylene, polyolefin having a cyclo- or norbornene structure, polyolefin polymers such as ethylene-propylene copolymer, vinyl chloride polymers, amide polymers such as nylon and aromatic polyamide, imide polymers, and sulfone polymers , Polyether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinyl alcohol polymer, vinylidene chloride polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene polymer, epoxy polymer, or the above Blends of polymers and the like are also examples of the polymer forming the protective film.
保護フィルムの材料としては、透明性、機械的強度、熱安定性、水分遮断性、等方性などに優れるものが好ましい。例えば、ポリエチレンテレフタレートやポリエチレンナフタレートなどのポリエステル系ポリマー、ジアセチルセルロースやトリアセチルセルロースなどのセルロース系ポリマー、ポリメチルメタクリレートなどのアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)などのスチレン系ポリマー、ポリカーボネート系ポリマー等が挙げられる。また、ポリエチレン、ポリプロピレン、シクロ系ないしはノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体の如きポリオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミドなどのアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、または上記ポリマーのブレンド物なども上記保護フィルムを形成するポリマーの例として挙げられる。 (2) Protective film As the material of the protective film, those having excellent transparency, mechanical strength, heat stability, moisture barrier properties, isotropy, and the like are preferable. For example, polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, cellulosic polymers such as diacetyl cellulose and triacetyl cellulose, acrylic polymers such as polymethyl methacrylate, and styrene such as polystyrene and acrylonitrile-styrene copolymer (AS resin) Polymers, polycarbonate polymers and the like. In addition, polyethylene, polypropylene, polyolefin having a cyclo- or norbornene structure, polyolefin polymers such as ethylene-propylene copolymer, vinyl chloride polymers, amide polymers such as nylon and aromatic polyamide, imide polymers, and sulfone polymers , Polyether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinyl alcohol polymer, vinylidene chloride polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene polymer, epoxy polymer, or the above Blends of polymers and the like are also examples of the polymer forming the protective film.
保護フィルム中には任意の適切な添加剤が1種類以上含まれていてもよい。添加剤としては、例えば、紫外線吸収剤、酸化防止剤、滑剤、可塑剤、離型剤、着色防止剤、難燃剤、核剤、帯電防止剤、顔料、着色剤などがあげられる。
The protective film may contain one or more optional additives. Examples of the additives include an ultraviolet absorber, an antioxidant, a lubricant, a plasticizer, a release agent, a coloring inhibitor, a flame retardant, a nucleating agent, an antistatic agent, a pigment, and a coloring agent.
保護フィルム中の上記ポリマーの含有量は、好ましくは50~100重量%、より好ましくは50~99重量%、更に好ましくは60~98重量%、より更に好ましくは70~97重量%である。保護フィルム中の上記ポリマーの含有量が50重量%未満の場合、上記ポリマーが本来有する高透明性等が十分に発現できないおそれがある。
含有 The content of the polymer in the protective film is preferably 50 to 100% by weight, more preferably 50 to 99% by weight, further preferably 60 to 98% by weight, and still more preferably 70 to 97% by weight. If the content of the polymer in the protective film is less than 50% by weight, the high transparency or the like inherent in the polymer may not be sufficiently exhibited.
前記保護フィルムとしては、位相差フィルム、輝度向上フィルム、拡散フィルム等も用いることができる。位相差フィルムとしては、正面位相差が40nm以上および/または、厚み方向位相差が80nm以上の位相差を有するものが挙げられる。正面位相差は、通常、40~200nmの範囲に、厚み方向位相差は、通常、80~300nmの範囲に制御される。保護フィルムとして位相差フィルムを用いる場合には、当該位相差フィルムが偏光子の保護フィルムとしても機能するため、薄型化を図ることができる。
位相 As the protective film, a retardation film, a brightness enhancement film, a diffusion film and the like can also be used. Examples of the retardation film include those having a front retardation of 40 nm or more and / or a thickness direction retardation of 80 nm or more. The front phase difference is usually controlled in the range of 40 to 200 nm, and the thickness direction phase difference is usually controlled in the range of 80 to 300 nm. When a retardation film is used as the protective film, the thickness can be reduced because the retardation film also functions as a protective film for the polarizer.
位相差フィルムとしては、熱可塑性樹脂フィルムを一軸または二軸延伸処理してなる複屈折性フィルムが挙げられる。上記延伸の温度、延伸倍率等は、位相差値、フィルムの材料、厚みにより適宜に設定される。
Examples of the retardation film include birefringent films obtained by uniaxially or biaxially stretching a thermoplastic resin film. The stretching temperature, stretching ratio, and the like are appropriately set depending on the retardation value, the material and thickness of the film.
保護フィルムの厚さは適宜に決定しうるが、強度や取扱性等の作業性、薄層性などの点より1~500μm程度である。保護フィルムの厚さは、好ましくは1~300μm、より好ましくは5~200μm、更に好ましくは5~150μm、より更に好ましくは20~100μmである。
The thickness of the protective film can be determined as appropriate, but it is about 1 to 500 μm from the viewpoint of workability such as strength and handleability, and thinness. The thickness of the protective film is preferably 1 to 300 μm, more preferably 5 to 200 μm, still more preferably 5 to 150 μm, and still more preferably 20 to 100 μm.
前記保護フィルムの偏光子を接着させない面には、ハードコート層、反射防止層、スティッキング防止層、拡散層ないしアンチグレア層などの機能層を設けることができる。なお、上記ハードコート層、反射防止層、スティッキング防止層、拡散層やアンチグレア層などの機能層は、保護フィルムそのものに設けることができるほか、別途、保護フィルムとは別体のものとして設けることもできる。
機能 A functional layer such as a hard coat layer, an anti-reflection layer, an anti-sticking layer, a diffusion layer or an anti-glare layer can be provided on the surface of the protective film on which the polarizer is not adhered. The functional layers such as the hard coat layer, the antireflection layer, the anti-sticking layer, the diffusion layer and the antiglare layer can be provided on the protective film itself, or separately provided separately from the protective film. it can.
本発明においては、偏光子に設けられる保護フィルム(前記機能層を含んでいてもよい)の少なくとも1つは、下記式(1)を満たすものを用いる。偏光子の両面に保護フィルムを設ける場合、偏光子の両面に設ける保護フィルムがそれぞれ下記式(1)を満たすことが好ましい。それにより、偏光子の膨張・収縮によって生じる応力を効果的に緩和することができるため、偏光子にクラックがさらに生じ難くなる。なお、保護フィルムの線膨張係数及び破断伸度の測定方法は実施例の記載による。
Y≦1.26×lnX+3.5 (1)
Y:保護フィルムの線膨張係数(×10-5/K)
X:保護フィルムの破断伸度(%) In the present invention, at least one of the protective films (which may include the functional layer) provided on the polarizer satisfies the following formula (1). When protective films are provided on both surfaces of the polarizer, it is preferable that the protective films provided on both surfaces of the polarizer each satisfy the following formula (1). Thereby, the stress generated by the expansion and contraction of the polarizer can be effectively reduced, so that cracks are less likely to occur in the polarizer. The method for measuring the coefficient of linear expansion and the elongation at break of the protective film is as described in Examples.
Y ≦ 1.26 × lnX + 3.5 (1)
Y: Coefficient of linear expansion of protective film (× 10 −5 / K)
X: Elongation at break of protective film (%)
Y≦1.26×lnX+3.5 (1)
Y:保護フィルムの線膨張係数(×10-5/K)
X:保護フィルムの破断伸度(%) In the present invention, at least one of the protective films (which may include the functional layer) provided on the polarizer satisfies the following formula (1). When protective films are provided on both surfaces of the polarizer, it is preferable that the protective films provided on both surfaces of the polarizer each satisfy the following formula (1). Thereby, the stress generated by the expansion and contraction of the polarizer can be effectively reduced, so that cracks are less likely to occur in the polarizer. The method for measuring the coefficient of linear expansion and the elongation at break of the protective film is as described in Examples.
Y ≦ 1.26 × lnX + 3.5 (1)
Y: Coefficient of linear expansion of protective film (× 10 −5 / K)
X: Elongation at break of protective film (%)
保護フィルムの線膨張係数と破断伸度は、使用する原料と厚みによって変化するため、使用する原料に応じて厚みを適宜調整する。上記式(1)を満たす保護フィルムは、例えば、シクロオレフィン系ポリマーフィルムを厚み17~18μm程度に延伸することにより製造することができる。
線 Since the coefficient of linear expansion and the elongation at break of the protective film vary depending on the material used and the thickness, the thickness is appropriately adjusted according to the material used. The protective film satisfying the above formula (1) can be produced, for example, by stretching a cycloolefin-based polymer film to a thickness of about 17 to 18 μm.
上記式(1)を満たす保護フィルムの市販品としては、例えば、TJ25UL(富士フィルム製、原料:トリアセチルセルロース系ポリマー、厚み:25μm)、ZT12(日本ゼオン製、原料:シクロオレフィン系ポリマー、厚み:17μm)、KC2UA(コニカミノルタ製、原料:トリアセチルセルロース系ポリマー、厚み:20μm)、及びKC2UGR-HC(コニカミノルタ製、トリアセチルセルロース系ポリマーフィルム上にアクリル樹脂系ハードコート層を設けたフィルム、厚み:37μm)などが挙げられる。
Commercially available protective films satisfying the above formula (1) include, for example, TJ25UL (manufactured by Fuji Film, raw material: triacetylcellulose-based polymer, thickness: 25 μm), ZT12 (manufactured by Zeon Corporation, raw material: cycloolefin-based polymer, thickness) : 17 μm), KC2UA (manufactured by Konica Minolta, raw material: triacetylcellulose-based polymer, thickness: 20 μm), and KC2UGR-HC (manufactured by Konica Minolta, triacetylcellulose-based polymer film provided with an acrylic resin-based hard coat layer) , Thickness: 37 μm).
上記式(1)を満たす保護フィルムは、線膨張係数Y(×10-5/K)が4以下であることが好ましく、より好ましくは3.5以下であり、更に好ましくは3.1以下である。
The protective film satisfying the above formula (1) preferably has a linear expansion coefficient Y (× 10 −5 / K) of 4 or less, more preferably 3.5 or less, and still more preferably 3.1 or less. is there.
(3)接着剤層
(3) Adhesive layer
接着剤層は接着剤により形成される。接着剤の種類は特に制限されず、種々のものを用いることができる。前記接着剤層は光学的に透明であれば特に制限されず、接着剤としては、水系、溶剤系、ホットメルト系、活性エネルギー線硬化型等の各種形態のものが用いられるが、水系接着剤または活性エネルギー線硬化型接着剤が好適である。
The adhesive layer is formed by an adhesive. The type of the adhesive is not particularly limited, and various adhesives can be used. The adhesive layer is not particularly limited as long as it is optically transparent. Examples of the adhesive include water-based, solvent-based, hot-melt, and active energy ray-curable adhesives. Alternatively, an active energy ray-curable adhesive is suitable.
水系接着剤としては、イソシアネート系接着剤、ポリビニルアルコール系接着剤、ゼラチン系接着剤、ビニル系ラテックス系、水系ポリエステル等を例示できる。水系接着剤は、通常、水溶液からなる接着剤として用いられ、通常、0.5~60重量%の固形分を含有する。
Examples of the water-based adhesive include an isocyanate-based adhesive, a polyvinyl alcohol-based adhesive, a gelatin-based adhesive, a vinyl latex-based adhesive, and an aqueous polyester. The water-based adhesive is usually used as an adhesive composed of an aqueous solution, and usually contains a solid content of 0.5 to 60% by weight.
活性エネルギー線硬化型接着剤は、電子線、紫外線(ラジカル硬化型、カチオン硬化型)等の活性エネルギー線により硬化が進行する接着剤であり、例えば、電子線硬化型、紫外線硬化型の態様で用いることができる。活性エネルギー線硬化型接着剤は、例えば、光ラジカル硬化型接着剤を用いることができる。光ラジカル硬化型の活性エネルギー線硬化型接着剤を、紫外線硬化型として用いる場合には、当該接着剤は、ラジカル重合性化合物および光重合開始剤を含有する。
The active energy ray-curable adhesive is an adhesive whose curing progresses with an active energy ray such as an electron beam or an ultraviolet ray (radical-curable or cationically-curable). Can be used. As the active energy ray-curable adhesive, for example, a photo-radical curable adhesive can be used. When a photo-radical curable active energy ray-curable adhesive is used as an ultraviolet curable adhesive, the adhesive contains a radical polymerizable compound and a photopolymerization initiator.
接着剤の塗工方式は、接着剤の粘度や目的とする厚みによって適宜に選択される。塗工方式の例として、例えば、リバースコーター、グラビアコーター(ダイレクト,リバースやオフセット)、バーリバースコーター、ロールコーター、ダイコーター、バーコーター、ロッドコーター等が挙げられる。その他、塗工には、デイッピング方式などの方式を適宜に使用することができる。
The method of applying the adhesive is appropriately selected depending on the viscosity of the adhesive and the desired thickness. Examples of the coating method include, for example, a reverse coater, a gravure coater (direct, reverse or offset), a bar reverse coater, a roll coater, a die coater, a bar coater, a rod coater, and the like. In addition, a method such as a dipping method can be appropriately used for coating.
また、前記接着剤の塗工は、水系接着剤等を用いる場合には、最終的に形成される接着剤層の厚みが30~300nmになるように行うのが好ましい。前記接着剤層の厚さは、さらに好ましくは60~250nmである。一方、活性エネルギー線硬化型接着剤を用いる場合には、前記接着剤層の厚みは、0.1~200μmになるよう行うのが好ましい。より好ましくは、0.5~50μm、さらに好ましくは0.5~10μmである。
In addition, when using an aqueous adhesive or the like, the adhesive is preferably applied so that the thickness of the finally formed adhesive layer is 30 to 300 nm. The thickness of the adhesive layer is more preferably 60 to 250 nm. On the other hand, when an active energy ray-curable adhesive is used, the thickness of the adhesive layer is preferably set to 0.1 to 200 μm. More preferably, it is 0.5 to 50 μm, further preferably 0.5 to 10 μm.
なお、偏光子と保護フィルムの積層にあたって、保護フィルムと接着剤層の間には、易接着層を設けることができる。易接着層は、例えば、ポリエステル骨格、ポリエーテル骨格、ポリカーボネート骨格、ポリウレタン骨格、シリコーン系、ポリアミド骨格、ポリイミド骨格、ポリビニルアルコール骨格などを有する各種樹脂により形成することができる。これらポリマー樹脂は1種を単独で、または2種以上を組み合わせて用いることができる。また易接着層の形成には他の添加剤を加えてもよい。具体的にはさらには粘着付与剤、紫外線吸収剤、酸化防止剤、耐熱安定剤などの安定剤などを用いてもよい。
積 層 When laminating the polarizer and the protective film, an easy-adhesion layer can be provided between the protective film and the adhesive layer. The easy-adhesion layer can be formed of, for example, various resins having a polyester skeleton, polyether skeleton, polycarbonate skeleton, polyurethane skeleton, silicone, polyamide skeleton, polyimide skeleton, polyvinyl alcohol skeleton, and the like. These polymer resins can be used alone or in combination of two or more. Further, other additives may be added to the formation of the easily adhesive layer. Specifically, stabilizers such as tackifiers, ultraviolet absorbers, antioxidants, and heat stabilizers may be used.
易接着層は、通常、保護フィルムに予め設けておき、当該保護フィルムの易接着層側と偏光子とを接着剤層により積層する。易接着層の形成は、易接着層の形成材を保護フィルム上に、公知の技術により塗工、乾燥することにより行われる。易接着層の形成材は、乾燥後の厚み、塗工の円滑性などを考慮して適当な濃度に希釈した溶液として、通常調整される。易接着層は乾燥後の厚みは、好ましくは0.01~5μm、さらに好ましくは0.02~2μm、さらに好ましくは0.05~1μmである。なお、易接着層は複数層設けることができるが、この場合にも、易接着層の総厚みは上記範囲になるようにするのが好ましい。
The easy-adhesion layer is usually provided in advance on the protective film, and the easy-adhesion layer side of the protective film and the polarizer are laminated with an adhesive layer. The easy-adhesion layer is formed by applying and drying the material for forming the easy-adhesion layer on the protective film by a known technique. The material for forming the easily adhesive layer is usually adjusted as a solution diluted to an appropriate concentration in consideration of the thickness after drying, the smoothness of coating, and the like. The thickness of the easy-adhesion layer after drying is preferably 0.01 to 5 μm, more preferably 0.02 to 2 μm, and still more preferably 0.05 to 1 μm. Note that a plurality of easy-adhesion layers can be provided. In this case, it is preferable that the total thickness of the easy-adhesion layers be in the above range.
2.粘着剤層付き偏光フィルム
本発明の粘着剤層付き偏光フィルムは、前記偏光フィルムおよび粘着剤層を有する。 2. Polarizing Film with Pressure-Sensitive Adhesive Layer The polarizing film with the pressure-sensitive adhesive layer of the present invention has the polarizing film and the pressure-sensitive adhesive layer.
本発明の粘着剤層付き偏光フィルムは、前記偏光フィルムおよび粘着剤層を有する。 2. Polarizing Film with Pressure-Sensitive Adhesive Layer The polarizing film with the pressure-sensitive adhesive layer of the present invention has the polarizing film and the pressure-sensitive adhesive layer.
