WO2024138515A1 - 一种苯并环丁烯树脂、包含其的树脂组合物及其应用 - Google Patents

一种苯并环丁烯树脂、包含其的树脂组合物及其应用 Download PDF

Info

Publication number
WO2024138515A1
WO2024138515A1 PCT/CN2022/143308 CN2022143308W WO2024138515A1 WO 2024138515 A1 WO2024138515 A1 WO 2024138515A1 CN 2022143308 W CN2022143308 W CN 2022143308W WO 2024138515 A1 WO2024138515 A1 WO 2024138515A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
benzocyclobutene
structural unit
resin composition
parts
Prior art date
Application number
PCT/CN2022/143308
Other languages
English (en)
French (fr)
Inventor
罗成
颜善银
许永静
Original Assignee
广东生益科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东生益科技股份有限公司 filed Critical 广东生益科技股份有限公司
Publication of WO2024138515A1 publication Critical patent/WO2024138515A1/zh

Links

Images

Definitions

  • the invention belongs to the technical field of communication materials, and in particular relates to a benzocyclobutene resin, a resin composition containing the same and applications thereof.
  • the current mass-produced PCBs mainly use composite thermosetting resins containing terminal vinyl polyphenylene ether and triallyl isocyanurate (TAIC). Although it has excellent mechanical properties and heat resistance, due to the polar groups contained in TAIC, Dk and Df cannot meet the requirements of the next generation of communication technology. In order to further improve the dielectric properties, researchers are committed to developing new low-dielectric material systems. Studies have shown that reducing the polarizability of molecules in the material and increasing the porosity are effective means to obtain low dielectric properties. For example, polypropylene and polystyrene have lower Dk and Df; however, the heat resistance of polypropylene and polystyrene is far from meeting the requirements of PCB.
  • TAIC triallyl isocyanurate
  • the manufacturing process of integrated circuits needs to experience high temperatures of more than 400°C, and the temperature required in the subsequent processing is even higher.
  • the copper wiring process can be carried out by electroplating or chemical reduction, which can be completed below 250°C, but in order to ensure that the copper deposition is dense and pore-free, it needs to be annealed at 400-450°C. Therefore, the material is required to have excellent heat resistance and a very high glass transition temperature.
  • the heat resistance of polyimide and polybenzoxazine can meet the requirements, in order to obtain lower Dk and Df, it is imperative to design and develop a new type of high heat-resistant resin material with a full carbon hydrogen structure.
  • Benzocyclobutene is another type of thermosetting resin with an all-carbon hydrogen structure. Due to its excellent heat resistance, mechanical properties, extremely low dielectric loss, extremely low dielectric constant and low cost, it has gradually become a new generation of high-performance electronic materials and is expected to be used in the field of high-end microelectronics. Benzocyclobutene itself has a low boiling point of about 150°C. It is a volatile liquid and is generally prepared as a derivative for use. Benzocyclobutene can react with vinyl at high temperatures to form a cyclohexane structure, or dimerize to a cyclooctane structure at higher temperatures, thereby achieving higher heat resistance.
  • Benzocyclobutene derivatives are also small molecules, generally containing more than two benzocyclobutene functional groups, which can further form polymers under high temperature conditions.
  • the benzocyclobutene derivatives initially developed by researchers include the following: (1) 4-bromobenzocyclobutene and tetramethyldivinyldisiloxane are subjected to Heck coupling reaction to obtain dibenzocyclobutene containing siloxane; (2) 4-bromobenzocyclobutene and resorcinol are subjected to etherification reaction under the catalysis of cuprous chloride to prepare dibenzocyclobutene derivatives containing phenyl ether and naphthoic acid structures; (3) 4-bromobenzocyclobutene and phenylboronic acid are subjected to Suzuki coupling reaction to prepare derivatives with all-carbon hydrogen structure; (4) Heck coupling reaction is carried out between divinylbenzene and benzocyclobutene to prepare derivatives with all-
  • the above benzocyclobutene derivatives all have some defects that cannot be ignored, which makes it difficult for them to meet the use requirements of PCB.
  • (1) and (2) contain siloxane or phenol groups, which are not all-carbon-hydrogen structures and therefore difficult to obtain low dielectric properties.
  • the phenyldiboric acid in (3) is relatively expensive, and the residual polar boric acid or boric acid end groups will lead to a decrease in dielectric properties, thereby sacrificing the original dielectric advantage of the benzocyclobutene material.
  • the raw material divinylbenzene in (4) can undergo free radical polymerization at room temperature and easily generates by-products, making mass production difficult.
  • the object of the present invention is to provide a benzocyclobutene resin, a resin composition containing the same and applications thereof.
  • the benzocyclobutene resin has a full carbon-hydrogen structure and can simultaneously meet the requirements of low dielectric constant, low dielectric loss tangent, excellent thermal stability, moisture and heat resistance, high modulus and excellent processability.
  • the preparation method is simple, easy to mass produce, and the chemical properties are stable, which fully meets the performance requirements of high-frequency and high-speed PCBs for resin materials.
  • the present invention provides a benzocyclobutene resin, wherein the benzocyclobutene resin comprises at least one first structural unit and at least one second structural unit; the first structural unit has a structure as shown in Formula I:
  • R 1 is vinyl, ethyl and/or phenyl.
  • the second structural unit has a structure as shown in Formula IIA and/or Formula IIB:
  • the first structural unit is based on polybutadiene ( R1 is vinyl), hydrogenated polybutadiene ( R1 is ethyl) or butadiene-styrene copolymer ( R1 is vinyl and phenyl), and the side chain of the second structural unit contains a benzocyclobutene structure and a benzene ring;
  • the benzocyclobutene resin is a full carbon hydrogen structure, has low polarity, has a low dielectric constant Dk and a low dielectric loss tangent Df, and has a low water absorption rate; at the same time, the polymer chain contains easily reactive alkenyl and benzocyclobutene groups, has high cross-linking efficiency and cross-linking density in a thermal curing reaction, and can obtain better dielectric properties after thermal curing.
  • the main chain of the benzocyclobutene resin is a flexible carbon chain structure, and the side chain contains a benzene ring, a benzocyclobutene structure and an alkenyl group.
  • the specific polymer structure gives it a high glass transition temperature, low water absorption, excellent dielectric properties, thermal stability and moisture and heat resistance, high modulus and good mechanical properties, and has excellent processability, which can fully meet the various performance requirements of high-frequency and high-speed PCBs for resins.
  • the benzocyclobutene resin comprises a first structural unit A of the structure shown in Formula IA, contains a readily reactive vinyl group in the molecular structure, and has good cross-linking activity and high cross-linking efficiency in a thermal curing reaction;
  • the benzocyclobutene resin comprises a first structural unit B having a structure represented by formula IB;
  • the mass percentage of the second structural unit in the benzocyclobutene resin is ⁇ 10%, for example, it can be 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75% or 80%, and specific values between the above points. Due to space limitations and for the sake of simplicity, the present invention no longer exhaustively lists the specific points included in the range, and it is further preferably ⁇ 30%, and further preferably 30-80%.
  • the mass percentage of the second structural unit in the benzocyclobutene resin is ⁇ 30%, thereby making the benzocyclobutene resin have excellent dielectric properties, heat resistance, modulus and mechanical properties, high heat curing cross-linking reaction activity and cross-linking density.
  • the mass percentage of the second structural unit containing the benzocyclobutene group is too low, the heat curing reactivity of the benzocyclobutene resin will be reduced, the glass transition temperature and heat resistance will be reduced, and the dielectric properties will also be affected; if the molar percentage of the second structural unit is too high, not only the difficulty of resin synthesis and production cost will be increased, but also the flexibility of the benzocyclobutene resin will be reduced, the fluidity will be poor, and the processing performance will be affected.
  • the benzocyclobutene resin further comprises a third structural unit, and the third structural unit has a structure as shown in Formula IIIA and/or Formula IIIB:
  • the third structural unit represented by formula IIIA and/or formula IIIB is a structural unit formed by 1,4-polymerization of butadiene.
  • the benzocyclobutene resin further comprises a fourth structural unit, and the fourth structural unit is a polybutadiene structural unit (the first structural unit A, ) are polymerized into a structural unit with a ring structure.
  • benzocyclobutene resin described in the present invention is a polymer segment structure, including at least one (preferably multiple) first structural unit, at least one (preferably multiple) second structural unit, and optionally a third structural unit and optionally a fourth structural unit; the present invention does not limit the connection sequence of the above structural units, and any connection sequence/connection method feasible in chemistry is within the scope of the present invention.
  • the number average molecular weight of the benzocyclobutene resin is 1000-200000, for example, it can be 2000, 5000, 8000, 10000, 12000, 15000, 20000, 50000, 80000, 100000, 120000, 150000 or 180000, as well as specific values between the above point values. Due to space limitations and for the sake of simplicity, the present invention no longer exhaustively lists the specific point values included in the range.
  • the preparation method of the benzocyclobutene resin comprises: reacting a hydrocarbon resin with a benzocyclobutene monomer
  • the hydrocarbon resin is polybutadiene or butadiene-styrene copolymer, which contains a structural unit of butadiene 1,2-polymerization.
  • the reaction is carried out in the presence of an organic peroxide.
  • the organic peroxide includes any one of tert-butyl isopropylphenyl peroxide, dicumyl peroxide, benzoyl peroxide, 2,5-dimethyl-2,5-bis(tert-butylperoxy)hexane, 2,5-dimethyl-2,5-di(tert-butylperoxy)hexyne, and 1,1-di(tert-butylperoxy)-3,3,5-dimethylcyclohexane, or a combination of at least two thereof.
  • the reaction temperature is 80-130°C, for example, it can be 85°C, 90°C, 95°C, 100°C, 105°C, 110°C, 115°C, 120°C or 125°C, as well as specific point values between the above point values. Due to space limitations and for the sake of simplicity, the present invention no longer exhaustively lists the specific point values included in the range.
  • the reaction time is 4-16 h, for example, it can be 5 h, 6 h, 7 h, 8 h, 9 h, 10 h, 11 h, 12 h, 13 h, 14 h or 15 h, as well as specific point values between the above point values. Due to space limitations and for the sake of simplicity, the present invention no longer exhaustively lists the specific point values included in the range.
  • the benzocyclobutene resin is prepared by reacting a hydrocarbon resin (polybutadiene or butadiene-styrene copolymer) with a benzocyclobutene monomer (4-bromobenzocyclobutene modified styrene). It has stable chemical properties and does not require the addition of an inhibitor for preservation. Moreover, the preparation process is simple, the yield is high, and the side reactions are few, and it is suitable for mass production.
  • the present invention provides a resin composition, wherein the resin in the resin composition includes the benzocyclobutene resin as described in the first aspect.
  • the resin composition includes "resin”, i.e., organic components, which can be understood as components that form a continuous phase in subsequent applications; in the description herein, the benzocyclobutene resin, the thermosetting material optionally containing unsaturated groups, and the thermoplastic resin optionally all belong to “resin”.
  • the resin composition also includes "non-resin” components, including fillers, flame retardants, processing aids, etc.
  • the mass percentage of benzocyclobutene resin in the resin is 5-100%, for example, it can be 8%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90%, as well as specific point values between the above point values. Due to space limitations and for the sake of simplicity, the present invention no longer exhaustively lists the specific point values included in the range.
  • the resin further comprises a thermosetting material containing an unsaturated group.
  • the mass percentage of the thermosetting material containing unsaturated groups in the resin is ⁇ 95%, for example, it can be 0, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90%, as well as specific point values between the above point values. Due to space limitations and for the sake of simplicity, the present invention no longer exhaustively lists the specific point values included in the range, and it is further preferably ⁇ 90%.
  • the (meth)acrylate group includes an acrylate group and/or a methacrylate group.
  • thermosetting material containing unsaturated groups may be a resin (polymer) containing unsaturated groups and/or a small molecule compound containing unsaturated groups.
  • the thermosetting material containing unsaturated groups includes any one or a combination of at least two of polybutadiene, styrene-butadiene copolymer, styrene-butadiene-styrene triblock copolymer, unsaturated polyphenylene ether resin, maleimide compound, vinyl aromatic polymer, vinyl alicyclic polymer, allyl compound, and multifunctional vinyl compound.
  • the styrene-butadiene copolymer may be a styrene-butadiene random copolymer and/or a styrene-butadiene block copolymer.
  • the unsaturated polyphenylene ether resin comprises a polyphenylene ether resin terminated with an unsaturated group; wherein the unsaturated group may be any one or more of vinylbenzyl, vinylphenyl, acrylate, and methacrylate.
