WO2024139184A1 - 储能柜 - Google Patents
储能柜 Download PDFInfo
- Publication number
- WO2024139184A1 WO2024139184A1 PCT/CN2023/108055 CN2023108055W WO2024139184A1 WO 2024139184 A1 WO2024139184 A1 WO 2024139184A1 CN 2023108055 W CN2023108055 W CN 2023108055W WO 2024139184 A1 WO2024139184 A1 WO 2024139184A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air duct
- air
- cabinet
- outlet
- energy storage
- Prior art date
Links
- 238000004146 energy storage Methods 0.000 title claims abstract description 49
- 238000001816 cooling Methods 0.000 claims abstract description 44
- 239000010410 layer Substances 0.000 claims description 12
- 239000011229 interlayer Substances 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000012423 maintenance Methods 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/617—Types of temperature control for achieving uniformity or desired distribution of temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/62—Heating or cooling; Temperature control specially adapted for specific applications
- H01M10/627—Stationary installations, e.g. power plant buffering or backup power supplies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6556—Solid parts with flow channel passages or pipes for heat exchange
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6561—Gases
- H01M10/6563—Gases with forced flow, e.g. by blowers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6561—Gases
- H01M10/6566—Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/251—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for stationary devices, e.g. power plant buffering or backup power supplies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present application relates to the field of heat dissipation technology, and in particular to an energy storage cabinet.
- the cooling system of outdoor energy storage cabinets mainly includes air cooling system and water cooling system.
- the air cooling system has the advantages of simple structure, safe cooling medium, easy maintenance and low cost, making it the main cooling system.
- the existing air cooling system has a relatively single air duct and flow direction. The cooling air temperature will gradually increase along the flow path of the cooling air duct, causing a large temperature difference inside the battery module.
- the temperature of the local battery energy storage module is high, affecting its life, and in severe cases, it will cause thermal runaway.
- the battery assembly includes a first side, a second side, a third side and a fourth side; the first side and the third side are opposite to each other, and the second side and the fourth side are opposite to each other; the first air duct is located between the first side of the battery assembly and the cabinet, and the second air duct is located between the third side of the battery assembly and the cabinet; a first gap and a second gap are respectively provided between the second side and the fourth side and the cabinet.
- the air cooling device is an air conditioner.
- an opening is provided on one side of the cabinet, and the energy storage cabinet further includes a cabinet door, which is movably connected to the cabinet to open or close the opening; and the air conditioner is installed on the cabinet door.
- a cabinet door is arranged on the energy storage cabinet, which is convenient for later maintenance of the energy storage cabinet.
- the air conditioner is installed on the cabinet door, which is conducive to saving the internal space of the cabinet while facilitating the maintenance of the air conditioner, and improving the volume energy density of the energy storage cabinet.
- the battery assembly includes a plurality of battery cells, and the plurality of battery cells are stacked along the height direction of the cabinet, and interlayer gaps are provided between adjacent battery cells so that cold air can enter between the battery cells and cool the battery cells.
- the first air duct is provided with a plurality of first air duct outlets along the height direction of the cabinet
- the second air duct is provided with a plurality of second air duct outlets along the height direction of the cabinet
- the plurality of first air duct outlets and the second air duct outlets respectively correspond to the interlayer gaps one by one and are connected, so that cold air flows through each layer of the battery cells.
- the air conditioner and the first air duct are located on the same side of the battery assembly, or the air conditioner and the second air duct are located on the same side of the battery assembly.
- the first air duct and the second air duct are respectively attached to the battery assembly to close the first side surface and the third side surface of the battery assembly.
- the upper air duct air outlet includes a first upper air duct outlet and a second upper air duct outlet, and the first upper air duct outlet and the second upper air duct outlet are respectively located on two opposite sides of the battery assembly, the first upper air outlet is connected to the air inlet of the first air duct, and the second upper air outlet is connected to the air inlet of the second air duct.
- the cabinet is in a rectangular shape and has a width dimension W1, a depth dimension D1 and a height dimension H1, and satisfies: 1000mm ⁇ W1 ⁇ 1192mm, 1100mm ⁇ D1 ⁇ 1219mm, 1850mm ⁇ H1 ⁇ 2746mm.