偏光子の両面に保護フィルムを設けた両保護偏光フィルムの場合、両保護偏光フィルムの一方の面に直接又は他の層を介して粘着剤層を設ける。なお、両保護偏光フィルムの他方の面には、直接又は他の層を介して表面保護フィルムを設けてもよい。
両 In the case of both protective polarizing films in which protective films are provided on both surfaces of a polarizer, an adhesive layer is provided on one surface of both protective polarizing films directly or via another layer. In addition, a surface protection film may be provided directly or via another layer on the other surface of both protective polarizing films.
偏光子の片面にのみ保護フィルムを設けた片保護偏光フィルムの場合、片保護偏光フィルムの偏光子側に直接又は他の層を介して粘着剤層を設ける。なお、片保護偏光フィルムの保護フィルム側に直接又は他の層を介して表面保護フィルムを設けてもよい。
片 In the case of a one-sided protective polarizing film in which a protective film is provided only on one side of the polarizer, an adhesive layer is provided directly or via another layer on the side of the one-sided protective polarizing film on the polarizer side. In addition, a surface protective film may be provided directly or via another layer on the protective film side of the one-side protective polarizing film.
前記他の層は特に制限されず、偏光フィルムに設けられる公知の機能層や光学層などが挙げられる。光学層としては、例えば、反射板、半透過板、位相差板(1/2や1/4などの波長板を含む)、視角補償フィルム、及び輝度向上フィルムなどが挙げられる。前記他の層は、1層設けられていてもよく、2層以上設けられていてもよい。
The other layers are not particularly limited, and include known functional layers and optical layers provided on the polarizing film. Examples of the optical layer include a reflection plate, a semi-transmission plate, a retardation plate (including a wavelength plate such as や or 4), a viewing angle compensation film, and a brightness enhancement film. The other layer may be provided as one layer, or may be provided as two or more layers.
前記粘着剤層は、偏光フィルムを液晶セル等のセル基板に貼り合わせるために偏光フィルムの片面に設けられる。
The pressure-sensitive adhesive layer is provided on one side of the polarizing film in order to attach the polarizing film to a cell substrate such as a liquid crystal cell.
前記粘着剤層の厚さは特に限定されず、例えば、1~100μm程度であり、好ましくは2~50μm、より好ましくは2~40μm、さらに好ましくは5~35μmである。
The thickness of the pressure-sensitive adhesive layer is not particularly limited, and is, for example, about 1 to 100 μm, preferably 2 to 50 μm, more preferably 2 to 40 μm, and further preferably 5 to 35 μm.
前記粘着剤層の形成には、適宜な粘着剤を用いることができ、その種類について特に制限はない。粘着剤としては、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ビニルアルキルエーテル系粘着剤、ポリビニルアルコール系粘着剤、ポリビニルピロリドン系粘着剤、ポリアクリルアミド系粘着剤、セルロース系粘着剤などがあげられる。
適宜 In forming the pressure-sensitive adhesive layer, a suitable pressure-sensitive adhesive can be used, and the type thereof is not particularly limited. As the adhesive, a rubber-based adhesive, an acrylic-based adhesive, a silicone-based adhesive, a urethane-based adhesive, a vinylalkyl ether-based adhesive, a polyvinyl alcohol-based adhesive, a polyvinylpyrrolidone-based adhesive, a polyacrylamide-based adhesive, Cellulose-based adhesives and the like can be mentioned.
これら粘着剤のなかでも、光学的透明性に優れ、適宜な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるものが好ましく使用される。このような特徴を示すものとしてアクリル系粘着剤が好ましく使用される。
Among these adhesives, those having excellent optical transparency, exhibiting appropriate wettability, cohesiveness and adhesive adhesive properties and having excellent weather resistance and heat resistance are preferably used. Acrylic pressure-sensitive adhesives having such characteristics are preferably used.
粘着剤層を形成する方法としては、例えば、前記粘着剤を剥離処理したセパレータなどに塗布し、重合溶剤などを乾燥除去して粘着剤層を形成した後に、偏光フィルムに転写する方法、または前記粘着剤を塗布し、重合溶剤などを乾燥除去して粘着剤層を偏光フィルムに形成する方法などが挙げられる。なお、粘着剤の塗布にあたっては、適宜に、重合溶剤以外の一種以上の溶剤を新たに加えてもよい。
Examples of the method for forming the pressure-sensitive adhesive layer include, for example, a method in which the pressure-sensitive adhesive is applied to a separator or the like that has been subjected to a release treatment, and a polymerization solvent or the like is dried and removed to form a pressure-sensitive adhesive layer. A method of forming a pressure-sensitive adhesive layer on a polarizing film by applying a pressure-sensitive adhesive and removing a polymerization solvent by drying is exemplified. In applying the pressure-sensitive adhesive, one or more solvents other than the polymerization solvent may be newly added as appropriate.
剥離処理したセパレータとしては、シリコーン剥離ライナーが好ましく用いられる。このようなライナー上に粘着剤を塗布、乾燥させて粘着剤層を形成する工程において、粘着剤を乾燥させる方法としては、目的に応じて、適宜、適切な方法が採用され得る。好ましくは、上記塗布膜を過熱乾燥する方法が用いられる。加熱乾燥温度は、好ましくは40℃~200℃であり、さらに好ましくは、50℃~180℃であり、特に好ましくは70℃~170℃である。加熱温度を上記の範囲とすることによって、優れた粘着特性を有する粘着剤を得ることができる。
シ リ コ ー ン Silicone release liners are preferably used as the release-treated separator. In the step of applying and drying the pressure-sensitive adhesive on the liner to form a pressure-sensitive adhesive layer, a method for drying the pressure-sensitive adhesive may be appropriately selected depending on the purpose. Preferably, a method of heating and drying the coating film is used. The heating and drying temperature is preferably from 40 ° C to 200 ° C, more preferably from 50 ° C to 180 ° C, and particularly preferably from 70 ° C to 170 ° C. By setting the heating temperature in the above range, an adhesive having excellent adhesive properties can be obtained.
乾燥時間は、適宜、適切な時間が採用され得る。上記乾燥時間は、好ましくは5秒~20分、さらに好ましくは5秒~10分、特に好ましくは、10秒~5分である。
A proper drying time can be adopted as appropriate. The drying time is preferably 5 seconds to 20 minutes, more preferably 5 seconds to 10 minutes, and particularly preferably 10 seconds to 5 minutes.
粘着剤層の形成方法としては、各種方法が用いられる。具体的には、例えば、ロールコート、キスロールコート、グラビアコート、リバースコート、ロールブラッシュ、スプレーコート、ディップロールコート、バーコート、ナイフコート、エアーナイフコート、カーテンコート、リップコート、ダイコーターなどによる押出しコート法などの方法があげられる。
各種 Various methods are used for forming the pressure-sensitive adhesive layer. Specifically, for example, roll coat, kiss roll coat, gravure coat, reverse coat, roll brush, spray coat, dip roll coat, bar coat, knife coat, air knife coat, curtain coat, lip coat, die coater, etc. Examples include a method such as an extrusion coating method.
前記粘着剤層が露出する場合には、実用に供されるまで剥離処理したシート(セパレータ)で粘着剤層を保護してもよい。
When the pressure-sensitive adhesive layer is exposed, the pressure-sensitive adhesive layer may be protected by a sheet (separator) that has been subjected to a release treatment until it is practically used.
セパレータの構成材料としては、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリエステルフィルムなどのプラスチックフィルム、紙、布、不織布などの多孔質材料、ネット、発泡シート、金属箔、およびこれらのラミネート体などの適宜な薄葉体などをあげることができるが、表面平滑性に優れる点からプラスチックフィルムが好適に用いられる。
As a constituent material of the separator, for example, polyethylene, polypropylene, polyethylene terephthalate, a plastic film such as a polyester film, paper, cloth, a porous material such as a nonwoven fabric, a net, a foamed sheet, a metal foil, and a laminate of these as appropriate Although a thin leaf body and the like can be mentioned, a plastic film is preferably used because of its excellent surface smoothness.
そのプラスチックフィルムとしては、前記粘着剤層を保護し得るフィルムであれば特に限定されず、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフイルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリウレタンフィルム、エチレン-酢酸ビニル共重合体フィルムなどがあげられる。
The plastic film is not particularly limited as long as it can protect the pressure-sensitive adhesive layer. Examples of the plastic film include polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, and vinyl chloride film. Examples include a polymer film, a polyethylene terephthalate film, a polybutylene terephthalate film, a polyurethane film, and an ethylene-vinyl acetate copolymer film.
前記セパレータの厚みは、通常5~200μm、好ましくは5~100μm程度である。前記セパレータには、必要に応じて、シリコーン系、フッ素系、長鎖アルキル系もしくは脂肪酸アミド系の離型剤、シリカ粉などによる離型および防汚処理や、塗布型、練り込み型、蒸着型などの帯電防止処理もすることもできる。特に、前記セパレータの表面にシリコーン処理、長鎖アルキル処理、フッ素処理などの剥離処理を適宜おこなうことにより、前記粘着剤層からの剥離性をより高めることができる。
セ パ レ ー タ The thickness of the separator is usually about 5 to 200 μm, preferably about 5 to 100 μm. The separator, if necessary, silicone-based, fluorine-based, long-chain alkyl-based or fatty acid amide-based release agent, release and antifouling treatment with silica powder, etc., coating type, kneading type, evaporation type It is also possible to perform an antistatic treatment such as the following. In particular, by appropriately performing a release treatment such as a silicone treatment, a long-chain alkyl treatment, or a fluorine treatment on the surface of the separator, the releasability from the pressure-sensitive adhesive layer can be further improved.
前記表面保護フィルムは、通常、基材フィルムおよび粘着剤層を有し、当該粘着剤層を介して偏光フィルムを保護する。
The surface protective film usually has a base film and an adhesive layer, and protects the polarizing film via the adhesive layer.
前記表面保護フィルムの基材フィルムとしては、検査性や管理性などの観点から、等方性を有する又は等方性に近いフィルム材料が選択される。そのフィルム材料としては、例えば、ポリエチレンテレフタレートフィルム等のポリエステル系樹脂、セルロース系樹脂、アセテート系樹脂、ポリエーテルサルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、アクリル系樹脂のような透明なポリマーがあげられる。これらのなかでもポリエステル系樹脂が好ましい。基材フィルムは、1種または2種以上のフィルム材料のラミネート体として用いることもでき、また前記フィルムの延伸物を用いることもできる。基材フィルムの厚さは、一般的には、500μm以下、好ましくは10~200μmである。
フ ィ ル ム As the base film of the surface protective film, a film material having or near isotropy is selected from the viewpoint of testability and manageability. Examples of the film material include a polyester resin such as a polyethylene terephthalate film, a cellulose resin, an acetate resin, a polyether sulfone resin, a polycarbonate resin, a polyamide resin, a polyimide resin, a polyolefin resin, and an acrylic resin. A transparent polymer such as a resin can be used. Of these, polyester resins are preferred. The base film can be used as a laminate of one or more film materials, and a stretched product of the film can also be used. The thickness of the substrate film is generally 500 μm or less, preferably 10 to 200 μm.
前記表面保護フィルムの粘着剤層を形成する粘着剤としては、(メタ)アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系などのポリマーをベースポリマーとする粘着剤を適宜に選択して用いることができる。透明性、耐候性、耐熱性などの観点から、アクリル系ポリマーをベースポリマーとするアクリル系粘着剤が好ましい。粘着剤層の厚さ(乾燥膜厚)は、必要とされる粘着力に応じて決定される。通常1~100μm程度、好ましくは5~50μmである。
Examples of the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer of the surface protective film include a pressure-sensitive adhesive having a base polymer of (meth) acrylic polymer, silicone polymer, polyester, polyurethane, polyamide, polyether, fluorine-based or rubber-based polymer. The agent can be appropriately selected and used. From the viewpoints of transparency, weather resistance, heat resistance, and the like, an acrylic pressure-sensitive adhesive containing an acrylic polymer as a base polymer is preferable. The thickness (dry film thickness) of the pressure-sensitive adhesive layer is determined according to the required pressure-sensitive adhesive strength. Usually, it is about 1 to 100 μm, preferably 5 to 50 μm.
なお、表面保護フィルムには、基材フィルムにおける粘着剤層を設けた面の反対面に、シリコーン処理、長鎖アルキル処理、フッ素処理などの低接着性材料により、剥離処理層を設けることができる。
In addition, on the surface protective film, a release treatment layer can be provided on the surface opposite to the surface on which the pressure-sensitive adhesive layer of the base film is provided, using a low-adhesion material such as silicone treatment, long-chain alkyl treatment, or fluorine treatment. .
3.画像表示装置
本発明の画像表示装置は、本発明の偏光フィルムまたは粘着剤層付き偏光フィルムを含むものであればよく、その他の構成については、従来の画像表示装置と同様のものを挙げることができる。前記偏光フィルムまたは粘着剤層付き偏光フィルムは、画像表示セルに適用される。例えば、画像表示装置が液晶表示装置の場合には、前記偏光フィルムまたは粘着剤層付き偏光フィルムは、画像表示セル(液晶セル)の視認側、バックライト側のいずれにも適用することができる。画像表示装置が有機EL表示装置の場合には、前記偏光フィルムまたは粘着剤層付き偏光フィルムは、画像表示セルの視認側に適用することができる。本発明の画像表示装置は、前記偏光フィルムまたは粘着剤層付き偏光フィルムを含むため、高い信頼性を有するものである。 3. Image Display Device The image display device of the present invention may be any one including the polarizing film or the polarizing film with an adhesive layer of the present invention, and other configurations may be the same as those of the conventional image display device. it can. The polarizing film or the polarizing film with a pressure-sensitive adhesive layer is applied to an image display cell. For example, when the image display device is a liquid crystal display device, the polarizing film or the polarizing film with an adhesive layer can be applied to both the viewing side and the backlight side of an image display cell (liquid crystal cell). When the image display device is an organic EL display device, the polarizing film or the polarizing film with an adhesive layer can be applied to the viewing side of the image display cell. The image display device of the present invention has high reliability because it includes the polarizing film or the polarizing film with the pressure-sensitive adhesive layer.
本発明の画像表示装置は、本発明の偏光フィルムまたは粘着剤層付き偏光フィルムを含むものであればよく、その他の構成については、従来の画像表示装置と同様のものを挙げることができる。前記偏光フィルムまたは粘着剤層付き偏光フィルムは、画像表示セルに適用される。例えば、画像表示装置が液晶表示装置の場合には、前記偏光フィルムまたは粘着剤層付き偏光フィルムは、画像表示セル(液晶セル)の視認側、バックライト側のいずれにも適用することができる。画像表示装置が有機EL表示装置の場合には、前記偏光フィルムまたは粘着剤層付き偏光フィルムは、画像表示セルの視認側に適用することができる。本発明の画像表示装置は、前記偏光フィルムまたは粘着剤層付き偏光フィルムを含むため、高い信頼性を有するものである。 3. Image Display Device The image display device of the present invention may be any one including the polarizing film or the polarizing film with an adhesive layer of the present invention, and other configurations may be the same as those of the conventional image display device. it can. The polarizing film or the polarizing film with a pressure-sensitive adhesive layer is applied to an image display cell. For example, when the image display device is a liquid crystal display device, the polarizing film or the polarizing film with an adhesive layer can be applied to both the viewing side and the backlight side of an image display cell (liquid crystal cell). When the image display device is an organic EL display device, the polarizing film or the polarizing film with an adhesive layer can be applied to the viewing side of the image display cell. The image display device of the present invention has high reliability because it includes the polarizing film or the polarizing film with the pressure-sensitive adhesive layer.
以下に、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、各例中の部及び%はいずれも重量基準である。
本 Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples. The parts and percentages in each example are based on weight.
(偏光子の作製)
吸水率0.75%、Tg75℃の非晶質のイソフタル酸共重合ポリエチレンテレフタレート(IPA共重合PET)フィルム(厚み:100μm)基材の片面に、コロナ処理を施し、このコロナ処理面に、ポリビニルアルコール(重合度:4200、ケン化度:99.2モル%)及びアセトアセチル変性PVA(重合度:1200、アセトアセチル変性度:4.6%、ケン化度:99.0モル%以上、日本合成化学工業(株)製、商品名「ゴーセファイマーZ200」)を9:1の比で含む水溶液を25℃で塗布及び乾燥して、厚み11μmのPVA系樹脂層を形成し、積層体を作製した。
得られた積層体を、120℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.0倍に自由端一軸延伸した(空中補助延伸処理)。
次いで、積層体を、液温30℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
次いで、液温30℃の染色浴に、偏光板が所定の透過率となるようにヨウ素濃度、浸漬時間を調整しながら浸漬させた。本実施例では、水100重量部に対して、ヨウ素を0.2重量部配合し、ヨウ化カリウムを1.0重量部配合して得られたヨウ素水溶液に60秒間浸漬させた(染色処理)。
次いで、液温30℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を3重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
その後、積層体を、液温70℃のホウ酸水溶液(水100重量部に対して、ホウ酸を4.5重量部配合し、ヨウ化カリウムを5重量部配合して得られた水溶液)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
その後、積層体を液温30℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
以上により、厚み5μmの偏光子を含む光学フィルム積層体を得た。得られた偏光子のホウ酸含有量は、20重量%であった。 (Preparation of polarizer)
A corona treatment is applied to one surface of an amorphous isophthalic acid copolymerized polyethylene terephthalate (IPA copolymerized PET) film (thickness: 100 μm) having a water absorption of 0.75% and Tg of 75 ° C. Alcohol (degree of polymerization: 4200, degree of saponification: 99.2 mol%) and acetoacetyl-modified PVA (degree of polymerization: 1200, degree of acetoacetyl modification: 4.6%, degree of saponification: 99.0 mol% or more, Japan An aqueous solution containing Synthetic Chemical Industry Co., Ltd. (trade name “Gosefimer Z200”) at a ratio of 9: 1 was applied and dried at 25 ° C. to form a 11 μm-thick PVA-based resin layer. Produced.