  • the vinyl aromatic polymer comprises a multifunctional vinyl aromatic polymer, the polymerization monomers of which comprise a combination of a divinyl aromatic compound and a monovinyl aromatic compound.
  • the divinyl aromatic compound includes any one of divinylbenzene, divinylbiphenyl, divinylnaphthalene, diisopropenylbenzene, diisopropenylnaphthalene, and diisopropenylbiphenyl, or a combination of at least two thereof; the above-mentioned divinyl aromatic compounds include all their isomers.
  • the monovinyl aromatic compound includes styrene, and other monovinyl aromatic compounds except styrene.
  • the vinyl aromatic polymer can be purchased from the market, for example, it can be ODV produced by Nippon Steel Corporation of Japan.
  • the allyl compound includes any one of triallyl isocyanurate (TAIC), triallyl cyanurate (TAC), triallyl polyisocyanurate, triallyl cyanurate, and diallyl phthalate, or a combination of at least two thereof.
  • TAIC triallyl isocyanurate
  • TAC triallyl cyanurate
  • TPC triallyl polyisocyanurate
  • triallyl cyanurate triallyl cyanurate
  • diallyl phthalate diallyl phthalate
  • the multifunctional vinyl compound includes any one of trimethacrylic acid, divinylbenzene (DBV), multifunctional acrylate, 1,2-bis(p-vinylphenyl)ethane (BVPE), or a combination of at least two thereof.
  • DUV divinylbenzene
  • BVPE 1,2-bis(p-vinylphenyl)ethane
  • the resin also includes a thermoplastic resin.
  • the mass percentage of the thermoplastic resin in the resin is ⁇ 90%, for example, it can be 0, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 75%, 80% or 85%, as well as specific point values between the above point values. Due to space limitations and for the sake of simplicity, the present invention no longer exhaustively lists the specific point values included in the range.
  • the thermoplastic resin comprises hydrogenated styrene-butadiene block copolymer (SEBS) and/or thermoplastic polyphenylene ether (PPO).
  • SEBS hydrogenated styrene-butadiene block copolymer
  • PPO thermoplastic polyphenylene ether
  • the hydrogenated styrene-butadiene block copolymer includes unmodified SEBS and/or modified SEBS.
  • the modified SEBS includes any one of maleic anhydride grafted SEBS, epoxy modified SEBS, amine modified SEBS, carboxyl modified SEBS, or a combination of at least two thereof.
  • the resin composition further comprises an initiator. Since the benzocyclobutene groups in the benzocyclobutene resin in the resin composition provided by the present invention can be thermally ring-opened to achieve curing and crosslinking, the initiator is an optional component.
  • the mass of the initiator is 0.1-3 parts, for example, it can be 0.2 parts, 0.5 parts, 0.8 parts, 1 parts, 1.2 parts, 1.5 parts, 1.8 parts, 2 parts, 2.2 parts, 2.5 parts or 2.8 parts, as well as specific point values between the above points. Due to space limitations and for the sake of simplicity, the present invention no longer exhaustively lists the specific point values included in the range.
  • the initiator includes any one of an organic peroxide, an azo initiator, and a carbon-based free radical initiator, or a combination of at least two of them.
  • the initiator includes any one of tert-butyl isopropylphenyl peroxide, dicumyl peroxide, benzoyl peroxide, 2,5-dimethyl-2,5-bis(tert-butylperoxy)hexane, 2,5-dimethyl-2,5-di(tert-butylperoxy)hexyne, 1,1-di(tert-butylperoxy)-3,3,5-dimethylcyclohexane, dicumyl, and polydicumyl, or a combination of at least two thereof.
  • the resin composition further comprises a filler.
  • the mass of the filler is 5-300 parts, for example, it can be 10 parts, 20 parts, 30 parts, 40 parts, 50 parts, 60 parts, 70 parts, 80 parts, 90 parts, 100 parts, 120 parts, 150 parts, 180 parts, 200 parts, 220 parts, 250 parts or 280 parts, as well as specific point values between the above points. Due to space limitations and for the sake of simplicity, the present invention no longer exhaustively enumerates the specific point values included in the range, and 5-200 parts are further preferred, and 5-150 parts are further preferred.
  • the filler is an inorganic filler and/or an organic filler, and an inorganic filler is more preferred.
  • the inorganic filler includes any one of non-metallic oxides, metal oxides, metal hydroxides, metal nitrides, non-metallic nitrides, inorganic hydrates, inorganic salts, metal hydrates, and inorganic phosphorus, or a combination of at least two thereof.
  • the inorganic filler includes any one or a combination of at least two of silicon dioxide, aluminum hydroxide, aluminum oxide, talc, aluminum nitride, boron nitride, silicon carbide, barium sulfate, barium titanate, strontium titanate, calcium carbonate, calcium silicate, and mica.
  • the silica may be any one of fused silica, crystalline silica, spherical silica, hollow silica, or a combination of at least two thereof.
  • the organic filler includes any one of polyphenylene ether (powder and/or microspheres), polytetrafluoroethylene (powder), polyetheretherketone, polyphenylene sulfide, polyethersulfone (powder), or a combination of at least two thereof.
  • the median particle size ( D50 ) of the filler is 0.01-50 ⁇ m, for example, 0.05 ⁇ m, 0.1 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, and specific values between the above points. Due to space limitations and for the sake of simplicity, the present invention no longer exhaustively enumerates the specific points included in the range. It is further preferred to be 0.01-20 ⁇ m, and even more preferred to be 0.01-10 ⁇ m.
  • the particle size of the filler is measured using a MS3000 Malvern laser particle size analyzer.
  • the filler comprises a surface-treated filler.
  • the surface treatment agent for the surface treatment includes any one of a silane coupling agent, an organosilicon oligomer, and a titanate coupling agent, or a combination of at least two of them.
  • the mass of the surface treatment agent is 0.1-5 parts, for example, it can be 0.2 parts, 0.5 parts, 0.8 parts, 1 parts, 1.5 parts, 2 parts, 2.5 parts, 3 parts, 3.5 parts, 4 parts or 4.5 parts, as well as specific point values between the above point values. Due to space limitations and for the sake of simplicity, the present invention no longer exhaustively lists the specific point values included in the range, and 0.5-3 parts is further preferred, and 0.75-2 parts is further preferred.
  • the resin composition further comprises a flame retardant.
  • the mass of the flame retardant is 1-50 parts, for example, it can be 5 parts, 10 parts, 15 parts, 20 parts, 25 parts, 30 parts, 35 parts, 40 parts or 45 parts, as well as specific point values between the above point values. Due to space limitations and for the sake of simplicity, the present invention no longer exhaustively lists the specific point values included in the range.
  • the flame retardant includes any one of nitrogen-based flame retardants, halogen-based flame retardants (such as chlorine-containing flame retardants and/or bromine-containing flame retardants), phosphorus-based flame retardants, and metal hydroxide flame retardants, or a combination of at least two thereof.
  • nitrogen-based flame retardants such as chlorine-containing flame retardants and/or bromine-containing flame retardants
  • halogen-based flame retardants such as chlorine-containing flame retardants and/or bromine-containing flame retardants
  • phosphorus-based flame retardants such as sodium hydroxide flame retardants
  • the resin composition further comprises other additives, such as a toughening agent and/or a viscosity regulator.
  • additives such as a toughening agent and/or a viscosity regulator.
  • a solvent may also be added to the resin composition, and the amount of the solvent added is selected by a person skilled in the art based on experience and process requirements, so that the resin composition reaches a viscosity suitable for use, so as to facilitate coating, impregnation, processing, etc. of the resin composition. In the subsequent drying, semi-curing or complete curing process, the solvent in the resin composition will partially or completely volatilize.
  • the solvent of the present invention is not particularly limited, and generally, ketones such as acetone, butanone, and cyclohexanone, aromatic hydrocarbons such as toluene and xylene, esters such as ethyl acetate and butyl acetate, alcohols such as methanol, ethanol, or butanol, alcohols such as ethyl cellosolve, butyl cellosolve, ethylene glycol monomethyl ether, carbitol, or butyl carbitol, and nitrogen-containing solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, or N-methyl-2-pyrrolidone can be selected; the solvent can be used alone or in combination of two or more. Ketones such as acetone, butanone, and cyclohexanone, and aromatic hydrocarbons such as toluene and xylene are preferred.
  • the resin composition provided by the present invention is prepared by the following method, which comprises: mixing and uniformly dispersing the components in the resin composition to obtain the resin composition.
  • the present invention provides a resin film, wherein the material of the resin film includes the resin composition as described in the second aspect.
  • the resin film is obtained by coating the resin composition on a release material and then drying and/or semi-curing the resin composition.
  • the drying and semi-curing temperatures are each independently 100-180°C, for example, 110°C, 115°C, 120°C, 125°C, 130°C, 135°C, 140°C, 145°C, 150°C, 155°C, 160°C, 165°C, 170°C or 175°C, as well as specific point values between the above point values. Due to space limitations and for the sake of simplicity, the present invention no longer exhaustively lists the specific point values included in the range.
  • the present invention provides a resin-coated copper foil, wherein the material of the resin-coated copper foil comprises the resin composition as described in the second aspect.
  • the resin-coated copper foil is obtained by coating the resin composition on a copper foil and then drying and/or semi-curing the resin composition.
  • the drying and semi-curing temperatures are each independently 100-180°C, for example, 110°C, 115°C, 120°C, 125°C, 130°C, 135°C, 140°C, 145°C, 150°C, 155°C, 160°C, 165°C, 170°C or 175°C, as well as specific point values between the above point values. Due to space limitations and for the sake of simplicity, the present invention no longer exhaustively lists the specific point values included in the range.
  • the present invention provides a prepreg, comprising a reinforcing material and the resin composition as described in the second aspect attached to the reinforcing material.
  • the raw material of the reinforcing material includes any one of natural fibers, organic synthetic fibers, organic fabrics, and inorganic fibers, or a combination of at least two thereof; for example, glass fiber cloth, quartz glass fiber blended cloth, non-woven fabric, quartz cloth, fiber paper, wood pulp paper, and the like.
  • the curing is carried out in a press.
  • Ricon 154 polybutadiene, 90% molar content of structural units formed by 1,2-polymerization, Sartomer, USA;
  • Ricon 184 butadiene-styrene copolymer (butadiene-styrene resin), 1,2-polymerized structural units with a molar percentage of 30%, styrene structural units The molar percentage is 22%, Sartomer Company, USA;
  • a benzocyclobutene resin CH-BCBS2 the preparation method of which is as follows:
  • TIC Triallyl isocyanurate
  • PCT water absorption rate (%)/6h After etching away the copper foil, the board was made into 100 mm ⁇ 100 mm size samples, three pieces; the board samples were steamed in a pressure cooker at 105°C and 103.4 kPa for 360 min, and the weight before and after PCT was tested. The weight change after PCT/weight before PCT ⁇ 100% was the PCT water absorption rate;
  • a resin composition and a prepreg and a copper clad laminate containing the same which differ from Application Example 1 in that the formula of the resin composition is different, as shown in Table 2, Table 3 and Table 4; wherein the dosage unit of each component is "part", and "--" represents that the component is not added; the preparation method and performance testing method of the prepreg and the copper clad laminate are the same as those in Application Example 1.
  • the present invention through the design and optimization of the benzocyclobutene resin structure, makes the resin composition and copper clad laminate containing it have excellent dielectric properties, heat resistance and moisture and heat resistance, and at the same time have high modulus and mechanical properties, high peel strength, excellent processability, and can fully meet the various performance requirements of high-frequency and high-speed PCB for resin materials; specifically, the glass transition temperature Tg of the copper clad laminate is 190-283°C, and the Dk at 10GHz is 2.91 -3.52, Df is 0.0005-0.0013, can pass PCT 6h test, PCT water absorption is 0.05-0.09%, heat resistance at 300°C>60min, peel strength is 0.48-0.86N/mm; moreover, the benzocyclobutene resin alone as a resin component of the resin composition can make the Dk of the copper clad laminate at 10GHz to be 2.91-3.10, and Df to be 0.0005-0.0009, which has outstanding dielectric performance
  • Comparative Example 1 does not contain the benzocyclobutene resin defined in the present invention, and the dielectric properties are poor due to the high content of benzene ring structure in its structure.
  • Comparative Example 2 uses benzocyclobutene monomer blended with polybutadiene. Since benzocyclobutene is not grafted into the polybutadiene resin, compared with Application Example 10, under the same process conditions, the glue flow is too large to cause the slide plate, and a normal board cannot be pressed out.
  • the present invention illustrates the benzocyclobutene resin, the resin composition containing the benzocyclobutene resin and the application thereof through the above-mentioned embodiments, but the present invention is not limited to the above-mentioned process steps, that is, it does not mean that the present invention must rely on the above-mentioned process steps to be implemented.
  • Those skilled in the art should understand that any improvement of the present invention, equivalent replacement of the raw materials selected by the present invention, addition of auxiliary components, selection of specific methods, etc., all fall within the protection scope and disclosure scope of the present invention.

