WO2024136508A1 - 이중 금속 시안화물 촉매 및 이의 제조방법 - Google Patents
이중 금속 시안화물 촉매 및 이의 제조방법 Download PDFInfo
- Publication number
- WO2024136508A1 WO2024136508A1 PCT/KR2023/021232 KR2023021232W WO2024136508A1 WO 2024136508 A1 WO2024136508 A1 WO 2024136508A1 KR 2023021232 W KR2023021232 W KR 2023021232W WO 2024136508 A1 WO2024136508 A1 WO 2024136508A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal cyanide
- double metal
- catalyst
- composition
- cyanide catalyst
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 91
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 88
- 239000002184 metal Substances 0.000 title claims abstract description 88
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 title claims abstract description 78
- 238000000034 method Methods 0.000 title abstract description 13
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 claims abstract description 36
- 125000004122 cyclic group Chemical group 0.000 claims abstract description 32
- 125000001931 aliphatic group Chemical group 0.000 claims abstract description 28
- 150000005846 sugar alcohols Polymers 0.000 claims abstract description 28
- 239000008139 complexing agent Substances 0.000 claims abstract description 17
- 229920001515 polyalkylene glycol Polymers 0.000 claims abstract description 16
- -1 Co(III) Chemical compound 0.000 claims description 37
- 229920005862 polyol Polymers 0.000 claims description 32
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 30
- 239000000203 mixture Substances 0.000 claims description 30
- 229920000570 polyether Polymers 0.000 claims description 30
- 150000003839 salts Chemical class 0.000 claims description 28
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 22
- 238000006116 polymerization reaction Methods 0.000 claims description 17
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 16
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 15
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 claims description 13
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 11
- 239000001569 carbon dioxide Substances 0.000 claims description 10
- 238000005406 washing Methods 0.000 claims description 10
- 125000002947 alkylene group Chemical group 0.000 claims description 8
- RKBAPHPQTADBIK-UHFFFAOYSA-N cobalt;hexacyanide Chemical group [Co].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] RKBAPHPQTADBIK-UHFFFAOYSA-N 0.000 claims description 8
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical group [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 claims description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 7
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 claims description 6
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 6
- 229910052736 halogen Inorganic materials 0.000 claims description 6
- 150000002367 halogens Chemical class 0.000 claims description 6
- 229910001428 transition metal ion Inorganic materials 0.000 claims description 6
- UAYWVJHJZHQCIE-UHFFFAOYSA-L zinc iodide Chemical compound I[Zn]I UAYWVJHJZHQCIE-UHFFFAOYSA-L 0.000 claims description 6
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 claims description 5
- 150000000180 1,2-diols Chemical class 0.000 claims description 5
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 claims description 5
- KQIGMPWTAHJUMN-UHFFFAOYSA-N 3-aminopropane-1,2-diol Chemical compound NCC(O)CO KQIGMPWTAHJUMN-UHFFFAOYSA-N 0.000 claims description 5
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 5
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 claims description 5
- 229920000166 polytrimethylene carbonate Polymers 0.000 claims description 5
- VNDYJBBGRKZCSX-UHFFFAOYSA-L zinc bromide Chemical compound Br[Zn]Br VNDYJBBGRKZCSX-UHFFFAOYSA-L 0.000 claims description 5
- 150000000185 1,3-diols Chemical class 0.000 claims description 4
- 229910001413 alkali metal ion Inorganic materials 0.000 claims description 4
- 150000002009 diols Chemical class 0.000 claims description 4
- AWDBHOZBRXWRKS-UHFFFAOYSA-N tetrapotassium;iron(6+);hexacyanide Chemical compound [K+].[K+].[K+].[K+].[Fe+6].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] AWDBHOZBRXWRKS-UHFFFAOYSA-N 0.000 claims description 4
- 235000005074 zinc chloride Nutrition 0.000 claims description 4
- 239000011592 zinc chloride Substances 0.000 claims description 4
- RWAADBZWQGAKMD-UHFFFAOYSA-K Cl[Zn](Cl)Cl Chemical compound Cl[Zn](Cl)Cl RWAADBZWQGAKMD-UHFFFAOYSA-K 0.000 claims description 3
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 claims description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical group OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 3
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 claims description 3
- NYRAVIYBIHCEGB-UHFFFAOYSA-N [K].[Ca] Chemical compound [K].[Ca] NYRAVIYBIHCEGB-UHFFFAOYSA-N 0.000 claims description 3
- BMRWNKZVCUKKSR-UHFFFAOYSA-N butane-1,2-diol Chemical compound CCC(O)CO BMRWNKZVCUKKSR-UHFFFAOYSA-N 0.000 claims description 3
- 239000011575 calcium Substances 0.000 claims description 3
- 235000012251 calcium ferrocyanide Nutrition 0.000 claims description 3
- 239000000279 calcium ferrocyanide Substances 0.000 claims description 3
- 125000005587 carbonate group Chemical group 0.000 claims description 3
- 150000007942 carboxylates Chemical group 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- MILUBEOXRNEUHS-UHFFFAOYSA-N iridium(3+) Chemical compound [Ir+3] MILUBEOXRNEUHS-UHFFFAOYSA-N 0.000 claims description 3
- 150000003077 polyols Chemical class 0.000 claims description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 3
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims description 2
- 229940102001 zinc bromide Drugs 0.000 claims description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 1
- 229910052698 phosphorus Inorganic materials 0.000 claims 1
- 239000011574 phosphorus Substances 0.000 claims 1
- 230000003197 catalytic effect Effects 0.000 abstract description 12
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000000047 product Substances 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 7
- PFURGBBHAOXLIO-UHFFFAOYSA-N cyclohexane-1,2-diol Chemical compound OC1CCCCC1O PFURGBBHAOXLIO-UHFFFAOYSA-N 0.000 description 6
- 229920001451 polypropylene glycol Polymers 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 4
- 239000012986 chain transfer agent Substances 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000005227 gel permeation chromatography Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 2
- 235000019437 butane-1,3-diol Nutrition 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920001748 polybutylene Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- VCVOSERVUCJNPR-UHFFFAOYSA-N cyclopentane-1,2-diol Chemical compound OC1CCCC1O VCVOSERVUCJNPR-UHFFFAOYSA-N 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/20—General preparatory processes
- C08G64/32—General preparatory processes using carbon dioxide
- C08G64/34—General preparatory processes using carbon dioxide and cyclic ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/26—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
Definitions
- the present invention relates to a double metal cyanide (DMC) catalyst with excellent catalytic activity and a method for producing the same.
- DMC double metal cyanide
- Polyether carbonate polyol is widely used as materials such as adhesives, packaging materials, or coating materials, and is especially attracting attention as a polymer material that is easily biodegradable.
- producing polyether carbonate polyol from the reaction of an epoxide compound and carbon dioxide is an environmentally friendly production method that does not use toxic compounds and utilizes greenhouse gases, and research is continuing on the development of catalysts applicable to the reaction.
- double metal cyanide (DMC) catalyst is a catalyst used in the polymerization of polymer products such as polyether, polyester, and polyether ester polyol.
- DMC catalysts have the advantage of being able to produce high-quality polymer products with low unsaturation and high molecular weight compared to using previously used basic catalysts.
- One aspect of the present invention aims to provide a double metal cyanide catalyst with excellent catalytic activity in the polymerization reaction of polyether carbonate polyol and a method for producing the same.
- one aspect provides a method for producing high-quality polyether carbonate polyol using the double metal cyanide catalyst.
- One aspect of the present invention is tert-butanol; Linear or cyclic (C2-C12) aliphatic polyhydric alcohols; and polyalkylene glycol as a complexing agent. It provides a composition for a double metal cyanide catalyst.
- the complexing agent may include tert-butanol and an aliphatic polyhydric alcohol in a molar ratio of 1:0.1 to 0.9.
- the aliphatic polyhydric alcohol may be diol or triol.
- the aliphatic polyhydric alcohol may be 1,2-diol, 1,3-diol, or 1,2,3-triol.
- the aliphatic polyhydric alcohol is ethylene glycol, propylene glycol, 1,3-propanediol, glycerol, 1,3-butanediol, 1,2-butanediol, 2,3-butanediol, 3-amino-1,2-propanediol, 1 , It may be one or two or more selected from 2-cyclohexanediol and 1,2-cyclopentadiol.
