WO2023228584A1 - Method for producing polarizing plate - Google Patents

Method for producing polarizing plate Download PDF

Info

Publication number
WO2023228584A1
WO2023228584A1 PCT/JP2023/013788 JP2023013788W WO2023228584A1 WO 2023228584 A1 WO2023228584 A1 WO 2023228584A1 JP 2023013788 W JP2023013788 W JP 2023013788W WO 2023228584 A1 WO2023228584 A1 WO 2023228584A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polarizing element
adhesive
resin
water
Prior art date
Application number
PCT/JP2023/013788
Other languages
French (fr)
Japanese (ja)
Inventor
裕史 太田
慎也 萩原
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2023228584A1 publication Critical patent/WO2023228584A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a method for manufacturing a polarizing plate.
  • Liquid crystal display devices are widely used not only in LCD televisions, but also in personal computers, mobile phones such as mobile phones, and in-vehicle applications such as car navigation systems.
  • a liquid crystal display device has a liquid crystal panel member in which polarizing plates are bonded to both sides of a liquid crystal cell using an adhesive, and displays are performed by controlling light from a backlight member with the liquid crystal panel member.
  • organic EL display devices have also been widely used in mobile applications such as televisions, cell phones, and in-vehicle applications such as car navigation systems, similar to liquid crystal display devices.
  • a circularly polarizing plate (a polarizing element and a ⁇ /4 plate) is installed on the viewing side surface of the image display panel. laminate) may be arranged.
  • Polarizing plates are increasingly being installed in cars as components of liquid crystal display devices and organic EL display devices. Polarizing plates used in in-vehicle image display devices are often exposed to high temperature environments compared to other mobile applications such as televisions and mobile phones, and are required to have higher durability at high temperatures. It will be done.
  • Patent Documents 1 and 2 disclose that components such as metal salts containing zinc, copper, aluminum, etc. are added to a treatment bath, and these components are added to the polarizing element. It has been disclosed that the durability of a polarizing element can be improved by including a component therein. Further, Patent Documents 3 and 4 disclose a method for manufacturing a polarizing element in which a component such as an organic titanium compound is added to a treatment bath.
  • An object of the present invention is to provide a method for manufacturing a polarizing plate that can suppress discoloration during the manufacturing process of the polarizing plate even if the boron content of the polarizing element is increased.
  • the present invention provides the following method for manufacturing a polarizing plate.
  • a method for producing a polarizing plate comprising a polarizing element and a transparent protective film laminated on at least one surface of the polarizing element, A polarizing element manufacturing process for obtaining a polarizing element from a polyvinyl alcohol resin film; a bonding step of bonding the transparent protective film to the polarizing element via a water-based adhesive;
  • the polyvinyl alcohol resin film has a boron adsorption rate of 5.70% by mass or more
  • the method for producing the aqueous adhesive has an ethanol concentration of 16% by mass or more and 50% by mass or less.
  • the present invention it is possible to provide a method for manufacturing a polarizing plate that can suppress discoloration during the manufacturing process of the polarizing plate even if the boron content of the polarizing element is increased.
  • FIG. 1 is a cross-sectional view schematically showing an example of a method for manufacturing a polarizing element according to the present invention.
  • the present invention provides a method for manufacturing a polarizing plate having a polarizing element and a transparent protective film laminated on at least one surface of the polarizing element, the method comprising: a polyvinyl alcohol resin film (hereinafter referred to as "PVA resin film”).
  • PVA resin film a polyvinyl alcohol resin film
  • the PVA resin film has a boron adsorption rate of 5.70% by mass or more.
  • the water-based adhesive has an ethanol concentration of 16% by mass or more and 50% by mass or less.
  • the polarizing element has a dichroic dye (iodine or dichroic dye) adsorbed and oriented on a uniaxially stretched polyvinyl alcohol resin film.
  • a polarizing element is produced using a polyvinyl alcohol resin film with a boron adsorption rate of 5.70% by mass or more.
  • a polyvinyl alcohol resin film with a boron adsorption rate of 5.70% by mass or more.
  • the boron adsorption rate of the PVA resin film is less than 5.70% by mass, the transmittance tends to decrease when exposed to a high temperature environment, and as mentioned above, productivity may decrease.
  • the boron adsorption rate of the PVA-based resin film can be measured by the method described in Examples below.
  • the boron adsorption rate of a PVA-based resin film is a characteristic that reflects the spacing between molecular chains and the crystal structure in the PVA-based resin film.
  • a PVA resin film with a boron adsorption rate of 5.70% by mass or more has a wider spacing between molecular chains than a PVA resin film with a boron adsorption rate of less than 5.70% by mass. It is thought that there are few crystals. Therefore, it is presumed that boron easily enters the PVA-based resin film and that polyenization is easily prevented in a high-temperature environment.
  • the boron adsorption rate of the PVA-based resin film can be adjusted, for example, by pre-processing the PVA-based resin film at the raw material stage, such as hot water treatment, acidic solution treatment, ultrasonic irradiation treatment, radiation irradiation treatment, etc. I can do it. These treatments can widen the spacing between molecular chains and destroy the crystal structure in the PVA resin film.
  • hot water treatment include immersion in pure water at 30° C. to 100° C. for 1 second to 90 seconds and drying.
  • the acidic solution treatment include immersion in a boric acid aqueous solution having a concentration of 10% by mass to 20% by mass for 1 second to 90 seconds and drying.
  • the ultrasonic treatment include treatment in which ultrasonic waves with a frequency of 20 to 29 kc are irradiated with an output of 200 W to 500 W for 30 seconds to 10 minutes. Sonication can be performed in a solvent such as water.
  • the polyvinyl alcohol resin (hereinafter also referred to as "PVA resin") constituting the PVA resin film is usually obtained by saponifying polyvinyl acetate resin.
  • the degree of saponification is preferably 85 mol% or more, more preferably 90 mol% or more, even more preferably 99 mol% or more.
  • the polyvinyl acetate resin may be, for example, a polyvinyl acetate homopolymer of vinyl acetate, or a copolymer of vinyl acetate and another monomer copolymerizable therewith. Examples of other copolymerizable monomers include unsaturated carboxylic acids, olefins, vinyl ethers, and unsaturated sulfonic acids.
  • the degree of polymerization of the polyvinyl alcohol resin is usually 1,000 to 10,000, preferably 1,500 to 5,000.
  • PVA-based resins may be modified; for example, polyvinyl formal, polyvinyl acetal, polyvinyl butyral, etc. modified with aldehydes may also be used.
  • an unstretched polyvinyl alcohol resin film (original film) having a thickness of 65 ⁇ m or less (for example, 60 ⁇ m or less), preferably 50 ⁇ m or less, more preferably 35 ⁇ m or less, and even more preferably 30 ⁇ m or less film).
  • the width of the raw film is not particularly limited, and can be, for example, about 400 to 6000 mm.
  • the raw film is prepared, for example, as a roll (original roll) of a long unstretched polyvinyl alcohol resin film.
  • the original film may be a commercially available product or may be obtained by film forming, and the film forming method is not particularly limited, and known methods such as melt extrusion and solvent casting may be employed. can.
  • the PVA resin film used in the present invention may be laminated on a base film that supports the PVA resin film. It may also be prepared as a laminated film with a resin film.
  • the PVA-based resin film can be produced, for example, by applying a coating solution containing a PVA-based resin to at least one surface of the base film and then drying the coating solution.
  • a film made of thermoplastic resin can be used as the base film.
  • a specific example is a film made of a translucent thermoplastic resin, preferably an optically transparent thermoplastic resin, such as a chain polyolefin resin (polypropylene resin, etc.), a cyclic polyolefin resin, etc.
  • Polyolefin resins such as (norbornene resins, etc.); Cellulose resins such as triacetylcellulose and diacetylcellulose; Polyester resins such as polyethylene terephthalate and polybutylene terephthalate; Polycarbonate resins; Methyl methacrylate resins, etc.
  • (meth)acrylic resin (meth)acrylic resin; polystyrene resin; polyvinyl chloride resin; acrylonitrile/butadiene/styrene resin; acrylonitrile/styrene resin; polyvinyl acetate resin; polyvinylidene chloride resin; polyamide resin; polyacetal resin Resin; modified polyphenylene ether resin; polysulfone resin; polyether sulfone resin; polyarylate resin; polyamideimide resin; polyimide resin and the like.
  • the base film When a polarizing element is manufactured using a laminated film of a base film and a PVA-based resin film laminated thereon, the base film may be used as a protective layer of the polarizing element, and if necessary, the base film may be used as a protective layer for the polarizing element. It may be peeled off and removed.
  • the polarizing element is manufactured by unwinding the above-mentioned long original film from the original film roll and continuously transporting it along the film transport path of the polarizing element manufacturing apparatus, and then applying the processing liquid (hereinafter referred to as A long polarizing element can be continuously manufactured by performing a drying process after performing a predetermined treatment process after immersing the polarizing element in a "processing bath” and then pulling it out.
  • the treatment process is not limited to the method of immersing the film in a treatment bath as long as the treatment is carried out by bringing the treatment liquid into contact with the film, and the treatment liquid can be applied to the film surface by spraying, flowing, dropping, etc.
  • the method may be one in which the film is processed by When the treatment step is performed by dipping the film in a treatment bath, the number of treatment baths used in one treatment step is not limited to one, and the film can be immersed in two or more treatment baths in sequence. One processing step may be completed.
  • the treatment liquid examples include a swelling liquid, a staining liquid, a crosslinking liquid, a washing liquid, and the like.
  • the above-mentioned processing steps include a swelling step in which a swelling solution is brought into contact with the original film to perform a swelling treatment, a dyeing step in which a dyeing solution is brought into contact with the film after the swelling treatment, and a dyeing step in which a dyeing solution is brought into contact with the film after the swelling treatment;
  • Examples include a crosslinking process in which a crosslinking liquid is brought into contact with the film to perform a crosslinking process, and a cleaning process in which a cleaning liquid is brought into contact with the film after the crosslinking process and a cleaning process is performed.
  • a wet or dry uniaxial stretching process can be performed between a series of these processing steps (that is, before or after any one or more processing steps and/or during any one or more processing steps), a wet or dry uniaxial stretching process can be performed. Other processing steps may be added
  • FIG. 1 is a cross-sectional view schematically showing an example of a polarizing element manufacturing method and a polarizing element manufacturing apparatus used therein according to the present invention.
  • the polarizing element manufacturing apparatus shown in FIG. 1 transports an original (unstretched) film 10 made of polyvinyl alcohol resin along a film transport path while continuously unwinding it from an original roll 11.
  • a swelling bath (swelling liquid contained in the swelling tank) 13, a dyeing bath (staining liquid contained in the dyeing tank) 15, and a first crosslinking bath (a first crosslinking bath contained in the crosslinking tank) are provided on the conveyance path.
  • Cross-linking liquid) 17a, second cross-linking bath (second cross-linking liquid stored in a cross-linking tank) 17b, and cleaning bath (cleaning liquid stored in a cleaning tank) 19 are passed in sequence, and finally passed through a drying oven 21. It is configured to allow The obtained polarizing element 23 can be transported as it is, for example, to the next polarizing plate production process (a process of laminating a protective film on one or both sides of the polarizing element 23).
  • the arrows shown on the films 10 and 23 in FIG. 1 indicate the transport direction of the film.
  • processing tank is a generic term including a swelling tank, dyeing tank, crosslinking tank, and washing tank
  • processing liquid is a generic term including a swelling solution, dyeing solution, crosslinking solution, and washing solution
  • Processing bath is a general term that includes swelling baths, dyeing baths, crosslinking baths, and cleaning baths.
  • the swelling bath, dyeing bath, crosslinking bath, and washing bath respectively constitute a swelling section, a dyeing section, a crosslinking section, and a washing section in the manufacturing apparatus of the present invention.
  • the film conveyance path of the polarizing element manufacturing apparatus includes guide rolls 30 to 48, 60, and 61 that support the conveyed film or can further change the film conveyance direction, and the conveyed film. It can be constructed by arranging nip rolls 50 to 55 at appropriate positions, which can press and nip and apply driving force to the film by rotation, or can further change the film transport direction. Guide rolls and nip rolls can be placed before and after each treatment bath or in the treatment bath, thereby allowing the film to be introduced into and immersed in the treatment bath and pulled out from the treatment bath (see FIG. 1). For example, the film can be immersed in each treatment bath by providing one or more guide rolls in each treatment bath and transporting the film along these guide rolls.
  • nip rolls are arranged before and after each processing bath (nip rolls 50 to 54), and thereby, nip rolls arranged before and after each of the processing baths are arranged in one or more processing baths. It is now possible to perform inter-roll stretching in which longitudinal uniaxial stretching is performed with a peripheral speed difference between the rolls. Each step will be explained below.
  • the swelling step is performed for the purposes of removing foreign matter from the surface of the raw film 10, removing plasticizers in the raw film 10, imparting dyeability, plasticizing the raw film 10, and the like.
  • the processing conditions are determined within a range in which the objective can be achieved and in which problems such as extreme dissolution and devitrification of the original film 10 do not occur.
  • the raw film 10 in the swelling step, is continuously unwound from the raw roll 11 and conveyed along the film transport path, and the raw film 10 is immersed in a swelling bath 13 for a predetermined time. , and then by retrieving.
  • the raw film 10 is conveyed along the film conveyance path constructed by the guide rolls 60, 61 and the nip roll 50 from when the raw film 10 is unwound until it is immersed in the swelling bath 13. be done.
  • the film In the swelling process, the film is transported along a film transport path constructed by guide rolls 30 to 32 and nip rolls 51.
  • Swelling liquids in the swelling bath 13 include, in addition to pure water, boric acid (Japanese Unexamined Patent Publication No. 10-153709), chlorides (Japanese Unexamined Patent Publication No. 06-281816), inorganic acids, inorganic salts, water-soluble organic solvents, and alcohol. It is also possible to use an aqueous solution to which 0.01 to 10% by mass of the following compounds are added.
  • the temperature of the swelling bath 13 is, for example, about 10 to 50°C, preferably about 10 to 40°C, more preferably about 15 to 30°C.
  • the immersion time of the raw film 10 is preferably about 10 to 300 seconds, more preferably about 20 to 200 seconds.
  • the temperature of the swelling bath 13 is, for example, about 20 to 70°C, preferably about 30 to 60°C.
  • the immersion time of the raw film 10 is preferably about 30 to 300 seconds, more preferably about 60 to 240 seconds.
  • the problem that the raw film 10 swells in the width direction and wrinkles are likely to occur in the film tends to occur.
  • a roll having a width-expanding function such as an expander roll, spiral roll, or crown roll as the guide rolls 30, 31, and/or 32, or use a cross guider or a bend bar. , or using other widening devices such as tenter clips.
  • Another means for suppressing the occurrence of wrinkles is to perform a stretching process.
  • the uniaxial stretching process can be performed in the swelling bath 13 using the difference in circumferential speed between the nip rolls 50 and 51.
  • the film In the swelling treatment, the film swells and expands in the film transport direction, so if the film is not actively stretched, the film is placed before and after the swelling bath 13, for example, in order to eliminate sagging of the film in the transport direction. It is preferable to take measures such as controlling the speed of the nip rolls 50, 51.
  • the water flow in the swelling bath 13 is controlled by an underwater shower, and an EPC device (Edge Position It is also useful to use a control device: a device that detects the edge of the film and prevents the film from meandering.
  • the film pulled out from the swelling bath 13 passes through the guide roll 32, the nip roll 51, and the guide roll 33 in this order and is introduced into the dyeing bath 15.
  • the dyeing step is performed for the purpose of adsorbing and orienting the dichroic dye to the polyvinyl alcohol resin film after the swelling treatment.
  • the processing conditions are determined within a range in which the objective can be achieved and in which problems such as extreme dissolution and devitrification of the film do not occur.
  • the dyeing process involves transporting the film along a film transport path constructed by nip rolls 51, guide rolls 33 to 36, and nip rolls 52, and transporting the film after swelling treatment in a dyeing bath 15 (accommodated in a dyeing tank). This can be carried out by immersing the sample in a treatment liquid for a predetermined period of time and then pulling it out.
  • the film subjected to the dyeing process is preferably a film that has been subjected to at least some uniaxial stretching treatment, or instead of the uniaxial stretching treatment before the dyeing treatment, or In addition to the uniaxial stretching process before the dyeing process, it is preferable to perform the uniaxial stretching process during the dyeing process.
  • the dyeing solution in the dyeing bath 15 has a concentration of, for example, iodine/potassium iodide/water in a weight ratio of 0.003 to 0.3/0.1 to 10/100.
  • An aqueous solution can be used.
  • potassium iodide other iodides such as zinc iodide may be used, or potassium iodide and other iodides may be used together.
  • compounds other than iodide such as boric acid, zinc chloride, cobalt chloride, etc., may be coexisting.
  • the aqueous solution contains 0.003 parts by weight or more of iodine per 100 parts by weight of water, it can be used as dyeing bath 15. It can be considered.
  • the temperature of the dyeing bath 15 when dipping the film is usually about 10 to 45°C, preferably 10 to 40°C, more preferably 20 to 35°C, and the immersion time of the film is usually 30 to 600 seconds. about 60 to 300 seconds, preferably 60 to 300 seconds.
  • This dyeing bath 15 may contain a dyeing aid, for example, an inorganic salt such as sodium sulfate, a surfactant, and the like.
  • a dyeing aid for example, an inorganic salt such as sodium sulfate, a surfactant, and the like.
  • One type of dichroic dye may be used alone, or two or more types of dichroic dyes may be used in combination.
  • the temperature of the dyeing bath 15 when dipping the film is, for example, about 20 to 80°C, preferably 30 to 70°C, and the immersion time of the film is usually about 30 to 600 seconds, preferably about 60 to 300 seconds. be.
  • the film in the dyeing process, can be uniaxially stretched in the dyeing bath 15.
  • the uniaxial stretching of the film can be carried out by a method such as creating a difference in peripheral speed between the nip rolls 51 and 52 placed before and after the dyeing bath 15.
  • guide rolls 33, 34, 35 and/or 36 are equipped with expander rolls, spiral rolls, crown rolls, etc. in order to transport the polyvinyl alcohol resin film while removing wrinkles from the film, as in the swelling process.
  • Rolls with a width-spreading function can be used, or other width-spreading devices such as cross guiders, bend bars, tenter clips, etc. can be used.
  • Another means for suppressing the occurrence of wrinkles is to perform a stretching treatment, similar to the swelling treatment.
  • the film pulled out from the dyeing bath 15 passes through a guide roll 36, a nip roll 52, and a guide roll 37 in order and is introduced into the crosslinking bath 17.
  • the crosslinking step is a process performed for the purpose of making the film water resistant and adjusting the hue (preventing the film from becoming bluish, etc.).
  • two crosslinking baths are arranged as crosslinking baths for performing the crosslinking process, the first crosslinking process for the purpose of water resistance is performed in the first crosslinking bath 17a, and the second crosslinking bath is for the purpose of hue adjustment.
  • the crosslinking step is performed in the second crosslinking bath 17b.
  • the film is conveyed along a film conveyance path constructed by nip rolls 52, guide rolls 37 to 40, and nip rolls 53a.
  • crosslinking bath includes both the first crosslinking bath 17a and the second crosslinking bath 17b
  • crosslinking liquid includes both the first crosslinking liquid and the second crosslinking liquid.
  • the crosslinking liquid a solution in which a crosslinking agent is dissolved in a solvent can be used.
  • the crosslinking agent include boron compounds such as boric acid and borax, glyoxal, and glutaraldehyde. These may be used alone or in combination of two or more.
  • the solvent for example, water can be used, but it may also contain an organic solvent that is compatible with water.
  • concentration of the crosslinking agent in the crosslinking solution is not limited thereto, it is preferably in the range of 1 to 20% by weight, more preferably 6 to 15% by weight.
  • the crosslinking liquid may be an aqueous solution containing, for example, 1 to 10 parts by weight of boric acid per 100 parts by weight of water.
  • the crosslinking liquid preferably contains iodide in addition to boric acid, and the amount thereof is, for example, 1 to 30 parts by weight per 100 parts by weight of water. It can be done.
  • iodides include potassium iodide and zinc iodide.
  • compounds other than iodide such as zinc chloride, cobalt chloride, zirconium chloride, sodium thiosulfate, potassium sulfite, and sodium sulfate, may be present.
  • the concentrations of boric acid and iodide and the temperature of the crosslinking bath 17 can be changed as appropriate depending on the purpose.
  • the first crosslinking solution whose purpose in crosslinking treatment is water resistance through crosslinking
  • it can be an aqueous solution having a concentration of boric acid/iodide/water in a weight ratio of 3 to 10/1 to 20/100.
  • other crosslinking agents may be used in place of boric acid, or boric acid and other crosslinking agents may be used in combination.
  • the temperature of the first crosslinking bath 17a when dipping the film is usually about 50 to 70°C, preferably 53 to 65°C, and the immersion time of the film is usually about 10 to 600 seconds, preferably 20 to 300 seconds. , more preferably 20 to 200 seconds. Further, when dyeing treatment and first crosslinking treatment are performed in this order on a pre-stretched polyvinyl alcohol resin film before swelling treatment, the temperature of the first crosslinking bath 17a is usually about 50 to 85°C, preferably about 55 to 85°C. The temperature is 80°C.
  • the temperature of the second crosslinking bath 17b during immersion of the film is usually about 10 to 45°C, and the immersion time of the film is usually about 1 to 300 seconds, preferably 2 to 100 seconds.
  • the crosslinking treatment may be performed multiple times, and is usually performed 2 to 5 times.
  • the composition and temperature of each crosslinking bath used may be the same or different within the above range.
  • the crosslinking treatment for water resistance and the crosslinking treatment for hue adjustment may be performed in multiple steps.
  • Uniaxial stretching can also be performed in the first crosslinking bath 17a by utilizing the difference in peripheral speed between the nip rolls 52 and 53a. Furthermore, the uniaxial stretching process can be performed in the second crosslinking bath 17b by utilizing the difference in circumferential speed between the nip rolls 53a and 53b.
  • an expander roll and a spiral roll are used in the guide rolls 38, 39, 40, 41, 42, 43 and/or 44.
  • a roll having a width-expanding function such as a crown roll, or other width-expanding devices such as a cross guider, a bend bar, or a tenter clip may be used.
  • Another means for suppressing the occurrence of wrinkles is to perform a stretching treatment, similar to the swelling treatment.
  • the film pulled out from the second crosslinking bath 17b passes through the guide roll 44 and the nip roll 53b in order and is introduced into the cleaning bath 19.
  • the example shown in FIG. 1 includes a washing step after the crosslinking step.
  • the cleaning treatment is performed for the purpose of removing excess chemicals such as boric acid and iodine that have adhered to the polyvinyl alcohol resin film.
  • the cleaning step is performed, for example, by immersing the crosslinked polyvinyl alcohol resin film in the cleaning bath 19.
  • the cleaning process is performed by spraying a cleaning liquid onto the film as a shower, or by using a combination of immersion in the cleaning bath 19 and spraying of the cleaning liquid, instead of immersing the film in the cleaning bath 19. You can also do that.
  • FIG. 1 shows an example in which a polyvinyl alcohol resin film is immersed in a cleaning bath 19 to perform cleaning treatment.
  • the temperature of the cleaning bath 19 in the cleaning process is usually about 2 to 40°C, and the immersion time of the film is usually about 2 to 120 seconds.
  • the guide rolls 45, 46, 47 and/or 48 are rolls having a width-expanding function such as expander rolls, spiral rolls, and crown rolls. or other widening devices such as cross guiders, bend bars, and tenter clips. Furthermore, in the film cleaning process, a stretching process may be performed to suppress the occurrence of wrinkles.
  • the raw film 10 is subjected to uniaxial stretching in a wet or dry manner during the series of processing steps (that is, before and/or during any one or more processing steps). It is processed.
  • a specific method for the uniaxial stretching process is, for example, to perform longitudinal uniaxial stretching with a peripheral speed difference between two nip rolls (for example, two nip rolls placed before and after the processing bath) that constitute the film transport path. Stretching, hot roll stretching as described in Japanese Patent No. 2731813, tenter stretching, etc. may be used, and inter-roll stretching is preferable.
  • the uniaxial stretching step can be performed multiple times until the polarizing element 23 is obtained from the original film 10.
  • the stretching treatment is also advantageous in suppressing the occurrence of wrinkles in the film.
  • the final cumulative stretching ratio of the polarizing element 23 based on the original film 10 is usually about 4.5 to 7 times, preferably 5 to 6.5 times.
  • the stretching process may be performed in any process, and even when the stretching process is performed in two or more processes, the stretching process may be performed in any process.
  • drying process After the washing step, it is preferable to perform a process of drying the PVA resin film. Drying of the film is not particularly limited, but can be performed using a drying oven 21 as in the example shown in FIG.
  • the drying oven 21 may include, for example, a hot air dryer.
  • the drying temperature is, for example, about 30 to 100°C, and the drying time is, for example, about 30 to 600 seconds.
  • the process of drying the polyvinyl alcohol resin film can also be performed using a far-infrared heater.
  • Processes other than those described above can also be added.
  • treatments that may be added include immersion treatment in an iodide aqueous solution that does not contain boric acid (complementary color treatment), and immersion treatment in an aqueous solution that does not contain boric acid and contains zinc chloride etc. (zinc processing).
  • the thickness of the polarizing element 23 obtained as described above is preferably 5 to 50 ⁇ m, more preferably 8 to 28 ⁇ m, even more preferably 12 to 22 ⁇ m, and most preferably 12 to 15 ⁇ m.
  • the thickness of the polarizing element is 50 ⁇ m or less, it is possible to suppress the influence of polyenization of PVA-based resin on deterioration of optical properties in a high-temperature environment, and when the thickness of the polarizing element is 5 ⁇ m or more, it is possible to suppress the effect of polyene conversion on optical properties in a high-temperature environment. This makes it easy to create a configuration that achieves the optical characteristics of.
  • the thickness of the polarizing element is preferably 5 to 22 ⁇ m, more preferably 12 to 15 ⁇ m.
  • the thickness of the polarizing element is preferably 5 to 22 ⁇ m, more preferably 12 to 15 ⁇ m.
  • the content of boron in the polarizing element is preferably 4.0% by mass or more and 8.0% by mass or less, more preferably 4.2% by mass or more and 7.0% by mass or less, and even more preferably 4.4% by mass or less. It is not less than 6.0% by mass and not more than 6.0% by mass.
  • the boron content of the polarizing element is 4.0% by mass or more, the transmittance of the polarizing element is unlikely to decrease even when exposed to a high temperature environment, for example, a high temperature environment of 105°C. It is presumed that this is because when the boron content is 4.0% by mass or more, polyenization is less likely to occur even in a high-temperature environment, and a decrease in transmittance is suppressed.
  • the boron content in the polarizing element can be calculated as the mass fraction (mass %) of boron relative to the mass of the polarizing element, for example, by high frequency inductively coupled plasma (ICP) emission spectrometry.