- the energy storage cabinet of the present application has an air conditioning structure and a first air duct/second air duct on one side of the battery assembly, an upper air duct on the upper end of the battery assembly, and a second air duct/first air duct on the other side of the battery assembly.
- the cold air circulating in the air conditioner enters the upper air duct through the air outlet, and then enters the first air duct and the second air duct respectively, and then enters from the front and rear ends of the gap between each layer of battery cells.
- the air is then returned from the gaps on the left and right sides of the battery pack to form a cycle, which improves the temperature uniformity between each layer of battery cells and improves the heat dissipation effect.
- FIG1 is a perspective schematic diagram of an energy storage cabinet according to an embodiment of the present application.
- FIG2 is a three-dimensional schematic diagram of the energy storage cabinet shown in FIG1 with part of the cabinet body removed;
- FIG3 is a schematic diagram of the structure of the energy storage cabinet housing cavity
- FIG4 is an assembly perspective view of the upper air duct, the first air duct and the second air duct;
- FIG5 is a schematic diagram of the battery assembly structure
- FIG6 is a schematic diagram of the flow direction of cold air in an energy storage cabinet according to an embodiment of the present application, where the arrow direction indicates the flow direction of the wind;
- FIG. 7 is a schematic diagram of the flow of cold air between battery cells, with the arrow direction indicating the flow direction of the wind.
- Energy storage cabinet 10 cabinet body 100, accommodating cavity 101, cabinet door 102, battery assembly 200, battery unit 201, layer gap 202, air cooling device 300, air cooling device air outlet 301, upper air duct 400, upper air duct air inlet 401, upper air duct air outlet 402, first air duct 500, first air duct air inlet 501, second air duct 600, second air duct air inlet 601.
- the energy storage cabinet 10 includes: a cabinet body 100, a battery assembly 200, an air cooling device 300, an upper air duct 400, a first air duct 500 and a second air duct 600.
- the cabinet 100 has a receiving cavity 101 in which the battery assembly 200 is located;
- the air cooling device 300 is disposed in the accommodating cavity 101 and is used to exchange heat with the outside of the cabinet 100 to generate cold air in the cabinet 100, and the cold air is used to cool the battery assembly 200 to reduce the temperature of the battery assembly 200;
- the air cooling device 300 includes an air cooling device outlet 301 and an air cooling device return outlet (not shown in the figure), and the air cooling device return outlet is connected to the inside of the cabinet 100;
- the upper air duct 400 is disposed in the accommodating cavity 101 and is located at the upper part of the cabinet 100.
- the upper air duct 400 is provided with an upper air duct air inlet 401 and an upper air duct air outlet 402.
- the upper air duct air inlet 401 is connected to the air outlet 301 of the air cooling device.
- the first air duct 500 and the second air duct 600 are respectively located on two opposite sides of the battery assembly 200, and the first air duct 500 includes a first air duct air inlet 501 and a first air duct air outlet (not marked in the figure); the second air duct 600 includes a second air duct air inlet 601 and a second air duct air outlet (not marked in the figure); the first air duct air inlet 501 and the second air duct air inlet 601 are respectively connected to the upper air duct outlet 402; the first air duct air outlet and the second air duct air outlet are respectively connected to the battery assembly 200, and the cold air is simultaneously guided from both sides of the battery assembly 200 to the inside of the battery assembly 200 to cool the battery assembly 200.
- the battery assembly 200 includes a first side, a second side, a third side and a fourth side; the first side is opposite to the third side, and the second side is opposite to the fourth side; the first air duct 500 is located between the first side of the battery assembly 200 and the cabinet 100, and the second air duct 600 is located between the third side of the battery assembly 200 and the cabinet 100; the second side and the fourth side are respectively provided with a first gap (not marked in the figure) and a second gap (not marked in the figure). The second side and the fourth side are respectively provided with a first gap and a second gap between the cabinet 100. After the cold air cools the battery assembly 200, hot air is formed due to heat exchange.
- the hot air can enter the return air outlet of the air cooling device through the first gap and the second gap.
- the hot air entering the return air outlet of the air cooling device is again heat-exchanged with the cold air outside the energy storage cabinet 10 to form cold air, and a secondary cycle is performed again.
- an opening is provided on one side of the cabinet 100 , and the energy storage cabinet 10 further includes a cabinet door 102 , which is movably connected to the cabinet 100 to open or close the opening; the air conditioner is installed on the cabinet door 102 .
