WO2022191033A1 - Polarizing plate - Google Patents

Polarizing plate Download PDF

Info

Publication number
WO2022191033A1
WO2022191033A1 PCT/JP2022/009147 JP2022009147W WO2022191033A1 WO 2022191033 A1 WO2022191033 A1 WO 2022191033A1 JP 2022009147 W JP2022009147 W JP 2022009147W WO 2022191033 A1 WO2022191033 A1 WO 2022191033A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polarizing plate
polarizing
retardation
layer
Prior art date
Application number
PCT/JP2022/009147
Other languages
French (fr)
Japanese (ja)
Inventor
謙一 福田
慎也 萩原
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202280016561.3A priority Critical patent/CN116888511A/en
Priority to KR1020237032982A priority patent/KR20230154893A/en
Publication of WO2022191033A1 publication Critical patent/WO2022191033A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8793Arrangements for polarized light emission

Definitions

  • the present invention relates to a polarizing plate, and further to a display device equipped with a polarizing plate.
  • Liquid crystal display devices are widely used not only for liquid crystal televisions, but also for mobile applications such as personal computers and mobile phones, and in-vehicle applications such as car navigation systems.
  • a liquid crystal display device has a liquid crystal panel member in which polarizing plates are adhered to both sides of a liquid crystal cell with an adhesive, and display is performed by controlling light from a backlight member with the liquid crystal panel member.
  • organic EL display devices have begun to be widely used in mobile applications such as televisions and mobile phones, and in-vehicle applications such as car navigation systems.
  • a retardation film is sometimes used in order to impart functions such as widening of the viewing angle or prevention of reflection of external light.
  • Polarizing plates are increasingly used in vehicles as optical elements that make up liquid crystal display devices and organic EL display devices. Compared to polarizing plates used in mobile applications such as televisions and mobile phones, polarizing plates used in in-vehicle display devices are often exposed to high-temperature environments and their properties change less at higher temperatures. (high temperature durability) is required.
  • In-vehicle display devices require a touch panel function when used in car navigation systems.
  • on-cell and in-cell display devices have been increasingly used as display devices having a touch panel function.
  • a scratch-preventing function is required in addition to high-temperature durability.
  • Patent Document 1 describes a polarizing plate including a retardation film made of a cyclic olefin resin film in order to expand the viewing angle.
  • Patent Document 2 describes that a film using a cyclic olefin resin may be used as a retardation film functioning as a ⁇ /4 plate constituting a polarizing plate.
  • the retardation film incorporated in the polarizing plate was further tested at room temperature and normal humidity. When stored in an environment for a long period of time, cracks were observed in some cases.
  • An object of the present invention is to provide a polarizing plate that has excellent scratch resistance and that suppresses the occurrence of cracks in the retardation film even when stored for a long period of time under normal temperature and humidity after a heat durability test.
  • the present invention provides the following polarizing plate.
  • the two or more protective films laminated on the first surface side at least one protective film has a moisture permeability at a temperature of 40°C and a relative humidity of 90% of 200 g/m 2 day or more.
  • the protective film laminated closest to the polarizing film has a moisture permeability of 200 g/m 2 at a temperature of 40°C and a relative humidity of 90%.
  • [5] The polarizing plate according to any one of [1] to [4], wherein the retardation film is a cyclic olefin resin film.
  • [6] The polarizing plate of any one of [1] to [5], wherein the retardation film has an in-plane retardation value of 80 nm or more at a wavelength of 550 nm.
  • a display device comprising the polarizing plate of [7] and a display element, The display device, wherein the polarizing plate is laminated on a display element via the pressure-sensitive adhesive layer.
  • a polarizing plate that has excellent scratch resistance and that suppresses the occurrence of cracks in the retardation film even after being stored for a long period of time under normal temperature and humidity conditions after a heat durability test.
  • FIG. 1 is a schematic cross-sectional view showing a polarizing plate according to one embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing a polarizing plate according to this embodiment.
  • the polarizing plate 1 includes a polarizing film 11 in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol-based resin film (hereinafter sometimes referred to as a "PVA-based resin film”), and a hard coat layer ( hereinafter sometimes referred to as “HC layer”), and a retardation film 21 having a tensile elastic modulus of 3000 MPa or less at a temperature of 23°C.
  • PVA-based resin film polyvinyl alcohol-based resin film
  • HC layer hard coat layer
  • the polarizing plate 1 has two or more protective films 12 and 13 including HC layers laminated on the first surface 11a side of the polarizing film 11 .
  • the pencil hardness of the surface of the polarizing plate 1 on the side of the protective films 12 and 13 can be improved, so that the polarizing plate 1 can be provided with excellent scratch resistance.
  • the retardation film 21 cracked. It is possible to suppress the occurrence of (cracks). The reason for this is presumed as follows.
  • moisture (water vapor) in the atmosphere is easily taken into the polarizing plate.
  • Moisture taken into the polarizing plate causes dimensional change of the polarizing film including the PVA-based resin film.
  • the polarizing plate 1 since the polarizing plate 1 has two or more protective films 12 and 13 laminated on the first surface 11a side of the polarizing film 11, the amount of moisture taken into the polarizing plate 1 can be reduced. A dimensional change of the polarizing film 11 can be suppressed. Therefore, it is presumed that the force acting on the retardation film 21 provided on the second surface 11b side of the polarizing film 11 can be reduced, and the occurrence of cracks in the retardation film 21 can be suppressed. .
  • Each film constituting the polarizing plate 1 can be laminated via bonding layers 31 to 33 as shown in FIG.
  • the lamination layers 31 to 33 are layers using an adhesive or pressure-sensitive adhesive.
  • the bonding layer 31 for bonding the protective film 12 and the protective film 13 is preferably a layer using an adhesive.
  • Both the bonding layer 32 for bonding the protective film 13 and the polarizing film 11 and the bonding layer 33 for bonding the polarizing film 11 and the retardation film 21 are layers using an adhesive. is preferably
  • the polarizing plate 1 further includes an antistatic layer, another retardation layer different from the retardation film 21, another protective layer different from the protective films 12 and 13 for protecting the surface of the polarizing film 11, etc. may have a functional layer of
  • the polarizing plate 1 can be used as an optical element that constitutes a display device. Therefore, the polarizing plate 1 may have an adhesive layer 35 (FIG. 1) for bonding the polarizing plate 1 to a display element of a display device or the like. The polarizing plate 1 may further have a release film that covers and protects the pressure-sensitive adhesive layer 35 and that can be peeled off the pressure-sensitive adhesive layer 35 .
  • the display device can include a polarizing plate 1 and a display element such as a liquid crystal cell or an organic electroluminescence (EL) element.
  • the polarizing plate 1 can be arranged so that the second surface 11b side of the polarizing film 11 faces the display element side.
  • the polarizing plate 1 may be laminated on the display element via the adhesive layer 35 shown in FIG. Just do it. Examples of display devices include liquid crystal display devices and organic EL devices.
  • the films and layers constituting the polarizing plate 1 will be described in detail below.
  • the polarizing film 11 is an absorptive polarizing film having a property of absorbing linearly polarized light having a plane of vibration parallel to its absorption axis and transmitting linearly polarized light having a plane of vibration perpendicular to the absorption axis (parallel to the transmission axis).
  • a film in which a dichroic dye is adsorbed and oriented on a uniaxially stretched PVA-based resin film can be preferably used.
  • the thickness of the polarizing film 11 is usually 50 ⁇ m or less, preferably 5 ⁇ m or more and 30 ⁇ m or less, more preferably 5 ⁇ m or more and 25 ⁇ m or less, and still more preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the polarizing film 11 can be prevented from being broken, cracked, or the like during production, and can maintain good optical properties at the same time.
  • the thickness of the polarizing film By setting the thickness of the polarizing film to 20 ⁇ m or less, it is possible to further suppress deterioration in visibility when placed in a high-temperature environment.
  • the polarizing film 11 is formed by, for example, a process of stretching a PVA-based resin film; a process of dyeing the PVA-based resin film with a dichroic dye to adsorb the dichroic dye; and a PVA-based resin to which the dichroic dye is adsorbed. It can be produced by a method comprising a step of treating the film with a cross-linking solution such as an aqueous boric acid solution; and a step of washing with water after the step of treating with the cross-linking solution.
  • a cross-linking solution such as an aqueous boric acid solution
  • PVA-based resin film it is possible to use a film made of polyvinyl alcohol-based resin (hereinafter sometimes referred to as "PVA-based resin").
  • PVA-based resins include saponified polyvinyl acetate-based resins.
  • polyvinyl acetate-based resins include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate with other monomers that can be copolymerized.
  • Other monomers copolymerizable with vinyl acetate include, for example, unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and (meth)acrylamides having an ammonium group.
  • (meth)acryl means at least one selected from acryl and methacryl. The same applies to "(meth)acryloyl", "(meth)acrylate” and the like.
  • the degree of saponification of the PVA-based resin is usually 85 mol% or more and 100 mol% or less, preferably 98 mol% or more.
  • the PVA-based resin may be modified, for example, aldehyde-modified polyvinyl formal or polyvinyl acetal may be used.
  • the average degree of polymerization of the PVA-based resin is usually 1000 or more and 10000 or less, preferably 1500 or more and 5000 or less.
  • the average degree of polymerization of the PVA-based resin can be obtained according to JIS K 6726.
  • the method of forming a PVA-based resin film is not particularly limited, and a known method is adopted.
  • the thickness of the PVA-based resin film used for the raw film when producing the polarizing film is preferably 40 ⁇ m or more and 75 ⁇ m or less, and more preferably 45 ⁇ m or less.
  • the stretching of the PVA-based resin film is preferably uniaxial stretching.
  • Uniaxial stretching can be performed before, at the same time as, or after dyeing the dichroic dye. When uniaxial stretching is performed after dyeing, this uniaxial stretching may be performed before or during the cross-linking treatment. Moreover, you may uniaxially stretch in these several steps.
  • the film In the uniaxial stretching, the film may be uniaxially stretched between rolls having different circumferential speeds, or may be uniaxially stretched using hot rolls.
  • the uniaxial stretching may be dry stretching in which the film is stretched in the air, or wet stretching in which the PVA-based resin film is stretched in a swollen state using a solvent or water. The draw ratio is usually 3 to 8 times.
  • a method for dyeing a PVA-based resin film with a dichroic dye for example, a method of immersing the PVA-based resin film in an aqueous solution containing a dichroic dye is adopted. Iodine and dichroic organic dyes are used as dichroic dyes.
  • the PVA-based resin film is preferably immersed in water before being dyed.
  • the boric acid-containing aqueous solution preferably contains potassium iodide.
  • Protective films 12 and 13 have a base film and an HC layer. It is preferable that the protective films 12 and 13 have an HC layer formed so as to be in direct contact with the base film.
  • the HC layer is preferably provided on one side of the base film, but may be provided on both sides.
  • the protective films 12 and 13 laminated on the first surface 11a side of the polarizing film 11 (hereinafter, two or more protective films laminated on the first surface 11a side may be collectively referred to as a "protective film group").
  • a protective film group is preferably 5 or less, more preferably 3 or less, and most preferably 2.
  • the protective film group includes 6 or more protective films, it becomes difficult to adjust the curl (warp) of the polarizing plate 1 .
  • the protective films 12 and 13 constituting the protective film group are preferably laminated via a bonding layer 31, and both surfaces of the bonding layer 31 constitute the protective film group. More preferably, it is in direct contact with protective films 12 and 13 .
  • the base film is arranged on the polarizing film 11 side, and the HC layer is on the surface side of the polarizing plate 1 (the side opposite to the polarizing film 11 side).
  • the thickness of the protective film is not particularly limited, it is usually 1 ⁇ m or more and 100 ⁇ m or less, preferably 5 ⁇ m or more and 60 ⁇ m or less, more preferably 10 ⁇ m or more and 55 ⁇ m or less, and 15 ⁇ m or more and 50 ⁇ m or less from the viewpoint of strength and handleability. is more preferable.
  • One or both of the material and thickness of the base film and the HC layer may be the same for the protective films 12 and 13 constituting the protective film group. may be different from each other.
  • At least one protective film in the protective film group preferably has a moisture permeability of 200 g/m 2 ⁇ day or more at a temperature of 40°C and a relative humidity of 90%, more preferably 300 g/m 2 ⁇ day or more.
  • the upper limit is usually 5000 g/m 2 ⁇ day or less, preferably 2000 g/m 2 ⁇ day or less, more preferably 1000 g/m 2 ⁇ day or less.
  • at least one protective film in the group of protective films should have a moisture permeability within the above range. By setting the moisture permeability of the protective film within the above range, it is possible to prevent the polarizing film 11 from becoming polyene and being colored in the heating endurance test described later.
  • the protective film 12 laminated closest to the polarizing film in the group of protective films has a moisture permeability within the above range.
  • a bonding agent adhesive or adhesive
  • the bonding layer is dried by drying. 32 and then a protective film 13 may be laminated.
  • the moisture permeability of the protective film 12, which is laminated closest to the polarizing film 11 among the protective films, to the above range the moisture contained in the bonding agent can be easily removed by the drying process.
  • the moisture permeability of the other protective films 13 other than the protective film 12 included in the protective film group is not particularly limited.
  • the moisture permeability of the other protective film 13 may be lower than the moisture permeability of the protective film 12 .
  • the moisture permeability of the other protective film 13 at a temperature of 40° C. and a relative humidity of 90% is not particularly limited, but is preferably 1000 g/m 2 ⁇ day or less, more preferably 500 g/m 2 ⁇ day or less. .
  • the moisture permeability of the protective film 13 is preferably more than 20 g/m 2 ⁇ day, more preferably 30 g/m 2 ⁇ day or more.
  • the upper limit value of the moisture permeability of the other protective film 13 By setting the upper limit value of the moisture permeability of the other protective film 13 within the above range, it is possible to suppress the rate at which moisture is taken into the polarizing plate 1 after the heat durability test. As a result, it becomes easier to secure time for stress relaxation of the polarizing film 11 , so it is thought that the occurrence of cracks in the retardation film 21 can be suppressed.
  • the lower limit value of the moisture permeability of the other protective film 13 within the above range, it is possible to suppress the polarizing film 11 from polyene-forming and coloring in the heat durability test.
  • the moisture permeability of the protective films 12 and 13 can be measured by the method described in Examples below.
  • the moisture permeability of the protective film 12 is 200 g/m 2 ⁇ day or more, and the moisture permeability of the other protective film 13 is 1000 g/m 2 ⁇ day or less. Even when the relationship is reversed, it is possible to prevent the polarizing film 11 from becoming polyene and coloring due to the heating endurance test.
  • the base film that constitutes the protective films 12 and 13 is not particularly limited, but is preferably made of a resin material that is excellent in transparency, mechanical strength, thermal stability, moisture shielding properties, and the like.
  • resin materials include (meth)methyl acrylate-based resins, polyolefin-based resins, cyclic olefin-based resins, polyvinyl chloride-based resins, cellulose-based resins, styrene-based resins, acrylonitrile-butadiene-styrene-based resins, Acrylonitrile/Styrene Resin, Polyvinyl Acetate Resin, Polyvinylidene Chloride Resin, Polyamide Resin, Polyacetal Resin, Polycarbonate Resin, Modified Polyphenylene Ether Resin, Polybutylene Tephthalate Resin, Polyethylene Tephthalate Resin, Polysulfone one or more of polyethersulfone-based resins, polyarylate-based resins, polyamideimide-based
  • the base film of at least one protective film in the group of protective films is preferably a cellulose resin film formed using a cellulose resin as a resin material. It is more preferable that the base films of all the protective films constituting the protective film group are cellulose resin films.
  • the cellulosic resin can be an organic acid ester or mixed organic acid ester of cellulose in which some or all of the hydrogen atoms in the hydroxyl groups of cellulose are substituted with acetyl groups, propionyl groups and/or butyryl groups.
  • examples thereof include cellulose acetate, propionate, butyrate, and mixed esters thereof.
  • triacetyl cellulose, diacetyl cellulose, cellulose acetate propionate, cellulose acetate butyrate and the like are preferable.
  • additives may be added to the resin material constituting the base film as long as the transparency is not impaired. Additives such as antioxidants, ultraviolet absorbers, antistatic agents, lubricants, nucleating agents, antifogging agents, antiblocking agents, retardation reducing agents, stabilizers, processing aids, plasticizers, impact resistance aids , matting agents, antibacterial agents, antifungal agents, and the like. One or more of these additives may be used, and multiple types may be used in combination.
  • the thickness of the base film is not particularly limited, but may be, for example, 1 ⁇ m or more, 3 ⁇ m or more, 10 ⁇ m or more, 30 ⁇ m or more, and usually 90 ⁇ m or less. and may be 70 ⁇ m or less, 60 ⁇ m or less, or 50 ⁇ m or less.
  • the substrate film usually has a single-layer structure, but may have a multi-layer structure of two or more layers.
  • the HC layer that constitutes the protective films 12 and 13 is not particularly limited, it is preferably a cured product layer of an ultraviolet curable resin formed on the base film.
  • UV curable resins include (meth)acrylic resins, silicone resins, polyester resins, urethane resins, amide resins, and epoxy resins.
  • the HC layer may contain additives to improve surface hardness. Examples of additives include, but are not limited to, inorganic fine particles, organic fine particles, and mixtures thereof.
  • the thickness of the HC layer is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, usually 0.1 ⁇ m or more, may be 1 ⁇ m or more, or may be 4 ⁇ m or more.
  • the curl (warp) of the protective films 12 and 13 increases, making it difficult to adjust the curl of the polarizing plate 1 .
  • the protective films 12 and 13 have a pencil hardness specified in JIS K 5600-5-4: 1999 "Paint general test method-Part 5: Mechanical properties of coating film-Section 4: Scratch hardness (pencil method)" According to the test (when the base film with the HC layer formed thereon is placed on a glass plate and the HC layer side is measured), it is preferably H or more, more preferably 2H or more, and 3H or more. It may be 4H or more.
  • the HC layer is, for example, a composition for forming an HC layer containing an ultraviolet curable resin and, if necessary, additives (hereinafter sometimes referred to as "composition for forming an HC layer") on a base film. ) and cured by UV irradiation.
  • composition for forming an HC layer a composition for forming an HC layer containing an ultraviolet curable resin and, if necessary, additives
  • the retardation film 21 is a film having retardation, and is usually a stretched film obtained by stretching a resin film.
  • the retardation film 21 preferably has a single layer structure.
  • the tensile elastic modulus of the retardation film 21 at a temperature of 23° C. is 3000 MPa or less, and may be 2800 MPa or less, usually 1000 MPa or more, and may be 2000 MPa or more.
  • the tensile modulus can be measured by the method described in Examples below.
  • Examples of the retardation film 21 having the above tensile modulus include an olefin-based resin film formed using an olefin-based resin.
  • Olefin-based resins include linear aliphatic olefins such as ethylene and propylene, or alicyclic olefins such as norbornene and its substituted products (hereinafter collectively referred to as "norbornene-based monomers").
  • Examples include resins mainly containing derived structural units. Mainly containing structural units means that the proportion of the structural units contained in the resin is 50% or more based on the amount of substance.
  • the olefinic resin may be a copolymer using two or more monomers.
  • the retardation film 21 is preferably a cyclic olefin-based resin film formed using a cyclic olefin-based resin, which is a resin mainly containing structural units derived from an alicyclic olefin.
  • a cyclic olefin-based resin which is a resin mainly containing structural units derived from an alicyclic olefin.
  • Typical examples of alicyclic olefins constituting cyclic olefin resins include norbornene-based monomers.
  • Norbornene is a compound in which one carbon-carbon bond of norbornane is a double bond, and according to the IUPAC nomenclature, it is named bicyclo[2,2,1]hept-2-ene. be.
  • substituted norbornene examples include 3-substituted, 4-substituted, and 4,5-disubstituted, with the double bond position of norbornene being 1,2-position, and further Also included are dicyclopentadiene and dimethanooctahydronaphthalene.
  • the cyclic olefin resin may or may not have a norbornane ring in its constituent units.
  • norbornene-based monomers that form cyclic olefin-based resins that do not have a norbornane ring in their constituent units include, for example, those that become 5-membered rings by ring opening, typically norbornene, dicyclopentadiene, 1- or 4- Examples include methylnorbornene, 4-phenylnorbornene, and the like.
  • the cyclic olefin resin is a copolymer
  • the arrangement state of its molecules is not particularly limited, and may be a random copolymer, a block copolymer, or a graft copolymer. It may be a polymer.
  • cyclic olefin resins include ring-opening polymers of norbornene-based monomers, ring-opening copolymers of norbornene-based monomers and other monomers, maleic acid addition, cyclopentadiene addition, and the like. modified polymers, and hydrogenated polymers or copolymers thereof; addition polymers of norbornene-based monomers, addition copolymers of norbornene-based monomers and other monomers, and the like.
  • Other monomers in the case of copolymerization include ⁇ -olefins, cycloalkenes, non-conjugated dienes, and the like.
  • the cyclic olefin-based resin may be a copolymer using one or more of norbornene-based monomers and other alicyclic olefins.
  • the cyclic olefin-based resin a ring-opening polymer or a resin obtained by hydrogenating a ring-opening copolymer using a norbornene-based monomer is preferable.
  • a film made of a mixed resin containing two or more kinds of olefinic resins, or a film made of a mixed resin of an olefinic resin and another thermoplastic resin can be used.
  • mixed resins containing two or more kinds of olefinic resins include mixtures of cyclic olefinic resins and linear aliphatic olefinic resins as described above.
  • the other thermoplastic resin is appropriately selected depending on the purpose.
  • thermoplastic resins include polyvinyl chloride resins, cellulose resins, polystyrene resins, acrylonitrile/butadiene/styrene copolymer resins, acrylonitrile/styrene copolymer resins, (meth)acrylic resins, and polyacetic acid.
  • Vinyl resin polyvinylidene chloride resin, polyamide resin, polyacetal resin, polycarbonate resin, modified polyphenylene ether resin, polybutylene terephthalate resin, polyethylene terephthalate resin, polyphenylene sulfide resin, polysulfone resin, polyether
  • examples include sulfone-based resins, polyetheretherketone-based resins, polyarylate-based resins, liquid-crystalline resins, polyamide-imide-based resins, polyimide-based resins, and polytetrafluoroethylene-based resins.
  • These thermoplastic resins may be used alone or in combination of two or more.
  • the thermoplastic resin can be used after being subjected to any appropriate polymer modification. Examples of polymer modification include copolymerization, cross-linking, molecular terminal modification, stereoregularity impartation, and the like.
  • the content of the other thermoplastic resin is usually about 50% by weight or less, preferably about 40% by weight or less, based on the total resin.
  • the retardation film has a small absolute value of the photoelastic coefficient, exhibits good wavelength dispersion characteristics, and is excellent in durability, mechanical strength, and transparency. 21 can be obtained.
  • the retardation film 21 may contain other components such as residual solvents, stabilizers, plasticizers, anti-aging agents, anti-static agents, and ultraviolet absorbers as necessary.
  • a leveling agent may also be included to reduce surface roughness.
  • the retardation film 21 preferably has an in-plane retardation value, and the in-plane retardation value at a wavelength of 550 nm is preferably 80 nm or more, may be 90 nm or more, or may be 100 nm or more, Moreover, it may be 300 nm or less, or may be 200 nm or less.
  • the retardation film 21 is preferably a stretched film.
  • the polarizing plate 1 has a structure in which two or more protective films 12 and 13 are laminated on the first surface 11 a of the polarizing film 11 .
  • the polarizing plate 1 including the retardation film 21 having a high in-plane retardation value as described above is held for a long time under normal temperature and humidity environment after the heat durability test, the dimensions of the polarizing film 11 Since the change can be suppressed and the force acting on the retardation film 21 can be reduced accordingly, the generation of cracks in the retardation film 21 can be suppressed.
  • the in-plane retardation value of the retardation film 21 can be measured by the method described in Examples below.
  • the in-plane retardation value Re( ⁇ ) of the retardation film 21 at the wavelength ⁇ [nm] refers to the in-plane retardation value of the retardation film 21 at a temperature of 23° C., and is obtained by the following formula (i).
  • Re( ⁇ ) (nx ⁇ ny) ⁇ d(i) [in the formula (i), nx is the refractive index in the direction in which the in-plane refractive index is maximum (that is, the slow axis direction), ny is the refractive index in the direction perpendicular to the slow axis in the plane, d is the thickness [nm] of the retardation film 21 . ]
  • the retardation film 21 may have a retardation value of 0 (zero) in the thickness direction, or may have a retardation value in the thickness direction.
  • the thickness direction retardation value of the retardation film 21 at a wavelength of 550 nm may be, for example, 10 nm or more, 20 nm or more, 40 nm or more, or 100 nm or less. , 80 nm or less, or 60 nm or less.
  • the retardation value in the thickness direction of the retardation film 21 can be measured by the method described in Examples below.
  • the retardation value Rth( ⁇ ) in the thickness direction of the retardation film 21 at the wavelength ⁇ [nm] refers to the retardation value in the thickness direction of the retardation film 21 at a temperature of 23° C., and is obtained by the following formula (ii).
  • Rth( ⁇ ) [ ⁇ (nx+ny)/2 ⁇ -nz] ⁇ d (ii)
  • nx is the refractive index in the direction in which the in-plane refractive index is maximum (that is, the slow axis direction)
  • ny is the refractive index in the direction perpendicular to the slow axis in the plane
  • nz is the refractive index in the thickness direction
  • d is the thickness [nm] of the retardation film 21 .
  • the thickness of the retardation film 21 is not particularly limited, it is preferably 15 ⁇ m or more and 80 ⁇ m or less, more preferably 18 ⁇ m or more and 45 ⁇ m or less, and most preferably 20 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the retardation film is less than 15 ⁇ m, it tends to be difficult to handle the film and to exhibit a predetermined retardation value.
  • the thickness of the retardation film exceeds 80 ⁇ m, the processability tends to be poor, the transparency tends to decrease, and the weight of the obtained polarizing plate 1 tends to increase.
  • the retardation film 21 can be obtained by using a resin film formed using the resin described above and stretching it.
  • the resin film can be obtained, for example, by forming a film from a solution containing the above-described olefinic resin by a casting method, a melt extrusion method, or the like.
  • the film forming method is not particularly limited. Examples include a method of producing a film by a casting method, and a method of producing a film by melt-extrusion by melt-mixing resin components in a predetermined ratio.
  • Examples of the stretching treatment of the resin film include known vertical uniaxial stretching, tenter horizontal uniaxial stretching, simultaneous biaxial stretching, and sequential biaxial stretching.
  • various temperatures such as preheating temperature, stretching temperature, heat setting temperature, cooling temperature, etc. during stretching, and The pattern may be appropriately selected.
  • the retardation film 21 is the cyclic olefin-based resin film described above, for example, a film-like material that has been subjected to stretching treatment in advance using the cyclic olefin-based resin described above, and a shrinkable film having a predetermined shrinkage rate is obtained. can be obtained by bonding and heat-shrinking. Thereby, a retardation film 21 having high uniformity and a large retardation value can be obtained.
  • the polarizing plate 1 includes an antistatic layer, another retardation layer different from the retardation film 21, and another protective layer different from the protective films 12 and 13 for covering and protecting the surface of the polarizing film 11. It may have one or more functional layers.
  • the antistatic layer is a layer for suppressing the polarizing plate 1 from being charged.
  • the antistatic layer usually contains an antistatic agent such as an ionic compound, and can be, for example, a layer containing an antistatic agent and a resin.
  • the antistatic layer is, for example, in the polarizing plate 1, between the polarizing film 11 and the retardation film 21, or between the polarizing film 11 and the protective film 12, the opposite side of the retardation film 21 from the polarizing film 11, etc. can be set to
  • the antistatic layer is preferably laminated on these films via a lamination layer.
  • Another retardation layer is a layer having an in-plane retardation value or a retardation value in the thickness direction.
  • the other retardation layer may be, for example, a retardation layer having a retardation value in the thickness direction at a wavelength of 550 nm, such as a positive C plate.
  • a positive C plate is used, for example, when the polarizing plate 1 is used in an IPS mode liquid crystal display device or the like.
  • Another retardation layer can be provided, for example, between the polarizing film 11 and the retardation film 21 or on the side of the retardation film 21 opposite to the polarizing film 11 side.
  • the other retardation layer may be a stretched film obtained by stretching a resin film, or may be a cured product layer of a polymerizable liquid crystal compound.
  • Another retardation layer can be laminated on the polarizing film 11 and the retardation film 21 via a bonding layer.
  • the other retardation layer is a cured product layer, by polymerizing and curing the polymerizable liquid crystal compound applied to the polarizing film 11 or the retardation film 21, it can be provided so as to be in direct contact with these films.
  • Another protective layer is a layer for covering and protecting the first surface 11 a or the second surface 11 b of the polarizing film 11 .
  • Another protective layer is provided on the second surface 11b side of the polarizing film 11, and is preferably provided between the polarizing film 11 and the retardation film 21 via a bonding layer.
  • the bonding layer provided between the polarizing film 11 and the other protective layer is provided so as to be in contact with the polarizing film 11 and the other protective layer, respectively, and between the other protective layer and the retardation film 21
  • the lamination layer provided in 1 is provided so as to be in contact with the other protective layer and the retardation film 21 respectively.
  • Another protective layer includes a film formed using the resin material described in the base film forming the protective films 12 and 13 .
  • the other protective layer preferably has no retardation, and examples thereof include a cellulose resin film having no retardation and a cyclic olefin resin film having no retardation.
  • the adhesive is an adhesive other than a pressure-sensitive adhesive (adhesive), and includes, for example, a water-based adhesive, an active energy ray-curable adhesive or a thermosetting adhesive, preferably a water-based adhesive, It is an active energy ray-curable adhesive.
  • the thickness of the lamination layer formed using an adhesive may be, for example, 0.01 ⁇ m or more, 0.1 ⁇ m or more, 0.5 ⁇ m or more, or 1 ⁇ m or more. For example, it may be 20 ⁇ m or less, 15 ⁇ m or less, 10 ⁇ m or less, or 5 ⁇ m or less.
  • water-based adhesives include adhesives made from aqueous solutions of polyvinyl alcohol-based resins, water-based two-liquid urethane-based emulsion adhesives, and the like. Among them, a water-based adhesive composed of an aqueous polyvinyl alcohol resin solution is preferably used.
  • Polyvinyl alcohol-based resins include vinyl alcohol homopolymers obtained by saponifying polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate with other monomers copolymerizable therewith.
  • a polyvinyl alcohol-based copolymer obtained by saponifying a polymer, or a modified polyvinyl alcohol-based polymer obtained by partially modifying the hydroxyl groups thereof can be used.
  • the water-based adhesive can contain cross-linking agents such as aldehyde compounds (glyoxal, etc.), epoxy compounds, melamine compounds, methylol compounds, isocyanate compounds, amine compounds, polyvalent metal salts, and the like.
  • a drying process to remove the water contained in the water-based adhesive after lamination with the film to be laminated.
  • a curing step of curing at a temperature of, for example, 20 to 45°C may be provided.
  • the active energy ray-curable adhesive is an adhesive containing a curable compound that is cured by irradiation with an active energy ray such as ultraviolet rays, visible light, electron beams, and X-rays, and is preferably an ultraviolet curable adhesive.
  • the curable compound can be a cationically polymerizable curable compound or a radically polymerizable curable compound.
  • Examples of cationic polymerizable curable compounds include epoxy compounds (compounds having one or more epoxy groups in the molecule) and oxetane compounds (one or two or more oxetane rings in the molecule). compound), or a combination thereof.
  • radically polymerizable curable compounds examples include (meth)acrylic compounds (compounds having one or more (meth)acryloyloxy groups in the molecule) and radically polymerizable double bonds. Other vinyl-based compounds or combinations thereof can be included.
  • a cationic polymerizable curable compound and a radically polymerizable curable compound may be used in combination.
  • the active energy ray-curable adhesive usually further contains a cationic polymerization initiator and/or a radical polymerization initiator for initiating the curing reaction of the curable compound.
  • a pressure-sensitive adhesive exhibits adhesiveness when it is attached to an adherend, and is called a pressure-sensitive adhesive.
  • the adhesive can be composed of an adhesive composition containing a (meth)acrylic, rubber, urethane, ester, silicone, or polyvinyl ether resin as a main component. Among them, a pressure-sensitive adhesive composition using a (meth)acrylic resin as a base polymer, which is excellent in transparency, weather resistance, heat resistance, etc., is preferable.
  • the adhesive may be active energy ray-curable or thermosetting.
  • the thickness of the lamination layer formed using the adhesive is usually 3 ⁇ m or more and 30 ⁇ m or less, preferably 3 ⁇ m or more and 25 ⁇ m or less.
  • the (meth)acrylic resin (base polymer) contained in the adhesive composition includes, for example, butyl (meth)acrylate, ethyl (meth)acrylate, isooctyl (meth)acrylate, 2-(meth)acrylate, Polymers or copolymers containing one or more of (meth)acrylic acid esters such as ethylhexyl as monomers are preferably used.
  • the base polymer is copolymerized with a polar monomer.
  • polar monomers examples include (meth)acrylic acid, 2-hydroxypropyl (meth)acrylate, hydroxyethyl (meth)acrylate, (meth)acrylamide, N,N-dimethylaminoethyl (meth)acrylate, glycidyl ( Monomers having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group, etc., such as meth)acrylates, can be mentioned.
  • the adhesive composition may contain only the above base polymer, but usually further contains a cross-linking agent.
  • the cross-linking agent is a metal ion having a valence of 2 or more, which forms a carboxylic acid metal salt with a carboxyl group; a polyamine compound, which forms an amide bond with a carboxyl group; Examples include epoxy compounds and polyols that form ester bonds with carboxyl groups; and polyisocyanate compounds that form amide bonds with carboxyl groups. Among them, polyisocyanate compounds are preferred.
  • the polarizing plate 1 may have an adhesive layer 35 for bonding the polarizing plate 1 to a display element of a display device or the like.
  • the pressure-sensitive adhesive layer 35 is preferably provided on the side of the retardation film 21 of the polarizing plate 1 opposite to the polarizing film 11 side.
  • the adhesive layer 35 can be formed using an adhesive. Examples of the adhesive include the adhesive used for forming the bonding layer.
  • the thickness of the adhesive layer 35 is not particularly limited, it is usually 3 ⁇ m or more and 50 ⁇ m or less, preferably 5 ⁇ m or more and 40 ⁇ m or less, and may be 10 ⁇ m or more and 30 ⁇ m or less.
  • the polarizing plate 1 may have a release film that can be separated from the adhesive layer 35 .
  • the release film is used to cover and protect the surface of the adhesive layer 35 or to support the adhesive layer 35 .
  • Examples of the release film include a film obtained by subjecting the surface of the base resin film on the pressure-sensitive adhesive layer 35 side to release treatment such as silicone treatment.
  • Examples of the resin material that constitutes the base resin film include films formed using the resin materials described above for the base film.
  • the base resin film may have a one-layer structure or a multi-layer structure of two or more layers.
  • a method for manufacturing the polarizing plate 1 is not particularly limited, and a known method can be used.
  • the protective film 12 is laminated on the first surface 11a of the polarizing film 11 using a water-based adhesive
  • the retardation film 21 is laminated on the second surface 11b of the polarizing film 11 using a water-based adhesive.
  • a laminate of protective film 12/bonding layer 32/polarizing film 11/bonding layer 33/retardation film 21 is produced through a drying process for removing water in the agent. At this time, if the thickness difference between the protective film 12 and the retardation film 21 is 30 ⁇ m or less, curling of the laminate can be easily suppressed, and a flat laminate can be easily obtained.
  • the polarizing plate 1 can be obtained by laminating the protective film 13 on the protective film 12 side of the laminate with the bonding layer 31 interposed therebetween.
  • a step of laminating the protective films may be provided.
  • a laminate having a thickness difference of 30 ⁇ m or less between the protective film 12 and the retardation film 21 is used, curling occurring in the polarizing plate 1 can be easily suppressed, and a flat polarizing plate 1 can be obtained. easy to get
  • a surface activation treatment may be applied to the surface.
  • Surface activation treatments include dry treatments such as corona treatment, plasma treatment, discharge treatment (glow discharge treatment, etc.), flame treatment, ozone treatment, UV ozone treatment, ionizing active ray treatment (ultraviolet treatment, electron beam treatment, etc.). ; ultrasonic treatment using a solvent such as water or acetone, saponification treatment, and wet treatment such as anchor coating treatment. These surface activation treatments may be performed singly or in combination of two or more.
  • the moisture permeability of the protective film was measured in accordance with JIS K 7129:2008 Appendix B in an atmosphere at a temperature of 40°C and a relative humidity of 90%.
  • the storage elastic modulus G' of the measurement sample is measured using a dynamic viscoelasticity measuring device "DVA-220" manufactured by IT Keisoku Co., Ltd. under the conditions of a temperature of 23 ° C., a frequency of 1 Hz, and an initial strain of 1 N. Measure in
  • ⁇ Preparation of polarizing film> A 40 ⁇ m-thick PVA-based resin film made of a PVA-based resin having an average degree of polymerization of about 2400 and a degree of saponification of 99.9 mol % or more was prepared. This PVA-based resin film was uniaxially stretched about 5 times by a dry method, and further immersed in pure water at a temperature of 60° C. for 1 minute while maintaining the tension. After that, the PVA-based resin film was immersed in an aqueous solution of iodine/potassium iodide/water at a weight ratio of 0.05/5/100 at a temperature of 28° C. for 60 seconds.
  • the PVA-based resin film was immersed in an aqueous solution of potassium iodide/boric acid/water at a weight ratio of 8.5/8.5/100 at a temperature of 72° C. for 300 seconds. Subsequently, it was washed with pure water at a temperature of 26°C for 20 seconds and then dried at a temperature of 65°C. Thus, a polarizing film having a thickness of 15 ⁇ m was obtained in which iodine as a dichroic dye was adsorbed and oriented on the PVA-based resin film.
  • a composition for forming an HC layer was prepared by mixing the components shown below.
  • MEK 81.8 parts by mass PET30 is a mixture of pentaerythritol tetraacrylate and pentaerythritol triacrylate (manufactured by Nippon Kayaku Co., Ltd.).
  • Irgacure 907 is a photopolymerization initiator (manufactured by BASF).
  • MEK is methyl ethyl ketone.
  • a base film (cellulose acylate film TD40, manufactured by Fujifilm Corporation, width 1,340 mm, film thickness 40 ⁇ m) wound in a roll is unwound and transported at a speed of 30 m/min by a die coating method using a slot die. and dried at 60° C. for 150 seconds to form a coating layer. Then, under a nitrogen purge and an oxygen concentration of about 0.1%, an air-cooled metal halide lamp (manufactured by Eyegraphic Co., Ltd.) with an output of 160 W/cm was used to set an illuminance of 400 mW/cm 2 and an irradiation dose of 120 mJ/cm 2 .
  • An HC layer was formed by curing the coating layer by irradiating with ultraviolet rays.
  • the coating thickness of the coating layer was adjusted so that the thickness of the HC layer was 7 ⁇ m.
  • a protective film (1) having an HC layer on one side of the base film was obtained and wound up.
  • the moisture permeability of the protective film (1) was 250 g/m 2 ⁇ day.
  • the pencil hardness of the protective film (1) was 2H.
  • a protective film (2) was obtained in the same manner as the protective film (1), except that the thickness of the coating layer was adjusted so that the thickness of the HC layer was 5 ⁇ m.
  • the moisture permeability of the protective film (2) was 350 g/m 2 ⁇ day.
  • the pencil hardness of the protective film (2) was 3H.
  • a protective film (3) was obtained in the same manner as the protective film (1), except that the thickness of the coating layer was adjusted so that the thickness of the HC layer was 3 ⁇ m.
  • the moisture permeability of the protective film (3) was 500 g/m 2 ⁇ day.
  • the pencil hardness of the protective film (3) was 3H.
  • a retardation film and other retardation layers were prepared according to paragraphs [0106] to [0109] of WO2018/207798. Specifically, an unstretched cycloolefin polymer film (manufactured by JSR Corporation, trade name “Arton film”) was uniaxially stretched to obtain a retardation film having a thickness of 24 ⁇ m. When the tensile modulus of the obtained retardation film was measured at a temperature of 23° C., it was 2742 MPa. The retardation film had an in-plane retardation value Re(550) of 110 nm at a wavelength of 550 nm, and a thickness direction retardation value Rth(550) of 55 nm at a wavelength of 550 nm.
  • a retardation laminate was obtained by coating one side of the retardation film obtained above with a composition containing a rod-like liquid crystalline compound to form another retardation layer.
  • the other retardation layer had an in-plane retardation value Re(550) of 0 nm at a wavelength of 550 nm, and a thickness direction retardation value Rth(550) of ⁇ 100 nm at a wavelength of 550 nm.
  • PVA-based adhesive Preparation of polyvinyl alcohol-based adhesive (PVA-based adhesive)> 50 g of a modified PVA resin containing an acetoacetyl group (manufactured by Mitsubishi Chemical Corporation: Gohsenex Z-410) is dissolved in 950 g of pure water, heated at a temperature of 90 ° C. for 2 hours, cooled to room temperature, and polyvinyl alcohol solution. got Next, a polyvinyl alcohol solution, maleic acid, glyoxal, and pure water were blended so that each compound would have the following concentrations to prepare a PVA-based adhesive. Polyvinyl alcohol concentration 3.0% by weight Maleic acid concentration 0.01% by weight Glyoxal concentration 0.15% by weight
  • As the adhesive layer A a commercially available sheet-like acrylic adhesive with a thickness of 5 ⁇ m (storage elastic modulus at a temperature of 23° C.: 0.06 MPa) was prepared.
  • As the adhesive layer B a commercially available sheet-like acrylic adhesive with a thickness of 25 ⁇ m (storage elastic modulus at a temperature of 23° C. of 0.06 MPa) was prepared.
  • Example 1 The protective film (1) obtained above was immersed in a 1.5 mol/L NaOH aqueous solution (saponifying solution) kept at 55° C. for 2 minutes and then washed with water. The washed protective film (1) was immersed in a 0.05 mol/L sulfuric acid aqueous solution at 25° C. for 30 seconds and then passed under running water for 30 seconds to neutralize the protective film (1). After removing water from the protective film (1) with an air knife three times, it was dried by staying in a drying zone at a temperature of 70° C. for 15 seconds. As a result, a saponified protective film (1) was obtained in which the HC layer and the base film were subjected to saponification treatment (surface activation treatment).
  • saponification treatment surface activation treatment
  • a saponified protective film (1) (hereinafter sometimes referred to as “first protective film (1)”), a polarizing film, and a retardation laminate are combined with the PVA-based adhesive prepared above.
  • a laminate (1) was obtained by laminating through In the laminate (1), the absorption axis of the polarizing film and the slow axis of the retardation film were parallel.
  • the other retardation layer side of the retardation laminate faced the polarizing film, and the substrate film side of the first protective film (1) faced the polarizing film.
  • the adhesive strength between the retardation laminate and the polarizing film and the adhesive strength between the polarizing film and the first protective film (1) were practically sufficient.
  • the saponified protective film ( 1) (hereinafter sometimes referred to as "second protective film (1)") was laminated.
  • the base film side was used as the bonding surface with the pressure-sensitive adhesive layer (A).
  • the phase difference laminate side of the laminate (1) is subjected to corona treatment
  • the surface of the adhesive layer B is subjected to corona treatment
  • the corona-treated surface of the laminate (1) and the corona-treated surface of the adhesive layer (B) are treated. and laminated.
  • a polarizing plate (1) was obtained.
  • both the first protective film (1) and the second protective film (1) are arranged on the same surface side of the polarizing film, and the first protective film (1) is the polarizing film , and the second protective film (1) was positioned relatively far from the polarizing film.
  • Example 2 A saponified protective film (2) which is saponified in place of the first protective film (1) and the second protective film (1) and subjected to the same saponification treatment as the saponification treatment performed on the protective film (1).
  • a polarizing plate (2) was obtained in the same procedure as the polarizing plate (1) produced in Example 1, except that the polarizing plate (2) was used.
  • Example 3 A saponified protective film (3) which is saponified in place of the first protective film (1) and the second protective film (1) and is saponified in the same manner as the saponification of the protective film (1).
  • a polarizing plate (3) was obtained in the same procedure as the polarizing plate (1) produced in Example 1, except that the polarizing plate (3) was used.
  • Comparative Example 2 A laminate (1) produced in the same procedure as in Example 1 was obtained and used as a comparative polarizing plate (C2).
  • Comparative Example 3 instead of the first protective film (1), saponified base film (cellulose acylate film TD40, FUJIFILM Corporation A comparative polarizing plate (C3) was obtained in the same manner as the polarizing plate (1) produced in Example 1, except that the polarizing plate (1) produced in Example 1 was used, except that a polarizing plate (1,340 mm in width and 40 ⁇ m in thickness) was used.
  • saponified base film cellulose acylate film TD40, FUJIFILM Corporation
  • the prepared evaluation sample was held in a heating environment at a temperature of 105°C for 500 hours, and then cooled to a temperature of 23°C (normal temperature). Then, after holding for 30 days in a normal temperature and normal humidity environment with a temperature of 23° C. and a relative humidity of 55%, the retardation film of the polarizing plate or the comparative polarizing plate was observed to confirm the presence or absence of cracks. Furthermore, for the evaluation sample in which no cracks were observed at this point, the retardation film was observed 7 days later (37 days after the start of holding under the normal temperature and humidity environment) to determine whether cracks occurred. Checked for presence. Table 1 shows the results.