  • ICP inductively coupled plasma
  • Boron is thought to exist in the polarizing element in the form of boric acid or a crosslinked structure formed with the constituent elements of the polyvinyl alcohol resin, but the boron content here refers to the boron content as boron atoms (B). It is a value.
  • the polarizing element may contain ions of metals other than boron.
  • metals other than boron it is preferable to contain at least one type of metal ion of a transition metal such as cobalt, nickel, zinc, chromium, aluminum, copper, manganese, or iron from the viewpoint of adjusting color tone and imparting durability.
  • a transition metal such as cobalt, nickel, zinc, chromium, aluminum, copper, manganese, or iron from the viewpoint of adjusting color tone and imparting durability.
  • zinc ions are preferred from the viewpoint of color tone adjustment and imparting heat resistance.
  • the visibility correction single transmittance Ty of the polarizing element is preferably 40 to 47%, more preferably 41 to 45%, taking into consideration the balance with the visibility correction polarization degree Py.
  • the visibility correction polarization degree Py is preferably 99.9% or more, more preferably 99.95% or more, and the larger the value is, the more preferable it is.
  • the obtained polarizing element is subjected to the subsequent lamination step.
  • the polarizing element may be sequentially wound onto a take-up roll to form a roll form, or may be directly subjected to the bonding process without being wound up.
  • the bonding step is a step of bonding a transparent protective film (hereinafter also simply referred to as "protective film”) to at least one side of the polarizing element manufactured as described above via a water-based adhesive.
  • a polarizing plate is produced through a bonding process.
  • an adhesive is applied to one or both of the laminating surfaces of two films to be laminated, and the two films are bonded together through the adhesive layer.
  • One example is a method of overlapping sheets of film.
  • a casting method, a Meyer bar coating method, a gravure coating method, a comma coater method, a doctor blade method, a die coating method, a dip coating method, a spraying method, etc. can be adopted.
  • the casting method is a method in which the film to be laminated is moved approximately vertically, approximately horizontally, or in a diagonal direction between the two, and an adhesive is flowed down and spread on the surface of the film.
  • a film laminate formed by laminating the films with an adhesive layer interposed therebetween is usually pressed from above and below through nip rolls (lamination rolls) or the like.
  • the protective film or the bonding surface of the polarizing element is subjected to plasma treatment, corona treatment, ultraviolet irradiation treatment, flame treatment, and saponification treatment to improve adhesion.
  • a treatment for facilitating adhesion such as the following can be performed, and among these, plasma treatment, corona treatment, or saponification treatment is preferably performed.
  • the protective film is made of a cyclic polyolefin resin
  • the bonding surface of the protective film is usually subjected to plasma treatment or corona treatment.
  • the protective film is made of cellulose ester resin
  • the bonding surface of the protective film is usually subjected to saponification treatment.
  • the saponification treatment include a method of immersion in an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide.
  • drying can be performed, for example, by introducing the film laminate into a drying oven.
  • the drying temperature (temperature of the drying oven) is preferably 30 to 90°C.
  • the drying temperature is preferably 60 to 750 seconds, more preferably 150 to 600 seconds.
  • a curing step may be performed in which the material is cured for about 12 to 600 hours at room temperature or a slightly higher temperature, for example, about 20 to 45°C.
  • the curing temperature is generally set lower than the drying temperature.
  • water-based adhesive A water-based adhesive is used to bond the polarizing element and the protective film.
  • Water-based adhesives are those in which adhesive components are dissolved or dispersed in water.
  • the water-based adhesive used in this embodiment has an ethanol concentration of 16% by mass or more and 50% by mass or less, preferably 18% by mass or more and 48% by mass or less, and more preferably 20% by mass or more and 46% by mass or less. It is more preferably 20% by mass or more and 35% by mass or less.
  • the discoloration refers to the color unevenness that is observed when polarizing plates are arranged in crossed nicols and high-intensity light is transmitted through them.More specifically, two polarizing plates are arranged in crossed nicols. This refers to color unevenness in which brownish areas are observed when white light is transmitted through stacked polarizing plates. Such brown discoloration may be observed scattered within the polarizing plate, or may be observed only in a specific portion. In addition, such brown discolored spots may be observed at multiple locations within the polarizing plate, or may be observed at only one location.
  • the size of the brown discolored area varies, it may be, for example, 100 to 4000 ⁇ m in diameter.
  • Color unevenness is observed when a polarizing element and a protective film are bonded together using a water-based adhesive, and is observed noticeably when the polarizing element has a high boron content and the water-based adhesive contains a PVA-based resin. Therefore, the mechanism by which color unevenness occurs can be considered as follows.
  • the boric acid in the polarizing element is easily eluted into the water in the water-based adhesive, and the eluted boric acid reacts with the PVA resin contained in the water-based adhesive. It is presumed that such reactants cause non-uniformity within the water-based adhesive, and such non-uniformity becomes apparent as unevenness as the water-based adhesive continues to dry.
  • the mechanism by which a water-based adhesive can suppress discoloration by containing ethanol within the above range is not clear, the ethanol present in the water-based adhesive causes the boric acid in the polarizing element to elute into the water-based adhesive. It is presumed that this contributes to at least one of the following: suppression of the reaction between boric acid and PVA resin within the water-based adhesive.
  • the water-based adhesive is not particularly limited as long as it contains ethanol within the above range, but examples include water-based adhesives containing PVA resin or urethane resin as a main component.
  • a water-based adhesive containing a PVA-based resin is preferably used because the effects of the present invention are remarkable when it is used.
  • the thickness of the adhesive layer formed from the water-based adhesive is usually 7 ⁇ m or less, and usually 0.01 ⁇ m or more.
  • the thickness of the adhesive layer is preferably 0.01 ⁇ m or more and 1.0 ⁇ m or less, more preferably 0.02 ⁇ m or more and 0.8 ⁇ m or less.
  • the polyvinyl alcohol resin may include partially saponified polyvinyl alcohol, completely saponified polyvinyl alcohol, carboxyl group-modified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, and methylol group-modified polyvinyl alcohol.
  • Modified polyvinyl alcohol resins such as modified polyvinyl alcohol and amino group-modified polyvinyl alcohol may also be used.
  • Polyvinyl alcohol-based resins include vinyl alcohol homopolymers obtained by saponifying polyvinyl acetate, which is a homopolymer of vinyl acetate, as well as vinyl alcohol homopolymers obtained by copolymerizing vinyl acetate with other monomers that can be copolymerized with it.
  • a polyvinyl alcohol copolymer obtained by saponifying the polymer may also be used.
  • a water-based adhesive containing PVA-based resin as an adhesive component is usually an aqueous solution of PVA-based resin.
  • the concentration of the PVA resin in the adhesive is usually 1 to 10% by weight, preferably 1 to 5% by weight, and more preferably 2.85 to 5% by weight.
  • Adhesives made of aqueous solutions of PVA resins contain curable components and crosslinking agents such as polyvalent aldehydes, melamine compounds, zirconia compounds, zinc compounds, glyoxal, and water-soluble epoxy resins to improve adhesive properties. It is preferable to add.
  • water-soluble epoxy resins include polyamide polyamine epoxy resins obtained by reacting epichlorohydrin with polyamide amines obtained by reacting polyalkylene polyamines such as diethylene triamine and triethylene tetramine with dicarboxylic acids such as adipic acid. can be suitably used.
  • the amount of the curable component or crosslinking agent added is less than 1 part by weight per 100 parts by weight of the polyvinyl alcohol resin, the effect of improving adhesion tends to be small; If the amount of the crosslinking agent added exceeds 100 parts by weight based on 100 parts by weight of the PVA resin, the adhesive layer tends to become brittle.
  • the crosslinking agent is preferably glyoxal, glyoxylate, or methylolmelamine, and preferably glyoxal or glyoxylate. More preferred is glyoxal, particularly preferred.
  • a suitable adhesive composition is a mixture of a polyester-based ionomer type urethane resin and a compound having a glycidyloxy group.
  • a polyester-based ionomer type urethane resin is a urethane resin having a polyester skeleton into which a small amount of an ionic component (hydrophilic component) is introduced.
  • Such an ionomer type urethane resin is suitable as a water-based adhesive because it emulsifies directly in water to form an emulsion without using an emulsifier.
  • the water-based adhesive contains ethanol and can also contain organic solvents other than ethanol.
  • the organic solvent is preferably alcohol in terms of its miscibility with water, and may also include methanol, for example.
  • water-based adhesives are recommended to use urea compounds such as urea, urea derivatives, thiourea, and thiourea derivatives; reducing agents such as ascorbic acid, erythorbic acid, thiosulfate, and sulfite; maleic acid, and phthalate.
  • dicarboxylic acids such as acids; ammonium compounds such as ammonium sulfate, ammonium chloride, ammonium carbonate, and ammonium fluoride; dextrins such as ⁇ -cyclodextrin, ⁇ -cyclodextrin, and ⁇ -cyclodextrin; may contain blocked isocyanate compounds having a nitroxide group; nitroxy radicals such as N-oxyl compounds; compounds having a nitroxide group, etc. While some urea compounds have low solubility in water, some have sufficient solubility in alcohol. In that case, one preferred embodiment is to dissolve the urea compound in alcohol to prepare an alcohol solution of the urea compound, and then add the alcohol solution of the urea compound to the PVA aqueous solution to prepare the adhesive. be.
  • the urea compound is at least one selected from urea, urea derivatives, thiourea, and thiourea derivatives.
  • a method for incorporating a urea-based compound into the adhesive layer it is preferable to incorporate the urea-based compound into the above-mentioned adhesive. Note that during the process of forming an adhesive layer from the adhesive through a drying process, etc., a part of the urea-based compound may migrate from the adhesive layer to the polarizing element or the like. That is, the polarizing element may contain a urea-based compound.
  • Urea compounds include water-soluble ones and poorly water-soluble ones, and either type of urea compound can be used in the adhesive of this embodiment.
  • a poorly water-soluble urea compound is used in a water-based adhesive, it is preferable to devise a dispersion method after forming the adhesive layer so as to prevent an increase in haze.
  • the amount of the urea compound added is preferably 0.1 to 400 parts by mass, and preferably 1 to 200 parts by mass, based on 100 parts by mass of the PVA resin. It is more preferable that the amount is 3 to 100 parts by mass.
  • a urea derivative is a compound in which at least one of the four hydrogen atoms of a urea molecule is substituted with a substituent.
  • the substituent is not particularly limited, but a substituent consisting of a carbon atom, a hydrogen atom, and an oxygen atom is preferable.
  • urea derivatives include monosubstituted ureas such as methylurea, ethylurea, propylurea, butylurea, isobutylurea, N-octadecylurea, 2-hydroxyethylurea, hydroxyurea, acetylurea, allylurea, and 2-propynyl.
  • urea cyclohexyl urea, phenyl urea, 3-hydroxyphenylurea, (4-methoxyphenyl) urea, benzyl urea, benzoyl urea, o-tolylurea, and p-tolylurea.
  • 1,1-dimethylurea, 1,3-dimethylurea, 1,1-diethylurea, 1,3-diethylurea, 1,3-bis(hydroxymethyl)urea, 1,3-tert- Examples include butyl urea, 1,3-dicyclohexyl urea, 1,3-diphenylurea, 1,3-bis(4-methoxyphenyl) urea, and 1-acetyl-3-methyl urea.
  • Examples of the 4-substituted urea include tetramethylurea, 1,1,3,3-tetraethylurea, 1,1,3,3-tetrabutylurea, and 1,3-dimethoxy-1,3-dimethylurea.
  • a thiourea derivative is a compound in which at least one of the four hydrogen atoms of a thiourea molecule is substituted with a substituent.
  • the substituent is not particularly limited, but a substituent consisting of a carbon atom, a hydrogen atom, and an oxygen atom is preferable.
  • thiourea derivatives include monosubstituted thiourea such as N-methylthiourea, ethylthiourea, propylthiourea, isopropylthiourea, 1-butylthiourea, cyclohexylthiourea, N-acetylthiourea, N-allylthiourea, (2 -methoxyethyl)thiourea, N-phenylthiourea, (4-methoxyphenyl)thiourea, N-(2-methoxyphenyl)thiourea, N-(1-naphthyl)thiourea, (2-pyridyl)thiourea, Examples include o-tolylthiourea and p-tolylthiourea.
  • 2-substituted thiourea 1,1-dimethylthiourea, 1,3-dimethylthiourea, 1,1-diethylthiourea, 1,3-diethylthiourea, 1,3-dibutylthiourea, 1,3-diisopropylthiourea, 1 , 3-dicyclohexylthiourea, N,N-diphenylthiourea, N,N'-diphenylthiourea, 1,3-di(o-tolyl)thiourea, 1,3-di(p-tolyl)thiourea, Examples include 1-benzyl-3-phenylthiourea, 1-methyl-3-phenylthiourea, and N-allyl-N'-(2-hydroxyethyl)thiourea.
  • Examples of the 3-substituted thiourea include trimethylthiourea, and examples of the 4-substituted thiourea include tetramethylthiourea and 1,1,3,3-tetraethylthiourea.
  • urea compounds urea derivatives or thiourea derivatives are preferred, and urea derivatives are more preferred.
  • urea derivatives monosubstituted urea or disubstituted urea is preferable, and monosubstituted urea is more preferable.
  • Disubstituted ureas include 1,1-substituted ureas and 1,3-substituted ureas, with 1,3-substituted ureas being more preferred.
  • the protective film used in this embodiment is attached to at least one side of the polarizing element via an adhesive.
  • the protective film has the function of protecting the polarizing element.
  • the protective film may have an optical function and may be formed into a laminated structure in which a plurality of layers are laminated.
  • the thickness of the protective film is preferably thin from the viewpoint of optical properties, but if it is too thin, the strength will decrease and the processability will be poor.
  • a suitable film thickness is 5 to 100 ⁇ m, preferably 10 to 80 ⁇ m, and more preferably 15 to 70 ⁇ m.
  • the protective film may be a cellulose acylate film, a polycarbonate resin film, a cycloolefin resin film such as norbornene, a (meth)acrylic polymer film, or a polyester resin film such as polyethylene terephthalate. I can do it.
  • the protective film on at least one side should be a cellulose acylate film or (meth)acrylic film in terms of moisture permeability. Any type of polymer film is preferred, and cellulose acylate film is particularly preferred.
  • At least one of the protective films may have a retardation function for the purpose of viewing angle compensation, etc.
  • the film itself may have a retardation function, or it may have a separate retardation layer. or a combination of both.
  • the film with a retardation function is bonded directly to the polarizing element via an adhesive, it may also be attached via an adhesive or an adhesive via another protective film bonded to the polarizing element. It is also possible to have a structure in which they are bonded together.
  • the polarizing plate of this embodiment is used in various image display devices such as liquid crystal display devices and organic EL display devices.
  • image display devices if the polarizing plate has an interlayer filling configuration in which both sides of the polarizing plate are in contact with a layer other than an air layer, specifically a solid layer such as an adhesive layer, the transmittance will decrease in a high-temperature environment. tends to decrease.
  • the image display device using the polarizing plate of this embodiment even with the interlayer filling configuration, it is possible to suppress a decrease in the transmittance of the polarizing plate in a high-temperature environment.
  • An example of an image display device is a configuration including an image display cell, a first adhesive layer laminated on the viewing side surface of the image display cell, and a polarizing plate laminated on the viewing side surface of the first adhesive layer. be done.
  • Such an image display device may further include a second adhesive layer laminated on the viewing side surface of the polarizing plate, and a transparent member laminated on the surface of the second adhesive layer.
  • a transparent member is arranged on the viewing side of the image display device, the polarizing plate and the image display cell are bonded together by a first adhesive layer, and the polarizing plate and the transparent member are bonded together by a second adhesive layer.
  • first adhesive layer and the second adhesive layer may be simply referred to as "adhesive layer.”
  • adheresive layer the members used for bonding the polarizing plate and the image display cell and the members used for bonding the polarizing plate and the transparent member are not limited to adhesive layers, but may be adhesive layers. Good too.
  • the image display cell examples include a liquid crystal cell and an organic EL cell.
  • Liquid crystal cells include reflective liquid crystal cells that use external light, transmissive liquid crystal cells that use light from light sources such as backlights, and transflective liquid crystal cells that use both external light and light from the light source. Any liquid crystal cell may be used. If the liquid crystal cell uses light from a light source, the image display device (liquid crystal display device) has a polarizing plate placed on the side opposite to the viewing side of the image display cell (liquid crystal cell), and a light source is also placed. be done. It is preferable that the polarizing plate on the light source side and the liquid crystal cell are bonded together via a suitable adhesive layer.
  • any type of driving method can be used, such as VA mode, IPS mode, TN mode, STN mode, or bend alignment ( ⁇ type).
  • the organic EL cell one in which a transparent electrode, an organic light-emitting layer, and a metal electrode are sequentially laminated on a transparent substrate to form a light-emitting body (organic electroluminescence light-emitting body) is preferably used.
  • the organic light emitting layer is a laminate of various organic thin films, such as a laminate of a hole injection layer made of a triphenylamine derivative or the like and a light emitting layer made of a fluorescent organic solid such as anthracene, or a laminate of these.
  • Various layer configurations can be adopted, such as a laminate of a light emitting layer and an electron injection layer made of a perylene derivative or the like, or a laminate of a hole injection layer, a light emitting layer, and an electron injection layer.
  • An adhesive layer (adhesive sheet) is suitably used for bonding the image display cell and the polarizing plate.
  • a method in which a polarizing plate with an adhesive layer, in which an adhesive layer is attached to one side of the polarizing plate, is bonded to an image display cell is preferable from the viewpoint of workability and the like.
  • the adhesive layer can be attached to the polarizing plate by any suitable method.
  • an adhesive solution of about 10 to 40% by mass is prepared by dissolving or dispersing the base polymer or its composition in a solvent consisting of an appropriate solvent such as toluene or ethyl acetate alone or in a mixture.
  • a method in which it is attached directly onto a polarizing plate using an appropriate development method such as a casting method or a coating method, or a method in which an adhesive layer is formed on a separator and then transferred to the polarizing plate. .
  • the adhesive layer may be composed of one layer or two or more layers, but is preferably composed of one layer.
  • the adhesive layer can be composed of an adhesive composition containing a (meth)acrylic resin, a rubber resin, a urethane resin, an ester resin, a silicone resin, or a polyvinyl ether resin as a main component.
  • a pressure-sensitive adhesive composition whose base polymer is a (meth)acrylic resin having excellent transparency, weather resistance, heat resistance, etc. is suitable.
  • the adhesive composition may be of an active energy ray-curable type or a thermosetting type.
  • Examples of the (meth)acrylic resin (base polymer) used in the adhesive composition include butyl (meth)acrylate, ethyl (meth)acrylate, isooctyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, etc. Polymers or copolymers containing one or more types of (meth)acrylic esters as monomers are preferably used. It is preferable to copolymerize a polar monomer with the base polymer.
  • (meth)acrylic acid compounds 2-hydroxypropyl (meth)acrylate compounds, hydroxyethyl (meth)acrylate compounds, (meth)acrylamide compounds, N,N-dimethylaminoethyl (meth)acrylate compounds
  • polar monomers include monomers having carboxyl groups, hydroxyl groups, amide groups, amino groups, epoxy groups, etc., such as glycidyl (meth)acrylate compounds.
  • the adhesive composition may contain only the above base polymer, but usually further contains a crosslinking agent.
  • crosslinking agents include metal ions with a valence of two or more that form carboxylic acid metal salts with carboxyl groups, polyamine compounds that form amide bonds with carboxyl groups, and metal ions that form carboxylic acid metal salts with carboxyl groups.
  • examples include polyepoxy compounds or polyols that form ester bonds, and polyisocyanate compounds that form amide bonds with carboxyl groups. Among these, polyisocyanate compounds are preferred.
  • Active energy ray-curable adhesive compositions have the property of being cured by irradiation with active energy rays such as ultraviolet rays or electron beams, and have adhesive properties even before irradiation with active energy rays to form films, etc. It has the property that it can be brought into close contact with an adherend, and its adhesion can be adjusted by curing by irradiation with active energy rays.
  • the active energy ray-curable adhesive composition is preferably an ultraviolet ray-curable adhesive composition.
  • the active energy ray curable adhesive composition further contains an active energy ray polymerizable compound in addition to the base polymer and the crosslinking agent. If necessary, a photopolymerization initiator, a photosensitizer, etc. may be included.
  • the adhesive composition contains fine particles, beads (resin beads, glass beads, etc.), glass fibers, resins other than the base polymer, tackifiers, fillers (metal powders and other inorganic powders) to impart light scattering properties. etc.), antioxidants, ultraviolet absorbers, dyes, pigments, colorants, antifoaming agents, corrosion inhibitors, photopolymerization initiators, and other additives.
  • the adhesive layer can be formed by applying a diluted solution of the adhesive composition in an organic solvent onto the surface of a base film, image display cell, or polarizing plate and drying it.
  • the base film is generally a thermoplastic resin film, and a typical example thereof is a separate film that has been subjected to a mold release treatment.
  • the separate film can be, for example, a film made of a resin such as polyethylene terephthalate, polybutylene terephthalate, polycarbonate, polyalate, etc., and the surface on which the adhesive layer is formed has been subjected to a release treatment such as silicone treatment. .
  • an adhesive layer may be formed by directly applying an adhesive composition to the release-treated surface of a separate film, and this adhesive layer with a separate film may be laminated on the surface of a polarizer.
  • the adhesive composition may be applied directly to the surface of the polarizing plate to form an adhesive layer, and a separate film may be laminated on the outer surface of the adhesive layer.
  • surface activation treatment such as plasma treatment or corona treatment. It is more preferable to perform a treatment.
  • a pressure-sensitive adhesive sheet is prepared by coating a pressure-sensitive adhesive composition on a second separate film to form a pressure-sensitive adhesive layer, and a separate film is laminated on the formed pressure-sensitive adhesive layer.
  • the adhesive layer with a separate film after peeling off the separate film may be laminated on a polarizing plate.
  • the second separate film used has weaker adhesion to the adhesive layer than the separate film and is easily peelable.
  • the thickness of the adhesive layer is not particularly limited, but is preferably, for example, 1 ⁇ m or more and 100 ⁇ m or less, more preferably 3 ⁇ m or more and 50 ⁇ m or less, and may be 20 ⁇ m or more.
  • the transparent member disposed on the viewing side of the image display device examples include a transparent plate (window layer), a touch panel, and the like.
  • a transparent plate a transparent plate having appropriate mechanical strength and thickness is used.
  • examples of such a transparent plate include a transparent resin plate made of polyimide resin, acrylic resin, or polycarbonate resin, or a glass plate.
  • a functional layer such as an antireflection layer may be laminated on the visible side of the transparent plate.
  • a hard coat layer may be laminated to increase physical strength, and a low moisture permeability layer may be laminated to reduce moisture permeability.
  • touch panel various touch panels such as a resistive film type, a capacitive type, an optical type, an ultrasonic type, etc., a glass plate, a transparent resin plate, etc. having a touch sensor function are used.
  • a capacitive touch panel is used as the transparent member, it is preferable that a transparent plate made of glass or a transparent resin plate is provided further on the viewing side than the touch panel.
  • An adhesive or an active energy ray-curable adhesive is suitably used for bonding the polarizing plate and the transparent member.
  • the adhesive can be applied in any suitable manner.
  • a specific attachment method includes, for example, the method of attaching the adhesive layer used in bonding the image display cell and the polarizing plate described above.
  • a dam material is provided to surround the periphery of the image display panel in order to prevent the adhesive solution from spreading before curing, and a transparent member is placed on the dam material.
  • a method is preferably used in which the adhesive solution is injected after the adhesive is placed. After the adhesive solution is injected, alignment and defoaming are performed as necessary, and then active energy rays are irradiated to cure the adhesive solution.
  • Measurement of the thickness of the polarizing element Measurement was performed using a digital micrometer "MH-15M” manufactured by Nikon Corporation.
  • the obtained aqueous solution was titrated with a 1 mol/L sodium hydroxide aqueous solution, and the boron content of the PVA resin film was calculated by comparing the amount of sodium hydroxide aqueous solution required for neutralization with a calibration curve. .
  • the boron content of the PVA resin film thus obtained was used as the boron adsorption rate of the PVA resin film.
  • polarizing element 1 A 30 ⁇ m thick PVA resin film with a boron adsorption rate of 5.71% by mass was immersed in pure water at 21.5° C. for 79 seconds (swelling treatment). A PVA resin film was immersed for 151 seconds in a 23° C. aqueous solution having a mass ratio of potassium iodide/boric acid/water of 2/2/100 and containing 1.0 mM of iodine (staining step). Thereafter, the PVA resin film was immersed for 76 seconds in a 68.5° C. aqueous solution having a mass ratio of potassium iodide/boric acid/water of 2.5/4/100 (first crosslinking step).
  • the PVA resin film was immersed for 11 seconds in an aqueous solution at 45°C with a mass ratio of potassium iodide/boric acid/zinc chloride/water of 3/5.5/0.6/100 (second crosslinking). process, metal ion treatment process). Thereafter, it was immersed in a cleaning bath for cleaning (cleaning step) and dried at 38° C. (drying step) to obtain a polarizing element with a thickness of 12 ⁇ m in which iodine was adsorbed and oriented in polyvinyl alcohol. Stretching was mainly performed in the dyeing process and the first crosslinking process, and the total stretching ratio was 5.85 times. The zinc ion content of the obtained polarizing element was 0.17% by mass, and the boron content was 4.62% by mass.
  • ⁇ Preparation of polarizing plate> (Preparation of polarizing plate 1)
  • the transparent protective film 1 prepared above was bonded to both sides of the polarizing element 1 via the adhesive 1 using a roll bonding machine.
  • the coating thickness of Adhesive 1 was adjusted so that the thickness of the adhesive layer after drying was 100 nm on both sides. Thereafter, it was dried at 80° C. for 3 minutes to obtain a polarizing plate 1 with a double-sided transparent protective film.
  • Polarizing plates 2 to 5 were produced in the same manner as polarizing plate 1 except that adhesive 1 was replaced with adhesives 2 to 5, respectively.
  • the evaluation sample obtained above was subjected to an autoclave treatment at a temperature of 50° C. and a pressure of 5 kgf/cm 2 (490.3 kPa) for 1 hour, and then left for 24 hours in an environment of a temperature of 23° C. and a RH of 55%.
  • the degree of polarization, single transmittance, and hue of the polarizing plate were measured, and these were used as initial values.
  • the evaluation sample was stored in a high-temperature environment at a temperature of 105° C. for 500 hours. The degree of polarization, single transmittance, and hue of the polarizing plate after storage were measured.
  • the amount of change was calculated from the initial values of the visibility-corrected single transmittance, visibility-corrected polarization degree, and hue of the polarizing plate and the measured values after the high-temperature durability test.
  • the amount of change ⁇ Ty in the visibility correction single transmittance and the amount of change ⁇ Py in the visibility correction polarization degree were calculated as values obtained by subtracting the initial value from the measured value after the high temperature durability test. Further, the amount of change in hue ⁇ ab was determined using the following formula.
  • ⁇ ab ⁇ (a 1 - a 2 ) 2 + (b 1 - b 2 ) 2 ⁇ 1/2
  • a 1 and b 1 are the initial values of the hue
  • a 2 and b 2 are the measured values of the hue after the high temperature durability test.
  • Table 2 shows the values of ⁇ Ty, ⁇ Py, and ⁇ ab.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