The obtained laminate was uniaxially stretched 2.0 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 120 ° C. with free-end uniaxial stretching (in-air auxiliary stretching treatment).
Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 30 ° C. (a boric acid aqueous solution obtained by mixing 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
Next, it was immersed in a dyeing bath at a liquid temperature of 30 ° C. while adjusting the iodine concentration and the immersion time so that the polarizing plate had a predetermined transmittance. In the present example, 0.2 part by weight of iodine was added to 100 parts by weight of water, and the resultant was immersed in an aqueous solution of iodine obtained by mixing 1.0 part by weight of potassium iodide for 60 seconds (dyeing treatment). .
Next, it was immersed in a crosslinking bath at a liquid temperature of 30 ° C. (a boric acid aqueous solution obtained by mixing 3 parts by weight of potassium iodide and 3 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds. (Crosslinking treatment).
Thereafter, the laminate is added to an aqueous solution of boric acid at a liquid temperature of 70 ° C. (an aqueous solution obtained by mixing 4.5 parts by weight of boric acid and 5 parts by weight of potassium iodide with respect to 100 parts by weight of water). While being immersed, uniaxial stretching was performed between rolls having different peripheral speeds in the longitudinal direction (longitudinal direction) so that the total stretching ratio was 5.5 times (underwater stretching treatment).
Thereafter, the laminate was immersed in a washing bath at a liquid temperature of 30 ° C. (an aqueous solution obtained by mixing 4 parts by weight of potassium iodide with 100 parts by weight of water) (washing treatment).
Thus, an optical film laminate including a 5 μm-thick polarizer was obtained. The obtained polarizer had a boric acid content of 20% by weight.
吸水率0.75%、Tg75℃の非晶質のイソフタル酸共重合ポリエチレンテレフタレート(IPA共重合PET)フィルム(厚み:100μm)基材の片面に、コロナ処理を施し、このコロナ処理面に、ポリビニルアルコール(重合度:4200、ケン化度:99.2モル%)及びアセトアセチル変性PVA(重合度:1200、アセトアセチル変性度:4.6%、ケン化度:99.0モル%以上、日本合成化学工業(株)製、商品名「ゴーセファイマーZ200」)を9:1の比で含む水溶液を25℃で塗布及び乾燥して、厚み11μmのPVA系樹脂層を形成し、積層体を作製した。
得られた積層体を、120℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.0倍に自由端一軸延伸した(空中補助延伸処理)。
次いで、積層体を、液温30℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
次いで、液温30℃の染色浴に、偏光板が所定の透過率となるようにヨウ素濃度、浸漬時間を調整しながら浸漬させた。本実施例では、水100重量部に対して、ヨウ素を0.2重量部配合し、ヨウ化カリウムを1.0重量部配合して得られたヨウ素水溶液に60秒間浸漬させた(染色処理)。
次いで、液温30℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を3重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
その後、積層体を、液温70℃のホウ酸水溶液(水100重量部に対して、ホウ酸を4.5重量部配合し、ヨウ化カリウムを5重量部配合して得られた水溶液)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
その後、積層体を液温30℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
以上により、厚み5μmの偏光子を含む光学フィルム積層体を得た。得られた偏光子のホウ酸含有量は、20重量%であった。 (Preparation of polarizer)
A corona treatment is applied to one surface of an amorphous isophthalic acid copolymerized polyethylene terephthalate (IPA copolymerized PET) film (thickness: 100 μm) having a water absorption of 0.75% and Tg of 75 ° C. Alcohol (degree of polymerization: 4200, degree of saponification: 99.2 mol%) and acetoacetyl-modified PVA (degree of polymerization: 1200, degree of acetoacetyl modification: 4.6%, degree of saponification: 99.0 mol% or more, Japan An aqueous solution containing Synthetic Chemical Industry Co., Ltd. (trade name “Gosefimer Z200”) at a ratio of 9: 1 was applied and dried at 25 ° C. to form a 11 μm-thick PVA-based resin layer. Produced.
The obtained laminate was uniaxially stretched 2.0 times in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds in an oven at 120 ° C. with free-end uniaxial stretching (in-air auxiliary stretching treatment).
Next, the laminate was immersed in an insolubilizing bath at a liquid temperature of 30 ° C. (a boric acid aqueous solution obtained by mixing 4 parts by weight of boric acid with 100 parts by weight of water) for 30 seconds (insolubilization treatment).
Next, it was immersed in a dyeing bath at a liquid temperature of 30 ° C. while adjusting the iodine concentration and the immersion time so that the polarizing plate had a predetermined transmittance. In the present example, 0.2 part by weight of iodine was added to 100 parts by weight of water, and the resultant was immersed in an aqueous solution of iodine obtained by mixing 1.0 part by weight of potassium iodide for 60 seconds (dyeing treatment). .
Next, it was immersed in a crosslinking bath at a liquid temperature of 30 ° C. (a boric acid aqueous solution obtained by mixing 3 parts by weight of potassium iodide and 3 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds. (Crosslinking treatment).
Thereafter, the laminate is added to an aqueous solution of boric acid at a liquid temperature of 70 ° C. (an aqueous solution obtained by mixing 4.5 parts by weight of boric acid and 5 parts by weight of potassium iodide with respect to 100 parts by weight of water). While being immersed, uniaxial stretching was performed between rolls having different peripheral speeds in the longitudinal direction (longitudinal direction) so that the total stretching ratio was 5.5 times (underwater stretching treatment).
Thereafter, the laminate was immersed in a washing bath at a liquid temperature of 30 ° C. (an aqueous solution obtained by mixing 4 parts by weight of potassium iodide with 100 parts by weight of water) (washing treatment).
Thus, an optical film laminate including a 5 μm-thick polarizer was obtained. The obtained polarizer had a boric acid content of 20% by weight.
(保護フィルムに適用する接着剤の作製)
N-ヒドロキシエチルアクリルアミド(HEAA)40重量部とアクリロイルモルホリン(ACMO)60重量部と光開始剤「IRGACURE 819」(BASF社製)3重量部を混合し、紫外線硬化型接着剤を調製した。 (Preparation of adhesive applied to protective film)
40 parts by weight of N-hydroxyethylacrylamide (HEAA), 60 parts by weight of acryloylmorpholine (ACMO) and 3 parts by weight of a photoinitiator “IRGACURE 819” (manufactured by BASF) were mixed to prepare an ultraviolet-curable adhesive.
N-ヒドロキシエチルアクリルアミド(HEAA)40重量部とアクリロイルモルホリン(ACMO)60重量部と光開始剤「IRGACURE 819」(BASF社製)3重量部を混合し、紫外線硬化型接着剤を調製した。 (Preparation of adhesive applied to protective film)
40 parts by weight of N-hydroxyethylacrylamide (HEAA), 60 parts by weight of acryloylmorpholine (ACMO) and 3 parts by weight of a photoinitiator “IRGACURE 819” (manufactured by BASF) were mixed to prepare an ultraviolet-curable adhesive.
実施例1(片保護偏光フィルムの作製)
上記光学フィルム積層体の偏光子(厚み:5μm)の表面に、上記紫外線硬化型接着剤を硬化後の接着剤層の厚さが0.1μmになるように塗布しながら、保護フィルム1(HC付25μmTACフィルム:TJ25UL(富士フィルム製、原料:トリアセチルセルロース系ポリマー、厚み:25μm)上にアクリル樹脂系ハードコート層を設けたフィルム)を貼合せたのち、活性エネルギー線として紫外線を照射して前記接着剤を硬化させた。その後、偏光子の片面に設けられた非晶性PET基材を剥離して片保護偏光フィルムを作製した。 Example 1 (Production of one-sided protective polarizing film)
The protective film 1 (HC) was coated on the surface of the polarizer (thickness: 5 μm) of the optical film laminate so that the thickness of the cured adhesive layer was 0.1 μm. 25 μm TAC film: TJ25UL (manufactured by Fuji Film, raw material: triacetylcellulose-based polymer, thickness: 25 μm) and a film provided with an acrylic resin-based hard coat layer), and then irradiated with ultraviolet rays as active energy rays. The adhesive was cured. Thereafter, the amorphous PET substrate provided on one side of the polarizer was peeled off to produce a one-sided protective polarizing film.
上記光学フィルム積層体の偏光子(厚み:5μm)の表面に、上記紫外線硬化型接着剤を硬化後の接着剤層の厚さが0.1μmになるように塗布しながら、保護フィルム1(HC付25μmTACフィルム:TJ25UL(富士フィルム製、原料:トリアセチルセルロース系ポリマー、厚み:25μm)上にアクリル樹脂系ハードコート層を設けたフィルム)を貼合せたのち、活性エネルギー線として紫外線を照射して前記接着剤を硬化させた。その後、偏光子の片面に設けられた非晶性PET基材を剥離して片保護偏光フィルムを作製した。 Example 1 (Production of one-sided protective polarizing film)
The protective film 1 (HC) was coated on the surface of the polarizer (thickness: 5 μm) of the optical film laminate so that the thickness of the cured adhesive layer was 0.1 μm. 25 μm TAC film: TJ25UL (manufactured by Fuji Film, raw material: triacetylcellulose-based polymer, thickness: 25 μm) and a film provided with an acrylic resin-based hard coat layer), and then irradiated with ultraviolet rays as active energy rays. The adhesive was cured. Thereafter, the amorphous PET substrate provided on one side of the polarizer was peeled off to produce a one-sided protective polarizing film.
実施例2、3、6~8、比較例1~8
表1に記載の保護フィルム1を用いた以外は実施例1と同様の方法で片保護偏光フィルムを作製した。 Examples 2, 3, 6 to 8, Comparative Examples 1 to 8
A one-sided protective polarizing film was produced in the same manner as in Example 1 except that the protective film 1 shown in Table 1 was used.
表1に記載の保護フィルム1を用いた以外は実施例1と同様の方法で片保護偏光フィルムを作製した。 Examples 2, 3, 6 to 8, Comparative Examples 1 to 8
A one-sided protective polarizing film was produced in the same manner as in Example 1 except that the protective film 1 shown in Table 1 was used.
実施例4(両保護偏光フィルムの作製)
上記光学フィルム積層体の偏光子(厚み:5μm)の表面に、上記紫外線硬化型接着剤を硬化後の接着剤層の厚さが0.1μmになるように塗布しながら、保護フィルム1(HC付25μmTACフィルム:TJ25UL(富士フィルム製、原料:トリアセチルセルロース系ポリマー、厚み:25μm)上にアクリル樹脂系ハードコート層を設けたフィルム)を貼合せたのち、活性エネルギー線として紫外線を照射して前記接着剤を硬化させた。その後、偏光子の片面に設けられた非晶性PET基材を剥離して、剥離した面に、上記紫外線硬化型接着剤を硬化後の接着剤層の厚さが0.1μmになるように塗布しながら、保護フィルム2(25μmTACフィルム:TJ25UL(富士フィルム製、原料:トリアセチルセルロース系ポリマー、厚み:25μm))を貼合せたのち、活性エネルギー線として紫外線を照射して前記接着剤を硬化させて両保護偏光フィルムを作製した。 Example 4 (production of both protective polarizing films)
The protective film 1 (HC) was coated on the surface of the polarizer (thickness: 5 μm) of the optical film laminate so that the thickness of the cured adhesive layer was 0.1 μm. 25 μm TAC film: TJ25UL (manufactured by Fuji Film, raw material: triacetylcellulose-based polymer, thickness: 25 μm) and a film provided with an acrylic resin-based hard coat layer), and then irradiated with ultraviolet rays as active energy rays. The adhesive was cured. Thereafter, the amorphous PET substrate provided on one surface of the polarizer is peeled off, and the ultraviolet curable adhesive is cured on the peeled surface so that the thickness of the adhesive layer becomes 0.1 μm. After coating, a protective film 2 (25 μm TAC film: TJ25UL (manufactured by Fuji Film, raw material: triacetylcellulose-based polymer, thickness: 25 μm)) is bonded, and then the adhesive is cured by irradiating ultraviolet rays as active energy rays. In this way, both protective polarizing films were produced.
上記光学フィルム積層体の偏光子(厚み:5μm)の表面に、上記紫外線硬化型接着剤を硬化後の接着剤層の厚さが0.1μmになるように塗布しながら、保護フィルム1(HC付25μmTACフィルム:TJ25UL(富士フィルム製、原料:トリアセチルセルロース系ポリマー、厚み:25μm)上にアクリル樹脂系ハードコート層を設けたフィルム)を貼合せたのち、活性エネルギー線として紫外線を照射して前記接着剤を硬化させた。その後、偏光子の片面に設けられた非晶性PET基材を剥離して、剥離した面に、上記紫外線硬化型接着剤を硬化後の接着剤層の厚さが0.1μmになるように塗布しながら、保護フィルム2(25μmTACフィルム:TJ25UL(富士フィルム製、原料:トリアセチルセルロース系ポリマー、厚み:25μm))を貼合せたのち、活性エネルギー線として紫外線を照射して前記接着剤を硬化させて両保護偏光フィルムを作製した。 Example 4 (production of both protective polarizing films)
The protective film 1 (HC) was coated on the surface of the polarizer (thickness: 5 μm) of the optical film laminate so that the thickness of the cured adhesive layer was 0.1 μm. 25 μm TAC film: TJ25UL (manufactured by Fuji Film, raw material: triacetylcellulose-based polymer, thickness: 25 μm) and a film provided with an acrylic resin-based hard coat layer), and then irradiated with ultraviolet rays as active energy rays. The adhesive was cured. Thereafter, the amorphous PET substrate provided on one surface of the polarizer is peeled off, and the ultraviolet curable adhesive is cured on the peeled surface so that the thickness of the adhesive layer becomes 0.1 μm. After coating, a protective film 2 (25 μm TAC film: TJ25UL (manufactured by Fuji Film, raw material: triacetylcellulose-based polymer, thickness: 25 μm)) is bonded, and then the adhesive is cured by irradiating ultraviolet rays as active energy rays. In this way, both protective polarizing films were produced.
実施例5、9、10、比較例9
表1に記載の保護フィルム1及び2を用いた以外は実施例4と同様の方法で両保護偏光フィルムを作製した。 Examples 5, 9, 10 and Comparative Example 9
Both protective polarizing films were produced in the same manner as in Example 4 except that the protective films 1 and 2 shown in Table 1 were used.
表1に記載の保護フィルム1及び2を用いた以外は実施例4と同様の方法で両保護偏光フィルムを作製した。 Examples 5, 9, 10 and Comparative Example 9
Both protective polarizing films were produced in the same manner as in Example 4 except that the protective films 1 and 2 shown in Table 1 were used.
表1に記載の保護フィルム1及び2は以下の通りである。
保護 The protective films 1 and 2 described in Table 1 are as follows.
