WO2018216598A1 - Polarizing film, polarizing film with adhesive layer, and image display device - Google Patents

Polarizing film, polarizing film with adhesive layer, and image display device Download PDF

Info

Publication number
WO2018216598A1
WO2018216598A1 PCT/JP2018/019128 JP2018019128W WO2018216598A1 WO 2018216598 A1 WO2018216598 A1 WO 2018216598A1 JP 2018019128 W JP2018019128 W JP 2018019128W WO 2018216598 A1 WO2018216598 A1 WO 2018216598A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
resin film
polarizing film
polarizer
adhesive layer
Prior art date
Application number
PCT/JP2018/019128
Other languages
French (fr)
Japanese (ja)
Inventor
和也 吉村
玲子 品川
史枝 新保
勝則 高田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020197030240A priority Critical patent/KR102579020B1/en
Priority to CN201880032923.1A priority patent/CN110637242A/en
Publication of WO2018216598A1 publication Critical patent/WO2018216598A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a polarizing film and a polarizing film with an adhesive layer having the polarizing film and an adhesive layer. Moreover, this invention relates to the image display apparatus containing the said polarizing film with an adhesive layer.
  • a polarizing film is used for image display.
  • a liquid crystal display device LCD
  • a circularly polarizing film in which a polarizing film and a quarter wavelength plate are laminated is disposed on the viewing side of the organic light emitting layer in order to shield the specular reflection of external light on the metal electrode.
  • polarizing film generally, a polyvinyl alcohol film and a polarizer made of a dichroic material such as iodine are bonded to one or both surfaces with a protective film bonded with a polyvinyl alcohol adhesive or the like. ing.
  • a polarizing film In a severe environment of thermal shock (for example, a heat shock test in which a temperature condition of ⁇ 40 ° C. and 85 ° C. is repeated), the polarizing film spreads along the absorption axis direction of the polarizer due to a change in the contraction stress of the polarizer. There is a problem that cracks (through cracks) are likely to occur. Therefore, in order to suppress the shrinkage of the polarizer and reduce the influence of thermal shock, a polarizing film usually has a 40 to 80 ⁇ m triacetyl cellulose (TAC) film as a protective film on both sides of the polarizer. A combined laminate is used. However, even in the polarizing film protected on both sides, the change in the shrinkage stress of the polarizer is not negligible, and it is difficult to completely suppress the influence of the shrinkage. It was inevitable that the shrinkage occurred.
  • TAC triacetyl cellulose
  • polarizers are also required to be thinner. If it is a thin polarizer with a thickness of 10 ⁇ m or less, the change in shrinkage stress is small, so that a through-crack is hardly generated.
  • a polarizing film is disclosed in which a protective film is bonded to one or both sides of a thin polarizer having a thickness of 10 ⁇ m or less, and generation of through cracks is suppressed (see, for example, Patent Documents 1 to 3).
  • the protective film is a double-sided protective polarizing film with both sides of a thin polarizer bonded
  • the protective film provided on both sides can suppress the amount of shrinkage of the polarizer during the heat shock test. Can be effectively suppressed.
  • a thin polarizer having a thickness of 10 ⁇ m or less has a problem that the optical characteristics in a humidified environment are likely to deteriorate. Therefore, even if it is a double-sided protective polarizing film using the said thin polarizer described in patent documents 1 thru
  • the moisture permeability is extremely low as a protective film to be bonded to both surfaces of the thin polarizer (specifically, 100 g / (m 2 ⁇ day) or less).
  • the use of a resin film is being studied.
  • the polarizer can be prevented from degrading in a humidified environment, but a thin polarizer having a thickness of 10 ⁇ m or less is used.
  • the protective film was bonded together on both surfaces of the said thin polarizer, the new subject that a penetration crack generate
  • the present invention is a polarizing film in which a resin film with low moisture permeability is laminated on both sides of a polarizer having a thickness of 10 ⁇ m or less, suppressing deterioration of the polarizer due to humidification (humidification reliability), and severe thermal shock It aims at providing the polarizing film which can suppress generation
  • this invention aims at providing the polarizing film with an adhesive layer which has the said polarizing film and an adhesive layer. Furthermore, an object of this invention is to provide the image display apparatus containing the said polarizing film or a polarizing film with an adhesive layer.
  • the present invention is a polarizing film having a first resin film on one surface of a polarizer having a thickness of 10 ⁇ m or less and a second resin film on the other surface,
  • the moisture permeability of the first resin film and the second resin film are both 100 g / (m 2 ⁇ day) or less
  • At least the first resin film of the first resin film and the second resin film has a breaking stress of 13 N or more and a breaking elongation of 2.5 mm or more in a direction perpendicular to the absorption axis of the polarizer.
  • the present invention relates to a polarizing film.
  • the first resin film and the second resin film are preferably any resin film selected from a cycloolefin resin film and a (meth) acrylic resin film.
  • a stretched film of a cycloolefin-based resin film can be suitably used as the first resin film.
  • an acrylic resin film can be suitably used as the first resin film.
  • the present invention also relates to a polarizing film with a pressure-sensitive adhesive layer comprising the polarizing film and a pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive layer is used in a mode having the second resin film side of the polarizing film.
  • the present invention also relates to an image display device, wherein the polarizing film or the polarizing film with an adhesive layer is disposed in an image display cell.
  • the polarizing film or the polarizing film with an adhesive layer is preferably used in such a manner that the second resin film side is disposed on the image display cell side.
  • a resin film (protective film) having a low moisture permeability has a low breaking stress and a small elongation at break.
  • the breaking stress of the protective film is low in the direction perpendicular to the absorption axis of the polarizer, it is thought that the brittleness of the protective film is a trigger and penetration cracks are likely to occur in the polarizing film. Also, if the protective film has a small elongation at break in the direction perpendicular to the absorption axis of the polarizer, a penetration crack occurs when the polarizing film follows the expansion / contraction of the protective film or the expansion / contraction of the polarizer. It becomes easy to do. A combination of the low breaking stress of such a protective film and a small elongation at break is considered to cause a through crack.
  • the breaking stress is 13 N or more and the breaking elongation is 2.5 mm or more in at least one direction (in-plane).
  • the one direction of the resin film is arranged in a direction perpendicular to the absorption axis of the polarizer.
  • the polarizing film having such a configuration can be used in a direction perpendicular to the absorption axis of the polarizer even under a severe environment of thermal shock (for example, a heat shock test in which temperature conditions of ⁇ 40 ° C. and 85 ° C. are repeated).
  • the polarizing film of the present invention can achieve both suppression of polarizer deterioration by humidification (improvement of humidification reliability) and suppression of occurrence of through cracks.
  • the present invention can provide a polarizing film with an adhesive layer that achieves both improved humidification reliability and suppression of the occurrence of through cracks, and an image display device using the polarizing film with the adhesive layer.
  • the polarizing film of the present invention has a configuration of a first resin film on one surface of a polarizer having a thickness of 10 ⁇ m or less and a second resin film on the other surface.
  • the moisture permeability of the first resin film and the second resin film are both 100 g / (m 2 ⁇ day) or less.
  • the polarizing film F1 of the present invention has a first resin film b1 on one surface of a polarizer a, and a second resin film b2 on the other surface.
  • the first resin film b1 and the second resin film b2 can be bonded to the polarizer a through an adhesive layer (not shown).
  • the polarizing film F1 of this invention can contain layers other than the said layer (for example, an easily adhesive layer, various functional layers, etc.).
  • first resin film b1 and the second resin film b2 satisfy the low moisture permeability, and at least the first resin film b1 satisfies the physical properties related to the breaking stress and breaking elongation.
  • the polarizing film F1 of the present invention is preferably arranged so that the second resin film b2 side is the image display cell side from the viewpoint of suppressing the occurrence of through cracks.
  • a thin polarizer having a thickness of 10 ⁇ m or less is used.
  • the thickness of the polarizer is preferably 8 ⁇ m or less, more preferably 7 ⁇ m or less, and further preferably 6 ⁇ m or less from the viewpoint of reducing the thickness and preventing the occurrence of through cracks.
  • the thickness of the polarizer is preferably 2 ⁇ m or more, and more preferably 3 ⁇ m or more.
  • Such a thin polarizer has less thickness unevenness, excellent visibility, and less dimensional change, and therefore excellent durability against thermal shock.
  • a polarizer using a polyvinyl alcohol resin is used.
  • polarizers include dichroic iodine and dichroic dyes on hydrophilic polymer films such as polyvinyl alcohol films, partially formalized polyvinyl alcohol films, and ethylene / vinyl acetate copolymer partially saponified films.
  • hydrophilic polymer films such as polyvinyl alcohol films, partially formalized polyvinyl alcohol films, and ethylene / vinyl acetate copolymer partially saponified films.
  • examples thereof include polyene-based oriented films such as those obtained by adsorbing substances and uniaxially stretched, polyvinyl alcohol dehydrated products and polyvinyl chloride dehydrochlorinated products.
  • a polarizer composed of a polyvinyl alcohol film and a dichroic substance such as iodine is preferable.
  • a polarizer obtained by dyeing a polyvinyl alcohol film with iodine and uniaxially stretching it can be produced, for example, by dyeing polyvinyl alcohol in an aqueous iodine solution and stretching it 3 to 7 times the original length. If necessary, it may contain boric acid, zinc sulfate, zinc chloride or the like, or may be immersed in an aqueous solution of potassium iodide or the like. Further, if necessary, the polyvinyl alcohol film may be immersed in water and washed before dyeing.
  • the polyvinyl alcohol film In addition to washing the polyvinyl alcohol film surface with stains and antiblocking agents by washing the polyvinyl alcohol film with water, the polyvinyl alcohol film is also swollen to prevent unevenness such as uneven coloring. is there. Stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be dyed with iodine after stretching. The film can be stretched even in an aqueous solution of boric acid or potassium iodide or in a water bath.
  • the polarizer preferably contains boric acid from the viewpoint of stretching stability and humidification reliability.
  • the boric acid content contained in the polarizer is preferably 22% by weight or less, more preferably 20% by weight or less, based on the total amount of the polarizer, from the viewpoint of suppressing the occurrence of through cracks.
  • the boric acid content with respect to the total amount of the polarizer is preferably 10% by weight or more, and more preferably 12% by weight or more.
  • Patent No. 4751486 Japanese Patent No. 4751481, Patent No. 4815544, Patent No. 5048120, International Publication No. 2014/077599 pamphlet, International Publication No. 2014/077636 Pamphlet, Or the thin polarizer obtained from the production method described therein.
  • Patent 4951486 and Patent No. 4 can be used because they can be stretched at a high magnification and the polarization performance can be improved.
  • Preferred are those obtained by a process comprising a step of stretching in an aqueous boric acid solution as described in US Pat. No. 4,751,481, and US Pat. No. 4,815,544, and particularly described in US Pat. Nos. 4,751,481, and 4,815,544.
  • stretching in a certain boric acid aqueous solution is preferable.
  • These thin polarizers can be obtained by a production method including a step of stretching and dyeing a polyvinyl alcohol-based resin (hereinafter also referred to as PVA-based resin) layer and a stretching resin base material in a laminated state.
  • PVA-based resin polyvinyl alcohol-based resin
  • a stretching resin base material in a laminated state.
  • the first resin film satisfies a moisture permeability of 100 g / (m 2 ⁇ day) or less.
  • the moisture permeability is preferably 80 g / (m 2 ⁇ day) or less, and more preferably 70 g / (m 2 ⁇ day) or less.
  • the lower limit value of moisture permeability is not particularly limited, but ideally, it is preferable that water vapor is not permeated at all (that is, 0 g / (m 2 ⁇ day)).
  • the first resin film has a breaking stress of 13 N or more and a breaking elongation of 2.5 mm or more in at least one direction. About breaking stress and breaking elongation, it can measure by the measuring method as described in an Example.
  • the breaking stress of the first resin film is 13N or more in at least one direction (in a state where the first resin film is provided on the polarizing film, a direction perpendicular to the absorption axis of the polarizer), Is preferably 15N or more, more preferably 20N or more.
  • the breaking elongation of the first resin film is 2.5 mm at least in the same direction as the breaking stress (in the state where the first resin film is provided on the polarizing film, the direction perpendicular to the absorption axis of the polarizer). It is above, Furthermore, 10 mm or more is preferable, Furthermore, 20 mm or more is preferable.
  • the thickness of the first resin film is not particularly limited, but is 10 ⁇ m or more from the viewpoint of lowering moisture permeability to increase humidification reliability and further increasing fracture strength to further suppress penetration cracks. It is preferable that it is 12 ⁇ m or more. On the other hand, from the viewpoint of thinning, it is preferably 50 ⁇ m or less, preferably 40 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the polarizer and the first resin film are arranged so that the absorption axis of the polarizer and the direction satisfying the breaking stress and breaking elongation of the first resin film are orthogonal to each other.
  • “orthogonal” means that the angle formed by the absorption axis of the polarizer and the direction satisfying the breaking stress and breaking elongation of the first resin film is in the range of 85 ° to 95 °.
  • the angle is preferably 87 ° to 92 °, more preferably 89 ° to 91 °, and particularly preferably around 90 °.
  • the material for forming the first resin film a material having transparency and a moisture permeability of 100 g / (m 2 ⁇ day) or less can be used.
  • Specific examples of the material include a cycloolefin resin film and a (meth) acrylic resin film.
  • the cycloolefin-based resin forming the cycloolefin-based resin film is a general term for resins that are polymerized using cycloolefin as a polymerization unit.
  • cycloolefin ring-opening (co) polymers examples include cycloolefin ring-opening (co) polymers, cycloolefin addition polymers, copolymers of cycloolefins with ⁇ -olefins such as ethylene and propylene (typically random copolymers), Examples thereof include graft polymers obtained by modifying these with unsaturated carboxylic acids or derivatives thereof, and hydrides thereof.
  • Specific examples of the cycloolefin include norbornene monomers.
  • cycloolefin resins Various products are commercially available as cycloolefin resins. Specific examples include trade names “ZEONEX” and “ZEONOR” manufactured by ZEON CORPORATION, trade names “ARTON” manufactured by JSR Corporation, “TOPASS” manufactured by TICONA, and products manufactured by Mitsui Chemicals, Inc. Product name “APEL” and the like.
  • the cycloolefin-based resin film is preferably used as a stretched film because it is difficult to satisfy the breaking stress and breaking elongation in an unstretched state.
  • the stretched film can satisfy the breaking stress and breaking elongation in the stretching direction.
  • the extent of stretching in the stretched film is not particularly limited as long as it satisfies the breaking stress and breaking elongation.
  • the stretched film can be used as a retardation film having desired optical properties. For example, it can be used as a retardation film having a function of imparting a desired retardation to a stretched film and converting linearly polarized light into circularly polarized light or elliptically polarized light.
  • stretching temperature is preferably in the range of glass transition temperature (Tg) ⁇ 20 ° C. of the resin film.
  • the stretched film can be produced, for example, by stretching a resin film by means such as uniaxial stretching or fixed-end uniaxial stretching, simultaneous biaxial stretching or oblique stretching.
  • uniaxial stretching there is a method of stretching in the longitudinal direction (longitudinal direction) while running the resin film in the longitudinal direction.
  • Another specific example of the uniaxial stretching includes a method of stretching in the transverse direction using a tenter.
  • the draw ratio is preferably adjusted in the range of usually 10% to 500%.
  • any appropriate (meth) acrylic resin can be adopted as the (meth) acrylic resin forming the (meth) acrylic resin film.
  • poly (meth) acrylate such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl methacrylate- (meth) acrylic acid ester copolymer, methyl methacrylate-acrylic acid ester -(Meth) acrylic acid copolymer, (meth) acrylic acid methyl-styrene copolymer (MS resin, etc.), polymer having alicyclic hydrocarbon group (for example, methyl methacrylate-cyclohexyl methacrylate copolymer) And methyl methacrylate- (meth) acrylate norbornyl copolymer).
  • poly (meth) acrylate C 1-6 alkyl such as poly (meth) acrylate methyl is used. More preferred is a methyl methacrylate resin containing methyl methacrylate as a main component (50 to 100% by weight, preferably 70 to 100% by weight).
  • the (meth) acrylic resin examples include (meth) acrylic resins having a ring structure in the molecule described in, for example, Acrypet VH and Acrypet VRL20A manufactured by Mitsubishi Rayon Co., Ltd., and JP-A-2004-70296.
  • the resin examples include high Tg (meth) acrylic resins obtained by intramolecular crosslinking or intramolecular cyclization reaction.
  • a (meth) acrylic resin having a lactone ring structure is particularly preferable in that it has high heat resistance, high transparency, and high mechanical strength.
  • Examples of the (meth) acrylic resin having the lactone ring structure include JP 2000-230016, JP 2001-151814, JP 2002-120326, JP 2002-254544, and JP 2005. Examples thereof include (meth) acrylic resins having a lactone ring structure described in JP-A-146084.
  • the (meth) acrylic resin having a lactone ring structure has a mass average molecular weight (sometimes referred to as a weight average molecular weight), preferably 1,000 to 2,000,000, more preferably 5,000 to 1,000,000, still more preferably 10,000 to 500,000. Preferably it is 50,000 to 500,000.
  • the (meth) acrylic resin has a Tg (glass transition temperature) of preferably 115 ° C. or higher, more preferably 120 ° C. or higher, still more preferably 125 ° C. or higher, and particularly preferably 130 ° C. or higher. It is because it can be excellent in durability.
  • Tg glass transition temperature
  • the upper limit of Tg of the said (meth) acrylic-type resin is not specifically limited, From viewpoints of a moldability etc., Preferably it is 170 degrees C or less.
  • the (meth) acrylic resin having a lactone ring structure has a Tg (glass transition temperature) of preferably 115 ° C. or higher, more preferably 125 ° C. or higher, still more preferably 130 ° C.
  • the upper limit of Tg of the (meth) acrylic resin having the lactone ring structure is not particularly limited, but is preferably 170 ° C. or less from the viewpoint of moldability and the like.
  • Some (meth) acrylic resin films can satisfy the breaking stress and breaking elongation even when they are unstretched.
  • An unstretched (meth) acrylic resin film that can satisfy the breaking stress and breaking elongation can be prepared from the (meth) acrylic resin.
