WO2024131689A1 - 感知方法、感知装置及通信设备 - Google Patents

感知方法、感知装置及通信设备 Download PDF

Info

Publication number
WO2024131689A1
WO2024131689A1 PCT/CN2023/139332 CN2023139332W WO2024131689A1 WO 2024131689 A1 WO2024131689 A1 WO 2024131689A1 CN 2023139332 W CN2023139332 W CN 2023139332W WO 2024131689 A1 WO2024131689 A1 WO 2024131689A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
perception
measurement value
signal
information
Prior art date
Application number
PCT/CN2023/139332
Other languages
English (en)
French (fr)
Inventor
李健之
姜大洁
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024131689A1 publication Critical patent/WO2024131689A1/zh

Links

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a sensing method, a sensing device and a communication device.
  • perception nodes in mobile communication networks can realize perception measurement of the state of perception targets or perception environment by sending and receiving perception signals.
  • IRC Integrated Sensing and Communication
  • the non-ideal factors of the devices and hardware circuits of the user equipment (UE) will significantly affect the measurement accuracy.
  • the perception method of sending and receiving perception signals between the base station and the terminal extracting the channel state information (CSI) for perception is one of the main implementation methods of communication perception integration.
  • some non-ideal factors will cause errors in CSI measurement, which will significantly affect the accuracy of perception.
  • the uplink channel estimation on the base station side is discontinuous in phase in time, that is, there is a random phase offset between channel estimates at different uplink moments. If the user equipment (UE) has more than one RF channel, different random phases will be introduced in different RF channels. This random phase has almost no effect on communication performance, but will introduce uplink perception errors, and even make it impossible to perform perception services.
  • the embodiments of the present application provide a perception method, a perception device and a communication device, which can determine a random phase estimation value of a transmitter of a perception signal based on a reference path parameter measurement value obtained by measuring a downlink reference path parameter, and calibrate a random phase in a perception measurement value based on the random phase estimation value, so as to reduce the deviation between the calibrated perception measurement value and the true value of the perception measurement value, thereby improving the accuracy of a perception result obtained based on the calibrated perception measurement value, and thus improving the perception performance.
  • a perception method comprising:
  • the first node performs downlink measurement on the first signal based on the first configuration information to obtain a reference path parameter measurement value
  • the first node sends a second signal based on the second configuration information, wherein the second signal is used for a first service, and the first service is a perception service and/or a communication perception integrated service;
  • the target perception result of the first service is determined based on the target perception measurement value obtained after calibrating the first random phase information and the first perception measurement value, the first random phase information is determined based on the first perception measurement value and the reference path parameter measurement value, and the first perception measurement value is determined based on the perception measurement of the second signal.
  • a sensing device which is applied to a first node, and includes:
  • a first measurement module configured to perform downlink measurement on the first signal based on the first configuration information to obtain a reference path parameter measurement value
  • a first sending module configured to send a second signal based on second configuration information, wherein the second signal is used for a first service, and the first service is a perception service and/or a communication perception integrated service;
  • the target perception result of the first service is determined based on the target perception measurement value obtained after calibrating the first random phase information and the first perception measurement value, the first random phase information is determined based on the first perception measurement value and the reference path parameter measurement value, and the first perception measurement value is determined based on the perception measurement of the second signal.
  • a perception method comprising:
  • the second node sends a first signal based on the first configuration information, wherein the first configuration information is used to configure reference path parameter measurement;
  • the target perception result of the first service is determined based on the target perception measurement value obtained after calibrating the first random phase information and the first perception measurement value
  • the first random phase information is determined based on the first perception measurement value and the reference path parameter measurement value obtained based on the reference path parameter measurement
  • the first perception measurement value is determined based on the perception measurement of the second signal
  • the first service is a perception service and/or a communication perception integrated service
  • the receiving end of the first signal and the sending end of the second signal are the first node.
  • a sensing device which is applied to a second node, and includes:
  • a second sending module configured to send a first signal based on first configuration information, wherein the first configuration information is used to configure reference path parameter measurement;
  • the target perception result of the first service is determined based on the target perception measurement value obtained after calibrating the first random phase information and the first perception measurement value
  • the first random phase information is determined based on the first perception measurement value and the reference path parameter measurement value obtained based on the reference path parameter measurement
  • the first perception measurement value is determined based on the perception measurement of the second signal
  • the first service is a perception service and/or a communication perception integrated service
  • the receiving end of the first signal and the sending end of the second signal are the first node.
  • a perception method comprising:
  • the third node measures the second signal based on the second configuration information to obtain a first perception measurement value, wherein the second configuration information is used to configure a first service, the first service is a perception service and/or a communication perception integrated service, and the sender of the second signal includes the first node;
  • the target perception result of the first service is determined based on the target perception measurement value obtained by calibrating the first perception measurement value based on the first random phase information, and the first random phase information is based on the first
  • the perception measurement value and the reference path parameter measurement value are determined, and the reference path parameter measurement value is a measurement value when the first node receives the first signal.
  • a sensing device which is applied to a third node, and includes:
  • a second measurement module configured to measure a second signal based on second configuration information to obtain a first perception measurement value, wherein the second configuration information is used to configure a first service, the first service is a perception service and/or a communication perception integrated service, and the sending end of the second signal includes a first node;
  • the target perception result of the first service is determined based on the target perception measurement value obtained after calibrating the first perception measurement value based on the first random phase information, and the first random phase information is determined based on the first perception measurement value and the reference path parameter measurement value, and the reference path parameter measurement value is the measurement value when the first node receives the first signal.