Abstract

The present invention provides a polarizing plate that has excellent scratch resistance and suppresses the formation of cracks in a phase difference film even when stored for a long period of time in a normal-temperature and normal-humidity environment after being subjected to a thermal durability test. The polarizing plate comprises: a polarizing film in which a dichroic pigment has been adsorbed and oriented on a polyvinyl alcohol resin film; a protective film in which a hard coat layer is provided on top of a base film; and the phase difference film which has a tensile elastic modulus at a temperature of 23°C of 3000 MPa or less. Two or more protective films are layered on a first-surface side of the polarizing film. The phase difference film is layered on a second-surface side of the polarizing film, said second-surface side being the reverse side from the first surface.

Description

偏光板Polarizer
 本発明は、偏光板に関し、さらに偏光板を備えた表示装置に関する。 The present invention relates to a polarizing plate, and further to a display device equipped with a polarizing plate.
 液晶表示装置(LCD)は、液晶テレビだけでなく、パソコン、携帯電話等のモバイル用途、カーナビ等の車載用途等で広く用いられている。通常、液晶表示装置は、液晶セルの両側に粘着剤で偏光板を貼合した液晶パネル部材を有し、バックライト部材からの光を液晶パネル部材で制御することにより表示が行われている。また、有機EL表示装置も近年、液晶表示装置と同様に、テレビ、携帯電話等のモバイル用途、カーナビ等の車載用途等で広く用いられ始めている。液晶表示装置及び有機EL表示装置では、視野角の拡大又は外光の反射防止等の機能を付与するために位相差フィルムが用いられることがある。 Liquid crystal display devices (LCDs) are widely used not only for liquid crystal televisions, but also for mobile applications such as personal computers and mobile phones, and in-vehicle applications such as car navigation systems. Generally, a liquid crystal display device has a liquid crystal panel member in which polarizing plates are adhered to both sides of a liquid crystal cell with an adhesive, and display is performed by controlling light from a backlight member with the liquid crystal panel member. In recent years, like liquid crystal display devices, organic EL display devices have begun to be widely used in mobile applications such as televisions and mobile phones, and in-vehicle applications such as car navigation systems. In liquid crystal display devices and organic EL display devices, a retardation film is sometimes used in order to impart functions such as widening of the viewing angle or prevention of reflection of external light.
 偏光板は、液晶表示装置及び有機EL表示装置を構成する光学素子として車に搭載される機会が増えている。車載用の表示装置に用いられる偏光板は、テレビ及び携帯電話等のモバイル用途に用いられる偏光板に比較して、高温環境下に曝されることが多く、より高温での特性変化が小さいこと(高温耐久性)が求められる。 Polarizing plates are increasingly used in vehicles as optical elements that make up liquid crystal display devices and organic EL display devices. Compared to polarizing plates used in mobile applications such as televisions and mobile phones, polarizing plates used in in-vehicle display devices are often exposed to high-temperature environments and their properties change less at higher temperatures. (high temperature durability) is required.
 車載用の表示装置はカーナビ等で用いられる場合、タッチパネル機能が必要である。タッチパネル機能を有する表示装置として、近年、オンセル型及びインセル型の表示装置を用いることが増えている。これらの型の表示装置では、視認側の最表面に偏光板が配置されるため、高温耐久性に加えて傷つき防止機能(耐傷性)も求められる。 In-vehicle display devices require a touch panel function when used in car navigation systems. In recent years, on-cell and in-cell display devices have been increasingly used as display devices having a touch panel function. In these types of display devices, since the polarizing plate is arranged on the outermost surface on the viewing side, a scratch-preventing function (scratch resistance) is required in addition to high-temperature durability.
 特許文献1には、視野角を拡大するために、環状オレフィン系樹脂フィルムで構成された位相差フィルムを含む偏光板が記載されている。また、特許文献2には、偏光板を構成するλ/4板として機能する位相差フィルムに、環状オレフィン系樹脂を用いたフィルムを用いてもよいことが記載されている。 Patent Document 1 describes a polarizing plate including a retardation film made of a cyclic olefin resin film in order to expand the viewing angle. Moreover, Patent Document 2 describes that a film using a cyclic olefin resin may be used as a retardation film functioning as a λ/4 plate constituting a polarizing plate.
特許第5383594号公報Japanese Patent No. 5383594 特開2014-194483号公報JP 2014-194483 A
 上記の環状オレフィン系樹脂フィルムで構成された位相差フィルムのように、偏光板に組み込まれた位相差フィルムには、加熱耐久試験後にクラック(割れ)が確認されなくても、その後さらに常温常湿環境下において長期間保管すると、クラックが確認される場合があった。 Like the retardation film made of the above-mentioned cyclic olefin resin film, the retardation film incorporated in the polarizing plate, even if no cracks were confirmed after the heat durability test, was further tested at room temperature and normal humidity. When stored in an environment for a long period of time, cracks were observed in some cases.
 本発明は、耐傷性に優れ、かつ、加熱耐久試験後に常温常湿環境下に長期間保管しても位相差フィルムにおけるクラックの発生が抑制された偏光板の提供を目的とする。 An object of the present invention is to provide a polarizing plate that has excellent scratch resistance and that suppresses the occurrence of cracks in the retardation film even when stored for a long period of time under normal temperature and humidity after a heat durability test.
 本発明は、以下の偏光板を提供する。
 〔1〕 ポリビニルアルコール系樹脂フィルムに二色性色素が吸着配向している偏光フィルムと、
 基材フィルム上にハードコート層が設けられた保護フィルムと、
 温度23℃における引張弾性率が3000MPa以下である位相差フィルムと、を備え、
 前記偏光フィルムの第1面側には、前記保護フィルムが2以上積層されており、
 前記偏光フィルムの前記第1面側とは反対側の第2面側には、前記位相差フィルムが積層されている、偏光板。
 〔2〕 前記第1面側に積層された2以上の前記保護フィルムのうち、少なくとも一つの保護フィルムの温度40℃、相対湿度90%における透湿度は、200g/m・day以上である、〔1〕に記載の偏光板。
 〔3〕 前記第1面側に積層された2以上の前記保護フィルムのうち、最も前記偏光フィルム側に積層される保護フィルムの温度40℃、相対湿度90%における透湿度は、200g/m・day以上である、〔1〕又は〔2〕に記載の偏光板。
 〔4〕 前記第1面側に積層された2以上の前記保護フィルムのうち、少なくとも一つの保護フィルムの前記基材フィルムは、セルロース系樹脂フィルムである、〔1〕~〔3〕のいずれかに記載の偏光板。
 〔5〕 前記位相差フィルムは、環状オレフィン系樹脂フィルムである、〔1〕~〔4〕のいずれかに記載の偏光板。
 〔6〕 前記位相差フィルムの波長550nmにおける面内位相差値は、80nm以上である、〔1〕~〔5〕のいずれかに記載の偏光板。
 〔7〕 さらに、前記位相差フィルムの前記偏光フィルム側とは反対側に粘着剤層を有する、〔1〕~〔6〕のいずれかに記載の偏光板。
 〔8〕 〔7〕に記載の偏光板と、表示素子とを有する表示装置であって、
 前記偏光板は、前記粘着剤層を介して表示素子に積層されている、表示装置。
The present invention provides the following polarizing plate.
[1] A polarizing film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol-based resin film;
a protective film in which a hard coat layer is provided on a base film;
A retardation film having a tensile modulus of elasticity of 3000 MPa or less at a temperature of 23 ° C.,
Two or more of the protective films are laminated on the first surface side of the polarizing film,
A polarizing plate, wherein the retardation film is laminated on a second surface side opposite to the first surface side of the polarizing film.
[2] Among the two or more protective films laminated on the first surface side, at least one protective film has a moisture permeability at a temperature of 40°C and a relative humidity of 90% of 200 g/m 2 day or more. The polarizing plate of [1].
[3] Among the two or more protective films laminated on the first surface side, the protective film laminated closest to the polarizing film has a moisture permeability of 200 g/m 2 at a temperature of 40°C and a relative humidity of 90%. - The polarizing plate according to [1] or [2], which is at least day.
[4] Any one of [1] to [3], wherein the base film of at least one of the two or more protective films laminated on the first surface side is a cellulose resin film. The polarizing plate described in .
[5] The polarizing plate according to any one of [1] to [4], wherein the retardation film is a cyclic olefin resin film.
[6] The polarizing plate of any one of [1] to [5], wherein the retardation film has an in-plane retardation value of 80 nm or more at a wavelength of 550 nm.
[7] The polarizing plate of any one of [1] to [6], further comprising an adhesive layer on the side of the retardation film opposite to the polarizing film side.
[8] A display device comprising the polarizing plate of [7] and a display element,
The display device, wherein the polarizing plate is laminated on a display element via the pressure-sensitive adhesive layer.
 本発明によれば、耐傷性に優れ、かつ、加熱耐久試験後に常温常湿環境下に長期間保管しても位相差フィルムにおけるクラックの発生が抑制された偏光板を提供することができる。 According to the present invention, it is possible to provide a polarizing plate that has excellent scratch resistance and that suppresses the occurrence of cracks in the retardation film even after being stored for a long period of time under normal temperature and humidity conditions after a heat durability test.
本発明の一実施形態に係る偏光板を示す概略断面図である。1 is a schematic cross-sectional view showing a polarizing plate according to one embodiment of the present invention; FIG.
 以下、図面を参照して偏光板及び表示装置の好ましい実施形態について説明する。
 (偏光板)
 図1は、本実施形態に係る偏光板を示す概略断面図である。偏光板1は、ポリビニルアルコール系樹脂フィルム(以下、「PVA系樹脂フィルム」ということがある。)に二色性色素が吸着配向している偏光フィルム11と、基材フィルム上にハードコート層(以下、「HC層」ということがある。)が設けられた保護フィルム12,13と、温度23℃における引張弾性率が3000MPa以下である位相差フィルム21と、を備える。図1に示すように、偏光板1において、偏光フィルム11の第1面11a側には、2以上の保護フィルム12,13が積層され、偏光フィルム11の第1面11a側とは反対側の第2面11b側には、位相差フィルム21が積層されている。
Preferred embodiments of the polarizing plate and the display device will be described below with reference to the drawings.
(Polarizer)
FIG. 1 is a schematic cross-sectional view showing a polarizing plate according to this embodiment. The polarizing plate 1 includes a polarizing film 11 in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol-based resin film (hereinafter sometimes referred to as a "PVA-based resin film"), and a hard coat layer ( hereinafter sometimes referred to as “HC layer”), and a retardation film 21 having a tensile elastic modulus of 3000 MPa or less at a temperature of 23°C. As shown in FIG. 1, in the polarizing plate 1, two or more protective films 12 and 13 are laminated on the first surface 11a side of the polarizing film 11, and the protective films 12 and 13 are laminated on the side opposite to the first surface 11a side of the polarizing film 11. A retardation film 21 is laminated on the second surface 11b side.
 上記のように、偏光板1は、偏光フィルム11の第1面11a側に、HC層を含む保護フィルム12,13が2以上積層されている。これにより、偏光板1の保護フィルム12,13側の表面の鉛筆硬度を向上することができるため、偏光板1に優れた耐傷性を付与することができる。 As described above, the polarizing plate 1 has two or more protective films 12 and 13 including HC layers laminated on the first surface 11a side of the polarizing film 11 . As a result, the pencil hardness of the surface of the polarizing plate 1 on the side of the protective films 12 and 13 can be improved, so that the polarizing plate 1 can be provided with excellent scratch resistance.
 偏光板1は、温度105℃で500時間保持する加熱耐久試験を行った後に、温度23℃、相対湿度55%の常温常湿環境下で1ヶ月程度保持しても、位相差フィルム21にクラック(割れ)が発生することを抑制することができる。この理由は次のように推測される。加熱耐久試験後に偏光板1を冷却して常温常湿環境下で保持すると、大気中の水分(水蒸気)が偏光板内に取り込まれやすくなる。偏光板に取り込まれた水分は、PVA系樹脂フィルムを含む偏光フィルムの寸法変化を引き起こす原因となる。偏光フィルムの寸法変化に伴って発生する力が位相差フィルムに作用すると、位相差フィルムにクラック(割れ)を生じることがあると考えられる。一方、偏光板1は、偏光フィルム11の第1面11a側に2以上の保護フィルム12,13が積層されているため、偏光板1内への水分の取込み量を低減することができ、さらに偏光フィルム11の寸法変化を抑制することができる。そのため、偏光フィルム11の第2面11b側に設けられた位相差フィルム21に作用する力を低減することができ、位相差フィルム21にクラックが発生することを抑制することができると推測される。 After the polarizing plate 1 was subjected to a heat endurance test in which it was held at a temperature of 105°C for 500 hours, even if it was held in a normal temperature and normal humidity environment at a temperature of 23°C and a relative humidity of 55% for about one month, the retardation film 21 cracked. It is possible to suppress the occurrence of (cracks). The reason for this is presumed as follows. When the polarizing plate 1 is cooled after the heating endurance test and kept in a normal temperature and normal humidity environment, moisture (water vapor) in the atmosphere is easily taken into the polarizing plate. Moisture taken into the polarizing plate causes dimensional change of the polarizing film including the PVA-based resin film. It is considered that when the force generated by the dimensional change of the polarizing film acts on the retardation film, cracks may occur in the retardation film. On the other hand, since the polarizing plate 1 has two or more protective films 12 and 13 laminated on the first surface 11a side of the polarizing film 11, the amount of moisture taken into the polarizing plate 1 can be reduced. A dimensional change of the polarizing film 11 can be suppressed. Therefore, it is presumed that the force acting on the retardation film 21 provided on the second surface 11b side of the polarizing film 11 can be reduced, and the occurrence of cracks in the retardation film 21 can be suppressed. .
 偏光板1を構成する各フィルムは、図1に示すように、貼合層31~33を介して積層することができる。貼合層31~33は、接着剤又は粘着剤を用いた層である。保護フィルム12と保護フィルム13とを貼合するための貼合層31は、粘着剤を用いた層であることが好ましい。保護フィルム13と偏光フィルム11とを貼合するための貼合層32、及び、偏光フィルム11と位相差フィルム21とを貼合するための貼合層33は、いずれも接着剤を用いた層であることが好ましい。 Each film constituting the polarizing plate 1 can be laminated via bonding layers 31 to 33 as shown in FIG. The lamination layers 31 to 33 are layers using an adhesive or pressure-sensitive adhesive. The bonding layer 31 for bonding the protective film 12 and the protective film 13 is preferably a layer using an adhesive. Both the bonding layer 32 for bonding the protective film 13 and the polarizing film 11 and the bonding layer 33 for bonding the polarizing film 11 and the retardation film 21 are layers using an adhesive. is preferably
 偏光板1は、さらに、帯電防止層、位相差フィルム21とは別の他の位相差層、保護フィルム12,13とは別の、偏光フィルム11の表面を保護するための他の保護層等の機能層を有していてもよい。 The polarizing plate 1 further includes an antistatic layer, another retardation layer different from the retardation film 21, another protective layer different from the protective films 12 and 13 for protecting the surface of the polarizing film 11, etc. may have a functional layer of
 偏光板1は、表示装置を構成する光学素子として用いることができる。そのため、偏光板1は、表示装置の表示素子等に偏光板1を貼合するための粘着剤層35(図1)を有していてもよい。偏光板1は、さらに、粘着剤層35を被覆保護し、粘着剤層35に対して剥離可能な剥離フィルムを有していてもよい。 The polarizing plate 1 can be used as an optical element that constitutes a display device. Therefore, the polarizing plate 1 may have an adhesive layer 35 (FIG. 1) for bonding the polarizing plate 1 to a display element of a display device or the like. The polarizing plate 1 may further have a release film that covers and protects the pressure-sensitive adhesive layer 35 and that can be peeled off the pressure-sensitive adhesive layer 35 .
 (表示装置)
 表示装置は、偏光板1と、液晶セル又は有機エレクトロルミネッセンス(EL)素子等の表示素子とを含むことができる。表示装置において、偏光板1は、偏光フィルム11の第2面11b側が表示素子側となるように配置することができる。偏光板1は、図1に示す粘着剤層35を介して表示素子に積層してもよく、粘着剤層35を有していない場合は、粘着剤又は接着剤を介して表示素子に積層すればよい。表示装置としては、液晶表示装置、有機EL装置等が挙げられる。
(Display device)
The display device can include a polarizing plate 1 and a display element such as a liquid crystal cell or an organic electroluminescence (EL) element. In the display device, the polarizing plate 1 can be arranged so that the second surface 11b side of the polarizing film 11 faces the display element side. The polarizing plate 1 may be laminated on the display element via the adhesive layer 35 shown in FIG. Just do it. Examples of display devices include liquid crystal display devices and organic EL devices.
 以下、偏光板1を構成するフィルム及び層について詳細に説明する。
 (偏光フィルム)
 偏光フィルム11は、その吸収軸に平行な振動面をもつ直線偏光を吸収し、吸収軸に直交する(透過軸と平行な)振動面をもつ直線偏光を透過する性質を有する吸収型の偏光フィルムである。偏光フィルム11としては、一軸延伸されたPVA系樹脂フィルムに二色性色素を吸着配向させたフィルムを好適に用いることができる。
The films and layers constituting the polarizing plate 1 will be described in detail below.
(polarizing film)
The polarizing film 11 is an absorptive polarizing film having a property of absorbing linearly polarized light having a plane of vibration parallel to its absorption axis and transmitting linearly polarized light having a plane of vibration perpendicular to the absorption axis (parallel to the transmission axis). is. As the polarizing film 11, a film in which a dichroic dye is adsorbed and oriented on a uniaxially stretched PVA-based resin film can be preferably used.
 偏光フィルム11の厚みは、通常50μm以下であり、好ましくは5μm以上30μm以下であり、より好ましくは5μm以上25μm以下であり、さらに好ましくは5μm以上20μm以下である。偏光フィルム11の厚みをこれらの範囲にすることにより、偏光フィルム11の製造時の破断や割れ等を防止しつつハンドリング性を維持できるとともに、高い光学特性を両立することができる。偏光フィルムの厚みを20μm以下とすることにより、高温環境下に置いた場合の視認性の低下をより抑制することができる。 The thickness of the polarizing film 11 is usually 50 µm or less, preferably 5 µm or more and 30 µm or less, more preferably 5 µm or more and 25 µm or less, and still more preferably 5 µm or more and 20 µm or less. By setting the thickness of the polarizing film 11 within these ranges, the polarizing film 11 can be prevented from being broken, cracked, or the like during production, and can maintain good optical properties at the same time. By setting the thickness of the polarizing film to 20 μm or less, it is possible to further suppress deterioration in visibility when placed in a high-temperature environment.
 偏光フィルム11は、例えば、PVA系樹脂フィルムを延伸する工程;PVA系樹脂フィルムを二色性色素で染色することにより二色性色素を吸着させる工程;二色性色素が吸着されたPVA系樹脂フィルムをホウ酸水溶液等の架橋液で処理する工程;及び、架橋液で処理する工程の後に水洗する工程を含む方法によって製造することができる。 The polarizing film 11 is formed by, for example, a process of stretching a PVA-based resin film; a process of dyeing the PVA-based resin film with a dichroic dye to adsorb the dichroic dye; and a PVA-based resin to which the dichroic dye is adsorbed. It can be produced by a method comprising a step of treating the film with a cross-linking solution such as an aqueous boric acid solution; and a step of washing with water after the step of treating with the cross-linking solution.
 PVA系樹脂フィルムは、ポリビニルアルコール系樹脂(以下、「PVA系樹脂」ということがある。)を製膜したものを用いることができる。PVA系樹脂としては、ポリ酢酸ビニル系樹脂をケン化したものが挙げられる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルの他、酢酸ビニルと共重合可能な他の単量体との共重合体等が挙げられる。酢酸ビニルに共重合可能な他の単量体としては、例えば不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、及びアンモニウム基を有する(メタ)アクリルアミド類等が挙げられる。本明細書において「(メタ)アクリル」とは、アクリル及びメタクリルから選択される少なくとも一方を意味する。「(メタ)アクリロイル」、「(メタ)アクリレート」等においても同様である。 For the PVA-based resin film, it is possible to use a film made of polyvinyl alcohol-based resin (hereinafter sometimes referred to as "PVA-based resin"). Examples of PVA-based resins include saponified polyvinyl acetate-based resins. Examples of polyvinyl acetate-based resins include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate with other monomers that can be copolymerized. Other monomers copolymerizable with vinyl acetate include, for example, unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and (meth)acrylamides having an ammonium group. As used herein, "(meth)acryl" means at least one selected from acryl and methacryl. The same applies to "(meth)acryloyl", "(meth)acrylate" and the like.