  • the (meth) acrylic resin film can also be used as a stretched film. The stretched film can be appropriately stretched similarly to the cycloolefin resin film so as to satisfy the breaking stress and breaking elongation in the stretching direction.
  • Arbitrary appropriate adhesive layers are used for the polarizer and the first resin film.
  • the adhesive layer is formed of an adhesive.
  • the type of the adhesive is not particularly limited, and various types can be used.
  • the adhesive layer is not particularly limited as long as it is optically transparent.
  • As the adhesive various forms such as water-based, solvent-based, hot-melt-based, and active energy ray-curable types are used, but humidification reliability is used. In view of the above, an active energy ray-curable adhesive is suitable.
  • the active energy ray curable adhesive is an adhesive that cures by an active energy ray such as an electron beam or ultraviolet rays (radical curable type, cationic curable type), for example, in an electron beam curable type or an ultraviolet curable type. Can be used.
  • an active energy ray such as an electron beam or ultraviolet rays (radical curable type, cationic curable type), for example, in an electron beam curable type or an ultraviolet curable type.
  • a photo radical curable adhesive can be used.
  • the adhesive contains a radical polymerizable compound and a photo polymerization initiator.
  • the adhesive coating method is appropriately selected depending on the viscosity of the adhesive and the target thickness.
  • coating methods include reverse coaters, gravure coaters (direct, reverse and offset), bar reverse coaters, roll coaters, die coaters, bar coaters, rod coaters and the like.
  • a method such as a dapping method can be appropriately used.
  • the surface of the first resin film to which the polarizer is not adhered may be subjected to a treatment for the purpose of hard coat layer, antireflection treatment, sticking prevention, diffusion or antiglare.
  • the moisture permeability is preferably 40 g / (m 2 ⁇ day) or less, and more preferably 30 g / (m 2 ⁇ day) or less. Further, the lower limit value of moisture permeability is not particularly limited, but ideally, it is preferable that water vapor is not permeated at all (that is, 0 g / (m 2 ⁇ day)). When the moisture permeability of the first resin film is in the above range, deterioration of the polarizer due to moisture can be suppressed.
  • the thickness of the second resin film is not particularly limited, but is 10 ⁇ m or more from the viewpoint of lowering moisture permeability to increase humidification reliability and further increasing fracture strength to further suppress penetration cracks. It is preferable that it is 12 ⁇ m or more. On the other hand, from the viewpoint of thinning, it is preferably 30 ⁇ m or less, and more preferably 25 ⁇ m or less.
  • the material for forming the second resin film may be any material that can form a film having transparency and a moisture permeability of 100 g / (m 2 ⁇ day) or less.
  • the material similar to the material of the said 1st resin film for example, a cycloolefin type resin film, a (meth) acrylic-type resin film, etc. can be mentioned.
  • the second resin film is preferably an unstretched film, and more preferably an unstretched cycloolefin resin film.
  • the polarizer and the second resin film are usually in close contact via an adhesive.
  • the adhesive include those listed for the first resin film.
  • the surface of the second resin film to which the polarizer is not adhered may be subjected to a treatment for the purpose of hard coat layer, antireflection treatment, sticking prevention, diffusion or antiglare.
  • the polarizing film of the present invention uses a polarizer having a thickness of 10 ⁇ m or less, the entire polarizing film can be thinned.
  • the thickness of the polarizing film can be 100 ⁇ m or less.
  • the polarizing film with an adhesive layer of this invention has the said polarizing film and an adhesive layer.
  • the said adhesive layer is It is preferable to have it on the second resin film side of the polarizing film.
  • a polarizing film with an adhesive layer having an adhesive layer on the second resin film side is disposed in the image display cell via the adhesive layer to form an image display device.
  • the pressure-sensitive adhesive layer can be laminated on the side having no polarizer of the second resin film.
  • the polarizing film F2 with the pressure-sensitive adhesive layer of the present invention has a first resin film b1, a polarizer a, a second resin film b2, and a pressure-sensitive adhesive layer c in this order. Is.
  • the polarizing film with the pressure-sensitive adhesive layer of the present invention can form a pressure-sensitive adhesive layer by directly applying the pressure-sensitive adhesive composition to the polarizing film and removing the solvent and the like by heating and drying. Moreover, the adhesive layer formed in the support body etc. can be transcribe
  • the pressure-sensitive adhesive layer is not particularly limited, and a known layer can be used.
  • an adhesive layer specifically, for example, a (meth) acrylic polymer, a silicone-based polymer, a polyester, a polyurethane, a polyamide, a polyether, a fluorine-based or rubber-based polymer is used as a base polymer.
  • a (meth) acrylic polymer specifically, for example, a (meth) acrylic polymer, a silicone-based polymer, a polyester, a polyurethane, a polyamide, a polyether, a fluorine-based or rubber-based polymer is used as a base polymer.
  • acrylic pressure-sensitive adhesives based on (meth) acrylic polymers are excellent in optical transparency, exhibiting moderate wettability, cohesiveness, and adhesive pressure-sensitive adhesive properties, weather resistance and heat resistance. Etc. are preferable.
  • the (meth) acrylic polymer is not particularly limited, and can be obtained by polymerizing a monomer component containing an alkyl (meth) acrylate having an alkyl group having 4 to 24 carbon atoms at the terminal of the ester group. Can be mentioned.
  • Alkyl (meth) acrylate refers to alkyl acrylate and / or alkyl methacrylate, and (meth) in the present invention has the same meaning.
  • alkyl (meth) acrylate examples include those having a linear or branched alkyl group having 4 to 24 carbon atoms, and having a linear or branched alkyl group having 4 to 9 carbon atoms.
  • Alkyl (meth) acrylates are preferred because they are easy to balance the adhesive properties. These alkyl (meth) acrylates can be used alone or in combination of two or more.
  • the monomer component forming the (meth) acrylic polymer can contain a copolymerizable monomer other than the alkyl (meth) acrylate as a monofunctional monomer component.
  • copolymerizable monomers include cyclic nitrogen-containing monomers, hydroxyl group-containing monomers, carboxyl group-containing monomers, and monomers having a cyclic ether group.
  • the monomer component forming the (meth) acrylic polymer can contain a polyfunctional monomer as necessary in order to adjust the cohesive force of the pressure-sensitive adhesive.
  • the polyfunctional monomer is a monomer having at least two polymerizable functional groups having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group, such as dipentaerythritol hexa (meth) acrylate, 1 , 6-hexanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate.
  • a polyfunctional monomer can be used individually by 1 type or in combination of 2 or more types.
  • the production of such a (meth) acrylic polymer can be appropriately selected from known production methods such as radiation polymerization such as solution polymerization and ultraviolet polymerization, various radical polymerizations such as bulk polymerization and emulsion polymerization. Further, the (meth) acrylic polymer obtained may be a random copolymer, a block copolymer, a graft copolymer or the like.
  • the polymerization initiator, chain transfer agent, emulsifier and the like used for radical polymerization are not particularly limited, and known ones commonly used in this field can be appropriately selected and used.
  • the weight average molecular weight of the (meth) acrylic polymer can be controlled by the amount of polymerization initiator, the amount of chain transfer agent used, and the reaction conditions, and the amount used is appropriately adjusted according to these types.
  • the weight average molecular weight of the (meth) acrylic polymer used in the present invention is preferably 400,000 to 4,000,000. By making the weight average molecular weight larger than 400,000, it is possible to satisfy the durability of the pressure-sensitive adhesive layer, or to suppress the occurrence of adhesive residue due to the reduced cohesive force of the pressure-sensitive adhesive layer. On the other hand, when the weight average molecular weight is larger than 4 million, the bonding property tends to be lowered. Furthermore, in the solution system, the viscosity becomes too high, and coating may be difficult.
  • the weight average molecular weight is a value measured by GPC (gel permeation chromatography) and calculated in terms of polystyrene. In addition, it is difficult to measure the molecular weight of the (meth) acrylic polymer obtained by radiation polymerization.
  • the pressure-sensitive adhesive composition used in the present invention can contain a crosslinking agent.
  • crosslinking agents include isocyanate crosslinking agents, epoxy crosslinking agents, silicone crosslinking agents, oxazoline crosslinking agents, aziridine crosslinking agents, silane crosslinking agents, alkyletherified melamine crosslinking agents, metal chelate crosslinking agents,
  • the crosslinking agent include oxides, and these can be used alone or in combination of two or more.
  • an isocyanate type crosslinking agent and an epoxy-type crosslinking agent are used preferably.
  • the crosslinking agent may be used alone or in combination of two or more, but the total content is based on 100 parts by weight of the (meth) acrylic polymer.
  • the crosslinking agent is preferably contained in the range of 0.01 to 10 parts by weight.
  • a (meth) acrylic oligomer can be contained in order to improve the adhesive force.
  • the pressure-sensitive adhesive composition used in the present invention may contain a silane coupling agent in order to increase the water resistance at the interface when applied to a hydrophilic adherend such as glass of the pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive composition used in the present invention may contain other known additives, such as polyether compounds of polyalkylene glycols such as polypropylene glycol, powders of colorants and pigments, dyes, and the like. , Surfactants, plasticizers, tackifiers, surface lubricants, leveling agents, softeners, antioxidants, anti-aging agents, light stabilizers, UV absorbers, polymerization inhibitors, inorganic or organic fillers, It can be added as appropriate depending on the application in which metal powder, particles, foil, etc. are used. Moreover, you may employ
  • the method for forming the pressure-sensitive adhesive layer can be performed by a known method.
  • Various methods are used as a method for applying the pressure-sensitive adhesive composition. Specifically, for example, by roll coat, kiss roll coat, gravure coat, reverse coat, roll brush, spray coat, dip roll coat, bar coat, knife coat, air knife coat, curtain coat, lip coat, die coater, etc. Examples thereof include an extrusion coating method.
  • the heating and drying temperature is preferably about 30 to 200 ° C, more preferably about 40 to 180 ° C, and further preferably about 80 to 150 ° C. By setting the heating temperature in the above range, an adhesive layer having excellent adhesive properties can be obtained.
  • As the drying time an appropriate time can be adopted as appropriate.
  • the drying time is preferably about 5 seconds to 20 minutes, more preferably about 30 seconds to 10 minutes, and further preferably 1 minute to 8 minutes.
  • a peeled sheet for example, a peeled sheet (separator) can be used.
  • a silicone release liner is preferably used as the release-treated sheet.
  • constituent material of the separator examples include, for example, plastic films such as polyethylene, polypropylene, polyethylene terephthalate, and polyester films, porous materials such as paper, cloth, and nonwoven fabric, nets, foam sheets, metal foils, and laminates thereof.
  • plastic films such as polyethylene, polypropylene, polyethylene terephthalate, and polyester films
  • porous materials such as paper, cloth, and nonwoven fabric, nets, foam sheets, metal foils, and laminates thereof.
  • a plastic film is used suitably from the point which is excellent in surface smoothness.
  • plastic film examples include polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene terephthalate film, polybutylene terephthalate film, polyurethane film, and ethylene.
  • plastic film examples include polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene terephthalate film, polybutylene terephthalate film, polyurethane film, and ethylene.
  • -Vinyl acetate copolymer film and the like.
  • the thickness of the separator is usually about 5 to 200 ⁇ m, preferably about 5 to 100 ⁇ m.
  • An antistatic treatment such as a mold can also be performed.
  • the release property from the pressure-sensitive adhesive layer can be further improved by appropriately performing a release treatment such as silicone treatment, long-chain alkyl treatment, or fluorine treatment on the surface of the separator.
  • seat which carried out the peeling process used in preparation of said polarizing film with an adhesive layer can be used as a separator of the polarizing film with an adhesive layer as it is, and can simplify in a process surface.
  • an anchor layer is formed on the surface of the polarizing film (for example, the second resin film), or various types of easy adhesion such as corona treatment and plasma treatment are performed. After the treatment, the pressure-sensitive adhesive layer can be formed. Moreover, you may perform an easily bonding process on the surface of an adhesive layer.
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, and is preferably 5 to 100 ⁇ m, for example, and preferably 10 to 50 ⁇ m.
  • the image display device of the present invention only needs to include the polarizing film of the present invention or the polarizing film with a pressure-sensitive adhesive layer, and other configurations may be the same as those of conventional image display devices. it can.
  • the polarizing film or the polarizing film with an adhesive layer is applied to an image display cell.
  • the image display device is a liquid crystal display device
  • the polarizing film or the polarizing film with an adhesive layer can be applied to either the viewing side or the backlight side of the image display cell (liquid crystal cell).
  • the image display device is an organic EL display device
  • the polarizing film or the polarizing film with an adhesive layer can be applied to the viewing side of the image display cell.
  • the polarizing film or the polarizing film with the pressure-sensitive adhesive layer is disposed so that the second resin film side is the image display cell side. Since the image display device of the present invention includes the polarizing film or the polarizing film with the pressure-sensitive adhesive layer, it has high reliability.
  • IPA copolymerized PET amorphous isophthalic acid copolymerized polyethylene terephthalate film (thickness: 100 ⁇ m) having a water absorption of 0.75% and Tg of 75 ° C. is subjected to corona treatment.
  • the laminate was immersed in an insolubilization bath (a boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds (insolubilization treatment). Subsequently, it was immersed in a dyeing bath having a liquid temperature of 30 ° C. while adjusting the iodine concentration and the immersion time so that the polarizing plate had a predetermined transmittance.
  • 0.2 parts by weight of iodine was blended with 100 parts by weight of water, and immersed in an aqueous iodine solution obtained by blending 1.0 part by weight of potassium iodide (dyeing treatment). .
  • a boric acid aqueous solution obtained by blending 3 parts by weight of potassium iodide and 3 parts by weight of boric acid with respect to 100 parts by weight of water was immersed for 30 seconds in a crosslinking bath having a liquid temperature of 30 ° C.
  • a boric acid aqueous solution obtained by blending 3 parts by weight of potassium iodide and 3 parts by weight of boric acid with respect to 100 parts by weight of water (Crosslinking treatment).
  • the laminated body was added to a boric acid aqueous solution having a liquid temperature of 70 ° C. (an aqueous solution obtained by adding 4.5 parts by weight of boric acid and 5 parts by weight of potassium iodide to 100 parts by weight of water).
  • An ultraviolet curable adhesive was prepared by mixing 40 parts by weight of N-hydroxyethylacrylamide (HEAA), 60 parts by weight of acryloylmorpholine (ACMO), and 3 parts by weight of a photoinitiator “IRGACURE 819” (manufactured by BASF).
  • HEAA N-hydroxyethylacrylamide
  • ACMO acryloylmorpholine
  • UVGACURE 819 a photoinitiator
  • ⁇ Protective film 5 27 ⁇ m thick cycloolefin resin film (trade name: ZF12, manufactured by Nippon Zeon Co., Ltd.): 40 ° C., 92% R.D. H. Moisture permeability: 23 g / (m 2 ⁇ day), breaking stress: 13 N, breaking elongation: 2.2 mm.
  • Example 1 (Production of polarizing film) While applying the ultraviolet curable adhesive to the surface of the polarizer (thickness: 5 ⁇ m) of the optical film laminate so that the thickness of the adhesive layer after curing is 0.1 ⁇ m, the protective film 1 ( After laminating the first resin film), the adhesive was cured by irradiating ultraviolet rays as active energy rays. Ultraviolet irradiation is performed using a gallium-encapsulated metal halide lamp, an irradiation device: Fusion UV Systems, Inc.
  • the protective film 4 (second resin film)
  • ultraviolet rays were irradiated in the same manner as described above to cure the adhesive, and a polarizing film having protective films on both sides of the thin polarizer was produced.
  • the protective film was bonded so that the direction in which the breaking stress and breaking elongation were measured was a direction (90 °) perpendicular to the absorption axis of the polarizer.
  • Example 2 Comparative Examples 1 to 3
  • a polarizing film was obtained in the same manner as in Example 1 except that the protective film used for the first resin film and the second resin film was changed as shown in Table 1.
  • the moisture permeability was measured according to a moisture permeability test (cup method) of JIS Z0208. A sample cut to a diameter of 6 cm was set in a moisture permeable cup (opening diameter: diameter 6 cm) containing about 15 g of calcium chloride, and the temperature was 40 ° C. and the humidity was 92% R.D. H. The moisture permeability (g / (m 2 ⁇ day)) was determined by measuring the weight increase of calcium chloride before and after being left for 24 hours.
  • ⁇ Measurement of change in polarization degree ( ⁇ P) of polarizing film The polarizing films obtained in Examples and Comparative Examples were subjected to 85 ° C./85% R.D. H. For 500 hours.
  • the polarization degree of the polarizing film before and after the addition was measured using a spectrophotometer with an integrating sphere (V7100 manufactured by JASCO Corporation), and the amount of change ⁇ P in the polarization degree was determined by the following equation.
  • Polarization degree P (%) ⁇ (Tp ⁇ Tc) / (Tp + Tc) ⁇ 1/2 ⁇ 100
  • Each transmittance is represented by a Y value obtained by correcting visibility with a two-degree field of view (C light source) of JIS Z8701, with 100% of the completely polarized light obtained through the Granteller prism polarizer.
  • a polarizing film with a pressure-sensitive adhesive layer was prepared by providing an acrylic pressure-sensitive adhesive layer having a thickness of 20 ⁇ m on the second resin film side of the polarizing films obtained in Examples and Comparative Examples.
  • the polarizing film with an adhesive layer was cut into 50 mm ⁇ 150 mm (absorption axis direction was 50 mm), and bonded to 0.5 mm-thick alkali-free glass to prepare a sample.
  • a heat shock ⁇ 40 to 85 ° C. in an environment of ⁇ 500 times for 30 minutes each and then taken out and visually, at least one penetration crack is generated in the polarizing film. “Yes” was given, and “None” was given when no occurrence occurred.
  • the absolute value of the degree of polarization change ( ⁇ P) after standing in the environment for 500 hours is preferably less than 0.1%, more preferably 0.05% or less, and 0.03% or less. Is more preferable.
  • the heat shock for example, a heat shock test in which temperature conditions of ⁇ 40 ° C. and 85 ° C. are repeated) is severe.
  • the shrinkage force of the polarizing film as a whole becomes extremely small, and furthermore, the use of a low moisture permeation protective film suppresses deterioration of the polarizer due to water, resulting in exposure to harsh environments.
  • the change in the degree of polarization is small and the optical characteristics are excellent.