HC付25μmTACフィルム:TJ25UL(富士フィルム製、原料:トリアセチルセルロース系ポリマー、厚み:25μm)上にアクリル樹脂系ハードコート層を設けたフィルム
2525μm TAC film with HC: TJ25UL (manufactured by Fuji Film, raw material: triacetylcellulose-based polymer, thickness: 25μm) with a film provided with an acrylic resin-based hard coat layer
25μmTACフィルム:TJ25UL(富士フィルム製、原料:トリアセチルセルロース系ポリマー、厚み:25μm)
25 μm TAC film: TJ25UL (Fuji Film, raw material: triacetyl cellulose polymer, thickness: 25 μm)
17μmCOPフィルム:ZT12(日本ゼオン製、シクロオレフィン系ポリマーフィルムを2軸延伸した正面位相差116nm、厚み位相差81nmの位相差フィルム、厚み:17μm)
17 μm COP film: ZT12 (manufactured by Zeon Corporation, a biaxially stretched cycloolefin-based polymer film having a front phase difference of 116 nm and a thickness difference of 81 nm, a thickness of 17 μm)
20μmTACフィルム:KC2UA(コニカミノルタ製、原料:トリアセチルセルロース系ポリマー、厚み:20μm)
20 μm TAC film: KC2UA (manufactured by Konica Minolta, raw material: triacetyl cellulose polymer, thickness: 20 μm)
20μmアクリルフィルムの製造方法
攪拌装置、温度センサー、冷却管、窒素導入管を備えた容量30Lの釜型反応器に、8,000gのメタクリル酸メチル(MMA)、2,000gの2-(ヒドロキシメチル)アクリル酸メチル(MHMA)、10,000gの4-メチル-2-ペンタノン(メチルイソブチルケトン、MIBK)、5gのn-ドデシルメルカプタンを仕込み、これに窒素を通じつつ、105℃まで昇温し、還流したところで、重合開始剤として5.0gのt-ブチルパーオキシイソプロピルカーボネート(カヤカルボンBIC-7、化薬アクゾ(株)製)を添加すると同時に、10.0gのt-ブチルパーオキシイソプロピルカーボネートと230gのMIBKからなる溶液を4時間かけて滴下しながら、還流下、約105~120℃で溶液重合を行い、さらに4時間かけて熟成を行った。
得られた重合体溶液に、30gのリン酸ステアリル/リン酸ジステアリル混合物(Phoslex A-18、堺化学工業(株)製)を加え、還流下、約90~120℃で5時間、環化縮合反応を行った。次いで、得られた重合体溶液を、バレル温度260℃、回転数100rpm、減圧度13.3~400hPa(10~300mmHg)、リアベント数1個、フォアベント数4個のベントタイプスクリュー二軸押出し機(φ=29.75mm、L/D=30)に、樹脂量換算で、2.0kg/hの処理速度で導入し、この押出し機内で、さらに環化縮合反応と脱揮を行い、押し出すことにより、ラクトン環含有重合体の透明なペレットを得た。
得られたラクトン環含有重合体について、ダイナミックTGの測定を行ったところ、0.17質量%の質量減少を検知した。また、このラクトン環含有重合体は、重量平均分子量が133,000、メルトフローレートが6.5g/10min、ガラス転移温度が131℃であった。
得られたペレットと、アクリロニトリル-スチレン(AS)樹脂(トーヨーAS AS20、東洋スチレン(株)製)とを、質量比90/10で、単軸押出機(スクリュー30mmφ)を用いて混練押出することにより、透明なペレットを得た。得られたペレットのガラス転移温度は127℃であった。
このペレットを、50mmφ単軸押出機を用い、400mm幅のコートハンガータイプTダイから溶融押出し、厚さ80μmのフィルムを作製した。なお、紫外線吸収剤(ADEKA社製、商品名:LA-F70)をペレット中の樹脂100重量部に対して0.66重量部供給しながら溶融押出した。作製したフィルムを、2軸延伸装置を用いて、150℃の温度条件下、2.0倍に延伸することにより、厚さ20μmの延伸フィルム(20μmアクリルフィルム)を得た。この延伸フィルムの光学特性を測定したところ、全光線透過率が93%、面内位相差Δndが0.8nm、厚み方向位相差Rthが1.5nmであった。 Method for Producing 20 μm Acrylic Film In a 30 L pot-type reactor equipped with a stirrer, a temperature sensor, a cooling pipe, and a nitrogen introducing pipe, 8,000 g of methyl methacrylate (MMA) and 2,000 g of 2- (hydroxymethyl) were added. ) Methyl acrylate (MHMA), 10,000 g of 4-methyl-2-pentanone (methyl isobutyl ketone, MIBK), and 5 g of n-dodecyl mercaptan were charged, and the temperature was raised to 105 ° C. while passing nitrogen through, followed by reflux. At that time, 5.0 g of t-butyl peroxyisopropyl carbonate (Kayacarbon BIC-7, manufactured by Kayaku Akzo Co., Ltd.) was added as a polymerization initiator, and at the same time, 10.0 g of t-butyl peroxyisopropyl carbonate and 230 g were added. Of MIBK was added dropwise over 4 hours while refluxing for about 1 hour. Perform solution polymerization at 5 ~ 120 ° C., the mixture was aged over an additional 4 hours.
To the obtained polymer solution, 30 g of a stearyl phosphate / distearyl phosphate mixture (Phoslex A-18, manufactured by Sakai Chemical Industry Co., Ltd.) was added, and the mixture was refluxed at about 90 to 120 ° C. for 5 hours under reflux. A condensation reaction was performed. Next, the obtained polymer solution is subjected to a vent-type screw twin-screw extruder having a barrel temperature of 260 ° C., a rotation speed of 100 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), one rear vent and four forevents. (Φ = 29.75 mm, L / D = 30) at a processing rate of 2.0 kg / h in terms of the amount of resin, and further subjected to cyclization condensation reaction and devolatilization in this extruder to extrude. As a result, transparent pellets of the lactone ring-containing polymer were obtained.
When the dynamic TG of the obtained lactone ring-containing polymer was measured, a decrease in mass of 0.17% by mass was detected. The lactone ring-containing polymer had a weight average molecular weight of 133,000, a melt flow rate of 6.5 g / 10 min, and a glass transition temperature of 131 ° C.
The obtained pellets and acrylonitrile-styrene (AS) resin (Toyo AS AS20, manufactured by Toyo Styrene Co., Ltd.) are kneaded and extruded at a mass ratio of 90/10 using a single screw extruder (screw 30 mmφ). As a result, transparent pellets were obtained. The glass transition temperature of the obtained pellet was 127 ° C.
The pellets were melt-extruded from a coat hanger type T die having a width of 400 mm using a 50 mmφ single screw extruder to produce a film having a thickness of 80 μm. The resin was melt-extruded while supplying 0.66 parts by weight of an ultraviolet absorber (product name: LA-F70, manufactured by ADEKA) with respect to 100 parts by weight of the resin in the pellets. The produced film was stretched 2.0 times at a temperature of 150 ° C. using a biaxial stretching apparatus to obtain a stretched film (20 μm acrylic film) having a thickness of 20 μm. When the optical properties of this stretched film were measured, the total light transmittance was 93%, the in-plane retardation Δnd was 0.8 nm, and the thickness direction retardation Rth was 1.5 nm.
攪拌装置、温度センサー、冷却管、窒素導入管を備えた容量30Lの釜型反応器に、8,000gのメタクリル酸メチル(MMA)、2,000gの2-(ヒドロキシメチル)アクリル酸メチル(MHMA)、10,000gの4-メチル-2-ペンタノン(メチルイソブチルケトン、MIBK)、5gのn-ドデシルメルカプタンを仕込み、これに窒素を通じつつ、105℃まで昇温し、還流したところで、重合開始剤として5.0gのt-ブチルパーオキシイソプロピルカーボネート(カヤカルボンBIC-7、化薬アクゾ(株)製)を添加すると同時に、10.0gのt-ブチルパーオキシイソプロピルカーボネートと230gのMIBKからなる溶液を4時間かけて滴下しながら、還流下、約105~120℃で溶液重合を行い、さらに4時間かけて熟成を行った。
得られた重合体溶液に、30gのリン酸ステアリル/リン酸ジステアリル混合物(Phoslex A-18、堺化学工業(株)製)を加え、還流下、約90~120℃で5時間、環化縮合反応を行った。次いで、得られた重合体溶液を、バレル温度260℃、回転数100rpm、減圧度13.3~400hPa(10~300mmHg)、リアベント数1個、フォアベント数4個のベントタイプスクリュー二軸押出し機(φ=29.75mm、L/D=30)に、樹脂量換算で、2.0kg/hの処理速度で導入し、この押出し機内で、さらに環化縮合反応と脱揮を行い、押し出すことにより、ラクトン環含有重合体の透明なペレットを得た。
得られたラクトン環含有重合体について、ダイナミックTGの測定を行ったところ、0.17質量%の質量減少を検知した。また、このラクトン環含有重合体は、重量平均分子量が133,000、メルトフローレートが6.5g/10min、ガラス転移温度が131℃であった。
得られたペレットと、アクリロニトリル-スチレン(AS)樹脂(トーヨーAS AS20、東洋スチレン(株)製)とを、質量比90/10で、単軸押出機(スクリュー30mmφ)を用いて混練押出することにより、透明なペレットを得た。得られたペレットのガラス転移温度は127℃であった。
このペレットを、50mmφ単軸押出機を用い、400mm幅のコートハンガータイプTダイから溶融押出し、厚さ80μmのフィルムを作製した。なお、紫外線吸収剤(ADEKA社製、商品名:LA-F70)をペレット中の樹脂100重量部に対して0.66重量部供給しながら溶融押出した。作製したフィルムを、2軸延伸装置を用いて、150℃の温度条件下、2.0倍に延伸することにより、厚さ20μmの延伸フィルム(20μmアクリルフィルム)を得た。この延伸フィルムの光学特性を測定したところ、全光線透過率が93%、面内位相差Δndが0.8nm、厚み方向位相差Rthが1.5nmであった。 Method for Producing 20 μm Acrylic Film In a 30 L pot-type reactor equipped with a stirrer, a temperature sensor, a cooling pipe, and a nitrogen introducing pipe, 8,000 g of methyl methacrylate (MMA) and 2,000 g of 2- (hydroxymethyl) were added. ) Methyl acrylate (MHMA), 10,000 g of 4-methyl-2-pentanone (methyl isobutyl ketone, MIBK), and 5 g of n-dodecyl mercaptan were charged, and the temperature was raised to 105 ° C. while passing nitrogen through, followed by reflux. At that time, 5.0 g of t-butyl peroxyisopropyl carbonate (Kayacarbon BIC-7, manufactured by Kayaku Akzo Co., Ltd.) was added as a polymerization initiator, and at the same time, 10.0 g of t-butyl peroxyisopropyl carbonate and 230 g were added. Of MIBK was added dropwise over 4 hours while refluxing for about 1 hour. Perform solution polymerization at 5 ~ 120 ° C., the mixture was aged over an additional 4 hours.
To the obtained polymer solution, 30 g of a stearyl phosphate / distearyl phosphate mixture (Phoslex A-18, manufactured by Sakai Chemical Industry Co., Ltd.) was added, and the mixture was refluxed at about 90 to 120 ° C. for 5 hours under reflux. A condensation reaction was performed. Next, the obtained polymer solution is subjected to a vent-type screw twin-screw extruder having a barrel temperature of 260 ° C., a rotation speed of 100 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), one rear vent and four forevents. (Φ = 29.75 mm, L / D = 30) at a processing rate of 2.0 kg / h in terms of the amount of resin, and further subjected to cyclization condensation reaction and devolatilization in this extruder to extrude. As a result, transparent pellets of the lactone ring-containing polymer were obtained.
When the dynamic TG of the obtained lactone ring-containing polymer was measured, a decrease in mass of 0.17% by mass was detected. The lactone ring-containing polymer had a weight average molecular weight of 133,000, a melt flow rate of 6.5 g / 10 min, and a glass transition temperature of 131 ° C.
The obtained pellets and acrylonitrile-styrene (AS) resin (Toyo AS AS20, manufactured by Toyo Styrene Co., Ltd.) are kneaded and extruded at a mass ratio of 90/10 using a single screw extruder (screw 30 mmφ). As a result, transparent pellets were obtained. The glass transition temperature of the obtained pellet was 127 ° C.
The pellets were melt-extruded from a coat hanger type T die having a width of 400 mm using a 50 mmφ single screw extruder to produce a film having a thickness of 80 μm. The resin was melt-extruded while supplying 0.66 parts by weight of an ultraviolet absorber (product name: LA-F70, manufactured by ADEKA) with respect to 100 parts by weight of the resin in the pellets. The produced film was stretched 2.0 times at a temperature of 150 ° C. using a biaxial stretching apparatus to obtain a stretched film (20 μm acrylic film) having a thickness of 20 μm. When the optical properties of this stretched film were measured, the total light transmittance was 93%, the in-plane retardation Δnd was 0.8 nm, and the thickness direction retardation Rth was 1.5 nm.
40μmアクリルフィルム(UV)の製造方法
MS樹脂(MS-200;メタクリル酸メチル/スチレン(モル比)=80/20の共重合体,新日鐵化学(株)製)をモノメチルアミンでイミド化(イミド化率:5%)した。なお、前記イミド化には、口径15mmの噛合い型同方向回転式二軸押出機を用いた。押出機の各温調ゾーンの設定温度を230℃、スクリュー回転数150rpm、MS樹脂を2.0kg/hrで供給し、モノメチルアミンの供給量はMS樹脂100重量部に対して2重量部とした。ホッパーからMS樹脂を投入し、ニーディングブロックによって樹脂を溶融、充満させた後、ノズルからモノメチルアミンを注入した。反応ゾーンの末端にはシールリングを入れて樹脂を充満させた。反応後の副生成物および過剰のメチルアミンをベント口の圧力を-0.08MPaに減圧して脱揮した。押出機出口に設けられたダイスからストランドとして出てきた樹脂は、水槽で冷却した後、ペレタイザでペレット化した。前記イミド化されたMS樹脂を溶融押出製膜した。このとき、紫外線吸収剤(ADEKA社製、商品名:LA-F70)をMS樹脂100重量部に対して0.66重量部供給した。次いで、縦2倍、横2倍に二軸延伸して保護フィルム(40μmアクリルフィルム(UV)、厚さ40μm,Re=2nm,Rth=2nm)を作製した。 Production Method of 40 μm Acrylic Film (UV) MS resin (MS-200; copolymer of methyl methacrylate / styrene (molar ratio) = 80/20, manufactured by Nippon Steel Chemical Co., Ltd.) was imidized with monomethylamine ( (Imidation ratio: 5%). The imidization was carried out using a co-rotating twin-screw extruder having a diameter of 15 mm. The set temperature of each temperature control zone of the extruder was 230 ° C., the screw rotation speed was 150 rpm, the MS resin was supplied at 2.0 kg / hr, and the supply amount of monomethylamine was 2 parts by weight based on 100 parts by weight of the MS resin. . After charging the MS resin from the hopper and melting and filling the resin with the kneading block, monomethylamine was injected from the nozzle. A seal ring was placed at the end of the reaction zone to fill the resin. The by-products after the reaction and excess methylamine were devolatilized by reducing the pressure at the vent port to -0.08 MPa. The resin that came out as a strand from a die provided at the extruder outlet was cooled in a water tank and then pelletized by a pelletizer. The imidized MS resin was formed by melt extrusion. At this time, 0.66 parts by weight of an ultraviolet absorber (manufactured by ADEKA, trade name: LA-F70) was supplied to 100 parts by weight of the MS resin. Next, the film was biaxially stretched twice vertically and twice horizontally to prepare a protective film (40 μm acrylic film (UV), thickness 40 μm, Re = 2 nm, Rth = 2 nm).
MS樹脂(MS-200;メタクリル酸メチル/スチレン(モル比)=80/20の共重合体,新日鐵化学(株)製)をモノメチルアミンでイミド化(イミド化率:5%)した。なお、前記イミド化には、口径15mmの噛合い型同方向回転式二軸押出機を用いた。押出機の各温調ゾーンの設定温度を230℃、スクリュー回転数150rpm、MS樹脂を2.0kg/hrで供給し、モノメチルアミンの供給量はMS樹脂100重量部に対して2重量部とした。ホッパーからMS樹脂を投入し、ニーディングブロックによって樹脂を溶融、充満させた後、ノズルからモノメチルアミンを注入した。反応ゾーンの末端にはシールリングを入れて樹脂を充満させた。反応後の副生成物および過剰のメチルアミンをベント口の圧力を-0.08MPaに減圧して脱揮した。押出機出口に設けられたダイスからストランドとして出てきた樹脂は、水槽で冷却した後、ペレタイザでペレット化した。前記イミド化されたMS樹脂を溶融押出製膜した。このとき、紫外線吸収剤(ADEKA社製、商品名:LA-F70)をMS樹脂100重量部に対して0.66重量部供給した。次いで、縦2倍、横2倍に二軸延伸して保護フィルム(40μmアクリルフィルム(UV)、厚さ40μm,Re=2nm,Rth=2nm)を作製した。 Production Method of 40 μm Acrylic Film (UV) MS resin (MS-200; copolymer of methyl methacrylate / styrene (molar ratio) = 80/20, manufactured by Nippon Steel Chemical Co., Ltd.) was imidized with monomethylamine ( (Imidation ratio: 5%). The imidization was carried out using a co-rotating twin-screw extruder having a diameter of 15 mm. The set temperature of each temperature control zone of the extruder was 230 ° C., the screw rotation speed was 150 rpm, the MS resin was supplied at 2.0 kg / hr, and the supply amount of monomethylamine was 2 parts by weight based on 100 parts by weight of the MS resin. . After charging the MS resin from the hopper and melting and filling the resin with the kneading block, monomethylamine was injected from the nozzle. A seal ring was placed at the end of the reaction zone to fill the resin. The by-products after the reaction and excess methylamine were devolatilized by reducing the pressure at the vent port to -0.08 MPa. The resin that came out as a strand from a die provided at the extruder outlet was cooled in a water tank and then pelletized by a pelletizer. The imidized MS resin was formed by melt extrusion. At this time, 0.66 parts by weight of an ultraviolet absorber (manufactured by ADEKA, trade name: LA-F70) was supplied to 100 parts by weight of the MS resin. Next, the film was biaxially stretched twice vertically and twice horizontally to prepare a protective film (40 μm acrylic film (UV), thickness 40 μm, Re = 2 nm, Rth = 2 nm).