- an opening is provided on one side of the cabinet 100, and a cabinet door 102 is movably connected to the cabinet 100, so as to facilitate opening or closing the opening.
- the opening and the cabinet door 102 are provided on the energy storage cabinet 10, so that the battery assembly 200 and the like in the energy storage cabinet 10 can be easily repaired.
- the air conditioner is installed on the cabinet door 102, which not only facilitates the maintenance of the air conditioner, but also saves the storage space inside the cabinet 100 and improves the volume energy density of the energy storage cabinet 10.
- the battery assembly 200 includes a plurality of battery cells 201, and the plurality of battery cells 201 are stacked along the height direction of the cabinet 100, and layer gaps 202 are provided between adjacent battery cells 201 to allow cold air to enter between the battery cells 201 and cool the battery cells 201.
- the battery assembly 200 is composed of multiple battery cells 201 stacked along the height direction of the cabinet 100, and interlayer gaps 202 are set between adjacent battery cells 201.
- the cold air from the air conditioner passes through the upper air duct and enters the interlayer gaps 202 between the battery cells 201 through the first air duct 500 and the second air duct 600 respectively.
- the cold air and the battery cells 201 exchange heat in the interlayer gaps 202, taking away the heat generated by the battery cells 201, thereby cooling the battery cells 201.
- the first air duct 500 and the second air duct 600 are respectively attached to the battery assembly 200 to close the first side and the third side of the battery assembly 200.
- the present application in order to make full use of the cold air generated by the air conditioner, the present application preferably connects the first air duct 500 and the second air duct 600 to the battery assembly 200.
- the components 200 are attached to close the first side and the third side of the battery assembly 200. In this way, the cold air generated by the air conditioner will not overflow, but will only enter between the battery cells 201 through the air outlet to cool the battery cells 201.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