- composition for a double metal cyanide catalyst may include a metal salt of Formula 1 below and a metal cyanide complex salt of Formula 2 below.
- M 1 is a transition metal ion of group 11 or 12;
- X 1 is halogen, hydroxy group, sulfate group, carbonate group, carboxylate group, oxalate group or cyanide group;
- a 1 is an alkali metal ion or an alkaline earth metal ion
- M 2 and M 3 are different from each other and are an alkaline earth metal ion or a transition metal ion of group 8, 9, or 10;
- p and q are each independently integers greater than or equal to 1, and r is 0 or 1.
- the M 1 is Zn(II), Fe(II), Co(II), or Ni(II); X 1 may be halogen.
- the metal salt may be zinc(II) chloride, zinc(III) chloride, zinc bromide, or zinc iodide.
- the M 2 and M 3 are each independently Ca(II), Co(II), Co(III), Fe(II), Fe(III), Cr(II), Ir(III), or Ni(II). It can be.
- the metal cyanide complex salt may be potassium hexacyanocobaltate (III), potassium hexacyanoferrate (III), or potassium calcium ferrocyanide.
- Another aspect of the present invention provides a double metal cyanide catalyst prepared from the composition for a double metal cyanide catalyst.
- Another aspect of the present invention is (a) a complexing agent comprising tert-butanol, a linear or cyclic (C2-C12) aliphatic polyhydric alcohol and polyalkylene glycol, a metal salt of Formula 1 below, and a metal cyanide of Formula 2 below.
- a complexing agent comprising tert-butanol, a linear or cyclic (C2-C12) aliphatic polyhydric alcohol and polyalkylene glycol, a metal salt of Formula 1 below, and a metal cyanide of Formula 2 below.
- Another aspect of the present invention is (a) a complexing agent comprising tert-butanol, a linear or cyclic (C2-C12) aliphatic polyhydric alcohol and polyalkylene glycol, a metal salt of Formula 1 below, and a metal cyanide of Formula 2 below.
- a complexing agent comprising tert-butanol, a linear or cyclic (C2-C12) aliphatic polyhydric alcohol and polyalkylene glycol, a metal salt of Formula 1 below, and a metal cyanide of Formula 2 below.
- the number average molecular weight of the polyether carbonate polyol may be 200 to 10,000 g/mol.
- the catalyst activity calculated as the ratio of the weight of the polyol produced (kg-P) to the amount of double metal cyanide catalyst used (g-cat) based on the polymerization time (h) in step (c) is 1 to 40 kg. It may be -P/g-cat ⁇ h.
- the double metal cyanide catalyst according to one embodiment includes tert-butanol and a linear or cyclic (C2-C12) aliphatic polyhydric alcohol as a complexing agent, and thus can achieve significantly improved catalytic activity.
- the double metal cyanide catalyst according to one embodiment when applied to the polyether carbonate polyol polymerization reaction, high-quality polymers can be produced even with the use of a very small amount of catalyst. In addition, since there is little catalyst residue after the polymerization reaction, an additional catalyst removal process is not required, making it possible to simplify the process. High-quality polyether carbonate polyol can be obtained even under mild reaction conditions, significantly improving productivity. .
- the numerical range used in this specification includes the lower limit and upper limit and all values within the range, increments logically derived from the shape and width of the defined range, all double-defined values, and the upper limit of the numerical range defined in different forms. and all possible combinations of the lower bounds. Unless otherwise specified herein, values outside the numerical range that may occur due to experimental error or rounding of values are also included in the defined numerical range.
- One aspect of the present invention provides a double metal cyanide catalyst with excellent catalytic activity in the polymerization reaction of polyether carbonate polyol and a method for producing the same.
- the composition for a double metal cyanide catalyst includes tert-butanol; Linear or cyclic (C2-C12) aliphatic polyhydric alcohols; and polyalkylene glycol as a complexing agent.
- the double metal cyanide catalyst according to one embodiment can produce high-quality polymers with only a very small amount in a polyether carbonate polyol polymerization reaction.
- the complexing agent may include tert-butanol and an aliphatic polyhydric alcohol at a molar ratio of 1:0.1 to 0.9, specifically at a molar ratio of 1:0.2 to 1:0.8, or 1:0.2 to 1:0.6. You can. When the above-mentioned range is satisfied, it is preferred because a double metal cyanide catalyst with more excellent catalytic activity can be produced, but is not necessarily limited thereto.
- the linear or cyclic (C2-C12) aliphatic polyhydric alcohol may be, for example, a linear (C2-C12) aliphatic polyhydric alcohol or a cyclic (C3-C10) aliphatic polyhydric alcohol. Specifically, it may be a linear or cyclic (C3-C8) aliphatic polyhydric alcohol, or a (C3-C6) aliphatic polyhydric alcohol, and may be a linear or cyclic alcohol containing two or more hydroxy groups (-OH), specifically two to four. It may be a cyclic aliphatic compound.
- the aliphatic polyhydric alcohol may be diol or triol, and non-limiting examples include ethylene glycol, propylene glycol, 1,3-propanediol, glycerol, 1,4-butanediol, 1,3- It may be one or two or more selected from butanediol, 1,2-butanediol, 2,3-butanediol, 3-amino-1,2-propanediol, 1,2-cyclohexanediol, and 1,2-cyclopentadiol.
- the aliphatic polyhydric alcohol may be 1,2-diol, 1,3-diol, or 1,2,3-triol, and is preferably 1,2-diol.
- 1,2-diol refers to a vicinal diol in which two hydroxy groups are located on carbon atoms adjacent to each other as shown in the following Chemical Formula A.
- Non-limiting examples include ethylene glycol, propylene glycol, 1,2- Examples include butanediol, 2,3-butanediol, 3-amino-1,2-propanediol, 1,2-cyclohexanediol, and 1,2-cyclopentanediol.
- the 1,3-diol refers to a compound in which two hydroxy groups are located at the carbon atoms at positions 1 and 3, as shown in the following Chemical Formula B.
- Non-limiting examples include 1,3-propanediol, 1,3- Butanediol, etc. can be mentioned.
- the 1,2,3-triol refers to a compound in which three hydroxy groups are located on three adjacent carbon atoms as shown in the following formula C, and a non-limiting example includes glycerol.
- the polyalkylene glycol may be a polymer compound with a number average molecular weight of 400 g/mol or more, specifically 400 to 5,000 g/mol, 400 to 3,000 g/mol, or 400 to 2,000 g/mol.
- the polyalkylene glycol may be polyethylene glycol, polypropylene glycol, or polybutylene glycol, but is not limited thereto.
- the composition for a double metal cyanide catalyst includes the above-described complexing agent, metal salt, and metal. It may contain a cyanide complex salt, and the metal salt may be represented by the following Chemical Formula 1, and the metal cyanide complex salt may be represented by the following Chemical Formula 2.
- M 1 is a transition metal ion of group 11 or 12;
- X 1 is halogen, hydroxy group, sulfate group, carbonate group, carboxylate group, oxalate group or cyanide group;
- a 1 is an alkali metal ion or an alkaline earth metal ion
- M 2 and M 3 are different from each other and are an alkaline earth metal ion or a transition metal ion of group 8, 9, or 10;
- p and q are each independently integers greater than or equal to 1, and r is 0 or 1.
- p is equal to the charge of M 1 ; M 1 is Zn, Fe, Co or Ni; X 1 may be halogen.
- the metal salt represented by Formula 1 may be zinc(II) chloride (ZnCl 2 ), zinc(III) chloride (ZnCl 3 ), zinc bromide (ZnBr 2 ), or zinc iodide (ZnI 2 ), and may be more specifically It may be zinc(II) chloride.
- M 2 and M 3 are each independently Ca(II), Co(II), Co(III), Fe(II), Fe(III), Cr(II), Ir(III), or Ni(II).
- a 1 may be an alkali metal ion.