  • a communication device which includes a processor and a memory, wherein the memory stores a program or instruction that can be run on the processor, and when the program or instruction is executed by the processor, the steps of the method described in the first aspect, the third aspect, or the fifth aspect are implemented.
  • a communication device including a processor and a communication interface
  • the communication interface when the communication device is a first node, the communication interface is used to perform downlink measurement on the first signal based on the first configuration information to obtain a reference path parameter measurement value; the communication interface is also used to send a second signal based on the second configuration information, wherein the second signal is used for a first service, and the first service is a perception service and/or a communication-perception integrated service; wherein the target perception result of the first service is determined based on a target perception measurement value obtained after calibration based on the first random phase information and the first perception measurement value, the first random phase information is determined based on the first perception measurement value and the reference path parameter measurement value, and the first perception measurement value is determined based on the perception measurement of the second signal.
  • the communication interface is used to send a first signal based on first configuration information, wherein the first configuration information is used to configure reference path parameter measurement; wherein the target perception result of the first service is determined based on a target perception measurement value obtained after calibration based on first random phase information and a first perception measurement value, the first random phase information is determined based on the first perception measurement value and a reference path parameter measurement value obtained based on the reference path parameter measurement, the first perception measurement value is determined based on a perception measurement of a second signal, the first service is a perception service and/or a communication perception integrated service, and the receiving end of the first signal and the sending end of the second signal are the first node;
  • the communication interface is used to measure the second signal based on the second configuration information to obtain a first perception measurement value
  • the second configuration information is used to configure a first service
  • the first service is a perception service and/or a communication perception integrated service
  • the sending end of the second signal includes a first node
  • the target perception result of the first service is determined based on a target perception measurement value obtained by calibrating the first perception measurement value based on first random phase information
  • the first random phase information is determined based on the first perception measurement value and a reference path parameter measurement value
  • the reference path parameter measurement value is a measurement value when the first node receives the first signal.
  • a readable storage medium on which a program or instruction is stored.
  • the program or instruction is executed by a processor, the steps of the method described in the first aspect, the third aspect, or the fifth aspect are implemented.
  • a chip comprising a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run a program or instruction to implement the method described in the first aspect, the third aspect, or the fifth aspect.
  • a computer program/program product is provided, wherein the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the steps of the method described in the first aspect, the third aspect, or the fifth aspect.
  • the first node performs downlink measurement on the first signal based on the first configuration information to obtain a reference path parameter measurement value; the first node sends a second signal based on the second configuration information, wherein the second signal is used for the first service, and the first service is a perception service and/or a communication perception integrated service; wherein the target perception result of the first service is determined based on the target perception measurement value obtained after calibration based on the first random phase information and the first perception measurement value, the first random phase information is determined based on the first perception measurement value and the reference path parameter measurement value, and the first perception measurement value is determined based on the perception measurement of the second signal.
  • the first node can obtain the reference path parameter measurement value based on the downlink measurement, and the random phase information of the first node when sending the second signal can be estimated based on the reference path parameter measurement value, so that the perception measurement value or perception result with random phase interference can be randomly calibrated based on the random phase information, or the random phase in the perception measurement value or perception result can be eliminated, thereby improving the accuracy of the obtained target perception measurement value or target perception result, thereby improving the perception accuracy.
  • FIG1 is a schematic diagram of the structure of a wireless communication system to which an embodiment of the present application can be applied;
  • Figure 2 is a schematic diagram of the perception method
  • FIG3a is a schematic diagram of the position of a random phase measurement signal in the time and frequency domain
  • FIG3b is one of the schematic diagrams of reference path parameter extraction
  • FIG4a is a schematic diagram of random phases of different antenna ports
  • FIG4b is a second schematic diagram of reference path parameter extraction
  • FIG4c is a second schematic diagram of random phase deflection
  • FIG5 is a flow chart of a sensing method provided in an embodiment of the present application.
  • FIG6 is a flow chart of another sensing method provided in an embodiment of the present application.
  • FIG7 is a flow chart of another sensing method provided in an embodiment of the present application.
  • FIG8a is a schematic diagram of the interaction process of application scenario 1;
  • FIG8b is a schematic diagram of the interaction process of application scenario 2;
  • FIG8c is a schematic diagram of the interaction process of application scenario three;
  • FIG8d is a schematic diagram of the interaction process of application scenario 4.
  • FIG9 is a schematic diagram of the structure of a sensing device provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of the structure of another sensing device provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of the structure of another sensing device provided in an embodiment of the present application.
  • FIG12 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG. 13 is a schematic diagram of the hardware structure of a terminal provided in an embodiment of the present application.
  • FIG14 is a schematic diagram of the structure of a network side device provided in an embodiment of the present application.
  • first, second, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents that the objects associated with each other are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR new radio
  • FIG1 shows a block diagram of a wireless communication system applicable to an embodiment of the present application.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), a mobile Internet device (Mobile Internet Device, MID), an augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) device, a robot, a wearable device (Wearable Device), a vehicle user equipment (VUE), a pedestrian terminal (Pedestrian User Equipment, PUE), a smart home (with Household appliances with wireless communication functions, such as refrigerators, televisions, washing machines or furniture, etc.), game consoles, personal computers (PCs), ATMs or self-service machines and other terminal-side devices, wearable devices
  • the network-side device 12 may include access network equipment or core network equipment, wherein the access network equipment may also be referred to as wireless access network equipment, radio access network (RAN), radio access network function or radio access network unit.