Abstract

一种苯并环丁烯树脂、包含其的树脂组合物及其应用,所述苯并环丁烯树脂包含至少一种第一结构单元和至少一种第二结构单元,所述第一结构单元具有如式I所示结构,所述第二结构单元具有如式IIA和/或如式IIB所示结构。所述苯并环丁烯树脂为全碳氢结构,通过聚合物结构的设计,具有充分低的介电常数Dk和介质损耗角正切Df,极性小,吸水率低,并具有较好的热固化活性、交联效率和交联密度。所述苯并环丁烯树脂的玻璃化转变温度高,具有优异的介电性能、耐热性和耐湿热性,同时具有高的模量和力学机械性能,工艺加工性优良,能够充分满足高频高速PCB对树脂材料的各项性能要求。

Description

一种苯并环丁烯树脂、包含其的树脂组合物及其应用 技术领域
本发明属于通信材料技术领域,具体涉及一种苯并环丁烯树脂、包含其的树脂组合物及其应用。
背景技术
随着科技的发展和社会的进步,人们对通讯速度和质量提出了越来越高的要求。目前正在发展的6G技术将使用太赫兹(THz)即亚毫米频段,其传输能力比5G再提升100倍。随着通讯频率的提高,对印制电路板PCB的要求也随之提高,主要包括更低的介质损耗角正切Df、更低的介电常数Dk、更高的可靠性、更高的耐热性以及更低的热膨胀系数CTE等。长期以来,行业内对介电性能很好的热固性聚苯醚树脂、双马来酰亚胺树脂、乙烯基苄基醚树脂、碳氢树脂等进行了研究。目前量产的PCB主要使用了包含端乙烯基聚苯醚和三烯丙基异三聚氰酸酯(TAIC)的复合型热固性树脂,尽管其具有优良的机械性能和耐热性,但由于TAIC中含有极性基团,导致Dk和Df不能满足下一代通讯技术的要求。为了进一步提升介电性能,研究人员致力于开发新的低介电材料体系,研究表明,降低材料中分子的极化率、增加空隙率是获得低介电的有效手段,例如聚丙烯、聚苯乙烯具有较低的Dk和Df;但是,聚丙烯、聚苯乙烯的耐热性远远达不到PCB的要求。
近年来,在通信用、生活用、工业用等电子设备中,明显存在着安装方法小型化、高密度化的趋势,伴随而来的是印制电路板也需要多次压合,形成高密度化的高多层印制电路板,而高多层的印制电路板的原材料覆铜板则需要具有更高的耐热性、更好的尺寸稳定性和更低的热膨胀系数,上述性能也是筛选树脂材料的关键指标。
集成电路的制作成型过程中需要经历400℃以上的高温,在之后的加工过程中需要的温度则更高。铜布线工艺可采用电镀或化学还原法进行,可以在250℃以下完成,但为了确保铜的沉积致密无气孔,需要在400-450℃条件下进行退火处理,因此,要求材料拥有优异的耐热性和很高的玻璃化转变温度。虽然如聚酰亚胺、聚苯并恶嗪的耐热性可以达到要求,但为了获得更低的Dk和Df,设 计开发新型全碳氢结构的高耐热树脂材料是当务之急。
陶氏化学公司曾经推出全碳氢结构的SiLK树脂,其中含有苯乙炔基团,具有极低的介电常数(Dk为2.65),玻璃化转变温度高达490℃,但这种材料的合成成本高,力学性能无法达到要求。
苯并环丁烯是另外一类全碳氢结构的热固性树脂,因其优异的耐热性、机械性能、极低的介电损耗、极低的介电常数和较低的成本,逐渐成为新一代高性能电子材料,有望应用于高端微电子领域。苯并环丁烯自身的沸点较低,约150℃,是一种易挥发的液体,一般制备成衍生物使用。苯并环丁烯可以和乙烯基在高温下反应形成环己烷结构,或在更高温度下二聚为环辛烷结构,从而实现较高的耐热性。苯并环丁烯的衍生物也是小分子,一般含有两个以上的苯并环丁烯官能团,从而可以在高温条件下进一步形成聚合物。研发人员初步开发的苯并环丁烯衍生物有如下几种:(1)通过4-溴苯并环丁烯和四甲基二乙烯基二硅氧烷进行Heck偶联反应,得到含硅氧烷的二苯并环丁烯;(2)将4-溴苯并环丁烯和间苯二酚在氯化亚铜的催化下经醚化反应制备出含有苯醚和萘酸结构的双苯并环丁烯衍生物;(3)采用4-溴苯并环丁烯和苯二硼酸进行Suzuki偶联反应来制备全碳氢结构的衍生物;(4)通过二乙烯基苯和苯并环丁烯进行Heck偶联反应,制备全碳氢结构的衍生物。但是,上述苯并环丁烯衍生物都存在一些不可忽视的缺陷,导致其难以满足PCB的使用要求。例如,(1)和(2)含有硅氧烷或苯酚基团,由于并非全碳氢结构,难以获得低介电;(3)中的苯二硼酸成本较高,且残留的极性硼酸或硼酸端基会导致介电性能下降,从而牺牲了苯并环丁烯材料原本的介电优势;(4)中的原料二乙烯基苯在常温下就能发生自由基聚合,容易生成副产物,导致量产困难。
因此,开发一种兼具优异的介电性能、耐热性、机械性能、加工性且易于实现量产的树脂材料,以满足PCB的应用需求,是本领域亟待解决的问题。
发明内容
针对现有技术的不足,本发明的目的在于提供一种苯并环丁烯树脂、包含其的树脂组合物及其应用,所述苯并环丁烯树脂具有全碳氢结构,能够同时满足低介电常数、低介质损耗角正切、优异的热稳定性、耐湿热性、高模量和优良的工艺加工性,且制备方法简单,易于量产,化学性质稳定,充分满足了高 频高速PCB对树脂材料的性能要求。
为达到此发明目的,本发明采用以下技术方案:
第一方面,本发明提供一种苯并环丁烯树脂,所述苯并环丁烯树脂包含至少一种第一结构单元和至少一种第二结构单元;所述第一结构单元具有如式I所示结构:
Figure PCTCN2022143308-appb-000001
式I中,R 1为乙烯基、乙基和/或苯基。
所述第二结构单元具有如式IIA和/或如式IIB所示结构:
Figure PCTCN2022143308-appb-000002
本发明提供的苯并环丁烯树脂中,所述第一结构单元基于聚丁二烯(R 1为乙烯基)、氢化聚丁二烯(R 1为乙基)或丁二烯-苯乙烯共聚物(R 1为乙烯基和苯基),所述第二结构单元的侧链含有苯并环丁烯结构和苯环;所述苯并环丁烯树脂为全碳氢结构,极性小,具有低介电常数Dk和低介质损耗角正切Df,吸水率低;同时,聚合物链中含有易反应的烯基和苯并环丁烯基团,在热固化反应中具有高的交联效率和交联密度,并能够在热固化后获得更好的介电性能。所述苯并环丁烯树脂的主链为柔性的碳链结构,侧链含有苯环、苯并环丁烯结构和烯基,特定的聚合物结构赋予其高的玻璃化转变温度,低吸水率,优异的介电性能、热稳定性和耐湿热性,高模量和良好的机械性能,而且具有优良的工艺加工性,能够充分满足高频高速PCB对树脂的各项性能要求。
优选地,所述苯并环丁烯树脂包含式IA所示结构的第一结构单元A,分子结构中含有易反应的乙烯基,在热固化反应中具有较好的交联活性和较高的交联效率;
Figure PCTCN2022143308-appb-000003
优选地,所述苯并环丁烯树脂包含式IB所示结构的第一结构单元B;
Figure PCTCN2022143308-appb-000004
可选地,所述第一结构单元B可通过第一结构单元A氢化得到,其含有饱和烷基结构单元,具有较低的介质损耗。
优选地,所述苯并环丁烯树脂包含式IC所示结构的第一结构单元C,其侧链含有苯基,与其他树脂的相容性较好:
Figure PCTCN2022143308-appb-000005
优选地,所述苯并环丁烯树脂的第一结构单元中可以单独包含第一结构单元A(未氢化),也可以同时包含第一结构单元A和第一结构单元B结构(部分氢化),也可以单独包含第一结构单元B(完全氢化),也可以同时包含第一结构单元A和第一结构单元C结构(未氢化),也可以同时包含第一结构单元A、第一结构单元B和第一结构单元C结构(部分氢化),也可以同时包含第一结构单元B和第一结构单元C结构(完全氢化)。
优选地,所述苯并环丁烯树脂中第二结构单元的质量百分含量≥10%,例如可以为15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%或80%,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值,进一步优选≥30%,进一步优选30-80%。
作为本发明的优选技术方案,所述苯并环丁烯树脂中第二结构单元的质量 百分含量≥30%,由此,使所述苯并环丁烯树脂兼具优异的介电性能、耐热性、模量和机械性能、较高的热固化交联反应活性和交联密度。如果包含苯并环丁烯基团的第二结构单元的质量百分含量过低,则会使苯并环丁烯树脂的热固化反应性降低,玻璃化转变温度和耐热性下降,而且也会影响介电性能;如果第二结构单元的摩尔百分含量过高,不仅增加了树脂的合成难度和生产成本,而且会使苯并环丁烯树脂的柔韧性降低,流动性不佳,影响加工性能。
优选地,所述苯并环丁烯树脂还包含第三结构单元,所述第三结构单元具有如式IIIA和/或式IIIB所示结构:
Figure PCTCN2022143308-appb-000006
式IIIA和/或式IIIB所示的所述第三结构单元为丁二烯1,4-聚合而成的结构单元。
优选地,所述苯并环丁烯树脂还包含第四结构单元,所述第四结构单元为聚丁二烯结构单元(第一结构单元A,
Figure PCTCN2022143308-appb-000007
)聚合而成的具有环状结构的结构单元。
需要说明的是,本发明所述苯并环丁烯树脂为聚合物链段结构,包括至少一个(优选多个)第一结构单元、至少一个(优选多个)第二结构单元以及可选地第三结构单元、可选地第四结构单元;本发明对上述结构单元的连接顺序不进行限定,化学中可行的任意连接顺序/连接方式都在本发明的范围之内。