Provided is a method for producing a polarizing plate, whereby the occurrence of discoloration in the process of producing the polarizing plate can be suppressed even when the boron content of a polarizing element is high.

Description

偏光板の製造方法Manufacturing method of polarizing plate
 本発明は、偏光板の製造方法に関する。 The present invention relates to a method for manufacturing a polarizing plate.
 液晶表示装置(LCD)は、液晶テレビだけでなく、パソコン、携帯電話等のモバイル、カーナビ等の車載用途などで広く用いられている。通常、液晶表示装置は、液晶セルの両側に粘着剤で偏光板を貼合した液晶パネル部材を有し、バックライト部材からの光を液晶パネル部材で制御することにより表示が行われている。また、有機EL表示装置も近年、液晶表示装置と同様に、テレビ、携帯電話等のモバイル、カーナビ等の車載用途で広く用いられてきている。有機EL表示装置では、外光が金属電極(陰極)で反射され鏡面のように視認されることを抑止するために、画像表示パネルの視認側表面に円偏光板(偏光素子とλ/4板を含む積層体)が配置される場合がある。 Liquid crystal display devices (LCDs) are widely used not only in LCD televisions, but also in personal computers, mobile phones such as mobile phones, and in-vehicle applications such as car navigation systems. Generally, a liquid crystal display device has a liquid crystal panel member in which polarizing plates are bonded to both sides of a liquid crystal cell using an adhesive, and displays are performed by controlling light from a backlight member with the liquid crystal panel member. In recent years, organic EL display devices have also been widely used in mobile applications such as televisions, cell phones, and in-vehicle applications such as car navigation systems, similar to liquid crystal display devices. In an organic EL display device, in order to prevent external light from being reflected by a metal electrode (cathode) and viewed as a mirror surface, a circularly polarizing plate (a polarizing element and a λ/4 plate) is installed on the viewing side surface of the image display panel. laminate) may be arranged.
 偏光板は上記のように、液晶表示装置や有機EL表示装置の部材として、車に搭載される機会が増えてきている。車載用の画像表示装置に用いられる偏光板は、それ以外のテレビや携帯電話等のモバイル用途に比較して、高温環境下に曝されることが多く高温での耐久性がより高いことが求められる。 As mentioned above, polarizing plates are increasingly being installed in cars as components of liquid crystal display devices and organic EL display devices. Polarizing plates used in in-vehicle image display devices are often exposed to high temperature environments compared to other mobile applications such as televisions and mobile phones, and are required to have higher durability at high temperatures. It will be done.
 このような高温耐久性の高い偏光素子の製造方法として、例えば、特許文献1~2では、亜鉛、銅、アルミニウム等を含む金属塩等の成分を処理浴に添加することで、偏光素子にこれら成分を含有させ、偏光素子の耐久性を向上させることが開示されている。また、特許文献3~4では、有機チタン化合物等の成分を処理浴に添加する、偏光素子の製造方法が開示されている。 As a manufacturing method for such a polarizing element with high high temperature durability, for example, Patent Documents 1 and 2 disclose that components such as metal salts containing zinc, copper, aluminum, etc. are added to a treatment bath, and these components are added to the polarizing element. It has been disclosed that the durability of a polarizing element can be improved by including a component therein. Further, Patent Documents 3 and 4 disclose a method for manufacturing a polarizing element in which a component such as an organic titanium compound is added to a treatment bath.
国際公開第2016/117659号International Publication No. 2016/117659 特開2006-047978号公報Japanese Patent Application Publication No. 2006-047978 特開2008-46257号公報Japanese Patent Application Publication No. 2008-46257 特開平6-172554号公報Japanese Patent Application Publication No. 6-172554
 本発明者らは、偏光素子のホウ素の含有率を高くすることにより、偏光板の高温での耐久性を向上できることを見出した。しかしながら、偏光素子に多くのホウ素を含有させることに起因して偏光板の製造過程で変色が生じることがあるとの問題を知見した。
 本発明は、偏光素子のホウ素の含有率を高くしても、偏光板の製造過程で変色が生じることを抑制することができる偏光板の製造方法を提供することを目的とする。
The present inventors have discovered that the durability of the polarizing plate at high temperatures can be improved by increasing the boron content of the polarizing element. However, it has been discovered that discoloration may occur during the manufacturing process of the polarizing plate due to the large amount of boron contained in the polarizing element.
An object of the present invention is to provide a method for manufacturing a polarizing plate that can suppress discoloration during the manufacturing process of the polarizing plate even if the boron content of the polarizing element is increased.
 本発明は、以下の偏光板の製造方法を提供する。
 〔1〕 偏光素子と、前記偏光素子の少なくとも一方の面に積層された透明保護フィルムと、を有する偏光板の製造方法であって、
 ポリビニルアルコール系樹脂フィルムから偏光素子を得る偏光素子製造工程と、
 前記偏光素子に、水系接着剤を介して前記透明保護フィルムを貼合する貼合工程と、を有し、
 前記ポリビニルアルコール系樹脂フィルムは、ホウ素吸着率が5.70質量%以上であり、
 前記水系接着剤は、エタノールの濃度が16質量%以上50質量%以下である、製造方法。
 〔2〕 前記偏光素子は、ホウ素の含有率が4.0質量%以上8.0質量%以下である、〔1〕に記載の製造方法。
 〔3〕 前記水系接着剤は、ポリビニルアルコール系樹脂を含む、〔1〕または〔2〕に記載の製造方法。
 〔4〕 前記水系接着剤は、前記ポリビニルアルコール系樹脂の濃度が2.85質量%以上である、〔3〕に記載の製造方法。
 〔5〕 前記偏光板において、前記偏光素子と前記透明保護フィルムとの間に介する前記水系接着剤により形成された接着剤層の厚みが0.01μm以上7μm以下である、〔1〕~〔4〕のいずれか1項に記載の製造方法。
The present invention provides the following method for manufacturing a polarizing plate.
[1] A method for producing a polarizing plate comprising a polarizing element and a transparent protective film laminated on at least one surface of the polarizing element,
A polarizing element manufacturing process for obtaining a polarizing element from a polyvinyl alcohol resin film;
a bonding step of bonding the transparent protective film to the polarizing element via a water-based adhesive;
The polyvinyl alcohol resin film has a boron adsorption rate of 5.70% by mass or more,
The method for producing the aqueous adhesive has an ethanol concentration of 16% by mass or more and 50% by mass or less.
[2] The manufacturing method according to [1], wherein the polarizing element has a boron content of 4.0% by mass or more and 8.0% by mass or less.
[3] The manufacturing method according to [1] or [2], wherein the water-based adhesive contains a polyvinyl alcohol resin.
[4] The manufacturing method according to [3], wherein the water-based adhesive has a concentration of the polyvinyl alcohol resin of 2.85% by mass or more.
[5] In the polarizing plate, the adhesive layer formed of the water-based adhesive interposed between the polarizing element and the transparent protective film has a thickness of 0.01 μm or more and 7 μm or less, [1] to [4] ] The manufacturing method according to any one of the above.
 本発明により、偏光素子のホウ素の含有率を高くしても、偏光板の製造過程で変色が生じることを抑制することができる偏光板の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing a polarizing plate that can suppress discoloration during the manufacturing process of the polarizing plate even if the boron content of the polarizing element is increased.
本発明に係る偏光素子の製造方法の一例を模式的に示す断面図である。1 is a cross-sectional view schematically showing an example of a method for manufacturing a polarizing element according to the present invention.
 [偏光板の製造方法]
 本発明は、偏光素子と、前記偏光素子の少なくとも一方の面に積層された透明保護フィルムと、を有する偏光板の製造方法であって、ポリビニルアルコール系樹脂フィルム(以下、「PVA系樹脂フィルム」ともいう)から偏光素子を得る偏光素子製造工程と、前記偏光素子に、水系接着剤を介して前記透明保護フィルムを貼合する貼合工程と、を有する。前記PVA系樹脂フィルムは、ホウ素吸着率が5.70質量%以上である。前記水系接着剤は、エタノールの濃度が16質量%以上50質量%以下である。以下、本発明の実施形態を説明するが、本発明は以下の実施形態に限定されるものではない。
[Manufacturing method of polarizing plate]
The present invention provides a method for manufacturing a polarizing plate having a polarizing element and a transparent protective film laminated on at least one surface of the polarizing element, the method comprising: a polyvinyl alcohol resin film (hereinafter referred to as "PVA resin film"). A polarizing element manufacturing process of obtaining a polarizing element from the polarizing element (also referred to as "polarizing element"), and a bonding process of bonding the transparent protective film to the polarizing element via a water-based adhesive. The PVA resin film has a boron adsorption rate of 5.70% by mass or more. The water-based adhesive has an ethanol concentration of 16% by mass or more and 50% by mass or less. Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments.
 <偏光素子製造工程>
 本実施形態において偏光素子は、一軸延伸されたポリビニルアルコール系樹脂フィルムに二色性色素(ヨウ素や二色性染料)が吸着配向しているものである。
<Polarizing element manufacturing process>
In this embodiment, the polarizing element has a dichroic dye (iodine or dichroic dye) adsorbed and oriented on a uniaxially stretched polyvinyl alcohol resin film.
 本実施形態において、ホウ素吸着率が5.70質量%以上のポリビニルアルコール系樹脂フィルムを用いて偏光素子を作製する。このようなPVA系樹脂フィルムを用いることで、偏光板を高温環境下、例えば温度105℃の環境下に晒しても透過率が低下しにくくなる。また、PVA系樹脂フィルムのホウ素吸着率は10質量%以下であることが好ましい。 In this embodiment, a polarizing element is produced using a polyvinyl alcohol resin film with a boron adsorption rate of 5.70% by mass or more. By using such a PVA-based resin film, even if the polarizing plate is exposed to a high-temperature environment, for example, at a temperature of 105° C., the transmittance is less likely to decrease. Moreover, it is preferable that the boron adsorption rate of the PVA-based resin film is 10% by mass or less.
 上記のようなホウ素吸着率のPVA系樹脂フィルムを用いることにより、偏光素子製造工程における、架橋処理浴中のホウ酸濃度を高濃度とすることなく、また架橋処理による処理時間も短縮することもでき、所望の偏光素子が得られやすくなり、偏光素子の生産性も高めることができる。PVA系樹脂のホウ素吸着率を10質量%以下とすると、PVA系樹脂フィルムへホウ素が適量取り込まれ、偏光素子の収縮力を小さくしやすい。その結果、画像表示装置に組み込んだ際に、前面板等の他の部材と偏光板との間で剥離が生じるなどの不具合が生じにくくなる。また、PVA系樹脂フィルムのホウ素吸着率が5.70質量%未満であると、高温環境下に晒したときに透過率が低下しやすくなり、さらに前述したように生産性が低下することがある。PVA系樹脂フィルムのホウ素吸着率は、後述する実施例に記載の方法で測定することができる。 By using a PVA resin film with a boron adsorption rate as described above, it is possible to avoid increasing the concentration of boric acid in the crosslinking treatment bath in the polarizing element manufacturing process, and also to shorten the processing time for crosslinking treatment. Therefore, it becomes easier to obtain a desired polarizing element, and the productivity of the polarizing element can also be improved. When the boron adsorption rate of the PVA-based resin is 10% by mass or less, an appropriate amount of boron is incorporated into the PVA-based resin film, making it easy to reduce the shrinkage force of the polarizing element. As a result, when incorporated into an image display device, problems such as peeling between the polarizing plate and other members such as the front plate are less likely to occur. In addition, if the boron adsorption rate of the PVA resin film is less than 5.70% by mass, the transmittance tends to decrease when exposed to a high temperature environment, and as mentioned above, productivity may decrease. . The boron adsorption rate of the PVA-based resin film can be measured by the method described in Examples below.
 PVA系樹脂フィルムのホウ素吸着率は、PVA系樹脂フィルム中の、分子鎖同士の間隔や結晶構造を反映する特性である。ホウ素吸着率が5.70質量%以上であるPVA系樹脂フィルムは、ホウ素吸着率が5.70質量%未満であるPVA系樹脂フィルムに比べて、分子鎖同士の間隔が広く、PVA系樹脂の結晶が少ないと考えられる。そのため、PVA系樹脂フィルム中へホウ素が入り込みやすくなり、高温環境下において、ポリエン化が防止されやすくなると推定される。 The boron adsorption rate of a PVA-based resin film is a characteristic that reflects the spacing between molecular chains and the crystal structure in the PVA-based resin film. A PVA resin film with a boron adsorption rate of 5.70% by mass or more has a wider spacing between molecular chains than a PVA resin film with a boron adsorption rate of less than 5.70% by mass. It is thought that there are few crystals. Therefore, it is presumed that boron easily enters the PVA-based resin film and that polyenization is easily prevented in a high-temperature environment.
 PVA系樹脂フィルムのホウ素吸着率は、例えば、原料段階のPVA系樹脂フィルムに対して、熱水処理、酸性溶液処理、超音波照射処理、放射線照射処理などの事前処理を行うことにより調整することができる。これらの処理により、PVA系樹脂フィルム中の、分子鎖同士の間隔を広げたり、結晶構造を破壊したりすることができる。熱水処理としては、例えば、30℃~100℃の純水に1秒~90秒浸漬させ、乾燥させる処理が挙げられる。酸性溶液処理としては、例えば、10質量%~20質量%の濃度のホウ酸水溶液に1秒~90秒浸漬させ、乾燥させる処理が挙げられる。超音波処理としては、例えば、20~29kcの周波数の超音波を、200W~500Wの出力で30秒~10分照射する処理が挙げられる。超音波処理は、水などの溶媒中で行うことができる。 The boron adsorption rate of the PVA-based resin film can be adjusted, for example, by pre-processing the PVA-based resin film at the raw material stage, such as hot water treatment, acidic solution treatment, ultrasonic irradiation treatment, radiation irradiation treatment, etc. I can do it. These treatments can widen the spacing between molecular chains and destroy the crystal structure in the PVA resin film. Examples of the hot water treatment include immersion in pure water at 30° C. to 100° C. for 1 second to 90 seconds and drying. Examples of the acidic solution treatment include immersion in a boric acid aqueous solution having a concentration of 10% by mass to 20% by mass for 1 second to 90 seconds and drying. Examples of the ultrasonic treatment include treatment in which ultrasonic waves with a frequency of 20 to 29 kc are irradiated with an output of 200 W to 500 W for 30 seconds to 10 minutes. Sonication can be performed in a solvent such as water.
 PVA系樹脂フィルムを構成するポリビニルアルコール系樹脂(以下、「PVA系樹脂」とも称する)は通常、ポリ酢酸ビニル系樹脂をケン化することにより得られる。そのケン化度は、好ましくは85モル%以上、より好ましくは90モル%以上、さらに好ましくは99モル%以上である。ポリ酢酸ビニル系樹脂は、例えば、酢酸ビニルの単独重合体であるポリ酢酸ビニルの他、酢酸ビニルとこれに共重合可能な他の単量体との共重合体等であることができる。共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類等を挙げることができる。ポリビニルアルコール系樹脂の重合度は、通常1000~10000、好ましくは1500~5000である。 The polyvinyl alcohol resin (hereinafter also referred to as "PVA resin") constituting the PVA resin film is usually obtained by saponifying polyvinyl acetate resin. The degree of saponification is preferably 85 mol% or more, more preferably 90 mol% or more, even more preferably 99 mol% or more. The polyvinyl acetate resin may be, for example, a polyvinyl acetate homopolymer of vinyl acetate, or a copolymer of vinyl acetate and another monomer copolymerizable therewith. Examples of other copolymerizable monomers include unsaturated carboxylic acids, olefins, vinyl ethers, and unsaturated sulfonic acids. The degree of polymerization of the polyvinyl alcohol resin is usually 1,000 to 10,000, preferably 1,500 to 5,000.
 これらのPVA系樹脂は変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマール、ポリビニルアセタール、ポリビニルブチラール等も使用し得る。 These PVA-based resins may be modified; for example, polyvinyl formal, polyvinyl acetal, polyvinyl butyral, etc. modified with aldehydes may also be used.
 本発明では、偏光素子製造の開始材料として、厚みが65μm以下(例えば60μm以下)、好ましくは50μm以下、より好ましくは35μm以下、さらに好ましくは30μm以下の未延伸のポリビニルアルコール系樹脂フィルム(原反フィルム)を用いる。これにより市場要求が益々高まっている薄膜の偏光素子を得ることができる。原反フィルムの幅は特に制限されず、例えば400~6000mm程度であることができる。原反フィルムは、例えば長尺の未延伸ポリビニルアルコール系樹脂フィルムのロール(原反ロール)として用意される。原反フィルムは、市販品でもよく、または製膜によって得てもよく、製膜する方法は特に限定されるものではなく、溶融押出法、溶剤キャスト法のような公知の方法を採用することができる。 In the present invention, as a starting material for producing a polarizing element, an unstretched polyvinyl alcohol resin film (original film) having a thickness of 65 μm or less (for example, 60 μm or less), preferably 50 μm or less, more preferably 35 μm or less, and even more preferably 30 μm or less film). This makes it possible to obtain a thin film polarizing element, for which market demand is increasing. The width of the raw film is not particularly limited, and can be, for example, about 400 to 6000 mm. The raw film is prepared, for example, as a roll (original roll) of a long unstretched polyvinyl alcohol resin film. The original film may be a commercially available product or may be obtained by film forming, and the film forming method is not particularly limited, and known methods such as melt extrusion and solvent casting may be employed. can.
 また本発明で用いられるPVA系樹脂フィルムは、これを支持する基材フィルムに積層されたものであってもよく、すなわち、当該PVA系樹脂フィルムは、基材フィルムとその上に積層されるPVA系樹脂フィルムとの積層フィルムとして用意されてもよい。この場合、PVA系樹脂フィルムは、例えば、基材フィルムの少なくとも一方の面にPVA系樹脂を含有する塗工液を塗工した後、乾燥させることによって製造することができる。 Further, the PVA resin film used in the present invention may be laminated on a base film that supports the PVA resin film. It may also be prepared as a laminated film with a resin film. In this case, the PVA-based resin film can be produced, for example, by applying a coating solution containing a PVA-based resin to at least one surface of the base film and then drying the coating solution.
 基材フィルムとしては、例えば、熱可塑性樹脂からなるフィルムを用いることができる。具体例としては、透光性を有する熱可塑性樹脂、好ましくは光学的に透明な熱可塑性樹脂で構成されるフィルムであり、例えば、鎖状ポリオレフィン系樹脂(ポリプロピレン系樹脂等)、環状ポリオレフィン系樹脂(ノルボルネン系樹脂等)のようなポリオレフィン系樹脂;トリアセチルセルロース、ジアセチルセルロースのようなセルロース系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレートのようなポリエステル系樹脂;ポリカーボネート系樹脂;メタクリル酸メチル系樹脂のような(メタ)アクリル系樹脂;ポリスチレン系樹脂;ポリ塩化ビニル系樹脂;アクリロニトリル・ブタジエン・スチレン系樹脂;アクリロニトリル・スチレン系樹脂;ポリ酢酸ビニル系樹脂;ポリ塩化ビニリデン系樹脂;ポリアミド系樹脂;ポリアセタール系樹脂;変性ポリフェニレンエーテル系樹脂;ポリスルホン系樹脂;ポリエーテルスルホン系樹脂;ポリアリレート系樹脂;ポリアミドイミド系樹脂;ポリイミド系樹脂等であることができる。 As the base film, for example, a film made of thermoplastic resin can be used. A specific example is a film made of a translucent thermoplastic resin, preferably an optically transparent thermoplastic resin, such as a chain polyolefin resin (polypropylene resin, etc.), a cyclic polyolefin resin, etc. Polyolefin resins such as (norbornene resins, etc.); Cellulose resins such as triacetylcellulose and diacetylcellulose; Polyester resins such as polyethylene terephthalate and polybutylene terephthalate; Polycarbonate resins; Methyl methacrylate resins, etc. (meth)acrylic resin; polystyrene resin; polyvinyl chloride resin; acrylonitrile/butadiene/styrene resin; acrylonitrile/styrene resin; polyvinyl acetate resin; polyvinylidene chloride resin; polyamide resin; polyacetal resin Resin; modified polyphenylene ether resin; polysulfone resin; polyether sulfone resin; polyarylate resin; polyamideimide resin; polyimide resin and the like.
 基材フィルムとその上に積層されるPVA系樹脂フィルムとの積層フィルムを用いて偏光素子を製造した場合、基材フィルムは偏光素子の保護層として用いてもよく、必要に応じて偏光素子から剥離除去してもよい。 When a polarizing element is manufactured using a laminated film of a base film and a PVA-based resin film laminated thereon, the base film may be used as a protective layer of the polarizing element, and if necessary, the base film may be used as a protective layer for the polarizing element. It may be peeled off and removed.
 偏光素子は、上記の長尺の原反フィルムを原反ロールから巻出しつつ、偏光素子製造装置のフィルム搬送経路に沿って連続的に搬送させて、処理槽に収容された処理液(以下、「処理浴」ともいう)に浸漬させた後に引き出す所定の処理工程を実施した後に乾燥工程を実施することにより長尺の偏光素子として連続製造することができる。なお、処理工程は、フィルムに処理液を接触させて処理する方法であればフィルムを処理浴に浸漬させる方法に限定されることはなく、噴霧、流下、滴下等により処理液をフィルム表面に付着させてフィルムを処理する方法であってもよい。処理工程が、フィルムを処理浴に浸漬させる方法によってなされる場合、一つの処理工程を行う処理浴は一つに限定されることはなく、二つ以上の処理浴にフィルムを順次浸漬させて一つの処理工程を完成させてもよい。 The polarizing element is manufactured by unwinding the above-mentioned long original film from the original film roll and continuously transporting it along the film transport path of the polarizing element manufacturing apparatus, and then applying the processing liquid (hereinafter referred to as A long polarizing element can be continuously manufactured by performing a drying process after performing a predetermined treatment process after immersing the polarizing element in a "processing bath" and then pulling it out. Note that the treatment process is not limited to the method of immersing the film in a treatment bath as long as the treatment is carried out by bringing the treatment liquid into contact with the film, and the treatment liquid can be applied to the film surface by spraying, flowing, dropping, etc. The method may be one in which the film is processed by When the treatment step is performed by dipping the film in a treatment bath, the number of treatment baths used in one treatment step is not limited to one, and the film can be immersed in two or more treatment baths in sequence. One processing step may be completed.
 上記処理液としては、膨潤液、染色液、架橋液、洗浄液等が例示される。そして、上記処理工程としては、原反フィルムに膨潤液を接触させて膨潤処理を行う膨潤工程と、膨潤処理後のフィルムに染色液を接触させて染色処理を行う染色工程と、染色処理後のフィルムに架橋液を接触させて架橋処理を行う架橋工程と、架橋処理後のフィルムに洗浄液を接触させて洗浄処理を行う洗浄工程とが例示される。また、これら一連の処理工程の間(すなわち、いずれか1以上の処理工程の前後及び/又はいずれか1以上の処理工程中)に、湿式又は乾式にて一軸延伸処理を施すことができる。必要に応じて他の処理工程を付加してもよい。 Examples of the treatment liquid include a swelling liquid, a staining liquid, a crosslinking liquid, a washing liquid, and the like. The above-mentioned processing steps include a swelling step in which a swelling solution is brought into contact with the original film to perform a swelling treatment, a dyeing step in which a dyeing solution is brought into contact with the film after the swelling treatment, and a dyeing step in which a dyeing solution is brought into contact with the film after the swelling treatment; Examples include a crosslinking process in which a crosslinking liquid is brought into contact with the film to perform a crosslinking process, and a cleaning process in which a cleaning liquid is brought into contact with the film after the crosslinking process and a cleaning process is performed. Further, between a series of these processing steps (that is, before or after any one or more processing steps and/or during any one or more processing steps), a wet or dry uniaxial stretching process can be performed. Other processing steps may be added as necessary.
 以下、図1を参照しながら、本発明に係る偏光素子の製造方法の一例を詳細に説明する。図1は、本発明に係る偏光素子の製造方法及びそれに用いる偏光素子製造装置の一例を模式的に示す断面図である。図1に示される偏光素子製造装置は、ポリビニルアルコール系樹脂からなる原反(未延伸)フィルム10を、原反ロール11より連続的に巻出しながらフィルム搬送経路に沿って搬送させることにより、フィルム搬送経路上に設けられる膨潤浴(膨潤槽内に収容された膨潤液)13、染色浴(染色槽内に収容された染色液)15、第1架橋浴(架橋槽内に収容された第1架橋液)17a、第2架橋浴(架橋槽内に収容された第2架橋液)17b、及び洗浄浴(洗浄槽内に収容された洗浄液)19を順次通過させ、最後に乾燥炉21を通過させるように構成されている。得られた偏光素子23は、例えば、そのまま次の偏光板作製工程(偏光素子23の片面又は両面に保護フィルムを貼合する工程)に搬送することができる。図1におけるフィルム10,23上に示す矢印は、フィルムの搬送方向を示している。 Hereinafter, an example of a method for manufacturing a polarizing element according to the present invention will be described in detail with reference to FIG. FIG. 1 is a cross-sectional view schematically showing an example of a polarizing element manufacturing method and a polarizing element manufacturing apparatus used therein according to the present invention. The polarizing element manufacturing apparatus shown in FIG. 1 transports an original (unstretched) film 10 made of polyvinyl alcohol resin along a film transport path while continuously unwinding it from an original roll 11. A swelling bath (swelling liquid contained in the swelling tank) 13, a dyeing bath (staining liquid contained in the dyeing tank) 15, and a first crosslinking bath (a first crosslinking bath contained in the crosslinking tank) are provided on the conveyance path. Cross-linking liquid) 17a, second cross-linking bath (second cross-linking liquid stored in a cross-linking tank) 17b, and cleaning bath (cleaning liquid stored in a cleaning tank) 19 are passed in sequence, and finally passed through a drying oven 21. It is configured to allow The obtained polarizing element 23 can be transported as it is, for example, to the next polarizing plate production process (a process of laminating a protective film on one or both sides of the polarizing element 23). The arrows shown on the films 10 and 23 in FIG. 1 indicate the transport direction of the film.