一种储能柜,包括柜体、电池组件、风冷装置、上风道、第一风道和第二风道。上风道设置在容纳腔内并位于柜体的上部,上风道设置有上风道进风口和上风道出风口;上风道进风口与风冷装置出风口连通;第一风道和第二风道分别位于电池组件相对的两侧,第一风道包括第一风道进风口和第一风道出风口;第二风道包括第二风道进风口和第二风道出风口;第一风道进风口、第二风道进风口分别与上风道出风口相连通;第一风道出风口和第二风道出风口分别与电池组件连通。
Description
相关申请的交叉引用
本申请要求申请日为2022年12月30日、申请号为202223600559.7、专利申请名称为“储能柜”的优先权,其全部内容通过引用结合在本申请中。
本申请涉及散热技术领域,具体涉及一种储能柜。
户外储能柜在使用过程中会产生大量的热,为了保证户外储能柜的正常使用,需要对户外储能柜及时的降温。相关技术中,户外储能柜的冷却系统主要有风冷系统和水冷系统,风冷系统结构简单、冷却介质安全、易维护及成本低等优点成为主要冷却系统,但是现有的风冷系统风道和流向较为单一,冷却风温度会沿冷却风道的流动路径逐步升高,造成电池模组内部温度差大,特别是在大容量电池储能系统中,造成局部电池储能模组温度较高,影响其寿命,严重时会引发热失控。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请的一个目的在于提出一种储能柜,该储能柜具有很好的均温性能。
根据本申请的储能柜,包括:柜体、电池组件、风冷装置、上风道、第一风道和第二风道,所述柜体内有一容纳腔,所述电池组件位于所述容纳腔内,所述风冷装置设在所述容纳腔内并用于与所述柜体外部换热以在所述柜体内产生冷风;所述风冷装置包括风冷装置出风口和风冷装置回风口,所述风冷装置回风口与所述柜体内部连通;所述上风道设置在所述容纳腔内并位于柜体的上部,所述上风道设置有上风道进风口和上风道出风口;所述上风道进风口与所述风冷装置出风口连通;所述第一风道和所述第二风道分别位于所述电池组件相对的两侧,所述第一风道包括第一风道进风口和第一风道出风口;所述第二风道包括第二风道进风口和第二风道出风口;所述第一风道进风口、所述第二风道进风口分别与所述上风道出风口相连通;所述第一风道出风口和所述第二风道出风口分别与所述电池组件连通。根据本申请的储能柜,通过在电池组件的相对两侧分别设置第一风道和第二风道,从电池组件的相对两侧分别通入冷风对其进行冷却,减少了冷风到到电池组件不同
位置的时间,提高了电池组件的均温性能。
根据本申请的一些实施例,所述电池组件包括第一侧面、第二侧面、第三侧面和第四侧面;所述第一侧面和所述第三侧面相对,所述第二侧面与所述第四侧面相对;所述第一风道位于所述电池组件的第一侧面与所述柜体之间,所述第二风道位于所述电池组件的第三侧面和所述柜体之间;所述第二侧面、所述第四侧面分别和所述柜体之间设置有第一缝隙和第二缝隙。
根据本申请的一些实施例,所述风冷装置为空调。
根据本申请的一些实施例,所述柜体的一侧设有开口,所述储能柜还包括柜门,所述柜门活动连接于所述柜体上以开启或关闭所述开口;所述空调安装于所述柜门上。
在储能柜上设置柜门,方面后期对储能柜进行检修,将所述空调安装在所述柜门上,在方面对空调进行检修的同时有利于节约柜体的内部空间,提高储能柜的体积能量密度。
根据本申请的一些实施例,所述电池组件包括多个电池单元,所述多个电池单元沿所述柜体的高度方向层叠设置,且相邻所述电池单元之间设置有层间隙以使冷风能够进入所述电池单元之间并对所述电池单元进行冷却。根据本申请的一些实施例,所述第一风道沿着所述柜体的高度方向设置有多个第一风道出风口,所述第二风道沿着所述柜体的高度方向设置有多个第二风道出风口,多个所述第一风道出风口和所述第二风道出风口分别与所述层间隙一一对应并连通,以使冷风流经每一层所述电池单元。
根据本申请的一些实施例,所述空调与所述第一风道位于所述电池组件的同一侧,或者所述空调与所述第二风道位于所述电池组件的同一侧。
根据本申请的一些实施例,所述第一风道、所述第二风道分别与所述电池组件贴合以封闭所述电池组件的所述第一侧面和所述第三侧面。
这样可以保证冷风都通过第一风道出口和第二风道出口进入电池单元之间对电池单元进行散热。
根据本申请的一些实施例,所述上风道出风口包括上风道第一出风口和上风道第二出风口,且所述上风道第一出风口和所述上风道第二出风口分别位于所述电池组件相对的两侧,所述上风道第一出风口与所述第一风道的进风口相连通,所述上风道第二出风口与所述第二风道的进风口相连通。
根据本申请的一些实施例,所述柜体呈长方体型并具有宽度尺寸W1、深度尺寸D1及高度尺寸H1,并满足:1000mm≤W1≤1192mm,1100mm≤D1≤1219mm,1850mm≤H1≤2746mm。
本申请的储能柜,在电池组件的一侧有空调结构和第一风道/第二风道,电池组件上端有上风道,电池组件的另一侧有第二风道/第一风道。空调内循环的冷风通过出风口进入上风道,再分别进入到第一风道和第二风道,再从每层电池单元之间的间隙前后端面进入,