Abstract

The present invention is a polarizing film which has a first resin film on one surface of a polarizer having a thickness of 10 μm or less, while having a second resin film on the other surface of the polarizer, and which is configured such that: the water vapor permeabilities of the first resin film and the second resin film are 100 g/(m2·day) or less; and at least the first resin film among the first resin film and the second resin film has a breaking stress of 13 N or more and an elongation at break of 2.5 mm or more in a direction orthogonal to the absorption axis of the polarizer. Since a polarizing film according to the present invention comprises resin films having low water vapor permeabilities on both surfaces of a polarizer having a thickness of 10 μm or less, deterioration of the polarizer due to humidification is suppressed (good reliability in terms of humidification) and occurrence of through cracks is able to be suppressed even in an environment under severe thermal shock.

Description

偏光フィルム、粘着剤層付き偏光フィルム、及び画像表示装置Polarizing film, polarizing film with adhesive layer, and image display device
 本発明は、偏光フィルム、及び当該偏光フィルムと粘着剤層を有する粘着剤層付き偏光フィルムに関する。また、本発明は、前記粘着剤層付き偏光フィルムを含む画像表示装置に関する。 The present invention relates to a polarizing film and a polarizing film with an adhesive layer having the polarizing film and an adhesive layer. Moreover, this invention relates to the image display apparatus containing the said polarizing film with an adhesive layer.
 各種画像表示装置においては、画像表示のために偏光フィルムが用いられている。例えば、液晶表示装置(LCD)は、その画像形成方式から液晶パネル表面を形成するガラス基板の両側に偏光フィルムを配置することが必要不可欠である。また、有機EL表示装置では、金属電極での外光の鏡面反射を遮蔽するために、有機発光層の視認側に、偏光フィルムと1/4波長板を積層した円偏光フィルムが配置される。 In various image display devices, a polarizing film is used for image display. For example, in a liquid crystal display device (LCD), it is indispensable to dispose polarizing films on both sides of a glass substrate on which a liquid crystal panel surface is formed because of its image forming method. Further, in the organic EL display device, a circularly polarizing film in which a polarizing film and a quarter wavelength plate are laminated is disposed on the viewing side of the organic light emitting layer in order to shield the specular reflection of external light on the metal electrode.
 前記偏光フィルムとしては、一般的には、ポリビニルアルコール系フィルムとヨウ素等の二色性材料からなる偏光子の片面又は両面に、保護フィルムをポリビニルアルコール系接着剤等により貼り合わせたものが用いられている。 As the polarizing film, generally, a polyvinyl alcohol film and a polarizer made of a dichroic material such as iodine are bonded to one or both surfaces with a protective film bonded with a polyvinyl alcohol adhesive or the like. ing.
 前記偏光フィルムは、熱衝撃(例えば、-40℃と85℃の温度条件を繰り返すヒートショック試験)の過酷な環境下では、偏光子の収縮応力の変化によって、偏光子の吸収軸方向の全体にクラック(貫通クラック)が生じやすいという問題がある。従って、偏光子の収縮を抑制し、熱衝撃の影響を軽減するために、通常、偏光フィルムは、偏光子の両面に、保護フィルムとして、40~80μmのトリアセチルセルロース系(TAC)フィルムが貼り合された積層体が用いられる。しかしながら、前記両面保護された偏光フィルムであっても、偏光子の収縮応力の変化は無視できず、収縮の影響を完全に抑制することは困難であり、偏光子を含む光学フィルム積層体にある程度の収縮を生じるのは避けられなかった。 In a severe environment of thermal shock (for example, a heat shock test in which a temperature condition of −40 ° C. and 85 ° C. is repeated), the polarizing film spreads along the absorption axis direction of the polarizer due to a change in the contraction stress of the polarizer. There is a problem that cracks (through cracks) are likely to occur. Therefore, in order to suppress the shrinkage of the polarizer and reduce the influence of thermal shock, a polarizing film usually has a 40 to 80 μm triacetyl cellulose (TAC) film as a protective film on both sides of the polarizer. A combined laminate is used. However, even in the polarizing film protected on both sides, the change in the shrinkage stress of the polarizer is not negligible, and it is difficult to completely suppress the influence of the shrinkage. It was inevitable that the shrinkage occurred.
 一方、近年、液晶表示装置等の画像表示装置の薄型化が進み、それに伴い、偏光子にも薄型化が求められている。厚み10μm以下の薄型偏光子であれば、収縮応力の変化が小さいため、貫通クラックは発生しにくくなる。例えば、厚み10μm以下の薄型偏光子の片面又は両面に保護フィルムが貼り合せられ、貫通クラックの発生が抑制された偏光フィルムが開示されている(例えば、特許文献1乃至3参照)。特に、薄型偏光子の両面に保護フィルムが貼り合せられた両面保護偏光フィルムであれば、両側に設けられた保護フィルムによって、ヒートショック試験時に偏光子の収縮量を抑えることができるため、貫通クラックを効果的に抑制することができる。 On the other hand, in recent years, image display devices such as liquid crystal display devices have become thinner, and accordingly, polarizers are also required to be thinner. If it is a thin polarizer with a thickness of 10 μm or less, the change in shrinkage stress is small, so that a through-crack is hardly generated. For example, a polarizing film is disclosed in which a protective film is bonded to one or both sides of a thin polarizer having a thickness of 10 μm or less, and generation of through cracks is suppressed (see, for example, Patent Documents 1 to 3). In particular, if the protective film is a double-sided protective polarizing film with both sides of a thin polarizer bonded, the protective film provided on both sides can suppress the amount of shrinkage of the polarizer during the heat shock test. Can be effectively suppressed.
特開2015-187727号公報Japanese Patent Laying-Open No. 2015-187727 特開2015-152911号公報Japanese Patent Laying-Open No. 2015-152911 特開2013-072951号公報JP 2013-072951 A
 しかしながら、一方で、厚み10μm以下の薄型偏光子は、加湿環境下での光学特性が低下しやすいという問題がある。よって、特許文献1乃至3等に記載された前記薄型偏光子を用いた両面保護偏光フィルムであっても、保護フィルムの種類によっては、加湿環境下において偏光子が水分によって劣化し、偏光フィルムの光学特性が著しく低下してしまう。 However, on the other hand, a thin polarizer having a thickness of 10 μm or less has a problem that the optical characteristics in a humidified environment are likely to deteriorate. Therefore, even if it is a double-sided protective polarizing film using the said thin polarizer described in patent documents 1 thru | or 3 etc., depending on the kind of protective film, a polarizer deteriorates with a water | moisture content in humidification environment, and a polarizing film The optical characteristics are significantly deteriorated.
 そこで、このような水分による偏光子の劣化を抑制する目的で、薄型偏光子の両面に貼り合わされる保護フィルムとして、透湿度が極めて低い(具体的には、100g/(m・day)以下の)樹脂フィルムを使用することが検討されている。しかしながら、このような透湿度が極めて低い樹脂フィルムを保護フィルムとして使用した場合には、加湿環境下における偏光子の劣化は抑制することができるものの、厚さ10μm以下の薄型偏光子を用いており、かつ当該薄型偏光子の両面に保護フィルムが貼り合わされているにも関わらず、熱衝撃試験などにより偏光フィルムに貫通クラックが発生するという、新たな課題が見つかった。 Therefore, in order to suppress the deterioration of the polarizer due to such moisture, the moisture permeability is extremely low as a protective film to be bonded to both surfaces of the thin polarizer (specifically, 100 g / (m 2 · day) or less). The use of a resin film is being studied. However, when such a resin film having extremely low moisture permeability is used as a protective film, the polarizer can be prevented from degrading in a humidified environment, but a thin polarizer having a thickness of 10 μm or less is used. And although the protective film was bonded together on both surfaces of the said thin polarizer, the new subject that a penetration crack generate | occur | produces in a polarizing film by the thermal shock test etc. was discovered.
 本発明は、厚さ10μm以下の偏光子の両面に透湿度が低い樹脂フィルムを積層した偏光フィルムであって、加湿による偏光子の劣化を抑え(加湿信頼性)、かつ、熱衝撃の過酷な環境下においても貫通クラックの発生を抑制することができる偏光フィルムを提供することを目的とする。 The present invention is a polarizing film in which a resin film with low moisture permeability is laminated on both sides of a polarizer having a thickness of 10 μm or less, suppressing deterioration of the polarizer due to humidification (humidification reliability), and severe thermal shock It aims at providing the polarizing film which can suppress generation | occurrence | production of a penetration crack also under environment.
 また本発明は、前記偏光フィルム及び粘着剤層を有する粘着剤層付き偏光フィルムを提供することを目的とする。さらに本発明は、前記偏光フィルムまたは粘着剤層付き偏光フィルムを含む画像表示装置を提供することを目的とする。 Moreover, this invention aims at providing the polarizing film with an adhesive layer which has the said polarizing film and an adhesive layer. Furthermore, an object of this invention is to provide the image display apparatus containing the said polarizing film or a polarizing film with an adhesive layer.
 本発明者らは前記課題を解決すべく鋭意検討を重ねた結果、下記偏光フィルム等を見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found the following polarizing film and completed the present invention.
 すなわち、本発明は、厚みが10μm以下の偏光子の一方の面に第1樹脂フィルム、他方の面に第2樹脂フィルムを有する偏光フィルムであって、
 前記第1樹脂フィルム及び第2樹脂フィルムの透湿度が、いずれも100g/(m・day)以下であり、
 前記第1樹脂フィルム及び前記第2樹脂フィルムの少なくとも第1樹脂フィルムは、前記偏光子の吸収軸と直交する方向において、破断応力が13N以上、破断伸びが2.5mm以上であることを特徴とする偏光フィルム、に関する。
That is, the present invention is a polarizing film having a first resin film on one surface of a polarizer having a thickness of 10 μm or less and a second resin film on the other surface,
The moisture permeability of the first resin film and the second resin film are both 100 g / (m 2 · day) or less,
At least the first resin film of the first resin film and the second resin film has a breaking stress of 13 N or more and a breaking elongation of 2.5 mm or more in a direction perpendicular to the absorption axis of the polarizer. The present invention relates to a polarizing film.
 前記偏光フィルムにおいて、前記第1樹脂フィルム及び前記第2樹脂フィルムは、いずれもシクロオレフィン系樹脂フィルム及び(メタ)アクリル系樹脂フィルムから選ばれるいずれかの樹脂フィルムを用いることが好ましい。 In the polarizing film, the first resin film and the second resin film are preferably any resin film selected from a cycloolefin resin film and a (meth) acrylic resin film.
 前記偏光フィルムにおいて、前記第1樹脂フィルムとして、シクロオレフィン系樹脂フィルムの延伸フィルムを好適に用いることができる。また、前記第1樹脂フィルムとして、アクリル系樹脂フィルムを好適に用いることができる。 In the polarizing film, a stretched film of a cycloolefin-based resin film can be suitably used as the first resin film. Moreover, an acrylic resin film can be suitably used as the first resin film.
 また本発明は、前記偏光フィルムおよび粘着剤層を有することを特徴とする粘着剤層付き偏光フィルム、に関する。 The present invention also relates to a polarizing film with a pressure-sensitive adhesive layer comprising the polarizing film and a pressure-sensitive adhesive layer.
 前記粘着剤層付き偏光フィルムにおいて、前記粘着剤層は、前記偏光フィルムの第2樹脂フィルムの側に有する態様で用いることが好ましい。 In the polarizing film with the pressure-sensitive adhesive layer, it is preferable that the pressure-sensitive adhesive layer is used in a mode having the second resin film side of the polarizing film.
 また本発明は、前記偏光フィルムまたは粘着剤層付偏光フィルムが、画像表示セルに配置されていることを特徴とする画像表示装置、に関する。 The present invention also relates to an image display device, wherein the polarizing film or the polarizing film with an adhesive layer is disposed in an image display cell.
 前記画像表示装置において、前記偏光フィルムまたは粘着剤層付偏光フィルムは、前記第2樹脂フィルムの側が前記画像表示セルの側になるように配置されている態様で用いることが好ましい。 In the image display device, the polarizing film or the polarizing film with an adhesive layer is preferably used in such a manner that the second resin film side is disposed on the image display cell side.
 前述の通り、薄型偏光子の両面に透湿度が低い樹脂フィルム(具体的には、100g/(m・day)以下)を保護フィルムとして積層した偏光フィルムでは、加湿による偏光子の劣化を抑制できる(加湿信頼性を向上できる)ものの、貫通クラックが発生することが今回新たに分かった。貫通クラックが発生する要因としては、透湿度が低い樹脂フィルム(保護フィルム)は、破断応力が低いこと、破断伸びが小さいことが考えられる。前記偏光子の吸収軸に直交する方向において、保護フィルムの破断応力が低いと、保護フィルムの脆さがきっかけとなり、偏光フィルムに貫通クラックが発生しやすくなると考えられる。また、前記偏光子の吸収軸に直交する方向において、保護フィルムの破断伸びが小さいと、保護フィルムの膨張・収縮時や偏光子の膨張・収縮に、偏光フィルムが追従する際に貫通クラックが発生し易くなる。このような保護フィルムの破断応力が低いことと、破断伸びが小さいことが組み合わさって、貫通クラックが発生する原因になっていると考えられる。 As described above, a polarizing film in which a resin film having low moisture permeability (specifically, 100 g / (m 2 · day) or less) is laminated on both sides of a thin polarizer as a protective film suppresses deterioration of the polarizer due to humidification. Although it is possible (we can improve humidification reliability), it has been newly found that through cracks occur. As a cause of the occurrence of through cracks, it is considered that a resin film (protective film) having a low moisture permeability has a low breaking stress and a small elongation at break. If the breaking stress of the protective film is low in the direction perpendicular to the absorption axis of the polarizer, it is thought that the brittleness of the protective film is a trigger and penetration cracks are likely to occur in the polarizing film. Also, if the protective film has a small elongation at break in the direction perpendicular to the absorption axis of the polarizer, a penetration crack occurs when the polarizing film follows the expansion / contraction of the protective film or the expansion / contraction of the polarizer. It becomes easy to do. A combination of the low breaking stress of such a protective film and a small elongation at break is considered to cause a through crack.
 本発明においては、前記偏光フィルムの前記第1樹脂フィルム及び前記第2樹脂フィルムの少なくとも第1樹脂フィルムとして、少なくとも一方向(面内)において、破断応力が13N以上、破断伸びが2.5mm以上であるものを用い、かつ、当該樹脂フィルムの前記一方向が、前記偏光子の吸収軸と直交する方向に配置している。本発明では、かかる構成の偏光フィルムにより、熱衝撃(例えば、-40℃と85℃の温度条件を繰り返すヒートショック試験)の過酷な環境下においても、前記偏光子の吸収軸に直交する方向において、偏光フィルム全体としての収縮量を小さくすることができるため、偏光子の両面に透湿度が低い保護フィルムを積層しても、偏光フィルムに貫通クラックが発生することを抑制することができる。すなわち、本発明の偏光フィルムは、加湿による偏光子の劣化抑制(加湿信頼性の向上)と貫通クラックの発生抑制を両立することができる。 In the present invention, as the first resin film of the polarizing film and at least the first resin film of the second resin film, the breaking stress is 13 N or more and the breaking elongation is 2.5 mm or more in at least one direction (in-plane). And the one direction of the resin film is arranged in a direction perpendicular to the absorption axis of the polarizer. In the present invention, the polarizing film having such a configuration can be used in a direction perpendicular to the absorption axis of the polarizer even under a severe environment of thermal shock (for example, a heat shock test in which temperature conditions of −40 ° C. and 85 ° C. are repeated). Since the amount of shrinkage of the polarizing film as a whole can be reduced, it is possible to suppress the occurrence of through cracks in the polarizing film even when protective films having low moisture permeability are laminated on both sides of the polarizer. That is, the polarizing film of the present invention can achieve both suppression of polarizer deterioration by humidification (improvement of humidification reliability) and suppression of occurrence of through cracks.
 また、本発明は、加湿信頼性の向上と貫通クラックの発生抑制を両立した粘着剤層付き偏光フィルム、及び、当該粘着剤層付き偏光フィルムを用いた画像表示装置を提供することができる。 Moreover, the present invention can provide a polarizing film with an adhesive layer that achieves both improved humidification reliability and suppression of the occurrence of through cracks, and an image display device using the polarizing film with the adhesive layer.
本発明の偏光フィルムの一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the polarizing film of this invention. 本発明の粘着剤層付き偏光フィルムの一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the polarizing film with an adhesive layer of this invention.
 1.偏光フィルム
 本発明の偏光フィルムは、厚みが10μm以下の偏光子の一方の面に第1樹脂フィルム、他方の面に第2樹脂フィルムの構成を有する。前記第1樹脂フィルム及び第2樹脂フィルムの透湿度が、いずれも100g/(m・day)以下である。
1. Polarizing Film The polarizing film of the present invention has a configuration of a first resin film on one surface of a polarizer having a thickness of 10 μm or less and a second resin film on the other surface. The moisture permeability of the first resin film and the second resin film are both 100 g / (m 2 · day) or less.