- the metal cyanide complex salt represented by Formula 2 is potassium hexacyanocobaltate (III) (K 3 Co (CN) 6 ), potassium hexacyanoferrate (III) (K 3 Fe (CN) 6 ) or potassium calcium ferrocyanide (K 2 CaFe(CN) 6 ), specifically potassium hexacyanocobaltate (III) (K 3 Co(CN) 6 ) or potassium hexacyanoferrate (III) It may be (K 3 Fe(CN) 6 ).
- Another aspect of the present invention provides a method for preparing a double metal cyanide catalyst.
- reaction of step (a) may be performed, for example, at 30 to 100°C, or 30 to 80°C, or 40 to 60°C for 30 minutes to 2 hours, or 1 hour to 2 hours. .
- step (b) an aqueous solution containing tert-butanol and polyalkylene glycol may be used as a washing solution, and after washing, the solvent may be dried under reduced pressure to obtain a double metal cyanide catalyst.
- the drying may be performed at 50 to 100°C, or 70 to 100°C, or 80 to 100°C for 1 hour to 10 hours, or 3 hours to 10 hours, or 5 hours to 20 hours.
- another aspect of the present invention provides a double metal cyanide catalyst prepared from the above-described production method, wherein alkylene oxide and carbon dioxide are reacted in the presence of the double metal cyanide catalyst to obtain polyether carbonate polyol.
- a method for producing polyether carbonate polyol is provided.
- a method for producing polyether carbonate polyol includes (a) a complexing agent comprising tert-butanol, a linear or cyclic (C2-C12) aliphatic polyhydric alcohol, and polyalkylene glycol, and a metal salt of the following formula (1): and preparing and reacting an aqueous solution containing a metal cyanide complex salt of the following formula (2); (b) filtering and washing to obtain a double metal cyanide catalyst; and (c) reacting alkylene oxide and carbon dioxide in the presence of the double metal cyanide catalyst to obtain polyether carbonate polyol.
- a complexing agent comprising tert-butanol, a linear or cyclic (C2-C12) aliphatic polyhydric alcohol, and polyalkylene glycol, and a metal salt of the following formula (1): and preparing and reacting an aqueous solution containing a metal cyanide complex salt of the following formula (2); (b) filtering and washing to obtain a double metal
- the double metal cyanide catalyst according to one aspect has excellent catalytic activity and may not include a catalyst removal step. Specifically, by using the double metal cyanide catalyst according to one embodiment, high-quality polyether carbonate polyol can be produced even with a very small amount of catalyst. In addition, since there is little catalyst residue after the polymerization reaction, an additional catalyst removal process is not required, making it possible to simplify the process. High-quality polyether carbonate polyol can be obtained even under mild reaction conditions, significantly improving productivity. .
- the double metal cyanide catalyst is 400 ppm or less, or 300 ppm or less, or 200 ppm or less, or 100 ppm or less, or 50 ppm or less, based on the weight of the finally produced polyether carbonate polyol. It may be used, and specifically may be used at 10 to 400 ppm, or 50 to 300 ppm, or 100 to 300 ppm, and may include all possible combinations of the upper and lower limits of the above numerical range.
- the double metal cyanide catalyst may be used in an amount of 0.001 to 0.1 parts by weight, or 0.001 to 0.05 parts by weight.
- the alkylene oxide may be ethylene oxide or propylene oxide, and the reaction between alkylene oxide and carbon dioxide may be performed at 50 to 200°C, or 70 to 200°C, or 80 to 150°C.
- step (c) may be carried out by further including a chain transfer agent in alkylene oxide and carbon dioxide
- the chain transfer agent may be used without limitation as long as it is commonly used in the relevant technical field.
- it may be polyalkylene glycol, and more specifically, it may be polyethylene glycol, polypropylene glycol, or polybutylene glycol, but is not limited thereto.
- the number average molecular weight of the polyalkylene glycol used as the chain transfer agent may be 50 to 2,000 g/mol, or 50 to 1,000 g/mol, or 100 to 1,000 g/mol, or 100 to 500 g/mol. , but is not particularly limited thereto.
- the catalyst activity calculated as the ratio of the weight of the produced polyol (kg-P) to the amount of double metal cyanide catalyst used (g-cat) based on the polymerization time (h) is 1 to 40 kg- P/g-cat ⁇ h, or 3 to 40 kg-P/g-cat ⁇ h.
- the number average molecular weight of the polyether carbonate polyol obtained by the above production method may be 200 to 10,000 g/mol, or 200 to 5,000 g/mol, or 300 to 5,000 g/mol, or 400 to 3,000 g/mol, but must be It is not limited to this.
- Catalytic activity was calculated as the ratio of the weight (kg-P) of the produced polyether carbonate polyol to the amount (g-cat) of the double metal cyanide catalyst used based on the polymerization time (h).
- the unit is kg-P/g-cat ⁇ h.
- the double metal cyanide catalyst of Example 1 was prepared using tertiary butyl alcohol and 2,3-butanediol as complexing agents at a molar ratio of 1:0.5.
- a composition for a double metal cyanide catalyst was prepared by adding a mixed solution of butyl alcohol and 0.69 g of polypropylene glycol (molecular weight 1000 g/mol) dissolved in 6.5 g of distilled water dropwise for 10 minutes. After the dropwise addition was completed, the reaction was stirred for an additional 90 minutes. The entire reaction was carried out at 50 °C. Afterwards, the product in the form of a white slurry was filtered to obtain a white solid product, and the product was dispersed in a mixed solvent of 15 g of distilled water, 29 g of tertiary butyl alcohol, and 0.6 g of polypropylene glycol (molecular weight 1,000 g/mol), and stirred for 20 minutes.
- Example 1 the total amount of tertiary butyl alcohol and 2,3-butanediol used in preparing the composition for a DMC catalyst was the same, except that the molar ratio was changed from 1:0.5 to 1:0.2.
- Example 1 the DMC catalyst composition was prepared in the same manner except that propylene glycol was used instead of 2,3-butanediol.
- Example 1 the DMC catalyst composition was prepared in the same manner except that 1,2-cyclohexanediol was used instead of 2,3-butanediol.
- Example 1 the total amount of tertiary butyl alcohol and 2,3-butanediol used in preparing the composition for DMC catalyst was the same, except that the molar ratio was changed from 1:0.5 to 1:1.0.
- Example 1 the DMC catalyst composition was prepared in the same manner except that 1,3-propanediol was used instead of 2,3-butanediol.
- Example 1 the DMC catalyst composition was prepared in the same manner except that 3-amino-1,2-propanediol was used instead of 2,3-butanediol.
- Example 1 the DMC catalyst composition was prepared in the same manner except that 2,3-butanediol was not used.
- the DMC catalyst according to the example of the present invention has significantly improved catalytic activity, and thus, it has been confirmed that high-quality polymers can be produced even when a very small amount of catalyst is used. did.
- there is almost no catalyst residue after the polymerization reaction (about 50 ppm or less), so an additional catalyst removal process is not required, making it possible to simplify the process, and high-quality polyether even under mild reaction conditions. It is expected that carbonate polyol can be obtained and productivity can be significantly improved.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyethers (AREA)
Abstract
본 발명의 일 양태는 촉매 활성이 탁월한 이중 금속 시안화물 촉매 및 이의 제조방법을 제공하는 것으로, 구체적으로, 일 양태에 따른 이중 금속 시안화물 촉매는 tert-부탄올, 선형 또는 환형의 (C2-C12)지방족 다가 알코올 및 폴리알킬렌글리콜을 포함하는 착화제를 사용하여 제조되는 것을 특징으로 한다.
Description
본 발명은 촉매 활성이 탁월한 이중 금속 시안화물(DMC, double metal cyanide) 촉매 및 이의 제조방법에 관한 것이다.
폴리에테르 카보네이트 폴리올은 접착제, 포장재 또는 코팅재 등의 재료로 널리 사용되며, 특히 생분해가 용이한 고분자 재료로 주목받고 있다. 또한, 폴리에테르 카보네이트 폴리올을 에폭사이드 화합물과 이산화탄소의 반응으로부터 제조하는 것은 독성 화합물을 사용하지 않으며 온실가스를 활용하는 친환경적인 제조 방법으로, 상기 반응에 적용 가능한 촉매 개발에 대한 연구가 계속되고 있다.