优选地,所述苯并环丁烯树脂的数均分子量为1000-200000,例如可以为2000、5000、8000、10000、12000、15000、20000、50000、80000、100000、120000、150000或180000,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
示例性地,所述苯并环丁烯树脂的制备方法包括:碳氢树脂与苯并环丁烯 单体
Figure PCTCN2022143308-appb-000008
进行反应,得到所述苯并环丁烯树脂;所述碳氢树脂为聚丁二烯或丁二烯-苯乙烯共聚物,其中含有丁二烯1,2-聚合的结构单元
Figure PCTCN2022143308-appb-000009
优选地,所述反应在有机过氧化物的存在下进行。
优选地,所述有机过氧化物包括叔丁基异丙基苯基过氧化物、过氧化二异丙苯、过氧化苯甲酰、2,5-二甲基-2,5-双(叔丁基过氧基)己烷、2,5-二甲基-2,5-二(叔丁基过氧基)己炔、1,1-二(叔丁基过氧基)-3,3,5-二甲基环己烷中的任意一种或至少两种的组合。
优选地,所述反应的温度为80-130℃,例如可以为85℃、90℃、95℃、100℃、105℃、110℃、115℃、120℃或125℃,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
优选地,所述反应的时间为4-16h,例如可以为5h、6h、7h、8h、9h、10h、11h、12h、13h、14h或15h,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
作为本发明的优选技术方案,所述苯并环丁烯树脂采用碳氢树脂(聚丁二烯或丁二烯-苯乙烯共聚物)与苯并环丁烯单体(4-溴苯并环丁烯改性苯乙烯)反应而成,其化学性质稳定,无须加阻聚剂保存;而且制备工艺简单,收率高,副反应少,适于量产。
优选地,所述苯并环丁烯树脂的制备中还包括可选地氢化反应的步骤,所述氢化反应可以在前述反应之前和/或反应之后进行,所述氢化反应可以为完全氢化(即将苯并环丁烯树脂的主链和支链上的C=C全部氢化,优选在反应之后进行)或部分氢化(可以在反应之前或之后进行)。所述氢化反应使来自碳氢树脂(聚丁二烯和/或苯乙烯-丁二烯共聚物)的C=C双键全部或部分加氢,形成饱和碳链;由此,有助于苯并环丁烯树脂的介电性能的进一步优化。
第二方面,本发明提供一种树脂组合物,所述树脂组合物中的树脂包括如第一方面所述的苯并环丁烯树脂。
需要说明的是,所述树脂组合物中包括“树脂”,即有机组分,可以理解为后续应用中形成连续相的组分;在本文的描述中,所述苯并环丁烯树脂、可选地含不饱和基团的热固性材料、可选地热塑性树脂均属于“树脂”。所述树脂组合物中还包括“非树脂”的组分,包括填料、阻燃剂、加工助剂等。
优选地,所述树脂中苯并环丁烯树脂的质量百分含量为5-100%,例如可以为8%、10%、20%、30%、40%、50%、60%、70%、80%或90%,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
优选地,所述树脂中还包括含不饱和基团的热固性材料。
本发明中,所述树脂组合物中的树脂可以为苯并环丁烯树脂单独使用,也可以与其他含不饱和基团(C=C双键的基团)的热固性材料复合使用,可作为下一代通讯设备的基材。
优选地,所述树脂中含不饱和基团的热固性材料的质量百分含量≤95%,例如可以为0、5%、10%、20%、30%、40%、50%、60%、70%、80%或90%,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值,进一步优选≤90%。
优选地,所述不饱和基团包括乙烯基、乙烯基苯基、乙烯基苄基、烯丙基、(甲基)丙烯酸酯基或异丙烯基中的至少一种。
本发明中,所述(甲基)丙烯酸酯基包括丙烯酸酯基和/或甲基丙烯酸酯基。
本发明中,所述含不饱和基团的热固性材料可以为含不饱和基团的树脂(聚合物)和/或含不饱和基团的小分子化合物。
优选地,所述含不饱和基团的热固性材料包括聚丁二烯、苯乙烯-丁二烯共聚物、苯乙烯-丁二烯-苯乙烯三嵌段共聚物、不饱和聚苯醚树脂、马来酰亚胺化合物、乙烯基芳香族聚合物、乙烯基脂环族聚合物、烯丙基化合物、多官能乙烯基化合物中的任意一种或至少两种的组合。
本发明中,作为热固性材料的聚丁二烯、苯乙烯-丁二烯共聚物、苯乙烯-丁二烯-苯乙烯三嵌段共聚物中,均含有可交联的活性基团C=C,可以为基于丁 二烯单体的1,2-乙烯基
Figure PCTCN2022143308-appb-000010
本发明中,所述苯乙烯-丁二烯共聚物可以为苯乙烯-丁二烯无规共聚物和/或苯乙烯-丁二烯嵌段共聚物。
优选地,所述不饱和聚苯醚树脂包括不饱和基团封端的聚苯醚树脂;其中的不饱和基团可以为乙烯基苄基、乙烯基苯基、丙烯酸酯基、甲基丙烯酸酯基中的任意一种或几种。
优选地,所述乙烯基芳香族聚合物包括多官能乙烯基芳香族聚合物,其聚合单体包括二乙烯基芳香族化合物和单乙烯基芳香族化合物的组合。
优选地,所述二乙烯基芳香族化合物包括二乙烯基苯、二乙烯基联苯、二乙烯基萘、二异丙烯基苯、二异丙烯基萘、二异丙烯基联苯中的任意一种或至少两种的组合;上述列举的二乙烯基芳香族化合物包括其所有的同分异构体。
优选地,所述单乙烯基芳香族化合物包括苯乙烯,以及除苯乙烯之外的其他单乙烯基芳香族化合物。
本发明中,所述乙烯基芳香族聚合物可通过市场途径购买得到,例如可以为日本新日铁的ODV。
优选地,所述烯丙基化合物包括三烯丙基异氰脲酸酯(TAIC)、三烯丙基氰尿酸酯(TAC)、聚异氰脲酸三烯丙酯、三烯丙酯三聚氰酸酯、邻苯二甲酸二烯丙酯中的任意一种或至少两种的组合。
优选地,所述多官能乙烯基化合物包括三甲基丙烯酸、二乙烯基苯(DBV)、多官能丙烯酸酯、1,2-双(对乙烯基苯基)乙烷(BVPE)中的任意一种或至少两种的组合。
优选地,所述树脂中还包括热塑性树脂。
优选地,所述树脂中热塑性树脂的质量百分含量≤90%,例如可以为0、5%、10%、20%、30%、40%、50%、60%、70%、75%、80%或85%,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
优选地,所述热塑性树脂包括氢化苯乙烯-丁二烯嵌段共聚物(SEBS)和/或热塑性聚苯醚(PPO)。
优选地,所述氢化苯乙烯-丁二烯嵌段共聚物包括未改性SEBS和/或改性SEBS。
优选地,所述改性SEBS包括马来酸酐接枝SEBS、环氧改性SEBS、胺基改性SEBS、羧基改性SEBS中的任意一种或至少两种的组合。
优选地,所述树脂组合物中还包括引发剂。由于本发明提供的树脂组合物中,所述苯并环丁烯树脂中的苯并环丁烯基团能够热开环实现固化交联,因此,引发剂为可选地组分。
优选地,以树脂中苯并环丁烯树脂和可选地含不饱和基团的热固性材料的质量之和为100份计,所述引发剂的质量为0.1-3份,例如可以为0.2份、0.5份、0.8份、1份、1.2份、1.5份、1.8份、2份、2.2份、2.5份或2.8份,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
优选地,所述引发剂包括有机过氧化物、偶氮类引发剂、碳系自由基引发剂中的任意一种或至少两种的组合。
优选地,所述引发剂包括叔丁基异丙基苯基过氧化物、过氧化二异丙苯、过氧化苯甲酰、2,5-二甲基-2,5-双(叔丁基过氧基)己烷、2,5-二甲基-2,5-二(叔丁基过氧基)己炔、1,1-二(叔丁基过氧基)-3,3,5-二甲基环己烷、联枯、聚联枯中的任意一种或至少两种的组合。
优选地,所述树脂组合物中还包括填料。
优选地,所述树脂组合物中以树脂的质量为100份计,所述填料的质量为5-300份,例如可以为10份、20份、30份、40份、50份、60份、70份、80份、90份、100份、120份、150份、180份、200份、220份、250份或280份,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值,进一步优选5-200份,更进一步优选5-150份。
优选地,所述填料为无机填料和/或有机填料,进一步优选无机填料。
优选地,所述无机填料包括非金属氧化物、金属氧化物、金属氢氧化物、金属氮化物、非金属氮化物、无机水合物、无机盐、金属水合物、无机磷中的任意一种或至少两种的组合。
优选地,所述无机填料包括二氧化硅、氢氧化铝、氧化铝、滑石粉、氮化铝、氮化硼、碳化硅、硫酸钡、钛酸钡、钛酸锶、碳酸钙、硅酸钙、云母中的 任意一种或至少两种的组合。
优选地,所述二氧化硅可以为熔融二氧化硅、结晶型二氧化硅、球型二氧化硅、空心二氧化硅中的任意一种或至少两种的组合。
优选地,所述有机填料包括聚苯醚(粉末和/或微球)、聚四氟乙烯(粉末)、聚醚醚酮、聚苯硫醚、聚醚砜(粉末)中的任意一种或至少两种的组合。
优选地,所述填料的中位粒径(D 50)为0.01-50μm,例如可以为0.05μm、0.1μm、0.5μm、1μm、5μm、10μm、15μm、20μm、25μm、30μm、35μm、40μm、45μm,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值,进一步优选0.01-20μm,更进一步优选0.01-10μm。
示例性地,所述填料的粒径采用MS3000马尔文激光粒度仪测试得到。
优选地,所述填料包括经过表面处理的填料。
优选地,所述表面处理的表面处理剂包括硅烷偶联剂、有机硅低聚物、钛酸酯偶联剂中的任意一种或至少两种的组合。