  • the access network equipment may include a base station, a wireless local area network (WLAN) access point or a WiFi node, etc.
  • WLAN wireless local area network
  • the base station may be referred to as a node B, an evolved node B (eNB), an access point, a base transceiver station (BTS), a radio base station, a radio transceiver, a basic service set (BSS), an extended service set (ESS), a home node B, a home evolved node B, a transmission reception point (TRP) or some other suitable term in the field.
  • eNB evolved node B
  • BTS basic service set
  • ESS extended service set
  • TRP transmission reception point
  • the base station is not limited to a specific technical vocabulary. It should be noted that in the embodiment of the present application, only the base station in the NR system is used as an example for introduction, and the specific type of the base station is not limited.
  • the core network equipment may include but is not limited to at least one of the following: core network node, core network function, mobility management entity (Mobility Management Entity, MME), access mobility management function (Access and Mobility Management Function, AMF), session management function (Session Management Function, SMF), user plane function (User Plane Function, UPF), policy control function (Policy Control Function, PCF), policy and charging rules function unit (Policy and Charging Rules Function, PCRF), edge application service discovery function (Edge Application Server Discovery Function, EASDF), unified data management (Unified Data Management, UDM), unified data storage (Unified Data Repository, UDR), home user server (Home Subscriber Server, HSS), centralized network configuration (CNC), network storage function (Network Repository Function, NRF), network exposure function (Network Exposure Function, NEF), local NEF (Local NEF, or L-NEF), binding support function (Binding Support Function, BSF), application function (Application Function, AF), etc. It should be noted that in
  • Wireless communication and radar sensing have been developing in parallel, but with limited overlap. They have a lot in common in terms of signal processing algorithms, equipment, and to some extent, system architecture. In recent years, traditional radars are moving towards a more general wireless sensing direction. Wireless sensing can broadly refer to retrieving information from received radio signals. For wireless sensing related to the location of the sensing target, the dynamic parameters such as the target signal reflection delay, arrival angle, departure angle, Doppler, etc. can be estimated through common signal processing methods; for sensing the physical characteristics of the target, it can be achieved by measuring the inherent signal patterns of the device/object/activity. The two sensing methods can be called perception parameter estimation and pattern recognition, respectively. In this sense, wireless sensing refers to more general sensing technologies and applications using radio signals.
  • Integrated Sensing And Communication has the potential to integrate wireless sensing into large-scale mobile networks, here referred to as Perceptive Mobile Networks (PMNs).
  • PMNs Perceptive Mobile Networks
  • PMNs for details, please refer to the literature [1]: Rahman, Md Lushanur, et al. "Enabling joint communication and radio sensing in mobile networks–a survey.” arXiv preprint arXiv:2006.07559(2020). I will not elaborate on this here.
  • Perception mobile networks are able to provide both communication and wireless perception services, and are expected to become a ubiquitous wireless sensing solution due to their large broadband coverage and strong infrastructure. Perception mobile networks can be widely used for communication and sensing in the fields of transportation, communication, energy, precision agriculture, and security. It can also provide complementary sensing capabilities to existing sensor networks, with unique day and night operation capabilities, and the ability to penetrate fog, leaves, and even solid objects. Some common perception services are shown in Table 1 below:
  • a base station in a mobile communication network including one or more transmission reception points (TRP) on the base station
  • a user equipment (UE) including one or more antenna subarrays/panels on the UE
  • TRP transmission reception points
  • UE user equipment
  • the perception service can be supported. For example, a perception measurement quantity or a perception result can be obtained by receiving the signal.
  • the sensing signal may be a signal that does not contain transmission information, such as the existing LTE/NR synchronization and reference signals (including: synchronization signal and physical broadcast channel (Synchronization Signal and PBCH block, SSB) signal, channel state information (CSI) reference signal (CSI Reference Signal, CSI-RS), demodulation reference signal (Demodulation Reference Signal, DMRS), channel sounding reference signal (Sounding Reference Signal, SRS), positioning reference signal (Positioning Reference Signal, PRS), phase tracking reference signal (Phase-Tracking Reference Signal, PTRS), etc.), or it may be a single frequency continuous wave (Continuous Wave, CW) and frequency modulated continuous wave (FMCW) commonly used by radar. And ultra-wideband Gaussian pulses, etc.
  • the perception signal can also be a newly designed dedicated perception signal with good correlation characteristics and low peak-to-average power ratio (PAPR), or a newly designed synaesthesia integrated signal, which not only carries certain information, but also has good perception performance.
  • the new signal is at least one dedicated perception signal/reference signal, and at least one communication signal is spliced/combined/superimposed in the time domain and/or frequency domain.
  • the type of perception signal is not specifically limited here, and for the sake of convenience, the above-mentioned signals are uniformly referred to as perception signals or second signals in the following embodiments.
  • the nodes that send and/or receive the second signal are collectively referred to as perception nodes.
  • the sending node of the second signal is referred to as the first node
  • the receiving node of the second signal is referred to as the third node.
  • the sending node of the first signal is referred to as the second node
  • the receiving node of the first signal is referred to as the first node, that is, the receiving node of the first signal and the sending node of the second signal are the same node.
  • the sending node and the receiving node of the second signal may be the same device or different devices, for example: sensing node A sends the second signal, and sensing node B receives the second signal.
  • the sensing node A and sensing node B are not the same device and are physically separated; or, the sensing node A sends and receives the second signal by itself, that is, the sending and receiving of the sensing signal are performed by the same device, and the sensing node senses by receiving the echo of the signal sent by itself.