 本発明の偏光フィルムの構成について図1を参照しながら詳細に説明する。なお、図1における各構成の寸法は、その一例を示すものであり、本発明はこれに限定されるものではない。 The configuration of the polarizing film of the present invention will be described in detail with reference to FIG. In addition, the dimension of each structure in FIG. 1 shows the example, and this invention is not limited to this.
 図1に示すように、本発明の偏光フィルムF1は、偏光子aの一方の面に、第1樹脂フィルムb1を有し、他方の面に、第2樹脂フィルムb2を有する。第1樹脂フィルムb1及び第2樹脂フィルムb2は、接着剤層(不図示)を介して前記偏光子aに貼り合せることができる。また、本発明の偏光フィルムF1は、前記層以外の層(例えば、易接着剤層や各種機能層等)を含むことができる。 As shown in FIG. 1, the polarizing film F1 of the present invention has a first resin film b1 on one surface of a polarizer a, and a second resin film b2 on the other surface. The first resin film b1 and the second resin film b2 can be bonded to the polarizer a through an adhesive layer (not shown). Moreover, the polarizing film F1 of this invention can contain layers other than the said layer (for example, an easily adhesive layer, various functional layers, etc.).
 また、前記第1樹脂フィルムb1及び前記第2樹脂フィルムb2は、前記低透湿度を満足し、かつ、少なくとも第1樹脂フィルムb1は、前記破断応力、破断伸びに係る物性を満足する。かかる本発明の偏光フィルムF1は、貫通クラックの発生抑制の観点から、前記第2樹脂フィルムb2の側が画像表示セルの側になるように配置されることが好ましい。 Further, the first resin film b1 and the second resin film b2 satisfy the low moisture permeability, and at least the first resin film b1 satisfies the physical properties related to the breaking stress and breaking elongation. The polarizing film F1 of the present invention is preferably arranged so that the second resin film b2 side is the image display cell side from the viewpoint of suppressing the occurrence of through cracks.
 以下、それぞれの構成要素について説明する。 Hereinafter, each component will be described.
 (1)偏光子
 本発明においては、厚みが10μm以下の薄型偏光子を用いる。偏光子の厚みは、薄型化及び貫通クラックの発生を抑える観点から8μm以下であるのが好ましく、さらには7μm以下、さらには6μm以下であるのが好ましい。一方、偏光子の厚みは2μm以上、さらには3μm以上であるのが好ましい。このような薄型の偏光子は、厚みムラが少なく、視認性が優れており、また寸法変化が少ないため熱衝撃に対する耐久性に優れる。
(1) Polarizer In the present invention, a thin polarizer having a thickness of 10 μm or less is used. The thickness of the polarizer is preferably 8 μm or less, more preferably 7 μm or less, and further preferably 6 μm or less from the viewpoint of reducing the thickness and preventing the occurrence of through cracks. On the other hand, the thickness of the polarizer is preferably 2 μm or more, and more preferably 3 μm or more. Such a thin polarizer has less thickness unevenness, excellent visibility, and less dimensional change, and therefore excellent durability against thermal shock.
 偏光子は、ポリビニルアルコール系樹脂を用いたものが使用される。偏光子としては、例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。これらの中でも、ポリビニルアルコール系フィルムとヨウ素等の二色性物質からなる偏光子が好適である。 A polarizer using a polyvinyl alcohol resin is used. Examples of polarizers include dichroic iodine and dichroic dyes on hydrophilic polymer films such as polyvinyl alcohol films, partially formalized polyvinyl alcohol films, and ethylene / vinyl acetate copolymer partially saponified films. Examples thereof include polyene-based oriented films such as those obtained by adsorbing substances and uniaxially stretched, polyvinyl alcohol dehydrated products and polyvinyl chloride dehydrochlorinated products. Among these, a polarizer composed of a polyvinyl alcohol film and a dichroic substance such as iodine is preferable.
 ポリビニルアルコール系フィルムをヨウ素で染色し一軸延伸した偏光子は、例えば、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の3~7倍に延伸することで作製することができる。必要に応じてホウ酸や硫酸亜鉛、塩化亜鉛等を含んでいても良いし、ヨウ化カリウム等の水溶液に浸漬することもできる。さらに必要に応じて染色前にポリビニルアルコール系フィルムを水に浸漬して水洗してもよい。ポリビニルアルコール系フィルムを水洗することでポリビニルアルコール系フィルム表面の汚れやブロッキング防止剤を洗浄することができるほかに、ポリビニルアルコール系フィルムを膨潤させることで染色のムラ等の不均一を防止する効果もある。延伸はヨウ素で染色した後に行っても良いし、染色しながら延伸しても良いし、また延伸してからヨウ素で染色しても良い。ホウ酸やヨウ化カリウム等の水溶液や水浴中でも延伸することができる。 A polarizer obtained by dyeing a polyvinyl alcohol film with iodine and uniaxially stretching it can be produced, for example, by dyeing polyvinyl alcohol in an aqueous iodine solution and stretching it 3 to 7 times the original length. If necessary, it may contain boric acid, zinc sulfate, zinc chloride or the like, or may be immersed in an aqueous solution of potassium iodide or the like. Further, if necessary, the polyvinyl alcohol film may be immersed in water and washed before dyeing. In addition to washing the polyvinyl alcohol film surface with stains and antiblocking agents by washing the polyvinyl alcohol film with water, the polyvinyl alcohol film is also swollen to prevent unevenness such as uneven coloring. is there. Stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be dyed with iodine after stretching. The film can be stretched even in an aqueous solution of boric acid or potassium iodide or in a water bath.
 偏光子はホウ酸を含有していることが延伸安定性や加湿信頼性の点から好ましい。また、偏光子に含まれるホウ酸含有量は、貫通クラックの発生抑制の観点から、偏光子全量に対して22重量%以下であるのが好ましく、20重量%以下であるのがさらに好ましい。延伸安定性や加湿信頼性の観点から、偏光子全量に対するホウ酸含有量は10重量%以上であることが好ましく、さらには12重量%以上であることが好ましい。 The polarizer preferably contains boric acid from the viewpoint of stretching stability and humidification reliability. The boric acid content contained in the polarizer is preferably 22% by weight or less, more preferably 20% by weight or less, based on the total amount of the polarizer, from the viewpoint of suppressing the occurrence of through cracks. From the viewpoint of stretching stability and humidification reliability, the boric acid content with respect to the total amount of the polarizer is preferably 10% by weight or more, and more preferably 12% by weight or more.
 薄型の偏光子としては、代表的には、
特許第4751486号明細書、
特許第4751481号明細書、
特許第4815544号明細書、
特許第5048120号明細書、
国際公開第2014/077599号パンフレット、
国際公開第2014/077636号パンフレット、
等に記載されている薄型偏光子又はこれらに記載の製造方法から得られる薄型偏光子を挙げることができる。
As a thin polarizer, typically,
Patent No. 4751486,
Japanese Patent No. 4751481,
Patent No. 4815544,
Patent No. 5048120,
International Publication No. 2014/077599 pamphlet,
International Publication No. 2014/077636 Pamphlet,
Or the thin polarizer obtained from the production method described therein.
 前記薄型偏光子としては、積層体の状態で延伸する工程と染色する工程を含む製法の中でも、高倍率に延伸できて偏光性能を向上させることのできる点で、特許4751486号明細書、特許第4751481号明細書、特許4815544号明細書に記載のあるようなホウ酸水溶液中で延伸する工程を含む製法で得られるものが好ましく、特に特許第4751481号明細書、特許4815544号明細書に記載のあるホウ酸水溶液中で延伸する前に補助的に空中延伸する工程を含む製法により得られるものが好ましい。これら薄型偏光子は、ポリビニルアルコール系樹脂(以下、PVA系樹脂ともいう)層と延伸用樹脂基材を積層体の状態で延伸する工程と染色する工程を含む製法による得ることができる。この製法であれば、PVA系樹脂層が薄くても、延伸用樹脂基材に支持されていることにより延伸による破断等の不具合なく延伸することが可能となる。 Among the thin polarizers, among the production methods including the step of stretching in the state of a laminate and the step of dyeing, Patent 4951486 and Patent No. 4 can be used because they can be stretched at a high magnification and the polarization performance can be improved. Preferred are those obtained by a process comprising a step of stretching in an aqueous boric acid solution as described in US Pat. No. 4,751,481, and US Pat. No. 4,815,544, and particularly described in US Pat. Nos. 4,751,481, and 4,815,544. What is obtained by the manufacturing method including the process of extending | stretching in the air auxiliary before extending | stretching in a certain boric acid aqueous solution is preferable. These thin polarizers can be obtained by a production method including a step of stretching and dyeing a polyvinyl alcohol-based resin (hereinafter also referred to as PVA-based resin) layer and a stretching resin base material in a laminated state. With this production method, even if the PVA-based resin layer is thin, it can be stretched without problems such as breakage due to stretching by being supported by the stretching resin substrate.
 (2)第1樹脂フィルム
 前記第1樹脂フィルムは、透湿度100g/(m・day)以下を満足するものであり。前記透湿度は80g/(m・day)以下であることが好ましく、70g/(m・day)以下であることがより好ましい。また、透湿度の下限値は特に限定されるものではないが、理想的には、水蒸気を全く透過させないこと(すなわち、0g/(m・day))が好ましい。第1樹脂フィルムの透湿度が前記範囲であることにより、偏光子の水分による劣化を抑制することができる。
(2) First resin film The first resin film satisfies a moisture permeability of 100 g / (m 2 · day) or less. The moisture permeability is preferably 80 g / (m 2 · day) or less, and more preferably 70 g / (m 2 · day) or less. Further, the lower limit value of moisture permeability is not particularly limited, but ideally, it is preferable that water vapor is not permeated at all (that is, 0 g / (m 2 · day)). When the moisture permeability of the first resin film is in the above range, deterioration of the polarizer due to moisture can be suppressed.
 また、前記第1樹脂フィルムは、少なくとも一方向において、破断応力が13N以上、破断伸びが2.5mm以上を有するものである。破断応力、破断伸びについては、実施例に記載の測定方法により測定することができる。 The first resin film has a breaking stress of 13 N or more and a breaking elongation of 2.5 mm or more in at least one direction. About breaking stress and breaking elongation, it can measure by the measuring method as described in an Example.
 また、前記第1樹脂フィルムの破断応力は、少なくとも一方向において(第1樹脂フィルムが偏光フィルムに設けられた状態では、前記偏光子の吸収軸に直交する方向)において、13N以上であり、さらには15N以上が好ましく、さらには20N以上が好ましい。 Further, the breaking stress of the first resin film is 13N or more in at least one direction (in a state where the first resin film is provided on the polarizing film, a direction perpendicular to the absorption axis of the polarizer), Is preferably 15N or more, more preferably 20N or more.
 また、前記第1樹脂フィルムの破断伸びは、少なくとも前記破断応力と同じ方向(第1樹脂フィルムが偏光フィルムに設けられた状態では、前記偏光子の吸収軸に直交する方向)において、2.5mm以上でああり、さらには10mm以上が好ましく、さらには20mm以上が好ましい。 The breaking elongation of the first resin film is 2.5 mm at least in the same direction as the breaking stress (in the state where the first resin film is provided on the polarizing film, the direction perpendicular to the absorption axis of the polarizer). It is above, Furthermore, 10 mm or more is preferable, Furthermore, 20 mm or more is preferable.
 前記第1樹脂フィルムの厚みは、特に限定されるものではないが、透湿度を低くして加湿信頼性を高め、また破壊強度を高めて貫通クラックをより抑制する観点からは、10μm以上であることが好ましく、12μm以上であることがより好ましい。一方で、薄型化の観点からは、50μm以下であることが好ましく、40μm以下であることが好ましく、30μm以下であることがより好ましい。 The thickness of the first resin film is not particularly limited, but is 10 μm or more from the viewpoint of lowering moisture permeability to increase humidification reliability and further increasing fracture strength to further suppress penetration cracks. It is preferable that it is 12 μm or more. On the other hand, from the viewpoint of thinning, it is preferably 50 μm or less, preferably 40 μm or less, and more preferably 30 μm or less.
 前記偏光子と第1樹脂フィルムとは、前記偏光子の吸収軸と第1樹脂フィルムの前記破断応力、、破断伸びを満足する方向が直交するように配置される。なお、本発明における「直交」は、前記偏光子の吸収軸と第1樹脂フィルムの前記破断応力、破断伸びを満足する方向のなす角度が85°~95°の範囲にあることを言う。前記角度は好ましく87°~92°、さらに好ましくは89°~91°であり、特に好ましくは90°近傍である。 The polarizer and the first resin film are arranged so that the absorption axis of the polarizer and the direction satisfying the breaking stress and breaking elongation of the first resin film are orthogonal to each other. In the present invention, “orthogonal” means that the angle formed by the absorption axis of the polarizer and the direction satisfying the breaking stress and breaking elongation of the first resin film is in the range of 85 ° to 95 °. The angle is preferably 87 ° to 92 °, more preferably 89 ° to 91 °, and particularly preferably around 90 °.
 前記第1樹脂フィルムを形成する材料としては、透明性を有し、かつ、透湿度が、100g/(m・day)以下のフィルムを形成できる材料が用いられる。前記材料としては、具体的には、例えば、シクロオレフィン系樹脂フィルム、(メタ)アクリル系樹脂フィルム等を挙げることができる。 As the material for forming the first resin film, a material having transparency and a moisture permeability of 100 g / (m 2 · day) or less can be used. Specific examples of the material include a cycloolefin resin film and a (meth) acrylic resin film.
 前記シクロオレフィン系樹脂フィルムを形成するシクロオレフィン系樹脂は、シクロオレフィンを重合単位として重合される樹脂の総称であり、例えば、特開平1-240517号公報、特開平3-14882号公報、特開平3-122137号公報等に記載されている樹脂が挙げられる。具体例としては、シクロオレフィンの開環(共)重合体、シクロオレフィンの付加重合体、シクロオレフィンとエチレン、プロピレン等のα-オレフィンとの共重合体(代表的にはランダム共重合体)、これらを不飽和カルボン酸やその誘導体で変性したグラフト重合体、及びそれらの水素化物等が挙げられる。シクロオレフィンの具体例としては、ノルボルネン系モノマーが挙げられる。 The cycloolefin-based resin forming the cycloolefin-based resin film is a general term for resins that are polymerized using cycloolefin as a polymerization unit. For example, JP-A-1-240517, JP-A-3-14882, Examples thereof include resins described in JP-A-3-122137. Specific examples include cycloolefin ring-opening (co) polymers, cycloolefin addition polymers, copolymers of cycloolefins with α-olefins such as ethylene and propylene (typically random copolymers), Examples thereof include graft polymers obtained by modifying these with unsaturated carboxylic acids or derivatives thereof, and hydrides thereof. Specific examples of the cycloolefin include norbornene monomers.
 シクロオレフィン系樹脂としては、種々の製品が市販されている。具体例としては、日本ゼオン(株)製の商品名「ゼオネックス」、「ゼオノア」、JSR(株)製の商品名「アートン」、TICONA社製の商品名「トーパス」、三井化学(株)製の商品名「APEL」等が挙げられる。 Various products are commercially available as cycloolefin resins. Specific examples include trade names “ZEONEX” and “ZEONOR” manufactured by ZEON CORPORATION, trade names “ARTON” manufactured by JSR Corporation, “TOPASS” manufactured by TICONA, and products manufactured by Mitsui Chemicals, Inc. Product name “APEL” and the like.
 シクロオレフィン系樹脂フィルムは、未延伸の状態では、前記破断応力、破断伸びを満し難いため、延伸フィルムとして用いることが好ましい。延伸フィルムは、当該延伸方向において、前記破断応力、破断伸びを満足することができる。上記延伸フィルムにおける延伸の程度は、上記破断応力、破断伸びを満足するものであれば、特に制限はない。当該延伸フィルムは所望の光学特性を有する位相差フィルムとして使用することができる。例えば、延伸フィルムに、所望の位相差を付与して直線偏光を円偏光または楕円偏光に変換する機能を有する位相差フィルムとして使用することができる。 The cycloolefin-based resin film is preferably used as a stretched film because it is difficult to satisfy the breaking stress and breaking elongation in an unstretched state. The stretched film can satisfy the breaking stress and breaking elongation in the stretching direction. The extent of stretching in the stretched film is not particularly limited as long as it satisfies the breaking stress and breaking elongation. The stretched film can be used as a retardation film having desired optical properties. For example, it can be used as a retardation film having a function of imparting a desired retardation to a stretched film and converting linearly polarized light into circularly polarized light or elliptically polarized light.
 上記延伸は、任意の適切な延伸方法、延伸条件(例えば、延伸温度、延伸倍率、延伸方向)が採用され得る。具体的には、自由端延伸、固定端延伸・自由端収縮、固定端収縮などの様々な延伸方法を、単独で用いることも、同時もしくは逐次で用いることもできる。延伸方向に関しても、水平方向、垂直方向、厚さ方向、対角方向等、様々な方向や次元に行なうことができる。延伸の温度は、好ましくは、樹脂フィルムのガラス転移温度(Tg)±20℃の範囲である。 Any appropriate stretching method and stretching conditions (for example, stretching temperature, stretching ratio, stretching direction) may be employed for the stretching. Specifically, various stretching methods such as free end stretching, fixed end stretching / free end contraction, and fixed end contraction can be used singly or simultaneously or sequentially. The stretching direction can also be performed in various directions and dimensions such as a horizontal direction, a vertical direction, a thickness direction, and a diagonal direction. The stretching temperature is preferably in the range of glass transition temperature (Tg) ± 20 ° C. of the resin film.