再从电池包左右两侧缝隙回风,形成一个循环。提高了每一层电池单元之间的均温性,提高了散热效果。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请实施例的储能柜的立体示意图;
图2是图1中所示的储能柜去掉部分柜体的立体示意图;
图3是储能柜容纳腔内的结构示意图;
图4是上风道、第一风道和第二风道的装配立体图;
图5是电池组件结构示意图;
图6是根据本申请实施例的冷风在储能柜中流向示意图,箭头方向为风的流动方向;
图7是冷风在电池单元之间流动示意图,箭头方向为风的流动方向。
附图标记:
储能柜10、柜体100、容纳腔101、柜门102、电池组件200、电池单元201、层间隙202、风冷装置300、风冷装置出风口301、上风道400、上风道进风口401、上风道出风口402、第一风道500、第一风道进风口501、第二风道600、第二风道进风口601。
下面详细描述本申请的实施例,参考附图描述的实施例是示例性的,下面详细描述本申请的实施例。
下面参考图1-图7描述根据本申请实施例的储能柜10。储能柜10包括:柜体100、电池组件200、风冷装置300、上风道400、第一风道500和第二风道600。
柜体100内有一容纳腔101,电池组件200位于容纳腔101内;
风冷装置300设在容纳腔101内并用于与柜体100外部换热以在所述柜体100内产生冷风,该冷风用于对电池组件200进行冷却,以降低电池组件200的温度;风冷装置300包括风冷装置出风口301和风冷装置回风口(图中未标出),风冷装置回风口与柜体100内部连通;
上风道400设置在容纳腔101内并位于柜体100的上部,上风道400设置有上风道进风口401和上风道出风口402,上风道进风口401与风冷装置出风口301连通;
第一风道500和第二风道600分别位于电池组件200相对的两侧,第一风道500包括第一风道进风口501和第一风道出风口(图中未标出);第二风道600包括第二风道进风口601和第二风道出风口(图中未标出);第一风道进风口501、第二风道进风口601分别与上风道出风口402相连通;第一风道出风口和第二风道出风口分别与电池组件200连通,将冷风分别从电池组件200两侧同时导流到电池组件200内部以对电池组件200进行冷却。
如图2和图5所示,电池组件200包括第一侧面、第二侧面、第三侧面和第四侧面;第一侧面和第三侧面相对,第二侧面与第四侧面相对;第一风道500位于电池组件200的第一侧面与柜体100之间,第二风道600位于电池组件200的第三侧面和柜体100之间;第二侧面、第四侧面分别和柜体100之间设置有第一缝隙(图中未标出)和第二缝隙(图中未标出)。在所述第二侧面、第四侧面分别和柜体100之间设置有第一缝隙和第二缝隙,冷风对电池组件200进行冷却后由于热交换形成热风,热风可以通过第一缝隙和第二缝隙进入风冷装置回风口,进入风冷装置回风口的热风再次与储能柜10外部的冷风进行热交换后形成冷风,再次进行一个次循环。
本申请的一实施例中,风冷装置300为空调。当然,风冷装置300还可以是本领域常用的可以实现本申请目的其他常用的设备。
本申请的一实施例中,如图1所示,柜体100的一侧设有开口,储能柜10还包括柜门102,柜门102活动连接于柜体100上以开启或关闭所述开口;所述空调安装于所述柜门102上。
本申请的一实施例中,柜体100的一侧设置有开口,柜门102活动连接于柜体100上,方便开启或者关闭所述开口,在所述储能柜10上设置开口和柜门102,可以很方便地对储能柜10中的电池组件200等进行维修。同时空调安装于柜门102上,一方面方便对空调进行检修,另一方面可以节约柜体100内部的容纳空间,提高储能柜10的体积能量密度。
本申请的一实施例中,如图5所示,所述电池组件200包括多个电池单元201,所述多个电池单元201沿所述柜体100的高度方向层叠设置,且相邻所述电池单元201之间设置有层间隙202以使冷风能够进入所述电池单元201之间并对所述电池单元201进行冷却。
本申请中,电池组件200由多个电池单元201沿柜体100的高度方向层叠设置,相邻电池单元201之间设置有层间隙202,这样由空调出来的冷风通过上风道后分别经第一风道500和第二风道600进入电池单元201之间的层间隙202,冷风和电池单元201在层间隙202中进行热交换,将电池单元201产生的热量带走,从而对电池单元201进行冷却。
本申请一实施例中,如图4所示,所述第一风道500、所述第二风道600分别与所述电池组件200贴合以封闭所述电池组件200的第一侧面和第三侧面。本申请中为了使空调产生的冷风能够得到更充分的利用,本申请优选第一风道500、第二风道600分别与电池组
件200贴合以封闭电池组件200的第一侧面和第三侧面。这样空调产生的冷风不会外溢,只会通过出风口进入电池单元201之间对电池单元201进行冷却。
本申请一实施例中,所述第一风道500沿着所述柜体100的高度方向设置有多个第一风道出风口,所述第二风道600沿着所述柜体100的高度方向设置有多个第二风道出风口,多个所述第一风道出风口和所述第二风道出风口分别与所述层间隙202一一对应并连通,以使冷风流经每一层所述电池单元201。