  • the sensing methods can be divided into the following six types:
  • Mode 1 Base station self-transmitting and self-receiving sensing.
  • base station A sends a sensing signal and performs sensing measurement by receiving the echo of the sensing signal.
  • Mode 2 Air interface sensing is performed between base stations. At this time, base station B receives the sensing signal sent by base station A and performs sensing measurement.
  • Mode 3 Uplink air interface perception: At this time, base station A receives the perception signal sent by terminal A and performs perception measurement.
  • Mode 4 Downlink air interface perception: At this time, terminal B receives the perception signal sent by base station B and performs perception measurement.
  • Terminals send and receive sensing autonomously.
  • terminal A sends a sensing signal and performs sensing measurement by receiving the echo of the sensing signal.
  • Mode 6 Sidelink sensing between terminals: In this case, terminal B receives the sensing signal sent by terminal A and performs sensing measurement.
  • the same perception service may adopt any one or at least two of the above-mentioned perception methods 1 to 6.
  • the same perception service adopts one perception method.
  • the sending node of the perception signal is usually referred to as the first node
  • the receiving node of the perception signal is referred to as the third node, which does not constitute a specific limitation herein.
  • first node and the second node in the embodiment of the present application may be the same node, that is, the first node sends a second signal and receives an echo signal of the second signal to obtain a first perception measurement value; or, the above-mentioned second node and the third node may be the same node, that is, the second node sends a first signal for the first node to obtain a reference path parameter measurement value, and in addition, the second node also receives the second signal to obtain a first perception measurement value.
  • the first node in the embodiment of the present application is usually a terminal, such as a mobile phone, a computer, smart glasses, etc.
  • a terminal such as a mobile phone, a computer, smart glasses, etc.
  • the volume cost of the terminal is limited, so the hardware and/or software of the terminal will introduce random phase deviation.
  • the purpose of the embodiments of the present application is to eliminate or reduce the interference of the random phase deviation on the perception result to improve the perception accuracy.
  • CSI channel state information
  • PAU Power Amplifier Uncertainty
  • LNAs low noise amplifiers
  • PGAs programmable gain amplifiers
  • I and Q branch devices The in-phase (I) and quadrature (Q) paths are unbalanced.
  • the performance limitations of the I and Q branch devices mean that the phase of the local oscillator signal cannot be guaranteed to be strictly 90° apart, there is a difference in the gain of the two signals, and there is a DC bias, which in turn destroys the orthogonality of the baseband signal and causes CSI deterioration.
  • Antenna/array amplitude and phase errors This includes when using beamforming for perception, the beamforming amplitude and phase errors will cause the formed beam shape (beam gain, beam width, sidelobe level) to be inconsistent with the actual situation, which will lead to a decrease in accuracy when perceiving based on the channel information after beamforming, resulting in errors in angle and reflected power estimation.
  • beam switching delay will also increase the impact of interference and noise on the perception results.
  • the impact of the transmitter on CSI is summarized, mainly including windowing, precoding, beamforming and other processing that is unknown to the receiver, resulting in the receiver being unable to obtain the true channel information.
  • Random phase in the time domain comes from the state of at least one of the transmitter antenna, RF module (including various devices connected to the RF channel), digital processing module, and clock module during the signal transmission and reception process.
  • the random phase of the transmitter is generated by the device. If the device has more than one transmitter, each transmitter may generate an independent random phase. If each transmitter is connected to at least one antenna, antennas/antenna subarrays connected to different transmitters have different random phases.
  • the random phase is generally consistent within the bandwidth of the transmitted signal, but the random phase values generated at different times are different, showing a random distribution within a certain arc range.
  • the uplink channel estimation on the base station side is discontinuous in phase in time, that is, there is a random phase offset between channel estimates at different uplink moments. If the UE has more than one RF channel, different random phases will be introduced in different RF channels. This random phase has almost no effect on communication performance, but will introduce uplink perception errors, and even make it impossible to perform perception services.
  • reference signals such as SRS
  • the first node that sends the perception signal also measures the first signal used for reference path measurement to obtain a reference path parameter measurement value. Based on the reciprocity of uplink and downlink channels, the uplink random phase of the perception signal sent by the first node can be obtained according to the downlink reference path parameter measurement value and/or the random phase information corresponding to the reference path parameter measurement value can be used to perform random phase calibration or elimination on the perception measurement value carrying the random phase offset, thereby reducing the interference of random phase deviation on the perception measurement value and/or perception result.
  • the random phase estimation can be very accurate, ensuring that the random phase calibration has high performance, effectively solving the influence of the uplink random phase on the uplink perception performance, and improving the perception/synaesthesia integration performance.
  • the sensing signal transmitter or sensing signal receiver has multiple antennas. Since multiple antennas often use the same clock source, the channel delay and Doppler calibration can be achieved through the CSI quotient or CSI conjugate product method to eliminate the errors introduced by frequency offset or random phase.
  • the explanation of CSI quotient can be found in reference [5]: Zeng, Youwei, et al. "FarSense: Pushing the range limit of WiFi-based respiration sensing with CSI ratio of two antennas.” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 3.3 (2019): 1-26.
  • This method is simple to implement and has a small amount of computation, but requires that at least one of the transmitter and the receiver has multiple antennas, and the non-ideal factors (frequency deviation or random phase) introduced into the measured values of the perception measurement quantity obtained by each antenna are the same.
  • the channel estimate for antenna 1 of the sensing signal receiver is where H 1 (f,t) is the actual CSI of antenna 1, is the phase difference introduced by non-ideal factors.