 PVA系樹脂のケン化度は通常、85mol%以上100mol%以下であり、98mol%以上であることが好ましい。PVA系樹脂は変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマール又はポリビニルアセタール等を用いることもできる。PVA系樹脂の平均重合度は通常、1000以上10000以下であり、1500以上5000以下であることが好ましい。PVA系樹脂の平均重合度は、JIS K 6726に準拠して求めることができる。 The degree of saponification of the PVA-based resin is usually 85 mol% or more and 100 mol% or less, preferably 98 mol% or more. The PVA-based resin may be modified, for example, aldehyde-modified polyvinyl formal or polyvinyl acetal may be used. The average degree of polymerization of the PVA-based resin is usually 1000 or more and 10000 or less, preferably 1500 or more and 5000 or less. The average degree of polymerization of the PVA-based resin can be obtained according to JIS K 6726.
 PVA系樹脂を製膜する方法は、特に限定されるものではなく、公知の方法が採用される。偏光フィルムを製造する際の原反フィルムに用いられるPVA系樹脂フィルムの厚みは特に制限されない。例えば、偏光フィルムの厚みを25μm以下とするためには、原反フィルムとしてのPVA系樹脂フィルムの厚みは、40μm以上75μm以下であることが好ましく、45μm以下であることがより好ましい。 The method of forming a PVA-based resin film is not particularly limited, and a known method is adopted. There is no particular limitation on the thickness of the PVA-based resin film used for the raw film when producing the polarizing film. For example, in order to set the thickness of the polarizing film to 25 μm or less, the thickness of the PVA-based resin film as the raw film is preferably 40 μm or more and 75 μm or less, and more preferably 45 μm or less.
 PVA系樹脂フィルムの延伸は、一軸延伸であることが好ましい。一軸延伸は、二色性色素の染色前、染色と同時、又は染色の後に行うことができる。一軸延伸を染色の後で行う場合、この一軸延伸は、架橋処理の前又は架橋処理中に行ってもよい。また、これらの複数の段階で一軸延伸を行ってもよい。一軸延伸にあたっては、周速の異なるロール間で一軸に延伸してもよいし、熱ロールを用いて一軸に延伸してもよい。一軸延伸は、大気中で延伸を行う乾式延伸であってもよいし、溶剤や水を用いてPVA系樹脂フィルムを膨潤させた状態で延伸を行う湿式延伸であってもよい。延伸倍率は通常、3~8倍である。 The stretching of the PVA-based resin film is preferably uniaxial stretching. Uniaxial stretching can be performed before, at the same time as, or after dyeing the dichroic dye. When uniaxial stretching is performed after dyeing, this uniaxial stretching may be performed before or during the cross-linking treatment. Moreover, you may uniaxially stretch in these several steps. In the uniaxial stretching, the film may be uniaxially stretched between rolls having different circumferential speeds, or may be uniaxially stretched using hot rolls. The uniaxial stretching may be dry stretching in which the film is stretched in the air, or wet stretching in which the PVA-based resin film is stretched in a swollen state using a solvent or water. The draw ratio is usually 3 to 8 times.
 PVA系樹脂フィルムを二色性色素で染色する方法としては、例えば、PVA系樹脂フィルムを二色性色素が含有された水溶液に浸漬する方法が採用される。二色性色素としては、ヨウ素や二色性有機染料が用いられる。なお、PVA系樹脂フィルムは、染色処理の前に水への浸漬処理を施しておくことが好ましい。 As a method for dyeing a PVA-based resin film with a dichroic dye, for example, a method of immersing the PVA-based resin film in an aqueous solution containing a dichroic dye is adopted. Iodine and dichroic organic dyes are used as dichroic dyes. The PVA-based resin film is preferably immersed in water before being dyed.
 二色性色素による染色後の架橋処理としては通常、染色されたPVA系樹脂フィルムをホウ酸含有水溶液に浸漬する方法が採用される。二色性色素としてヨウ素を用いる場合、このホウ酸含有水溶液は、ヨウ化カリウムを含有することが好ましい。 As a cross-linking treatment after dyeing with a dichroic dye, a method of immersing the dyed PVA-based resin film in an aqueous solution containing boric acid is usually adopted. When iodine is used as the dichroic dye, the boric acid-containing aqueous solution preferably contains potassium iodide.
 (保護フィルム)
 保護フィルム12,13は、基材フィルムとHC層とを有する。保護フィルム12,13は、基材フィルムに直接接するようにHC層が形成されたものであることが好ましい。
HC層は、基材フィルムの片面に設けられることが好ましいが、両面に設けられていてもよい。
(Protective film)
Protective films 12 and 13 have a base film and an HC layer. It is preferable that the protective films 12 and 13 have an HC layer formed so as to be in direct contact with the base film.
The HC layer is preferably provided on one side of the base film, but may be provided on both sides.
 偏光フィルム11の第1面11a側に積層される保護フィルム12,13(以下、第1面11a側に積層される2以上の保護フィルムをまとめて「保護フィルム群」ということがある。)は、5以下であることが好ましく、3以下であることがより好ましく、2であることが最も好ましい。保護フィルム群が6以上の保護フィルムを含むと、偏光板1のカール(反り)を調整しづらくなる。保護フィルム群を構成する保護フィルム12,13は、図1に示すように、貼合層31を介して積層されていることが好ましく、上記貼合層31の両面は、保護フィルム群を構成する保護フィルム12,13に直接接していることがより好ましい。保護フィルム群を構成する保護フィルム12,13はいずれも、偏光板1において、基材フィルムが偏光フィルム11側に配置され、HC層が偏光板1の表面側(偏光フィルム11側とは反対側)に配置されることが好ましい。 The protective films 12 and 13 laminated on the first surface 11a side of the polarizing film 11 (hereinafter, two or more protective films laminated on the first surface 11a side may be collectively referred to as a "protective film group"). , is preferably 5 or less, more preferably 3 or less, and most preferably 2. When the protective film group includes 6 or more protective films, it becomes difficult to adjust the curl (warp) of the polarizing plate 1 . As shown in FIG. 1, the protective films 12 and 13 constituting the protective film group are preferably laminated via a bonding layer 31, and both surfaces of the bonding layer 31 constitute the protective film group. More preferably, it is in direct contact with protective films 12 and 13 . In each of the protective films 12 and 13 constituting the protective film group, in the polarizing plate 1, the base film is arranged on the polarizing film 11 side, and the HC layer is on the surface side of the polarizing plate 1 (the side opposite to the polarizing film 11 side). ).
 保護フィルムの厚みは特に限定されないが、通常1μm以上100μm以下であり、強度や取扱い性の観点から5μm以上60μm以下であることが好ましく、10μ以上55μm以下であることがより好ましく、15μm以上50μm以下であることがさらに好ましい。 Although the thickness of the protective film is not particularly limited, it is usually 1 μm or more and 100 μm or less, preferably 5 μm or more and 60 μm or less, more preferably 10 μm or more and 55 μm or less, and 15 μm or more and 50 μm or less from the viewpoint of strength and handleability. is more preferable.
 保護フィルム群を構成する保護フィルム12,13は、基材フィルム及びHC層の材料及び厚みのうちの一方又は両方が同じものであってもよく、基材フィルム及びHC層の材料及び厚みのうちの両方が互いに異なっていてもよい。 One or both of the material and thickness of the base film and the HC layer may be the same for the protective films 12 and 13 constituting the protective film group. may be different from each other.
 保護フィルム群のうちの少なくとも一つの保護フィルムは、温度40℃、相対湿度90%における透湿度が200g/m・day以上であることが好ましく、300g/m・day以上であることがより好ましく、上限値は通常5000g/m・day以下であり、2000g/m・day以下であることが好ましく、1000g/m・day以下であることがより好ましい。偏光板1において、保護フィルム群のうちの1以上の保護フィルムが上記範囲の透湿度を有していればよい。保護フィルムの透湿度を上記の範囲とすることにより、後述する加熱耐久試験により偏光フィルム11がポリエン化して着色することを抑制することができる。 At least one protective film in the protective film group preferably has a moisture permeability of 200 g/m 2 ·day or more at a temperature of 40°C and a relative humidity of 90%, more preferably 300 g/m 2 ·day or more. Preferably, the upper limit is usually 5000 g/m 2 ·day or less, preferably 2000 g/m 2 ·day or less, more preferably 1000 g/m 2 ·day or less. In the polarizing plate 1, at least one protective film in the group of protective films should have a moisture permeability within the above range. By setting the moisture permeability of the protective film within the above range, it is possible to prevent the polarizing film 11 from becoming polyene and being colored in the heating endurance test described later.
 保護フィルム群のうちの最も偏光フィルム側に積層される保護フィルム12が上記範囲の透湿度を有していることが好ましい。偏光板1を製造する場合、後述するように、偏光フィルム11に水系接着剤等の貼合剤(接着剤又は粘着剤)を用いて保護フィルム12を貼合した後、乾燥処理によって貼合層32を形成し、次いで保護フィルム13を貼合することがある。この場合、保護フィルム群のうち、最も偏光フィルム11側に積層される保護フィルム12の透湿度を上記の範囲とすることにより、乾燥処理によって貼合剤に含まれる水分を除去しやすい。 It is preferable that the protective film 12 laminated closest to the polarizing film in the group of protective films has a moisture permeability within the above range. When manufacturing the polarizing plate 1, as will be described later, after bonding the protective film 12 to the polarizing film 11 using a bonding agent (adhesive or adhesive) such as a water-based adhesive, the bonding layer is dried by drying. 32 and then a protective film 13 may be laminated. In this case, by setting the moisture permeability of the protective film 12, which is laminated closest to the polarizing film 11 among the protective films, to the above range, the moisture contained in the bonding agent can be easily removed by the drying process.
 保護フィルム群のうち、最も偏光フィルム11側に積層される保護フィルム12が上記範囲の透湿度を有していれば、保護フィルム群に含まれる保護フィルム12以外の他の保護フィルム13の透湿度は特に限定されない。他の保護フィルム13の透湿度は、保護フィルム12の透湿度よりも小さくてもよい。他の保護フィルム13の温度40℃、相対湿度90%における透湿度は、特に限定されないが、1000g/m・day以下であることが好ましく、500g/m・day以下であることがより好ましい。当該保護フィルム13の上記透湿度は、20g/m・day超であることが好ましく、30g/m・day以上であることがより好ましい。他の保護フィルム13の透湿度の上限値を上記の範囲とすることにより、加熱耐久試験後の偏光板1への水分の取り込み速度を抑制することができる。その結果、偏光フィルム11の応力緩和のための時間を確保しやすくなるため、位相差フィルム21にクラックが発生することを抑制できると考えられる。他の保護フィルム13の透湿度の下限値を上記の範囲とすることにより、加熱耐久試験により偏光フィルム11がポリエン化して着色することを抑制することができる。保護フィルム12,13の透湿度は、後述する実施例に記載の方法によって測定することができる。 If the protective film 12 laminated closest to the polarizing film 11 in the protective film group has a moisture permeability within the above range, the moisture permeability of the other protective films 13 other than the protective film 12 included in the protective film group is not particularly limited. The moisture permeability of the other protective film 13 may be lower than the moisture permeability of the protective film 12 . The moisture permeability of the other protective film 13 at a temperature of 40° C. and a relative humidity of 90% is not particularly limited, but is preferably 1000 g/m 2 ·day or less, more preferably 500 g/m 2 ·day or less. . The moisture permeability of the protective film 13 is preferably more than 20 g/m 2 ·day, more preferably 30 g/m 2 ·day or more. By setting the upper limit value of the moisture permeability of the other protective film 13 within the above range, it is possible to suppress the rate at which moisture is taken into the polarizing plate 1 after the heat durability test. As a result, it becomes easier to secure time for stress relaxation of the polarizing film 11 , so it is thought that the occurrence of cracks in the retardation film 21 can be suppressed. By setting the lower limit value of the moisture permeability of the other protective film 13 within the above range, it is possible to suppress the polarizing film 11 from polyene-forming and coloring in the heat durability test. The moisture permeability of the protective films 12 and 13 can be measured by the method described in Examples below.
 上記では、保護フィルム12の上記透湿度が200g/m・day以上であり、他の保護フィルム13の上記透湿度が1000g/m・day以下とする場合について説明したが、この透湿度の関係を逆にした場合においても、加熱耐久試験により偏光フィルム11がポリエン化して着色することを抑制することができる。 In the above description, the moisture permeability of the protective film 12 is 200 g/m 2 ·day or more, and the moisture permeability of the other protective film 13 is 1000 g/m 2 ·day or less. Even when the relationship is reversed, it is possible to prevent the polarizing film 11 from becoming polyene and coloring due to the heating endurance test.
 保護フィルム12,13を構成する基材フィルムは、特に限定されないが、透明性、機械的強度、熱安定性、水分遮蔽性等に優れる樹脂材料で構成されることが好ましい。このような樹脂材料としては、例えば、(メタ)アクリル酸メチル系樹脂、ポリオレフィン系樹脂、環状オレフィン系樹脂、ポリ塩化ビニル系樹脂、セルロース系樹脂、スチレン系樹脂、アクリロニトリル・ブタジエン・スチレン系樹脂、アクリロニトリル・スチレン系樹脂、ポリ酢酸ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリアミド系樹脂、ポリアセタール系樹脂、ポリカーボネート系樹脂、変性ポリフェニレンエーテル系樹脂、ポリブチレンテフタレート系樹脂、ポリエチレンテフタレート系樹脂、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂、ポリアリレート系樹脂、ポリアミドイミド系樹脂、及びポリイミド系樹脂等からなる1種又は2種以上が挙げられる。これらの樹脂は、任意の適切なポリマー変性を行ってから用いてもよい。ポリマー変性としては、例えば、共重合、架橋、分子末端変性、立体規則性制御、及び異種ポリマー同士の反応を伴う場合を含む混合等の変性が挙げられる。 The base film that constitutes the protective films 12 and 13 is not particularly limited, but is preferably made of a resin material that is excellent in transparency, mechanical strength, thermal stability, moisture shielding properties, and the like. Examples of such resin materials include (meth)methyl acrylate-based resins, polyolefin-based resins, cyclic olefin-based resins, polyvinyl chloride-based resins, cellulose-based resins, styrene-based resins, acrylonitrile-butadiene-styrene-based resins, Acrylonitrile/Styrene Resin, Polyvinyl Acetate Resin, Polyvinylidene Chloride Resin, Polyamide Resin, Polyacetal Resin, Polycarbonate Resin, Modified Polyphenylene Ether Resin, Polybutylene Tephthalate Resin, Polyethylene Tephthalate Resin, Polysulfone one or more of polyethersulfone-based resins, polyarylate-based resins, polyamideimide-based resins, polyimide-based resins, and the like. These resins may be used after undergoing any suitable polymer modification. Polymer modification includes, for example, copolymerization, cross-linking, molecular terminal modification, stereoregularity control, and modification such as mixing including reactions involving different types of polymers.
 保護フィルム群のうちの少なくとも一つの保護フィルムの基材フィルムは、樹脂材料としてセルロース系樹脂を用いて形成されたセルロース系樹脂フィルムであることが好ましい。保護フィルム群を構成するすべての保護フィルムの基材フィルムが、セルロース系樹脂フィルムであることがより好ましい。 The base film of at least one protective film in the group of protective films is preferably a cellulose resin film formed using a cellulose resin as a resin material. It is more preferable that the base films of all the protective films constituting the protective film group are cellulose resin films.
 セルロース系樹脂は、セルロースの水酸基における水素原子の一部又は全部が、アセチル基、プロピオニル基及び/又はブチリル基で置換された、セルロースの有機酸エステル又は混合有機酸エステルでありうる。例えば、セルロースの酢酸エステル、プロピオン酸エステル、酪酸エステル、それらの混合エステル等からなるものが挙げられる。なかでも、トリアセチルセルロース、ジアセチルセルロース、セルロースアセテートプロピオネート、セルロースアセテートブチレート等が好ましい。 The cellulosic resin can be an organic acid ester or mixed organic acid ester of cellulose in which some or all of the hydrogen atoms in the hydroxyl groups of cellulose are substituted with acetyl groups, propionyl groups and/or butyryl groups. Examples thereof include cellulose acetate, propionate, butyrate, and mixed esters thereof. Among them, triacetyl cellulose, diacetyl cellulose, cellulose acetate propionate, cellulose acetate butyrate and the like are preferable.
 基材フィルムを構成する樹脂材料には、透明性を損なわない範囲で、適宜の添加剤が配合されていてもよい。添加物として例えば、酸化防止剤、紫外線吸収剤、帯電防止剤、滑剤、造核剤、防曇剤、アンチブロッキング剤、位相差低減剤、安定剤、加工助剤、可塑剤、耐衝撃助剤、艶消し剤、抗菌剤、防かび剤等を挙げることができる。これらの添加剤は、1種以上を用いることができ、複数種が併用されてもよい。 Appropriate additives may be added to the resin material constituting the base film as long as the transparency is not impaired. Additives such as antioxidants, ultraviolet absorbers, antistatic agents, lubricants, nucleating agents, antifogging agents, antiblocking agents, retardation reducing agents, stabilizers, processing aids, plasticizers, impact resistance aids , matting agents, antibacterial agents, antifungal agents, and the like. One or more of these additives may be used, and multiple types may be used in combination.
 基材フィルムの厚みは特に限定されないが、例えば、1μm以上とすることができ、3μm以上であってもよく、10μm以上であってもよく、30μm以上であってもよく、また、通常90μm以下であり、70μm以下であってもよく、60μm以下であってもよく、50μm以下であってもよい。基材フィルムは、通常1層構造であるが、2層以上の多層構造を有していてもよい。 The thickness of the base film is not particularly limited, but may be, for example, 1 μm or more, 3 μm or more, 10 μm or more, 30 μm or more, and usually 90 μm or less. and may be 70 μm or less, 60 μm or less, or 50 μm or less. The substrate film usually has a single-layer structure, but may have a multi-layer structure of two or more layers.
 保護フィルム12,13を構成するHC層は、特に限定されないが、基材フィルム上に形成された紫外線硬化型樹脂の硬化物層であることが好ましい。紫外線硬化型樹脂としては、例えば(メタ)アクリル系樹脂、シリコーン系樹脂、ポリエステル系樹脂、ウレタン系樹脂、アミド系樹脂、エポキシ系樹脂等が挙げられる。HC層は、表面硬度を向上させるために、添加物を含んでいてもよい。添加物としては、特に限定されないが、例えば、無機系微粒子、有機系微粒子、又はこれらの混合物が挙げられる。 Although the HC layer that constitutes the protective films 12 and 13 is not particularly limited, it is preferably a cured product layer of an ultraviolet curable resin formed on the base film. Examples of UV curable resins include (meth)acrylic resins, silicone resins, polyester resins, urethane resins, amide resins, and epoxy resins. The HC layer may contain additives to improve surface hardness. Examples of additives include, but are not limited to, inorganic fine particles, organic fine particles, and mixtures thereof.
 HC層の厚みは、10μm以下であることが好ましく、8μm以下であることがより好ましく、通常0.1μm以上であり、1μm以上であってもよく、4μm以上であってもよい。HC層の厚みが10μmを超えると、保護フィルム12,13のカール(反り)が大きくなり、偏光板1のカールを調整しにくくなる。 The thickness of the HC layer is preferably 10 μm or less, more preferably 8 μm or less, usually 0.1 μm or more, may be 1 μm or more, or may be 4 μm or more. When the thickness of the HC layer exceeds 10 μm, the curl (warp) of the protective films 12 and 13 increases, making it difficult to adjust the curl of the polarizing plate 1 .
 保護フィルム12,13は、JIS K 5600-5-4:1999「塗料一般試験方法-第5部:塗膜の機械的性質-第4節:引っかき硬度(鉛筆法)」に規定される鉛筆硬度試験により(HC層が形成された基材フィルムをガラス板の上に置き、HC層側について測定した場合)、H以上であることが好ましく、2H以上であることがより好ましく、3H以上であってもよく、4H以上であってもよい。 The protective films 12 and 13 have a pencil hardness specified in JIS K 5600-5-4: 1999 "Paint general test method-Part 5: Mechanical properties of coating film-Section 4: Scratch hardness (pencil method)" According to the test (when the base film with the HC layer formed thereon is placed on a glass plate and the HC layer side is measured), it is preferably H or more, more preferably 2H or more, and 3H or more. It may be 4H or more.
 HC層は、例えば、基材フィルム上に、紫外線硬化型樹脂及び必要に応じて添加物等を含むHC層の形成用の組成物(以下、「HC層形成用組成物」ということがある。)を塗布し、これを紫外線照射により硬化させることによって形成することができる。 The HC layer is, for example, a composition for forming an HC layer containing an ultraviolet curable resin and, if necessary, additives (hereinafter sometimes referred to as "composition for forming an HC layer") on a base film. ) and cured by UV irradiation.