 図1の説明において、「処理槽」は、膨潤槽、染色槽、架橋槽及び洗浄槽を含む総称であり、処理液」は、膨潤液、染色液、架橋液及び洗浄液を含む総称であり、「処理浴」は、膨潤浴、染色浴、架橋浴及び洗浄浴を含む総称である。膨潤浴、染色浴、架橋浴及び洗浄浴は、それぞれ、本発明の製造装置における膨潤部、染色部、架橋部及び洗浄部を構成する。 In the description of FIG. 1, "processing tank" is a generic term including a swelling tank, dyeing tank, crosslinking tank, and washing tank, and "processing liquid" is a generic term including a swelling solution, dyeing solution, crosslinking solution, and washing solution, "Processing bath" is a general term that includes swelling baths, dyeing baths, crosslinking baths, and cleaning baths. The swelling bath, dyeing bath, crosslinking bath, and washing bath respectively constitute a swelling section, a dyeing section, a crosslinking section, and a washing section in the manufacturing apparatus of the present invention.
 偏光素子製造装置のフィルム搬送経路は、上記処理浴の他、搬送されるフィルムを支持する、あるいはさらにフィルム搬送方向を変更することができるガイドロール30~48,60,61や、搬送されるフィルムを押圧・挟持し、その回転による駆動力をフィルムに与えることができる、あるいはさらにフィルム搬送方向を変更することができるニップロール50~55を適宜の位置に配置することによって構築することができる。ガイドロールやニップロールは、各処理浴の前後や処理浴中に配置することができ、これにより処理浴へのフィルムの導入・浸漬及び処理浴からの引き出しを行うことができる〔図1参照〕。例えば、各処理浴中に1以上のガイドロールを設け、これらのガイドロールに沿ってフィルムを搬送させることにより、各処理浴にフィルムを浸漬させることができる。 In addition to the above-mentioned processing bath, the film conveyance path of the polarizing element manufacturing apparatus includes guide rolls 30 to 48, 60, and 61 that support the conveyed film or can further change the film conveyance direction, and the conveyed film. It can be constructed by arranging nip rolls 50 to 55 at appropriate positions, which can press and nip and apply driving force to the film by rotation, or can further change the film transport direction. Guide rolls and nip rolls can be placed before and after each treatment bath or in the treatment bath, thereby allowing the film to be introduced into and immersed in the treatment bath and pulled out from the treatment bath (see FIG. 1). For example, the film can be immersed in each treatment bath by providing one or more guide rolls in each treatment bath and transporting the film along these guide rolls.
 図1に示される偏光素子製造装置は、各処理浴の前後にニップロールが配置されており(ニップロール50~54)、これにより、いずれか1以上の処理浴中で、その前後に配置されるニップロール間に周速差をつけて縦一軸延伸を行うロール間延伸を実施することが可能になっている。以下、各工程について説明する。 In the polarizing element manufacturing apparatus shown in FIG. 1, nip rolls are arranged before and after each processing bath (nip rolls 50 to 54), and thereby, nip rolls arranged before and after each of the processing baths are arranged in one or more processing baths. It is now possible to perform inter-roll stretching in which longitudinal uniaxial stretching is performed with a peripheral speed difference between the rolls. Each step will be explained below.
 (膨潤工程)
 膨潤工程は、原反フィルム10表面の異物除去、原反フィルム10中の可塑剤除去、易染色性の付与、原反フィルム10の可塑化等の目的で行われる。処理条件は、当該目的が達成できる範囲で、かつ原反フィルム10の極端な溶解や失透等の不具合を生じない範囲で決定される。
(swelling process)
The swelling step is performed for the purposes of removing foreign matter from the surface of the raw film 10, removing plasticizers in the raw film 10, imparting dyeability, plasticizing the raw film 10, and the like. The processing conditions are determined within a range in which the objective can be achieved and in which problems such as extreme dissolution and devitrification of the original film 10 do not occur.
 図1を参照して、膨潤工程は、原反フィルム10を原反ロール11より連続的に巻出しながら、フィルム搬送経路に沿って搬送させ、原反フィルム10を膨潤浴13に所定時間浸漬し、次いで引き出すことによって実施することができる。図1の例において、原反フィルム10を巻き出してから膨潤浴13に浸漬させるまでの間、原反フィルム10は、ガイドロール60,61及びニップロール50によって構築されたフィルム搬送経路に沿って搬送される。膨潤処理においては、ガイドロール30~32及びニップロール51によって構築されたフィルム搬送経路に沿って搬送される。 Referring to FIG. 1, in the swelling step, the raw film 10 is continuously unwound from the raw roll 11 and conveyed along the film transport path, and the raw film 10 is immersed in a swelling bath 13 for a predetermined time. , and then by retrieving. In the example of FIG. 1, the raw film 10 is conveyed along the film conveyance path constructed by the guide rolls 60, 61 and the nip roll 50 from when the raw film 10 is unwound until it is immersed in the swelling bath 13. be done. In the swelling process, the film is transported along a film transport path constructed by guide rolls 30 to 32 and nip rolls 51.
 膨潤浴13の膨潤液としては、純水のほか、ホウ酸(特開平10-153709号公報)、塩化物(特開平06-281816号公報)、無機酸、無機塩、水溶性有機溶媒、アルコール類等を約0.01~10質量%の範囲で添加した水溶液を使用することも可能である。 Swelling liquids in the swelling bath 13 include, in addition to pure water, boric acid (Japanese Unexamined Patent Publication No. 10-153709), chlorides (Japanese Unexamined Patent Publication No. 06-281816), inorganic acids, inorganic salts, water-soluble organic solvents, and alcohol. It is also possible to use an aqueous solution to which 0.01 to 10% by mass of the following compounds are added.
 膨潤浴13の温度は、例えば10~50℃程度、好ましくは10~40℃程度、より好ましくは15~30℃程度である。原反フィルム10の浸漬時間は、好ましくは10~300秒程度、より好ましくは20~200秒程度である。また、原反フィルム10が予め気体中で延伸したポリビニルアルコール系樹脂フィルムである場合、膨潤浴13の温度は、例えば20~70℃程度、好ましくは30~60℃程度である。原反フィルム10の浸漬時間は、好ましくは30~300秒程度、より好ましくは60~240秒程度である。 The temperature of the swelling bath 13 is, for example, about 10 to 50°C, preferably about 10 to 40°C, more preferably about 15 to 30°C. The immersion time of the raw film 10 is preferably about 10 to 300 seconds, more preferably about 20 to 200 seconds. Further, when the raw film 10 is a polyvinyl alcohol resin film stretched in advance in gas, the temperature of the swelling bath 13 is, for example, about 20 to 70°C, preferably about 30 to 60°C. The immersion time of the raw film 10 is preferably about 30 to 300 seconds, more preferably about 60 to 240 seconds.
 膨潤処理では、原反フィルム10が幅方向に膨潤してフィルムにシワが入るといった問題が生じやすい。このシワを取りつつフィルムを搬送するための1つの手段として、ガイドロール30,31及び/又は32にエキスパンダーロール、スパイラルロール、クラウンロールのような拡幅機能を有するロールを用いたり、クロスガイダー、ベンドバー、テンタークリップのような他の拡幅装置を用いたりすることが挙げられる。シワの発生を抑制するためのもう1つの手段は延伸処理を施すことである。例えば、ニップロール50とニップロール51との周速差を利用して膨潤浴13中で一軸延伸処理を施すことができる。 In the swelling process, the problem that the raw film 10 swells in the width direction and wrinkles are likely to occur in the film tends to occur. As one means for conveying the film while removing wrinkles, it is possible to use a roll having a width-expanding function such as an expander roll, spiral roll, or crown roll as the guide rolls 30, 31, and/or 32, or use a cross guider or a bend bar. , or using other widening devices such as tenter clips. Another means for suppressing the occurrence of wrinkles is to perform a stretching process. For example, the uniaxial stretching process can be performed in the swelling bath 13 using the difference in circumferential speed between the nip rolls 50 and 51.
 膨潤処理では、フィルムの搬送方向にもフィルムが膨潤拡大するので、フィルムに積極的な延伸を行わない場合は、搬送方向のフィルムのたるみを無くすために、例えば、膨潤浴13の前後に配置するニップロール50,51の速度をコントロールする等の手段を講ずることが好ましい。また、膨潤浴13中のフィルム搬送を安定化させる目的で、膨潤浴13中での水流を水中シャワーで制御したり、EPC装置(Edge Position
 Control装置:フィルムの端部を検出し、フィルムの蛇行を防止する装置)等を併用したりすることも有用である。
In the swelling treatment, the film swells and expands in the film transport direction, so if the film is not actively stretched, the film is placed before and after the swelling bath 13, for example, in order to eliminate sagging of the film in the transport direction. It is preferable to take measures such as controlling the speed of the nip rolls 50, 51. In addition, in order to stabilize the transport of the film in the swelling bath 13, the water flow in the swelling bath 13 is controlled by an underwater shower, and an EPC device (Edge Position
It is also useful to use a control device: a device that detects the edge of the film and prevents the film from meandering.
 図1に示される例において、膨潤浴13から引き出されたフィルムは、ガイドロール32、ニップロール51、ガイドロール33を順に通過して染色浴15へ導入される。 In the example shown in FIG. 1, the film pulled out from the swelling bath 13 passes through the guide roll 32, the nip roll 51, and the guide roll 33 in this order and is introduced into the dyeing bath 15.
 (染色工程)
 染色工程は、膨潤処理後のポリビニルアルコール系樹脂フィルムに二色性色素を吸着、配向させる等の目的で行われる。処理条件は、当該目的が達成できる範囲で、かつフィルムの極端な溶解や失透等の不具合が生じない範囲で決定される。図1を参照して、染色工程は、ニップロール51、ガイドロール33~36及びニップロール52によって構築されたフィルム搬送経路に沿って搬送させ、膨潤処理後のフィルムを染色浴15(染色槽に収容された処理液)に所定時間浸漬し、次いで引き出すことによって実施することができる。二色性色素の染色性を高めるために、染色工程に供されるフィルムは、少なくともある程度の一軸延伸処理を施したフィルムであることが好ましく、又は染色処理前の一軸延伸処理の代わりに、あるいは染色処理前の一軸延伸処理に加えて、染色処理時に一軸延伸処理を行うことが好ましい。
(dying process)
The dyeing step is performed for the purpose of adsorbing and orienting the dichroic dye to the polyvinyl alcohol resin film after the swelling treatment. The processing conditions are determined within a range in which the objective can be achieved and in which problems such as extreme dissolution and devitrification of the film do not occur. Referring to FIG. 1, the dyeing process involves transporting the film along a film transport path constructed by nip rolls 51, guide rolls 33 to 36, and nip rolls 52, and transporting the film after swelling treatment in a dyeing bath 15 (accommodated in a dyeing tank). This can be carried out by immersing the sample in a treatment liquid for a predetermined period of time and then pulling it out. In order to improve the dyeability of the dichroic dye, the film subjected to the dyeing process is preferably a film that has been subjected to at least some uniaxial stretching treatment, or instead of the uniaxial stretching treatment before the dyeing treatment, or In addition to the uniaxial stretching process before the dyeing process, it is preferable to perform the uniaxial stretching process during the dyeing process.
 二色性色素としてヨウ素を用いる場合、染色浴15の染色液には、例えば、濃度が重量比でヨウ素/ヨウ化カリウム/水=0.003~0.3/0.1~10/100である水溶液を用いることができる。ヨウ化カリウムに代えて、ヨウ化亜鉛等の他のヨウ化物を用いてもよく、ヨウ化カリウムと他のヨウ化物を併用してもよい。また、ヨウ化物以外の化合物、例えば、ホウ酸、塩化亜鉛、塩化コバルト等を共存させてもよい。ホウ酸を添加する場合は、ヨウ素を含む点で後述する架橋処理と区別され、水溶液が水100重量部に対し、ヨウ素を0.003重量部以上含んでいるものであれば、染色浴15とみなすことができる。フィルムを浸漬するときの染色浴15の温度は、通常10~45℃程度、好ましくは10~40℃であり、より好ましくは20~35℃であり、フィルムの浸漬時間は、通常30~600秒程度、好ましくは60~300秒である。 When using iodine as a dichroic dye, the dyeing solution in the dyeing bath 15 has a concentration of, for example, iodine/potassium iodide/water in a weight ratio of 0.003 to 0.3/0.1 to 10/100. An aqueous solution can be used. Instead of potassium iodide, other iodides such as zinc iodide may be used, or potassium iodide and other iodides may be used together. Further, compounds other than iodide, such as boric acid, zinc chloride, cobalt chloride, etc., may be coexisting. When adding boric acid, it is distinguished from the crosslinking treatment described below in that it contains iodine, and if the aqueous solution contains 0.003 parts by weight or more of iodine per 100 parts by weight of water, it can be used as dyeing bath 15. It can be considered. The temperature of the dyeing bath 15 when dipping the film is usually about 10 to 45°C, preferably 10 to 40°C, more preferably 20 to 35°C, and the immersion time of the film is usually 30 to 600 seconds. about 60 to 300 seconds, preferably 60 to 300 seconds.
 二色性色素として水溶性二色性染料を用いる場合、染色浴15の染色液には、例えば、濃度が重量比で二色性染料/水=0.001~0.1/100である水溶液を用いることができる。この染色浴15には、染色助剤等を共存させてもよく、例えば、硫酸ナトリウム等の無機塩や界面活性剤などを含有していてもよい。二色性染料は1種のみを単独で用いてもよいし、2種類以上の二色性染料を併用してもよい。フィルムを浸漬するときの染色浴15の温度は、例えば20~80℃程度、好ましくは30~70℃であり、フィルムの浸漬時間は、通常30~600秒程度、好ましくは60~300秒程度である。 When using a water-soluble dichroic dye as the dichroic pigment, the dyeing solution in the dyeing bath 15 is, for example, an aqueous solution having a concentration of dichroic dye/water = 0.001 to 0.1/100 in weight ratio. can be used. This dyeing bath 15 may contain a dyeing aid, for example, an inorganic salt such as sodium sulfate, a surfactant, and the like. One type of dichroic dye may be used alone, or two or more types of dichroic dyes may be used in combination. The temperature of the dyeing bath 15 when dipping the film is, for example, about 20 to 80°C, preferably 30 to 70°C, and the immersion time of the film is usually about 30 to 600 seconds, preferably about 60 to 300 seconds. be.
 上述のように染色工程では、染色浴15でフィルムの一軸延伸を行うことができる。フィルムの一軸延伸は、染色浴15の前後に配置したニップロール51とニップロール52との間に周速差をつけるなどの方法によって行うことができる。 As mentioned above, in the dyeing process, the film can be uniaxially stretched in the dyeing bath 15. The uniaxial stretching of the film can be carried out by a method such as creating a difference in peripheral speed between the nip rolls 51 and 52 placed before and after the dyeing bath 15.
 染色処理においても、膨潤処理と同様にフィルムのシワを除きつつポリビニルアルコール系樹脂フィルムを搬送するために、ガイドロール33,34,35及び/又は36にエキスパンダーロール、スパイラルロール、クラウンロールのような拡幅機能を有するロールを用いたり、クロスガイダー、ベンドバー、テンタークリップのような他の拡幅装置を用いたりすることができる。シワの発生を抑制するためのもう1つの手段は、膨潤処理と同様、延伸処理を施すことである。 In the dyeing process, guide rolls 33, 34, 35 and/or 36 are equipped with expander rolls, spiral rolls, crown rolls, etc. in order to transport the polyvinyl alcohol resin film while removing wrinkles from the film, as in the swelling process. Rolls with a width-spreading function can be used, or other width-spreading devices such as cross guiders, bend bars, tenter clips, etc. can be used. Another means for suppressing the occurrence of wrinkles is to perform a stretching treatment, similar to the swelling treatment.
 図1に示される例において、染色浴15から引き出されたフィルムは、ガイドロール36、ニップロール52、及びガイドロール37を順に通過して架橋浴17へ導入される。 In the example shown in FIG. 1, the film pulled out from the dyeing bath 15 passes through a guide roll 36, a nip roll 52, and a guide roll 37 in order and is introduced into the crosslinking bath 17.
 (架橋工程)
 架橋工程は、架橋による耐水化や色相調整(フィルムが青味がかるのを防止する等)などの目的で行う処理である。図1に示す例においては、架橋工程を行う架橋浴として二つの架橋浴が配置され、耐水化を目的として行う第1架橋工程を第1架橋浴17aで行い、色相調整を目的として行う第2架橋工程を第2架橋浴17bで行う。図1を参照して、第1架橋工程は、ニップロール52,ガイドロール37~40及びニップロール53aによって構築されたフィルム搬送経路に沿って搬送させ、第1架橋浴17a(架橋槽に収容された第1架橋液)に染色処理後のフィルムを所定時間浸漬し、次いで引き出すことによって実施することができる。第2架橋工程は、ニップロール53a,ガイドロール41~44及びニップロール53bによって構築されたフィルム搬送経路に沿って搬送させ、第2架橋浴17b(架橋槽に収容された第2架橋液)に第1架橋工程後のフィルムを所定時間浸漬し、次いで引き出すことによって実施することができる。以下、架橋浴という場合には第1架橋浴17a及び第2架橋浴17bいずれをも含み、架橋液という場合には第1架橋液及び第2架橋液いずれをも含む。
(Crosslinking process)
The crosslinking step is a process performed for the purpose of making the film water resistant and adjusting the hue (preventing the film from becoming bluish, etc.). In the example shown in FIG. 1, two crosslinking baths are arranged as crosslinking baths for performing the crosslinking process, the first crosslinking process for the purpose of water resistance is performed in the first crosslinking bath 17a, and the second crosslinking bath is for the purpose of hue adjustment. The crosslinking step is performed in the second crosslinking bath 17b. Referring to FIG. 1, in the first crosslinking step, the film is conveyed along a film conveyance path constructed by nip rolls 52, guide rolls 37 to 40, and nip rolls 53a. This can be carried out by immersing the dyed film in (1) crosslinking solution for a predetermined period of time and then pulling it out. In the second crosslinking step, the film is transported along a film transport path constructed by the nip rolls 53a, guide rolls 41 to 44, and nip rolls 53b, and the first This can be carried out by immersing the film after the crosslinking process for a predetermined period of time and then pulling it out. Hereinafter, the term crosslinking bath includes both the first crosslinking bath 17a and the second crosslinking bath 17b, and the term crosslinking liquid includes both the first crosslinking liquid and the second crosslinking liquid.
 架橋液としては、架橋剤を溶媒に溶解した溶液を使用できる。架橋剤としては、例えば、ホウ酸、ホウ砂等のホウ素化合物や、グリオキサール、グルタルアルデヒドなどが挙げられる。これらは一種類でも良いし、二種類以上を併用しても良い。溶媒としては、例えば水が使用できるが、さらに、水と相溶性のある有機溶媒を含んでも良い。架橋溶液における架橋剤の濃度は、これに限定されるものではないが、1~20質量%の範囲にあることが好ましく、6~15質量%であることがより好ましい。 As the crosslinking liquid, a solution in which a crosslinking agent is dissolved in a solvent can be used. Examples of the crosslinking agent include boron compounds such as boric acid and borax, glyoxal, and glutaraldehyde. These may be used alone or in combination of two or more. As the solvent, for example, water can be used, but it may also contain an organic solvent that is compatible with water. Although the concentration of the crosslinking agent in the crosslinking solution is not limited thereto, it is preferably in the range of 1 to 20% by weight, more preferably 6 to 15% by weight.
 架橋液としては、水100重量部に対してホウ酸を例えば1~10重量部含有する水溶液であることができる。架橋液は、染色処理で使用した二色性色素がヨウ素の場合、ホウ酸に加えてヨウ化物を含有することが好ましく、その量は、水100重量部に対して、例えば1~30重量部とすることができる。ヨウ化物としては、ヨウ化カリウム、ヨウ化亜鉛等が挙げられる。また、ヨウ化物以外の化合物、例えば、塩化亜鉛、塩化コバルト、塩化ジルコニウム、チオ硫酸ナトリウム、亜硫酸カリウム、硫酸ナトリウム等を共存させてもよい。 The crosslinking liquid may be an aqueous solution containing, for example, 1 to 10 parts by weight of boric acid per 100 parts by weight of water. When the dichroic dye used in the dyeing treatment is iodine, the crosslinking liquid preferably contains iodide in addition to boric acid, and the amount thereof is, for example, 1 to 30 parts by weight per 100 parts by weight of water. It can be done. Examples of iodides include potassium iodide and zinc iodide. Further, compounds other than iodide, such as zinc chloride, cobalt chloride, zirconium chloride, sodium thiosulfate, potassium sulfite, and sodium sulfate, may be present.
 架橋処理においては、その目的によって、ホウ酸及びヨウ化物の濃度、並びに架橋浴17の温度を適宜変更することができる。例えば、架橋処理の目的が架橋による耐水化である第1架橋液の場合、濃度が重量比でホウ酸/ヨウ化物/水=3~10/1~20/100の水溶液であることができる。必要に応じ、ホウ酸に代えて他の架橋剤を用いてもよく、ホウ酸と他の架橋剤を併用してもよい。フィルムを浸漬するときの第1架橋浴17aの温度は、通常50~70℃程度、好ましくは53~65℃であり、フィルムの浸漬時間は、通常10~600秒程度、好ましくは20~300秒、より好ましくは20~200秒である。また、膨潤処理前に予め延伸したポリビニルアルコール系樹脂フィルムに対して染色処理及び第1架橋処理をこの順に施す場合、第1架橋浴17aの温度は、通常50~85℃程度、好ましくは55~80℃である。 In the crosslinking treatment, the concentrations of boric acid and iodide and the temperature of the crosslinking bath 17 can be changed as appropriate depending on the purpose. For example, in the case of the first crosslinking solution whose purpose in crosslinking treatment is water resistance through crosslinking, it can be an aqueous solution having a concentration of boric acid/iodide/water in a weight ratio of 3 to 10/1 to 20/100. If necessary, other crosslinking agents may be used in place of boric acid, or boric acid and other crosslinking agents may be used in combination. The temperature of the first crosslinking bath 17a when dipping the film is usually about 50 to 70°C, preferably 53 to 65°C, and the immersion time of the film is usually about 10 to 600 seconds, preferably 20 to 300 seconds. , more preferably 20 to 200 seconds. Further, when dyeing treatment and first crosslinking treatment are performed in this order on a pre-stretched polyvinyl alcohol resin film before swelling treatment, the temperature of the first crosslinking bath 17a is usually about 50 to 85°C, preferably about 55 to 85°C. The temperature is 80°C.
 色相調整を目的とする第2架橋液においては、例えば、二色性色素としてヨウ素を用いた場合、濃度が重量比でホウ酸/ヨウ化物/水=1~5/3~30/100を使用することができる。フィルムを浸漬するときの第2架橋浴17bの温度は、通常10~45℃程度であり、フィルムの浸漬時間は、通常1~300秒程度、好ましくは2~100秒である。 In the second crosslinking liquid for the purpose of hue adjustment, for example, when iodine is used as a dichroic dye, a concentration by weight of boric acid/iodide/water = 1 to 5/3 to 30/100 is used. can do. The temperature of the second crosslinking bath 17b during immersion of the film is usually about 10 to 45°C, and the immersion time of the film is usually about 1 to 300 seconds, preferably 2 to 100 seconds.
 架橋処理は複数回行ってもよく、通常2~5回行われる。この場合、使用する各架橋浴の組成及び温度は、上記の範囲内であれば同じであってもよく、異なっていてもよい。架橋による耐水化のための架橋処理及び色相調整のための架橋処理は、それぞれ複数の工程で行ってもよい。 The crosslinking treatment may be performed multiple times, and is usually performed 2 to 5 times. In this case, the composition and temperature of each crosslinking bath used may be the same or different within the above range. The crosslinking treatment for water resistance and the crosslinking treatment for hue adjustment may be performed in multiple steps.
 ニップロール52とニップロール53aとの周速差を利用して第1架橋浴17a中で一軸延伸処理を施すこともできる。また、ニップロール53aとニップロール53bとの周速差を利用して第2架橋浴17b中で一軸延伸処理を施すこともできる。 Uniaxial stretching can also be performed in the first crosslinking bath 17a by utilizing the difference in peripheral speed between the nip rolls 52 and 53a. Furthermore, the uniaxial stretching process can be performed in the second crosslinking bath 17b by utilizing the difference in circumferential speed between the nip rolls 53a and 53b.
 架橋処理においても、膨潤処理と同様にフィルムのシワを除きつつポリビニルアルコール系樹脂フィルムを搬送するために、ガイドロール38,39,40,41,42,43及び/又は44にエキスパンダーロール、スパイラルロール、クラウンロールのような拡幅機能を有するロールを用いたり、クロスガイダー、ベンドバー、テンタークリップのような他の拡幅装置を用いたりすることができる。シワの発生を抑制するためのもう1つの手段は、膨潤処理と同様、延伸処理を施すことである。 In the crosslinking treatment, in order to convey the polyvinyl alcohol resin film while removing wrinkles from the film as in the swelling treatment, an expander roll and a spiral roll are used in the guide rolls 38, 39, 40, 41, 42, 43 and/or 44. , a roll having a width-expanding function such as a crown roll, or other width-expanding devices such as a cross guider, a bend bar, or a tenter clip may be used. Another means for suppressing the occurrence of wrinkles is to perform a stretching treatment, similar to the swelling treatment.