 延伸フィルムは、例えば、樹脂フィルムを一軸延伸もしくは固定端一軸延伸、または同時二軸延伸もしくは斜め延伸などの手段で延伸することにより作製することができる。一軸延伸の具体例としては、樹脂フィルムを長尺方向に走行させながら、長手方向(縦方向)に延伸する方法が挙げられる。一軸延伸の別の具体例としては、テンターを用いて横方向に延伸する方法が挙げられる。延伸倍率は、好ましくは、通常、10%~500%の範囲で調整される。 The stretched film can be produced, for example, by stretching a resin film by means such as uniaxial stretching or fixed-end uniaxial stretching, simultaneous biaxial stretching or oblique stretching. As a specific example of uniaxial stretching, there is a method of stretching in the longitudinal direction (longitudinal direction) while running the resin film in the longitudinal direction. Another specific example of the uniaxial stretching includes a method of stretching in the transverse direction using a tenter. The draw ratio is preferably adjusted in the range of usually 10% to 500%.
 前記(メタ)アクリル系樹脂フィルムを形成する(メタ)アクリル系樹脂としては、意の適切な(メタ)アクリル系樹脂を採用し得る。例えば、ポリメタクリル酸メチルなどのポリ(メタ)アクリル酸エステル、メタクリル酸メチル-(メタ)アクリル酸共重合体、メタクリル酸メチル-(メタ)アクリル酸エステル共重合体、メタクリル酸メチル-アクリル酸エステル-(メタ)アクリル酸共重合体、(メタ)アクリル酸メチル-スチレン共重合体(MS樹脂など)、脂環族炭化水素基を有する重合体(例えば、メタクリル酸メチル-メタクリル酸シクロヘキシル共重合体、メタクリル酸メチル-(メタ)アクリル酸ノルボルニル共重合体など)が挙げられる。好ましくは、ポリ(メタ)アクリル酸メチルなどのポリ(メタ)アクリル酸C1-6アルキルが挙げられる。より好ましくは、メタクリル酸メチルを主成分(50~100重量%、好ましくは70~100重量%)とするメタクリル酸メチル系樹脂が挙げられる。 Any appropriate (meth) acrylic resin can be adopted as the (meth) acrylic resin forming the (meth) acrylic resin film. For example, poly (meth) acrylate such as polymethyl methacrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl methacrylate- (meth) acrylic acid ester copolymer, methyl methacrylate-acrylic acid ester -(Meth) acrylic acid copolymer, (meth) acrylic acid methyl-styrene copolymer (MS resin, etc.), polymer having alicyclic hydrocarbon group (for example, methyl methacrylate-cyclohexyl methacrylate copolymer) And methyl methacrylate- (meth) acrylate norbornyl copolymer). Preferably, poly (meth) acrylate C 1-6 alkyl such as poly (meth) acrylate methyl is used. More preferred is a methyl methacrylate resin containing methyl methacrylate as a main component (50 to 100% by weight, preferably 70 to 100% by weight).
 上記(メタ)アクリル系樹脂の具体例としては、例えば、三菱レイヨン社製のアクリペットVHやアクリペットVRL20A、特開2004-70296号公報に記載の分子内に環構造を有する(メタ)アクリル系樹脂、分子内架橋や分子内環化反応により得られる高Tg(メタ)アクリル系樹脂が挙げられる。 Specific examples of the (meth) acrylic resin include (meth) acrylic resins having a ring structure in the molecule described in, for example, Acrypet VH and Acrypet VRL20A manufactured by Mitsubishi Rayon Co., Ltd., and JP-A-2004-70296. Examples of the resin include high Tg (meth) acrylic resins obtained by intramolecular crosslinking or intramolecular cyclization reaction.
 上記(メタ)アクリル系樹脂として、高い耐熱性、高い透明性、高い機械的強度を有する点で、ラクトン環構造を有する(メタ)アクリル系樹脂が特に好ましい。 As the (meth) acrylic resin, a (meth) acrylic resin having a lactone ring structure is particularly preferable in that it has high heat resistance, high transparency, and high mechanical strength.
 上記ラクトン環構造を有する(メタ)アクリル系樹脂としては、特開2000-230016号公報、特開2001-151814号公報、特開2002-120326号公報、特開2002-254544号公報、特開2005-146084号公報などに記載の、ラクトン環構造を有する(メタ)アクリル系樹脂が挙げられる。 Examples of the (meth) acrylic resin having the lactone ring structure include JP 2000-230016, JP 2001-151814, JP 2002-120326, JP 2002-254544, and JP 2005. Examples thereof include (meth) acrylic resins having a lactone ring structure described in JP-A-146084.
 上記ラクトン環構造を有する(メタ)アクリル系樹脂は、質量平均分子量(重量平均分子量と称することもある)が、好ましくは1000~2000000、より好ましくは5000~1000000、さらに好ましくは10000~500000、特に好ましくは50000~500000である。 The (meth) acrylic resin having a lactone ring structure has a mass average molecular weight (sometimes referred to as a weight average molecular weight), preferably 1,000 to 2,000,000, more preferably 5,000 to 1,000,000, still more preferably 10,000 to 500,000. Preferably it is 50,000 to 500,000.
 (メタ)アクリル系樹脂は、Tg(ガラス転移温度)が、好ましくは115℃以上、より好ましくは120℃以上、さらに好ましくは125℃以上、特に好ましくは130℃以上である。耐久性に優れ得るからである。上記(メタ)アクリル系樹脂のTgの上限値は特に限定されないが、成形性等の観点から、好ましくは170℃以下である。
 上記ラクトン環構造を有する(メタ)アクリル系樹脂は、Tg(ガラス転移温度)が、好ましくは115℃以上、より好ましくは125℃以上、さらに好ましくは130℃以上、特に好ましくは135℃、最も好ましくは140℃以上である。耐久性に優れ得るからである。上記ラクトン環構造を有する(メタ)アクリル系樹脂のTgの上限値は特に限定されないが、成形性等の観点から、好ましくは170℃以下である。
The (meth) acrylic resin has a Tg (glass transition temperature) of preferably 115 ° C. or higher, more preferably 120 ° C. or higher, still more preferably 125 ° C. or higher, and particularly preferably 130 ° C. or higher. It is because it can be excellent in durability. Although the upper limit of Tg of the said (meth) acrylic-type resin is not specifically limited, From viewpoints of a moldability etc., Preferably it is 170 degrees C or less.
The (meth) acrylic resin having a lactone ring structure has a Tg (glass transition temperature) of preferably 115 ° C. or higher, more preferably 125 ° C. or higher, still more preferably 130 ° C. or higher, particularly preferably 135 ° C., most preferably. Is 140 ° C. or higher. It is because it can be excellent in durability. The upper limit of Tg of the (meth) acrylic resin having the lactone ring structure is not particularly limited, but is preferably 170 ° C. or less from the viewpoint of moldability and the like.
 (メタ)アクリル系樹脂フィルムは、未延伸のままであっても、前記破断応力、破断伸びを満足することができるものがある。前記破断応力、破断伸びを満足することができる、未延伸の(メタ)アクリル系樹脂フィルムは、前記(メタ)アクリル系樹脂から調製することができる。一方、(メタ)アクリル系樹脂フィルムは延伸フィルムとして用いることもできる。延伸フィルムは、当該延伸方向において、前記破断応力、破断伸びを満足するように、上記シクロオレフィン系樹脂フィルムと同様に適宜に延伸処理することができる。 Some (meth) acrylic resin films can satisfy the breaking stress and breaking elongation even when they are unstretched. An unstretched (meth) acrylic resin film that can satisfy the breaking stress and breaking elongation can be prepared from the (meth) acrylic resin. On the other hand, the (meth) acrylic resin film can also be used as a stretched film. The stretched film can be appropriately stretched similarly to the cycloolefin resin film so as to satisfy the breaking stress and breaking elongation in the stretching direction.
 前記偏光子と第1樹脂フィルムとは、任意の適切な接着剤層(図示せず)が用いられる。接着剤層は接着剤により形成される。接着剤の種類は特に制限されず、種々のものを用いることができる。前記接着剤層は光学的に透明であれば特に制限されず、接着剤としては、水系、溶剤系、ホットメルト系、活性エネルギー線硬化型等の各種形態のものが用いられるが、加湿信頼性の観点から、活性エネルギー線硬化型接着剤が好適である。 Arbitrary appropriate adhesive layers (not shown) are used for the polarizer and the first resin film. The adhesive layer is formed of an adhesive. The type of the adhesive is not particularly limited, and various types can be used. The adhesive layer is not particularly limited as long as it is optically transparent. As the adhesive, various forms such as water-based, solvent-based, hot-melt-based, and active energy ray-curable types are used, but humidification reliability is used. In view of the above, an active energy ray-curable adhesive is suitable.
 活性エネルギー線硬化型接着剤は、電子線、紫外線(ラジカル硬化型、カチオン硬化型)等の活性エネルギー線により硬化が進行する接着剤であり、例えば、電子線硬化型、紫外線硬化型の態様で用いることができる。活性エネルギー線硬化型接着剤は、例えば、光ラジカル硬化型接着剤を用いることができる。光ラジカル硬化型の活性エネルギー線硬化型接着剤を、紫外線硬化型として用いる場合には、当該接着剤は、ラジカル重合性化合物及び光重合開始剤を含有する。接着剤の塗工方式は、接着剤の粘度や目的とする厚みによって適宜に選択される。塗工方式の例として、例えば、リバースコーター、グラビアコーター(ダイレクト,リバースやオフセット)、バーリバースコーター、ロールコーター、ダイコーター、バーコーター、ロッドコーター等が挙げられる。その他、塗工には、デイッピング方式等の方式を適宜に使用することができる。 The active energy ray curable adhesive is an adhesive that cures by an active energy ray such as an electron beam or ultraviolet rays (radical curable type, cationic curable type), for example, in an electron beam curable type or an ultraviolet curable type. Can be used. As the active energy ray curable adhesive, for example, a photo radical curable adhesive can be used. When the photo radical curable active energy ray curable adhesive is used as an ultraviolet curable adhesive, the adhesive contains a radical polymerizable compound and a photo polymerization initiator. The adhesive coating method is appropriately selected depending on the viscosity of the adhesive and the target thickness. Examples of coating methods include reverse coaters, gravure coaters (direct, reverse and offset), bar reverse coaters, roll coaters, die coaters, bar coaters, rod coaters and the like. In addition, for coating, a method such as a dapping method can be appropriately used.
 前記第1樹脂フィルムの偏光子を接着させない面には、ハードコート層や反射防止処理、スティッキング防止や、拡散ないしアンチグレアを目的とした処理を施したものであっても良い。 The surface of the first resin film to which the polarizer is not adhered may be subjected to a treatment for the purpose of hard coat layer, antireflection treatment, sticking prevention, diffusion or antiglare.
 (3)第2樹脂フィルム
 前記偏光子の第1樹脂フィルムを形成した面の反対側の面には、第2樹脂フィルムを有する。前記透湿度は40g/(m・day)以下であることが好ましく、30g/(m・day)以下であることがより好ましい。また、透湿度の下限値は特に限定されるものではないが、理想的には、水蒸気を全く透過させないこと(すなわち、0g/(m・day))が好ましい。第1樹脂フィルムの透湿度が前記範囲であることにより、偏光子の水分による劣化を抑制することができる。
(3) 2nd resin film It has a 2nd resin film in the surface on the opposite side to the surface in which the 1st resin film of the said polarizer was formed. The moisture permeability is preferably 40 g / (m 2 · day) or less, and more preferably 30 g / (m 2 · day) or less. Further, the lower limit value of moisture permeability is not particularly limited, but ideally, it is preferable that water vapor is not permeated at all (that is, 0 g / (m 2 · day)). When the moisture permeability of the first resin film is in the above range, deterioration of the polarizer due to moisture can be suppressed.
 前記第2樹脂フィルムの厚みは、特に限定されるものではないが、透湿度を低くして加湿信頼性を高め、また破壊強度を高めて貫通クラックをより抑制する観点からは、10μm以上であることが好ましく、12μm以上であることがより好ましい。一方で、薄型化の観点からは、30μm以下であることが好ましく、25μm以下であることがより好ましい。 The thickness of the second resin film is not particularly limited, but is 10 μm or more from the viewpoint of lowering moisture permeability to increase humidification reliability and further increasing fracture strength to further suppress penetration cracks. It is preferable that it is 12 μm or more. On the other hand, from the viewpoint of thinning, it is preferably 30 μm or less, and more preferably 25 μm or less.
 前記第2樹脂フィルムを形成する材料としては、透明性を有し、かつ、透湿度が、100g/(m・day)以下であるフィルムを形成できる材料であればよい。具体的には、前記第1樹脂フィルムの材料と同様の、例えば、シクロオレフィン系樹脂フィルム、(メタ)アクリル系樹脂フィルム等を挙げることができる。 The material for forming the second resin film may be any material that can form a film having transparency and a moisture permeability of 100 g / (m 2 · day) or less. Specifically, the material similar to the material of the said 1st resin film, for example, a cycloolefin type resin film, a (meth) acrylic-type resin film, etc. can be mentioned.
 前記シクロオレフィン系樹脂フィルム、(メタ)アクリル系樹脂フィルムとしては、第1樹脂フィルムで挙げられたものを挙げることができる。また、前記第2樹脂フィルムは、上記透湿度以外の制限はないが、第1樹脂フィルムと同様の破断応力、破断伸びを有するものを用いてもよい。前記第2樹脂フィルムとして延伸フィルムを用いると、過酷環境下でフィルムが伸縮した際に位相差発現のおそれがあり、その位相差発現によりコーナームラなどのムラが発生してしまうおそれがあるため、前記第2樹脂フィルムとしては未延伸フィルムを用いることが好ましく、さらには未延伸のシクロオレフィン系樹脂フィルムを用いることが好ましい。 Examples of the cycloolefin resin film and the (meth) acrylic resin film include those mentioned for the first resin film. Moreover, although there is no restriction | limiting other than the said moisture permeability, you may use the said 2nd resin film which has the same breaking stress and breaking elongation as a 1st resin film. When using a stretched film as the second resin film, there is a risk of developing a phase difference when the film expands and contracts under a harsh environment, and unevenness such as corner unevenness may occur due to the phase difference expression. The second resin film is preferably an unstretched film, and more preferably an unstretched cycloolefin resin film.
 前記偏光子と第2樹脂フィルムとは、通常、接着剤を介して密着している。接着剤としては第1樹脂フィルムで挙げたものを挙げることができる。 The polarizer and the second resin film are usually in close contact via an adhesive. Examples of the adhesive include those listed for the first resin film.
 前記第2樹脂フィルムの偏光子を接着させない面には、ハードコート層や反射防止処理、スティッキング防止や、拡散ないしアンチグレアを目的とした処理を施したものであっても良い。 The surface of the second resin film to which the polarizer is not adhered may be subjected to a treatment for the purpose of hard coat layer, antireflection treatment, sticking prevention, diffusion or antiglare.
 本発明の偏光フィルムは、厚みが10μm以下の偏光子を用いるため、偏光フィルム全体としても薄膜化することができる。偏光フィルムの厚みとしては、100μm以下とすることができる。 Since the polarizing film of the present invention uses a polarizer having a thickness of 10 μm or less, the entire polarizing film can be thinned. The thickness of the polarizing film can be 100 μm or less.
 2.粘着剤層付き偏光フィルム
 本発明の粘着剤層付き偏光フィルムは、前記偏光フィルムおよび粘着剤層を有する。粘着剤層の配置箇所には特に制限はないが、画像表示装置において、前記偏光フィルムにおける第1樹脂フィルム側を、偏光子よりも外側に配置することが好ましいことから、前記粘着剤層は、前記偏光フィルムの第2樹脂フィルムの側に有することが好ましい。第2樹脂フィルムの側に粘着剤層を有する粘着剤層付偏光フィルムは、前記粘着剤層を介して、画像表示セルに配置されて、画像表示装置を形成する。
2. The polarizing film with an adhesive layer The polarizing film with an adhesive layer of this invention has the said polarizing film and an adhesive layer. Although there is no restriction | limiting in particular in the arrangement | positioning location of an adhesive layer, In the image display apparatus, since it is preferable to arrange | position the 1st resin film side in the said polarizing film outside a polarizer, the said adhesive layer is It is preferable to have it on the second resin film side of the polarizing film. A polarizing film with an adhesive layer having an adhesive layer on the second resin film side is disposed in the image display cell via the adhesive layer to form an image display device.
 前記粘着剤層は、第2樹脂フィルムの偏光子を有さない側に積層することができる。具体的には、例えば、図2に示すように、本発明の粘着剤層付き偏光フィルムF2は、第1樹脂フィルムb1、偏光子a、第2樹脂フィルムb2、粘着剤層cをこの順に有するものである。 The pressure-sensitive adhesive layer can be laminated on the side having no polarizer of the second resin film. Specifically, for example, as shown in FIG. 2, the polarizing film F2 with the pressure-sensitive adhesive layer of the present invention has a first resin film b1, a polarizer a, a second resin film b2, and a pressure-sensitive adhesive layer c in this order. Is.
 本発明の粘着剤層付き偏光フィルムは、前記偏光フィルムに、直接、粘着剤組成物を塗布し、加熱乾燥等により溶媒等を除去することにより、粘着剤層を形成することができる。また、支持体等に形成した粘着剤層を、前記偏光フィルムに転写して、粘着剤層付き偏光フィルムを形成することもできる。 The polarizing film with the pressure-sensitive adhesive layer of the present invention can form a pressure-sensitive adhesive layer by directly applying the pressure-sensitive adhesive composition to the polarizing film and removing the solvent and the like by heating and drying. Moreover, the adhesive layer formed in the support body etc. can be transcribe | transferred to the said polarizing film, and a polarizing film with an adhesive layer can also be formed.
 前記粘着剤層としては、特に限定されるものではなく、公知のものを用いることができる。このような粘着剤層としては、具体的には、例えば、(メタ)アクリル系ポリマー、シリコーン系ポマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系等のポリマーをベースポリマーとするものを適宜に選択して用いることができる。これらの中でも、(メタ)アクリル系ポリマーをベースポリマーとするアクリル系粘着剤が、光学的透明性に優れ、適度な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性等に優れているため、好ましい。 The pressure-sensitive adhesive layer is not particularly limited, and a known layer can be used. As such an adhesive layer, specifically, for example, a (meth) acrylic polymer, a silicone-based polymer, a polyester, a polyurethane, a polyamide, a polyether, a fluorine-based or rubber-based polymer is used as a base polymer. Can be appropriately selected and used. Among these, acrylic pressure-sensitive adhesives based on (meth) acrylic polymers are excellent in optical transparency, exhibiting moderate wettability, cohesiveness, and adhesive pressure-sensitive adhesive properties, weather resistance and heat resistance. Etc. are preferable.