优选地,以待处理的填料的质量为100份计,所述表面处理剂的质量为0.1-5份,例如可以为0.2份、0.5份、0.8份、1份、1.5份、2份、2.5份、3份、3.5份、4份或4.5份,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值,进一步优选0.5-3份,更进一步优选0.75-2份。
优选地,所述树脂组合物中还包括阻燃剂。
优选地,所述树脂组合物中以树脂的质量为100份计,所述阻燃剂的质量为1-50份,例如可以为5份、10份、15份、20份、25份、30份、35份、40份或45份,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
优选地,所述阻燃剂包括氮系阻燃剂、卤系阻燃剂(例如含氯阻燃剂和/或含溴阻燃剂)、磷系阻燃剂、金属氢氧化物阻燃剂中的任意一种或至少两种的组合。
优选地,所述树脂组合物还包括其他助剂,例如增韧剂和/或粘度调节剂等。
所述树脂组合物中还可以加入溶剂,溶剂的添加量由本领域技术人员根据经验以及工艺需求来选择,使树脂组合物达到适合使用的粘度,以便于树脂组 合物的涂覆、浸渍、加工等即可。后续在烘干、半固化或完全固化环节,树脂组合物中的溶剂会部分或完全挥发。
作为本发明的溶剂,没有特别限定,一般可选用丙酮、丁酮、环己酮等酮类,甲苯、二甲苯等芳香烃类,醋酸乙酯、醋酸丁酯等酯类,甲醇、乙醇或丁醇等醇类,乙基溶纤剂、丁基溶纤剂、乙二醇单甲醚、卡必醇或丁基卡必醇等醇类,N,N-二甲基甲酰胺、N,N-二甲基乙酰胺或N-甲基-2-吡咯烷酮等含氮类;溶剂可以单独使用,也可两种或两种以上混合使用。优选丙酮、丁酮、环己酮等酮类,以及甲苯、二甲苯等芳香烃类。
本发明提供的树脂组合物采用如下方法进行制备,所述制备方法包括:将树脂组合物中的各组分混合并分散均匀,得到所述树脂组合物。
第三方面,本发明提供一种树脂膜,所述树脂膜的材料包括如第二方面所述的树脂组合物。
优选地,所述树脂膜通过将所述树脂组合物涂覆于离型材料上经干燥和/或半固化制得。
优选地,所述干燥、半固化的温度各自独立地为100-180℃,例如可以为110℃、115℃、120℃、125℃、130℃、135℃、140℃、145℃、150℃、155℃、160℃、165℃、170℃或175℃,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
第四方面,本发明提供一种涂树脂铜箔,所述涂树脂铜箔的材料包括如第二方面所述的树脂组合物。
优选地,所述涂树脂铜箔通过将所述树脂组合物涂覆于铜箔上经干燥和/或半固化制得。
优选地,所述干燥、半固化的温度各自独立地为100-180℃,例如可以为110℃、115℃、120℃、125℃、130℃、135℃、140℃、145℃、150℃、155℃、160℃、165℃、170℃或175℃,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
第五方面,本发明一种预浸料,所述预浸料包括增强材料和附着于所述增强材料上的如第二方面所述的树脂组合物。
优选地,所述树脂组合物通过浸渍干燥后附着于所述增强材料上。
优选地,所述增强材料的原料包括天然纤维、有机合成纤维、有机织物、 无机纤维中的任意一种或至少两种组合;例如玻璃纤维布、石英玻璃纤维混纺布、无纺布、石英布、纤维纸、木浆纸等。
示例性地,所述预浸料的制备方法为:采用所述树脂组合物的树脂胶液浸润增强材料,然后干燥,得到所述预浸料。
优选地,所述干燥的温度为100-180℃,例如可以为110℃、115℃、120℃、125℃、130℃、135℃、140℃、145℃、150℃、155℃、160℃、165℃、170℃或175℃,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
优选地,所述干燥的时间为1-30min,例如可以为2min、5min、8min、10min、15min、20min或25min,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
第六方面,本发明提供一种覆金属箔层压板,所述覆金属箔层压板包括如第三方面所述的树脂膜、如第四方面所述的树脂膜、如第五方面所述的预浸料中的至少一种。
优选地,所述覆金属箔层压板中的金属箔包括铜箔、铝箔、镍箔、合金箔中的任意一种或至少两种的组合,进一步优选铜箔。
所述金属箔为铜箔,所述覆金属箔层压板为覆铜板。
优选地,所述覆金属箔层压板中预浸料的张数为1-20,例如可以为2、3、5、7、9、10、11、13、15、17或19,以及上述点值间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
示例性地,所述覆金属箔层压板的制备方法包括:在一张预浸料的一侧或两侧压合金属箔,固化,得到所述覆金属箔层压板;或,将至少两张预浸料叠合成层压板,然后在所述层压板的一侧或两侧压合金属箔,固化,得到所述覆金属箔层压板。
优选地,所述固化在压机中进行。
优选地,所述固化的温度为170-280℃,例如180℃、190℃、200℃、210℃、220℃、230℃、240℃、250℃、260℃或270℃,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
优选地,所述固化的压力为20-60kg/cm 2,例如可以为25kg/cm 2、30kg/cm 2、35kg/cm 2、40kg/cm 2、45kg/cm 2、50kg/cm 2或55kg/cm 2,以及上述点值之间的 具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
优选地,所述固化的时间为60-300min,例如80min、100min、120min、150min、180min、200min、220min、240min、260min或280min,以及上述点值之间的具体点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
相对于现有技术,本发明具有以下有益效果:
(1)本发明提供的苯并环丁烯树脂为全碳氢结构,通过聚合物结构的设计,具有充分低的介电常数Dk和介质损耗角正切Df,极性小,吸水率低,并具有较好的热固化活性、交联效率和交联密度。所述苯并环丁烯树脂的玻璃化转变温度高,具有优异的介电性能、耐热性和耐湿热性,同时具有高的模量和力学机械性能,工艺加工性优良,能够充分满足高频高速PCB对树脂材料的各项性能要求。
(2)所述苯并环丁烯树脂可采用聚丁二烯与特定结构的苯并环丁烯单体反应而成,制备工艺简单,收率高,副反应少,适于量产;而且所述苯并环丁烯树脂的化学性质稳定,无须加阻聚剂保存。
(3)本发明通过苯并环丁烯树脂结构的设计和优化,使包含其的树脂组合物及覆铜板在10GHz的Dk≤3.52,Df≤0.0013,玻璃化转变温度为190-283℃,300℃耐热性>60min,能够通过PCT 6h测试,PCT吸水率≤0.09%,剥离强度为0.48-0.86N/mm,兼具优异的介电性能、耐热性和耐湿热性,层间结合力高,充分满足下一代通讯技术中高性能PCB的使用要求。
附图说明
图1为实施例3提供的苯并环丁烯树脂CH-BCBS3的红外光谱图。
具体实施方式
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
本发明以下具体实施方式中,所使用的碳氢树脂和苯并环丁烯单体的具体信息如下所示:
B1000,聚丁二烯,丁二烯1,2-聚合形成的结构单元
Figure PCTCN2022143308-appb-000011
下同)的摩尔百分含量为85%,日本曹达株式会社;
B2000,聚丁二烯,1,2-聚合形成的结构单元的摩尔百分含量88%,日本曹达株式会社;
B3000,聚丁二烯,1,2-聚合形成的结构单元的摩尔百分含量92%,日本曹达株式会社;
BI3060,部分氢化的聚丁二烯,1,2-聚合形成的结构单元的摩尔百分含量60%,日本曹达株式会社;
Ricon 154,聚丁二烯,1,2-聚合形成的结构单元的摩尔百分含量为90%,美国Sartomer公司;
Ricon 184,丁二烯-苯乙烯共聚物(丁苯树脂),1,2-聚合形成的结构单元的摩尔百分含量为30%,苯乙烯结构单元
Figure PCTCN2022143308-appb-000012
的摩尔百分含量为22%,美国Sartomer公司;
Ricon 100,丁二烯-苯乙烯共聚物(丁苯树脂),1,2-聚合形成的结构单元的摩尔百分含量为70%,苯乙烯结构单元的摩尔百分含量为22%,美国Sartomer公司;
苯并环丁烯单体,BCBS,结构为
Figure PCTCN2022143308-appb-000013
4-溴苯并环丁烯改性苯乙烯,购自武汉迪赛新材。
实施例1
一种苯并环丁烯树脂CH-BCBS1,其制备方法如下:
在烧瓶中称取70g聚丁二烯B1000,30g BCBS,80mL甲苯,使其溶解为均一溶液,在氩气氛中加热到回流温度。将0.5g叔丁基异丙基苯基过氧化物BIPB溶于20mL甲苯中,然后在35min滴加完毕,在甲苯回流温度下反应,通过TLC(薄层色谱)监控反应到BCBS原料点消失,停止反应,冷却即得苯并环丁烯树脂CH-BCBS1,无须分离即可使用。