한편, 이중 금속 시안화물(DMC) 촉매는 폴리에테르, 폴리에스테르 및 폴리에테르에스테르 폴리올 등의 고분자 제품의 중합에 사용되는 촉매이다. DMC 촉매는 기존에 사용되던 염기성 촉매를 사용하는 것 보다, 불포화도가 낮으며 분자량이 높은 고품질의 고분자 제품을 제조할 수 있는 장점이 있다.
그러나, DMC 촉매를 에폭사이드 화합물과 이산화탄소의 반응으로부터 폴리에테르 카보네이트 폴리올에 제조하는 방법에 적용하였을 때, 여전히 촉매 활성이 충분하지 않으며, 상대적으로 많은 양의 촉매가 사용되고 중합 반응 후 남아있는 촉매 잔여물을 제거하는 공정이 필요한 한계가 있다. 또한, 촉매의 사용량을 줄이고자 하면 중합 반응시간이 길어지고 고분자 제품의 품질이 저하되는 등의 문제가 있어, 생산성이 저하되고 상업화에 어려움이 있는 실정이다.
본 발명의 일 양태는 폴리에테르 카보네이트 폴리올의 중합 반응에서 촉매 활성이 탁월한 이중 금속 시안화물 촉매 및 이의 제조방법을 제공하는 것을 목적으로 한다.
또한, 일 양태는 상기 이중 금속 시안화물 촉매를 사용하는 고품질의 폴리에테르 카보네이트 폴리올의 제조방법을 제공한다.
본 발명의 일 양태는 tert-부탄올; 선형 또는 환형의 (C2-C12)지방족 다가 알코올; 및 폴리알킬렌글리콜;을 착화제로 포함하는, 이중 금속 시안화물 촉매용 조성물을 제공한다.
상기 착화제는 tert-부탄올 및 지방족 다가 알코올을 1:0.1 내지 0.9 몰비로 포함하는 것일 수 있다.
상기 지방족 다가 알코올은 디올 또는 트리올일 수 있다.
상기 지방족 다가 알코올은 1,2-디올, 1,3-디올 또는 1,2,3-트리올일 수 있다.
상기 지방족 다가 알코올은 에틸렌 글리콜, 프로필렌 글리콜, 1,3-프로판디올, 글리세롤, 1,3-부탄디올, 1,2-부탄디올, 2,3-부탄디올, 3-아미노-1,2-프로판디올, 1,2-시클로헥산디올 및 1,2-시클로펜타디올에서 선택되는 하나 또는 둘 이상일 수 있다.
상기 이중 금속 시안화물 촉매용 조성물 하기 화학식 1의 금속염 및 하기 화학식 2의 금속 시아나이드 착염을 포함하는 것일 수 있다.
[화학식 1]
M1(X1)p
[화학식 2]
A1
qM2M3
r(CN)6
(상기 화학식 1 및 2에서,
M1은 11족 또는 12족의 전이금속 이온이고;
X1은 할로겐, 히드록시기, 설페이트기, 카르보네이트기, 카르복실레이트기, 옥살레이트기 또는 시아나이드기이고;
A1은 알칼리 금속 이온 또는 알칼리 토금속 이온이고;
M2 및 M3는 서로 상이하며 알칼리 토금속 이온 또는 8족, 9족, 또는 10족의 전이금속 이온이고;
p 및 q는 각각 독립적으로 1 이상의 정수이고, r은 0 또는 1이다.)
상기 M1은 Zn(Ⅱ), Fe(Ⅱ), Co(Ⅱ) 또는 Ni(Ⅱ)이고; X1은 할로겐일 수 있다.
상기 금속염은 염화아연(Ⅱ), 염화아연(Ⅲ), 브롬화아연 또는 요오드화아연일 수 있다.
상기 M2 및 M3는 각각 독립적으로 Ca(Ⅱ), Co(Ⅱ), Co(Ⅲ), Fe(Ⅱ), Fe(Ⅲ), Cr(Ⅱ), Ir(Ⅲ), 또는 Ni(Ⅱ)일 수 있다.
상기 금속 시아나이드 착염은 포타슘헥사시아노코발테이트(Ⅲ), 포타슘헥사시아노페레이트(Ⅲ) 또는 포타슘칼슘페로시아나이드일 수 있다.
본 발명의 또 다른 양태는 상기 이중 금속 시안화물 촉매용 조성물로부터 제조된, 이중 금속 시안화물 촉매를 제공한다.
본 발명의 또 다른 양태는 (a) tert-부탄올, 선형 또는 환형의 (C2-C12)지방족 다가 알코올 및 폴리알킬렌글리콜을 포함하는 착화제, 하기 화학식 1의 금속염 및 하기 화학식 2의 금속 시아나이드 착염을 포함하는 이중 금속 시안화물 촉매용 조성물을 제조하고 반응시키는 단계; 및 (b) 여과 및 세척하여 이중 금속 시안화물 촉매를 수득하는 단계;를 포함하는 것인, 이중 금속 시안화물 촉매의 제조방법을 제공한다.
[화학식 1]
M1(X1)p
[화학식 2]
A1
qM2M3
r(CN)6
(상기 화학식 1 및 2에서,
X1, M1, M2, M3, A1, p 내지 r은 상기 정의와 동일하다.)
본 발명의 또 다른 양태는 (a) tert-부탄올, 선형 또는 환형의 (C2-C12)지방족 다가 알코올 및 폴리알킬렌글리콜을 포함하는 착화제, 하기 화학식 1의 금속염 및 하기 화학식 2의 금속 시아나이드 착염을 포함하는 이중 금속 시안화물 촉매용 조성물을 제조하고 반응시키는 단계; (b) 여과 및 세척하여 이중 금속 시안화물 촉매를 수득하는 단계; 및 (c) 상기 이중 금속 시안화물 촉매 하에서 알킬렌 옥사이드와 이산화탄소를 반응시켜 폴리에테르 카보네이트 폴리올을 수득하는 단계;를 포함하는, 폴리에테르 카보네이트 폴리올의 제조방법을 제공한다.
[화학식 1]
M1(X1)p
[화학식 2]
A1
qM2M3
r(CN)6
(상기 화학식 1 및 2에서,
X1, M1, M2, M3, A1, p 내지 r은 상기 정의와 동일하다.)
상기 폴리에테르 카보네이트 폴리올의 수평균분자량이 200 내지 10,000 g/mol일 수 있다.
상기 (c) 단계에서 중합 시간(h)을 기준으로 사용된 이중 금속 시안화물 촉매의 사용량(g-cat)대비 생성된 폴리올의 무게(kg-P)의 비로 계산된 촉매 활성도가 1 내지 40 kg-P/g-cat·h일 수 있다.
일 양태에 따른 이중 금속 시안화물 촉매는 tert-부탄올 및 선형 또는 환형의 (C2-C12)지방족 다가 알코올을 착화제로 포함함에 따라, 매우 현저히 향상된 촉매 활성을 구현할 수 있다.
구체적으로, 일 양태에 따른 이중 금속 시안화물 촉매를 폴리에테르 카보네이트 폴리올 중합 반응에 적용하면 매우 적은 양의 촉매 사용 만으로도 고품질의 고분자를 제조할 수 있다. 또한, 중합 반응 후에 촉매 잔사량이 거의 없어 촉매의 제거 공정이 추가로 필요하지 않아 공정의 간소화가 가능하며, 마일드한 반응 조건에서도 고품질의 폴리에테르 카보네이트 폴리올을 수득할 수 있어 생산성을 현저히 향상시킬 수 있다.
본 명세서에서 달리 정의되지 않는 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본 명세서에서 설명에 사용되는 용어는 단지 특정 구체예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다.
본 명세서에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다.
또한, 본 명세서에서 사용되는 수치 범위는 하한치와 상한치와 그 범위 내에서의 모든 값, 정의되는 범위의 형태와 폭에서 논리적으로 유도되는 증분, 이중 한정된 모든 값 및 서로 다른 형태로 한정된 수치 범위의 상한 및 하한의 모든 가능한 조합을 포함한다. 본 명세서에서 특별한 정의가 없는 한 실험 오차 또는 값의 반올림으로 인해 발생할 가능성이 있는 수치범위 외의 값 역시 정의된 수치범위에 포함된다.