 図1に示される例において、第2架橋浴17bから引き出されたフィルムは、ガイドロール44、ニップロール53bを順に通過して洗浄浴19へ導入される。 In the example shown in FIG. 1, the film pulled out from the second crosslinking bath 17b passes through the guide roll 44 and the nip roll 53b in order and is introduced into the cleaning bath 19.
 (洗浄工程)
 図1に示される例においては、架橋工程後の洗浄工程を含む。洗浄処理は、ポリビニルアルコール系樹脂フィルムに付着した余分なホウ酸やヨウ素等の薬剤を除去する目的等で行われる。洗浄工程は、例えば、架橋処理したポリビニルアルコール系樹脂フィルムを洗浄浴19に浸漬することによって行われる。なお、洗浄工程は、洗浄浴19にフィルムを浸漬させる工程に代えて、フィルムに対して洗浄液をシャワーとして噴霧することにより、若しくは洗浄浴19への浸漬と洗浄液の噴霧とを併用することによって行うこともできる。
(Washing process)
The example shown in FIG. 1 includes a washing step after the crosslinking step. The cleaning treatment is performed for the purpose of removing excess chemicals such as boric acid and iodine that have adhered to the polyvinyl alcohol resin film. The cleaning step is performed, for example, by immersing the crosslinked polyvinyl alcohol resin film in the cleaning bath 19. Note that the cleaning process is performed by spraying a cleaning liquid onto the film as a shower, or by using a combination of immersion in the cleaning bath 19 and spraying of the cleaning liquid, instead of immersing the film in the cleaning bath 19. You can also do that.
 図1には、ポリビニルアルコール系樹脂フィルムを洗浄浴19に浸漬して洗浄処理を行う場合の例を示している。洗浄処理における洗浄浴19の温度は、通常2~40℃程度であり、フィルムの浸漬時間は、通常2~120秒程度である。 FIG. 1 shows an example in which a polyvinyl alcohol resin film is immersed in a cleaning bath 19 to perform cleaning treatment. The temperature of the cleaning bath 19 in the cleaning process is usually about 2 to 40°C, and the immersion time of the film is usually about 2 to 120 seconds.
 なお、洗浄処理においても、シワを除きつつポリビニルアルコール系樹脂フィルムを搬送する目的で、ガイドロール45,46,47及び/又は48にエキスパンダーロール、スパイラルロール、クラウンロールのような拡幅機能を有するロールを用いたり、クロスガイダー、ベンドバー、テンタークリップのような他の拡幅装置を用いたりすることができる。また、フィルム洗浄処理において、シワの発生を抑制するために延伸処理を施してもよい。 In addition, in the cleaning process, for the purpose of transporting the polyvinyl alcohol resin film while removing wrinkles, the guide rolls 45, 46, 47 and/or 48 are rolls having a width-expanding function such as expander rolls, spiral rolls, and crown rolls. or other widening devices such as cross guiders, bend bars, and tenter clips. Furthermore, in the film cleaning process, a stretching process may be performed to suppress the occurrence of wrinkles.
 (延伸工程)
 上述のように原反フィルム10は、上記一連の処理工程の間(すなわち、いずれか1以上の処理工程の前後及び/又はいずれか1以上の処理工程中)に、湿式又は乾式にて一軸延伸処理される。一軸延伸処理の具体的方法は、例えば、フィルム搬送経路を構成する2つのニップロール(例えば、処理浴の前後に配置される2つのニップロール)間に周速差をつけて縦一軸延伸を行うロール間延伸、特許第2731813号公報に記載されるような熱ロール延伸、テンター延伸等であることができ、好ましくはロール間延伸である。一軸延伸工程は、原反フィルム10から偏光素子23を得るまでの間に複数回にわたって実施することができる。上述のように延伸処理は、フィルムのシワの発生の抑制にも有利である。
(Stretching process)
As mentioned above, the raw film 10 is subjected to uniaxial stretching in a wet or dry manner during the series of processing steps (that is, before and/or during any one or more processing steps). It is processed. A specific method for the uniaxial stretching process is, for example, to perform longitudinal uniaxial stretching with a peripheral speed difference between two nip rolls (for example, two nip rolls placed before and after the processing bath) that constitute the film transport path. Stretching, hot roll stretching as described in Japanese Patent No. 2731813, tenter stretching, etc. may be used, and inter-roll stretching is preferable. The uniaxial stretching step can be performed multiple times until the polarizing element 23 is obtained from the original film 10. As mentioned above, the stretching treatment is also advantageous in suppressing the occurrence of wrinkles in the film.
 原反フィルム10を基準とする、偏光素子23の最終的な累積延伸倍率は通常、4.5~7倍程度であり、好ましくは5~6.5倍である。延伸工程はいずれの処理工程で行ってもよく、2以上の処理工程で延伸処理を行う場合においても延伸処理はいずれの処理工程で行ってもよい。 The final cumulative stretching ratio of the polarizing element 23 based on the original film 10 is usually about 4.5 to 7 times, preferably 5 to 6.5 times. The stretching process may be performed in any process, and even when the stretching process is performed in two or more processes, the stretching process may be performed in any process.
 (乾燥工程)
 洗浄工程の後、PVA系樹脂フィルムを乾燥させる処理を行うことが好ましい。フィルムの乾燥は特に制限されないが、図1に示される例のように乾燥炉21を用いて行うことができる。乾燥炉21は例えば熱風乾燥機を備えるものとすることができる。乾燥温度は、例えば30~100℃程度であり、乾燥時間は、例えば30~600秒程度である。ポリビニルアルコール系樹脂フィルムを乾燥させる処理は、遠赤外線ヒーターを用いて行うこともできる。
(drying process)
After the washing step, it is preferable to perform a process of drying the PVA resin film. Drying of the film is not particularly limited, but can be performed using a drying oven 21 as in the example shown in FIG. The drying oven 21 may include, for example, a hot air dryer. The drying temperature is, for example, about 30 to 100°C, and the drying time is, for example, about 30 to 600 seconds. The process of drying the polyvinyl alcohol resin film can also be performed using a far-infrared heater.
 (PVA系樹脂フィルムに対するその他の処理工程)
 上記した処理以外の処理を付加することもできる。追加されうる処理の例は、架橋工程の後に行われる、ホウ酸を含まないヨウ化物水溶液への浸漬処理(補色処理)、ホウ酸を含まず塩化亜鉛等を含有する水溶液への浸漬処理(亜鉛処理)を含む。
(Other processing steps for PVA resin film)
Processes other than those described above can also be added. Examples of treatments that may be added include immersion treatment in an iodide aqueous solution that does not contain boric acid (complementary color treatment), and immersion treatment in an aqueous solution that does not contain boric acid and contains zinc chloride etc. (zinc processing).
 (偏光素子)
 以上のようにして得られる偏光素子23の厚みは、5~50μmが好ましく、8~28μmがより好ましく、12~22μmがさらに好ましく、12~15μmが最も好ましい。偏光素子の厚みが50μm以下であることにより、高温環境下でPVA系樹脂のポリエン化が光学特性の低下に与える影響を抑制することができ、また偏光素子の厚みが5μm以上であることにより所望の光学特性を達成する構成とすることが容易となる。
(Polarizing element)
The thickness of the polarizing element 23 obtained as described above is preferably 5 to 50 μm, more preferably 8 to 28 μm, even more preferably 12 to 22 μm, and most preferably 12 to 15 μm. When the thickness of the polarizing element is 50 μm or less, it is possible to suppress the influence of polyenization of PVA-based resin on deterioration of optical properties in a high-temperature environment, and when the thickness of the polarizing element is 5 μm or more, it is possible to suppress the effect of polyene conversion on optical properties in a high-temperature environment. This makes it easy to create a configuration that achieves the optical characteristics of.
 偏光板が位相差フィルムを有する場合、偏光素子の厚みは5~22μmであることが好まし、12~15μmであることがより好ましい。偏光素子の厚みをこのような範囲とすることで、高温環境下における偏光素子の収縮に伴い生じる面内の位相差分布が小さくなり、表示装置の表示品質が良好なものとなる。また、偏光素子の厚みを12μm以上とすることで、高湿環境下における偏光特性を維持しやすくなる。 When the polarizing plate has a retardation film, the thickness of the polarizing element is preferably 5 to 22 μm, more preferably 12 to 15 μm. By setting the thickness of the polarizing element within such a range, the in-plane retardation distribution that occurs due to contraction of the polarizing element in a high-temperature environment becomes small, and the display quality of the display device becomes good. Further, by setting the thickness of the polarizing element to 12 μm or more, it becomes easier to maintain polarization characteristics in a high humidity environment.
 偏光素子は、ホウ素の含有率が、好ましくは4.0質量%以上8.0質量%以下であり、より好ましくは4.2質量以上7.0質量%以下であり、さらに好ましくは4.4質量%以上6.0質量%以下である。偏光素子のホウ素含有率が4.0質量%以上であることにより、高温環境下、例えば温度105℃の高温環境下に晒したときであっても偏光素子の透過率が低下しにくくなる。ホウ素含有率が、4.0質量%以上である場合は、高温環境下でもポリエン化が生じにくくなり透過率の低下が抑制されることによるものと推測される。一方で、偏光素子のホウ素含有率が8.0質量%を超える場合には、偏光素子の収縮力が大きくなり、画像表示装置に組み込んだ際に貼り合わされる前面板等の他の部材との間で剥離が生じるなどの不具合が生じることがある。偏光素子におけるホウ素の含有率は、たとえば高周波誘導結合プラズマ(Inductively Coupled Plasma:ICP)発光分光
分析法により、偏光素子の質量に対するホウ素の質量分率(質量%)として算出することができる。ホウ素は、偏光素子中に、ホウ酸またはそれがポリビニルアルコール系樹脂の構成要素と架橋構造を形成した状態で存在すると考えられるが、ここでいうホウ素の含有率は、ホウ素原子(B)としての値である。
The content of boron in the polarizing element is preferably 4.0% by mass or more and 8.0% by mass or less, more preferably 4.2% by mass or more and 7.0% by mass or less, and even more preferably 4.4% by mass or less. It is not less than 6.0% by mass and not more than 6.0% by mass. When the boron content of the polarizing element is 4.0% by mass or more, the transmittance of the polarizing element is unlikely to decrease even when exposed to a high temperature environment, for example, a high temperature environment of 105°C. It is presumed that this is because when the boron content is 4.0% by mass or more, polyenization is less likely to occur even in a high-temperature environment, and a decrease in transmittance is suppressed. On the other hand, if the boron content of the polarizing element exceeds 8.0% by mass, the shrinkage force of the polarizing element becomes large, and the shrinkage force of the polarizing element becomes large, causing damage to other members such as the front plate to be bonded together when incorporated into an image display device. Problems such as peeling between the two may occur. The boron content in the polarizing element can be calculated as the mass fraction (mass %) of boron relative to the mass of the polarizing element, for example, by high frequency inductively coupled plasma (ICP) emission spectrometry. Boron is thought to exist in the polarizing element in the form of boric acid or a crosslinked structure formed with the constituent elements of the polyvinyl alcohol resin, but the boron content here refers to the boron content as boron atoms (B). It is a value.
 偏光素子は、ホウ素以外の金属のイオンを含んでいてもよい。例えば、色調調整や耐久性付与の点からコバルト、ニッケル、亜鉛、クロム、アルミニウム、銅、マンガン、鉄などの遷移金属の金属イオンの少なくとも1種を含むことが好ましい。これら金属イオンのなかでも、色調調整や耐熱性付与などの点から亜鉛イオンが好ましい。 The polarizing element may contain ions of metals other than boron. For example, it is preferable to contain at least one type of metal ion of a transition metal such as cobalt, nickel, zinc, chromium, aluminum, copper, manganese, or iron from the viewpoint of adjusting color tone and imparting durability. Among these metal ions, zinc ions are preferred from the viewpoint of color tone adjustment and imparting heat resistance.
 偏光素子の視感度補正単体透過率Tyは、視感度補正偏光度Pyとのバランスを考慮して、40~47%であることが好ましく、41~45%であることがより好ましい。視感度補正偏光度Pyは、99.9%以上であることが好ましく、99.95%以上であることがより好ましく、値が大きいほど好ましい。 The visibility correction single transmittance Ty of the polarizing element is preferably 40 to 47%, more preferably 41 to 45%, taking into consideration the balance with the visibility correction polarization degree Py. The visibility correction polarization degree Py is preferably 99.9% or more, more preferably 99.95% or more, and the larger the value is, the more preferable it is.
 得られた偏光素子は、後段の貼合工程に供される。偏光素子は、偏光素子製造工程後に、巻取ロールに順次巻き取ってロール形態としてもよいし、巻き取ることなくそのまま貼合工程に供されてもよい。 The obtained polarizing element is subjected to the subsequent lamination step. After the polarizing element manufacturing process, the polarizing element may be sequentially wound onto a take-up roll to form a roll form, or may be directly subjected to the bonding process without being wound up.
 <貼合工程>
 貼合工程は、上記のように製造される偏光素子の少なくとも片面に、水系接着剤を介して透明保護フィルム(以下、単に「保護フィルム」とも称する)を貼合する工程である。貼合工程を経て偏光板が作製される。
<Lamination process>
The bonding step is a step of bonding a transparent protective film (hereinafter also simply referred to as "protective film") to at least one side of the polarizing element manufactured as described above via a water-based adhesive. A polarizing plate is produced through a bonding process.
 偏光素子に水系接着剤を用いて保護フィルムを貼合する方法として、貼合される2枚のフィルムの一方又は両方の貼合面に接着剤を塗工し、その接着剤層を介して2枚のフィルムを重ね合わせる方法を挙げることができる。接着剤の塗工には、例えば流延法、マイヤーバーコート法、グラビアコート法、カンマコーター法、ドクターブレード法、ダイコート法、ディップコート法、噴霧法等を採用することができる。流延法とは、貼合対象のフィルムを、概ね垂直方向、概ね水平方向、又は両者の間の斜め方向に移動させながら、その表面に接着剤を流下して拡布させる方法である。接着剤層を介して重ね合わせてなるフィルム積層体は通常、ニップロール(貼合ロール)等に通して上下から押圧される。 As a method of laminating a protective film to a polarizing element using a water-based adhesive, an adhesive is applied to one or both of the laminating surfaces of two films to be laminated, and the two films are bonded together through the adhesive layer. One example is a method of overlapping sheets of film. For coating the adhesive, for example, a casting method, a Meyer bar coating method, a gravure coating method, a comma coater method, a doctor blade method, a die coating method, a dip coating method, a spraying method, etc. can be adopted. The casting method is a method in which the film to be laminated is moved approximately vertically, approximately horizontally, or in a diagonal direction between the two, and an adhesive is flowed down and spread on the surface of the film. A film laminate formed by laminating the films with an adhesive layer interposed therebetween is usually pressed from above and below through nip rolls (lamination rolls) or the like.
 偏光素子に保護フィルムを貼合するにあたり、保護フィルム又は偏光素子の貼合面には、接着性を向上させるために、プラズマ処理、コロナ処理、紫外線照射処理、フレーム(火炎)処理、ケン化処理のような易接着処理を行うことができ、中でも、プラズマ処理、コロナ処理又はケン化処理を行うことが好ましい。例えば保護フィルムが環状ポリオレフィン系樹脂からなる場合には通常、保護フィルムの貼合面にプラズマ処理やコロナ処理が施される。また、保護フィルムがセルロースエステル系樹脂からなる場合には通常、保護フィルムの貼合面にケン化処理が施される。ケン化処理としては、水酸化ナトリウムや水酸化カリウムのようなアルカリ水溶液に浸漬する方法が挙げられる。 When bonding a protective film to a polarizing element, the protective film or the bonding surface of the polarizing element is subjected to plasma treatment, corona treatment, ultraviolet irradiation treatment, flame treatment, and saponification treatment to improve adhesion. A treatment for facilitating adhesion such as the following can be performed, and among these, plasma treatment, corona treatment, or saponification treatment is preferably performed. For example, when the protective film is made of a cyclic polyolefin resin, the bonding surface of the protective film is usually subjected to plasma treatment or corona treatment. Further, when the protective film is made of cellulose ester resin, the bonding surface of the protective film is usually subjected to saponification treatment. Examples of the saponification treatment include a method of immersion in an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide.
 上述のフィルム貼合を実施した後、水系接着剤からなる接着剤層中に含まれる水を除去するためにフィルム積層体を乾燥させる乾燥工程を実施することが好ましい。乾燥は、例えばフィルム積層体を乾燥炉に導入することによって行うことができる。乾燥温度(乾燥炉の温度)は、好ましくは30~90℃である。30℃未満であると、保護フィルムが偏光素子から剥離しやすくなる傾向がある。また乾燥温度が90℃を超えると、熱によって偏光素子の偏光性能が劣化するおそれがある。乾燥時間は10~1000秒程度とすることができ、生産性の観点からは、好ましくは60~750秒、より好ましくは150~600秒である。 After carrying out the above film lamination, it is preferable to carry out a drying step of drying the film laminate in order to remove water contained in the adhesive layer made of a water-based adhesive. Drying can be performed, for example, by introducing the film laminate into a drying oven. The drying temperature (temperature of the drying oven) is preferably 30 to 90°C. When the temperature is lower than 30°C, the protective film tends to be easily peeled off from the polarizing element. Furthermore, if the drying temperature exceeds 90° C., the polarization performance of the polarizing element may deteriorate due to heat. The drying time can be about 10 to 1000 seconds, and from the viewpoint of productivity, it is preferably 60 to 750 seconds, more preferably 150 to 600 seconds.
 乾燥工程後、室温又はそれよりやや高い温度、例えば20~45℃程度の温度で12~600時間程度養生する養生工程を設けてもよい。養生温度は、乾燥温度よりも低く設定されるのが一般的である。 After the drying step, a curing step may be performed in which the material is cured for about 12 to 600 hours at room temperature or a slightly higher temperature, for example, about 20 to 45°C. The curing temperature is generally set lower than the drying temperature.
 (水系接着剤)
 偏光素子と保護フィルムとの貼合には水系接着剤が用いられる。水系接着剤は、接着剤成分を水に溶解したもの又は水に分散させたものである。本実施形態で用いられる水系接着剤は、エタノール濃度が16質量%以上50質量%以下であり、好ましくは18質量%以上48質量%以下であり、より好ましくは20質量%以上46質量%以下であり、さらに好ましくは20質量%以上35質量%以下である。
(water-based adhesive)
A water-based adhesive is used to bond the polarizing element and the protective film. Water-based adhesives are those in which adhesive components are dissolved or dispersed in water. The water-based adhesive used in this embodiment has an ethanol concentration of 16% by mass or more and 50% by mass or less, preferably 18% by mass or more and 48% by mass or less, and more preferably 20% by mass or more and 46% by mass or less. It is more preferably 20% by mass or more and 35% by mass or less.
 水系接着剤が、上記範囲内でエタノールを含有することにより、偏光板の製造工程において変色が生じるのを抑制することができる。ここでいう変色とは、偏光板をクロスニコルで配置し高輝度の光を透過させた際に観察される色ムラのことを意味し、より具体的にはクロスニコル状態になるように2枚の偏光板を重ねて、白色光を透過した際に、茶色に変色した部分が観察される色ムラのことを意味する。かかる茶色の変色は、偏光板内に点在して観察されることもあり、また特定部分のみに観察されることもある。また、かかる茶色の変色箇所は、偏光板内の複数箇所に観察されることもあり、また1箇所のみに観察されることもある。茶色の変色部分の領域の大きさは種々であるものの、例えば、直径100~4000μmの大きさであることがある。
 色ムラは、水系接着剤を用いて偏光素子と保護フィルムとを貼合した場合に観察され、偏光素子におけるホウ素の含有率が高く、かつ水系接着剤がPVA系樹脂を含む場合に顕著に観察されることから、色ムラが発生するメカニズムは次のように考察される。偏光素子中のホウ酸は、水系接着剤中の水に溶出しやすく、溶出したホウ酸は水系接着剤に含まれるPVA系樹脂と反応する。かかる反応物が水系接着剤内での不均一化を生じさせ、かかる不均一化が水系接着剤の乾燥が進んだ際にムラとなって顕在化するものと推測される。
When the water-based adhesive contains ethanol within the above range, it is possible to suppress discoloration during the manufacturing process of the polarizing plate. The discoloration here refers to the color unevenness that is observed when polarizing plates are arranged in crossed nicols and high-intensity light is transmitted through them.More specifically, two polarizing plates are arranged in crossed nicols. This refers to color unevenness in which brownish areas are observed when white light is transmitted through stacked polarizing plates. Such brown discoloration may be observed scattered within the polarizing plate, or may be observed only in a specific portion. In addition, such brown discolored spots may be observed at multiple locations within the polarizing plate, or may be observed at only one location. Although the size of the brown discolored area varies, it may be, for example, 100 to 4000 μm in diameter.
Color unevenness is observed when a polarizing element and a protective film are bonded together using a water-based adhesive, and is observed noticeably when the polarizing element has a high boron content and the water-based adhesive contains a PVA-based resin. Therefore, the mechanism by which color unevenness occurs can be considered as follows. The boric acid in the polarizing element is easily eluted into the water in the water-based adhesive, and the eluted boric acid reacts with the PVA resin contained in the water-based adhesive. It is presumed that such reactants cause non-uniformity within the water-based adhesive, and such non-uniformity becomes apparent as unevenness as the water-based adhesive continues to dry.
 水系接着剤が、上記範囲内でエタノールを含有することにより変色を抑制できるメカニズムは明らかではないものの、水系接着剤内に存在するエタノールが、偏光素子中のホウ酸が水系接着剤に溶出することの抑制、および水系接着剤内でホウ酸とPVA系樹脂との反応が進行することの抑制、の少なくとも一方に寄与しているものと推測される。 Although the mechanism by which a water-based adhesive can suppress discoloration by containing ethanol within the above range is not clear, the ethanol present in the water-based adhesive causes the boric acid in the polarizing element to elute into the water-based adhesive. It is presumed that this contributes to at least one of the following: suppression of the reaction between boric acid and PVA resin within the water-based adhesive.
 水系接着剤としては、上記範囲内でエタノールを含有するものであれば特に限定されないものの、主成分としてPVA系樹脂又はウレタン樹脂を含む水系接着剤が挙げられる。PVA系樹脂を含む水系接着剤は、これを用いた場合に本発明に係る効果が顕著であることから好適に用いられる。水系接着剤から形成される接着剤層の厚みは通常、7μm以下であり、また通常は0.01μm以上である。接着剤層の厚みは、好ましくは0.01μm以上1.0μm以下であり、より好ましくは0.02μm以上0.8μm以下である。 The water-based adhesive is not particularly limited as long as it contains ethanol within the above range, but examples include water-based adhesives containing PVA resin or urethane resin as a main component. A water-based adhesive containing a PVA-based resin is preferably used because the effects of the present invention are remarkable when it is used. The thickness of the adhesive layer formed from the water-based adhesive is usually 7 μm or less, and usually 0.01 μm or more. The thickness of the adhesive layer is preferably 0.01 μm or more and 1.0 μm or less, more preferably 0.02 μm or more and 0.8 μm or less.
 接着剤の主成分としてポリビニルアルコール系樹脂を用いる場合、当該ポリビニルアルコール系樹脂は、部分ケン化ポリビニルアルコール、完全ケン化ポリビニルアルコールのほか、カルボキシル基変性ポリビニルアルコール、アセトアセチル基変性ポリビニルアルコール、メチロール基変性ポリビニルアルコール、アミノ基変性ポリビニルアルコールのような変性されたポリビニルアルコール系樹脂であってもよい。ポリビニルアルコール系樹脂は、酢酸ビニルの単独重合体であるポリ酢酸ビニルをケン化処理して得られるビニルアルコールホモポリマーのほか、酢酸ビニルとこれに共重合可能な他の単量体との共重合体をケン化処理して得られるポリビニルアルコール系共重合体であってもよい。 When polyvinyl alcohol resin is used as the main component of the adhesive, the polyvinyl alcohol resin may include partially saponified polyvinyl alcohol, completely saponified polyvinyl alcohol, carboxyl group-modified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, and methylol group-modified polyvinyl alcohol. Modified polyvinyl alcohol resins such as modified polyvinyl alcohol and amino group-modified polyvinyl alcohol may also be used. Polyvinyl alcohol-based resins include vinyl alcohol homopolymers obtained by saponifying polyvinyl acetate, which is a homopolymer of vinyl acetate, as well as vinyl alcohol homopolymers obtained by copolymerizing vinyl acetate with other monomers that can be copolymerized with it. A polyvinyl alcohol copolymer obtained by saponifying the polymer may also be used.
 PVA系樹脂を接着剤成分とする水系接着剤は通常、PVA系樹脂の水溶液である。接着剤中のPVA系樹脂の濃度は、通常1~10質量%、好ましくは1~5質量%、より好ましくは2.85~5質量%である。 A water-based adhesive containing PVA-based resin as an adhesive component is usually an aqueous solution of PVA-based resin. The concentration of the PVA resin in the adhesive is usually 1 to 10% by weight, preferably 1 to 5% by weight, and more preferably 2.85 to 5% by weight.