架橋弾性体を含む30μmアクリルフィルムの製造方法
以下の組成の混合物をガラス製反応器に仕込み、窒素気流中で撹拌しながら80℃に昇温したのち、メタクリル酸メチル25部、メタクリル酸アリル1部からなる単量体混合物とt-ブチルハイドロパーオキサイド0.1部との混合液のうち25%を一括して仕込み、45分間の重合を行なった。
脱イオン水 220部
ホウ酸 0.3部
炭酸ナトリウム 0.03部
N-ラウロイルサルコシン酸ナトリウム 0.09部
ソディウムホルムアルデヒドスルフォキシレ-ト 0.09部
エチレンジアミン四酢酸-2-ナトリウム 0.006部
硫酸第1鉄 0.002部
続いてこの混合液の残り75%を1時間にわたって連続添加した。添加終了後、同温度で2時間保持し重合を完結させた。また、この間に0.2部のN-ラウロイルサルコシン酸ナトリウムを追加した。得られた最内層架橋メタクリル系重合体ラテックスの重合転化率(重合生成量/モノマー仕込量)は98%であった。
得られた最内層重合体ラテックスを窒素気流中で80℃に保ち、過硫酸カリウム0.1部を添加したのち、アクリル酸n-ブチル41部、スチレン9部、メタクリル酸アリル1部からなる単量体混合物を5時間にわたって連続添加した。この間にオレイン酸カリウム0.1部を3回に分けて添加した。単量体混合物の添加終了後、重合を完結させるためにさらに過硫酸カリウムを0.05部添加し2時間保持し、ゴム粒子を得た。得られたゴム粒子の重合転化率は99%、粒径は225nmであった。
得られたゴム粒子ラテックスを80℃に保ち、過硫酸カリウム0.02部を添加したのちメタクリル酸メチル14部、アクリル酸n-ブチル1部の単量体混合物を1時間にわたって連続添加した。単量体混合物の追加終了後1時間保持しグラフト共重合体ラテックスを得た。重合転化率は99%であった。
得られたグラフト共重合体ラテックスを80℃に保ち、メタクリル酸メチル5部、アクリル酸n-ブチル5部の単量体混合物を0.5時間にわたって連続添加した。単量体混合物の追加終了後1時間保持しゴム含有グラフト共重合体ラテックスを得た。重合転化率は99%であった。得られたゴム含有グラフト共重合体ラテックスを塩化カルシウムで塩析凝固、熱処理、乾燥を行ない、白色粉末状の架橋弾性体を得た。
MS樹脂(MS-200;メタクリル酸メチル/スチレン(モル比)=80/20の共重合体,新日鐵化学(株)製)をモノメチルアミンでイミド化(イミド化率:5%)した。なお、前記イミド化には、口径15mmの噛合い型同方向回転式二軸押出機を用いた。押出機の各温調ゾーンの設定温度を230℃、スクリュー回転数150rpm、MS樹脂を2.0kg/hrで供給し、モノメチルアミンの供給量はMS樹脂100重量部に対して2重量部とした。ホッパーからMS樹脂を投入し、ニーディングブロックによって樹脂を溶融、充満させた後、ノズルからモノメチルアミンを注入した。反応ゾーンの末端にはシールリングを入れて樹脂を充満させた。反応後の副生成物および過剰のメチルアミンをベント口の圧力を-0.08MPaに減圧して脱揮した。押出機出口に設けられたダイスからストランドとして出てきた樹脂は、水槽で冷却した後、ペレタイザでペレット化した。前記イミド化されたMS樹脂を溶融押出製膜した。このとき、紫外線吸収剤(ADEKA社製、商品名:LA-F70)をMS樹脂100重量部に対して0.66重量部供給した。次いで、前記架橋弾性体をMS樹脂100重量部に対して10重量部供給した。次いで、押出しにより得られた160μmのフィルムを縦2倍、横2倍に二軸延伸して保護フィルム(架橋弾性体を含む30μmアクリルフィルム、厚さ30μm,Re=2nm,Rth=2nm)を作製した。 Method for Producing 30 μm Acrylic Film Containing Cross-Linked Elastic Material A mixture having the following composition was charged into a glass reactor, heated to 80 ° C. while stirring in a nitrogen stream, and then 25 parts of methyl methacrylate and 1 part of allyl methacrylate were mixed. Of a mixed solution of a monomer mixture consisting of the above and 0.1 part of t-butyl hydroperoxide were charged all at once, and polymerization was carried out for 45 minutes.
Deionized water 220 parts Boric acid 0.3 parts Sodium carbonate 0.03 parts Sodium N-lauroyl sarcosinate 0.09 parts Sodium formaldehyde sulfoxylate 0.09 parts Ethylenediaminetetraacetic acid-2-sodium 0.006 parts 0.002 parts of ferrous sulfate Subsequently, the remaining 75% of the mixture was continuously added over 1 hour. After completion of the addition, the mixture was kept at the same temperature for 2 hours to complete the polymerization. During this period, 0.2 parts of sodium N-lauroylsarcosinate was added. The polymerization conversion ratio (polymerization production amount / monomer preparation amount) of the obtained innermost layer crosslinked methacrylic polymer latex was 98%.
The obtained innermost layer polymer latex was kept at 80 ° C. in a nitrogen stream, and 0.1 part of potassium persulfate was added. Then, a simple mixture comprising 41 parts of n-butyl acrylate, 9 parts of styrene, and 1 part of allyl methacrylate was obtained. The monomer mixture was added continuously over 5 hours. During this time, 0.1 part of potassium oleate was added in three portions. After the addition of the monomer mixture was completed, 0.05 parts of potassium persulfate was further added to complete the polymerization, and the mixture was maintained for 2 hours to obtain rubber particles. The polymerization conversion of the obtained rubber particles was 99%, and the particle size was 225 nm.
The obtained rubber particle latex was kept at 80 ° C., and after adding 0.02 parts of potassium persulfate, a monomer mixture of 14 parts of methyl methacrylate and 1 part of n-butyl acrylate was continuously added over 1 hour. After completion of the addition of the monomer mixture, the mixture was kept for 1 hour to obtain a graft copolymer latex. The polymerization conversion was 99%.
The obtained graft copolymer latex was kept at 80 ° C., and a monomer mixture of 5 parts of methyl methacrylate and 5 parts of n-butyl acrylate was continuously added over 0.5 hours. After the completion of the addition of the monomer mixture, the mixture was kept for 1 hour to obtain a rubber-containing graft copolymer latex. The polymerization conversion was 99%. The obtained rubber-containing graft copolymer latex was subjected to salting out and coagulation with calcium chloride, heat treatment, and drying to obtain a white powdery crosslinked elastic body.
MS resin (MS-200; a copolymer of methyl methacrylate / styrene (molar ratio) = 80/20, manufactured by Nippon Steel Chemical Co., Ltd.) was imidized with monomethylamine (imidation ratio: 5%). The imidization was carried out using a co-rotating twin-screw extruder having a diameter of 15 mm. The set temperature of each temperature control zone of the extruder was 230 ° C., the screw rotation speed was 150 rpm, the MS resin was supplied at 2.0 kg / hr, and the supply amount of monomethylamine was 2 parts by weight based on 100 parts by weight of the MS resin. . After charging the MS resin from the hopper and melting and filling the resin with the kneading block, monomethylamine was injected from the nozzle. A seal ring was placed at the end of the reaction zone to fill the resin. The by-products after the reaction and excess methylamine were devolatilized by reducing the pressure at the vent port to -0.08 MPa. The resin that came out as a strand from a die provided at the extruder outlet was cooled in a water tank and then pelletized by a pelletizer. The imidized MS resin was formed by melt extrusion. At this time, 0.66 parts by weight of an ultraviolet absorber (manufactured by ADEKA, trade name: LA-F70) was supplied to 100 parts by weight of the MS resin. Next, 10 parts by weight of the crosslinked elastic body was supplied to 100 parts by weight of the MS resin. Next, the 160 μm film obtained by the extrusion is biaxially stretched two times vertically and twice horizontally to prepare a protective film (30 μm acrylic film including a crosslinked elastic body, thickness 30 μm, Re = 2 nm, Rth = 2 nm). did.
以下の組成の混合物をガラス製反応器に仕込み、窒素気流中で撹拌しながら80℃に昇温したのち、メタクリル酸メチル25部、メタクリル酸アリル1部からなる単量体混合物とt-ブチルハイドロパーオキサイド0.1部との混合液のうち25%を一括して仕込み、45分間の重合を行なった。
脱イオン水 220部
ホウ酸 0.3部
炭酸ナトリウム 0.03部
N-ラウロイルサルコシン酸ナトリウム 0.09部
ソディウムホルムアルデヒドスルフォキシレ-ト 0.09部
エチレンジアミン四酢酸-2-ナトリウム 0.006部
硫酸第1鉄 0.002部
続いてこの混合液の残り75%を1時間にわたって連続添加した。添加終了後、同温度で2時間保持し重合を完結させた。また、この間に0.2部のN-ラウロイルサルコシン酸ナトリウムを追加した。得られた最内層架橋メタクリル系重合体ラテックスの重合転化率(重合生成量/モノマー仕込量)は98%であった。
得られた最内層重合体ラテックスを窒素気流中で80℃に保ち、過硫酸カリウム0.1部を添加したのち、アクリル酸n-ブチル41部、スチレン9部、メタクリル酸アリル1部からなる単量体混合物を5時間にわたって連続添加した。この間にオレイン酸カリウム0.1部を3回に分けて添加した。単量体混合物の添加終了後、重合を完結させるためにさらに過硫酸カリウムを0.05部添加し2時間保持し、ゴム粒子を得た。得られたゴム粒子の重合転化率は99%、粒径は225nmであった。
得られたゴム粒子ラテックスを80℃に保ち、過硫酸カリウム0.02部を添加したのちメタクリル酸メチル14部、アクリル酸n-ブチル1部の単量体混合物を1時間にわたって連続添加した。単量体混合物の追加終了後1時間保持しグラフト共重合体ラテックスを得た。重合転化率は99%であった。
得られたグラフト共重合体ラテックスを80℃に保ち、メタクリル酸メチル5部、アクリル酸n-ブチル5部の単量体混合物を0.5時間にわたって連続添加した。単量体混合物の追加終了後1時間保持しゴム含有グラフト共重合体ラテックスを得た。重合転化率は99%であった。得られたゴム含有グラフト共重合体ラテックスを塩化カルシウムで塩析凝固、熱処理、乾燥を行ない、白色粉末状の架橋弾性体を得た。
MS樹脂(MS-200;メタクリル酸メチル/スチレン(モル比)=80/20の共重合体,新日鐵化学(株)製)をモノメチルアミンでイミド化(イミド化率:5%)した。なお、前記イミド化には、口径15mmの噛合い型同方向回転式二軸押出機を用いた。押出機の各温調ゾーンの設定温度を230℃、スクリュー回転数150rpm、MS樹脂を2.0kg/hrで供給し、モノメチルアミンの供給量はMS樹脂100重量部に対して2重量部とした。ホッパーからMS樹脂を投入し、ニーディングブロックによって樹脂を溶融、充満させた後、ノズルからモノメチルアミンを注入した。反応ゾーンの末端にはシールリングを入れて樹脂を充満させた。反応後の副生成物および過剰のメチルアミンをベント口の圧力を-0.08MPaに減圧して脱揮した。押出機出口に設けられたダイスからストランドとして出てきた樹脂は、水槽で冷却した後、ペレタイザでペレット化した。前記イミド化されたMS樹脂を溶融押出製膜した。このとき、紫外線吸収剤(ADEKA社製、商品名:LA-F70)をMS樹脂100重量部に対して0.66重量部供給した。次いで、前記架橋弾性体をMS樹脂100重量部に対して10重量部供給した。次いで、押出しにより得られた160μmのフィルムを縦2倍、横2倍に二軸延伸して保護フィルム(架橋弾性体を含む30μmアクリルフィルム、厚さ30μm,Re=2nm,Rth=2nm)を作製した。 Method for Producing 30 μm Acrylic Film Containing Cross-Linked Elastic Material A mixture having the following composition was charged into a glass reactor, heated to 80 ° C. while stirring in a nitrogen stream, and then 25 parts of methyl methacrylate and 1 part of allyl methacrylate were mixed. Of a mixed solution of a monomer mixture consisting of the above and 0.1 part of t-butyl hydroperoxide were charged all at once, and polymerization was carried out for 45 minutes.
Deionized water 220 parts Boric acid 0.3 parts Sodium carbonate 0.03 parts Sodium N-lauroyl sarcosinate 0.09 parts Sodium formaldehyde sulfoxylate 0.09 parts Ethylenediaminetetraacetic acid-2-sodium 0.006 parts 0.002 parts of ferrous sulfate Subsequently, the remaining 75% of the mixture was continuously added over 1 hour. After completion of the addition, the mixture was kept at the same temperature for 2 hours to complete the polymerization. During this period, 0.2 parts of sodium N-lauroylsarcosinate was added. The polymerization conversion ratio (polymerization production amount / monomer preparation amount) of the obtained innermost layer crosslinked methacrylic polymer latex was 98%.
The obtained innermost layer polymer latex was kept at 80 ° C. in a nitrogen stream, and 0.1 part of potassium persulfate was added. Then, a simple mixture comprising 41 parts of n-butyl acrylate, 9 parts of styrene, and 1 part of allyl methacrylate was obtained. The monomer mixture was added continuously over 5 hours. During this time, 0.1 part of potassium oleate was added in three portions. After the addition of the monomer mixture was completed, 0.05 parts of potassium persulfate was further added to complete the polymerization, and the mixture was maintained for 2 hours to obtain rubber particles. The polymerization conversion of the obtained rubber particles was 99%, and the particle size was 225 nm.
The obtained rubber particle latex was kept at 80 ° C., and after adding 0.02 parts of potassium persulfate, a monomer mixture of 14 parts of methyl methacrylate and 1 part of n-butyl acrylate was continuously added over 1 hour. After completion of the addition of the monomer mixture, the mixture was kept for 1 hour to obtain a graft copolymer latex. The polymerization conversion was 99%.
The obtained graft copolymer latex was kept at 80 ° C., and a monomer mixture of 5 parts of methyl methacrylate and 5 parts of n-butyl acrylate was continuously added over 0.5 hours. After the completion of the addition of the monomer mixture, the mixture was kept for 1 hour to obtain a rubber-containing graft copolymer latex. The polymerization conversion was 99%. The obtained rubber-containing graft copolymer latex was subjected to salting out and coagulation with calcium chloride, heat treatment, and drying to obtain a white powdery crosslinked elastic body.
MS resin (MS-200; a copolymer of methyl methacrylate / styrene (molar ratio) = 80/20, manufactured by Nippon Steel Chemical Co., Ltd.) was imidized with monomethylamine (imidation ratio: 5%). The imidization was carried out using a co-rotating twin-screw extruder having a diameter of 15 mm. The set temperature of each temperature control zone of the extruder was 230 ° C., the screw rotation speed was 150 rpm, the MS resin was supplied at 2.0 kg / hr, and the supply amount of monomethylamine was 2 parts by weight based on 100 parts by weight of the MS resin. . After charging the MS resin from the hopper and melting and filling the resin with the kneading block, monomethylamine was injected from the nozzle. A seal ring was placed at the end of the reaction zone to fill the resin. The by-products after the reaction and excess methylamine were devolatilized by reducing the pressure at the vent port to -0.08 MPa. The resin that came out as a strand from a die provided at the extruder outlet was cooled in a water tank and then pelletized by a pelletizer. The imidized MS resin was formed by melt extrusion. At this time, 0.66 parts by weight of an ultraviolet absorber (manufactured by ADEKA, trade name: LA-F70) was supplied to 100 parts by weight of the MS resin. Next, 10 parts by weight of the crosslinked elastic body was supplied to 100 parts by weight of the MS resin. Next, the 160 μm film obtained by the extrusion is biaxially stretched two times vertically and twice horizontally to prepare a protective film (30 μm acrylic film including a crosslinked elastic body, thickness 30 μm, Re = 2 nm, Rth = 2 nm). did.