 前記(メタ)アクリル系ポリマーとしては、特に限定されるものではないが、炭素数4~24のアルキル基をエステル基の末端に有するアルキル(メタ)アクリレートを含むモノマー成分を重合することにより得られたものを挙げることができる。なお、アルキル(メタ)アクリレートは、アルキルアクリレート及び/又はアルキルメタクリレートをいい、本発明の(メタ)とは同様の意味である。 The (meth) acrylic polymer is not particularly limited, and can be obtained by polymerizing a monomer component containing an alkyl (meth) acrylate having an alkyl group having 4 to 24 carbon atoms at the terminal of the ester group. Can be mentioned. Alkyl (meth) acrylate refers to alkyl acrylate and / or alkyl methacrylate, and (meth) in the present invention has the same meaning.
 アルキル(メタ)アクリレートとしては、直鎖状又は分岐鎖状の炭素数4~24のアルキル基を有すものを例示でき、直鎖状又は分岐鎖状の炭素数4~9のアルキル基を有するアルキル(メタ)アクリレートが、粘着特性のバランスがとりやすい点で好ましい。これらのアルキル(メタ)アクリレートは1種を単独で又は2種以上を組み合わせて用いることができる。 Examples of the alkyl (meth) acrylate include those having a linear or branched alkyl group having 4 to 24 carbon atoms, and having a linear or branched alkyl group having 4 to 9 carbon atoms. Alkyl (meth) acrylates are preferred because they are easy to balance the adhesive properties. These alkyl (meth) acrylates can be used alone or in combination of two or more.
 (メタ)アクリル系ポリマーを形成するモノマー成分には、単官能性モノマー成分として、前記アルキル(メタ)アクリレート以外の共重合モノマーを含有することができる。このような共重合モノマーとしては、例えば、環状窒素含有モノマー、ヒドロキシル基含有モノマー、カルボキシル基含有モノマー、環状エーテル基を有するモノマー等が挙げられる。 The monomer component forming the (meth) acrylic polymer can contain a copolymerizable monomer other than the alkyl (meth) acrylate as a monofunctional monomer component. Examples of such copolymerizable monomers include cyclic nitrogen-containing monomers, hydroxyl group-containing monomers, carboxyl group-containing monomers, and monomers having a cyclic ether group.
 また、(メタ)アクリル系ポリマーを形成するモノマー成分には、前記単官能性モノマーの他に、粘着剤の凝集力を調整するために、必要に応じて多官能性モノマーを含有することができる。前記多官能性モノマーは、(メタ)アクリロイル基又はビニル基等の不飽和二重結合を有する重合性の官能基を少なくとも2つ有するモノマーであり、例えば、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレートが挙げられる。多官能性モノマーは、1種を単独で又は2種以上を組み合わせて使用することができる。 In addition to the monofunctional monomer, the monomer component forming the (meth) acrylic polymer can contain a polyfunctional monomer as necessary in order to adjust the cohesive force of the pressure-sensitive adhesive. . The polyfunctional monomer is a monomer having at least two polymerizable functional groups having an unsaturated double bond such as a (meth) acryloyl group or a vinyl group, such as dipentaerythritol hexa (meth) acrylate, 1 , 6-hexanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate. A polyfunctional monomer can be used individually by 1 type or in combination of 2 or more types.
 このような(メタ)アクリル系ポリマーの製造は、溶液重合、紫外線重合等の放射線重合、塊状重合、乳化重合等の各種ラジカル重合等の公知の製造方法を適宜選択できる。また、得られる(メタ)アクリル系ポリマーは、ランダム共重合体、ブロック共重合体、グラフト共重合体等いずれでもよい。 The production of such a (meth) acrylic polymer can be appropriately selected from known production methods such as radiation polymerization such as solution polymerization and ultraviolet polymerization, various radical polymerizations such as bulk polymerization and emulsion polymerization. Further, the (meth) acrylic polymer obtained may be a random copolymer, a block copolymer, a graft copolymer or the like.
 ラジカル重合に用いられる重合開始剤、連鎖移動剤、乳化剤等は特に限定されず、本分野において通常用いられる公知のものを適宜選択して使用することができる。また、(メタ)アクリル系ポリマーの重量平均分子量は、重合開始剤、連鎖移動剤の使用量、反応条件により制御可能であり、これらの種類に応じて適宜のその使用量が調整される。 The polymerization initiator, chain transfer agent, emulsifier and the like used for radical polymerization are not particularly limited, and known ones commonly used in this field can be appropriately selected and used. In addition, the weight average molecular weight of the (meth) acrylic polymer can be controlled by the amount of polymerization initiator, the amount of chain transfer agent used, and the reaction conditions, and the amount used is appropriately adjusted according to these types.
 本発明で用いる(メタ)アクリル系ポリマーの重量平均分子量は40万~400万であるのが好ましい。重量平均分子量を40万より大きくすることで、粘着剤層の耐久性を満足させたり、粘着剤層の凝集力が小さくなって糊残りが生じるのを抑えることができる。一方、重量平均分子量が400万よりも大きくなると貼り合せ性が低下する傾向がある。さらに、粘着剤が溶液系において、粘度が高くなりすぎ、塗工が困難になる場合がある。なお、重量平均分子量は、GPC(ゲルパーミネーション・クロマトグラフィー)により測定し、ポリスチレン換算により算出された値をいう。なお、放射線重合で得られた(メタ)アクリル系ポリマーについては、分子量測定は困難である。 The weight average molecular weight of the (meth) acrylic polymer used in the present invention is preferably 400,000 to 4,000,000. By making the weight average molecular weight larger than 400,000, it is possible to satisfy the durability of the pressure-sensitive adhesive layer, or to suppress the occurrence of adhesive residue due to the reduced cohesive force of the pressure-sensitive adhesive layer. On the other hand, when the weight average molecular weight is larger than 4 million, the bonding property tends to be lowered. Furthermore, in the solution system, the viscosity becomes too high, and coating may be difficult. The weight average molecular weight is a value measured by GPC (gel permeation chromatography) and calculated in terms of polystyrene. In addition, it is difficult to measure the molecular weight of the (meth) acrylic polymer obtained by radiation polymerization.
 本発明で用いる粘着剤組成物には、架橋剤を含有することができる。架橋剤としては、イソシアネート系架橋剤、エポキシ系架橋剤、シリコーン系架橋剤、オキサゾリン系架橋剤、アジリジン系架橋剤、シラン系架橋剤、アルキルエーテル化メラミン系架橋剤、金属キレート系架橋剤、過酸化物等の架橋剤を挙げることができ、これらを1種単独で又は2種以上を組み合わせて用いることができる。前記架橋剤としては、イソシアネート系架橋剤、エポキシ系架橋剤が好ましく用いられる。 The pressure-sensitive adhesive composition used in the present invention can contain a crosslinking agent. Examples of crosslinking agents include isocyanate crosslinking agents, epoxy crosslinking agents, silicone crosslinking agents, oxazoline crosslinking agents, aziridine crosslinking agents, silane crosslinking agents, alkyletherified melamine crosslinking agents, metal chelate crosslinking agents, Examples of the crosslinking agent include oxides, and these can be used alone or in combination of two or more. As said crosslinking agent, an isocyanate type crosslinking agent and an epoxy-type crosslinking agent are used preferably.
 上記架橋剤は1種を単独で使用してもよく、また2種以上を混合して使用してもよいが、全体としての含有量は、前記(メタ)アクリル系ポリマー100重量部に対し、前記架橋剤を0.01~10重量部の範囲で含有することが好ましい。 The crosslinking agent may be used alone or in combination of two or more, but the total content is based on 100 parts by weight of the (meth) acrylic polymer. The crosslinking agent is preferably contained in the range of 0.01 to 10 parts by weight.
 本発明において用いる粘着剤組成物には、接着力を向上させるために、(メタ)アクリル系オリゴマーを含有させることができる。さらに、本発明において用いる粘着剤組成物には、粘着剤層のガラス等の親水性被着体に適用する場合における界面での耐水性を上げるためにシランカップリング剤を含有することができる。 In the pressure-sensitive adhesive composition used in the present invention, a (meth) acrylic oligomer can be contained in order to improve the adhesive force. Furthermore, the pressure-sensitive adhesive composition used in the present invention may contain a silane coupling agent in order to increase the water resistance at the interface when applied to a hydrophilic adherend such as glass of the pressure-sensitive adhesive layer.
 さらに本発明で用いる粘着剤組成物には、その他の公知の添加剤を含有していてもよく、例えば、ポリプロピレングリコール等のポリアルキレングリコールのポリエーテル化合物、着色剤、顔料等の粉体、染料、界面活性剤、可塑剤、粘着性付与剤、表面潤滑剤、レベリング剤、軟化剤、酸化防止剤、老化防止剤、光安定剤、紫外線吸収剤、重合禁止剤、無機又は有機の充填剤、金属粉、粒子状、箔状物等を使用する用途に応じて適宜添加することができる。また、制御できる範囲内で、還元剤を加えてのレドックス系を採用してもよい。 Furthermore, the pressure-sensitive adhesive composition used in the present invention may contain other known additives, such as polyether compounds of polyalkylene glycols such as polypropylene glycol, powders of colorants and pigments, dyes, and the like. , Surfactants, plasticizers, tackifiers, surface lubricants, leveling agents, softeners, antioxidants, anti-aging agents, light stabilizers, UV absorbers, polymerization inhibitors, inorganic or organic fillers, It can be added as appropriate depending on the application in which metal powder, particles, foil, etc. are used. Moreover, you may employ | adopt the redox system which added a reducing agent within the controllable range.
 前記粘着剤層の形成方法は、公知の方法により行うことができる。 The method for forming the pressure-sensitive adhesive layer can be performed by a known method.
 粘着剤組成物の塗布方法としては、各種方法が用いられる。具体的には、例えば、ロールコート、キスロールコート、グラビアコート、リバースコート、ロールブラッシュ、スプレーコート、ディップロールコート、バーコート、ナイフコート、エアーナイフコート、カーテンコート、リップコート、ダイコーター等による押出しコート法等の方法が挙げられる。 Various methods are used as a method for applying the pressure-sensitive adhesive composition. Specifically, for example, by roll coat, kiss roll coat, gravure coat, reverse coat, roll brush, spray coat, dip roll coat, bar coat, knife coat, air knife coat, curtain coat, lip coat, die coater, etc. Examples thereof include an extrusion coating method.
 前記加熱乾燥温度は、30℃~200℃程度が好ましく、40℃~180℃程度がより好ましく、80℃~150℃程度がさらに好ましい。加熱温度を上記の範囲とすることによって、優れた粘着特性を有する粘着剤層を得ることができる。乾燥時間は、適宜、適切な時間が採用され得る。上記乾燥時間は、5秒~20分程度が好ましく、30秒~10分程度がより好ましく、1分~8分がさらに好ましい。 The heating and drying temperature is preferably about 30 to 200 ° C, more preferably about 40 to 180 ° C, and further preferably about 80 to 150 ° C. By setting the heating temperature in the above range, an adhesive layer having excellent adhesive properties can be obtained. As the drying time, an appropriate time can be adopted as appropriate. The drying time is preferably about 5 seconds to 20 minutes, more preferably about 30 seconds to 10 minutes, and further preferably 1 minute to 8 minutes.
 前記支持体としては、例えば、剥離処理したシート(セパレーター)を用いることができる。剥離処理したシートとしては、シリコーン剥離ライナーが好ましく用いられる。 As the support, for example, a peeled sheet (separator) can be used. A silicone release liner is preferably used as the release-treated sheet.
 セパレーターの構成材料としては、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリエステルフィルム等のプラスチックフィルム、紙、布、不織布等の多孔質材料、ネット、発泡シート、金属箔、及びこれらのラミネート体等の適宜な薄葉体等を挙げることができるが、表面平滑性に優れる点からプラスチックフィルムが好適に用いられる。 Examples of the constituent material of the separator include, for example, plastic films such as polyethylene, polypropylene, polyethylene terephthalate, and polyester films, porous materials such as paper, cloth, and nonwoven fabric, nets, foam sheets, metal foils, and laminates thereof. Although a thin leaf body etc. can be mentioned, a plastic film is used suitably from the point which is excellent in surface smoothness.
 前記プラスチックフィルムとしては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフイルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリウレタンフィルム、エチレン-酢酸ビニル共重合体フィルム等が挙げられる。 Examples of the plastic film include polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene terephthalate film, polybutylene terephthalate film, polyurethane film, and ethylene. -Vinyl acetate copolymer film and the like.
 前記セパレーターの厚みは、通常5~200μm、好ましくは5~100μm程度である。前記セパレーターには、必要に応じて、シリコーン系、フッ素系、長鎖アルキル系もしくは脂肪酸アミド系の離型剤、シリカ粉等による離型、及び防汚処理や、塗布型、練り込み型、蒸着型等の帯電防止処理もすることもできる。特に、前記セパレーターの表面にシリコーン処理、長鎖アルキル処理、フッ素処理等の剥離処理を適宜行うことにより、前記粘着剤層からの剥離性をより高めることができる。 The thickness of the separator is usually about 5 to 200 μm, preferably about 5 to 100 μm. For the separator, silicone type, fluorine type, long chain alkyl type or fatty acid amide type release agent, release by silica powder, and antifouling treatment, coating type, kneading type, vapor deposition, as required An antistatic treatment such as a mold can also be performed. In particular, the release property from the pressure-sensitive adhesive layer can be further improved by appropriately performing a release treatment such as silicone treatment, long-chain alkyl treatment, or fluorine treatment on the surface of the separator.
 なお、上記の粘着剤層付き偏光フィルムの作製にあたって用いた、剥離処理したシートは、そのまま粘着剤層付き偏光フィルムのセパレーターとして用いることができ、工程面における簡略化ができる。 In addition, the sheet | seat which carried out the peeling process used in preparation of said polarizing film with an adhesive layer can be used as a separator of the polarizing film with an adhesive layer as it is, and can simplify in a process surface.
 また、前記粘着剤層付き偏光フィルムにおいて、粘着剤層の形成にあたっては、偏光フィルム(例えば、第2樹脂フィルム)の表面に、アンカー層を形成したり、コロナ処理、プラズマ処理等の各種易接着処理を施した後に粘着剤層を形成することができる。また、粘着剤層の表面には易接着処理をおこなってもよい。 In the polarizing film with the pressure-sensitive adhesive layer, when forming the pressure-sensitive adhesive layer, an anchor layer is formed on the surface of the polarizing film (for example, the second resin film), or various types of easy adhesion such as corona treatment and plasma treatment are performed. After the treatment, the pressure-sensitive adhesive layer can be formed. Moreover, you may perform an easily bonding process on the surface of an adhesive layer.
 粘着剤層の厚さは、特に限定されるものではなく、例えば、5~100μmであることが好ましく、10~50μmであることが好ましい。 The thickness of the pressure-sensitive adhesive layer is not particularly limited, and is preferably 5 to 100 μm, for example, and preferably 10 to 50 μm.
 3.画像表示装置
 本発明の画像表示装置は、本発明の偏光フィルムまたは粘着剤層付き偏光フィルムを含むものであればよく、その他の構成については、従来の画像表示装置と同様のものを挙げることができる。前記偏光フィルムまたは粘着剤層付偏光フィルムは、画像表示セルに適用される。例えば、画像表示装置が液晶表示装置の場合には、前記偏光フィルムまたは粘着剤層付偏光フィルムは、画像表示セル(液晶セル)の視認側、バックライト側のいずれにも適用することができる。画像表示装置が有機EL表示装置の場合には、前記偏光フィルムまたは粘着剤層付偏光フィルムは、画像表示セルの視認側に適用することができる。前記偏光フィルムまたは粘着剤層付偏光フィルムは、前記第2樹脂フィルムの側が前記画像表示セルの側になるように配置されていることが好ましい。本発明の画像表示装置は、前記偏光フィルムまたは粘着剤層付き偏光フィルムを含むため、高い信頼性を有するものである。
3. Image Display Device The image display device of the present invention only needs to include the polarizing film of the present invention or the polarizing film with a pressure-sensitive adhesive layer, and other configurations may be the same as those of conventional image display devices. it can. The polarizing film or the polarizing film with an adhesive layer is applied to an image display cell. For example, when the image display device is a liquid crystal display device, the polarizing film or the polarizing film with an adhesive layer can be applied to either the viewing side or the backlight side of the image display cell (liquid crystal cell). When the image display device is an organic EL display device, the polarizing film or the polarizing film with an adhesive layer can be applied to the viewing side of the image display cell. It is preferable that the polarizing film or the polarizing film with the pressure-sensitive adhesive layer is disposed so that the second resin film side is the image display cell side. Since the image display device of the present invention includes the polarizing film or the polarizing film with the pressure-sensitive adhesive layer, it has high reliability.
 以下に、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、各例中の部及び%はいずれも重量基準である。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples. In addition, all the parts and% in each example are based on weight.
 (偏光子の作製)
 吸水率0.75%、Tg75℃の非晶質のイソフタル酸共重合ポリエチレンテレフタレート(IPA共重合PET)フィルム(厚み:100μm)基材の片面に、コロナ処理を施し、このコロナ処理面に、ポリビニルアルコール(重合度:4200、ケン化度:99.2モル%)及びアセトアセチル変性PVA(重合度:1200、アセトアセチル変性度:4.6%、ケン化度:99.0モル%以上、日本合成化学工業(株)製、商品名「ゴーセファイマーZ200」)を9:1の比で含む水溶液を25℃で塗布及び乾燥して、厚み11μmのPVA系樹脂層を形成し、積層体を作製した。
 得られた積層体を、120℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.0倍に自由端一軸延伸した(空中補助延伸処理)。
 次いで、積層体を、液温30℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴に、偏光板が所定の透過率となるようにヨウ素濃度、浸漬時間を調整しながら浸漬させた。本実施例では、水100重量部に対して、ヨウ素を0.2重量部配合し、ヨウ化カリウムを1.0重量部配合して得られたヨウ素水溶液に60秒間浸漬させた(染色処理)。
 次いで、液温30℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を3重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温70℃のホウ酸水溶液(水100重量部に対して、ホウ酸を4.5重量部配合し、ヨウ化カリウムを5重量部配合して得られた水溶液)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
 その後、積層体を液温30℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 以上により、厚み5μmの偏光子を含む光学フィルム積層体を得た。得られた偏光子のホウ酸含有量は、20重量%であった。
(Production of polarizer)