  • the channel estimation of antenna 2 is H 2 (f, t) is the real CSI of antenna 2. Then the CSI quotient can be expressed as the following formula:
  • the phase difference introduced by non-ideal factors in channel estimation is eliminated through the CSI quotient or the CSI conjugate product.
  • the phase difference can be eliminated based on the phase difference. or
  • the perception measurement value extraction is performed to achieve random phase calibration of the perception measurement value, which will not be described in detail here.
  • the transmitted baseband signal is s 0 (t)
  • the carrier frequency is f c
  • the transmitted signal is Also assume that the wireless channel between the transmitter and the receiver is Where L is the total number of multipaths in the channel, ⁇ l is the delay of the lth multipath, and f d,l is the Doppler frequency of the lth multipath.
  • the signal received by the receiver antenna is
  • the signal s 0 (t) and the carrier frequency f c are known, and H(f,t) can be obtained based on the received signal r(t), that is, the CSI matrix containing the perceptual information can be obtained. Furthermore, the perceptual measurement quantity, such as ⁇ l , f d,l, etc., can be obtained using parameter estimation algorithms such as Fast Fourier Transform (FFT) or Multiple Signal Classification (MUSIC).
  • FFT Fast Fourier Transform
  • MUSIC Multiple Signal Classification
  • the transmitted signal becomes in is a random phase.
  • the antenna received signal can be expressed as follows:
  • the Doppler frequency estimated based on the adjacent two channels can be expressed as follows:
  • any l-th multipath is known to be ⁇ ′ l (generally also a line-of-sight (LOS) path, and in some cases it can also be any non-line-of-sight (NLOS) path), such as the NLOS reflection path of a known perception reference node (such as a reconfigurable intelligent surface (RIS) or a backscatter tag (BSC)).
  • the measured delay of the l-th multipath is ⁇ ′ l .
  • ⁇ ′ l - ⁇ l .
  • Doppler calibration is performed based on the CSI matrix after delay calibration.
  • the multipath complex amplitude including Doppler
  • ⁇ l based on the CSI matrix
  • the calibrated CSI at time ts (where ts is the time difference relative to the reference time) within the time period T can be obtained, that is:
  • pilots (reference signals)/sensing signals for random phase estimation are placed on at least two different uplink time slots in the same uplink cycle, as shown in FIG3a.
  • at least two uplink time slots are required in one uplink cycle.
  • each RF link is required to have at least two uplink time slots.
  • the receiving end obtains a channel estimate based on the pilot (reference signal)/sensing signal of the random phase estimate, and performs an inverse fast Fourier transform (IFFT) on the channel estimate in the frequency domain to obtain the impulse response of the channel.
  • Multiple uplink time slots correspond to multiple impulse responses at different times, as shown in FIG3b.
  • the purpose of the IFFT operation is to obtain the reference path parameters of the channel (generally the LOS path or the NLOS path constructed by the reference node (RIS/BSC)), such as the delay, amplitude, phase, etc. of the reference path.
  • the reference path phase at the uplink time slot of the next uplink cycle can be easily extrapolated based on the phase of the channel reference path of at least 2 different uplink time slots in the uplink cycle.
  • the reference path phase at the uplink time slot of the next uplink cycle introduces a random phase deflection (random phase difference).
  • the phase difference between the extrapolated phase of the reference path and the actual measured phase is the random phase value to be estimated.
  • the same operation is performed on different uplink time slots to obtain all random phase values. It should be pointed out that, depending on the different Doppler values of the actual reference path, the slope of the broken line in Figure 3c can be positive, negative or 0. By compensating for the corresponding random phase values in the channel estimation/received signals of all different uplink time slots, accurate measurement of the Doppler of the target signal can be achieved.
  • the receiver estimates the signal departure angle (taking the departure azimuth as an example, represented by ⁇ ) based on the received 4-port transmission signals, it is necessary to obtain the phase difference of the transmission signal of each port.
  • the signal transmission direction of each antenna port is different (that is, the "equivalent signal transmission direction" in Figure 4a).
  • the receiving end obtains multiple transmitting antennas based on the pilot (reference signal)/sensing signal used for random phase estimation.
  • the channel estimation of the line port is performed, and the IFFT of each port channel estimation is performed in the frequency domain to obtain the impulse response of the channel, as shown in Figure 4b.
  • the purpose of the IFFT operation is to obtain the reference path parameters of the channel (usually the LOS path or the NLOS path constructed by the reference node (RIS/BSC)), such as the delay, amplitude, phase, etc. of the reference path.
  • the reference path phase ⁇ 0 (t) of antenna port 0 is taken as the reference phase, and assuming that the departure angle of the reference path is known to be ⁇ , the reference path phase of antenna port n should be
  • d 0 , d n are the distances of antenna port 0 and antenna port n from the reference position of the antenna array, respectively
  • is the signal wavelength, as shown in FIG4c .
  • the slope of the broken line in FIG4c can be positive, negative, or 0.
  • the perception method provided in the embodiment of the present application is applicable to the random phase measurement, estimation, and calibration of different uplink moments of at least one antenna port of the first node, and also to the random phase measurement, estimation, and calibration between at least two different antenna ports of the first node. It should be understood that the random phase measurement, estimation, and calibration operation can achieve at least one of the following two effects:
  • the channel reference path phase of a certain antenna port and a certain uplink time is used as the reference phase, so that the channel reference path phases of other antenna ports and/or other uplink times of the antenna port maintain continuity/consistency with the reference phase, thereby eliminating the influence of random phase on Doppler measurement and/or angle measurement.