본 명세서의 용어, “포함한다”는 “구비한다”, “함유한다”, “가진다” 또는 “특징으로 한다” 등의 표현과 등가의 의미를 가지는 개방형 기재이며, 추가로 열거되어 있지 않은 요소, 재료 또는 공정을 배제하지 않는다.
이하, 본 발명에 대해 구체적으로 설명한다.
본 발명의 일 양태는 폴리에테르 카보네이트 폴리올의 중합 반응에서 촉매 활성이 탁월한 이중 금속 시안화물 촉매 및 이의 제조방법을 제공한다.
구체적으로, 일 양태에 따른 이중 금속 시안화물 촉매용 조성물은 tert-부탄올; 선형 또는 환형의 (C2-C12)지방족 다가 알코올; 및 폴리알킬렌글리콜;을 착화제로 포함하는 것을 특징으로 한다.
상술한 바와 같은 구성 조합의 착화제를 사용함에 따라, 일 양태에 따른이중 금속 시안화물 촉매는 폴리에테르 카보네이트 폴리올 중합 반응에서 매우 적은 양 만으로도 고품질의 고분자를 제조할 수 있다.
일 예로, 상기 착화제는 tert-부탄올 및 지방족 다가 알코올을 1:0.1 내지 0.9 몰비로 포함할 수 있으며, 구체적으로 1:0.2 내지 1:0.8 몰비, 또는 1:0.2 내지 1:0.6 몰비로 포함할 수 있다. 상술한 범위를 만족하는 경우, 촉매 활성이 더욱 우수한 이중 금속 시안화물 촉매를 제조할 수 있어서 선호되지만 반드시 이에 한정되는 것은 아니다.
상기 선형 또는 환형의 (C2-C12)지방족 다가 알코올은, 예를 들어, 선형의 (C2-C12)지방족 다가 알코올 또는 환형의 (C3-C10)지방족 다가 알코올일 수 있다. 구체적으로, 선형 또는 환형의 (C3-C8)지방족 다가 알코올, 또는 (C3-C6)지방족 다가 알코올일 수 있으며, 히드록시기(-OH)를 2개 이상, 구체적으로 2개 내지 4개 포함하는 선형 또는 환형의 지방족 화합물일 수 있다.
상기 지방족 다가 알코올은 디올(diol) 또는 트리올(triol)일 수 있으며, 비한정적인 일 예로, 에틸렌 글리콜, 프로필렌 글리콜, 1,3-프로판디올, 글리세롤, 1,4-부탄디올, 1,3-부탄디올, 1,2-부탄디올, 2,3-부탄디올, 3-아미노-1,2-프로판디올, 1,2-시클로헥산디올 및 1,2-시클로펜타디올에서 선택되는 하나 또는 둘 이상일 수 있다.
상기 지방족 다가 알코올은 1,2-디올, 1,3-디올 또는 1,2,3-트리올일 수 있으며, 바람직하게는 1,2-디올일 수 있다.
여기서 상기 1,2-디올은 하기 화학식 A와 같이 두 개의 히드록시기가 서로 인접한 탄소 원자에 위치하는 비시널(vicinal) 디올을 의미하며, 비한정적인 일 예로, 에틸렌 글리콜, 프로필렌 글리콜, 1,2-부탄디올, 2,3-부탄디올, 3-아미노-1,2-프로판디올, 1,2-시클로헥산디올 및 1,2-시클로펜탄디올 등을 들 수 있다.
[화학식 A]
상기 1,3-디올은 하기 화학식 B와 같이 두 개의 히드록시기가 1번과 3번 위치의 탄소 원자에 위치하는 화합물을 의미하며, 비한정적인 일 예로, 1,3-프로판디올, 1,3-부탄디올 등을 들 수 있다.
[화학식 B]
상기 1,2,3-트리올은 하기 화학식 C와 같이 세 개의 히드록시기가 서로 인접한 탄소 원자 세 개에 위치하는 화합물을 의미하며, 비한정적인 일 예로, 글리세롤을 들 수 있다.
[화학식 C]
상기 폴리알킬렌글리콜은 수평균분자량이 400 g/mol 이상의 고분자 화합물일 수 있으며, 구체적으로 400 내지 5,000 g/mol, 400 내지 3,000 g/mol, 또는 400 내지 2,000 g/mol일 수 있다. 또한, 상기 폴리알킬렌글리콜은 폴리에틸렌글리콜, 폴리프로필렌글리콜 또는 폴리부틸렌글리콜일 수 있으나 이에 제한되는 것은 아니다.구체적으로, 일 양태에 따른 이중 금속 시안화물 촉매용 조성물 상술한착화제, 금속염 및 금속 시아나이드 착염을 포함하는 것일 수 있으며, 상기 금속염은 하기 화학식 1로 표시되고, 금속 시아나이드 착염은 하기 화학식 2로 표시될 수 있다.
[화학식 1]
M1(X1)p
[화학식 2]
A1
qM2M3
r(CN)6
(상기 화학식 1 및 2에서,
M1은 11족 또는 12족의 전이금속 이온이고;
X1은 할로겐, 히드록시기, 설페이트기, 카르보네이트기, 카르복실레이트기, 옥살레이트기 또는 시아나이드기이고;
A1은 알칼리 금속 이온 또는 알칼리 토금속 이온이고;
M2 및 M3는 서로 상이하며 알칼리 토금속 이온 또는 8족, 9족, 또는 10족의 전이금속 이온이고;
p 및 q는 각각 독립적으로 1 이상의 정수이고, r은 0 또는 1이다.)
상기 화학식 1에서 p는 M1의 전하 값과 같고; M1은 Zn, Fe, Co 또는 Ni이고; X1은 할로겐일 수 있다. 구체적으로, 상기 화학식 1로 표시되는 금속염은 염화아연(Ⅱ)(ZnCl2), 염화아연(Ⅲ)(ZnCl3), 브롬화아연(ZnBr2) 또는 요오드화아연(ZnI2)일 수 있으며, 더욱 구체적으로 염화아연(Ⅱ)일 수 있다.
상기 화학식 2에서, r이 0인 경우, q는 6-(M2의 전하 값)과 같고; r이 1인 경우, q는 6-(M2의 전하 값+M3의 전하 값)과 같고; 상기 M2 및 M3는 각각 독립적으로 Ca(Ⅱ), Co(Ⅱ), Co(Ⅲ), Fe(Ⅱ), Fe(Ⅲ), Cr(Ⅱ), Ir(Ⅲ), 또는 Ni(Ⅱ)일 수 있고; A1은 알칼리 금속 이온일 수 있다. 구체적으로, 상기 화학식 2로 표시되는 금속 시아나이드 착염은 포타슘헥사시아노코발테이트(Ⅲ)(K3Co(CN)6), 포타슘헥사시아노페레이트(Ⅲ)(K3Fe(CN)6) 또는 포타슘칼슘페로시아나이드(K2CaFe(CN)6)일 수 있으며, 구체적으로 포타슘헥사시아노코발테이트(Ⅲ)(K3Co(CN)6) 또는 포타슘헥사시아노페레이트(Ⅲ)(K3Fe(CN)6)일 수 있다.
본 발명의 또 다른 양태는 이중 금속 시안화물 촉매의 제조방법을 제공한다.
일 양태에 따른 이중 시안화물 촉매의 제조방법은,
(a) tert-부탄올, 선형 또는 환형의 (C2-C12)지방족 다가 알코올 및 폴리알킬렌글리콜을 포함하는 착화제; 하기 화학식 1의 금속염; 및 하기 화학식 2의 금속 시아나이드 착염;을 포함하는 이중 금속 시안화물 촉매용 조성물을 제조하고 반응시키는 단계; 및
(b) 여과 및 세척하여 이중 금속 시안화물 촉매를 수득하는 단계;
를 포함하는 것일 수 있다.
[화학식 1]
M1(X1)p
[화학식 2]
A1
qM2M3
r(CN)6
(상기 화학식 1 및 2에서, X1, M1, M2, M3, A1, p 내지 r은 상술한 바와 같다.)