 (位相差フィルム)
 位相差フィルム21は、位相差を有するフィルムであり、通常、樹脂フィルムを延伸した延伸フィルムである。位相差フィルム21は単層構造を有することが好ましい。位相差フィルム21の温度23℃における引張弾性率は、3000MPa以下であり、2800MPa以下であってもよく、通常1000MPa以上であり、2000MPa以上であってもよい。引張弾性率は、後述する実施例に記載の方法によって測定することができる。
(retardation film)
The retardation film 21 is a film having retardation, and is usually a stretched film obtained by stretching a resin film. The retardation film 21 preferably has a single layer structure. The tensile elastic modulus of the retardation film 21 at a temperature of 23° C. is 3000 MPa or less, and may be 2800 MPa or less, usually 1000 MPa or more, and may be 2000 MPa or more. The tensile modulus can be measured by the method described in Examples below.
 上記引張弾性率を有する位相差フィルム21としては、例えば、オレフィン系樹脂を用いて形成されたオレフィン系樹脂フィルムが挙げられる。オレフィン系樹脂としては、エチレン及びプロピレン等の鎖状脂肪族オレフィン、又は、ノルボルネンやその置換体(以下、これらを総称して「ノルボルネン系モノマー」ということがある。)等の脂環式オレフィンから誘導される構成単位を主に含む樹脂が挙げられる。構成単位を主に含むとは、樹脂に含まれる構成単位の物質量基準での割合が50%以上であることをいう。オレフィン系樹脂は、2種以上のモノマーを用いた共重合体であってもよい。 Examples of the retardation film 21 having the above tensile modulus include an olefin-based resin film formed using an olefin-based resin. Olefin-based resins include linear aliphatic olefins such as ethylene and propylene, or alicyclic olefins such as norbornene and its substituted products (hereinafter collectively referred to as "norbornene-based monomers"). Examples include resins mainly containing derived structural units. Mainly containing structural units means that the proportion of the structural units contained in the resin is 50% or more based on the amount of substance. The olefinic resin may be a copolymer using two or more monomers.
 位相差フィルム21は、脂環式オレフィンから誘導される構成単位を主に含む樹脂である環状オレフィン系樹脂を用いて形成された環状オレフィン系樹脂フィルムであることが好ましい。環状オレフィン系樹脂を構成する脂環式オレフィンの典型的な例としては、ノルボルネン系モノマー等を挙げることができる。ノルボルネンとは、ノルボルナンの1つの炭素-炭素結合が二重結合となった化合物であって、IUPAC命名法によれば、ビシクロ[2,2,1]ヘプト-2-エンと命名されるものである。ノルボルネンの置換体の例としては、ノルボルネンの二重結合位置を1,2-位として、3-置換体、4-置換体、及び4,5-ジ置換体等を挙げることができ、さらにはジシクロペンタジエンやジメタノオクタヒドロナフタレン等も挙げることができる。 The retardation film 21 is preferably a cyclic olefin-based resin film formed using a cyclic olefin-based resin, which is a resin mainly containing structural units derived from an alicyclic olefin. Typical examples of alicyclic olefins constituting cyclic olefin resins include norbornene-based monomers. Norbornene is a compound in which one carbon-carbon bond of norbornane is a double bond, and according to the IUPAC nomenclature, it is named bicyclo[2,2,1]hept-2-ene. be. Examples of substituted norbornene include 3-substituted, 4-substituted, and 4,5-disubstituted, with the double bond position of norbornene being 1,2-position, and further Also included are dicyclopentadiene and dimethanooctahydronaphthalene.
 環状オレフィン系樹脂は、その構成単位にノルボルナン環を有していてもよいし、有していなくてもよい。構成単位にノルボルナン環を有さない環状オレフィン系樹脂を形成するノルボルネン系モノマーとしては、例えば、開環により5員環となるもの、代表的には、ノルボルネン、ジシクロペンタジエン、1-又は4-メチルノルボルネン、及び4-フェニルノルボルネン等が挙げられる。環状オレフィン系樹脂が共重合体である場合、その分子の配列状態は特に限定されるものではなく、ランダム共重合体であってもよいし、ブロック共重合体であってもよいし、グラフト共重合体であってもよい。 The cyclic olefin resin may or may not have a norbornane ring in its constituent units. Examples of norbornene-based monomers that form cyclic olefin-based resins that do not have a norbornane ring in their constituent units include, for example, those that become 5-membered rings by ring opening, typically norbornene, dicyclopentadiene, 1- or 4- Examples include methylnorbornene, 4-phenylnorbornene, and the like. When the cyclic olefin resin is a copolymer, the arrangement state of its molecules is not particularly limited, and may be a random copolymer, a block copolymer, or a graft copolymer. It may be a polymer.
 環状オレフィン系樹脂のより具体的な例としては、例えば、ノルボルネン系モノマーの開環重合体、ノルボルネン系モノマーと他のモノマーとの開環共重合体、それらにマレイン酸付加やシクロペンタジエン付加等がなされたポリマー変性物、及びこれらを水素添加した重合体又は共重合体;ノルボルネン系モノマーの付加重合体、及びノルボルネン系モノマーと他のモノマーとの付加共重合体等が挙げられる。共重合体とする場合における他のモノマーとしては、α-オレフィン類、シクロアルケン類、及び非共役ジエン類等が挙げられる。また、環状オレフィン系樹脂は、ノルボルネン系モノマー及び他の脂環式オレフィンの1種又は2種以上を用いた共重合体であってもよい。これらの中でも、環状オレフィン系樹脂としては、ノルボルネン系モノマーを用いた開環重合体又は開環共重合体に水素添加した樹脂が好ましい。 More specific examples of cyclic olefin resins include ring-opening polymers of norbornene-based monomers, ring-opening copolymers of norbornene-based monomers and other monomers, maleic acid addition, cyclopentadiene addition, and the like. modified polymers, and hydrogenated polymers or copolymers thereof; addition polymers of norbornene-based monomers, addition copolymers of norbornene-based monomers and other monomers, and the like. Other monomers in the case of copolymerization include α-olefins, cycloalkenes, non-conjugated dienes, and the like. Moreover, the cyclic olefin-based resin may be a copolymer using one or more of norbornene-based monomers and other alicyclic olefins. Among these, as the cyclic olefin-based resin, a ring-opening polymer or a resin obtained by hydrogenating a ring-opening copolymer using a norbornene-based monomer is preferable.
 上記ノルボルネン系モノマーを用いた環状オレフィン系樹脂の市販品としては、いずれも商品名で、日本ゼオン(株)から販売されている「ゼオネックス」、「ゼオノア」、JSR(株)から販売されている「アートン」等が挙げられる。これらの環状オレフィン系樹脂のフィルムやその延伸フィルムも市販品を入手することができ、例えば、いずれも商品名で、(株)オプテスから「ゼオノアフィルム」、JSR(株)から「アートンフィルム」、及び積水化学工業(株)から「エスシーナ」等が挙げられる。 Commercial products of the cyclic olefin resin using the above norbornene-based monomers are all trade names of "ZEONEX" and "ZEONOR" sold by Nippon Zeon Co., Ltd., and sold by JSR Corporation. "Arton" etc. are mentioned. Films of these cyclic olefin resins and stretched films thereof are also commercially available. and "Escina" from Sekisui Chemical Co., Ltd.;
 位相差フィルム21としては、オレフィン系樹脂を2種類以上含む混合樹脂からなるフィルムや、オレフィン系樹脂と他の熱可塑性樹脂との混合樹脂からなるフィルムを用いることもできる。例えば、オレフィン系樹脂を2種類以上含む混合樹脂としては、上記したような環状オレフィン系樹脂と鎖状脂肪族オレフィン系樹脂との混合物が挙げられる。オレフィン系樹脂と他の熱可塑性樹脂との混合樹脂を用いる場合、他の熱可塑性樹脂は、目的に応じて適宜適切なものが選択される。他の熱可塑性樹脂の具体例としては、ポリ塩化ビニル系樹脂、セルロース系樹脂、ポリスチレン系樹脂、アクリロニトリル/ブタジエン/スチレン共重合樹脂、アクリロニトリル/スチレン共重合樹脂、(メタ)アクリル系樹脂、ポリ酢酸ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリアミド系樹脂、ポリアセタール系樹脂、ポリカーボネート系樹脂、変性ポリフェニレンエーテル系樹脂、ポリブチレンテレフタレート系樹脂、ポリエチレンテレフタレート系樹脂、ポリフェニレンスルフィド系樹脂、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂、ポリエーテルエーテルケトン系樹脂、ポリアリレート系樹脂、液晶性樹脂、ポリアミドイミド系樹脂、ポリイミド系樹脂、及びポリテトラフルオロエチレン系樹脂等が挙げられる。これらの熱可塑性樹脂は、それぞれ単独で、又は2種以上組み合わせて用いることができる。また、上記熱可塑性樹脂は、任意の適切なポリマー変性を行ってから用いることもできる。ポリマー変性の例としては、共重合、架橋、分子末端変性、及び立体規則性付与等が挙げられる。 As the retardation film 21, a film made of a mixed resin containing two or more kinds of olefinic resins, or a film made of a mixed resin of an olefinic resin and another thermoplastic resin can be used. For example, mixed resins containing two or more kinds of olefinic resins include mixtures of cyclic olefinic resins and linear aliphatic olefinic resins as described above. When using a mixed resin of an olefinic resin and another thermoplastic resin, the other thermoplastic resin is appropriately selected depending on the purpose. Specific examples of other thermoplastic resins include polyvinyl chloride resins, cellulose resins, polystyrene resins, acrylonitrile/butadiene/styrene copolymer resins, acrylonitrile/styrene copolymer resins, (meth)acrylic resins, and polyacetic acid. Vinyl resin, polyvinylidene chloride resin, polyamide resin, polyacetal resin, polycarbonate resin, modified polyphenylene ether resin, polybutylene terephthalate resin, polyethylene terephthalate resin, polyphenylene sulfide resin, polysulfone resin, polyether Examples include sulfone-based resins, polyetheretherketone-based resins, polyarylate-based resins, liquid-crystalline resins, polyamide-imide-based resins, polyimide-based resins, and polytetrafluoroethylene-based resins. These thermoplastic resins may be used alone or in combination of two or more. Moreover, the thermoplastic resin can be used after being subjected to any appropriate polymer modification. Examples of polymer modification include copolymerization, cross-linking, molecular terminal modification, stereoregularity impartation, and the like.
 オレフィン系樹脂と他の熱可塑性樹脂との混合樹脂を用いる場合、他の熱可塑性樹脂の含有量は、通常、樹脂全体に対して50重量%程度以下であり、40重量%程度以下が好ましい。他の熱可塑性樹脂の含有量をこの範囲内とすることによって、光弾性係数の絶対値が小さく、良好な波長分散特性を示し、かつ、耐久性や機械的強度、透明性に優れる位相差フィルム21を得ることができる。 When using a mixed resin of an olefin resin and another thermoplastic resin, the content of the other thermoplastic resin is usually about 50% by weight or less, preferably about 40% by weight or less, based on the total resin. By setting the content of the other thermoplastic resin within this range, the retardation film has a small absolute value of the photoelastic coefficient, exhibits good wavelength dispersion characteristics, and is excellent in durability, mechanical strength, and transparency. 21 can be obtained.
 位相差フィルム21は、残存溶媒、安定剤、可塑剤、老化防止剤、帯電防止剤、及び紫外線吸収剤等、その他の成分を必要に応じて含有していてもよい。また、表面粗さを小さくするためにレベリング剤を含有することもできる。 The retardation film 21 may contain other components such as residual solvents, stabilizers, plasticizers, anti-aging agents, anti-static agents, and ultraviolet absorbers as necessary. A leveling agent may also be included to reduce surface roughness.
 位相差フィルム21は、面内位相差値を有することが好ましく、波長550nmにおける面内位相差値が80nm以上であることが好ましく、90nm以上であってもよく、100nm以上であってもよく、また、300nm以下であってもよく、200nm以下であってもよい。位相差フィルム21は、延伸フィルムであることが好ましい。 The retardation film 21 preferably has an in-plane retardation value, and the in-plane retardation value at a wavelength of 550 nm is preferably 80 nm or more, may be 90 nm or more, or may be 100 nm or more, Moreover, it may be 300 nm or less, or may be 200 nm or less. The retardation film 21 is preferably a stretched film.
 一般的に、位相差フィルム21の面内位相差値が高いほど、位相差フィルム21の分子配向が揃っているため、外力を受けるとクラックが生じやすい傾向がある。上記したように、偏光板1は、偏光フィルム11の第1面11aに2以上の保護フィルム12,13が積層された構造を有する。そのため、上記のような高い面内位相差値を有する位相差フィルム21を含む偏光板1を、加熱耐久試験後に常温常湿環境下で長期間保持した場合であっても、偏光フィルム11の寸法変化を抑制し、これに伴って位相差フィルム21に作用する力を低減することができることから、位相差フィルム21にクラックが発生することを抑制することができる。 Generally, the higher the in-plane retardation value of the retardation film 21, the more aligned the molecular orientation of the retardation film 21, and the more likely it is to crack when subjected to an external force. As described above, the polarizing plate 1 has a structure in which two or more protective films 12 and 13 are laminated on the first surface 11 a of the polarizing film 11 . Therefore, even when the polarizing plate 1 including the retardation film 21 having a high in-plane retardation value as described above is held for a long time under normal temperature and humidity environment after the heat durability test, the dimensions of the polarizing film 11 Since the change can be suppressed and the force acting on the retardation film 21 can be reduced accordingly, the generation of cracks in the retardation film 21 can be suppressed.
 位相差フィルム21の面内位相差値は、後述する実施例に記載の方法によって測定することができる。位相差フィルム21の波長λ[nm]における面内位相差値Re(λ)は、温度23℃における位相差フィルム21の面内の位相差値をいい、下記式(i)によって求められる。
  Re(λ)=(nx-ny)×d  (i)
[式(i)中、
 nxは、面内の屈折率が最大となる方向(すなわち、遅相軸方向)の屈折率であり、
 nyは、面内で遅相軸と直交する方向の屈折率であり、
 dは、位相差フィルム21の厚み[nm]である。]
The in-plane retardation value of the retardation film 21 can be measured by the method described in Examples below. The in-plane retardation value Re(λ) of the retardation film 21 at the wavelength λ [nm] refers to the in-plane retardation value of the retardation film 21 at a temperature of 23° C., and is obtained by the following formula (i).
Re(λ)=(nx−ny)×d(i)
[in the formula (i),
nx is the refractive index in the direction in which the in-plane refractive index is maximum (that is, the slow axis direction),
ny is the refractive index in the direction perpendicular to the slow axis in the plane,
d is the thickness [nm] of the retardation film 21 . ]
 位相差フィルム21は、厚み方向の位相差値が0(ゼロ)であってもよく、厚み方向の位相差値を有していてもよい。位相差フィルム21の波長550nmにおける厚み方向の位相差値は、例えば10nm以上であってもよく、20nm以上であってもよく、40nm以上であってもよく、また、100nm以下であってもよく、80nm以下であってもよく、60nm以下であってもよい。位相差フィルム21の厚み方向の位相差値は、後述する実施例に記載の方法によって測定することができる。位相差フィルム21の波長λ[nm]における厚み方向の位相差値Rth(λ)は、温度23℃における位相差フィルム21の厚み方向の位相差値をいい、下記式(ii)によって求められる。
  Rth(λ)=〔{(nx+ny)/2}-nz〕×d  (ii)
[式(ii)中、
 nxは、面内の屈折率が最大となる方向(すなわち、遅相軸方向)の屈折率であり、
 nyは、面内で遅相軸と直交する方向の屈折率であり、
 nzは、厚み方向の屈折率であり、
 dは、位相差フィルム21の厚み[nm]である。]
The retardation film 21 may have a retardation value of 0 (zero) in the thickness direction, or may have a retardation value in the thickness direction. The thickness direction retardation value of the retardation film 21 at a wavelength of 550 nm may be, for example, 10 nm or more, 20 nm or more, 40 nm or more, or 100 nm or less. , 80 nm or less, or 60 nm or less. The retardation value in the thickness direction of the retardation film 21 can be measured by the method described in Examples below. The retardation value Rth(λ) in the thickness direction of the retardation film 21 at the wavelength λ [nm] refers to the retardation value in the thickness direction of the retardation film 21 at a temperature of 23° C., and is obtained by the following formula (ii).
Rth(λ)=[{(nx+ny)/2}-nz]×d (ii)
[In the formula (ii),
nx is the refractive index in the direction in which the in-plane refractive index is maximum (that is, the slow axis direction),
ny is the refractive index in the direction perpendicular to the slow axis in the plane,
nz is the refractive index in the thickness direction,
d is the thickness [nm] of the retardation film 21 . ]
 位相差フィルム21の厚みは特に制限されないが、15μm以上80μm以下であることが好ましく、18μm以上45μm以下であることがより好ましく、20μm以上30μm以下であることが最も好ましい。位相差フィルムの厚みが15μm未満である場合には、フィルムの取り扱いが難しく、また所定の位相差値が発現し難くなる傾向にある。一方、位相差フィルムの厚みが80μmを超える場合には、加工性に劣るものとなり、また、透明性が低下したり、得られた偏光板1の重量が大きくなったりする傾向にある。 Although the thickness of the retardation film 21 is not particularly limited, it is preferably 15 μm or more and 80 μm or less, more preferably 18 μm or more and 45 μm or less, and most preferably 20 μm or more and 30 μm or less. When the thickness of the retardation film is less than 15 μm, it tends to be difficult to handle the film and to exhibit a predetermined retardation value. On the other hand, when the thickness of the retardation film exceeds 80 μm, the processability tends to be poor, the transparency tends to decrease, and the weight of the obtained polarizing plate 1 tends to increase.
 位相差フィルム21は、上記した樹脂を用いて形成された樹脂フィルムを用い、これを延伸することによって得ることができる。樹脂フィルムは、例えば、上記したオレフィン系樹脂を含む溶液からのキャスティング法や溶融押出法等により製膜することによって得ることができる。2種以上の混合樹脂を用いて製膜する場合、その製膜方法については特に限定されるものではなく、例えば、樹脂成分を所定の割合で溶媒とともに撹拌混合して得られる均一溶液を用いてキャスティング法によりフィルムを作製する方法、及び樹脂成分を所定の割合で溶融混合し溶融押出法によりフィルムを作製する方法等が挙げられる。 The retardation film 21 can be obtained by using a resin film formed using the resin described above and stretching it. The resin film can be obtained, for example, by forming a film from a solution containing the above-described olefinic resin by a casting method, a melt extrusion method, or the like. When a film is formed using a mixed resin of two or more kinds, the film forming method is not particularly limited. Examples include a method of producing a film by a casting method, and a method of producing a film by melt-extrusion by melt-mixing resin components in a predetermined ratio.
 樹脂フィルムの延伸処理としては、公知の縦一軸延伸やテンター横一軸延伸、同時二軸延伸、逐次二軸延伸等が挙げられる。延伸処理は、所望とする位相差値が得られるように延伸倍率と延伸速度とを適切に調整する他に、延伸時の予熱温度、延伸温度、ヒートセット温度、冷却温度等の各種温度、及びそのパターンを適宜選択すればよい。 Examples of the stretching treatment of the resin film include known vertical uniaxial stretching, tenter horizontal uniaxial stretching, simultaneous biaxial stretching, and sequential biaxial stretching. In the stretching process, in addition to appropriately adjusting the stretching ratio and stretching speed so as to obtain a desired retardation value, various temperatures such as preheating temperature, stretching temperature, heat setting temperature, cooling temperature, etc. during stretching, and The pattern may be appropriately selected.
 位相差フィルム21が上記した環状オレフィン系樹脂フィルムである場合、例えば、上記の環状オレフィン系樹脂を用いてあらかじめ延伸処理が施されたフィルム状物とし、これに所定の収縮率を有する収縮性フィルムを貼り合わせて加熱収縮させることによって得ることができる。これにより、均一性が高く、大きな位相差値を有する位相差フィルム21を得ることができる。 When the retardation film 21 is the cyclic olefin-based resin film described above, for example, a film-like material that has been subjected to stretching treatment in advance using the cyclic olefin-based resin described above, and a shrinkable film having a predetermined shrinkage rate is obtained. can be obtained by bonding and heat-shrinking. Thereby, a retardation film 21 having high uniformity and a large retardation value can be obtained.
 (機能層)
 偏光板1は、帯電防止層、位相差フィルム21とは別の他の位相差層、保護フィルム12,13とは別の、偏光フィルム11の表面を被覆保護するための他の保護層等の機能層を1以上有していてもよい。
(functional layer)
The polarizing plate 1 includes an antistatic layer, another retardation layer different from the retardation film 21, and another protective layer different from the protective films 12 and 13 for covering and protecting the surface of the polarizing film 11. It may have one or more functional layers.
 帯電防止層は、偏光板1が帯電することを抑制するための層である。帯電防止層は、通常、イオン性化合物等の帯電防止剤を含み、例えば帯電防止剤と樹脂とを含む層であることができる。帯電防止層は、例えば、偏光板1において、偏光フィルム11と位相差フィルム21との間、又は、偏光フィルム11と保護フィルム12との間、位相差フィルム21の偏光フィルム11とは反対側等に設けることができる。帯電防止層は、これらのフィルムに貼合層を介して積層されることが好ましい。 The antistatic layer is a layer for suppressing the polarizing plate 1 from being charged. The antistatic layer usually contains an antistatic agent such as an ionic compound, and can be, for example, a layer containing an antistatic agent and a resin. The antistatic layer is, for example, in the polarizing plate 1, between the polarizing film 11 and the retardation film 21, or between the polarizing film 11 and the protective film 12, the opposite side of the retardation film 21 from the polarizing film 11, etc. can be set to The antistatic layer is preferably laminated on these films via a lamination layer.