One side of an amorphous isophthalic acid copolymerized polyethylene terephthalate (IPA copolymerized PET) film (thickness: 100 μm) having a water absorption of 0.75% and Tg of 75 ° C. is subjected to corona treatment. Alcohol (degree of polymerization: 4200, degree of saponification: 99.2 mol%) and acetoacetyl-modified PVA (degree of polymerization: 1200, degree of acetoacetyl modification: 4.6%, degree of saponification: 99.0 mol% or more, Japan An aqueous solution containing 9: 1 ratio of synthetic chemical industry (trade name “Gosefimer Z200”) is applied and dried at 25 ° C. to form a PVA resin layer having a thickness of 11 μm. Produced.
The obtained laminate was uniaxially stretched in the longitudinal direction (longitudinal direction) 2.0 times between rolls having different peripheral speeds in an oven at 120 ° C. (air-assisted stretching process).
Next, the laminate was immersed in an insolubilization bath (a boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with respect to 100 parts by weight of water) for 30 seconds (insolubilization treatment).
Subsequently, it was immersed in a dyeing bath having a liquid temperature of 30 ° C. while adjusting the iodine concentration and the immersion time so that the polarizing plate had a predetermined transmittance. In this example, 0.2 parts by weight of iodine was blended with 100 parts by weight of water, and immersed in an aqueous iodine solution obtained by blending 1.0 part by weight of potassium iodide (dyeing treatment). .
Subsequently, it was immersed for 30 seconds in a crosslinking bath having a liquid temperature of 30 ° C. (a boric acid aqueous solution obtained by blending 3 parts by weight of potassium iodide and 3 parts by weight of boric acid with respect to 100 parts by weight of water). (Crosslinking treatment).
Thereafter, the laminated body was added to a boric acid aqueous solution having a liquid temperature of 70 ° C. (an aqueous solution obtained by adding 4.5 parts by weight of boric acid and 5 parts by weight of potassium iodide to 100 parts by weight of water). While being immersed, uniaxial stretching was performed in the longitudinal direction (longitudinal direction) between rolls having different peripheral speeds so that the total stretching ratio was 5.5 times (in-water stretching treatment).
Thereafter, the laminate was immersed in a cleaning bath (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with respect to 100 parts by weight of water) at a liquid temperature of 30 ° C. (cleaning treatment).
As a result, an optical film laminate including a polarizer having a thickness of 5 μm was obtained. The obtained polarizer had a boric acid content of 20% by weight.
 (透明保護フィルムに適用する接着剤の作製)
 N-ヒドロキシエチルアクリルアミド(HEAA)40重量部とアクリロイルモルホリン(ACMO)60重量部と光開始剤「IRGACURE 819」(BASF社製)3重量部を混合し、紫外線硬化型接着剤を調製した。
(Preparation of adhesive to be applied to transparent protective film)
An ultraviolet curable adhesive was prepared by mixing 40 parts by weight of N-hydroxyethylacrylamide (HEAA), 60 parts by weight of acryloylmorpholine (ACMO), and 3 parts by weight of a photoinitiator “IRGACURE 819” (manufactured by BASF).
 (樹脂フィルム)
 <保護フィルム1>
 厚さ15μmの未延伸のアクリル系樹脂フィルム:40℃、92%R.H.における透湿度:50g/(m・day)、破断応力:15N、破断伸び:4mm。
 <保護フィルム2>
 厚さ17μmの延伸のシクロオレフィン系樹脂フィルム(商品名:ZT12,日本ゼオン社製):40℃、92%R.H.における透湿度:22g/(m・day)、破断応力:15N、破断伸び:25mm。
 <保護フィルム3>
 厚さ47μmの未延伸のアクリル系樹脂フィルム(商品名:HX-40UC,東洋鋼鈑社製):40℃、92%R.H.における透湿度:65g/(m・day)、破断応力:39N、破断伸び:4mm。
 <保護フィルム4>
 厚さ13μmのシクロオレフィン系樹脂フィルム(商品名:ZF14,日本ゼオン社製):40℃、92%R.H.における透湿度:29g/(m・day)、破断応力:9N、破断伸び:4mm。
 <保護フィルム5>
 厚さ27μmのシクロオレフィン系樹脂フィルム(商品名:ZF12,日本ゼオン社製):40℃、92%R.H.における透湿度:23g/(m・day)、破断応力:13N、破断伸び:2.2mm。
 <保護フィルム6>
 厚さ32μmのトリアセチルセルロースフィルム(商品名:KC2UAHC,コニカミノルタ社製):40℃、92%R.H.における透湿度:796g/(m・day)、破断応力:41N、破断伸び:2.7mm。
 <保護フィルム7>
 厚さ25μmのトリアセチルセルロースフィルム(商品名:KC2UA,コニカミノルタ社製):40℃、92%R.H.における透湿度:1804g/(m・day)、破断応力:28N、破断伸び:16mm。
(Resin film)
<Protective film 1>
Unstretched acrylic resin film having a thickness of 15 μm: 40 ° C., 92% R.D. H. Moisture permeability: 50 g / (m 2 · day), breaking stress: 15 N, breaking elongation: 4 mm.
<Protective film 2>
Stretched cycloolefin resin film having a thickness of 17 μm (trade name: ZT12, manufactured by Zeon Corporation): 40 ° C., 92% R.D. H. Moisture permeability: 22 g / (m 2 · day), breaking stress: 15 N, breaking elongation: 25 mm.
<Protective film 3>
Unstretched acrylic resin film (trade name: HX-40UC, manufactured by Toyo Kohan Co., Ltd.) having a thickness of 47 μm: 40 ° C., 92% R.D. H. Moisture permeability: 65 g / (m 2 · day), breaking stress: 39 N, breaking elongation: 4 mm.
<Protective film 4>
13 μm thick cycloolefin resin film (trade name: ZF14, manufactured by Nippon Zeon Co., Ltd.): 40 ° C., 92% R.D. H. Permeability: 29 g / (m 2 · day), breaking stress: 9 N, breaking elongation: 4 mm.
<Protective film 5>
27 μm thick cycloolefin resin film (trade name: ZF12, manufactured by Nippon Zeon Co., Ltd.): 40 ° C., 92% R.D. H. Moisture permeability: 23 g / (m 2 · day), breaking stress: 13 N, breaking elongation: 2.2 mm.
<Protective film 6>
Triacetylcellulose film having a thickness of 32 μm (trade name: KC2UAHC, manufactured by Konica Minolta): 40 ° C., 92% R.D. H. Moisture permeability: 796 g / (m 2 · day), breaking stress: 41 N, breaking elongation: 2.7 mm.
<Protective film 7>
25 μm thick triacetylcellulose film (trade name: KC2UA, manufactured by Konica Minolta): 40 ° C., 92% R.D. H. Moisture permeability: 1804 g / (m 2 · day), breaking stress: 28 N, breaking elongation: 16 mm.
 実施例1(偏光フィルムの製造)
 上記光学フィルム積層体の偏光子(厚み:5μm)の表面に、上記紫外線硬化型接着剤を硬化後の接着剤層の厚さが0.1μmになるように塗布しながら、上記保護フィルム1(第1樹脂フィルム)を貼合せたのち、活性エネルギー線として、紫外線を照射し、接着剤を硬化させた。紫外線照射は、ガリウム封入メタルハライドランプ、照射装置:Fusion UV Systems,Inc社製のLight HAMMER10、バルブ:Vバルブ、ピーク照度:1600mW/cm、積算照射量1000/mJ/cm(波長380~440nm)を使用し、紫外線の照度は、Solatell社製のSola-Checkシステムを使用して測定した。次いで、非晶性PET基材を剥離して、剥離した面に、上記紫外線硬化型接着剤を硬化後の接着剤層の厚さが0.1μmになるように塗布しながら、事前にコロナ処理した上記保護フィルム4(第2樹脂フィルム)を貼合せたのち、上記と同様に紫外線を照射し、接着剤を硬化させ、薄型偏光子の両面に保護フィルムを有する偏光フィルムを作製した。保護フィルムは、前記破断応力、破断伸びを測定した方向が、偏光子の吸収軸に直交する方向(90°)になるように貼り合わせた。
Example 1 (Production of polarizing film)
While applying the ultraviolet curable adhesive to the surface of the polarizer (thickness: 5 μm) of the optical film laminate so that the thickness of the adhesive layer after curing is 0.1 μm, the protective film 1 ( After laminating the first resin film), the adhesive was cured by irradiating ultraviolet rays as active energy rays. Ultraviolet irradiation is performed using a gallium-encapsulated metal halide lamp, an irradiation device: Fusion UV Systems, Inc. Light HAMMER 10, Inc., bulb: V bulb, peak illuminance: 1600 mW / cm 2 , integrated irradiation amount 1000 / mJ / cm 2 (wavelength 380 to 440 nm) ), And the illuminance of ultraviolet rays was measured using a Sola-Check system manufactured by Solatell. Next, the amorphous PET base material is peeled off, and the UV curable adhesive is applied to the peeled surface so that the thickness of the adhesive layer after curing is 0.1 μm, and corona treatment in advance. After bonding the protective film 4 (second resin film), ultraviolet rays were irradiated in the same manner as described above to cure the adhesive, and a polarizing film having protective films on both sides of the thin polarizer was produced. The protective film was bonded so that the direction in which the breaking stress and breaking elongation were measured was a direction (90 °) perpendicular to the absorption axis of the polarizer.
 実施例2~3、比較例1~3
 実施例1において、第1樹脂フィルム、第2樹脂フィルムに用いる保護フィルムを表1に示すように変えたこと以外は実施例1と同様にして偏光フィルムを得た。
Examples 2 to 3, Comparative Examples 1 to 3
In Example 1, a polarizing film was obtained in the same manner as in Example 1 except that the protective film used for the first resin film and the second resin film was changed as shown in Table 1.
 実施例、比較例で得られた偏光フィルムについて、下記評価を行った。結果を表1に示す。なお、各例で使用した保護フィルムの透湿度、保護フィルム破断応力、破断伸びの測定方法についても併せて示す The following evaluation was performed about the polarizing film obtained by the Example and the comparative example. The results are shown in Table 1. In addition, it shows together about the measuring method of the water vapor transmission rate of the protective film used in each example, protective film breaking stress, and breaking elongation.
 <透明保護フィルムの透湿度>
 透湿度の測定は、JIS Z0208の透湿度試験(カップ法)に準じて測定した。直径6cmに切断したサンプルを約15gの塩化カルシウムを入れた透湿カップ(開口径:直径6cm)にセットし、温度40℃、湿度92%R.H.の恒温機に入れ、24時間放置した前後の塩化カルシウムの重量増加を測定することで透湿度(g/(m・day)を求めた。
<Water vapor permeability of transparent protective film>
The moisture permeability was measured according to a moisture permeability test (cup method) of JIS Z0208. A sample cut to a diameter of 6 cm was set in a moisture permeable cup (opening diameter: diameter 6 cm) containing about 15 g of calcium chloride, and the temperature was 40 ° C. and the humidity was 92% R.D. H. The moisture permeability (g / (m 2 · day)) was determined by measuring the weight increase of calcium chloride before and after being left for 24 hours.
 <破断応力の測定>
 各保護フィルムを100mm×100mmに切断した後、引張試験機として、オートグラフ(製品名:AG-IS、(株)島津製作所製)を用い、試験サンプルに対し、引張速度300mm/min、チャック間距離100mm、室温(23℃)で引張試験を行い、応力-歪み曲線を求めた。保護フィルムが破断したときの応力を求めて破断応力とした。なお、破断応力の測定は、偏光子の吸収軸に直交する方向で測定した。
<Measurement of breaking stress>
After cutting each protective film to 100 mm x 100 mm, using an autograph (product name: AG-IS, manufactured by Shimadzu Corporation) as a tensile tester, the test sample is pulled at a speed of 300 mm / min, between chucks A tensile test was performed at a distance of 100 mm and at room temperature (23 ° C.) to obtain a stress-strain curve. The stress when the protective film broke was obtained and used as the breaking stress. Note that the breaking stress was measured in a direction perpendicular to the absorption axis of the polarizer.
 <破断伸びの測定>
 各保護フィルムを、引張試験機を用いて、23℃、50%RHの環境下、測定を行った。測定の初期長(初期のチャック間隔)が10mmとなるようにチャックを設定し、引張速度50mm/分の条件で引張試験を行い、破断点の伸び[破断伸び(破断点伸度)]を測定した。なお、破断伸び(破断点伸度)は、引張試験で、試験片が破断したときの伸びを表し、下記の式で計算される。
 「破断伸び(破断点伸度)」=「破断時の試験片の長さ(破断時のチャック間隔)」-「初期長(10mm)」 
<Measurement of elongation at break>
Each protective film was measured using a tensile tester in an environment of 23 ° C. and 50% RH. Set the chuck so that the initial length of measurement (initial chuck interval) is 10 mm, perform a tensile test under the condition of a tensile speed of 50 mm / min, and measure the elongation at break [elongation at break (elongation at break)]. did. The elongation at break (elongation at break) represents the elongation when the test piece breaks in a tensile test and is calculated by the following equation.
“Elongation at break (Elongation at break)” = “Length of test piece at break (chuck interval at break)” − “Initial length (10 mm)”
 <偏光フィルムの偏光度変化(ΔP)の測定>
 実施例及び比較例で得られた偏光フィルムを、85℃/85%R.H.の恒温恒湿機に500時間投入した。投入前と投入後の偏光フィルムの偏光度を、積分球付き分光光度計(日本分光(株)製のV7100)を用いて測定し、以下の式により偏光度の変化量ΔPを求めた。
 偏光度の変化量ΔP(%)=(投入前の偏光度(%))-(投入後の偏光度(%))
 なお、偏光度Pは、2枚の同じ偏光フィルムを両者の透過軸が平行となるように重ね合わせた場合の透過率(平行透過率:Tp)及び、両者の透過軸が直交するように重ね合わせた場合の透過率(直交透過率:Tc)を以下の式に適用することにより求められるものである。
 偏光度P(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
 各透過率は、グランテラープリズム偏光子を通して得られた完全偏光を100%として、JIS Z8701の2度視野(C光源)により視感度補整したY値で示したものである。
<Measurement of change in polarization degree (ΔP) of polarizing film>
The polarizing films obtained in Examples and Comparative Examples were subjected to 85 ° C./85% R.D. H. For 500 hours. The polarization degree of the polarizing film before and after the addition was measured using a spectrophotometer with an integrating sphere (V7100 manufactured by JASCO Corporation), and the amount of change ΔP in the polarization degree was determined by the following equation.
Change amount of polarization degree ΔP (%) = (Polarization degree before injection (%)) − (Polarization degree after introduction (%))
The degree of polarization P is the transmittance when two identical polarizing films are overlapped so that their transmission axes are parallel (parallel transmittance: Tp), and they are overlapped so that their transmission axes are orthogonal to each other. It is calculated | required by applying the transmittance | permeability (orthogonal transmittance | permeability: Tc) at the time of combining to the following formula | equation.
Polarization degree P (%) = {(Tp−Tc) / (Tp + Tc)} 1/2 × 100
Each transmittance is represented by a Y value obtained by correcting visibility with a two-degree field of view (C light source) of JIS Z8701, with 100% of the completely polarized light obtained through the Granteller prism polarizer.
 <貫通クラックの確認:ヒートショック試験>
 実施例及び比較例で得られた偏光フィルムの第2樹脂フィルム側に、厚さ20μmのアクリル系粘着剤層を設けて、粘着剤層付偏光フィルムを調製した。粘着剤層付偏光フィルムを50mm×150mm(吸収軸方向が50mm)に裁断し、0.5mm厚の無アルカリガラスに貼り合せてサンプルを作製した。当該サンプルを、-40~85℃のヒートショックを各30分間×500回の環境下に投入した後に、取り出して、目視にて、偏光フィルムに貫通クラックが少なくとも1本でも発生している場合を「あり」、発生していない場合を「なし」とした。
<Confirmation of penetration crack: heat shock test>
A polarizing film with a pressure-sensitive adhesive layer was prepared by providing an acrylic pressure-sensitive adhesive layer having a thickness of 20 μm on the second resin film side of the polarizing films obtained in Examples and Comparative Examples. The polarizing film with an adhesive layer was cut into 50 mm × 150 mm (absorption axis direction was 50 mm), and bonded to 0.5 mm-thick alkali-free glass to prepare a sample. When the sample is subjected to a heat shock of −40 to 85 ° C. in an environment of × 500 times for 30 minutes each and then taken out and visually, at least one penetration crack is generated in the polarizing film. “Yes” was given, and “None” was given when no occurrence occurred.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の偏光フィルムの85℃、85%R.H.環境下に500時間放置後の偏光度変化(ΔP)の絶対値は、0.1%未満であることが好ましく、0.05%以下であることがより好ましく、0.03%以下であることがさらに好ましい。本発明の偏光フィルムは、第1樹脂フィルムが破断応力13N以上、破断伸び2.5mm以上を満足するため、熱衝撃(例えば、-40℃と85℃の温度条件を繰り返すヒートショック試験)の過酷な環境下においても、偏光フィルム全体としての収縮力が極めて小さくなり、さらに、低透湿保護フィルムを用いているため偏光子の水による劣化が抑制され、その結果、過酷な環境下に曝されても、偏光度変化が小さく、光学特性に優れるものである。 The 85 ° C. and 85% R.V. H. The absolute value of the degree of polarization change (ΔP) after standing in the environment for 500 hours is preferably less than 0.1%, more preferably 0.05% or less, and 0.03% or less. Is more preferable. In the polarizing film of the present invention, since the first resin film satisfies a breaking stress of 13 N or more and a breaking elongation of 2.5 mm or more, the heat shock (for example, a heat shock test in which temperature conditions of −40 ° C. and 85 ° C. are repeated) is severe. Even in difficult environments, the shrinkage force of the polarizing film as a whole becomes extremely small, and furthermore, the use of a low moisture permeation protective film suppresses deterioration of the polarizer due to water, resulting in exposure to harsh environments. However, the change in the degree of polarization is small and the optical characteristics are excellent.
 F1  偏光フィルム
 F2  粘着剤層付き偏光フィルム
 a   偏光子
 b1  第1樹脂フィルム
 b2  第2樹脂フィルム
 c   粘着剤層
 