  • random phase in the embodiment of the present application also includes the difference between random phases.
  • the influence of the random phase on Doppler measurement can be eliminated; when the embodiment of the present application is used to measure, estimate, and calibrate the random phase between at least two different antenna ports of the first node, the influence of the random phase on angle (including azimuth and elevation) measurement can be eliminated.
  • the estimation method of the random phase of at least one antenna port of the first node at different uplink times refer to the above-mentioned random phase calibration principle 2) based on the reference path and the random phase estimation method 3) at different times; for the estimation method of the random phase between at least two different antenna ports of the first node, refer to the above-mentioned random phase calibration principle 2) based on the reference path and the random phase estimation method 4) for different antenna ports.
  • an embodiment of the present application provides a perception method, the execution subject of which may be a first node, which is not specifically limited here.
  • a sensing method provided in an embodiment of the present application may include the following steps:
  • Step 501 A first node performs downlink measurement on a first signal based on first configuration information to obtain a reference path parameter measurement value.
  • the first node performing downlink measurement on the first signal based on the first configuration information may be that the first node serves as a receiving end of the first signal, and the first signal may be a signal sent by the second node.
  • the first signal may be a signal sent by the second node and reflected by a reference node, wherein the reference node may be a device with a reflection function, such as a RIS or a BSC, etc.
  • the reference node is also referred to as a fourth node in the following embodiments.
  • Step 502 The first node sends a second signal based on second configuration information, wherein the second signal is used for a first service, and the first service is a perception service and/or a communication-perception integrated service.
  • the target perception result of the first service is determined based on the target perception measurement value obtained after calibrating the first random phase information and the first perception measurement value, the first random phase information is determined based on the first perception measurement value and the reference path parameter measurement value, and the first perception measurement value is determined based on the perception measurement of the second signal.
  • the first configuration information may include: configuration information related to configuring reference path parameter measurement, and/or configuration information related to a first signal used for reference path parameter measurement.
  • the reference path parameter measurement may be implemented based on the first configuration information to obtain the reference path parameter measurement value.
  • the second configuration information may include relevant configuration information for configuring the perception measurement, and/or relevant configuration information of the first signal for the perception measurement. Based on the second configuration information, the perception measurement can be implemented to obtain the first perception measurement quantity measurement value, wherein a difference between the first perception measurement quantity measurement value and a true value is caused by a random phase deviation when the first node sends the second signal.
  • the contents of the first configuration information and the second configuration information may be the same or similar.
  • the contents of the first configuration information and the second configuration information are illustrated by taking the second configuration information as an example.
  • the first configuration information reference may be made to the relevant description of the second configuration information in the following embodiments.
  • the second configuration information includes at least one of the following:
  • the waveform type of the second signal for example, Orthogonal Frequency Division Multiplex (OFDM), Single-carrier Frequency-Division Multiple Access (SC-FDMA), Orthogonal Time Frequency and Space (OTFS), FMCW, pulse signal, etc.;
  • OFDM Orthogonal Frequency Division Multiplex
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • OTFS Orthogonal Time Frequency and Space
  • FMCW Frequency and Space
  • pulse signal etc.
  • the subcarrier spacing of the second signal for example, the subcarrier spacing of the OFDM system is 30KHz;
  • the protection interval of the second signal i.e., the time interval from the moment when the signal ends to the moment when the latest echo signal of the signal is received, is proportional to the maximum perception distance.
  • the protection interval can be calculated by 2d max /c, where d max is the maximum perception distance (belongs to the perception requirement).
  • d max represents the maximum distance from the second signal receiving and transmitting point to the signal reflection point.
  • the OFDM signal cyclic prefix (CP) can play the role of the minimum guard interval;
  • the bandwidth of the second signal which is inversely proportional to the distance resolution, can be obtained by c/(2 ⁇ d), where ⁇ d is the distance resolution (perceived requirement); c is the speed of light;
  • the data burst duration of the second signal is inversely proportional to the rate resolution (a perception requirement).
  • This parameter is the time span of the second signal, mainly for calculating the Doppler frequency shift. This parameter can be calculated by c/(2f c ⁇ v); wherein ⁇ v is the rate resolution; f c is the carrier frequency of the perception signal;
  • the time domain interval of the second signal which can be calculated by c/(2f c v range ), where v range is the target maximum speed minus the minimum speed (belonging to the perception requirement), and this parameter is the time interval between two adjacent perception signals;
  • the transmission signal power of the second signal is a value ranging from -20dBm to 23dBm with an interval of 2dBm;
  • the signal format of the second signal for example, the signal format is SRS, DMRS, Positioning Reference Signal (PRS), etc., or other predefined signals, and related sequence format and other information;
  • the signal direction of the second signal for example, the direction or beam information of the second signal
  • the time resource of the second signal for example: the time slot index or the symbol index of the time slot where the second signal is located.
  • time resources There are two types of time resources: one is a one-time time resource, for example, one symbol sends an omnidirectional perception signal; the other is a non-one-time time resource, for example, multiple groups of periodic time resources or discontinuous time resources (which may include a start time and an end time), each group of periodic time resources sends a perception signal in the same direction, and different groups of periodic time resources have different beam directions;
  • the frequency resources of the second signal for example, the center frequency point, bandwidth, resource block (RB) or subcarrier, frequency domain reference position (Point A), starting bandwidth position, etc. of the second signal;
  • a quasi co-location (QCL) relationship of the second signal for example, the second signal includes a plurality of resources, each resource is associated with an SSB QCL, and the QCL type includes: Type A, Type B, Type C or Type D;
  • Antenna configuration information of a node (a first node or a second node) participating in the first service.