 他の位相差層としては、面内位相差値又は厚み方向の位相差値を有する層である。他の位相差層は、例えば波長550nmにおいて厚み方向の位相差値を有する位相差層とすることができ、例えばポジティブCプレート等とすることができる。ポジティブCプレートは、例えば偏光板1をIPSモードの液晶表示装置等に用いる場合に用いられる。他の位相差層は、例えば、偏光フィルム11と位相差フィルム21との間、又は、位相差フィルム21の偏光フィルム11側とは反対側に設けることができる。他の位相差層は、樹脂フィルムを延伸した延伸フィルムであってもよく、重合性液晶化合物の硬化物層であってもよい。他の位相差層は、偏光フィルム11及び位相差フィルム21に貼合層を介して積層することができる。他の位相差層が硬化物層である場合は、偏光フィルム11又は位相差フィルム21に塗布された重合性液晶化合物を重合硬化することにより、これらのフィルムに直接接するように設けることもできる。 Another retardation layer is a layer having an in-plane retardation value or a retardation value in the thickness direction. The other retardation layer may be, for example, a retardation layer having a retardation value in the thickness direction at a wavelength of 550 nm, such as a positive C plate. A positive C plate is used, for example, when the polarizing plate 1 is used in an IPS mode liquid crystal display device or the like. Another retardation layer can be provided, for example, between the polarizing film 11 and the retardation film 21 or on the side of the retardation film 21 opposite to the polarizing film 11 side. The other retardation layer may be a stretched film obtained by stretching a resin film, or may be a cured product layer of a polymerizable liquid crystal compound. Another retardation layer can be laminated on the polarizing film 11 and the retardation film 21 via a bonding layer. When the other retardation layer is a cured product layer, by polymerizing and curing the polymerizable liquid crystal compound applied to the polarizing film 11 or the retardation film 21, it can be provided so as to be in direct contact with these films.
 他の保護層としては、偏光フィルム11の第1面11a又は第2面11bを被覆保護するための層である。他の保護層は、偏光フィルム11の第2面11b側に設けられ、偏光フィルム11と位相差フィルム21との間に貼合層を介して設けられることが好ましい。
この場合、偏光フィルム11と他の保護層との間に設けられる貼合層は、偏光フィルム11及び他の保護層にそれぞれ接するように設けられ、他の保護層と位相差フィルム21との間に設けられる貼合層は、他の保護層及び位相差フィルム21にそれぞれ接するように設けられることが好ましい。他の保護層としては、保護フィルム12,13を構成する基材フィルムで説明した樹脂材料を用いて形成されたフィルムが挙げられる。他の保護層は、位相差を有していないことが好ましく、例えば位相差を有していないセルロース系樹脂フィルム、又は、位相差を有していない環状オレフィン系樹脂フィルムが挙げられる。
Another protective layer is a layer for covering and protecting the first surface 11 a or the second surface 11 b of the polarizing film 11 . Another protective layer is provided on the second surface 11b side of the polarizing film 11, and is preferably provided between the polarizing film 11 and the retardation film 21 via a bonding layer.
In this case, the bonding layer provided between the polarizing film 11 and the other protective layer is provided so as to be in contact with the polarizing film 11 and the other protective layer, respectively, and between the other protective layer and the retardation film 21 It is preferable that the lamination layer provided in 1 is provided so as to be in contact with the other protective layer and the retardation film 21 respectively. Another protective layer includes a film formed using the resin material described in the base film forming the protective films 12 and 13 . The other protective layer preferably has no retardation, and examples thereof include a cellulose resin film having no retardation and a cyclic olefin resin film having no retardation.
 (貼合層)
 偏光板1を構成する各フィルム及び各層を貼合するための貼合層31~33としては、公知の接着剤を用いて形成された層、又は、公知の粘着剤を用いて形成された層が挙げられる。
(Lamination layer)
As the bonding layers 31 to 33 for bonding each film and each layer constituting the polarizing plate 1, a layer formed using a known adhesive, or a layer formed using a known pressure-sensitive adhesive. is mentioned.
 接着剤としては、感圧型接着剤(粘着剤)以外の接着剤であって、例えば、水系接着剤、活性エネルギー線硬化性接着剤又は熱硬化性接着剤が挙げられ、好ましくは水系接着剤、活性エネルギー線硬化性接着剤である。接着剤を用いて形成された貼合層の厚みは、例えば0.01μm以上であってもよく、0.1μm以上であってもよく、0.5μm以上であってもよく、1μm以上であってもよく、また、例えば20μm以下であってもよく、15μm以下であってもよく、10μm以下であってもよく、5μm以下であってもよい。 The adhesive is an adhesive other than a pressure-sensitive adhesive (adhesive), and includes, for example, a water-based adhesive, an active energy ray-curable adhesive or a thermosetting adhesive, preferably a water-based adhesive, It is an active energy ray-curable adhesive. The thickness of the lamination layer formed using an adhesive may be, for example, 0.01 μm or more, 0.1 μm or more, 0.5 μm or more, or 1 μm or more. For example, it may be 20 μm or less, 15 μm or less, 10 μm or less, or 5 μm or less.
 水系接着剤としては、ポリビニルアルコール系樹脂水溶液からなる接着剤、水系二液型ウレタン系エマルジョン接着剤等が挙げられる。中でもポリビニルアルコール系樹脂水溶液からなる水系接着剤が好適に用いられる。ポリビニルアルコール系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルをケン化処理して得られるビニルアルコールホモポリマーのほか、酢酸ビニルとこれに共重合可能な他の単量体との共重合体をケン化処理して得られるポリビニルアルコール系共重合体、又はそれらの水酸基を部分的に変性した変性ポリビニルアルコール系重合体等を用いることができる。水系接着剤は、アルデヒド化合物(グリオキザール等)、エポキシ化合物、メラミン系化合物、メチロール化合物、イソシアネート化合物、アミン化合物、多価金属塩等の架橋剤を含むことができる。 Examples of water-based adhesives include adhesives made from aqueous solutions of polyvinyl alcohol-based resins, water-based two-liquid urethane-based emulsion adhesives, and the like. Among them, a water-based adhesive composed of an aqueous polyvinyl alcohol resin solution is preferably used. Polyvinyl alcohol-based resins include vinyl alcohol homopolymers obtained by saponifying polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate with other monomers copolymerizable therewith. A polyvinyl alcohol-based copolymer obtained by saponifying a polymer, or a modified polyvinyl alcohol-based polymer obtained by partially modifying the hydroxyl groups thereof can be used. The water-based adhesive can contain cross-linking agents such as aldehyde compounds (glyoxal, etc.), epoxy compounds, melamine compounds, methylol compounds, isocyanate compounds, amine compounds, polyvalent metal salts, and the like.
 接着剤として水系接着剤を使用する場合は、貼合対象であるフィルムと積層した後、水系接着剤中に含まれる水を除去するための乾燥工程を実施することが好ましい。乾燥工程後、例えば20~45℃の温度で養生する養生工程を設けてもよい。 When using a water-based adhesive as the adhesive, it is preferable to carry out a drying process to remove the water contained in the water-based adhesive after lamination with the film to be laminated. After the drying step, a curing step of curing at a temperature of, for example, 20 to 45°C may be provided.
 活性エネルギー線硬化性接着剤とは、紫外線、可視光、電子線、X線のような活性エネルギー線の照射によって硬化する硬化性化合物を含有する接着剤であり、好ましくは紫外線硬化性接着剤である。硬化性化合物は、カチオン重合性の硬化性化合物やラジカル重合性の硬化性化合物であることができる。カチオン重合性の硬化性化合物としては、例えば、エポキシ系化合物(分子内に1個又は2個以上のエポキシ基を有する化合物)や、オキセタン系化合物(分子内に1個又は2個以上のオキセタン環を有する化合物)、又はこれらの組み合わせを挙げることができる。ラジカル重合性の硬化性化合物としては、例えば、(メタ)アクリル系化合物(分子内に1個又は2個以上の(メタ)アクリロイルオキシ基を有する化合物)や、ラジカル重合性の二重結合を有するその他のビニル系化合物、又はこれらの組み合わせを挙げることができる。カチオン重合性の硬化性化合物とラジカル重合性の硬化性化合物とを併用してもよい。活性エネルギー線硬化性接着剤は通常、上記硬化性化合物の硬化反応を開始させるためのカチオン重合開始剤及び/又はラジカル重合開始剤をさらに含む。 The active energy ray-curable adhesive is an adhesive containing a curable compound that is cured by irradiation with an active energy ray such as ultraviolet rays, visible light, electron beams, and X-rays, and is preferably an ultraviolet curable adhesive. be. The curable compound can be a cationically polymerizable curable compound or a radically polymerizable curable compound. Examples of cationic polymerizable curable compounds include epoxy compounds (compounds having one or more epoxy groups in the molecule) and oxetane compounds (one or two or more oxetane rings in the molecule). compound), or a combination thereof. Examples of radically polymerizable curable compounds include (meth)acrylic compounds (compounds having one or more (meth)acryloyloxy groups in the molecule) and radically polymerizable double bonds. Other vinyl-based compounds or combinations thereof can be included. A cationic polymerizable curable compound and a radically polymerizable curable compound may be used in combination. The active energy ray-curable adhesive usually further contains a cationic polymerization initiator and/or a radical polymerization initiator for initiating the curing reaction of the curable compound.
 粘着剤は、それ自体を被着体に貼り付けることで接着性を発現するものであり、いわゆる感圧型接着剤と称されるものである。粘着剤は、(メタ)アクリル系、ゴム系、ウレタン系、エステル系、シリコーン系、ポリビニルエーテル系のような樹脂を主成分とする粘着剤組成物で構成することができる。中でも、透明性、耐候性、耐熱性等に優れる(メタ)アクリル系樹脂をベースポリマーとする粘着剤組成物が好適である。粘着剤は、活性エネルギー線硬化型、熱硬化型であってもよい。粘着剤を用いて形成された貼合層の厚みは、通常3μm以上30μm以下であり、好ましくは3μm以上25μm以下である。 A pressure-sensitive adhesive exhibits adhesiveness when it is attached to an adherend, and is called a pressure-sensitive adhesive. The adhesive can be composed of an adhesive composition containing a (meth)acrylic, rubber, urethane, ester, silicone, or polyvinyl ether resin as a main component. Among them, a pressure-sensitive adhesive composition using a (meth)acrylic resin as a base polymer, which is excellent in transparency, weather resistance, heat resistance, etc., is preferable. The adhesive may be active energy ray-curable or thermosetting. The thickness of the lamination layer formed using the adhesive is usually 3 μm or more and 30 μm or less, preferably 3 μm or more and 25 μm or less.
 粘着剤組成物に含まれる(メタ)アクリル系樹脂(ベースポリマー)としては、例えば、(メタ)アクリル酸ブチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシルのような(メタ)アクリル酸エステルの1種又は2種以上をモノマーとする重合体又は共重合体が好適に用いられる。ベースポリマーには、極性モノマーを共重合させることが好ましい。極性モノマーとしては、例えば、(メタ)アクリル酸、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレートのような、カルボキシル基、水酸基、アミド基、アミノ基、エポキシ基等を有するモノマーを挙げることができる。 The (meth)acrylic resin (base polymer) contained in the adhesive composition includes, for example, butyl (meth)acrylate, ethyl (meth)acrylate, isooctyl (meth)acrylate, 2-(meth)acrylate, Polymers or copolymers containing one or more of (meth)acrylic acid esters such as ethylhexyl as monomers are preferably used. Preferably, the base polymer is copolymerized with a polar monomer. Examples of polar monomers include (meth)acrylic acid, 2-hydroxypropyl (meth)acrylate, hydroxyethyl (meth)acrylate, (meth)acrylamide, N,N-dimethylaminoethyl (meth)acrylate, glycidyl ( Monomers having a carboxyl group, a hydroxyl group, an amide group, an amino group, an epoxy group, etc., such as meth)acrylates, can be mentioned.
 粘着剤組成物は、上記ベースポリマーのみを含むものであってもよいが、通常は架橋剤をさらに含有する。架橋剤としては、2価以上の金属イオンであって、カルボキシル基との間でカルボン酸金属塩を形成するもの;ポリアミン化合物であって、カルボキシル基との間でアミド結合を形成するもの;ポリエポキシ化合物やポリオールであって、カルボキシル基との間でエステル結合を形成するもの;ポリイソシアネート化合物であって、カルボキシル基との間でアミド結合を形成するものが例示される。中でも、ポリイソシアネート化合物が好ましい。 The adhesive composition may contain only the above base polymer, but usually further contains a cross-linking agent. The cross-linking agent is a metal ion having a valence of 2 or more, which forms a carboxylic acid metal salt with a carboxyl group; a polyamine compound, which forms an amide bond with a carboxyl group; Examples include epoxy compounds and polyols that form ester bonds with carboxyl groups; and polyisocyanate compounds that form amide bonds with carboxyl groups. Among them, polyisocyanate compounds are preferred.
 (粘着剤層)
 偏光板1は、表示装置の表示素子等に偏光板1を貼合するための粘着剤層35を有していてもよい。粘着剤層35は、偏光板1の位相差フィルム21の偏光フィルム11側とは反対側に設けられることが好ましい。粘着剤層35は粘着剤を用いて形成することができる。粘着剤としては、上記貼合層を形成するために用いる粘着剤が挙げられる。粘着剤層35の厚みは特に限定されないが、通常3μm以上50μm以下であり、好ましくは5μm以上40μm以下であり、10μm以上30μm以下であってもよい。
(Adhesive layer)
The polarizing plate 1 may have an adhesive layer 35 for bonding the polarizing plate 1 to a display element of a display device or the like. The pressure-sensitive adhesive layer 35 is preferably provided on the side of the retardation film 21 of the polarizing plate 1 opposite to the polarizing film 11 side. The adhesive layer 35 can be formed using an adhesive. Examples of the adhesive include the adhesive used for forming the bonding layer. Although the thickness of the adhesive layer 35 is not particularly limited, it is usually 3 μm or more and 50 μm or less, preferably 5 μm or more and 40 μm or less, and may be 10 μm or more and 30 μm or less.
 (剥離フィルム)
 偏光板1は、粘着剤層35に対して剥離可能な剥離フィルムを有していてもよい。剥離フィルムは、粘着剤層35の表面を被覆保護する、又は、粘着剤層35を支持するために用いられる。剥離フィルムとしては、基材樹脂フィルムの粘着剤層35側の表面にシリコーン処理等の離型処理が施されたフィルムが挙げられる。基材樹脂フィルムを構成する樹脂材料としては、上記した基材フィルムで説明した樹脂材料を用いて形成されたフィルムが挙げられる。基材樹脂フィルムは1層構造であってもよく、2層以上の多層構造であってもよい。
(Release film)
The polarizing plate 1 may have a release film that can be separated from the adhesive layer 35 . The release film is used to cover and protect the surface of the adhesive layer 35 or to support the adhesive layer 35 . Examples of the release film include a film obtained by subjecting the surface of the base resin film on the pressure-sensitive adhesive layer 35 side to release treatment such as silicone treatment. Examples of the resin material that constitutes the base resin film include films formed using the resin materials described above for the base film. The base resin film may have a one-layer structure or a multi-layer structure of two or more layers.
 (偏光板の製造方法)
 偏光板1の製造方法は、特に限定されず、公知の方法を用いることができる。例えば、偏光フィルム11の第1面11aに水系接着剤を用いて保護フィルム12を積層し、偏光フィルム11の第2面11bには水系接着剤を用いて位相差フィルム21を積層し、水系接着剤中の水を除去する乾燥工程を経て、保護フィルム12/貼合層32/偏光フィルム11/貼合層33/位相差フィルム21の積層体を作製する。この際、保護フィルム12と位相差フィルム21との厚みの差が30μm以下であるものを用いると、積層体に発生するカールを抑制しやすく、フラットな積層体が得られやすい。その後、上記積層体の保護フィルム12側に、貼合層31を介して保護フィルム13を積層することにより、偏光板1を得ることができる。偏光板1が偏光フィルム11の第1面11a側に3以上の保護フィルムを有する場合は、さらに保護フィルムを積層する工程を設けてもよい。上記のように保護フィルム12と位相差フィルム21との厚みの差が30μm以下である積層体を用いた場合には、偏光板1に発生するカールも抑制しやすく、フラットな偏光板1が得られやすい。
(Manufacturing method of polarizing plate)
A method for manufacturing the polarizing plate 1 is not particularly limited, and a known method can be used. For example, the protective film 12 is laminated on the first surface 11a of the polarizing film 11 using a water-based adhesive, and the retardation film 21 is laminated on the second surface 11b of the polarizing film 11 using a water-based adhesive. A laminate of protective film 12/bonding layer 32/polarizing film 11/bonding layer 33/retardation film 21 is produced through a drying process for removing water in the agent. At this time, if the thickness difference between the protective film 12 and the retardation film 21 is 30 μm or less, curling of the laminate can be easily suppressed, and a flat laminate can be easily obtained. After that, the polarizing plate 1 can be obtained by laminating the protective film 13 on the protective film 12 side of the laminate with the bonding layer 31 interposed therebetween. When the polarizing plate 1 has three or more protective films on the first surface 11a side of the polarizing film 11, a step of laminating the protective films may be provided. As described above, when a laminate having a thickness difference of 30 μm or less between the protective film 12 and the retardation film 21 is used, curling occurring in the polarizing plate 1 can be easily suppressed, and a flat polarizing plate 1 can be obtained. easy to get
 偏光板1を構成するフィルム及び層(保護フィルム12,13、偏光フィルム11、位相差フィルム21、機能層等)と貼合層との接着性を高めるために、これらのフィルム及び層の貼合面に表面活性化処理を施してもよい。表面活性化処理としては、コロナ処理、プラズマ処理、放電処理(グロー放電処理等)、火炎処理、オゾン処理、UVオゾン処理、電離活性線処理(紫外線処理、電子線処理等)のような乾式処理;水やアセトン等の溶媒を用いた超音波処理、鹸化処理、アンカーコート処理のような湿式処理を挙げることができる。これらの表面活性化処理は、単独で行ってもよいし、2つ以上を組み合わせてもよい。 In order to increase the adhesiveness between the films and layers ( protective films 12, 13, polarizing film 11, retardation film 21, functional layer, etc.) constituting the polarizing plate 1 and the bonding layer, these films and layers are bonded together. A surface activation treatment may be applied to the surface. Surface activation treatments include dry treatments such as corona treatment, plasma treatment, discharge treatment (glow discharge treatment, etc.), flame treatment, ozone treatment, UV ozone treatment, ionizing active ray treatment (ultraviolet treatment, electron beam treatment, etc.). ; ultrasonic treatment using a solvent such as water or acetone, saponification treatment, and wet treatment such as anchor coating treatment. These surface activation treatments may be performed singly or in combination of two or more.
 以下、実施例及び比較例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。 The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to these examples.
 [厚みの測定]
 偏光板を構成する各フィルム及び各層の厚みは、株式会社ニコン製のデジタルマイクロメーターであるMH-15Mを用いて測定した。
[Thickness measurement]
The thickness of each film and each layer constituting the polarizing plate was measured using a digital micrometer MH-15M manufactured by Nikon Corporation.
 [透湿度の測定]
 保護フィルムの透湿度は、JIS K 7129:2008 附属書Bに準じて、温度40℃、相対湿度90%の雰囲気中で測定した。
[Measurement of moisture permeability]
The moisture permeability of the protective film was measured in accordance with JIS K 7129:2008 Appendix B in an atmosphere at a temperature of 40°C and a relative humidity of 90%.
 [位相差値の測定]
 位相差フィルム及び他の位相差層の位相差値は、位相差測定装置KOBRA-WPR(王子計測機器株式会社製)を用いて測定した。
[Measurement of phase difference value]
The retardation values of the retardation film and other retardation layers were measured using a retardation measuring device KOBRA-WPR (manufactured by Oji Scientific Instruments Co., Ltd.).
 [引張弾性率の測定]
 位相差フィルムから遅相軸及び進相軸に平行にそれぞれ幅15mm×長さ150mmの試験片を切り出した。次いで、引張試験機(株式会社島津製作所製AUTOGRAPH(登録商標)AG-1S試験機)の上下つかみ具で、つかみ具の間隔が100mmとなるように、上記試験片の長辺方向両端を挟んだ。23℃の環境下で引張速度50mm/分で引張り、応力-ひずみ曲線を作成した。応力-ひずみ曲線に基づいて、23℃における遅相軸及び進相軸に平行な方向の引張弾性率を算出した。こうして算出した遅相軸及び進相軸に平行な方向の引張弾性率のうち、値が大きいものを、位相差フィルムの23℃における引張弾性率の値とした。
[Measurement of tensile modulus]
A test piece having a width of 15 mm and a length of 150 mm was cut out from the retardation film parallel to the slow axis and the fast axis. Next, the upper and lower grips of a tensile tester (AUTOGRAPH (registered trademark) AG-1S tester manufactured by Shimadzu Corporation) were held at both ends in the long side direction of the test piece so that the distance between the grips was 100 mm. . A stress-strain curve was created by pulling at a tensile speed of 50 mm/min in an environment of 23°C. Based on the stress-strain curve, the tensile elastic modulus in the direction parallel to the slow axis and fast axis at 23° C. was calculated. Of the tensile elastic moduli in the direction parallel to the slow axis and the fast axis thus calculated, the one with the largest value was taken as the value of the tensile elastic modulus at 23°C of the retardation film.