상기 선형 또는 환형의 (C2-C12)지방족 다가 알코올, 폴리알킬렌글리콜, 금속염 및 금속 시아나이드 착염에 대한 설명은 상술한 바와 같으므로 생략한다.
구체적으로, 상기 단계 (a)의 반응은, 예를 들어, 30 내지 100℃, 또는 30 내지 80℃, 또는 40 내지 60 ℃에서 30분 내지 2시간, 또는 1시간 내지 2시간동안 수행될 수 있다.
상기 단계 (b)에서 tert-부탄올 및 폴리알킬렌글리콜을 포함하는 수용액을 세척 용액으로 사용할 수 있으며, 세척 후 용매를 감압 하에 건조하여 이중 금속 시안화물 촉매를 수득하는 것일 수 있다. 상기 건조는 50 내지 100℃, 또는 70 내지 100℃, 또는 80 내지 100℃에서 1시간 내지 10시간, 또는 3시간 내지 10시간, 5시간 내지 20시간 동안 수행될 수 있다.
또한, 본 발명의 또 다른 양태는 상술한 바와 같은 제조방법으로부터 제조된 이중 금속 시안화물 촉매를 제공하며, 상기 이중 금속 시안화물 촉매 하에서 알킬렌 옥사이드와 이산화탄소를 반응시켜 폴리에테르 카보네이트 폴리올을 수득하는, 폴리에테르 카보네이트 폴리올의 제조방법을 제공한다.
구체적으로, 일 양태에 따른 폴리에테르 카보네이트 폴리올의 제조방법은 (a) tert-부탄올, 선형 또는 환형의 (C2-C12)지방족 다가 알코올 및 폴리알킬렌글리콜을 포함하는 착화제, 하기 화학식 1의 금속염 및 하기 화학식 2의 금속 시아나이드 착염을 포함하는 수용액을 제조하고 반응시키는 단계; (b) 여과 및 세척하여 이중 금속 시안화물 촉매를 수득하는 단계; 및 (c) 상기 이중 금속 시안화물 촉매 하에서 알킬렌 옥사이드와 이산화탄소를 반응시켜 폴리에테르 카보네이트 폴리올을 수득하는 단계;를 포함하는 것일 수 있다.
[화학식 1]
M1(X1)p
A1
qM2M3
r(CN)6
(상기 화학식 1 및 2에서,
X1, M1, M2, M3, A1, p 내지 r은 상술한 바와 같다.)
일 양태에 따른 이중 금속 시안화물 촉매는 촉매 활성이 매우 탁월하여 촉매 제거 단계를 포함하지 않을 수 있다. 구체적으로, 일 양태에 따른 이중 금속 시안화물 촉매를 사용하면 매우 적은 양의 촉매 사용 만으로도 고품질의 폴리에테르 카보네이트 폴리올을 제조할 수 있다. 또한, 중합 반응 후에 촉매 잔사량이 거의 없어 촉매의 제거 공정이 추가로 필요하지 않아 공정의 간소화가 가능하며, 마일드한 반응 조건에서도 고품질의 폴리에테르 카보네이트 폴리올을 수득할 수 있어 생산성을 현저히 향상시킬 수 있다.
구체적으로, 상기 (c) 단계에서 이중 금속 시안화물 촉매는 최종 생성된 폴리에테르 카보네이트 폴리올 중량을 기준으로 400 ppm 이하, 또는 300 ppm 이하, 또는 200 ppm 이하, 또는 100 ppm 이하, 또는 50 ppm 이하로 사용되는 것일 수 있고, 구체적으로 10 내지 400 ppm, 또는 50 내지 300 ppm, 또는 100 내지 300 ppm사용될 수 있으며, 상기 수치 범위의 상한 및 하한의 모든 가능한 조합을 포함할 수 있다.
또한, 상기 알킬렌 옥사이드 100중량부를 기준으로 이중 금속 시안화물 촉매는 0.001 내지 0.1 중량부, 또는 0.001 내지 0.05 중량부 사용될 수 있다.
상기 (c)단계에서 알킬렌 옥사이드는 에틸렌 옥사이드 또는 프로필렌 옥사이드일 수 있고, 알킬렌 옥사이드와 이산화탄소의 반응은 50 내지 200℃, 또는 70 내지 200℃, 또는 80 내지 150℃에서 수행될 수 있다.
또한, 상기 (c)단계는 알킬렌 옥사이드 및 이산화탄소에 연쇄 전달제(Chain transfer agent)를 더 포함하여 반응이 수행될 수 있으며, 상기 연쇄 전달제는 해당 기술분야에서 통상적으로 사용되는 것이라면 제한없이 사용될 수 있으나, 비한정적인 일 예로, 폴리알킬렌글리콜일 수 있으며, 더욱 구체적으로 폴리에틸렌글리콜, 폴리프로필렌글리콜 또는 폴리부틸렌글리콜일 수 있으나 이에 제한되는 것은 아니다. 또한, 상기 연쇄 전달제로 사용되는 폴리알킬렌글리콜의 수평균분자량은 50 내지 2,000 g/mol, 또는 50 내지 1,000 g/mol, 또는 100 내지 1,000 g/mol, 또는 100 내지 500 g/mol일 수 있으나, 특별히 이에 제한되는 것은 아니다.
상술한 중합 조건에서 중합 시간(h)을 기준으로 사용된 이중 금속 시안화물 촉매의 사용량(g-cat)대비 생성된 폴리올의 무게(kg-P)의 비로 계산된 촉매 활성도가 1 내지 40 kg-P/g-cat·h, 또는 3 내지 40 kg-P/g-cat·h일 수 있다.
상기 제조방법으로 수득된 폴리에테르 카보네이트 폴리올의 수평균분자량은 200 내지 10,000 g/mol, 또는 200 내지 5,000 g/mol, 또는 300 내지 5,000 g/mol, 또는 400 내지 3,000 g/mol일 수 있으나, 반드시 이에 한정되는 것은 아니다.
이하, 실시예를 통하여 상술한 구현예를 보다 상세하게 설명한다. 다만 하기의 실시예는 단지 설명의 목적을 위한 것이며 권리범위를 제한하는 것은 아니다.
실시예의 물성은 다음과 같이 측정하였다.
1) 분자량 및 분산도
겔 투과 크로마토그래피(Gel permeation chromatography, GPC)를 사용하여 분석하였다. Agilent 1260 Infinity II high temperature GPC 기기에서 표준 물질은 폴리스티렌, 용매는 Tetrahydrofuran, 온도는 40℃, 컬럼은 PSS SDV 500Ao 3um 8Х300 mm from Agilent 조건으로 수행하였다.
2) 촉매 활성
촉매 활성은 중합 시간(h)을 기준으로 사용된 이중 금속 시안화물 촉매의 사용량(g-cat)대비 생성된 폴리에테르 카보네이트 폴리올의 무게(kg-P)의 비로 계산하였다. 단위는 kg-P/g-cat·h이다.
[실시예 1]
이중 금속 시안화물 촉매(DMC)의 제조
착화제로 3급 부틸 알코올 및 2,3-부탄디올을 1:0.5 몰비가 되도록 사용하여 실시예 1의 이중 금속 시안화물 촉매를 제조하였다.
구체적으로, ZnCl2 6.5g, 3급 부틸 알코올 3.4g 및 2,3-부탄디올 2.1g을 증류수 24.0g에 용해시켰다. 또 다른 반응 용기에 K3Co(CN)6 0.65g을 증류수 8.0g에 용해시킨 다음, 이 혼합용액을 상기 ZnCl2 용액에 10분에 걸쳐 적가하면서 교반한 뒤, 적가 완료 후 0.14g의 3급 부틸 알코올 및 0.69g의 폴리프로필렌글리콜(분자량 1000g/mol)을 6.5g의 증류수에 용해시킨 혼합용액을 10 분 동안 추가로 적가하여 이중 금속 시안화물 촉매용 조성물을 제조하였다. 적가가 완료된 후 추가로 90 분간 교반하면서 반응시켰다. 전체 반응은 50 ℃에서 수행하였다. 이후 백색 슬러리 형태의 생성물을 여과하여 백색 고체 생성물을 수득하고, 생성물을 증류수 15g, 3급 부틸 알코올 29g 및 폴리프로필렌글리콜(분자량 1,000 g/mol) 0.6g의 혼합 용매에 분산시키고, 20분 동안 교반하며 세척한 뒤, 여과하였다. 이러한 세척 과정을 2회 반복하였다. 그 다음, 백색 생성물을 3급 부틸 알코올 40g에 분산시키고, 이어서 20분 동안 교반한 후, 여과하여 백색 생성물을 수득하였다. 그 다음, 용매를 감압 하에 60℃에서 8시간 동안 제거하여 실시예 1의 이중 금속 시안화물 촉매를 수득하였다.