实施例2
一种苯并环丁烯树脂CH-BCBS2,其制备方法如下:
在烧瓶中称取60g聚丁二烯B2000,40g BCBS,80mL甲苯,使其溶解为均一溶液,在氩气氛中加热到回流温度。将0.5g BIPB溶于20mL甲苯中然后在30min滴加完毕,在甲苯回流温度下反应,通过TLC色谱柱监控反应到BCBS原料点消失,停止反应,冷却即得苯并环丁烯树脂CH-BCBS2,无须分离即可使用。
实施例3
一种苯并环丁烯树脂CH-BCBS3,其制备方法如下:
在烧瓶中称取50g聚丁二烯B3000,50g BCBS,80mL甲苯,使其溶解为均一溶液,在氩气氛中加热到回流温度。将0.5g BIPB溶于20mL甲苯中然后在40min滴加完毕,在甲苯回流温度下反应,通过TLC色谱柱监控反应到BCBS原料点消失,停止反应,冷却即得苯并环丁烯树脂CH-BCBS3,无须分离即可使用。
实施例4
一种苯并环丁烯树脂CH-BCBS4,其制备方法如下:
在烧瓶中称取90g部分氢化聚丁二烯BI3060,10g BCBS,80mL甲苯,使其溶解为均一溶液,在氩气氛中加热到回流温度。将0.5g BIPB溶于20mL甲苯中然后在35min滴加完毕,在甲苯回流温度下反应,通过TLC色谱柱监控反应到BCBS原料点消失停止反应,冷却即得苯并环丁烯树脂CH-BCBS4,无须分离即可使用。
实施例5
一种苯并环丁烯树脂CH-BCBS5,其制备方法如下:
在烧瓶中称取30g聚丁二烯Ricon 154,70g BCBS,80mL甲苯,使其溶解为均一溶液,在氩气氛中加热到回流温度。将0.5g BIPB溶于20mL甲苯中 然后在35min滴加完毕,在甲苯回流温度下反应,通过TLC色谱柱监控反应到BCBS原料点消失,停止反应,冷却即得苯并环丁烯树脂CH-BCBS5,无须分离即可使用。
实施例6
一种苯并环丁烯树脂CH-BCBS6,其制备方法如下:
在烧瓶中称取40g丁苯树脂Ricon 184,60g BCBS,80mL甲苯,使其溶解为均一溶液,在氩气氛中加热到回流温度。将0.5g BIPB溶于20mL甲苯中然后在35min滴加完毕,在甲苯回流温度下反应,通过TLC色谱柱监控反应到BCBS原料点消失,停止反应,冷却即得苯并环丁烯树脂CH-BCBS6,无须分离即可使用。
实施例7
一种苯并环丁烯树脂CH-BCBS7,其制备方法如下:
在烧瓶中称取20g丁苯树脂Ricon 100,80g BCBS,80mL甲苯,使其溶解为均一溶液,在氩气氛中加热到回流温度。将0.5g BIPB溶于20mL甲苯中然后在35min滴加完毕,在甲苯回流温度下反应,通过TLC色谱柱监控反应到BCBS原料点消失,停止反应,冷却即得苯并环丁烯树脂CH-BCBS7,无须分离即可使用。
苯并环丁烯树脂的结构表征:
采用傅里叶变换红外光谱仪(FTIR,IS10FT-IR,赛默飞)对前述苯并环丁烯树脂进行结构表征,其中,实施例3提供的苯并环丁烯树脂CH-BCBS3的红外光谱图如图1所示,从图1中可知,1473cm -1处归属于苯并环丁烯四元环的特征吸收,说明CH-BCBS3树脂中有苯并环丁烯结构,TLC色谱柱显示原材料消失,说明苯并环丁烯被接入聚丁二烯中。在1495cm -1出现非芳香环状结构的吸收,说明聚丁二烯中有双键成环;但905cm -1和995cm -1处端基双键吸收仍然很强,说明聚丁二烯结构是部分聚合。
对实施例1-7提供的苯并环丁烯树脂的具体信息进行总结,如表1所示;其中,第二结构单元(%)代表其在苯并环丁烯树脂中的质量百分含量,通过BCBS的投料量和碳氢树脂的质量计算得到(由于制备过程中采用薄层色谱法进行检测,确保BCBS反应完全,因此BCBS完全转化为第二结构单元。
表1
Figure PCTCN2022143308-appb-000014
对比制备例1
采用现有技术CN107501459A实施例1中的方法合成苯并环丁烯树脂CH-BCB-D1,其由4-乙烯基联苯和4-乙烯基苯并环丁烯共聚而成。
本发明以下具体实施方式中,涉及的物料如下所示:
(1)苯并环丁烯树脂
实施例1-7提供的苯并环丁烯树脂CH-BCB1至CH-BCB7;
对比制备例1提供的CH-BCB-D1。
(2)含不饱和基团的热固性材料
不饱和聚苯醚树脂(PPO),MX9000,美国SABIC公司;
聚丁二烯,B3000,日本曹达株式会社;
丁苯树脂,Ricon 100,美国Sartomer公司;
双马来酰亚胺,BMI-70,大和化成工业公司;
多官能乙烯基芳香族聚合物,ODV-XET,新日铁化学工业株式会社;
1,2-双(对乙烯基苯基)乙烷(BVPE),山东星顺;
三烯丙基异氰脲酸酯(TAIC),湖南方锐达。
(3)热塑性树脂
氢化苯乙烯-丁二烯嵌段共聚物(SEBS),SEBS-MA,牌号为KIC19-023,上海科腾。
(4)引发剂
叔丁基异丙基苯基过氧化物,BIPB,湖南方锐达。
(5)填料
二氧化硅,HM102YJ,江苏辉迈。
(6)阻燃剂
SYTELX 8010,美国雅宝。
应用例1
一种树脂组合物,以质量份计包括如下组分:100份苯并环丁烯树脂CH-BCBS1。
一种包含所述树脂组合物的预浸料和覆铜板,制备方法如下:
(1)按照配方量将所述树脂组合物与甲苯混合,制成固含量为65%的胶液;用所述胶液浸渍1035L玻纤布,控制合适厚度,然后在130℃的烘箱中烘烤4min,得到预浸料;
(2)将10张预浸料叠合,在其上下两侧叠上18μHVLP铜箔,在温度为210℃、压力为30kg/cm 2的条件下固化120min,得到所述覆铜板。
对所述覆铜板进行性能测试,具体方法如下:
(1)玻璃化转变温度Tg:以动态机械分析仪(DMA)Rheometric RSAIII进行测试;
(2)介电常数Dk和介质损耗角正切Df:使用谐振腔法(split post dielectric resonator,SPDR)法、采用介电分析仪(Dielectric Analyzer)HP Agilent E4991A进行测定,频率为10GHz;
(3)剥离强度PS:按照IPC-TM-650 2.4.8C标准测试,测试铜箔与电路载板之间的热应力后的剥离强度;
(4)耐湿热性:PCT/6h,将蚀刻掉铜箔后的板制成100mm×100mm尺寸样品,三块;用高压锅在105℃,103.4KPa压力下蒸煮板材样品360min,然后测试在288℃锡炉中浸没,测试分层爆板时间。不足300s,记录具体时间;达到5min后停止测试,记录时间为>300s。○表示样品在300s内都没有分层爆板,耐湿热性通过;×代表样品在300s内已经分层爆板,耐湿热性测试没有通过;
(5)耐热性T300:按照IPC-TM-650 2.4.24.1标准测试,测试材料耐热性;
(6)PCT吸水率(%)/6h:将蚀刻掉铜箔后的板制成100mm×100mm尺寸样品,三块;用高压锅在在105℃,103.4KPa压力下蒸煮板材样品360min,测试PCT前后质量,PCT后质量变化量/PCT前质量×100%,即为PCT吸水率;
测试结果如表2所示。
应用例2-13,对比例1-2
一种树脂组合物及包含其的预浸料、覆铜板,与应用例1的区别在于,树脂组合物的配方不同,具体如表2、表3和表4所示;其中,各组分的用量单位均为“份”,“--”代表未添加该组分;预浸料和覆铜板的制备方法、性能测试方法与应用例1相同。
表2
Figure PCTCN2022143308-appb-000015
Figure PCTCN2022143308-appb-000016
表3
Figure PCTCN2022143308-appb-000017
Figure PCTCN2022143308-appb-000018
Figure PCTCN2022143308-appb-000019
表4
Figure PCTCN2022143308-appb-000020
Figure PCTCN2022143308-appb-000021
结合前述性能测试数据可知,本发明通过苯并环丁烯树脂结构的设计和优化,使包含其的树脂组合物以及覆铜板具有优异的介电性能、耐热性和耐湿热性,同时具有高的模量和力学机械性能,剥离强度高,工艺加工性优良,能够充分满足高频高速PCB对树脂材料的各项性能要求;具体地,覆铜板的玻璃化转变温度Tg为190-283℃,在10GHz的Dk为2.91-3.52,Df为0.0005-0.0013,能通过PCT 6h测试,PCT吸水率为0.05-0.09%,300℃耐热性>60min,剥离强度为0.48-0.86N/mm;而且,所述苯并环丁烯树脂单独作为树脂组合物的树脂组分,使覆铜板在10GHz的Dk为2.91-3.10,Df为0.0005-0.0009,具有突出的介电性能优势。
对比例1的树脂组合物中不含有本发明限定的苯并环丁烯树脂,由于其结构中苯环结构含量高,导致介电性能较差。对比例2采用苯并环丁烯单体与聚丁二烯共混,由于苯并环丁烯未接枝到聚丁二烯树脂中,与应用例10相比,在同样工艺条件下,流胶太大导致滑板,无法压出正常板。
申请人声明,本发明通过上述实施例来说明本发明的苯并环丁烯树脂、包含其的树脂组合物及其应用,但本发明并不局限于上述工艺步骤,即不意味着本发明必须依赖上述工艺步骤才能实施。所属技术领域的技术人员应该明了, 对本发明的任何改进,对本发明所选用原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