HC付37μmλ/4TACフィルム:KC2UGR-HC(コニカミノルタ製、トリアセチルセルロース系ポリマーフィルム上にアクリル樹脂系ハードコート層を設けたフィルム、厚み:37μm)
3737 μm λ / 4TAC film with HC: KC2UGR-HC (manufactured by Konica Minolta, a film in which an acrylic resin hard coat layer is provided on a triacetyl cellulose polymer film, thickness: 37 μm)
13μmCOPフィルム:ZF-014(日本ゼオン製、原料:シクロオレフィン系ポリマー、厚み:13μm)
13μm COP film: ZF-014 (manufactured by Zeon Corporation, raw material: cycloolefin polymer, thickness: 13μm)
HC付26μmλ/4COPフィルム:ZD12(日本ゼオン製、原料:シクロオレフィン系ポリマー、厚み:20μm)上にアクリル樹脂系ハードコート層を設けたフィルム
2626 μm λ / 4 COP film with HC: ZD12 (Zeon, raw material: cycloolefin-based polymer, thickness: 20 μm) provided with an acrylic resin-based hard coat layer
HC付40μmアクリルフィルムの製造方法
攪拌装置、温度センサー、冷却管、窒素導入管を備えた容量30Lの釜型反応器に、8,000gのメタクリル酸メチル(MMA)、2,000gの2-(ヒドロキシメチル)アクリル酸メチル(MHMA)、10,000gの4-メチル-2-ペンタノン(メチルイソブチルケトン、MIBK)、5gのn-ドデシルメルカプタンを仕込み、これに窒素を通じつつ、105℃まで昇温し、還流したところで、重合開始剤として5.0gのt-ブチルパーオキシイソプロピルカーボネート(カヤカルボンBIC-7、化薬アクゾ(株)製)を添加すると同時に、10.0gのt-ブチルパーオキシイソプロピルカーボネートと230gのMIBKからなる溶液を4時間かけて滴下しながら、還流下、約105~120℃で溶液重合を行い、さらに4時間かけて熟成を行った。
得られた重合体溶液に、30gのリン酸ステアリル/リン酸ジステアリル混合物(Phoslex A-18、堺化学工業(株)製)を加え、還流下、約90~120℃で5時間、環化縮合反応を行った。次いで、得られた重合体溶液を、バレル温度260℃、回転数100rpm、減圧度13.3~400hPa(10~300mmHg)、リアベント数1個、フォアベント数4個のベントタイプスクリュー二軸押出し機(φ=29.75mm、L/D=30)に、樹脂量換算で、2.0kg/hの処理速度で導入し、この押出し機内で、さらに環化縮合反応と脱揮を行い、押し出すことにより、ラクトン環含有重合体の透明なペレットを得た。
得られたラクトン環含有重合体について、ダイナミックTGの測定を行ったところ、0.17質量%の質量減少を検知した。また、このラクトン環含有重合体は、重量平均分子量が133,000、メルトフローレートが6.5g/10min、ガラス転移温度が131℃であった。
得られたペレットと、アクリロニトリル-スチレン(AS)樹脂(トーヨーAS AS20、東洋スチレン(株)製)とを、質量比90/10で、単軸押出機(スクリュー30mmφ)を用いて混練押出することにより、透明なペレットを得た。得られたペレットのガラス転移温度は127℃であった。
このペレットを、50mmφ単軸押出機を用い、400mm幅のコートハンガータイプTダイから溶融押出し、厚さ160μmのフィルムを作製した。作製したフィルムを、2軸延伸装置を用いて、150℃の温度条件下、2.0倍に延伸することにより、厚さ40μmの延伸フィルムを得た。この延伸フィルムの光学特性を測定したところ、全光線透過率が93%、面内位相差Δndが0.8nm、厚み方向位相差Rthが1.5nmであった。
塗工液に含まれる樹脂として、紫外線硬化型樹脂(新中村化学工業(株)製,商品名「NKオリゴマーUA-53H-80BK」固形分濃度80%)を固形分70重量部、紫外線硬化型樹脂(新中村化学(株)製,商品名「A-GLY-9E」固形分濃度100%)を30重量部準備した。前記樹脂の樹脂固形分100重量部あたり、光重合開始剤(BASF(株)製、製品名「IRGACURE907」)を5部、レベリング剤(DIC(株)製、製品名「GRANDIC PC4100」)を0.1部添加した。上記溶液中の固形分濃度が40%となるように、上記配合液にトルエンとシクロペンタノンを80:20の比率で加えた。このようにしてハードコート層形成材料を作製した。
作製したハードコート層形成材料を、硬化後のハードコート層の厚みが7μmになるように前記延伸フィルム上に塗布して塗膜を形成した。その後、塗膜を90℃で1分間乾燥し、さらに高圧水銀ランプにて積算光量300mJ/cm2の紫外線を塗膜に照射し、前記塗膜を硬化させてハードコート層を形成してHC付40μmアクリルフィルムを作製した。 Production Method of 40 μm Acrylic Film with HC In a 30 L pot-type reactor equipped with a stirrer, a temperature sensor, a cooling pipe, and a nitrogen introduction pipe, 8,000 g of methyl methacrylate (MMA) and 2,000 g of 2- ( (Hydroxymethyl) methyl acrylate (MHMA), 10,000 g of 4-methyl-2-pentanone (methyl isobutyl ketone, MIBK), and 5 g of n-dodecyl mercaptan were charged, and the temperature was raised to 105 ° C. while passing nitrogen through. When the mixture was refluxed, 5.0 g of t-butyl peroxyisopropyl carbonate (Kayacarbon BIC-7, manufactured by Kayaku Akzo Co., Ltd.) was added as a polymerization initiator, and at the same time, 10.0 g of t-butyl peroxyisopropyl carbonate was added. And a solution consisting of 230 g of MIBK was added dropwise over 4 hours while refluxing. Perform solution polymerization at about 105 ~ 120 ° C., the mixture was aged over an additional 4 hours.
To the obtained polymer solution, 30 g of a stearyl phosphate / distearyl phosphate mixture (Phoslex A-18, manufactured by Sakai Chemical Industry Co., Ltd.) was added, and the mixture was refluxed at about 90 to 120 ° C. for 5 hours under reflux. A condensation reaction was performed. Next, the obtained polymer solution is subjected to a vent-type screw twin-screw extruder having a barrel temperature of 260 ° C., a rotation speed of 100 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), one rear vent and four forevents. (Φ = 29.75 mm, L / D = 30) at a processing rate of 2.0 kg / h in terms of the amount of resin, and further subjected to cyclization condensation reaction and devolatilization in this extruder to extrude. As a result, transparent pellets of the lactone ring-containing polymer were obtained.
When the dynamic TG of the obtained lactone ring-containing polymer was measured, a decrease in mass of 0.17% by mass was detected. The lactone ring-containing polymer had a weight average molecular weight of 133,000, a melt flow rate of 6.5 g / 10 min, and a glass transition temperature of 131 ° C.
The obtained pellets and acrylonitrile-styrene (AS) resin (Toyo AS AS20, manufactured by Toyo Styrene Co., Ltd.) are kneaded and extruded at a mass ratio of 90/10 using a single screw extruder (screw 30 mmφ). As a result, transparent pellets were obtained. The glass transition temperature of the obtained pellet was 127 ° C.
The pellet was melt-extruded from a coat hanger type T die having a width of 400 mm using a 50 mmφ single screw extruder to produce a film having a thickness of 160 μm. The produced film was stretched 2.0 times using a biaxial stretching device at a temperature of 150 ° C. to obtain a stretched film having a thickness of 40 μm. When the optical properties of this stretched film were measured, the total light transmittance was 93%, the in-plane retardation Δnd was 0.8 nm, and the thickness direction retardation Rth was 1.5 nm.
As a resin contained in the coating liquid, a UV-curable resin (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: “NK oligomer UA-53H-80BK”, solid content concentration: 80%), 70 parts by weight of solid content, UV curable resin 30 parts by weight of a resin (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name “A-GLY-9E”, solid content concentration 100%) was prepared. 5 parts of a photopolymerization initiator (product name "IRGACURE907" manufactured by BASF) and 0 parts of a leveling agent (manufactured by DIC Co., product name "GRANDIC PC4100") per 100 parts by weight of the resin solid content of the resin. .1 part was added. Toluene and cyclopentanone were added to the mixture at a ratio of 80:20 so that the solid concentration in the solution was 40%. Thus, a hard coat layer forming material was produced.
The prepared hard coat layer forming material was applied on the stretched film so that the thickness of the hard coat layer after curing became 7 μm to form a coating film. Thereafter, the coating film was dried at 90 ° C. for 1 minute, and further irradiated with ultraviolet light having an integrated light amount of 300 mJ / cm 2 by a high-pressure mercury lamp, and the coating film was cured to form a hard coat layer. A 40 μm acrylic film was produced.
攪拌装置、温度センサー、冷却管、窒素導入管を備えた容量30Lの釜型反応器に、8,000gのメタクリル酸メチル(MMA)、2,000gの2-(ヒドロキシメチル)アクリル酸メチル(MHMA)、10,000gの4-メチル-2-ペンタノン(メチルイソブチルケトン、MIBK)、5gのn-ドデシルメルカプタンを仕込み、これに窒素を通じつつ、105℃まで昇温し、還流したところで、重合開始剤として5.0gのt-ブチルパーオキシイソプロピルカーボネート(カヤカルボンBIC-7、化薬アクゾ(株)製)を添加すると同時に、10.0gのt-ブチルパーオキシイソプロピルカーボネートと230gのMIBKからなる溶液を4時間かけて滴下しながら、還流下、約105~120℃で溶液重合を行い、さらに4時間かけて熟成を行った。
得られた重合体溶液に、30gのリン酸ステアリル/リン酸ジステアリル混合物(Phoslex A-18、堺化学工業(株)製)を加え、還流下、約90~120℃で5時間、環化縮合反応を行った。次いで、得られた重合体溶液を、バレル温度260℃、回転数100rpm、減圧度13.3~400hPa(10~300mmHg)、リアベント数1個、フォアベント数4個のベントタイプスクリュー二軸押出し機(φ=29.75mm、L/D=30)に、樹脂量換算で、2.0kg/hの処理速度で導入し、この押出し機内で、さらに環化縮合反応と脱揮を行い、押し出すことにより、ラクトン環含有重合体の透明なペレットを得た。
得られたラクトン環含有重合体について、ダイナミックTGの測定を行ったところ、0.17質量%の質量減少を検知した。また、このラクトン環含有重合体は、重量平均分子量が133,000、メルトフローレートが6.5g/10min、ガラス転移温度が131℃であった。
得られたペレットと、アクリロニトリル-スチレン(AS)樹脂(トーヨーAS AS20、東洋スチレン(株)製)とを、質量比90/10で、単軸押出機(スクリュー30mmφ)を用いて混練押出することにより、透明なペレットを得た。得られたペレットのガラス転移温度は127℃であった。
このペレットを、50mmφ単軸押出機を用い、400mm幅のコートハンガータイプTダイから溶融押出し、厚さ160μmのフィルムを作製した。作製したフィルムを、2軸延伸装置を用いて、150℃の温度条件下、2.0倍に延伸することにより、厚さ40μmの延伸フィルムを得た。この延伸フィルムの光学特性を測定したところ、全光線透過率が93%、面内位相差Δndが0.8nm、厚み方向位相差Rthが1.5nmであった。
塗工液に含まれる樹脂として、紫外線硬化型樹脂(新中村化学工業(株)製,商品名「NKオリゴマーUA-53H-80BK」固形分濃度80%)を固形分70重量部、紫外線硬化型樹脂(新中村化学(株)製,商品名「A-GLY-9E」固形分濃度100%)を30重量部準備した。前記樹脂の樹脂固形分100重量部あたり、光重合開始剤(BASF(株)製、製品名「IRGACURE907」)を5部、レベリング剤(DIC(株)製、製品名「GRANDIC PC4100」)を0.1部添加した。上記溶液中の固形分濃度が40%となるように、上記配合液にトルエンとシクロペンタノンを80:20の比率で加えた。このようにしてハードコート層形成材料を作製した。
作製したハードコート層形成材料を、硬化後のハードコート層の厚みが7μmになるように前記延伸フィルム上に塗布して塗膜を形成した。その後、塗膜を90℃で1分間乾燥し、さらに高圧水銀ランプにて積算光量300mJ/cm2の紫外線を塗膜に照射し、前記塗膜を硬化させてハードコート層を形成してHC付40μmアクリルフィルムを作製した。 Production Method of 40 μm Acrylic Film with HC In a 30 L pot-type reactor equipped with a stirrer, a temperature sensor, a cooling pipe, and a nitrogen introduction pipe, 8,000 g of methyl methacrylate (MMA) and 2,000 g of 2- ( (Hydroxymethyl) methyl acrylate (MHMA), 10,000 g of 4-methyl-2-pentanone (methyl isobutyl ketone, MIBK), and 5 g of n-dodecyl mercaptan were charged, and the temperature was raised to 105 ° C. while passing nitrogen through. When the mixture was refluxed, 5.0 g of t-butyl peroxyisopropyl carbonate (Kayacarbon BIC-7, manufactured by Kayaku Akzo Co., Ltd.) was added as a polymerization initiator, and at the same time, 10.0 g of t-butyl peroxyisopropyl carbonate was added. And a solution consisting of 230 g of MIBK was added dropwise over 4 hours while refluxing. Perform solution polymerization at about 105 ~ 120 ° C., the mixture was aged over an additional 4 hours.
To the obtained polymer solution, 30 g of a stearyl phosphate / distearyl phosphate mixture (Phoslex A-18, manufactured by Sakai Chemical Industry Co., Ltd.) was added, and the mixture was refluxed at about 90 to 120 ° C. for 5 hours under reflux. A condensation reaction was performed. Next, the obtained polymer solution is subjected to a vent-type screw twin-screw extruder having a barrel temperature of 260 ° C., a rotation speed of 100 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), one rear vent and four forevents. (Φ = 29.75 mm, L / D = 30) at a processing rate of 2.0 kg / h in terms of the amount of resin, and further subjected to cyclization condensation reaction and devolatilization in this extruder to extrude. As a result, transparent pellets of the lactone ring-containing polymer were obtained.
When the dynamic TG of the obtained lactone ring-containing polymer was measured, a decrease in mass of 0.17% by mass was detected. The lactone ring-containing polymer had a weight average molecular weight of 133,000, a melt flow rate of 6.5 g / 10 min, and a glass transition temperature of 131 ° C.
The obtained pellets and acrylonitrile-styrene (AS) resin (Toyo AS AS20, manufactured by Toyo Styrene Co., Ltd.) are kneaded and extruded at a mass ratio of 90/10 using a single screw extruder (screw 30 mmφ). As a result, transparent pellets were obtained. The glass transition temperature of the obtained pellet was 127 ° C.
The pellet was melt-extruded from a coat hanger type T die having a width of 400 mm using a 50 mmφ single screw extruder to produce a film having a thickness of 160 μm. The produced film was stretched 2.0 times using a biaxial stretching device at a temperature of 150 ° C. to obtain a stretched film having a thickness of 40 μm. When the optical properties of this stretched film were measured, the total light transmittance was 93%, the in-plane retardation Δnd was 0.8 nm, and the thickness direction retardation Rth was 1.5 nm.
As a resin contained in the coating liquid, a UV-curable resin (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: “NK oligomer UA-53H-80BK”, solid content concentration: 80%), 70 parts by weight of solid content, UV curable resin 30 parts by weight of a resin (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name “A-GLY-9E”, solid content concentration 100%) was prepared. 5 parts of a photopolymerization initiator (product name "IRGACURE907" manufactured by BASF) and 0 parts of a leveling agent (manufactured by DIC Co., product name "GRANDIC PC4100") per 100 parts by weight of the resin solid content of the resin. .1 part was added. Toluene and cyclopentanone were added to the mixture at a ratio of 80:20 so that the solid concentration in the solution was 40%. Thus, a hard coat layer forming material was produced.
The prepared hard coat layer forming material was applied on the stretched film so that the thickness of the hard coat layer after curing became 7 μm to form a coating film. Thereafter, the coating film was dried at 90 ° C. for 1 minute, and further irradiated with ultraviolet light having an integrated light amount of 300 mJ / cm 2 by a high-pressure mercury lamp, and the coating film was cured to form a hard coat layer. A 40 μm acrylic film was produced.
HC付架橋弾性体を含む30μmアクリルフィルムの製造方法
15官能ウレタンアクリルオリゴマー(新中村化学社製、商品名:NK オリゴ UA-53H、重量平均分子量:2300)22部、ペンタエリスリトールトリアクリレート(大阪有機化学工業社製、商品名:ビスコート#300)28部、エトキシ化グリセリントリアクリレート(新中村化学社製、商品名:NK エステル A-GLY-9E)50部、光重合開始剤(チバ・ジャパン社製、商品名:イルガキュア907)3部を混合し、固形分濃度が40%となるように、メチルイソブチルケトンで希釈して、ハードコート層形成材料を作製した。
作製したハードコート層形成材料を、硬化後のハードコート層の厚みが10μmになるように前記架橋弾性体を含む30μmアクリルフィルム上に塗布して塗膜を形成した。その後、塗膜を90℃で1分間乾燥し、さらに高圧水銀ランプにて積算光量200mJ/cm2の紫外線を塗膜に照射し、前記塗膜を硬化させてハードコート層を形成してHC付架橋弾性体を含む30μmアクリルフィルムを作製した。 Method for producing 30 μm acrylic film containing crosslinked elastic body with HC 22 parts of 15-functional urethane acrylic oligomer (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK Oligo UA-53H, weight average molecular weight: 2300), pentaerythritol triacrylate (Osaka Organic) 28 parts, manufactured by Chemical Industry Co., Ltd., trade name: Biscoat # 300, 50 parts of ethoxylated glycerin triacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK ester A-GLY-9E), photopolymerization initiator (Ciba Japan Co., Ltd.) (Trade name: Irgacure 907) was mixed and diluted with methyl isobutyl ketone so as to have a solid content of 40% to prepare a hard coat layer forming material.
The prepared hard coat layer forming material was applied on a 30 μm acrylic film containing the crosslinked elastic material so that the thickness of the hard coat layer after curing became 10 μm to form a coating film. Thereafter, the coating film is dried at 90 ° C. for 1 minute, and further irradiated with ultraviolet light having an integrated light amount of 200 mJ / cm 2 by a high-pressure mercury lamp, and the coating film is cured to form a hard coat layer, and to form a hard coat layer. A 30 μm acrylic film containing a crosslinked elastic body was produced.
15官能ウレタンアクリルオリゴマー(新中村化学社製、商品名:NK オリゴ UA-53H、重量平均分子量:2300)22部、ペンタエリスリトールトリアクリレート(大阪有機化学工業社製、商品名:ビスコート#300)28部、エトキシ化グリセリントリアクリレート(新中村化学社製、商品名:NK エステル A-GLY-9E)50部、光重合開始剤(チバ・ジャパン社製、商品名:イルガキュア907)3部を混合し、固形分濃度が40%となるように、メチルイソブチルケトンで希釈して、ハードコート層形成材料を作製した。
作製したハードコート層形成材料を、硬化後のハードコート層の厚みが10μmになるように前記架橋弾性体を含む30μmアクリルフィルム上に塗布して塗膜を形成した。その後、塗膜を90℃で1分間乾燥し、さらに高圧水銀ランプにて積算光量200mJ/cm2の紫外線を塗膜に照射し、前記塗膜を硬化させてハードコート層を形成してHC付架橋弾性体を含む30μmアクリルフィルムを作製した。 Method for producing 30 μm acrylic film containing crosslinked elastic body with HC 22 parts of 15-functional urethane acrylic oligomer (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK Oligo UA-53H, weight average molecular weight: 2300), pentaerythritol triacrylate (Osaka Organic) 28 parts, manufactured by Chemical Industry Co., Ltd., trade name: Biscoat # 300, 50 parts of ethoxylated glycerin triacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK ester A-GLY-9E), photopolymerization initiator (Ciba Japan Co., Ltd.) (Trade name: Irgacure 907) was mixed and diluted with methyl isobutyl ketone so as to have a solid content of 40% to prepare a hard coat layer forming material.