폴리에테르 카보네이트 폴리올의 제조
상기에서 수득한 실시예 1의 DMC 촉매 6.0mg, 프로필렌 옥사이드 20g 및 연쇄전달제(Chain transfer agent)인 폴리프로필렌글리콜(분자량 400 g/mol) 50g을 600 mL의 반응기에서 투입하고 교반하였다. 반응기를 110 ℃로 가열하여 프로필렌 옥사이드를 중합하였다. 내부 온도가 상승하는 것이 관찰되고 이후 내부 압력이 감소하여 1 bar에 도달하면 반응기를 상온으로 냉각하였다. 이후, 프로필렌 옥사이드 150g을 반응기에 투입하고 이산화탄소 가스를 18bar까지 가압하고 반응기를 115 ℃로 가열하였다. 중합 반응이 진행되면서 반응기 내 압력이 감소되는 것을 확인하였으며, 압력이 35bar로 떨어졌을 때 중합 반응을 완료하였다. 반응 완료 후, 반응기는 아이스배스를 사용하여 냉각하고, 반응기 내의 이산화탄소 가스는 모두 배출하였다. 생성물은 80℃에서 진공오븐에 건조하였다. 생성물의 물성은 하기 표 1에 기재하였으며, 수득한 폴리에테르 카보네이트 폴리올 내 CO2 함량은 대한민국 공개특허공보 제10-2022-0111266A호에 기재된 방법으로 측정하였다.
[실시예 2]
상기 실시예 1에서, DMC 촉매용 조성물 제조 시 3급 부틸 알코올 및 2,3-부탄디올의 총 사용량은 동일하되 몰비를 1:0.5에서 1:0.2로 변경한 것을 제외하고는 동일하게 실시하였다.
[실시예 3]
상기 실시예 1에서, DMC 촉매용 조성물 제조 시 2,3-부탄디올 대신 프로필렌 글리콜을 사용한 것을 제외하고는 동일하게 실시하였다.
[실시예 4]
상기 실시예 1에서, DMC 촉매용 조성물 제조 시 2,3-부탄디올 대신 1,2-시클로헥산디올을 사용한 것을 제외하고는 동일하게 실시하였다.
[실시예 5]
상기 실시예 1에서, DMC 촉매용 조성물 제조 시 3급 부틸 알코올 및 2,3-부탄디올의 총 사용량은 동일하되 몰비를 1:0.5에서 1:1.0로 변경한 것을 제외하고는 동일하게 실시하였다.
[실시예 6]
상기 실시예 1에서, DMC 촉매용 조성물 제조 시 2,3-부탄디올 대신 1,3-프로판디올을 사용한 것을 제외하고는 동일하게 실시하였다.
[실시예 7]
상기 실시예 1에서, DMC 촉매용 조성물 제조 시 2,3-부탄디올 대신 3-아미노-1,2-프로판디올을 사용한 것을 제외하고는 동일하게 실시하였다.
[비교예 1]
상기 실시예 1에서, DMC 촉매용 조성물 제조 시 2,3-부탄디올을 사용하지 않은 것을 제외하고는 동일하게 실시하였다.
촉매 활성 (kg-P/g-cat·h) |
폴리에테르 카보네이트 폴리올 | |||
CO2함량 (wt%) |
Mn(g/mol) | PDI | ||
실시예 1 | 33.2 | 13.8 | 1,899 | 2.01 |
실시예 2 | 31.2 | 13.5 | 1,937 | 1.94 |
실시예 3 | 24.7 | 13.6 | 1,913 | 2.10 |
실시예 4 | 30.6 | 13.5 | 1,941 | 1.86 |
실시예 5 | 17.9 | 14.7 | 1,905 | 2.11 |
실시예 6 | 25.5 | 13.7 | 1,929 | 2.03 |
실시예 7 | 5.1 | 14.1 | 1,794 | 2.49 |
비교예 1 | 26.4 | 12.7 | 1,913 | 1.84 |
상기 표 1과 같이, 본 발명의 실시예에 따른 DMC 촉매는 매우 현저히 향상된 촉매 활성을 구현함을 알 수 있으며, 이에 따라 매우 적은 양의 촉매를 사용하여도 고품질의 고분자를 제조할 수 있음을 확인하였다. 또한, 본 발명의 실시예에 따르면, 중합 반응 후에 촉매 잔사량이 거의 없어(약 50 ppm 이하) 촉매의 제거 공정이 추가로 필요하지 않아 공정의 간소화가 가능하며, 마일드한 반응 조건에서도 고품질의 폴리에테르 카보네이트 폴리올을 수득할 수 있어 생산성을 현저히 향상시킬 수 있을 것으로 기대된다.
이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.
Claims (15)
- tert-부탄올; 선형 또는 환형의 (C2-C12)지방족 다가 알코올; 및 폴리알킬렌글리콜;을 착화제로 포함하는, 이중 금속 시안화물 촉매용 조성물.
- 제 1항에 있어서,상기 착화제는 tert-부탄올 및 지방족 다가 알코올을 1:0.1 내지 0.9 몰비로 포함하는 것인, 이중 금속 시안화물 촉매용 조성물.
- 제 1항에 있어서,상기 지방족 다가 알코올은 디올 또는 트리올인, 이중 금속 시안화물 촉매용 조성물.
- 제 3항에 있어서,상기 지방족 다가 알코올은 1,2-디올, 1,3-디올 또는 1,2,3-트리올인, 이중 금속 시안화물 촉매용 조성물.
- 제 4항에 있어서,상기 지방족 다가 알코올은 에틸렌 글리콜, 프로필렌 글리콜, 1,3-프로판디올, 글리세롤, 1,3-부탄디올, 1,2-부탄디올, 2,3-부탄디올, 3-아미노-1,2-프로판디올, 1,2-시클로헥산디올 및 1,2-시클로펜타디올에서 선택되는 하나 또는 둘 이상인, 이중 금속 시안화물 촉매용 조성물.
- 제 1항에 있어서,상기 이중 금속 시안화물 촉매용 조성물 하기 화학식 1의 금속염 및 하기 화학식 2의 금속 시아나이드 착염을 포함하는 것인, 이중 금속 시안화물 촉매용 조성물.[화학식 1]M1(X1)p[화학식 2]A1 qM2M3 r(CN)6상기 화학식 1 및 2에서,M1은 11족 또는 12족의 전이금속 이온이고;X1은 할로겐, 히드록시기, 설페이트기, 카르보네이트기, 카르복실레이트기, 옥살레이트기 또는 시아나이드기이고;A1은 알칼리 금속 이온 또는 알칼리 토금속 이온이고;M2 및 M3는 서로 상이하며 알칼리 토금속 이온 또는 8족, 9족, 또는 10족의 전이금속 이온이고;p 및 q는 각각 독립적으로 1 이상의 정수이고, r은 0 또는 1이다.
- 제 6항에 있어서,상기 M1은 Zn(Ⅱ), Fe(Ⅱ), Co(Ⅱ) 또는 Ni(Ⅱ)이고; X1은 할로겐인, 이중 금속 시안화물 촉매용 조성물
- 제 6항에 있어서,상기 금속염은 염화아연(Ⅱ), 염화아연(Ⅲ), 브롬화아연 또는 요오드화아연인, 이중 금속 시안화물 촉매용 조성물.
- 제 6항에 있어서,상기 M2 및 M3는 각각 독립적으로 Ca(Ⅱ), Co(Ⅱ), Co(Ⅲ), Fe(Ⅱ), Fe(Ⅲ), Cr(Ⅱ), Ir(Ⅲ), 또는 Ni(Ⅱ)인, 이중 금속 시안화물 촉매용 조성물.