 PVA系樹脂の水溶液からなる接着剤には、接着性を向上させるために、多価アルデヒド、メラミン系化合物、ジルコニア化合物、亜鉛化合物、グリオキサール、水溶性エポキシ樹脂のような硬化性成分や架橋剤を添加することが好ましい。水溶性エポキシ樹脂としては、例えばジエチレントリアミン、トリエチレンテトラミン等のポリアルキレンポリアミンと、アジピン酸等のジカルボン酸との反応で得られるポリアミドアミンに、エピクロロヒドリンを反応させて得られるポリアミドポリアミンエポキシ樹脂を好適に用いることができる。かかるポリアミドポリアミンエポキシ樹脂の市販品としては、「スミレーズレジン650」(田岡化学工業(株)製)、「スミレーズレジン675」(田岡化学工業(株)製)、「WS-525」(日本PMC(株)製)等が挙げられる。これら硬化性成分や架橋剤の添加量(硬化性成分及び架橋剤として共に添加する場合にはその合計量)は、PVA系樹脂100重量部に対して、通常1~100重量部、好ましくは1~50重量部である。上記硬化性成分や架橋剤の添加量がポリビニルアルコール系樹脂100重量部に対して1重量部未満である場合には、接着性向上の効果が小さくなる傾向にあり、また、上記硬化性成分や架橋剤の添加量がPVA系樹脂100重量部に対して100重量部を超える場合には、接着剤層が脆くなる傾向にある。 Adhesives made of aqueous solutions of PVA resins contain curable components and crosslinking agents such as polyvalent aldehydes, melamine compounds, zirconia compounds, zinc compounds, glyoxal, and water-soluble epoxy resins to improve adhesive properties. It is preferable to add. Examples of water-soluble epoxy resins include polyamide polyamine epoxy resins obtained by reacting epichlorohydrin with polyamide amines obtained by reacting polyalkylene polyamines such as diethylene triamine and triethylene tetramine with dicarboxylic acids such as adipic acid. can be suitably used. Commercially available products of such polyamide polyamine epoxy resins include "SUMIREZ RESIN 650" (manufactured by Taoka Chemical Co., Ltd.), "SUMIRAZE RESIN 675" (manufactured by Taoka Chemical Co., Ltd.), and "WS-525" (Japan (manufactured by PMC Corporation), etc. The amount of these curable components and crosslinking agents added (when added together as a curable component and crosslinking agent, the total amount) is usually 1 to 100 parts by weight, preferably 1 part by weight, per 100 parts by weight of the PVA resin. ~50 parts by weight. If the amount of the curable component or crosslinking agent added is less than 1 part by weight per 100 parts by weight of the polyvinyl alcohol resin, the effect of improving adhesion tends to be small; If the amount of the crosslinking agent added exceeds 100 parts by weight based on 100 parts by weight of the PVA resin, the adhesive layer tends to become brittle.
 PVA系樹脂がアセトアセチル基変性PVA系樹脂である場合は、架橋剤としてグリオキサール、グリオキシル酸塩、メチロールメラミンのうちのいずれかであることが好ましく、グリオキサール、グリオキシル酸塩のいずれかであることがより好ましく、グリオキサールであることが特に好ましい。 When the PVA resin is an acetoacetyl group-modified PVA resin, the crosslinking agent is preferably glyoxal, glyoxylate, or methylolmelamine, and preferably glyoxal or glyoxylate. More preferred is glyoxal, particularly preferred.
 また、接着剤の主成分としてウレタン樹脂を用いる場合、適当な接着剤組成物の例として、ポリエステル系アイオノマー型ウレタン樹脂とグリシジルオキシ基を有する化合物との混合物を挙げることができる。ポリエステル系アイオノマー型ウレタン樹脂とは、ポリエステル骨格を有するウレタン樹脂であって、その中に少量のイオン性成分(親水成分)が導入されたものである。かかるアイオノマー型ウレタン樹脂は、乳化剤を使用せずに直接、水中で乳化してエマルジョンとなるため、水系の接着剤として好適である。 Furthermore, when a urethane resin is used as the main component of the adhesive, an example of a suitable adhesive composition is a mixture of a polyester-based ionomer type urethane resin and a compound having a glycidyloxy group. A polyester-based ionomer type urethane resin is a urethane resin having a polyester skeleton into which a small amount of an ionic component (hydrophilic component) is introduced. Such an ionomer type urethane resin is suitable as a water-based adhesive because it emulsifies directly in water to form an emulsion without using an emulsifier.
 水系接着剤は、エタノールを含み、エタノール以外の有機溶剤を含有することもできる。有機溶剤は、水と混和性を有する点でアルコール類が好ましく、例えばメタノールを含むこともできる。水系接着剤は、耐熱性向上の観点から、さらに尿素、尿素誘導体、チオ尿素、及びチオ尿素誘導体等の尿素化合物;アスコルビン酸、エリソルビン酸、チオ硫酸、及び亜硫酸等の還元剤;マレイン酸及びフタル酸等のジカルボン酸;硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、及び弗化アンモニウム等のアンモニウム化合物;α-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリン等のデキストリン類;イソシアネート化合物がブロック剤によりブロックされているブロックイソシアネート化合物;N-オキシル化合物等のニトロキシラジカル;ニトロキシド基を有する化合物等を含有していてもよい。尿素系化合物の一部は水に対する溶解度が低い反面、アルコールに対する溶解度は十分なものがある。その場合は、尿素系化合物をアルコールに溶解し、尿素系化合物のアルコール溶液を調製した後、尿素系化合物のアルコール溶液をPVA水溶液に添加し、接着剤を調製することも好ましい態様の一つである。 The water-based adhesive contains ethanol and can also contain organic solvents other than ethanol. The organic solvent is preferably alcohol in terms of its miscibility with water, and may also include methanol, for example. From the viewpoint of improving heat resistance, water-based adhesives are recommended to use urea compounds such as urea, urea derivatives, thiourea, and thiourea derivatives; reducing agents such as ascorbic acid, erythorbic acid, thiosulfate, and sulfite; maleic acid, and phthalate. dicarboxylic acids such as acids; ammonium compounds such as ammonium sulfate, ammonium chloride, ammonium carbonate, and ammonium fluoride; dextrins such as α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin; may contain blocked isocyanate compounds having a nitroxide group; nitroxy radicals such as N-oxyl compounds; compounds having a nitroxide group, etc. While some urea compounds have low solubility in water, some have sufficient solubility in alcohol. In that case, one preferred embodiment is to dissolve the urea compound in alcohol to prepare an alcohol solution of the urea compound, and then add the alcohol solution of the urea compound to the PVA aqueous solution to prepare the adhesive. be.
 (尿素系化合物)
 接着剤層が尿素系化合物を含む場合、尿素系化合物は、尿素、尿素誘導体、チオ尿素及びチオ尿素誘導体から選ばれる少なくとも1種である。接着剤層に尿素系化合物を含有させる方法としては、上記の接着剤に尿素系化合物を含有させることが好ましい。なお、接着剤から乾燥工程などを経て接着剤層を形成する過程で、尿素系化合物の一部が接着剤層から偏光素子などに移動していても構わない。すなわち、偏光素子は、尿素系化合物を含んでいてもよい。尿素系化合物には水溶性のものと難水溶性のものがあるが、どちらの尿素系化合物も本実施形態の接着剤では使用することができる。難水溶性尿素系化合物を水系接着剤に用いる場合は、接着剤層を形成後、ヘイズ上昇などが起きないように分散方法を工夫することが好ましい。
(Urea-based compounds)
When the adhesive layer contains a urea compound, the urea compound is at least one selected from urea, urea derivatives, thiourea, and thiourea derivatives. As a method for incorporating a urea-based compound into the adhesive layer, it is preferable to incorporate the urea-based compound into the above-mentioned adhesive. Note that during the process of forming an adhesive layer from the adhesive through a drying process, etc., a part of the urea-based compound may migrate from the adhesive layer to the polarizing element or the like. That is, the polarizing element may contain a urea-based compound. Urea compounds include water-soluble ones and poorly water-soluble ones, and either type of urea compound can be used in the adhesive of this embodiment. When a poorly water-soluble urea compound is used in a water-based adhesive, it is preferable to devise a dispersion method after forming the adhesive layer so as to prevent an increase in haze.
 接着剤がPVA系樹脂を含有する水系接着剤の場合、尿素系化合物の添加量は、PVA樹脂100質量部に対し、0.1~400質量部であることが好ましく、1~200質量部であることがより好ましく、3~100質量部であることが更に好ましい。 When the adhesive is a water-based adhesive containing a PVA resin, the amount of the urea compound added is preferably 0.1 to 400 parts by mass, and preferably 1 to 200 parts by mass, based on 100 parts by mass of the PVA resin. It is more preferable that the amount is 3 to 100 parts by mass.
 (尿素誘導体)
 尿素誘導体は、尿素分子の4つの水素原子の少なくとも1つが、置換基に置換された化合物である。この場合、置換基に特に制限はないが、炭素原子、水素原子および酸素原子よりなる置換基であることが好ましい。
(urea derivative)
A urea derivative is a compound in which at least one of the four hydrogen atoms of a urea molecule is substituted with a substituent. In this case, the substituent is not particularly limited, but a substituent consisting of a carbon atom, a hydrogen atom, and an oxygen atom is preferable.
 尿素誘導体の具体例として、1置換尿素として、メチル尿素、エチル尿素、プロピル尿素、ブチル尿素、イソブチル尿素、N-オクタデシル尿素、2-ヒドロキシエチル尿素、ヒドロキシ尿素、アセチル尿素、アリル尿素、2-プロピニル尿素、シクロヘキシル尿素、フェニル尿素、3-ヒドロキシフェニル尿素、(4-メトキシフェニル)尿素、ベンジル尿素、ベンゾイル尿素、o-トリル尿素、p-トリル尿素が挙げられる。
 2置換尿素として、1,1-ジメチル尿素、1,3-ジメチル尿素、1,1-ジエチル尿素、1,3-ジエチル尿素、1,3-ビス(ヒドロキシメチル)尿素、1,3-tert-ブチル尿素、1,3-ジシクロヘキシル尿素、1,3-ジフェニル尿素、1,3-ビス(4-メトキシフェニル)尿素、1-アセチル-3-メチル尿素が挙げられる。
 4置換尿素として、テトラメチル尿素、1,1,3,3-テトラエチル尿素、1,1,3,3-テトラブチル尿素、1,3-ジメトキシ-1,3-ジメチル尿素が挙げられる。
Specific examples of urea derivatives include monosubstituted ureas such as methylurea, ethylurea, propylurea, butylurea, isobutylurea, N-octadecylurea, 2-hydroxyethylurea, hydroxyurea, acetylurea, allylurea, and 2-propynyl. Examples include urea, cyclohexyl urea, phenyl urea, 3-hydroxyphenylurea, (4-methoxyphenyl) urea, benzyl urea, benzoyl urea, o-tolylurea, and p-tolylurea.
As the 2-substituted urea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1-diethylurea, 1,3-diethylurea, 1,3-bis(hydroxymethyl)urea, 1,3-tert- Examples include butyl urea, 1,3-dicyclohexyl urea, 1,3-diphenylurea, 1,3-bis(4-methoxyphenyl) urea, and 1-acetyl-3-methyl urea.
Examples of the 4-substituted urea include tetramethylurea, 1,1,3,3-tetraethylurea, 1,1,3,3-tetrabutylurea, and 1,3-dimethoxy-1,3-dimethylurea.
 (チオ尿素誘導体)
 チオ尿素誘導体は、チオ尿素分子の4つの水素原子の少なくとも1つが、置換基に置換された化合物である。この場合、置換基に特に制限はないが、炭素原子、水素原子および酸素原子よりなる置換基であることが好ましい。
(thiourea derivative)
A thiourea derivative is a compound in which at least one of the four hydrogen atoms of a thiourea molecule is substituted with a substituent. In this case, the substituent is not particularly limited, but a substituent consisting of a carbon atom, a hydrogen atom, and an oxygen atom is preferable.
 チオ尿素誘導体の具体例として、1置換チオ尿素として、N-メチルチオ尿素、エチルチオ尿素、プロピルチオ尿素、イソプロピルチオ尿素、1-ブチルチオ尿素、シクロヘキシルチオ尿素、N-アセチルチオ尿素、N-アリルチオ尿素、(2-メトキシエチル)チオ尿素、N-フェニルチオ尿素、(4-メトキシフェニル)チオ尿素、N-(2-メトキシフェニル)チオ尿素、N-(1-ナフチル)チオ尿素、(2-ピリジル)チオ尿素、o-トリルチオ尿素、p-トリルチオ尿素が挙げられる。
 2置換チオ尿素として、1,1-ジメチルチオ尿素、1,3-ジメチルチオ尿素、1,1-ジエチルチオ尿素、1,3-ジエチルチオ尿素、1,3-ジブチルチオ尿素、1,3-ジイソプロピルチオ尿素、1,3-ジシクロヘキシルチオ尿素、N,N-ジフェニルチオ尿素、N,N’-ジフェニルチオ尿素、1,3-ジ(o-トリル)チオ尿素、1,3-ジ(p-トリル)チオ尿素、1-ベンジル-3-フェニルチオ尿素、1-メチル-3-フェニルチオ尿素、N-アリル-N’-(2-ヒドロキシエチル)チオ尿素が挙げられる。
 3置換チオ尿素として、トリメチルチオ尿素が挙げられ、4置換チオ尿素として、テトラメチルチオ尿素、1,1,3,3-テトラエチルチオ尿素が挙げられる。
Specific examples of thiourea derivatives include monosubstituted thiourea such as N-methylthiourea, ethylthiourea, propylthiourea, isopropylthiourea, 1-butylthiourea, cyclohexylthiourea, N-acetylthiourea, N-allylthiourea, (2 -methoxyethyl)thiourea, N-phenylthiourea, (4-methoxyphenyl)thiourea, N-(2-methoxyphenyl)thiourea, N-(1-naphthyl)thiourea, (2-pyridyl)thiourea, Examples include o-tolylthiourea and p-tolylthiourea.
As the 2-substituted thiourea, 1,1-dimethylthiourea, 1,3-dimethylthiourea, 1,1-diethylthiourea, 1,3-diethylthiourea, 1,3-dibutylthiourea, 1,3-diisopropylthiourea, 1 , 3-dicyclohexylthiourea, N,N-diphenylthiourea, N,N'-diphenylthiourea, 1,3-di(o-tolyl)thiourea, 1,3-di(p-tolyl)thiourea, Examples include 1-benzyl-3-phenylthiourea, 1-methyl-3-phenylthiourea, and N-allyl-N'-(2-hydroxyethyl)thiourea.
Examples of the 3-substituted thiourea include trimethylthiourea, and examples of the 4-substituted thiourea include tetramethylthiourea and 1,1,3,3-tetraethylthiourea.
 尿素系化合物の中では、尿素誘導体またはチオ尿素誘導体が好ましく、尿素誘導体がより好ましい。尿素誘導体の中でも、1置換尿素または2置換尿素であることが好ましく、1置換尿素であることがより好ましい。2置換尿素には1,1-置換尿素と1,3-置換尿素があるが、1,3-置換尿素がより好ましい。 Among the urea compounds, urea derivatives or thiourea derivatives are preferred, and urea derivatives are more preferred. Among the urea derivatives, monosubstituted urea or disubstituted urea is preferable, and monosubstituted urea is more preferable. Disubstituted ureas include 1,1-substituted ureas and 1,3-substituted ureas, with 1,3-substituted ureas being more preferred.
 (透明保護フィルム)
 本実施形態において用いられる保護フィルムは、偏光素子の少なくとも片面に接着剤を介して貼合される。保護フィルムは、偏光素子を保護する機能を有する。
(Transparent protective film)
The protective film used in this embodiment is attached to at least one side of the polarizing element via an adhesive. The protective film has the function of protecting the polarizing element.
 保護フィルムは、光学的機能を有していてもよく、複数の層が積層された積層構造に形成されていてもよい。保護フィルムの膜厚は光学特性の観点から薄いものが好ましいが、薄すぎると強度が低下し加工性に劣るものとなる。適切な膜厚としては、5~100μmであり、好ましくは10~80μm、より好ましくは15~70μmである。 The protective film may have an optical function and may be formed into a laminated structure in which a plurality of layers are laminated. The thickness of the protective film is preferably thin from the viewpoint of optical properties, but if it is too thin, the strength will decrease and the processability will be poor. A suitable film thickness is 5 to 100 μm, preferably 10 to 80 μm, and more preferably 15 to 70 μm.
 保護フィルムは、セルロースアシレート系フィルム、ポリカーボネート系樹脂からなるフィルム、ノルボルネンなどシクロオレフィン系樹脂からなるフィルム、(メタ)アクリル系重合体フィルム、ポリエチレンテレフタレートなどのポリエステル樹脂系フィルムなどのフィルムを用いることができる。偏光素子の両面に保護フィルムを有する構成の場合、PVA接着剤などの水系接着剤を用いて貼合する場合は透湿度の点で少なくとも片側の保護フィルムはセルロースアシレート系フィルムまたは(メタ)アクリル系重合体フィルムの何れかであることが好ましく、中でもセルロースアシレートフィルムが好ましい。 The protective film may be a cellulose acylate film, a polycarbonate resin film, a cycloolefin resin film such as norbornene, a (meth)acrylic polymer film, or a polyester resin film such as polyethylene terephthalate. I can do it. In the case of a configuration in which the polarizing element has protective films on both sides, when bonding is performed using a water-based adhesive such as PVA adhesive, the protective film on at least one side should be a cellulose acylate film or (meth)acrylic film in terms of moisture permeability. Any type of polymer film is preferred, and cellulose acylate film is particularly preferred.
 少なくとも一方の保護フィルムとしては、視野角補償などの目的で位相差機能を備えていても良く、その場合、フィルム自身が位相差機能を有していても良く、位相差層を別に有していても良く、両者の組み合わせであっても良い。
 なお、位相差機能を備えるフィルムは接着剤を介して、直接偏光素子に貼合される構成について説明したが、偏光素子に貼合された別の保護フィルムを介して粘着剤または接着剤を介して貼合された構成であっても構わない。
At least one of the protective films may have a retardation function for the purpose of viewing angle compensation, etc. In that case, the film itself may have a retardation function, or it may have a separate retardation layer. or a combination of both.
In addition, although we have described a configuration in which the film with a retardation function is bonded directly to the polarizing element via an adhesive, it may also be attached via an adhesive or an adhesive via another protective film bonded to the polarizing element. It is also possible to have a structure in which they are bonded together.
 [画像表示装置の構成]
 本実施形態の偏光板は、液晶表示装置や有機EL表示装置等の各種画像表示装置に用いられる。画像表示装置について、偏光板の両面が空気層以外の層、具体的には粘着剤層等の固体層が接するように構成されている層間充填構成である場合には、高温環境下で透過率が低下しやすい。本実施形態の偏光板を用いた画像表示装置においては、層間充填構成であっても、高温環境下での偏光板の透過率の低下を抑制することができる。画像表示装置としては、画像表示セルと、画像表示セルの視認側表面に積層された第1粘着剤層と、第1粘着剤層の視認側表面に積層された偏光板とを有する構成が例示される。かかる画像表示装置は、偏光板の視認側表面に積層された第2粘着剤層と、第2粘着剤層の表面に積層された透明部材とをさらに有してもよい。特に、本実施形態の偏光板は、画像表示装置の視認側に透明部材が配置され、偏光板と画像表示セルとが第1粘着剤層により貼り合わされ、偏光板と透明部材とが第2粘着剤層により貼り合わせられた層間充填構成を有する画像表示装置に好適に用いられる。本明細書においては、第1粘着剤層及び第2粘着剤層のいずれか一方又は両者を、単に「粘着剤層」と称する場合がある。なお、偏光板と画像表示セルとの貼り合わせに用いられる部材、及び偏光板と透明部材との貼り合わせに用いられる部材としては、粘着剤層に限定されることはなく接着剤層であってもよい。
[Configuration of image display device]
The polarizing plate of this embodiment is used in various image display devices such as liquid crystal display devices and organic EL display devices. For image display devices, if the polarizing plate has an interlayer filling configuration in which both sides of the polarizing plate are in contact with a layer other than an air layer, specifically a solid layer such as an adhesive layer, the transmittance will decrease in a high-temperature environment. tends to decrease. In the image display device using the polarizing plate of this embodiment, even with the interlayer filling configuration, it is possible to suppress a decrease in the transmittance of the polarizing plate in a high-temperature environment. An example of an image display device is a configuration including an image display cell, a first adhesive layer laminated on the viewing side surface of the image display cell, and a polarizing plate laminated on the viewing side surface of the first adhesive layer. be done. Such an image display device may further include a second adhesive layer laminated on the viewing side surface of the polarizing plate, and a transparent member laminated on the surface of the second adhesive layer. In particular, in the polarizing plate of this embodiment, a transparent member is arranged on the viewing side of the image display device, the polarizing plate and the image display cell are bonded together by a first adhesive layer, and the polarizing plate and the transparent member are bonded together by a second adhesive layer. It is suitably used in an image display device having an interlayer filling structure in which the adhesive layers are bonded together. In this specification, either one or both of the first adhesive layer and the second adhesive layer may be simply referred to as "adhesive layer." Note that the members used for bonding the polarizing plate and the image display cell and the members used for bonding the polarizing plate and the transparent member are not limited to adhesive layers, but may be adhesive layers. Good too.
 <画像表示セル>
 画像表示セルとしては、液晶セルや有機ELセルが挙げられる。液晶セルとしては、外光を利用する反射型液晶セル、バックライト等の光源からの光を利用する透過型液晶セル、外部からの光と光源からの光の両者を利用する半透過半反射型液晶セルのいずれを用いてもよい。液晶セルが光源からの光を利用するものである場合、画像表示装置(液晶表示装置)は、画像表示セル(液晶セル)の視認側と反対側にも偏光板が配置され、さらに光源が配置される。光源側の偏光板と液晶セルとは、適宜の粘着剤層を介して貼り合せられていることが好ましい。液晶セルの駆動方式としては、例えばVAモード、IPSモード、TNモード、STNモードやベンド配向(π型)等の任意なタイプのものを用いうる。
<Image display cell>
Examples of the image display cell include a liquid crystal cell and an organic EL cell. Liquid crystal cells include reflective liquid crystal cells that use external light, transmissive liquid crystal cells that use light from light sources such as backlights, and transflective liquid crystal cells that use both external light and light from the light source. Any liquid crystal cell may be used. If the liquid crystal cell uses light from a light source, the image display device (liquid crystal display device) has a polarizing plate placed on the side opposite to the viewing side of the image display cell (liquid crystal cell), and a light source is also placed. be done. It is preferable that the polarizing plate on the light source side and the liquid crystal cell are bonded together via a suitable adhesive layer. As a driving method for the liquid crystal cell, any type of driving method can be used, such as VA mode, IPS mode, TN mode, STN mode, or bend alignment (π type).
 有機ELセルとしては、透明基板上に透明電極と有機発光層と金属電極とを順に積層して発光体(有機エレクトロルミネセンス発光体)を形成したもの等が好適に用いられる。有機発光層は、種々の有機薄膜の積層体であり、例えば、トリフェニルアミン誘導体等からなる正孔注入層と、アントラセン等の蛍光性の有機固体からなる発光層との積層体や、これらの発光層とペリレン誘導体等からなる電子注入層の積層体、あるいは正孔注入層、発光層、および電子注入層の積層体等、種々の層構成が採用され得る。 As the organic EL cell, one in which a transparent electrode, an organic light-emitting layer, and a metal electrode are sequentially laminated on a transparent substrate to form a light-emitting body (organic electroluminescence light-emitting body) is preferably used. The organic light emitting layer is a laminate of various organic thin films, such as a laminate of a hole injection layer made of a triphenylamine derivative or the like and a light emitting layer made of a fluorescent organic solid such as anthracene, or a laminate of these. Various layer configurations can be adopted, such as a laminate of a light emitting layer and an electron injection layer made of a perylene derivative or the like, or a laminate of a hole injection layer, a light emitting layer, and an electron injection layer.
 <画像表示セルと偏光板の貼り合せ>
 画像表示セルと偏光板との貼り合せには、粘着剤層(粘着シート)が好適に用いられる。中でも、偏光板の一方の面に粘着剤層が付設された粘着剤層付き偏光板を画像表示セルと貼り合わせる方法が、作業性等の観点から好ましい。偏光板への粘着剤層の付設は、適宜な方式で行いうる。その例としては、例えば、トルエンや酢酸エチル等の適宜な溶剤の単独物または混合物からなる溶剤にベースポリマーまたはその組成物を溶解あるいは分散させた10~40質量%程度の粘着剤溶液を調製し、それを流延方式や塗工方式等の適宜な展開方式で偏光板上に直接付設する方式、あるいはセパレータ上に粘着剤層を形成してそれを偏光板に移着する方式などが挙げられる。
<Attachment of image display cell and polarizing plate>
An adhesive layer (adhesive sheet) is suitably used for bonding the image display cell and the polarizing plate. Among these, a method in which a polarizing plate with an adhesive layer, in which an adhesive layer is attached to one side of the polarizing plate, is bonded to an image display cell is preferable from the viewpoint of workability and the like. The adhesive layer can be attached to the polarizing plate by any suitable method. For example, an adhesive solution of about 10 to 40% by mass is prepared by dissolving or dispersing the base polymer or its composition in a solvent consisting of an appropriate solvent such as toluene or ethyl acetate alone or in a mixture. , a method in which it is attached directly onto a polarizing plate using an appropriate development method such as a casting method or a coating method, or a method in which an adhesive layer is formed on a separator and then transferred to the polarizing plate. .
 <粘着剤層>
 粘着剤層は、1層からなるものであってもよく、2層以上からなるものであってもよいが、好ましくは1層からなるものである。粘着剤層は、(メタ)アクリル系樹脂、ゴム系樹脂、ウレタン系樹脂、エステル系樹脂、シリコーン系樹脂、ポリビニルエーテル系樹脂を主成分とする粘着剤組成物から構成することができる。中でも、透明性、耐候性、耐熱性等に優れる(メタ)アクリル系樹脂をベースポリマーとする粘着剤組成物が好適である。粘着剤組成物は、活性エネルギー線硬化型又は熱硬化型であってもよい。
<Adhesive layer>
The adhesive layer may be composed of one layer or two or more layers, but is preferably composed of one layer. The adhesive layer can be composed of an adhesive composition containing a (meth)acrylic resin, a rubber resin, a urethane resin, an ester resin, a silicone resin, or a polyvinyl ether resin as a main component. Among these, a pressure-sensitive adhesive composition whose base polymer is a (meth)acrylic resin having excellent transparency, weather resistance, heat resistance, etc. is suitable. The adhesive composition may be of an active energy ray-curable type or a thermosetting type.