F1 Polarizing film F2 Polarizing film with adhesive layer a Polarizer b1 First resin film b2 Second resin film c Adhesive layer

Claims (8)

  1.  厚みが10μm以下の偏光子の一方の面に第1樹脂フィルム、他方の面に第2樹脂フィルムを有する偏光フィルムであって、
     前記第1樹脂フィルム及び第2樹脂フィルムの透湿度が、いずれも100g/(m・day)以下であり、
     前記第1樹脂フィルム及び前記第2樹脂フィルムの少なくとも第1樹脂フィルムは、前記偏光子の吸収軸と直交する方向において、破断応力が13N以上、破断伸びが2.5mm以上であることを特徴とする偏光フィルム。
    A polarizing film having a first resin film on one surface of a polarizer having a thickness of 10 μm or less and a second resin film on the other surface,
    The moisture permeability of the first resin film and the second resin film are both 100 g / (m 2 · day) or less,
    At least the first resin film of the first resin film and the second resin film has a breaking stress of 13 N or more and a breaking elongation of 2.5 mm or more in a direction perpendicular to the absorption axis of the polarizer. Polarizing film.
  2.  前記第1樹脂フィルム及び前記第2樹脂フィルムは、いずれもシクロオレフィン系樹脂フィルム及びアクリル系樹脂フィルムから選ばれるいずれかの樹脂フィルムであることを特徴とする請求項1記載の偏光フィルム。 The polarizing film according to claim 1, wherein the first resin film and the second resin film are both resin films selected from cycloolefin resin films and acrylic resin films.
  3.  前記第1樹脂フィルムが、シクロオレフィン系樹脂フィルムの延伸フィルムであることを特徴とする請求項1または2記載の偏光フィルム。 The polarizing film according to claim 1 or 2, wherein the first resin film is a stretched film of a cycloolefin resin film.
  4.  前記第1樹脂フィルムが、アクリル系樹脂フィルムであることを特徴とする請求項1または2記載の偏光フィルム。 The polarizing film according to claim 1 or 2, wherein the first resin film is an acrylic resin film.
  5.  請求項1~4のいずれかに記載の偏光フィルムおよび粘着剤層を有することを特徴とする粘着剤層付き偏光フィルム。 A polarizing film with an adhesive layer, comprising the polarizing film according to any one of claims 1 to 4 and an adhesive layer.
  6.  前記粘着剤層は、前記偏光フィルムの第2樹脂フィルムの側に有することを特徴とする請求項5記載の粘着剤層付き偏光フィルム。 6. The polarizing film with a pressure-sensitive adhesive layer according to claim 5, wherein the pressure-sensitive adhesive layer is provided on the second resin film side of the polarizing film.
  7.  請求項1~4のいずれかに記載の偏光フィルムまたは請求項5もしくは6記載の粘着剤層付偏光フィルムが、画像表示セルに配置されていることを特徴とする画像表示装置。 An image display device, wherein the polarizing film according to any one of claims 1 to 4 or the polarizing film with an adhesive layer according to claim 5 or 6 is disposed in an image display cell.
  8.  前記偏光フィルムまたは粘着剤層付偏光フィルムは、前記第2樹脂フィルムの側が前記画像表示セルの側になるように配置されていることを特徴とする請求項7記載の画像表示装置。 The image display device according to claim 7, wherein the polarizing film or the polarizing film with an adhesive layer is disposed so that the second resin film side is the image display cell side.
PCT/JP2018/019128 2017-05-25 2018-05-17 Polarizing film, polarizing film with adhesive layer, and image display device WO2018216598A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197030240A KR102579020B1 (en) 2017-05-25 2018-05-17 Polarizing film, polarizing film with adhesive layer, and image display device
CN201880032923.1A CN110637242A (en) 2017-05-25 2018-05-17 Polarizing film, polarizing film with adhesive layer, and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-103715 2017-05-25
JP2017103715A JP7154002B2 (en) 2017-05-25 2017-05-25 POLARIZING FILM, POLARIZING FILM WITH ADHESIVE LAYER, AND IMAGE DISPLAY DEVICE

Publications (1)

Publication Number Publication Date
WO2018216598A1 true WO2018216598A1 (en) 2018-11-29

Family

ID=64395611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019128 WO2018216598A1 (en) 2017-05-25 2018-05-17 Polarizing film, polarizing film with adhesive layer, and image display device

Country Status (5)

Country Link
JP (1) JP7154002B2 (en)
KR (1) KR102579020B1 (en)
CN (1) CN110637242A (en)
TW (1) TWI751338B (en)
WO (1) WO2018216598A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005148567A (en) * 2003-11-18 2005-06-09 Sekisui Chem Co Ltd Polarizer protection film, polarizing plate using same and liquid crystal display device
JP2005242171A (en) * 2004-02-27 2005-09-08 Sekisui Chem Co Ltd Polarizer protection film and polarizing plate
JP2006284881A (en) * 2005-03-31 2006-10-19 Nitto Denko Corp Polarizer protective film, polarizing plate, and image display apparatus
JP2008273029A (en) * 2007-04-27 2008-11-13 Fujifilm Corp Cycloolefin resin film, and polarization plate, optical compensation film, antireflection film and liquid crystal display device using it and manufacturing method of cycloolefin resin film
JP2013148848A (en) * 2012-01-23 2013-08-01 Konica Minolta Inc Optical film and manufacturing method of the same, and polarizing plate using the same
JP2014115538A (en) * 2012-12-11 2014-06-26 Toagosei Co Ltd Active energy ray-curable composition for forming optical film or sheet, optical film or sheet, and polarizing plate
JP2016071348A (en) * 2014-09-30 2016-05-09 住友化学株式会社 Polarizing plate, liquid crystal display device, and organic electroluminescence display device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114995A (en) 2003-10-07 2005-04-28 Sekisui Chem Co Ltd Polarizing plate
TWI567432B (en) * 2004-11-09 2017-01-21 Zeon Corp A polarizing plate, a manufacturing method thereof, and a liquid crystal display device
JP2009292869A (en) * 2008-06-02 2009-12-17 Fujifilm Corp Acrylic film, method for producing it, polarizing plate, optical compensation film, antireflection film, and liquid crystal display
JP4691205B1 (en) 2010-09-03 2011-06-01 日東電工株式会社 Method for producing optical film laminate including thin high-performance polarizing film
JP5930636B2 (en) 2011-09-27 2016-06-08 住友化学株式会社 Polarizer
JP5888040B2 (en) * 2012-03-23 2016-03-16 コニカミノルタ株式会社 Polarizing plate protective film and method for producing the same, and polarizing plate and display device using the same
TW201428011A (en) * 2012-12-11 2014-07-16 Toagosei Co Ltd Active-energy-ray-curable composition for forming optical film, optical film, and polarizing plate
JP2015072439A (en) * 2013-09-03 2015-04-16 富士フイルム株式会社 Liquid crystal display device
JP5495458B1 (en) 2013-09-11 2014-05-21 日東電工株式会社 Method for producing optical film laminate
JP6235370B2 (en) 2014-02-19 2017-11-22 住友化学株式会社 Production method of polarizing laminated film and polarizing plate
JP2016042159A (en) * 2014-08-18 2016-03-31 富士フイルム株式会社 Optical film and method for manufacturing the same, polarizing plate protective film, polarizing plate, and liquid crystal display device
JP6600941B2 (en) * 2014-12-10 2019-11-06 凸版印刷株式会社 Photo-curable resin molded body, polarizing plate using the same, and transmissive liquid crystal display
JP2016200709A (en) * 2015-04-10 2016-12-01 コニカミノルタ株式会社 Polarizing plate protective film and polarizing plate having the same, and method for producing the polarizing plate protective film
KR20170053039A (en) * 2015-11-05 2017-05-15 스미또모 가가꾸 가부시키가이샤 Polarizing plate and display device comprising the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005148567A (en) * 2003-11-18 2005-06-09 Sekisui Chem Co Ltd Polarizer protection film, polarizing plate using same and liquid crystal display device
JP2005242171A (en) * 2004-02-27 2005-09-08 Sekisui Chem Co Ltd Polarizer protection film and polarizing plate
JP2006284881A (en) * 2005-03-31 2006-10-19 Nitto Denko Corp Polarizer protective film, polarizing plate, and image display apparatus
JP2008273029A (en) * 2007-04-27 2008-11-13 Fujifilm Corp Cycloolefin resin film, and polarization plate, optical compensation film, antireflection film and liquid crystal display device using it and manufacturing method of cycloolefin resin film
JP2013148848A (en) * 2012-01-23 2013-08-01 Konica Minolta Inc Optical film and manufacturing method of the same, and polarizing plate using the same
JP2014115538A (en) * 2012-12-11 2014-06-26 Toagosei Co Ltd Active energy ray-curable composition for forming optical film or sheet, optical film or sheet, and polarizing plate
JP2016071348A (en) * 2014-09-30 2016-05-09 住友化学株式会社 Polarizing plate, liquid crystal display device, and organic electroluminescence display device

Also Published As

Publication number Publication date
CN110637242A (en) 2019-12-31
JP7154002B2 (en) 2022-10-17
TWI751338B (en) 2022-01-01
JP2018200339A (en) 2018-12-20
TW201900402A (en) 2019-01-01
KR102579020B1 (en) 2023-09-15
KR20200003789A (en) 2020-01-10

Similar Documents

Publication Publication Date Title
KR102229733B1 (en) Laminated film and image display device
JP6741477B2 (en) Polarizing film, polarizing film with adhesive layer, and image display device
KR102199874B1 (en) Optical film, peeling method, and manufacturing method of optical display panel
KR20190005836A (en) An optical film for an organic EL display device, a polarizing film for an organic EL display device, a polarizing film with a pressure-sensitive adhesive layer for an organic EL display device, and an organic EL display device
KR101769221B1 (en) Actinic radiation curable adhesive composition, polarizing film and manufacturing process therefor, optical film and image display device
KR20180054574A (en) A polarizing film having a pressure-sensitive adhesive layer, an optical member, and an image display device
KR20140128222A (en) Polarizing film and method for manufacturing the same, optical film, and image display device
KR101883795B1 (en) Method for producing polarizing film
JP6043315B2 (en) Polarizer protective film, production method thereof, polarizing plate, optical film, and image display device
JP5801435B2 (en) Active energy ray-curable adhesive composition, polarizing film and method for producing the same, optical film and image display device
WO2018221232A1 (en) Optical film, release method, and method for manufacturing optical display panel
KR20160034219A (en) Polarizing plate
JP2017083820A (en) Polarizing plate and liquid crystal panel, and manufacturing method of polarizing plate
JP6636367B2 (en) Method for manufacturing one-sided protective polarizing film with transparent resin layer, method for manufacturing polarizing film with adhesive layer, and method for manufacturing image display device
WO2018216598A1 (en) Polarizing film, polarizing film with adhesive layer, and image display device
JP2017138582A (en) Method for manufacturing polarizing plate
KR20230141649A (en) Polarizing plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806489

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197030240

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18806489

Country of ref document: EP

Kind code of ref document: A1