本申请中,第一风道500沿着柜体100的高度方向设置有多个第一风道出风口,第二风道600沿着柜体100的高度方向设置有多个第二风道出风口,多个第一风道出风口和第二风道出风口分别与层间隙202一一对应并连通,以使冷风流经每一层所述电池单元201。第一风道的出风口、第二风道的出风口分别与层间隙202对应,保证冷风能够进入电池单元201之间并保证冷风不外溢,更好地提高冷却效果。
本申请一实施例中,所述空调与所述第一风道500位于电池组件200的同一侧,或者所述空调与所述第二风道600位于电池组件200的同一侧。
本申请中,空调位于柜门102上,本领域常把储能柜10有柜门102的一侧作为储能柜10的正面(前面),相对于正面的另一面是后面,与正面相邻的两面分别为左侧和右侧。本申请一实施例中将第一风道500或第二风道600中之一,例如第一风道500设置在储能柜10的前面,将另一风道,例如第二风道600设置在储能柜10的后面,这样储能柜10通过前面的空调将冷风通入储能柜10上方的上风道400中,然后分别进入前面的第一风道500和后面的第二风道600,并通过第一风道500和第二风道600的出风口从电池单元201的前后分别进入电池单元201之间,对电池单元201进行冷却,冷风经过热交换形成热风,热风通过电池单元201左右两侧的第一缝隙和第二缝隙进入空调的回风口,形成一个电池组件200的风冷循环系统。
本申请中,如图6所示,空调中出来的冷风经过上风道400后分别进入第一风道500和第二风道600,然后由第一风道500和第二风道600分别从电池单元201前后两侧进入电池单元201之间,对电池单元201进行冷却。进一步如图7所示,从前后两侧进入电池单元201之间的冷风在电池单元201表面汇合,在风速的带动下向电池单元201左右两侧扩散,并由左右两侧的第一缝隙和第二缝隙进入空调的回风口,形成一个循环。
本申请一实施例,所述上风道出风口402包括上风道第一出风口和上风道第二出风口,且所述上风道第一出风口和所述上风道第二出风口分别位于电池组件200相对的两侧,所述上风道第一出风口与所述第一风道500的进风口501相连通,所述第二出风口与所述第二风道600的进风口601相连通。
本申请中,为了更方便上风道400与第一风道500、第二风道600连通,在上风道400
上分别设置第一出风口和第二出风口,这样第一出风口与第一风道500的进风口501连通,第二出风口与第二风道600的进风口601连通,这样冷风可以通过第一出风口和第二出风口直接进入第一风道500和第二风道600。
在一些实施方式中,所述柜体100呈长方体型并具有宽度尺寸W1、深度尺寸D1及高度尺寸H1,并满足:1000mm≤W1≤1192mm,单个柜体100深度1100mm≤D1≤1219mm,高度尺寸1850mm≤H1≤2746mm。
本申请的储能柜10,空调内循环冷风通过空调出风口流入上风道400,一部分冷风沿着上风道400到达储能柜10后侧,沿着第二风道进风口601进入第二风道600,一部分冷风沿着第一风道进风口501进入第一风道500。第一风道500和第二风道600中的冷风会进入电池单元201之间的层间隙,沿着箭头方向循环,因前后通道都独立贴合在电池单元201前后两侧,前后两侧冷风无法溢出,冷风与电池单元201产生的热风进行热交换,热风再从电池单元201左右两侧缝隙溢出,进入柜体100内部,再利用空调内循环的风机进行抽风回风,如此循环往复给柜体100内的电池组件200进行散热。本申请这样的风冷结构,冷却效果好,电池单元201的均温性好。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“上”、“底”、“内”、“外”、等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,“第一特征”、“第二特征”可以包括一个或者更多个该特征。
在本申请的描述中,第一特征在第二特征“之上”或“之下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。
在本申请的描述中,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。
Claims (10)
- 一种储能柜(10),其中,包括:柜体(100),所述柜体(100)内有一容纳腔(101);电池组件(200),所述电池组件(200)位于所述容纳腔(101)内;风冷装置(300),所述风冷装置(300)设在所述容纳腔(101)内并用于与所述柜体(100)外部换热以在所述柜体(100)内产生冷风;所述风冷装置(300)包括风冷装置出风口(301)和风冷装置回风口;所述风冷装置回风口与所述柜体(100)内部连通;上风道(400),所述上风道(400)设置在所述容纳腔(101)内并位于柜体(100)的上部,所述上风道(400)设置有上风道进风口(401)和上风道出风口(402);所述上风道进风口(401)与所述风冷装置出风口(301)连通;第一风道(500)和第二风道(600),所述第一风道(500)和所述第二风道(600)分别位于所述电池组件(200)相对的两侧,所述第一风道(500)包括第一风道进风口(501)和第一风道出风口;所述第二风道(600)包括第二风道进风口(601)和第二风道出风口;所述第一风道进风口(501)、所述第二风道进风口(601)分别与所述上风道出风口(402)相连通;所述第一风道出风口和所述第二风道出风口分别与所述电池组件(200)连通。