  1. 一种苯并环丁烯树脂,其特征在于,所述苯并环丁烯树脂包含至少一种第一结构单元和至少一种第二结构单元;
    所述第一结构单元具有如式I所示结构:
    Figure PCTCN2022143308-appb-100001
    R 1为乙烯基、乙基和/或苯基;
    所述第二结构单元具有如式IIA和/或如式IIB所示结构:
    Figure PCTCN2022143308-appb-100002
  2. 根据权利要求1所述的苯并环丁烯树脂,其特征在于,所述苯并环丁烯树脂中第二结构单元的质量百分含量≥10%,优选≥30%,进一步优选30-80%。
  3. 根据权利要求1或2所述的苯并环丁烯树脂,其特征在于,所述苯并环丁烯树脂还包含第三结构单元,所述第三结构单元具有如式IIIA和/或式IIIB所示结构:
    Figure PCTCN2022143308-appb-100003
  4. 根据权利要求1-3任一项所述的苯并环丁烯树脂,其特征在于,所述苯并环丁烯树脂还包含第四结构单元,所述第四结构单元为聚丁二烯结构单元聚合而成的具有环状结构的结构单元;
    优选地,所述苯并环丁烯树脂的数均分子量为1000-200000。
  5. 一种树脂组合物,其特征在于,所述树脂组合物中的树脂包括如权利要求1-4任一项所述的苯并环丁烯树脂。
  6. 根据权利要求5所述的树脂组合物,其特征在于,所述树脂中苯并环丁烯树脂的质量百分含量为5-100%;
    优选地,所述树脂中还包括含不饱和基团的热固性材料;
    优选地,所述树脂中含不饱和基团的热固性材料的质量百分含量≤95%,进一步优选≤90%;
    优选地,所述不饱和基团包括乙烯基、乙烯基苯基、乙烯基苄基、烯丙基、(甲基)丙烯酸酯基或异丙烯基中的至少一种;
    优选地,所述含不饱和基团的热固性材料包括聚丁二烯、苯乙烯-丁二烯共聚物、苯乙烯-丁二烯-苯乙烯三嵌段共聚物、不饱和聚苯醚树脂、马来酰亚胺化合物、乙烯基芳香族聚合物、乙烯基脂环族聚合物、烯丙基化合物、多官能乙烯基化合物中的任意一种或至少两种的组合;
    优选地,所述树脂中还包括热塑性树脂;
    优选地,所述树脂中热塑性树脂的质量百分含量≤90%;
    优选地,所述热塑性树脂包括氢化苯乙烯-丁二烯嵌段共聚物和/或热塑性聚苯醚;
    优选地,所述树脂组合物中还包括引发剂;
    优选地,以树脂中苯并环丁烯树脂和可选地含不饱和基团的热固性材料的质量之和为100份计,所述引发剂的质量为0.1-3份;
    优选地,所述引发剂包括有机过氧化物、偶氮类引发剂、碳系自由基引发剂中的任意一种或至少两种的组合;
    优选地,所述引发剂包括叔丁基异丙基苯基过氧化物、过氧化二异丙苯、过氧化苯甲酰、2,5-二甲基-2,5-双(叔丁基过氧基)己烷、2,5-二甲基-2,5-二(叔丁基过氧基)己炔、1,1-二(叔丁基过氧基)-3,3,5-二甲基环己烷、联枯、聚联枯中的任意一种或至少两种的组合;
    优选地,所述树脂组合物中还包括填料;
    优选地,所述树脂组合物中以树脂的质量为100份计,所述填料的质量为5-300份,进一步优选5-200份;
    优选地,所述填料为无机填料和/或有机填料,进一步优选无机填料;
    优选地,所述无机填料包括二氧化硅、氢氧化铝、氧化铝、滑石粉、氮化铝、氮化硼、碳化硅、硫酸钡、钛酸钡、钛酸锶、碳酸钙、硅酸钙、云母中的任意一种或至少两种的组合;
    优选地,所述有机填料包括聚苯醚、聚四氟乙烯、聚醚醚酮、聚苯硫醚、 聚醚砜中的任意一种或至少两种的组合;
    优选地,所述填料的中位粒径为0.01-50μm,进一步优选0.01-20μm;
    优选地,所述填料包括经过表面处理的填料;
    优选地,所述表面处理的表面处理剂包括硅烷偶联剂、有机硅低聚物、钛酸酯偶联剂中的任意一种或至少两种的组合;
    优选地,以待处理的填料的质量为100份计,所述表面处理剂的质量为0.1-5份;
    优选地,所述树脂组合物中还包括阻燃剂;
    优选地,所述树脂组合物中以树脂的质量为100份计,所述阻燃剂的质量为1-50份。
  7. 一种树脂膜,其特征在于,所述树脂膜的材料包括如权利要求5或6所述的树脂组合物;
    优选地,所述树脂膜通过将所述树脂组合物涂覆于离型材料上经干燥和/或半固化制得。
  8. 一种涂树脂铜箔,其特征在于,所述涂树脂铜箔的材料包括如权利要求5或6所述的树脂组合物;
    优选地,所述涂树脂铜箔通过将所述树脂组合物涂覆于铜箔上经干燥和/或半固化制得。
  9. 一种预浸料,其特征在于,所述预浸料包括增强材料和附着于所述增强材料上的如权利要求5或6所述的树脂组合物;
    优选地,所述树脂组合物通过浸渍干燥后附着于所述增强材料上。
  10. 一种覆金属箔层压板,其特征在于,所述覆金属箔层压板包括如权利要求7所述的树脂膜、如权利要求8所述的涂树脂铜箔、如权利要求9所述的预浸料中的至少一种。
PCT/CN2022/143308 2022-12-28 2022-12-29 一种苯并环丁烯树脂、包含其的树脂组合物及其应用 WO2024138515A1 (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211698527.7 2022-12-28