- 제 6항에 있어서,상기 금속 시아나이드 착염은 포타슘헥사시아노코발테이트(Ⅲ), 포타슘헥사시아노페레이트(Ⅲ) 또는 포타슘칼슘페로시아나이드인, 이중 금속 시안화물 촉매용 조성물.
- 제 1항 내지 제 10항에서 선택되는 어느 한 항의 이중 금속 시안화물 촉매용 조성물로부터 제조된, 이중 금속 시안화물 촉매.
- (a) tert-부탄올, 선형 또는 환형의 (C2-C12)지방족 다가 알코올 및 폴리알킬렌글리콜을 포함하는 착화제, 하기 화학식 1의 금속염 및 하기 화학식 2의 금속 시아나이드 착염을 포함하는 이중 금속 시안화물 촉매용 조성물을 제조하고 반응시키는 단계; 및(b) 여과 및 세척하여 이중 금속 시안화물 촉매를 수득하는 단계;를 포함하는 것인, 이중 금속 시안화물 촉매의 제조방법.[화학식 1]M1(X1)p[화학식 2]A1 qM2M3 r(CN)6상기 화학식 1 및 2에서,X1, M1, M2, M3, A1, p 내지 r은 상기 제6항에서의 정의와 동일하다.
- (a) tert-부탄올, 선형 또는 환형의 (C2-C12)지방족 다가 알코올 및 폴리알킬렌글리콜을 포함하는 착화제, 하기 화학식 1의 금속염 및 하기 화학식 2의 금속 시아나이드 착염을 포함하는 이중 금속 시안화물 촉매용 조성물을 제조하고 반응시키는 단계;(b) 여과 및 세척하여 이중 금속 시안화물 촉매를 수득하는 단계; 및(c) 상기 이중 금속 시안화물 촉매 하에서 알킬렌 옥사이드와 이산화탄소를 반응시켜 폴리에테르 카보네이트 폴리올을 수득하는 단계;를 포함하는, 폴리에테르 카보네이트 폴리올의 제조방법.[화학식 1]M1(X1)p[화학식 2]A1 qM2M3 r(CN)6상기 화학식 1 및 2에서,X1, M1, M2, M3, A1, p 내지 r은 상기 제6항에서의 정의와 동일하다.
- 제 13항에 있어서,상기 폴리에테르 카보네이트 폴리올의 수평균분자량이 200 내지 10,000 g/mol인, 폴리에테르 카보네이트 폴리올의 제조방법.
- 제 13항에 있어서,상기 (c) 단계에서 중합 시간(h)을 기준으로 사용된 이중 금속 시안화물 촉매의 사용량(g-cat)대비 생성된 폴리올의 무게(kg-P)의 비로 계산된 촉매 활성도가 1 내지 40 kg-P/g-cat·h인, 폴리에테르 카보네이트 폴리올의 제조방법.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2022-0181481 | 2022-12-22 | ||
KR20220181481 | 2022-12-22 | ||
KR1020230142951A KR20240100225A (ko) | 2022-12-22 | 2023-10-24 | 이중 금속 시안화물 촉매 및 이의 제조방법 |
KR10-2023-0142951 | 2023-10-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024136508A1 true WO2024136508A1 (ko) | 2024-06-27 |
Family
ID=91589519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/021232 WO2024136508A1 (ko) | 2022-12-22 | 2023-12-21 | 이중 금속 시안화물 촉매 및 이의 제조방법 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024136508A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030003245A (ko) * | 2000-03-30 | 2003-01-09 | 쉘 인터내셔날 리서치 마챠피즈 비.브이. | Dmc 착물 촉매 및 그의 제조 방법 |
KR101466803B1 (ko) * | 2014-02-14 | 2014-11-28 | 부산대학교 산학협력단 | 이중금속시안염 촉매 및 이를 제조하는 방법 |
KR101922549B1 (ko) * | 2017-06-15 | 2018-11-28 | 순천대학교 산학협력단 | 폴리에테르 폴리올의 제조방법 |
KR20190123759A (ko) * | 2017-03-01 | 2019-11-01 | 에코닉 테크놀로지 엘티디 | 폴리올의 제조 방법 |
KR20200067892A (ko) * | 2017-10-24 | 2020-06-12 | 에코닉 테크놀로지 엘티디 | 폴리카보네이트 에테르 폴리올 및 고분자량 폴리에테르 카보네이트의 형성 방법 |
-
2023
- 2023-12-21 WO PCT/KR2023/021232 patent/WO2024136508A1/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030003245A (ko) * | 2000-03-30 | 2003-01-09 | 쉘 인터내셔날 리서치 마챠피즈 비.브이. | Dmc 착물 촉매 및 그의 제조 방법 |
KR101466803B1 (ko) * | 2014-02-14 | 2014-11-28 | 부산대학교 산학협력단 | 이중금속시안염 촉매 및 이를 제조하는 방법 |
KR20190123759A (ko) * | 2017-03-01 | 2019-11-01 | 에코닉 테크놀로지 엘티디 | 폴리올의 제조 방법 |
KR101922549B1 (ko) * | 2017-06-15 | 2018-11-28 | 순천대학교 산학협력단 | 폴리에테르 폴리올의 제조방법 |
KR20200067892A (ko) * | 2017-10-24 | 2020-06-12 | 에코닉 테크놀로지 엘티디 | 폴리카보네이트 에테르 폴리올 및 고분자량 폴리에테르 카보네이트의 형성 방법 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015009013A1 (en) | Double metal cyanide catalyst and epoxide/carbon dioxide copolymer prepared using the same | |
US7399822B2 (en) | Isotactic specific catalyst for direct production of highly isotactic poly (propylene oxide) or highly isotactic poly (butylene oxide) | |
US5223597A (en) | Curable composition | |
KR101320796B1 (ko) | 경화성 조성물 | |
WO2020080619A1 (ko) | 폴리우레탄 폼 스크랩을 재활용한 경질 폴리우레탄의 제조방법 | |
WO2024136508A1 (ko) | 이중 금속 시안화물 촉매 및 이의 제조방법 | |
WO2022244969A1 (ko) | 메틸렌 락톤계 화합물의 제조방법 | |
WO2021133048A1 (ko) | 무수당 알코올 및 무수당 알코올-알킬렌 글리콜로부터 유래된 단위들을 포함하는 폴리카보네이트 공중합체 및 이의 제조방법, 및 이를 포함하는 성형품 | |
WO2017111469A1 (ko) | 이중금속시안염 촉매, 그 제조방법 및 상기 촉매를 이용한 폴리카보네이트 폴리올 제조방법 | |
EP0383544A2 (en) | Isobutylene oxide polyols | |
WO2022025554A1 (ko) | 유화제 합성용 모노아민 화합물 | |
US5286780A (en) | Curable composition | |
WO2014092246A1 (ko) | 고분지형 폴리카보네이트 수지 및 그 제조방법 | |
WO2020197148A1 (ko) | 트리블록 공중합체 및 이의 제조 방법 | |
WO2014204279A1 (en) | Method of separating aliphatic polycarbonate polymer and catalyst from preparing process of copolymer | |
JP3145022B2 (ja) | 硬化性組成物 | |
CN115181248A (zh) | 带有季铵盐结构的多孔有机聚合物及其制备方法和应用 | |
WO2018062965A1 (ko) | 폴리에테르에스테르 공중합체의 제조방법 | |
WO2024128554A1 (ko) | 이산화탄소-에폭사이드 반응 촉매 제조 방법, 이산화탄소-에폭사이드 반응 촉매 및 폴리머 합성 방법 | |
TWI404757B (zh) | 非環境荷爾蒙可塑劑及其製備方法 | |
WO2022270869A1 (ko) | 폴리락트산 중합체의 제조 방법 | |
KR20240100225A (ko) | 이중 금속 시안화물 촉매 및 이의 제조방법 | |
JP3903549B2 (ja) | 室温硬化性組成物 | |
GB1173705A (en) | Process for the Manufacture of alpha-Triorganosiloxy-omega-Hydroxy-Diorganopolysiloxanes. | |
WO2021033917A1 (ko) | 폴리알킬렌 카보네이트의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23907791 Country of ref document: EP Kind code of ref document: A1 |