 粘着剤組成物に用いられる(メタ)アクリル系樹脂(ベースポリマー)としては、(メタ)アクリル酸ブチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸エステルの1種又は2種以上をモノマーとする重合体又は共重合体が好適に用いられる。ベースポリマーには、極性モノマーを共重合させることが好ましい。極性モノマーとしては、(メタ)アクリル酸化合物、(メタ)アクリル酸2-ヒドロキシプロピル化合物、(メタ)アクリル酸ヒドロキシエチル化合物、(メタ)アクリルアミド化合物、N,N-ジメチルアミノエチル(メタ)アクリレート化合物、グリシジル(メタ)アクリレート化合物等の、カルボキシル基、水酸基、アミド基、アミノ基、エポキシ基等を有するモノマーを挙げることができる。 Examples of the (meth)acrylic resin (base polymer) used in the adhesive composition include butyl (meth)acrylate, ethyl (meth)acrylate, isooctyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, etc. Polymers or copolymers containing one or more types of (meth)acrylic esters as monomers are preferably used. It is preferable to copolymerize a polar monomer with the base polymer. As polar monomers, (meth)acrylic acid compounds, 2-hydroxypropyl (meth)acrylate compounds, hydroxyethyl (meth)acrylate compounds, (meth)acrylamide compounds, N,N-dimethylaminoethyl (meth)acrylate compounds Examples include monomers having carboxyl groups, hydroxyl groups, amide groups, amino groups, epoxy groups, etc., such as glycidyl (meth)acrylate compounds.
 粘着剤組成物は、上記ベースポリマーのみを含むものであってもよいが、通常は架橋剤をさらに含有する。架橋剤としては、2価以上の金属イオンであって、カルボキシル基との間でカルボン酸金属塩を形成する金属イオン、カルボキシル基との間でアミド結合を形成するポリアミン化合物、カルボキシル基との間でエステル結合を形成するポリエポキシ化合物又はポリオール、カルボキシル基との間でアミド結合を形成するポリイソシアネート化合物が例示される。中でも、ポリイソシアネート化合物が好ましい。 The adhesive composition may contain only the above base polymer, but usually further contains a crosslinking agent. Examples of crosslinking agents include metal ions with a valence of two or more that form carboxylic acid metal salts with carboxyl groups, polyamine compounds that form amide bonds with carboxyl groups, and metal ions that form carboxylic acid metal salts with carboxyl groups. Examples include polyepoxy compounds or polyols that form ester bonds, and polyisocyanate compounds that form amide bonds with carboxyl groups. Among these, polyisocyanate compounds are preferred.
 活性エネルギー線硬化型粘着剤組成物は、紫外線や電子線のような活性エネルギー線の照射を受けて硬化する性質を有しており、活性エネルギー線照射前においても粘着性を有してフィルム等の被着体に密着させることができ、活性エネルギー線の照射によって硬化して密着力の調整ができる性質を有する。活性エネルギー線硬化型粘着剤組成物は、紫外線硬化型であることが好ましい。活性エネルギー線硬化型粘着剤組成物は、ベースポリマー、架橋剤に加えて、活性エネルギー線重合性化合物をさらに含有する。必要に応じて、光重合開始剤、光増感剤等を含有させてもよい。 Active energy ray-curable adhesive compositions have the property of being cured by irradiation with active energy rays such as ultraviolet rays or electron beams, and have adhesive properties even before irradiation with active energy rays to form films, etc. It has the property that it can be brought into close contact with an adherend, and its adhesion can be adjusted by curing by irradiation with active energy rays. The active energy ray-curable adhesive composition is preferably an ultraviolet ray-curable adhesive composition. The active energy ray curable adhesive composition further contains an active energy ray polymerizable compound in addition to the base polymer and the crosslinking agent. If necessary, a photopolymerization initiator, a photosensitizer, etc. may be included.
 粘着剤組成物は、光散乱性を付与するための微粒子、ビーズ(樹脂ビーズ、ガラスビーズ等)、ガラス繊維、ベースポリマー以外の樹脂、粘着性付与剤、充填剤(金属粉やその他の無機粉末等)、酸化防止剤、紫外線吸収剤、染料、顔料、着色剤、消泡剤、腐食防止剤、光重合開始剤等の添加剤を含むことができる。 The adhesive composition contains fine particles, beads (resin beads, glass beads, etc.), glass fibers, resins other than the base polymer, tackifiers, fillers (metal powders and other inorganic powders) to impart light scattering properties. etc.), antioxidants, ultraviolet absorbers, dyes, pigments, colorants, antifoaming agents, corrosion inhibitors, photopolymerization initiators, and other additives.
 粘着剤層は、上記粘着剤組成物の有機溶剤希釈液を基材フィルム、画像表示セル、又は偏光板の表面上に塗布し、乾燥させることにより形成することができる。基材フィルムは、熱可塑性樹脂フィルムであることが一般的であり、その典型的な例として、離型処理が施されたセパレートフィルムを挙げることができる。セパレートフィルムは、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、ポリアレート等の樹脂からなるフィルムの粘着剤層が形成される面に、シリコーン処理等の離型処理が施されたものであることができる。 The adhesive layer can be formed by applying a diluted solution of the adhesive composition in an organic solvent onto the surface of a base film, image display cell, or polarizing plate and drying it. The base film is generally a thermoplastic resin film, and a typical example thereof is a separate film that has been subjected to a mold release treatment. The separate film can be, for example, a film made of a resin such as polyethylene terephthalate, polybutylene terephthalate, polycarbonate, polyalate, etc., and the surface on which the adhesive layer is formed has been subjected to a release treatment such as silicone treatment. .
 例えば、セパレートフィルムの離型処理面に粘着剤組成物を直接塗布して粘着剤層を形成して粘着剤層とし、このセパレートフィルム付粘着剤層を偏光体の表面に積層してもよい。偏光板の表面に粘着剤組成物を直接塗布して粘着剤層を形成し、粘着剤層の外面にセパレートフィルムを積層してもよい。
 粘着剤層を偏光板の表面に設ける際には、偏光板の貼合面及び/又は粘着剤層の貼合面に表面活性化処理、例えばプラズマ処理、コロナ処理等を施すことが好ましく、コロナ処理を施すことがより好ましい。
 また、第2セパレートフィルム上に粘着剤組成物を塗布して粘着剤層を形成し、形成された粘着剤層上にセパレートフィルムを積層した粘着剤シートを準備し、この粘着剤シートから第2セパレートフィルムを剥離した後のセパレートフィルム付粘着剤層を偏光板に積層してもよい。第2セパレートフィルムは、セパレートフィルムよりも粘着剤層との密着力が弱く、剥離し易いものが用いられる。
For example, an adhesive layer may be formed by directly applying an adhesive composition to the release-treated surface of a separate film, and this adhesive layer with a separate film may be laminated on the surface of a polarizer. The adhesive composition may be applied directly to the surface of the polarizing plate to form an adhesive layer, and a separate film may be laminated on the outer surface of the adhesive layer.
When providing an adhesive layer on the surface of a polarizing plate, it is preferable to subject the bonding surface of the polarizing plate and/or the bonding surface of the adhesive layer to surface activation treatment, such as plasma treatment or corona treatment. It is more preferable to perform a treatment.
Further, a pressure-sensitive adhesive sheet is prepared by coating a pressure-sensitive adhesive composition on a second separate film to form a pressure-sensitive adhesive layer, and a separate film is laminated on the formed pressure-sensitive adhesive layer. The adhesive layer with a separate film after peeling off the separate film may be laminated on a polarizing plate. The second separate film used has weaker adhesion to the adhesive layer than the separate film and is easily peelable.
 粘着剤層の厚みは、特に限定されないが、例えば1μm以上100μm以下であることが好ましく、3μm以上50μm以下であることがより好ましく、20μm以上であってもよい。 The thickness of the adhesive layer is not particularly limited, but is preferably, for example, 1 μm or more and 100 μm or less, more preferably 3 μm or more and 50 μm or less, and may be 20 μm or more.
 <透明部材>
 画像表示装置の視認側に配置される透明部材としては、透明板(ウインドウ層)やタッチパネル等が挙げられる。透明板としては、適宜の機械強度および厚みを有する透明板が用いられる。このような透明板としては、例えばポリイミド系樹脂、アクリル系樹脂やポリカーボネート系樹脂のような透明樹脂板、あるいはガラス板等が挙げられる。透明板の視認側には反射防止層などの機能層が積層されていても構わない。また、透明板が透明樹脂板の場合は、物理強度を上げるためにハードコート層や、透湿度を下げるために低透湿層が積層されていても構わない。
 タッチパネルとしては、抵抗膜方式、静電容量方式、光学方式、超音波方式等の各種タッチパネルや、タッチセンサー機能を備えるガラス板や透明樹脂板等が用いられる。透明部材として静電容量方式のタッチパネルが用いられる場合、タッチパネルよりもさらに視認側に、ガラスや透明樹脂板からなる透明板が設けられることが好ましい。
<Transparent member>
Examples of the transparent member disposed on the viewing side of the image display device include a transparent plate (window layer), a touch panel, and the like. As the transparent plate, a transparent plate having appropriate mechanical strength and thickness is used. Examples of such a transparent plate include a transparent resin plate made of polyimide resin, acrylic resin, or polycarbonate resin, or a glass plate. A functional layer such as an antireflection layer may be laminated on the visible side of the transparent plate. Furthermore, when the transparent plate is a transparent resin plate, a hard coat layer may be laminated to increase physical strength, and a low moisture permeability layer may be laminated to reduce moisture permeability.
As the touch panel, various touch panels such as a resistive film type, a capacitive type, an optical type, an ultrasonic type, etc., a glass plate, a transparent resin plate, etc. having a touch sensor function are used. When a capacitive touch panel is used as the transparent member, it is preferable that a transparent plate made of glass or a transparent resin plate is provided further on the viewing side than the touch panel.
 <偏光板と透明部材との貼り合せ>
 偏光板と透明部材との貼り合せには、粘着剤または活性エネルギー線硬化型接着剤が好適に用いられる。粘着剤が用いられる場合、粘着剤の付設は適宜な方式で行い得る。具体的な付設方法としては、例えば、前述の画像表示セルと偏光板の貼り合せで用いた粘着剤層の付設方法が挙げられる。
<Lamination of polarizing plate and transparent member>
An adhesive or an active energy ray-curable adhesive is suitably used for bonding the polarizing plate and the transparent member. When an adhesive is used, the adhesive can be applied in any suitable manner. A specific attachment method includes, for example, the method of attaching the adhesive layer used in bonding the image display cell and the polarizing plate described above.
 活性エネルギー線硬化型接着剤を用いる場合、硬化前の接着剤溶液の広がりを防止する目的で、画像表示パネル上の周縁部を囲むようにダム材が設けられ、ダム材上に透明部材を載置して、接着剤溶液を注入する方法が好適に用いられる。接着剤溶液の注入後は、必要に応じて位置合わせおよび脱泡が行われた後、活性エネルギー線が照射されて硬化が行われる。 When using an active energy ray-curable adhesive, a dam material is provided to surround the periphery of the image display panel in order to prevent the adhesive solution from spreading before curing, and a transparent member is placed on the dam material. A method is preferably used in which the adhesive solution is injected after the adhesive is placed. After the adhesive solution is injected, alignment and defoaming are performed as necessary, and then active energy rays are irradiated to cure the adhesive solution.
 以下、実施例に基づいて本発明を具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明は以下の実施例に限定され制限されるものではない。 Hereinafter, the present invention will be specifically explained based on Examples. The materials, reagents, amounts of substances, their proportions, operations, etc. shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the present invention is not limited to or limited to the following examples.
 (1)偏光素子の厚さの測定:
 株式会社ニコン製のデジタルマイクロメーター“MH-15M”を用いて測定した。
(1) Measurement of the thickness of the polarizing element:
Measurement was performed using a digital micrometer "MH-15M" manufactured by Nikon Corporation.
 (2)偏光素子のホウ素含有率の測定:
 偏光素子0.2gを1.9質量%のマンニトール水溶液200gに溶解させた。次いで、得られた水溶液を1モル/Lの水酸化ナトリウム水溶液で滴定し、中和に要した水酸化ナトリウム水溶液の量と検量線との比較により、偏光素子のホウ素含有率を算出した。
(2) Measurement of boron content of polarizing element:
0.2 g of a polarizing element was dissolved in 200 g of a 1.9% by mass mannitol aqueous solution. Next, the obtained aqueous solution was titrated with a 1 mol/L aqueous sodium hydroxide solution, and the boron content of the polarizing element was calculated by comparing the amount of the aqueous sodium hydroxide solution required for neutralization with a calibration curve.
 (3)偏光素子の亜鉛イオン含有率の測定:
 精秤した偏光素子に硝酸を加え、マイルストーンゼネラル株式会社製のマイクロ波試料前処理装置(ETHOS D)で酸分解して得られた溶液を測定液とした。亜鉛イオン含有率は、アジレントテクノロジー製ICP発光分光分析装置(5110 ICP-OES
)で測定液の亜鉛濃度を定量し、偏光素子質量に対する亜鉛質量で算出した。
(3) Measurement of zinc ion content of polarizing element:
Nitric acid was added to a precisely weighed polarizing element, and the solution was acid-decomposed using a microwave sample pretreatment device (ETHOS D) manufactured by Milestone General Co., Ltd., and the resulting solution was used as a measurement solution. The zinc ion content was measured using an Agilent Technologies ICP emission spectrometer (5110 ICP-OES).
) was used to quantify the zinc concentration of the measurement solution, and calculated as the mass of zinc relative to the mass of the polarizing element.
 (4)PVA系樹脂フィルムのホウ素吸着率の測定:
 100mm四方に裁断したPVA系樹脂フィルムを、30℃の純水に60秒間浸漬し、その後、ホウ酸5部を含む60℃の水溶液に120秒浸漬させた。ホウ酸水溶液から取り出したPVA系樹脂フィルムを80℃オーブンで11分間乾燥した。23℃55%RHの環境で24時間調湿し、ホウ素含有PVAフィルムを得た。こうして得られたホウ素含有PVA系樹脂フィルム0.2gを、1.9質量%のマンニトール水溶液200gに溶解させた。次いで、得られた水溶液を1モル/Lの水酸化ナトリウム水溶液で滴定し、中和に要した水酸化ナトリウム水溶液の量と検量線との比較により、PVA系樹脂フィルムのホウ素含有率を算出した。こうして得られたPVA系樹脂フィルムのホウ素含有率を、PVA系樹脂フィルムのホウ素吸着率として用いた。
(4) Measurement of boron adsorption rate of PVA resin film:
A PVA resin film cut into 100 mm squares was immersed in pure water at 30°C for 60 seconds, and then immersed in an aqueous solution at 60°C containing 5 parts of boric acid for 120 seconds. The PVA-based resin film taken out from the boric acid aqueous solution was dried in an 80° C. oven for 11 minutes. The humidity was controlled in an environment of 23° C. and 55% RH for 24 hours to obtain a boron-containing PVA film. 0.2 g of the boron-containing PVA resin film thus obtained was dissolved in 200 g of a 1.9% by mass mannitol aqueous solution. Next, the obtained aqueous solution was titrated with a 1 mol/L sodium hydroxide aqueous solution, and the boron content of the PVA resin film was calculated by comparing the amount of sodium hydroxide aqueous solution required for neutralization with a calibration curve. . The boron content of the PVA resin film thus obtained was used as the boron adsorption rate of the PVA resin film.
 <偏光素子の作製>
 (偏光素子1)
 ホウ素吸着率が5.71質量%である厚さ30μmのPVA系樹脂フィルムを、21.5℃の純水に79秒浸漬した(膨潤処理)。ヨウ化カリウム/ホウ酸/水の質量比が2/2/100であり、ヨウ素を1.0mM含む、23℃の水溶液に、PVA系樹脂フィルムを151秒浸漬した(染色工程)。その後、ヨウ化カリウム/ホウ酸/水の質量比が2.5/4/100のである、68.5℃の水溶液に、PVA系樹脂フィルムを76秒浸漬した(第1架橋工程)。引き続き、ヨウ化カリウム/ホウ酸/塩化亜鉛/水の質量比が3/5.5/0.6/100である、45℃の水溶液に、PVA系樹脂フィルムを11秒浸漬した(第2架橋工程、金属イオン処理工程)。その後、洗浄浴に浸漬させて洗浄し(洗浄工程)、38℃で乾燥して(乾燥工程)、ポリビニルアルコールにヨウ素が吸着配向された厚み12μmの偏光素子を得た。延伸は、主に、染色工程および第1架橋工程の工程で行い、トータル延伸倍率は5.85倍であった。得られた偏光素子の亜鉛イオン含有率は0.17質量%、ホウ素含有率は4.62質量%であった。
<Preparation of polarizing element>
(Polarizing element 1)
A 30 μm thick PVA resin film with a boron adsorption rate of 5.71% by mass was immersed in pure water at 21.5° C. for 79 seconds (swelling treatment). A PVA resin film was immersed for 151 seconds in a 23° C. aqueous solution having a mass ratio of potassium iodide/boric acid/water of 2/2/100 and containing 1.0 mM of iodine (staining step). Thereafter, the PVA resin film was immersed for 76 seconds in a 68.5° C. aqueous solution having a mass ratio of potassium iodide/boric acid/water of 2.5/4/100 (first crosslinking step). Subsequently, the PVA resin film was immersed for 11 seconds in an aqueous solution at 45°C with a mass ratio of potassium iodide/boric acid/zinc chloride/water of 3/5.5/0.6/100 (second crosslinking). process, metal ion treatment process). Thereafter, it was immersed in a cleaning bath for cleaning (cleaning step) and dried at 38° C. (drying step) to obtain a polarizing element with a thickness of 12 μm in which iodine was adsorbed and oriented in polyvinyl alcohol. Stretching was mainly performed in the dyeing process and the first crosslinking process, and the total stretching ratio was 5.85 times. The zinc ion content of the obtained polarizing element was 0.17% by mass, and the boron content was 4.62% by mass.
 <接着剤の調製>
 (接着剤用PVA溶液Aの調製)
 アセトアセチル基を含有する変性PVA系樹脂(三菱ケミカル株式会社製「ゴーセネックスZ-410」)50gを950gの純水に溶解した。この溶液を90℃で2時間加熱後に常温まで冷却し、接着剤用のPVA溶液Aを得た。
<Preparation of adhesive>
(Preparation of PVA solution A for adhesive)
50 g of a modified PVA resin containing an acetoacetyl group ("Gosenex Z-410" manufactured by Mitsubishi Chemical Corporation) was dissolved in 950 g of pure water. This solution was heated at 90° C. for 2 hours and then cooled to room temperature to obtain PVA solution A for adhesive.
 (接着剤1~5の調製)
 次いで、夫々の成分が表1の濃度(質量%)になるように前記PVA溶液A、マレイン酸、グリオキサール、エタノール、純水を配合しPVA系接着剤(接着剤1~5)を調製した。
(Preparation of adhesives 1 to 5)
Next, the PVA solution A, maleic acid, glyoxal, ethanol, and pure water were blended so that each component had the concentration (mass%) shown in Table 1 to prepare PVA adhesives (Adhesives 1 to 5).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <透明保護フィルムの準備>
 (セルロースアシレートフィルムの鹸化)
 市販のセルロースアシレートフィルムTJ40UL(富士フイルム株式会社製:膜厚40μm)を、55℃に保った1.5mol/LのNaOH水溶液(鹸化液)に2分間浸漬し、フィルムを水洗した。その後、フィルムを25℃の0.05mol/Lの硫酸水溶液に30秒浸漬し、更に水洗浴を30秒流水下に通して、フィルムを中性の状態にした。そして、エアナイフによる水切りを3回繰り返した。水を落とした後、フィルムを70℃の乾燥ゾーンに15秒間滞留させて乾燥し、鹸化処理したフィルム(透明保護フィルム1)を作製した。
<Preparation of transparent protective film>
(Saponification of cellulose acylate film)
A commercially available cellulose acylate film TJ40UL (manufactured by Fuji Film Corporation, film thickness: 40 μm) was immersed in a 1.5 mol/L NaOH aqueous solution (saponification solution) kept at 55° C. for 2 minutes, and the film was washed with water. Thereafter, the film was immersed in a 0.05 mol/L sulfuric acid aqueous solution at 25° C. for 30 seconds, and then passed through a washing bath under running water for 30 seconds to make the film neutral. Then, draining with an air knife was repeated three times. After removing the water, the film was dried by staying in a drying zone at 70° C. for 15 seconds to produce a saponified film (transparent protective film 1).
 <偏光板の作製>
 (偏光板1の作製)
 偏光素子1の両面に、上記で準備した透明保護フィルム1を、接着剤1を介し、ロール貼合機を用いて貼合した。接着剤1の塗布厚みは、乾燥後の接着剤層の厚みが両面共100nmになるように調整した。その後、80℃で3分間乾燥し、両面透明保護フィルム付きの偏光板1を得た。
<Preparation of polarizing plate>
(Preparation of polarizing plate 1)
The transparent protective film 1 prepared above was bonded to both sides of the polarizing element 1 via the adhesive 1 using a roll bonding machine. The coating thickness of Adhesive 1 was adjusted so that the thickness of the adhesive layer after drying was 100 nm on both sides. Thereafter, it was dried at 80° C. for 3 minutes to obtain a polarizing plate 1 with a double-sided transparent protective film.
 (偏光板2~5の作製)
 接着剤1をそれぞれ接着剤2~5に代えたこと以外は偏光板1の作製と同様にして、偏光板2~5を作製した。
(Preparation of polarizing plates 2 to 5)
Polarizing plates 2 to 5 were produced in the same manner as polarizing plate 1 except that adhesive 1 was replaced with adhesives 2 to 5, respectively.
 <変色の評価>
 対象の偏光板の裏面に対して、クロスニコル状態になるように検査用の直線偏光板を配置し、検査用の直線偏光板表面側から、10~50mm程度離した距離で、光束1000ルーメンの高輝度LEDペンライトを照射して暗室内に置いて目視で観察した。茶色い変色が観察される場合には変色「有」と判定し、茶色い変色が観察されない場合には変色「無」と判定した。表2に判定結果を示す。
 評価結果を表2に示す。
<Evaluation of discoloration>
Place a linear polarizing plate for inspection so that it is in a crossed nicol state with respect to the back side of the polarizing plate to be inspected, and place it at a distance of about 10 to 50 mm from the front side of the linear polarizing plate for inspection, with a luminous flux of 1000 lumen. The specimen was placed in a dark room under illumination with a high-intensity LED penlight and visually observed. When brown discoloration was observed, it was determined that discoloration was "present," and when brown discoloration was not observed, it was determined that discoloration was "absent." Table 2 shows the determination results.
The evaluation results are shown in Table 2.
 <高温耐久試験(105℃)>
 (評価用サンプルの作製)
 上記で作製した偏光板1~5の片面に、アクリル系粘着剤(リンテック株式会社製)を塗布することによって厚み25μmの粘着剤層を形成した。片面に粘着剤層を形成した偏光板を、40mm×40mmの大きさに裁断して、粘着剤層の表面に無アルカリガラス〔商品名“EAGLE XG”、コーニング社製〕に貼合することによって、評価サンプル
を作製した。
<High temperature durability test (105℃)>
(Preparation of evaluation sample)
An acrylic adhesive (manufactured by Lintec Corporation) was applied to one side of each of the polarizing plates 1 to 5 produced above to form an adhesive layer with a thickness of 25 μm. By cutting a polarizing plate with an adhesive layer formed on one side to a size of 40 mm x 40 mm and pasting it on the surface of the adhesive layer to alkali-free glass [trade name "EAGLE XG", manufactured by Corning Incorporated]. , an evaluation sample was prepared.
 (高温耐久試験)
 上記で得た評価サンプルに、温度50℃、圧力5kgf/cm(490.3kPa)で1時間オートクレーブ処理を施した後、温度23℃RH55%の環境下で24時間放置した。偏光板の偏光度、単体透過率、色相を測定し、これを初期値とした。次いで、評価用サンプルを温度105℃の高温環境下に500時間保管した。保管後の偏光板の偏光度、単体透過率、色相を測定した。
(High temperature durability test)
The evaluation sample obtained above was subjected to an autoclave treatment at a temperature of 50° C. and a pressure of 5 kgf/cm 2 (490.3 kPa) for 1 hour, and then left for 24 hours in an environment of a temperature of 23° C. and a RH of 55%. The degree of polarization, single transmittance, and hue of the polarizing plate were measured, and these were used as initial values. Next, the evaluation sample was stored in a high-temperature environment at a temperature of 105° C. for 500 hours. The degree of polarization, single transmittance, and hue of the polarizing plate after storage were measured.
 偏光板の視感度補正単体透過率、視感度補正偏光度、及び色相の初期値及び高温耐久試験後の測定値から、それぞれの変化量を算出した。視感度補正単体透過率の変化量ΔTy及び視感度補正偏光度の変化量ΔPyは、高温耐久試験後の測定値から初期値を差し引いた値として算出した。また、色相の変化量Δabは、下記式で求めた。
 Δab={(a-a+(b-b1/2
 ここで、a、bは、色相の初期値であり、a、bは、高温耐久試験後の色相の測定値である。
The amount of change was calculated from the initial values of the visibility-corrected single transmittance, visibility-corrected polarization degree, and hue of the polarizing plate and the measured values after the high-temperature durability test. The amount of change ΔTy in the visibility correction single transmittance and the amount of change ΔPy in the visibility correction polarization degree were calculated as values obtained by subtracting the initial value from the measured value after the high temperature durability test. Further, the amount of change in hue Δab was determined using the following formula.
Δab={(a 1 - a 2 ) 2 + (b 1 - b 2 ) 2 } 1/2
Here, a 1 and b 1 are the initial values of the hue, and a 2 and b 2 are the measured values of the hue after the high temperature durability test.
 表2に、ΔTy、ΔPy、およびΔabの値を示す。 Table 2 shows the values of ΔTy, ΔPy, and Δab.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 10 ポリビニルアルコール系樹脂からなる原反フィルム、11 原反ロール、13 膨潤浴、15 染色浴、17a 第1架橋浴、17b 第2架橋浴、19 洗浄浴、21
 乾燥炉、23 偏光素子、30~48,60,61 ガイドロール、50~52,53a,53b,54,55 ニップロール。
10 raw film made of polyvinyl alcohol resin, 11 raw roll, 13 swelling bath, 15 dyeing bath, 17a first crosslinking bath, 17b second crosslinking bath, 19 cleaning bath, 21
Drying oven, 23 Polarizing element, 30 to 48, 60, 61 Guide roll, 50 to 52, 53a, 53b, 54, 55 Nip roll.