Publications (1)

Publication Number Publication Date
WO2024138515A1 true WO2024138515A1 (zh) 2024-07-04

Family

ID=

Similar Documents

Publication Publication Date Title
JP7370310B2 (ja) 熱硬化性樹脂組成物及びこれを用いたプリプレグ、積層シート、並びに印刷回路基板
JP5138267B2 (ja) プリプレグ、それを用いた多層基配線板及び電子部品
KR101716990B1 (ko) 폴리페닐에테르 수지 조성물 및 이를 이용하여 제조되는 반경화 시트 및 동박 적층판
TWI398468B (zh) 低熱膨脹性低介電損耗預漬體及其應用品
TWI342886B (en) Resin composition and prepreg for laminate and metal-clad laminate
TW202003691A (zh) 樹脂組成物、預浸體、覆金屬箔疊層板、樹脂片及印刷配線板
WO2012006776A1 (zh) 复合材料、用其制作的高频电路基板及其制作方法
CN112679936B (zh) 一种热固性树脂组合物及包含其的树脂胶液、预浸料、层压板、覆铜板和印刷电路板
TWI802482B (zh) 一種樹脂組成物及其應用
CN112552630A (zh) 一种树脂组合物及包含其的树脂胶液、预浸料、层压板、覆铜板和印刷电路板
WO2014036712A1 (zh) 复合材料、用其制作的高频电路基板及其制作方法
KR100518707B1 (ko) 저유전 정접 필름 및 배선 필름
WO2019019464A1 (zh) 一种热固性树脂组合物、由其制作的半固化片、覆金属箔层压板及高频电路板
TWI740445B (zh) 一種熱固性樹脂組合物及使用其的預浸料、層壓板及印刷電路板
WO2024138515A1 (zh) 一种苯并环丁烯树脂、包含其的树脂组合物及其应用
WO2024130761A1 (zh) 苯并环丁烯树脂、树脂组合物及其应用
JP4550324B2 (ja) 低誘電正接樹脂組成物、その硬化物ならびに該組成物を用いたプリプレグ、積層板及び多層プリント基板
US11732123B2 (en) Thermosetting resin composition, and prepreg, laminate and printed circuit board using same
CN116285378A (zh) 一种树脂组合物及包含其的粘结片、覆金属箔层压板
CN118255939A (zh) 一种苯并环丁烯树脂、包含其的树脂组合物及其应用
CN114106267A (zh) 含苯乙烯化合物的热固性树脂组合物及其制备方法和应用
CN114276627A (zh) 含乙烯基共聚物的热固性树脂组合物及其应用
CN118256082A (zh) 一种热固性树脂组合物及其应用
US20240228765A1 (en) Resin composition, insulating resin film and use thereof
CN118271722A (zh) 一种热固性树脂组合物及包含其的预浸料、覆铜板