The prepared hard coat layer forming material was applied on a 30 μm acrylic film containing the crosslinked elastic material so that the thickness of the hard coat layer after curing became 10 μm to form a coating film. Thereafter, the coating film is dried at 90 ° C. for 1 minute, and further irradiated with ultraviolet light having an integrated light amount of 200 mJ / cm 2 by a high-pressure mercury lamp, and the coating film is cured to form a hard coat layer, and to form a hard coat layer. A 30 μm acrylic film containing a crosslinked elastic body was produced.
40μmアクリルフィルムの製造方法
攪拌装置、温度センサー、冷却管、窒素導入管を備えた容量30Lの釜型反応器に、8,000gのメタクリル酸メチル(MMA)、2,000gの2-(ヒドロキシメチル)アクリル酸メチル(MHMA)、10,000gの4-メチル-2-ペンタノン(メチルイソブチルケトン、MIBK)、5gのn-ドデシルメルカプタンを仕込み、これに窒素を通じつつ、105℃まで昇温し、還流したところで、重合開始剤として5.0gのt-ブチルパーオキシイソプロピルカーボネート(カヤカルボンBIC-7、化薬アクゾ(株)製)を添加すると同時に、10.0gのt-ブチルパーオキシイソプロピルカーボネートと230gのMIBKからなる溶液を4時間かけて滴下しながら、還流下、約105~120℃で溶液重合を行い、さらに4時間かけて熟成を行った。
得られた重合体溶液に、30gのリン酸ステアリル/リン酸ジステアリル混合物(Phoslex A-18、堺化学工業(株)製)を加え、還流下、約90~120℃で5時間、環化縮合反応を行った。次いで、得られた重合体溶液を、バレル温度260℃、回転数100rpm、減圧度13.3~400hPa(10~300mmHg)、リアベント数1個、フォアベント数4個のベントタイプスクリュー二軸押出し機(φ=29.75mm、L/D=30)に、樹脂量換算で、2.0kg/hの処理速度で導入し、この押出し機内で、さらに環化縮合反応と脱揮を行い、押し出すことにより、ラクトン環含有重合体の透明なペレットを得た。
得られたラクトン環含有重合体について、ダイナミックTGの測定を行ったところ、0.17質量%の質量減少を検知した。また、このラクトン環含有重合体は、重量平均分子量が133,000、メルトフローレートが6.5g/10min、ガラス転移温度が131℃であった。
得られたペレットと、アクリロニトリル-スチレン(AS)樹脂(トーヨーAS AS20、東洋スチレン(株)製)とを、質量比90/10で、単軸押出機(スクリュー30mmφ)を用いて混練押出することにより、透明なペレットを得た。得られたペレットのガラス転移温度は127℃であった。
このペレットを、50mmφ単軸押出機を用い、400mm幅のコートハンガータイプTダイから溶融押出し、厚さ160μmのフィルムを作製した。作製したフィルムを、2軸延伸装置を用いて、150℃の温度条件下、2.0倍に延伸することにより、厚さ40μmの延伸フィルム(40μmアクリルフィルム)を得た。この延伸フィルムの光学特性を測定したところ、全光線透過率が93%、面内位相差Δndが0.8nm、厚み方向位相差Rthが1.5nmであった。 Method for Producing 40 μm Acrylic Film In a 30 L pot-type reactor equipped with a stirrer, a temperature sensor, a cooling pipe, and a nitrogen introducing pipe, 8,000 g of methyl methacrylate (MMA) and 2,000 g of 2- (hydroxymethyl) were added. ) Methyl acrylate (MHMA), 10,000 g of 4-methyl-2-pentanone (methyl isobutyl ketone, MIBK), and 5 g of n-dodecyl mercaptan were charged, and the temperature was raised to 105 ° C. while passing nitrogen through, followed by reflux. At that time, 5.0 g of t-butyl peroxyisopropyl carbonate (Kayacarbon BIC-7, manufactured by Kayaku Akzo Co., Ltd.) was added as a polymerization initiator, and at the same time, 10.0 g of t-butyl peroxyisopropyl carbonate and 230 g were added. Of MIBK was added dropwise over 4 hours while refluxing for about 1 hour. Perform solution polymerization at 5 ~ 120 ° C., the mixture was aged over an additional 4 hours.
To the obtained polymer solution, 30 g of a stearyl phosphate / distearyl phosphate mixture (Phoslex A-18, manufactured by Sakai Chemical Industry Co., Ltd.) was added, and the mixture was refluxed at about 90 to 120 ° C. for 5 hours under reflux. A condensation reaction was performed. Next, the obtained polymer solution is subjected to a vent-type screw twin-screw extruder having a barrel temperature of 260 ° C., a rotation speed of 100 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), one rear vent and four forevents. (Φ = 29.75 mm, L / D = 30) at a processing rate of 2.0 kg / h in terms of the amount of resin, and further subjected to cyclization condensation reaction and devolatilization in this extruder to extrude. As a result, transparent pellets of the lactone ring-containing polymer were obtained.
When the dynamic TG of the obtained lactone ring-containing polymer was measured, a decrease in mass of 0.17% by mass was detected. The lactone ring-containing polymer had a weight average molecular weight of 133,000, a melt flow rate of 6.5 g / 10 min, and a glass transition temperature of 131 ° C.
The obtained pellets and acrylonitrile-styrene (AS) resin (Toyo AS AS20, manufactured by Toyo Styrene Co., Ltd.) are kneaded and extruded at a mass ratio of 90/10 using a single screw extruder (screw 30 mmφ). As a result, transparent pellets were obtained. The glass transition temperature of the obtained pellet was 127 ° C.
The pellet was melt-extruded from a coat hanger type T die having a width of 400 mm using a 50 mmφ single screw extruder to produce a film having a thickness of 160 μm. The produced film was stretched 2.0 times at a temperature of 150 ° C. using a biaxial stretching device to obtain a stretched film (40 μm acrylic film) having a thickness of 40 μm. When the optical properties of this stretched film were measured, the total light transmittance was 93%, the in-plane retardation Δnd was 0.8 nm, and the thickness direction retardation Rth was 1.5 nm.
攪拌装置、温度センサー、冷却管、窒素導入管を備えた容量30Lの釜型反応器に、8,000gのメタクリル酸メチル(MMA)、2,000gの2-(ヒドロキシメチル)アクリル酸メチル(MHMA)、10,000gの4-メチル-2-ペンタノン(メチルイソブチルケトン、MIBK)、5gのn-ドデシルメルカプタンを仕込み、これに窒素を通じつつ、105℃まで昇温し、還流したところで、重合開始剤として5.0gのt-ブチルパーオキシイソプロピルカーボネート(カヤカルボンBIC-7、化薬アクゾ(株)製)を添加すると同時に、10.0gのt-ブチルパーオキシイソプロピルカーボネートと230gのMIBKからなる溶液を4時間かけて滴下しながら、還流下、約105~120℃で溶液重合を行い、さらに4時間かけて熟成を行った。
得られた重合体溶液に、30gのリン酸ステアリル/リン酸ジステアリル混合物(Phoslex A-18、堺化学工業(株)製)を加え、還流下、約90~120℃で5時間、環化縮合反応を行った。次いで、得られた重合体溶液を、バレル温度260℃、回転数100rpm、減圧度13.3~400hPa(10~300mmHg)、リアベント数1個、フォアベント数4個のベントタイプスクリュー二軸押出し機(φ=29.75mm、L/D=30)に、樹脂量換算で、2.0kg/hの処理速度で導入し、この押出し機内で、さらに環化縮合反応と脱揮を行い、押し出すことにより、ラクトン環含有重合体の透明なペレットを得た。
得られたラクトン環含有重合体について、ダイナミックTGの測定を行ったところ、0.17質量%の質量減少を検知した。また、このラクトン環含有重合体は、重量平均分子量が133,000、メルトフローレートが6.5g/10min、ガラス転移温度が131℃であった。
得られたペレットと、アクリロニトリル-スチレン(AS)樹脂(トーヨーAS AS20、東洋スチレン(株)製)とを、質量比90/10で、単軸押出機(スクリュー30mmφ)を用いて混練押出することにより、透明なペレットを得た。得られたペレットのガラス転移温度は127℃であった。
このペレットを、50mmφ単軸押出機を用い、400mm幅のコートハンガータイプTダイから溶融押出し、厚さ160μmのフィルムを作製した。作製したフィルムを、2軸延伸装置を用いて、150℃の温度条件下、2.0倍に延伸することにより、厚さ40μmの延伸フィルム(40μmアクリルフィルム)を得た。この延伸フィルムの光学特性を測定したところ、全光線透過率が93%、面内位相差Δndが0.8nm、厚み方向位相差Rthが1.5nmであった。 Method for Producing 40 μm Acrylic Film In a 30 L pot-type reactor equipped with a stirrer, a temperature sensor, a cooling pipe, and a nitrogen introducing pipe, 8,000 g of methyl methacrylate (MMA) and 2,000 g of 2- (hydroxymethyl) were added. ) Methyl acrylate (MHMA), 10,000 g of 4-methyl-2-pentanone (methyl isobutyl ketone, MIBK), and 5 g of n-dodecyl mercaptan were charged, and the temperature was raised to 105 ° C. while passing nitrogen through, followed by reflux. At that time, 5.0 g of t-butyl peroxyisopropyl carbonate (Kayacarbon BIC-7, manufactured by Kayaku Akzo Co., Ltd.) was added as a polymerization initiator, and at the same time, 10.0 g of t-butyl peroxyisopropyl carbonate and 230 g were added. Of MIBK was added dropwise over 4 hours while refluxing for about 1 hour. Perform solution polymerization at 5 ~ 120 ° C., the mixture was aged over an additional 4 hours.
To the obtained polymer solution, 30 g of a stearyl phosphate / distearyl phosphate mixture (Phoslex A-18, manufactured by Sakai Chemical Industry Co., Ltd.) was added, and the mixture was refluxed at about 90 to 120 ° C. for 5 hours under reflux. A condensation reaction was performed. Next, the obtained polymer solution is subjected to a vent-type screw twin-screw extruder having a barrel temperature of 260 ° C., a rotation speed of 100 rpm, a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), one rear vent and four forevents. (Φ = 29.75 mm, L / D = 30) at a processing rate of 2.0 kg / h in terms of the amount of resin, and further subjected to cyclization condensation reaction and devolatilization in this extruder to extrude. As a result, transparent pellets of the lactone ring-containing polymer were obtained.
When the dynamic TG of the obtained lactone ring-containing polymer was measured, a decrease in mass of 0.17% by mass was detected. The lactone ring-containing polymer had a weight average molecular weight of 133,000, a melt flow rate of 6.5 g / 10 min, and a glass transition temperature of 131 ° C.
The obtained pellets and acrylonitrile-styrene (AS) resin (Toyo AS AS20, manufactured by Toyo Styrene Co., Ltd.) are kneaded and extruded at a mass ratio of 90/10 using a single screw extruder (screw 30 mmφ). As a result, transparent pellets were obtained. The glass transition temperature of the obtained pellet was 127 ° C.
The pellet was melt-extruded from a coat hanger type T die having a width of 400 mm using a 50 mmφ single screw extruder to produce a film having a thickness of 160 μm. The produced film was stretched 2.0 times at a temperature of 150 ° C. using a biaxial stretching device to obtain a stretched film (40 μm acrylic film) having a thickness of 40 μm. When the optical properties of this stretched film were measured, the total light transmittance was 93%, the in-plane retardation Δnd was 0.8 nm, and the thickness direction retardation Rth was 1.5 nm.
APF:輝度向上フィルム(住友スリーエム製、商品名:APF、厚み26μm)
APF: Brightness improving film (Sumitomo 3M, product name: APF, thickness 26 μm)
HC付APF:輝度向上フィルム(住友スリーエム製、商品名:APF、厚み20μm)上にアクリル樹脂系ハードコート層を設けたフィルム
AP APF with HC: A film in which an acrylic resin-based hard coat layer is provided on a brightness enhancement film (Sumitomo 3M, trade name: APF, thickness: 20 μm)
HC付26μmCOPフィルム:ZF12-HC:日本ゼオン製、原料:シクロオレフィン系ポリマーにアクリル樹脂性ハードコートコーティングを施したもの
2626μm COP film with HC: ZF12-HC: manufactured by Zeon Corporation, raw material: cycloolefin polymer coated with acrylic resin hard coat
実施例及び比較例で使用した保護フィルムの線膨張係数及び破断伸度の測定方法は以下の通りである。また、実施例及び比較例で作製した偏光フィルムについて、下記評価を行った。結果を表1に示す。
測定 The methods for measuring the coefficient of linear expansion and the elongation at break of the protective films used in Examples and Comparative Examples are as follows. The following evaluations were performed on the polarizing films produced in the examples and comparative examples. Table 1 shows the results.
<保護フィルムの線膨張係数Y(×10-5/K)の測定>
TMA分析装置(株式会社日立ハイテクサイエンス製、TMA7100E)を用いて、下記測定条件にて保護フィルムの寸法変化量を測定し、得られた値を下記式(A)に代入して寸法変化率を算出した。測定は4回行い、4回の平均値を寸法変化率とした。そして、得られた寸法変化率の平均値を下記式(B)に代入して保護フィルムの線膨張係数Y(×10-5/K)を算出した。
サンプルの大きさ:20mm×5mm
測定環境:-40℃⇔85℃
昇温・降温速度:10℃/min
測定回数:4
寸法変化率=(ΔL/L)×100 (A)
ΔL:測定時の寸法変化量(-40℃における寸法と85℃における寸法の差)
L:測定前の寸法(25℃における寸法)
線膨張係数Y(×10-5/K)=(寸法変化率/ΔT)/100 (B)
ΔT:温度変化の幅 <Measurement of linear expansion coefficient Y (× 10 −5 / K) of protective film>
Using a TMA analyzer (manufactured by Hitachi High-Tech Science Co., Ltd., TMA7100E), the dimensional change of the protective film was measured under the following measurement conditions, and the obtained value was substituted into the following equation (A) to determine the dimensional change rate. Calculated. The measurement was performed four times, and the average value of the four measurements was defined as the dimensional change rate. Then, the average value of the obtained dimensional change rates was substituted into the following equation (B) to calculate the linear expansion coefficient Y (× 10 −5 / K) of the protective film.
Sample size: 20mm x 5mm
Measurement environment: -40 ℃ ⇔85 ℃
Temperature rise / fall rate: 10 ° C / min
Number of measurements: 4
Dimensional change rate = (ΔL / L) × 100 (A)
ΔL: dimensional change during measurement (difference between dimensions at -40 ° C and dimensions at 85 ° C)
L: Dimension before measurement (dimension at 25 ° C.)
Linear expansion coefficient Y (× 10 −5 / K) = (dimensional change rate / ΔT) / 100 (B)
ΔT: width of temperature change
TMA分析装置(株式会社日立ハイテクサイエンス製、TMA7100E)を用いて、下記測定条件にて保護フィルムの寸法変化量を測定し、得られた値を下記式(A)に代入して寸法変化率を算出した。測定は4回行い、4回の平均値を寸法変化率とした。そして、得られた寸法変化率の平均値を下記式(B)に代入して保護フィルムの線膨張係数Y(×10-5/K)を算出した。
サンプルの大きさ:20mm×5mm
測定環境:-40℃⇔85℃
昇温・降温速度:10℃/min
測定回数:4
寸法変化率=(ΔL/L)×100 (A)
ΔL:測定時の寸法変化量(-40℃における寸法と85℃における寸法の差)
L:測定前の寸法(25℃における寸法)
線膨張係数Y(×10-5/K)=(寸法変化率/ΔT)/100 (B)
ΔT:温度変化の幅 <Measurement of linear expansion coefficient Y (× 10 −5 / K) of protective film>
Using a TMA analyzer (manufactured by Hitachi High-Tech Science Co., Ltd., TMA7100E), the dimensional change of the protective film was measured under the following measurement conditions, and the obtained value was substituted into the following equation (A) to determine the dimensional change rate. Calculated. The measurement was performed four times, and the average value of the four measurements was defined as the dimensional change rate. Then, the average value of the obtained dimensional change rates was substituted into the following equation (B) to calculate the linear expansion coefficient Y (× 10 −5 / K) of the protective film.
Sample size: 20mm x 5mm
Measurement environment: -40 ℃ ⇔85 ℃
Temperature rise / fall rate: 10 ° C / min
Number of measurements: 4
Dimensional change rate = (ΔL / L) × 100 (A)
ΔL: dimensional change during measurement (difference between dimensions at -40 ° C and dimensions at 85 ° C)
L: Dimension before measurement (dimension at 25 ° C.)
Linear expansion coefficient Y (× 10 −5 / K) = (dimensional change rate / ΔT) / 100 (B)
ΔT: width of temperature change
<保護フィルムの破断伸度X(%)の測定>
オートグラフ(島津製作所製)を用いて、下記測定条件にて保護フィルムが破断するまで一定速度で引張り、破断時の長さを測定した。初期長さと破断時の長さを下記式(C)に代入して破断伸度X(%)を算出した。測定は3回行い、3回の平均値を破断伸度X(%)とした。
サンプルの大きさ:100mm×10mm
引張速度:300mm/min
測定環境:温度23℃、湿度50%RH
測定回数:3
破断伸度X(%)={(破断時の長さ-初期長さ)/初期長さ}×100 (C) <Measurement of elongation at break X (%) of protective film>
Using an autograph (manufactured by Shimadzu Corporation), the protective film was pulled at a constant speed until the film was broken under the following measurement conditions, and the length at break was measured. The elongation at break X (%) was calculated by substituting the initial length and the length at break into the following equation (C). The measurement was performed three times, and the average value of the three times was defined as the elongation at break X (%).