- 根据权利要求1所述的储能柜(10),其中,所述电池组件(200)包括第一侧面、第二侧面、第三侧面和第四侧面;所述第一侧面和所述第三侧面相对,所述第二侧面与所述第四侧面相对;所述第一风道(500)位于所述电池组件(200)的第一侧面与所述柜体(100)之间,所述第二风道(600)位于所述电池组件(200)的第三侧面和所述柜体(100)之间;所述第二侧面、所述第四侧面分别和所述柜体(100)之间设置有第一缝隙和第二缝隙。
- 根据权利要求1或2所述的储能柜(10),其中,所述风冷装置(300)为空调。
- 根据权利要求3所述的储能柜(10),其中,所述柜体(100)的一侧设有开口,所述储能柜(10)还包括柜门(102),所述柜门(102)活动连接于所述柜体(100)上以开启或关闭所述开口;所述空调安装于所述柜门(102)上。
- 根据权利要求4所述的储能柜(10),其中,所述电池组件(200)包括多个电池单元(201),所述多个电池单元(201)沿所述柜体(100)的高度方向层叠设置,且相邻所述电池单元(201)之间设置有层间隙(202)以使冷风能够进入所述电池单元(201)之间并对所述电池单元(201)进行冷却。
- 根据权利要求5所述的储能柜(10),其中,所述第一风道(500)沿着所述柜体(100)的高度方向设置有多个第一风道出风口,所述第二风道(600)沿着所述柜体(100)的高 度方向设置有多个第二风道出风口,多个所述第一风道出风口和所述第二风道出风口分别与所述层间隙(202)一一对应并连通,以使冷风流经每一层所述电池单元(201)。
- 根据权利要求6所述的储能柜(10),其中,所述空调与所述第一风道(500)位于所述电池组件(200)的同一侧,或者所述空调与所述第二风道(600)位于所述电池组件(200)的同一侧。
- 根据权利要求2所述的储能柜(10),其中,所述第一风道(500)、所述第二风道(600)分别与所述电池组件(200)贴合以封闭所述电池组件(200)的所述第一侧面和所述第三侧面。
- 根据权利要求1-8中任一项所述的储能柜(10),其中,所述上风道出风口(402)包括上风道第一出风口和上风道第二出风口,且所述上风道第一出风口和所述上风道第二出风口分别位于所述电池组件(200)相对的两侧,所述上风道第一出风口与所述第一风道(500)的进风口相连通,所述上风道第二出风口与所述第二风道(600)的进风口相连通。
- 根据权利要求1-9中任一项所述的储能柜(10),其中,所述柜体(100)呈长方体型并具有宽度尺寸W1、深度尺寸D1及高度尺寸H1,并满足:1000mm≤W1≤1192mm,1100mm≤D1≤1219mm,1850mm≤H1≤2746mm。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202223600559.7 | 2022-12-30 | ||
CN202223600559.7U CN219843024U (zh) | 2022-12-30 | 2022-12-30 | 储能柜 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024139184A1 true WO2024139184A1 (zh) | 2024-07-04 |
Family
ID=88303899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/108055 WO2024139184A1 (zh) | 2022-12-30 | 2023-07-19 | 储能柜 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN219843024U (zh) |
WO (1) | WO2024139184A1 (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110098358A (zh) * | 2019-03-26 | 2019-08-06 | 河南平高电气股份有限公司 | 一种电池储能系统 |
CN110957548A (zh) * | 2019-12-19 | 2020-04-03 | 江苏华强新能源科技有限公司 | 一种高效热管理储能集装箱 |
CN210838023U (zh) * | 2019-10-09 | 2020-06-23 | 湖南鑫伟能源有限责任公司 | 一种空调系统 |
CN216720061U (zh) * | 2021-11-29 | 2022-06-10 | 湖北亿纬动力有限公司 | 一种模块化电池簇 |
CN217522110U (zh) * | 2022-03-15 | 2022-09-30 | 合肥国轩高科动力能源有限公司 | 一种分布式储能集装箱系统导风引流装置 |