Claims (5)

  1.  偏光素子と、前記偏光素子の少なくとも一方の面に積層された透明保護フィルムと、を有する偏光板の製造方法であって、
     ポリビニルアルコール系樹脂フィルムから偏光素子を得る偏光素子製造工程と、
     前記偏光素子に、水系接着剤を介して前記透明保護フィルムを貼合する貼合工程と、を有し、
     前記ポリビニルアルコール系樹脂フィルムは、ホウ素吸着率が5.70質量%以上であり、
     前記水系接着剤は、エタノールの濃度が16質量%以上50質量%以下である、製造方法。
    A method for producing a polarizing plate comprising a polarizing element and a transparent protective film laminated on at least one surface of the polarizing element, the method comprising:
    A polarizing element manufacturing process for obtaining a polarizing element from a polyvinyl alcohol resin film;
    a bonding step of bonding the transparent protective film to the polarizing element via a water-based adhesive;
    The polyvinyl alcohol resin film has a boron adsorption rate of 5.70% by mass or more,
    The method for producing the aqueous adhesive has an ethanol concentration of 16% by mass or more and 50% by mass or less.
  2.  前記偏光素子は、ホウ素の含有率が4.0質量%以上8.0質量%以下である、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the polarizing element has a boron content of 4.0% by mass or more and 8.0% by mass or less.
  3.  前記水系接着剤は、ポリビニルアルコール系樹脂を含む、請求項1または2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the water-based adhesive contains a polyvinyl alcohol-based resin.
  4.  前記水系接着剤は、前記ポリビニルアルコール系樹脂の濃度が2.85質量%以上である、請求項3に記載の製造方法。 The manufacturing method according to claim 3, wherein the water-based adhesive has a concentration of the polyvinyl alcohol resin of 2.85% by mass or more.
  5.  前記偏光板において、前記偏光素子と前記透明保護フィルムとの間に介する前記水系接着剤により形成された接着剤層の厚みが0.01μm以上7μm以下である、請求項1または2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein in the polarizing plate, an adhesive layer formed of the water-based adhesive interposed between the polarizing element and the transparent protective film has a thickness of 0.01 μm or more and 7 μm or less. Method.
PCT/JP2023/013788 2022-05-26 2023-04-03 Method for producing polarizing plate WO2023228584A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022086100A JP2023173674A (en) 2022-05-26 2022-05-26 Method for manufacturing polarizing plate
JP2022-086100 2022-05-26

Publications (1)

Publication Number Publication Date
WO2023228584A1 true WO2023228584A1 (en) 2023-11-30

Family

ID=88919063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013788 WO2023228584A1 (en) 2022-05-26 2023-04-03 Method for producing polarizing plate

Country Status (3)

Country Link
JP (1) JP2023173674A (en)
TW (1) TW202346988A (en)
WO (1) WO2023228584A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021165826A (en) * 2020-04-01 2021-10-14 住友化学株式会社 Polarizer and image display unit using the polarizer
JP2021173990A (en) * 2020-04-17 2021-11-01 住友化学株式会社 Polarizing plate, image display device, and method of manufacturing polarizing plate
JP2022065609A (en) * 2020-10-15 2022-04-27 住友化学株式会社 Polarizer and image display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021165826A (en) * 2020-04-01 2021-10-14 住友化学株式会社 Polarizer and image display unit using the polarizer
JP2021173990A (en) * 2020-04-17 2021-11-01 住友化学株式会社 Polarizing plate, image display device, and method of manufacturing polarizing plate
JP2022065609A (en) * 2020-10-15 2022-04-27 住友化学株式会社 Polarizer and image display device

Also Published As

Publication number Publication date
TW202346988A (en) 2023-12-01
JP2023173674A (en) 2023-12-07

Similar Documents

Publication Publication Date Title
JP6042576B2 (en) Manufacturing method of polarizing plate
KR102662175B1 (en) Optical laminate and production method therefor
TWI443389B (en) Process for producing polarizer
KR20120046053A (en) Method for producing polarizing plate
TW201433833A (en) Method for manufacturing polarizer plate
TWI725980B (en) Optical film and manufacturing method thereof
WO2020250649A1 (en) Polarization plate, polarization plate production method and image display device using said polarization plate
JP2019159200A (en) Method of manufacturing optical laminate and method of manufacturing optical laminate with adhesive layers
WO2022075146A1 (en) Polarizing plate and image display device
TW202227265A (en) Polarizing plate and image display device
KR20210122699A (en) Polarizing plate and image display device using the polarizing plate
KR102587187B1 (en) Method for producing polarizing plate
KR20200047378A (en) Laminate of liquid crystal layer
WO2023228584A1 (en) Method for producing polarizing plate
JP7089093B2 (en) Polarizing plate and image display device
WO2023153186A1 (en) Method for manufacturing polarizer
JP7382450B2 (en) Polarizing plate and image display device
JP2019159198A (en) Method of manufacturing optical laminate and method of manufacturing optical laminate with adhesive layers
JP7261336B1 (en) Polarizer
WO2022191033A1 (en) Polarizing plate
KR20240031397A (en) Manufacturing method of polarizer
KR20240037952A (en) Polarizer and image display device
WO2022138028A1 (en) Polarizing plate and image display device
WO2022075145A1 (en) Polarizing plate and image display device
TW202125005A (en) Polarizing plate and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811462

Country of ref document: EP

Kind code of ref document: A1