 [貯蔵弾性率の測定]
 粘着剤層A及び粘着剤層Bの貯蔵弾性率G’は、以下〔I〕~〔III〕の手順にしたがって測定した。
〔I〕各粘着剤層から、それぞれの重量が25±1mgとなるように2つの試料を取り出し、各試料を略玉状に成形する。
〔II〕成形した略玉状の2つの試料をI型冶具の上下面にそれぞれ貼り付け、上下面ともL型冶具で挟み込んで測定試料とする。測定試料の構成は、L型治具/粘着剤層A又は粘着剤層B/I型治具/粘着剤層/L型冶具である。
〔III〕測定試料の貯蔵弾性率G’を、アイティー計測制御(株)製の動的粘弾性測定装置「DVA-220」を用いて、温度23℃、周波数1Hz、初期歪み1Nの条件下で測定する。
[Measurement of storage modulus]
The storage elastic moduli G' of the adhesive layer A and the adhesive layer B were measured according to the procedures [I] to [III] below.
[I] Two samples are taken out from each pressure-sensitive adhesive layer so that each weighs 25±1 mg, and each sample is formed into a ball shape.
[II] Two molded approximately ball-shaped samples are attached to the upper and lower surfaces of an I-shaped jig, respectively, and both upper and lower surfaces are sandwiched between L-shaped jigs to obtain measurement samples. The configuration of the measurement sample is L-shaped jig/adhesive layer A or adhesive layer B/I-shaped jig/adhesive layer/L-shaped jig.
[III] The storage elastic modulus G' of the measurement sample is measured using a dynamic viscoelasticity measuring device "DVA-220" manufactured by IT Keisoku Co., Ltd. under the conditions of a temperature of 23 ° C., a frequency of 1 Hz, and an initial strain of 1 N. Measure in
 [鉛筆硬度の測定]
 ガラス板上に、保護フィルムの基材フィルム側がガラス板と対向するように、保護フィルムを配置した。保護フィルムのHC層側について、JIS K 5600-5-4:1999「塗料一般試験方法-第5部:塗膜の機械的性質-第4節:引っかき硬度(鉛筆法)」に規定される鉛筆硬度試験を行い、保護フィルムの鉛筆硬度を測定した。
[Measurement of pencil hardness]
The protective film was placed on the glass plate so that the substrate film side of the protective film faced the glass plate. For the HC layer side of the protective film, a pencil specified in JIS K 5600-5-4: 1999 "General test method for paint-Part 5: Mechanical properties of coating film-Section 4: Scratch hardness (pencil method)" A hardness test was performed to measure the pencil hardness of the protective film.
 <偏光フィルムの作製>
 平均重合度約2400、ケン化度99.9モル%以上であるPVA系樹脂からなる厚み40μmのPVA系樹脂フィルムを準備した。このPVA系樹脂フィルムを乾式で約5倍に一軸延伸し、さらに緊張状態を保ったまま、温度60℃の純水に1分間浸漬した。その後、ヨウ素/ヨウ化カリウム/水の重量比が0.05/5/100である、温度28℃の水溶液に60秒間PVA系樹脂フィルムを浸漬した。その後、ヨウ化カリウム/ホウ酸/水の重量比が8.5/8.5/100である、温度72度の水溶液に300秒間PVA系樹脂フィルムを浸漬した。引き続き温度26℃の純水で20秒間洗浄した後、温度65℃で乾燥した。
このようにして、PVA系樹脂フィルムに、二色性色素としてのヨウ素が吸着配向した厚み15μmの偏光フィルムを得た。
<Preparation of polarizing film>
A 40 μm-thick PVA-based resin film made of a PVA-based resin having an average degree of polymerization of about 2400 and a degree of saponification of 99.9 mol % or more was prepared. This PVA-based resin film was uniaxially stretched about 5 times by a dry method, and further immersed in pure water at a temperature of 60° C. for 1 minute while maintaining the tension. After that, the PVA-based resin film was immersed in an aqueous solution of iodine/potassium iodide/water at a weight ratio of 0.05/5/100 at a temperature of 28° C. for 60 seconds. After that, the PVA-based resin film was immersed in an aqueous solution of potassium iodide/boric acid/water at a weight ratio of 8.5/8.5/100 at a temperature of 72° C. for 300 seconds. Subsequently, it was washed with pure water at a temperature of 26°C for 20 seconds and then dried at a temperature of 65°C.
Thus, a polarizing film having a thickness of 15 μm was obtained in which iodine as a dichroic dye was adsorbed and oriented on the PVA-based resin film.
 <保護フィルム(1)の作製>
 以下に示す成分を混合し、HC層形成用組成物を調製した。
 PET30     97.0質量部
 イルガキュア907  3.0質量部
 MEK        81.8質量部
 ここで、PET30は、ペンタエリスリトールテトラアクリレートとペンタエリスリトールトリアクリレートの混合物(日本化薬(株)製)である。
 イルガキュア907は、光重合開始剤(BASF社製)である。
 MEKは、メチルエチルケトンである。
<Preparation of protective film (1)>
A composition for forming an HC layer was prepared by mixing the components shown below.
PET30 97.0 parts by mass Irgacure 907 3.0 parts by mass MEK 81.8 parts by mass PET30 is a mixture of pentaerythritol tetraacrylate and pentaerythritol triacrylate (manufactured by Nippon Kayaku Co., Ltd.).
Irgacure 907 is a photopolymerization initiator (manufactured by BASF).
MEK is methyl ethyl ketone.
 ロール状に巻回された基材フィルム(セルロースアシレートフィルムTD40、富士フイルム(株)製、幅1,340mm、膜厚40μm)を巻出し、スロットダイを用いたダイコート法で搬送速度30m/分の条件でHC層形成用組成物を塗布し、60℃で150秒乾燥させて塗布層を形成した。その後、窒素パージ下、酸素濃度約0.1%の条件下において、出力160W/cmの空冷メタルハライドランプ(アイグラフィック(株)製)を用いて照度400mW/cm、照射量120mJ/cmの紫外線を照射して塗布層を硬化させて、HC層を形成した。HC層の膜厚が7μmになるように、塗布層の塗布厚みを調整した。このようにして、基材フィルムの片面にHC層を有する保護フィルム(1)を得、これを巻き取った。保護フィルム(1)の透湿度は、250g/m・dayであった。保護フィルム(1)の鉛筆硬度は2Hであった。 A base film (cellulose acylate film TD40, manufactured by Fujifilm Corporation, width 1,340 mm, film thickness 40 μm) wound in a roll is unwound and transported at a speed of 30 m/min by a die coating method using a slot die. and dried at 60° C. for 150 seconds to form a coating layer. Then, under a nitrogen purge and an oxygen concentration of about 0.1%, an air-cooled metal halide lamp (manufactured by Eyegraphic Co., Ltd.) with an output of 160 W/cm was used to set an illuminance of 400 mW/cm 2 and an irradiation dose of 120 mJ/cm 2 . An HC layer was formed by curing the coating layer by irradiating with ultraviolet rays. The coating thickness of the coating layer was adjusted so that the thickness of the HC layer was 7 μm. Thus, a protective film (1) having an HC layer on one side of the base film was obtained and wound up. The moisture permeability of the protective film (1) was 250 g/m 2 ·day. The pencil hardness of the protective film (1) was 2H.
 <保護フィルム(2)の作製>
 HC層の膜厚が5μmになるように塗布層の厚みを調整したこと以外は、保護フィルム(1)の作製と同様の手順で保護フィルム(2)を得た。保護フィルム(2)の透湿度は、350g/m・dayであった。保護フィルム(2)の鉛筆硬度は3Hであった。
<Preparation of protective film (2)>
A protective film (2) was obtained in the same manner as the protective film (1), except that the thickness of the coating layer was adjusted so that the thickness of the HC layer was 5 μm. The moisture permeability of the protective film (2) was 350 g/m 2 ·day. The pencil hardness of the protective film (2) was 3H.
 <保護フィルム(3)の作製>
 HC層の膜厚が3μmになるように塗布層の厚みを調整したこと以外は、保護フィルム(1)の作製と同様の手順で保護フィルム(3)を得た。保護フィルム(3)の透湿度は、500g/m・dayであった。保護フィルム(3)の鉛筆硬度は3Hであった。
<Preparation of protective film (3)>
A protective film (3) was obtained in the same manner as the protective film (1), except that the thickness of the coating layer was adjusted so that the thickness of the HC layer was 3 μm. The moisture permeability of the protective film (3) was 500 g/m 2 ·day. The pencil hardness of the protective film (3) was 3H.
 <位相差フィルムと他の位相差層とを含む位相差積層体の作製>
 国際公開第2018/207798号の段落[0106]~[0109]の記載にしたがって位相差フィルム及び他の位相差層を作製した。具体的には、未延伸シクロオレフィンポリマーフィルム(JSR(株)製、商品名「アートンフィルム」)に対して一軸延伸を行い、厚み24μmの位相差フィルムを得た。得られた位相差フィルムの温度23℃における引張弾性率を測定したところ、2742MPaであった。また、位相差フィルムの波長550nmにおける面内位相差値Re(550)は110nmであり、波長550nmにおける厚み方向の位相差値Rth(550)は55nmであった。
<Preparation of Retardation Laminate Containing Retardation Film and Other Retardation Layer>
A retardation film and other retardation layers were prepared according to paragraphs [0106] to [0109] of WO2018/207798. Specifically, an unstretched cycloolefin polymer film (manufactured by JSR Corporation, trade name “Arton film”) was uniaxially stretched to obtain a retardation film having a thickness of 24 μm. When the tensile modulus of the obtained retardation film was measured at a temperature of 23° C., it was 2742 MPa. The retardation film had an in-plane retardation value Re(550) of 110 nm at a wavelength of 550 nm, and a thickness direction retardation value Rth(550) of 55 nm at a wavelength of 550 nm.
 次に、上記で得た位相差フィルムの片面に、棒状液晶性化合物を有する組成物を塗布して他の位相差層を形成することにより、位相差積層体を得た。他の位相差層の波長550nmにおける面内位相差値Re(550)は0nmであり、波長550nmにおける厚み方向の位相差値Rth(550)は-100nmであった。 Next, a retardation laminate was obtained by coating one side of the retardation film obtained above with a composition containing a rod-like liquid crystalline compound to form another retardation layer. The other retardation layer had an in-plane retardation value Re(550) of 0 nm at a wavelength of 550 nm, and a thickness direction retardation value Rth(550) of −100 nm at a wavelength of 550 nm.
 <ポリビニルアルコール系接着剤(PVA系接着剤)の調製>
 アセトアセチル基を含有する変性PVA系樹脂(三菱ケミカル(株)製:ゴーセネックスZ-410)50gを950gの純水に溶解し、温度90℃で2時間加熱後、常温に冷却し、ポリビニルアルコール溶液を得た。次いで、それぞれの化合物が下記の濃度になるようにポリビニルアルコール溶液、マレイン酸、グリオキサール、純水を配合し、PVA系接着剤を調製した。
 ポリビニルアルコール濃度 3.0重量%
 マレイン酸濃度      0.01重量%
 グリオキサール濃度    0.15重量%
<Preparation of polyvinyl alcohol-based adhesive (PVA-based adhesive)>
50 g of a modified PVA resin containing an acetoacetyl group (manufactured by Mitsubishi Chemical Corporation: Gohsenex Z-410) is dissolved in 950 g of pure water, heated at a temperature of 90 ° C. for 2 hours, cooled to room temperature, and polyvinyl alcohol solution. got Next, a polyvinyl alcohol solution, maleic acid, glyoxal, and pure water were blended so that each compound would have the following concentrations to prepare a PVA-based adhesive.
Polyvinyl alcohol concentration 3.0% by weight
Maleic acid concentration 0.01% by weight
Glyoxal concentration 0.15% by weight
 <粘着剤層A及び粘着剤層Bの準備>
 粘着剤層Aとして、市販の厚み5μmのシート状アクリル系粘着剤(温度23℃における貯蔵弾性率:0.06MPa)を準備した。
 粘着剤層Bとして、市販の厚み25μmのシート状アクリル系粘着剤(温度23℃における貯蔵弾性率0.06MPa)を準備した。
<Preparation of adhesive layer A and adhesive layer B>
As the adhesive layer A, a commercially available sheet-like acrylic adhesive with a thickness of 5 μm (storage elastic modulus at a temperature of 23° C.: 0.06 MPa) was prepared.
As the adhesive layer B, a commercially available sheet-like acrylic adhesive with a thickness of 25 μm (storage elastic modulus at a temperature of 23° C. of 0.06 MPa) was prepared.
 〔実施例1〕
 上記で得た保護フィルム(1)を、温度55℃に保った1.5mol/LのNaOH水溶液(鹸化液)に2分間浸漬した後、水洗した。水洗後の保護フィルム(1)を温度25℃の0.05mol/Lの硫酸水溶液に30秒間浸漬した後、さらに流水下に30秒間通して、保護フィルム(1)を中性の状態にした。この保護フィルム(1)に対してエアナイフによる水切りを3回繰り返し実施した後に、温度70℃の乾燥ゾーンに15秒間滞留させて乾燥した。これにより、HC層及び基材フィルムに対して鹸化処理(表面活性化処理)を行った鹸化処理済みの保護フィルム(1)を得た。
[Example 1]
The protective film (1) obtained above was immersed in a 1.5 mol/L NaOH aqueous solution (saponifying solution) kept at 55° C. for 2 minutes and then washed with water. The washed protective film (1) was immersed in a 0.05 mol/L sulfuric acid aqueous solution at 25° C. for 30 seconds and then passed under running water for 30 seconds to neutralize the protective film (1). After removing water from the protective film (1) with an air knife three times, it was dried by staying in a drying zone at a temperature of 70° C. for 15 seconds. As a result, a saponified protective film (1) was obtained in which the HC layer and the base film were subjected to saponification treatment (surface activation treatment).
 鹸化処理済みの保護フィルム(1)(以下、「第1の保護フィルム(1)」ということがある。)と、偏光フィルムと、位相差積層体とを、上記で調製したPVA系接着剤を介して積層した積層体(1)を得た。積層体(1)において、偏光フィルムの吸収軸と位相差フィルムの遅相軸とは平行であった。また、積層体(1)では、位相差積層体の他の位相差層側が偏光フィルムに対向し、第1の保護フィルム(1)の基材フィルム側が偏光フィルムに対向していた。位相差積層体と偏光フィルムとの接着力、及び、偏光フィルムと第1の保護フィルム(1)との接着力は、実用上十分なものであった。 A saponified protective film (1) (hereinafter sometimes referred to as “first protective film (1)”), a polarizing film, and a retardation laminate are combined with the PVA-based adhesive prepared above. A laminate (1) was obtained by laminating through In the laminate (1), the absorption axis of the polarizing film and the slow axis of the retardation film were parallel. In the laminate (1), the other retardation layer side of the retardation laminate faced the polarizing film, and the substrate film side of the first protective film (1) faced the polarizing film. The adhesive strength between the retardation laminate and the polarizing film and the adhesive strength between the polarizing film and the first protective film (1) were practically sufficient.
 次に、上記で得た積層体(1)の第1の保護フィルム(1)側に、粘着剤層Aを介して、上記と同様の手順で鹸化処理を行った鹸化処理済みの保護フィルム(1)(以下、「第2の保護フィルム(1)」ということがある。)を積層した。第2の保護フィルム(1)は、基材フィルム側を粘着剤層(A)との貼合面とした。また、積層体(1)の位相差積層体側にコロナ処理を行い、粘着剤層B表面にコロナ処理を行って、積層体(1)のコロナ処理面と粘着剤層(B)のコロナ処理面とを積層した。これにより、偏光板(1)を得た。偏光板(1)において、第1の保護フィルム(1)及び第2の保護フィルム(1)はいずれも偏光フィルムの同じ表面側に配置されており、第1の保護フィルム(1)は偏光フィルムに相対的に近い位置に配置され、第2の保護フィルム(1)は偏光フィルムに相対的に遠い位置に配置されていた。 Next, on the first protective film (1) side of the laminate (1) obtained above, the saponified protective film ( 1) (hereinafter sometimes referred to as "second protective film (1)") was laminated. In the second protective film (1), the base film side was used as the bonding surface with the pressure-sensitive adhesive layer (A). Further, the phase difference laminate side of the laminate (1) is subjected to corona treatment, the surface of the adhesive layer B is subjected to corona treatment, and the corona-treated surface of the laminate (1) and the corona-treated surface of the adhesive layer (B) are treated. and laminated. Thus, a polarizing plate (1) was obtained. In the polarizing plate (1), both the first protective film (1) and the second protective film (1) are arranged on the same surface side of the polarizing film, and the first protective film (1) is the polarizing film , and the second protective film (1) was positioned relatively far from the polarizing film.
 〔実施例2〕
 第1の保護フィルム(1)及び第2の保護フィルム(1)に代えて、保護フィルム(1)に対して行った鹸化処理と同様の鹸化処理を行った鹸化処理済みの保護フィルム(2)を用いたこと以外は、実施例1で作製した偏光板(1)の作製手順と同様の手順で偏光板(2)を得た。
[Example 2]
A saponified protective film (2) which is saponified in place of the first protective film (1) and the second protective film (1) and subjected to the same saponification treatment as the saponification treatment performed on the protective film (1). A polarizing plate (2) was obtained in the same procedure as the polarizing plate (1) produced in Example 1, except that the polarizing plate (2) was used.
 〔実施例3〕
 第1の保護フィルム(1)及び第2の保護フィルム(1)に代えて、保護フィルム(1)に対して行った鹸化処理と同様の鹸化処理を行った鹸化処理済みの保護フィルム(3)を用いたこと以外は、実施例1で作製した偏光板(1)の作製手順と同様の手順で偏光板(3)を得た。
[Example 3]
A saponified protective film (3) which is saponified in place of the first protective film (1) and the second protective film (1) and is saponified in the same manner as the saponification of the protective film (1). A polarizing plate (3) was obtained in the same procedure as the polarizing plate (1) produced in Example 1, except that the polarizing plate (3) was used.
 〔比較例1〕
 第2の保護フィルム(1)に代えて、保護フィルム(1)に対して行った鹸化処理と同様の鹸化処理を行った鹸化処理済みの基材フィルム(セルロースアシレートフィルムTD40、富士フイルム(株)製、幅1,340mm、膜厚40μm)を用いたこと以外は、実施例1で作製した偏光板(1)の作製手順と同様の手順で比較偏光板(C1)を得た。
[Comparative Example 1]
Instead of the second protective film (1), a saponified base film (cellulose acylate film TD40, Fuji Film Co., Ltd. ), width 1,340 mm, film thickness 40 μm), a comparative polarizing plate (C1) was obtained in the same procedure as the polarizing plate (1) produced in Example 1.
 〔比較例2〕
 実施例1と同様の手順で作製した積層体(1)を得、これを比較偏光板(C2)とした。
[Comparative Example 2]
A laminate (1) produced in the same procedure as in Example 1 was obtained and used as a comparative polarizing plate (C2).
 〔比較例3〕
 第1の保護フィルム(1)に代えて、保護フィルム(1)に対して行った鹸化処理と同様の鹸化処理を行った鹸化処理済みの基材フィルム(セルロースアシレートフィルムTD40、富士フイルム(株)製、幅1,340mm、膜厚40μm)を用いたこと以外は、実施例1で作製した偏光板(1)の作製手順と同様の手順で比較偏光板(C3)を得た。
[Comparative Example 3]
Instead of the first protective film (1), saponified base film (cellulose acylate film TD40, FUJIFILM Corporation A comparative polarizing plate (C3) was obtained in the same manner as the polarizing plate (1) produced in Example 1, except that the polarizing plate (1) produced in Example 1 was used, except that a polarizing plate (1,340 mm in width and 40 μm in thickness) was used.
 [クラックの発生の評価]
 実施例で得た偏光板、及び、比較例で得た比較偏光板のそれぞれについて、次の手順で評価用サンプルを作製し、クラックの発生の評価を行った。偏光板又は比較偏光板を、200mm×200mmのサイズに裁断し、厚み0.7mm、300mm×300mmのサイズの無アルカリガラスに、粘着剤層Bを介して貼合して、評価用サンプルを作製した。
[Evaluation of crack generation]
For each of the polarizing plate obtained in the example and the comparative polarizing plate obtained in the comparative example, samples for evaluation were prepared according to the following procedure, and the generation of cracks was evaluated. A polarizing plate or a comparative polarizing plate is cut into a size of 200 mm × 200 mm, and pasted to an alkali-free glass having a thickness of 0.7 mm and a size of 300 mm × 300 mm via an adhesive layer B to prepare a sample for evaluation. did.
 作製した評価用サンプルを、温度105℃の加熱環境下に500時間保持した後、温度23℃(常温)まで冷却した。その後、温度23℃、相対湿度55%の常温常湿環境下に30日間保持した後、偏光板又は比較偏光板の位相差フィルムを観察し、クラックの発生の有無を確認した。さらに、この時点でクラックの発生が見られなかった評価用サンプルについては、さらに7日後(常温常湿環境下での保持開始から37日後)にも、位相差フィルムを観察し、クラックの発生の有無を確認した。結果を表1に示す。 The prepared evaluation sample was held in a heating environment at a temperature of 105°C for 500 hours, and then cooled to a temperature of 23°C (normal temperature). Then, after holding for 30 days in a normal temperature and normal humidity environment with a temperature of 23° C. and a relative humidity of 55%, the retardation film of the polarizing plate or the comparative polarizing plate was observed to confirm the presence or absence of cracks. Furthermore, for the evaluation sample in which no cracks were observed at this point, the retardation film was observed 7 days later (37 days after the start of holding under the normal temperature and humidity environment) to determine whether cracks occurred. Checked for presence. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 1 偏光板、11 偏光フィルム、11a 第1面、11b 第2面、12,13 保護フィルム、21 位相差フィルム、31~33 貼合層、35 粘着剤層。 1 polarizing plate, 11 polarizing film, 11a first surface, 11b second surface, 12, 13 protective film, 21 retardation film, 31 to 33 bonding layer, 35 adhesive layer.