  • the antenna configuration information includes at least one of the following:
  • An antenna array element ID used to send the second signal
  • An antenna panel ID and an antenna element ID for sending the second signal are an antenna panel ID and an antenna element ID for sending the second signal
  • An antenna panel ID and an antenna element ID for receiving the second signal are an antenna panel ID and an antenna element ID for receiving the second signal
  • the position information of the antenna array element used to send the second signal relative to the target local reference point on the antenna array which can be expressed in Cartesian coordinates (x, y, z) or spherical coordinates express;
  • the position information of the antenna array element for receiving the second signal relative to the target local reference point on the antenna array can be expressed in Cartesian coordinates (x, y, z) or spherical coordinates express;
  • the bitmap uses "1” to indicate that the corresponding antenna array element is selected for sending and/or receiving the perception signal, and uses "0" to indicate that the corresponding array element is not selected.
  • the bitmap uses "0" to indicate that the corresponding antenna array element is selected for sending and/or receiving the perception signal, and uses "1" to indicate that the corresponding array element is not selected;
  • the second bitmap information of the antenna panel is used to indicate the antenna panel that sends the second signal and/or the antenna panel that does not send the second signal, for example: the bitmap uses "1" to indicate that the corresponding panel is selected for sending and/or receiving the perception signal, and uses "0" to indicate that the corresponding panel is not selected. Of course, it can also be vice versa, that is, the bitmap uses "0" to indicate that the corresponding panel is selected for sending and/or receiving the perception signal, and uses "1" to indicate that the corresponding panel is not selected; for the selected panel, the antenna configuration information can also include the first bitmap information of the antenna array element in the selected panel.
  • Antenna array element amplitude, phase and gain information, that is, antenna array element pattern information.
  • the perception measurement value includes at least one of the following perception measurement values:
  • the first-level measurement quantity may be the received signal/original channel information, which specifically includes at least one of the following: a complex result of the response of the received signal, a complex result of the response of the received channel, an amplitude, a phase, an I path and its operation result, a Q path and its operation result; wherein the operation in the operation result of the I path/Q path may include at least one of the following: addition, subtraction, multiplication, division, matrix addition, matrix subtraction, matrix multiplication, matrix transposition, trigonometric operation, square root operation and power operation, etc., as well as the threshold detection result of the above operation result, the maximum/minimum value extraction result, etc.; in addition, the operation may also include FFT/IFFT, Discrete Fourier Transform (Discrete Fourier Transform); er Transform, DFT)/Inverse Discrete Fourier Transform (Inverse Discrete Fourier Transform, IDFT), Two-Dimensional Fast Fourier Transform (Two-Dimensional Fast Fourier Trans
  • the second-level measurement quantity may be a basic measurement quantity, which may specifically include at least one of the following: time delay, Doppler, angle, intensity, and a multi-dimensional combination of at least two of the time delay, Doppler, angle, and intensity;
  • the third-level measurement quantity may be a basic attribute/state, which may specifically include at least one of the following: distance, speed, direction, spatial position, acceleration;
  • the fourth-level measurement quantity may be an advanced attribute/state, which may specifically include at least one of the following: trajectory, action, expression, vital sign, quantity, imaging result, weather, air quality, shape, material, composition, and whether the perception target corresponding to the first service exists.
  • the perception measurement may further include corresponding label information, such as at least one of the following:
  • Perceived service information such as perceived service ID
  • Measurement quantity usage such as: communication, perception, communication and perception;
  • Node information participating in the first service such as the ID, location, device orientation, etc. of the first node;
  • Perceive link information such as: perceive link sequence number, sender and receiver node identification;
  • the measurement quantity description information may include the form of the measurement quantity, such as: amplitude value, phase value, complex value of amplitude and phase combination; the measurement quantity description information may also include resource type, such as: time domain measurement result, frequency domain resource measurement result;
  • Measurement indicator information such as signal-to-noise ratio (SNR) and perceived SNR.
  • SNR signal-to-noise ratio
  • the first node performs a downlink measurement on the first signal to obtain a reference path parameter measurement value, which may be that the first node measures the received first signal to obtain a parameter measurement value of the downlink reference path with the first node as the receiving end. Since there is no random phase problem when the first node receives the first signal, and the downlink measurement signal configuration is flexible, a very accurate random phase estimation result can be obtained when performing random phase estimation based on the reference path parameter measurement value obtained by the downlink measurement, thereby improving the performance of random phase calibration, effectively solving the impact of uplink random phase on uplink perception performance, and improving perception/synaesthesia integration performance.
  • the reference path parameter may include at least one of the following:
  • the Doppler frequency of the reference path or the Doppler frequency of the reference path and the rate of change of the Doppler frequency;
  • the delay of the reference path or the delay of the reference path and the rate of change of the delay
  • the departure pitch angle of the reference path or the departure pitch angle of the reference path and the rate of change of the departure pitch angle
  • the azimuth of arrival of the reference path or the azimuth of arrival of the reference path and the rate of change of the azimuth of arrival;
  • the arrival pitch angle of the reference path or the arrival pitch angle of the reference path and the rate of change of the arrival pitch angle
  • phase of a reference path or the phase of a reference path and the rate of change of the phase.
  • the reference diameter parameter measurement value may be a value obtained by measuring the above-mentioned reference diameter parameter.
  • the channel Doppler calibration can be achieved through the CSI quotient or CSI conjugate product method to eliminate the error introduced by the random phase to the perception signal transmitter or the perception signal receiver, and obtain the target perception measurement value.