Sample size: 100mm x 10mm
Tensile speed: 300mm / min
Measurement environment: temperature 23 ° C, humidity 50% RH
Number of measurements: 3
Elongation at break X (%) = {(length at break−initial length) / initial length} × 100 (C)
オートグラフ(島津製作所製)を用いて、下記測定条件にて保護フィルムが破断するまで一定速度で引張り、破断時の長さを測定した。初期長さと破断時の長さを下記式(C)に代入して破断伸度X(%)を算出した。測定は3回行い、3回の平均値を破断伸度X(%)とした。
サンプルの大きさ:100mm×10mm
引張速度:300mm/min
測定環境:温度23℃、湿度50%RH
測定回数:3
破断伸度X(%)={(破断時の長さ-初期長さ)/初期長さ}×100 (C) <Measurement of elongation at break X (%) of protective film>
Using an autograph (manufactured by Shimadzu Corporation), the protective film was pulled at a constant speed until the film was broken under the following measurement conditions, and the length at break was measured. The elongation at break X (%) was calculated by substituting the initial length and the length at break into the following equation (C). The measurement was performed three times, and the average value of the three times was defined as the elongation at break X (%).
Sample size: 100mm x 10mm
Tensile speed: 300mm / min
Measurement environment: temperature 23 ° C, humidity 50% RH
Number of measurements: 3
Elongation at break X (%) = {(length at break−initial length) / initial length} × 100 (C)
<偏光フィルムのバタフライ試験(耐クラック性試験)>
150mm×50mmの偏光フィルムに図1のようにMD方向にレーザーで切り込みを設けてサンプルを得た。当該サンプルをハンドローラーを用いてガラス板(松浪硝子工業株式会社製)に粘着剤を介して貼り合わせ、そして、ガラス板に貼り合わせたサンプルを50℃のオートクレーブ中に15分間放置した。その後、ガラス板に貼り合わせたサンプルを試験槽に投入し、下記条件でヒートショック試験を行った。10サイクル毎にガラス板に貼り合わせたサンプルを取り出し、図1の丸部分に1mm以上のクラックが発生しているか否かを確認した。5枚のサンプルについて、1mm以上のクラックが発生した時のサイクル数をそれぞれカウントし(5枚中5枚ともクラックが発生したサイクル数)、そのうちの最大値を採用して下記基準で評価した。
(測定条件)
測定環境:-40℃(30分保持)⇔85℃(30分保持)
昇温・降温速度:10℃/min
サンプル数:5
(評価基準)
〇:200サイクル以上
△:100~199サイクル
×:99サイクル以下 <Butterfly test of polarizing film (crack resistance test)>
A sample was obtained by providing a cut in a MD film in the MD direction with a laser on a 150 mm × 50 mm polarizing film as shown in FIG. The sample was bonded to a glass plate (manufactured by Matsunami Glass Industry Co., Ltd.) with an adhesive using a hand roller, and the sample bonded to the glass plate was left in an autoclave at 50 ° C. for 15 minutes. Thereafter, the sample bonded to the glass plate was put into a test tank, and a heat shock test was performed under the following conditions. A sample bonded to a glass plate was taken out every 10 cycles, and it was confirmed whether or not a crack of 1 mm or more had occurred in the round portion of FIG. The number of cycles when a crack of 1 mm or more occurred was counted for each of the five samples (the number of cycles at which cracks occurred in all five of the five samples), and the maximum value was adopted and evaluated according to the following criteria.
(Measurement condition)
Measurement environment: -40 ° C (hold for 30 minutes) @ 85 ° C (hold for 30 minutes)
Temperature rise / fall rate: 10 ° C / min
Number of samples: 5
(Evaluation criteria)
〇: 200 cycles or more △: 100 to 199 cycles ×: 99 cycles or less
150mm×50mmの偏光フィルムに図1のようにMD方向にレーザーで切り込みを設けてサンプルを得た。当該サンプルをハンドローラーを用いてガラス板(松浪硝子工業株式会社製)に粘着剤を介して貼り合わせ、そして、ガラス板に貼り合わせたサンプルを50℃のオートクレーブ中に15分間放置した。その後、ガラス板に貼り合わせたサンプルを試験槽に投入し、下記条件でヒートショック試験を行った。10サイクル毎にガラス板に貼り合わせたサンプルを取り出し、図1の丸部分に1mm以上のクラックが発生しているか否かを確認した。5枚のサンプルについて、1mm以上のクラックが発生した時のサイクル数をそれぞれカウントし(5枚中5枚ともクラックが発生したサイクル数)、そのうちの最大値を採用して下記基準で評価した。
(測定条件)
測定環境:-40℃(30分保持)⇔85℃(30分保持)
昇温・降温速度:10℃/min
サンプル数:5
(評価基準)
〇:200サイクル以上
△:100~199サイクル
×:99サイクル以下 <Butterfly test of polarizing film (crack resistance test)>
A sample was obtained by providing a cut in a MD film in the MD direction with a laser on a 150 mm × 50 mm polarizing film as shown in FIG. The sample was bonded to a glass plate (manufactured by Matsunami Glass Industry Co., Ltd.) with an adhesive using a hand roller, and the sample bonded to the glass plate was left in an autoclave at 50 ° C. for 15 minutes. Thereafter, the sample bonded to the glass plate was put into a test tank, and a heat shock test was performed under the following conditions. A sample bonded to a glass plate was taken out every 10 cycles, and it was confirmed whether or not a crack of 1 mm or more had occurred in the round portion of FIG. The number of cycles when a crack of 1 mm or more occurred was counted for each of the five samples (the number of cycles at which cracks occurred in all five of the five samples), and the maximum value was adopted and evaluated according to the following criteria.
(Measurement condition)
Measurement environment: -40 ° C (hold for 30 minutes) @ 85 ° C (hold for 30 minutes)
Temperature rise / fall rate: 10 ° C / min
Number of samples: 5
(Evaluation criteria)
〇: 200 cycles or more △: 100 to 199 cycles ×: 99 cycles or less
表1から、偏光子に設けられる保護フィルムの少なくとも1つが上記式(1)を満たす実施例1~10の偏光フィルムは、熱衝撃(-40℃と85℃の温度条件を繰り返すヒートショック試験)の過酷な環境下でも偏光子にクラックが発生しにくく、耐クラック性に優れることがわかる。一方、偏光子に設けられる保護フィルムが上記式(1)を満たさない比較例1~9の偏光フィルムは、熱衝撃によって偏光子にクラックが発生しやすく、耐クラック性に劣ることがわかる。
From Table 1, it can be seen that the polarizing films of Examples 1 to 10 in which at least one of the protective films provided on the polarizer satisfies the above formula (1) have a thermal shock (heat shock test in which the temperature conditions of -40 ° C and 85 ° C are repeated) It can be seen that cracks hardly occur in the polarizer even under the severe environment, and that the polarizer is excellent in crack resistance. On the other hand, it can be seen that the polarizing films of Comparative Examples 1 to 9 in which the protective film provided on the polarizer does not satisfy the above formula (1) are liable to cracks in the polarizer due to thermal shock and have poor crack resistance.
本発明の偏光フィルムは、これ単独で、またはこれを積層した光学フィルムとして液晶表示装置(LCD)、有機EL表示装置などの画像表示装置に用いられる。
The polarizing film of the present invention is used alone or as an optical film obtained by laminating the polarizing film on an image display device such as a liquid crystal display (LCD) and an organic EL display.
Claims (5)
- 偏光子の片面又は両面に接着剤層を介して保護フィルムが設けられている偏光フィルムであって、
偏光子に設けられる前記保護フィルムの少なくとも1つは、下記式(1)を満たすものであることを特徴とする偏光フィルム。
Y≦1.26×lnX+3.5 (1)
Y:保護フィルムの線膨張係数(×10-5/K)
X:保護フィルムの破断伸度(%) A polarizing film provided with a protective film via an adhesive layer on one or both sides of the polarizer,
At least one of the protective films provided on the polarizer satisfies the following formula (1).
Y ≦ 1.26 × lnX + 3.5 (1)
Y: Coefficient of linear expansion of protective film (× 10 −5 / K)
X: Elongation at break of protective film (%) - 前記Y(×10-5/K)は、4以下である請求項1に記載の偏光フィルム。 2. The polarizing film according to claim 1, wherein Y (× 10 −5 / K) is 4 or less.
- 前記偏光子の厚さは、10μm以下である請求項1又は2に記載の偏光フィルム。 偏光 The polarizing film according to claim 1, wherein the thickness of the polarizer is 10 μm or less.
- 請求項1~3のいずれかに記載の偏光フィルムおよび粘着剤層を有する粘着剤層付き偏光フィルム。 [4] A polarizing film with an adhesive layer, comprising the polarizing film according to any one of [1] to [3] and an adhesive layer.
- 請求項1~3のいずれかに記載の偏光フィルムまたは請求項4に記載の粘着剤層付き偏光フィルムが、画像表示セルに配置されている画像表示装置。 (4) An image display device, wherein the polarizing film according to any one of (1) to (3) or the polarizing film with an adhesive layer according to (4) is arranged in an image display cell.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018117047A JP2019219525A (en) | 2018-06-20 | 2018-06-20 | Polarizing film, polarizing film with adhesive layer, and image display device |
JP2018-117047 | 2018-06-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019244915A1 true WO2019244915A1 (en) | 2019-12-26 |
Family
ID=68984094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/024221 WO2019244915A1 (en) | 2018-06-20 | 2019-06-19 | Polarizing film, polarizing film with adhesive layer, and image display device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2019219525A (en) |
TW (1) | TWI724436B (en) |
WO (1) | WO2019244915A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114966936A (en) * | 2021-11-23 | 2022-08-30 | 住华科技股份有限公司 | Optical film, display device formed by same, and evaluation method for anti-polaron cracking of optical film |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI801931B (en) * | 2021-07-13 | 2023-05-11 | 住華科技股份有限公司 | Optical film and display device formed therefrom |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008062481A (en) * | 2006-09-06 | 2008-03-21 | Jsr Corp | Laminated film |
JP2009063983A (en) * | 2006-12-21 | 2009-03-26 | Fujifilm Corp | Optical film and polarizing plate having the same |
JP2009292869A (en) * | 2008-06-02 | 2009-12-17 | Fujifilm Corp | Acrylic film, method for producing it, polarizing plate, optical compensation film, antireflection film, and liquid crystal display |
JP2011202129A (en) * | 2010-03-26 | 2011-10-13 | Fujifilm Corp | Polyester resin, and optical material, film and image display device using the same |
JP2012018360A (en) * | 2010-07-09 | 2012-01-26 | Jsr Corp | Polarizer protective film and display device including the same |
JP2012145645A (en) * | 2011-01-07 | 2012-08-02 | Nitto Denko Corp | Polarizing plate |
WO2016158825A1 (en) * | 2015-03-31 | 2016-10-06 | 旭化成株式会社 | Polyimide film, polyimide varnish, product using polyimide film, and laminate |
WO2017110342A1 (en) * | 2015-12-24 | 2017-06-29 | コニカミノルタ株式会社 | Polarizing plate protective film, production method for same, and polarizing plate |
JP2017211434A (en) * | 2016-05-23 | 2017-11-30 | 日東電工株式会社 | Laminate film and image display device |
JP2017211433A (en) * | 2016-05-23 | 2017-11-30 | 日東電工株式会社 | Polarization film, polarization film with adhesive layer, and image display device |
WO2017221776A1 (en) * | 2016-06-24 | 2017-12-28 | 東レ株式会社 | Polyimide resin, polyimide resin composition, touch panel using same, method for producing said touch panel, color filter, method for producing color filter, liquid crystal element, method for producing liquid crystal element, organic el element, and method for producing organic el element |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009048157A (en) * | 2006-12-21 | 2009-03-05 | Fujifilm Corp | Liquid crystal display |
JP6795318B2 (en) * | 2016-03-28 | 2020-12-02 | 日東電工株式会社 | Single protective polarizing film, polarizing film with adhesive layer, image display device and its continuous manufacturing method |
JP6857451B2 (en) * | 2016-04-20 | 2021-04-14 | 日東電工株式会社 | Active energy ray-curable adhesive composition, laminated polarizing film and its manufacturing method, laminated optical film and image display device |
JP7077748B2 (en) * | 2017-05-09 | 2022-05-31 | 凸版印刷株式会社 | Cured film forming composition and cured film |
-
2018
- 2018-06-20 JP JP2018117047A patent/JP2019219525A/en active Pending
-
2019
- 2019-06-19 WO PCT/JP2019/024221 patent/WO2019244915A1/en active Application Filing
- 2019-06-19 TW TW108121264A patent/TWI724436B/en active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008062481A (en) * | 2006-09-06 | 2008-03-21 | Jsr Corp | Laminated film |
JP2009063983A (en) * | 2006-12-21 | 2009-03-26 | Fujifilm Corp | Optical film and polarizing plate having the same |
JP2009292869A (en) * | 2008-06-02 | 2009-12-17 | Fujifilm Corp | Acrylic film, method for producing it, polarizing plate, optical compensation film, antireflection film, and liquid crystal display |
JP2011202129A (en) * | 2010-03-26 | 2011-10-13 | Fujifilm Corp | Polyester resin, and optical material, film and image display device using the same |
JP2012018360A (en) * | 2010-07-09 | 2012-01-26 | Jsr Corp | Polarizer protective film and display device including the same |
JP2012145645A (en) * | 2011-01-07 | 2012-08-02 | Nitto Denko Corp | Polarizing plate |
WO2016158825A1 (en) * | 2015-03-31 | 2016-10-06 | 旭化成株式会社 | Polyimide film, polyimide varnish, product using polyimide film, and laminate |
WO2017110342A1 (en) * | 2015-12-24 | 2017-06-29 | コニカミノルタ株式会社 | Polarizing plate protective film, production method for same, and polarizing plate |
JP2017211434A (en) * | 2016-05-23 | 2017-11-30 | 日東電工株式会社 | Laminate film and image display device |
JP2017211433A (en) * | 2016-05-23 | 2017-11-30 | 日東電工株式会社 | Polarization film, polarization film with adhesive layer, and image display device |
WO2017221776A1 (en) * | 2016-06-24 | 2017-12-28 | 東レ株式会社 | Polyimide resin, polyimide resin composition, touch panel using same, method for producing said touch panel, color filter, method for producing color filter, liquid crystal element, method for producing liquid crystal element, organic el element, and method for producing organic el element |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114966936A (en) * | 2021-11-23 | 2022-08-30 | 住华科技股份有限公司 | Optical film, display device formed by same, and evaluation method for anti-polaron cracking of optical film |
Also Published As
Publication number | Publication date |
---|---|
TW202001308A (en) | 2020-01-01 |
JP2019219525A (en) | 2019-12-26 |
TWI724436B (en) | 2021-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019244916A1 (en) | Polarization film, adhesive layer-provided polarization film, and image display device | |
TWI750259B (en) | Image display device | |
WO2019244923A1 (en) | Polarization film, polarization film with adhesive layer, and image display device | |
KR101086124B1 (en) | Process for producing polarizing element, polarizing element, polarizing plate, optical film, and image display | |
JP5072747B2 (en) | Manufacturing method of polarizer, polarizer, polarizing plate, optical film, and image display device | |
US9989675B2 (en) | Polarizing plate and image display device | |
JP6983510B2 (en) | An optical film laminate, an optical display device using the optical film laminate, and a transparent protective film. | |
KR102338615B1 (en) | Optical film, peeling method and manufacturing method of optical display panel | |
JP2008052002A (en) | Optical film, polarizer, and image display device | |
KR20100089779A (en) | Polarizer outside protection film, polarizing plate and liquid crystal display element | |
JP2016139027A (en) | Polarizing plate and liquid crystal display device | |
JP2023025240A (en) | Method for manufacturing polarizing film roll | |
WO2019244915A1 (en) | Polarizing film, polarizing film with adhesive layer, and image display device | |
WO2017169917A1 (en) | One-side protected polarizing film, polarizing film with adhesive layer, image display device, and method for continuously manufacturing image display device | |
JP6636367B2 (en) | Method for manufacturing one-sided protective polarizing film with transparent resin layer, method for manufacturing polarizing film with adhesive layer, and method for manufacturing image display device | |
JP5410770B2 (en) | Polarizer outer surface protective film, polarizing plate, and liquid crystal display element | |
JP2010181873A (en) | Retardation film with pressure-sensitive adhesive layer, and composite polarizing plate and liquid crystal display device using the same | |
JP7345330B2 (en) | Optical laminate and display device using the same | |
WO2022191033A1 (en) | Polarizing plate | |
JP6771913B2 (en) | A polarizing film with a surface protective film and a method for manufacturing the polarizing film | |
JP2021002041A (en) | Polarization film with surface protective film, and manufacturing method of polarization film | |
TW202321038A (en) | Easily-adhesive film, polarizing plate, polarizing plate with adhesive, and image display device in which decrease in single transmittance is suppressed in a high-temperature environment | |
JP2022145412A (en) | Optical laminate, manufacturing method thereof and picture display unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19823510 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19823510 Country of ref document: EP Kind code of ref document: A1 |