Claims (8)

  1. ポリビニルアルコール系樹脂フィルムに二色性色素が吸着配向している偏光フィルムと、
    基材フィルム上にハードコート層が設けられた保護フィルムと、
    温度23℃における引張弾性率が3000MPa以下である位相差フィルムと、を備え、
    前記偏光フィルムの第1面側には、前記保護フィルムが2以上積層されており、
    前記偏光フィルムの前記第1面側とは反対側の第2面側には、前記位相差フィルムが積層されている、偏光板。
    A polarizing film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol-based resin film;
    a protective film in which a hard coat layer is provided on a base film;
    A retardation film having a tensile modulus of elasticity of 3000 MPa or less at a temperature of 23 ° C.,
    Two or more of the protective films are laminated on the first surface side of the polarizing film,
    A polarizing plate, wherein the retardation film is laminated on a second surface side opposite to the first surface side of the polarizing film.
  2. 前記第1面側に積層された2以上の前記保護フィルムのうち、少なくとも一つの保護フィルムの温度40℃、相対湿度90%における透湿度は、200g/m・day以上である、請求項1に記載の偏光板。 2. The moisture permeability of at least one of the two or more protective films laminated on the first surface side at a temperature of 40° C. and a relative humidity of 90% is 200 g/m 2 ·day or more. The polarizing plate described in .
  3. 前記第1面側に積層された2以上の前記保護フィルムのうち、最も前記偏光フィルム側に積層される保護フィルムの温度40℃、相対湿度90%における透湿度は、200g/m・day以上である、請求項1又は2に記載の偏光板。 Among the two or more protective films laminated on the first surface side, the protective film laminated most on the polarizing film side has a moisture permeability of 200 g/m 2 ·day or more at a temperature of 40°C and a relative humidity of 90%. The polarizing plate according to claim 1 or 2, wherein
  4. 前記第1面側に積層された2以上の前記保護フィルムのうち、少なくとも一つの保護フィルムの前記基材フィルムは、セルロース系樹脂フィルムである、請求項1~3のいずれか1項に記載の偏光板。 The base film of at least one of the two or more protective films laminated on the first surface side is a cellulose resin film, according to any one of claims 1 to 3. Polarizer.
  5. 前記位相差フィルムは、環状オレフィン系樹脂フィルムである、請求項1~4のいずれか1項に記載の偏光板。 The polarizing plate according to any one of claims 1 to 4, wherein the retardation film is a cyclic olefin resin film.
  6. 前記位相差フィルムの波長550nmにおける面内位相差値は、80nm以上である、請求項1~5のいずれか1項に記載の偏光板。 6. The polarizing plate according to claim 1, wherein the retardation film has an in-plane retardation value of 80 nm or more at a wavelength of 550 nm.
  7. さらに、前記位相差フィルムの前記偏光フィルム側とは反対側に粘着剤層を有する、請求項1~6のいずれか1項に記載の偏光板。 The polarizing plate according to any one of claims 1 to 6, further comprising an adhesive layer on the side of the retardation film opposite to the polarizing film side.
  8. 請求項7に記載の偏光板と、表示素子とを有する表示装置であって、
    前記偏光板は、前記粘着剤層を介して表示素子に積層されている、表示装置。
    A display device comprising the polarizing plate according to claim 7 and a display element,
    The display device, wherein the polarizing plate is laminated on a display element via the pressure-sensitive adhesive layer.
PCT/JP2022/009147 2021-03-11 2022-03-03 Polarizing plate WO2022191033A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280016561.3A CN116888511A (en) 2021-03-11 2022-03-03 Polarizing plate
KR1020237032982A KR20230154893A (en) 2021-03-11 2022-03-03 polarizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021038993A JP2022138876A (en) 2021-03-11 2021-03-11 Polarizing plate
JP2021-038993 2021-03-11