CN217589128U (zh) * | 2022-07-05 | 2022-10-14 | 威睿电动汽车技术(宁波)有限公司 | 一种柜式或集装箱式储能箱及其冷却风道结构 |
CN217903216U (zh) * | 2022-02-11 | 2022-11-25 | 楚能新能源股份有限公司 | 用于集装箱式储能电站的风道结构和储能电站 |
CN219181964U (zh) * | 2023-01-11 | 2023-06-13 | 比亚迪股份有限公司 | 储能柜 |
-
2022
- 2022-12-30 CN CN202223600559.7U patent/CN219843024U/zh active Active
-
2023
- 2023-07-19 WO PCT/CN2023/108055 patent/WO2024139184A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110098358A (zh) * | 2019-03-26 | 2019-08-06 | 河南平高电气股份有限公司 | 一种电池储能系统 |
CN210838023U (zh) * | 2019-10-09 | 2020-06-23 | 湖南鑫伟能源有限责任公司 | 一种空调系统 |
CN110957548A (zh) * | 2019-12-19 | 2020-04-03 | 江苏华强新能源科技有限公司 | 一种高效热管理储能集装箱 |
CN216720061U (zh) * | 2021-11-29 | 2022-06-10 | 湖北亿纬动力有限公司 | 一种模块化电池簇 |
CN217903216U (zh) * | 2022-02-11 | 2022-11-25 | 楚能新能源股份有限公司 | 用于集装箱式储能电站的风道结构和储能电站 |
CN217522110U (zh) * | 2022-03-15 | 2022-09-30 | 合肥国轩高科动力能源有限公司 | 一种分布式储能集装箱系统导风引流装置 |
CN217589128U (zh) * | 2022-07-05 | 2022-10-14 | 威睿电动汽车技术(宁波)有限公司 | 一种柜式或集装箱式储能箱及其冷却风道结构 |
CN219181964U (zh) * | 2023-01-11 | 2023-06-13 | 比亚迪股份有限公司 | 储能柜 |
Also Published As
Publication number | Publication date |
---|---|
CN219843024U (zh) | 2023-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018040902A1 (zh) | 电池模组、动力电池包及汽车 | |
TWI405945B (zh) | 氣冷式熱交換器及其適用之電子設備 | |
CN109638379B (zh) | 储能模组用逆流式双风道冷却系统 | |
CN104812217A (zh) | 机柜和散热系统 | |
KR101188879B1 (ko) | 랙 마운트 서버 시스템의 냉각장치 | |
WO2023078256A1 (zh) | 一种充电桩及充电桩的控制方法 | |
WO2011088712A1 (zh) | 一种集装箱式数据中心 | |
CN207200354U (zh) | 一种温控充电柜 | |
WO2024114660A1 (zh) | 一种一体式电池化成设备 | |
CN208908523U (zh) | 一种具有高效散热机构的电气控制箱 | |
WO2024139184A1 (zh) | 储能柜 | |
CN214382011U (zh) | 机柜系统 | |
WO2024140718A1 (zh) | 一种风冷储能柜 | |
CN220155642U (zh) | 储能电池机柜 | |
WO2024174470A1 (zh) | 一种风冷循环储能系统 | |
CN217881677U (zh) | 一种储能电池及其热管理系统 | |
CN216123416U (zh) | 一种分流散热机柜 | |
CN212252917U (zh) | 散热装置及空调室外机 | |
WO2019056415A1 (zh) | 冰箱 | |
CN113540613A (zh) | 基于极耳散热的软包电芯模组及电池包 | |
US20230397377A1 (en) | Classified heat dissipation system and data center | |
CN222015487U (zh) | 一种散热箱及储能系统 | |
CN217546576U (zh) | 一种门内装风机的夹层冷却机柜 | |
CN213242664U (zh) | 用于储能电站的闭式热管理系统 | |
CN220775017U (zh) | 一种电气机柜、工作组及塔筒 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23909127 Country of ref document: EP Kind code of ref document: A1 |