Publications (1)

Publication Number Publication Date
WO2022191033A1 true WO2022191033A1 (en) 2022-09-15

Family

ID=83227875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009147 WO2022191033A1 (en) 2021-03-11 2022-03-03 Polarizing plate

Country Status (5)

Country Link
JP (1) JP2022138876A (en)
KR (1) KR20230154893A (en)
CN (1) CN116888511A (en)
TW (1) TW202248681A (en)
WO (1) WO2022191033A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345958A (en) * 2004-06-07 2005-12-15 Nitto Denko Corp Liquid crystal panel, polarizing plate and liquid crystal display
JP2015022200A (en) * 2013-07-22 2015-02-02 富士フイルム株式会社 Liquid crystal display device
WO2017047408A1 (en) * 2015-09-18 2017-03-23 住友化学株式会社 Composite polarizing plate and liquid crystal panel using same
JP2017156398A (en) * 2016-02-29 2017-09-07 住友化学株式会社 Set of polarizing plates and liquid crystal panel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100601920B1 (en) 2004-01-09 2006-07-14 주식회사 엘지화학 In-plane switching liquid crystal display comprising compensation film for angular field of view using negative biaxial retardation film and + c-plate
JP5755674B2 (en) 2013-03-29 2015-07-29 日東電工株式会社 Method for producing retardation film and method for producing circularly polarizing plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005345958A (en) * 2004-06-07 2005-12-15 Nitto Denko Corp Liquid crystal panel, polarizing plate and liquid crystal display
JP2015022200A (en) * 2013-07-22 2015-02-02 富士フイルム株式会社 Liquid crystal display device
WO2017047408A1 (en) * 2015-09-18 2017-03-23 住友化学株式会社 Composite polarizing plate and liquid crystal panel using same
JP2017156398A (en) * 2016-02-29 2017-09-07 住友化学株式会社 Set of polarizing plates and liquid crystal panel

Also Published As

Publication number Publication date
CN116888511A (en) 2023-10-13
JP2022138876A (en) 2022-09-26
TW202248681A (en) 2022-12-16
KR20230154893A (en) 2023-11-09

Similar Documents

Publication Publication Date Title
JP5930636B2 (en) Polarizer
CN105717572B (en) Polarizing plate with protective film and laminate comprising same
CN108474891B (en) Polarizing plate
KR102642673B1 (en) Laminate
KR20190049493A (en) Laminate
TW202000447A (en) Polarization film, adhesive layer-provided polarization film, and image display device
JP2020101815A (en) Polarizing plate set
KR20190008158A (en) Polarizing Plate
KR20170132112A (en) Polarizing plate and image display device
KR20210009330A (en) Polarizer and display device
KR20210122699A (en) Polarizing plate and image display device using the polarizing plate
KR102593816B1 (en) Optical laminate and image display device using the optical laminate
JP6181804B2 (en) Polarizer
TW202001308A (en) Polarizing film, polarizing film with adhesive layer, and image display device
CN109313306B (en) Polarizing plate assembly
WO2022191033A1 (en) Polarizing plate
CN114488378A (en) Polarizing plate and display device
WO2020213494A1 (en) Optical laminate, and image display device
WO2023013275A1 (en) Retardation layer-equipped polarizing plate and image display device using same
JP7345330B2 (en) Optical laminate and display device using the same
JP7261336B1 (en) Polarizer
WO2023228584A1 (en) Method for producing polarizing plate
CN110780373A (en) Circular polarizing plate and display device
JP2022072267A (en) Polarizing plate and liquid crystal display device
JP2022146427A (en) Optical laminate and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766991

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280016561.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237032982

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22766991

Country of ref document: EP

Kind code of ref document: A1