  • the specific process can refer to the explanation in the above-mentioned random phase calibration principle based on CSI quotient/CSI conjugate product 1), which will not be repeated here.
  • the first random phase information may include a real phase value of a sensed measurement, or a phase difference introduced by a non-ideal factor, for example, a phase difference between a phase estimated based on a reference path measurement and a phase actually sensed and measured.
  • the first random phase information includes at least one of the following:
  • First indication information where the first indication information indicates information of antenna ports of the first node having the same or different random phases.
  • the sending time of the first signal includes at least two time units in the same uplink cycle, wherein the first node performs uplink transmission in the same uplink cycle, and the transmission state does not change.
  • the transmission state of the antenna port of the first node does not switch, that is, within the uplink cycle, the antenna port of the first node will not switch from the uplink state to the downlink state.
  • the interval time of different uplink time slots satisfies the phase of the reference path of the channel to change approximately linearly, based on the phase of the channel reference path of at least 2 different uplink time slots within the uplink cycle, the reference path phase at the uplink time slot of the next uplink cycle can be easily extrapolated, thereby realizing random phase estimation at different times.
  • the random phase estimation method 3 at different times, which will not be repeated here.
  • a reference path measurement may be performed independently for each antenna port, that is, N reference path measurements may be performed to obtain the first random phase information of each antenna port, or to obtain the difference in random phases of any at least two antenna ports.
  • the specific process may refer to the explanation in the above-mentioned random phase estimation method based on different antenna ports 4), which will not be repeated here.
  • different antenna ports of the first node may share a radio frequency link.
  • the random phases of the antenna ports that share a radio frequency link may be the same.
  • the information of the antenna ports of the first node that have the same or different random phases may be indicated by first indication information. For each antenna port corresponding to each radio frequency link, only the random phase of one antenna port may be indicated, and the number of information bits indicating the random phase of each antenna port may be reduced by indicating which antenna ports have the same random phases.
  • the second node including the second signal receiving end and the calculation node of the target perception measurement value/target perception result
  • MIMO multi-input multi-output
  • QoS perception-related perception requirements/perception service quality
  • the measurement of the reference path parameter of the first node has at least one of the following functions:
  • the third node (including the second signal receiving end, the target perception measurement value/target perception result calculation node) calibrates the result based on the first random phase information (including the random phase value) to eliminate the influence of the random phase on the perception measurement value/perception result;
  • the first random phase information also includes information indicating antenna ports with the same/different random phases, so that the second node (including the first signal receiving end, the perception measurement value/perception result calculation node) combines the perception requirements/perception QoS related to MIMO perception to determine the transmit antenna port of the first node, and finally obtain accurate MIMO/multi-port Perceptual measurement quantity measurement value/perceptual result;
  • the first perception measurement value may be a perception measurement value carrying a random phase offset.
  • the random phase introduced in the first perception measurement value may be obtained based on the reference path parameter measurement value, thereby eliminating the random phase in the first perception measurement value and achieving random phase calibration.
  • a target perception measurement value consistent with the phase of the transmitter of the second signal may be obtained, i.e., interference of the random phase on the target perception measurement value is reduced.
  • a target perception result with higher perception accuracy may be obtained based on the target perception measurement value.
  • the first perception result can also be calculated based on the measurement value of the first perception measurement quantity.
  • the first perception result represents the perception result interfered by the random phase offset.
  • the first perception result is randomly phase calibrated based on the reference path parameter measurement value to obtain a target perception result that is consistent with the phase of the transmitter of the second signal, that is, the interference of the random phase on the target perception result is reduced, so that the accuracy of the target perception result is higher.
  • the method further includes:
  • the first node sends the reference path parameter measurement value to a third node, wherein the third node is a receiving end of the second signal.
  • the third node performs perception measurement based on the second signal to obtain a first perception measurement value.
  • the first node can send a reference path parameter measurement value to the third node, so that the third node performs random phase calibration on the first perception measurement value and/or a first perception result determined based on the first perception measurement value according to the reference path parameter measurement value to obtain the target perception measurement value and/or target perception result.
  • the method further includes:
  • the first node obtains the first perception measurement value and/or a first perception result, wherein the first perception result is a perception result determined based on the first perception measurement value;
  • the first node performs random phase calibration on the first perception measurement value and/or the first perception result based on the reference path parameter measurement value to obtain the target perception measurement value and/or the target perception result.
  • the first node sends a second signal, and the third node performs perception measurement based on the second signal to obtain a first perception measurement value.
  • the first node obtains the first perception measurement value and/or the first perception result, which may be that the first node receives the first perception measurement value and/or the first perception result from the third node.
  • the first node sends a second signal, and performs perception measurement based on an echo signal of the second signal to obtain a first perception measurement value.
  • the first node obtains the first perception measurement value and/or the first perception result, which may be the first perception measurement value obtained by the first node and/or the first perception result determined based on the first perception measurement value.
  • the first node may perform random phase calibration.
  • the node for performing random phase calibration may also be other nodes besides the first node and the third node.
  • Other nodes such as perception function network elements and application servers in the core network, are not specifically limited here.
  • the reference path parameter measurement value includes a parameter measurement value of the LOS path and/or a reflection path of the fourth node to the first signal.
  • the LOS path indicates that the first signal is a signal transmitted end-to-end, such as: the first signal received by the first node is a signal sent by the second node.
  • the first signal received by the first node may be a signal sent by the second node and reflected by a fourth node, wherein the fourth node may include a RIS and/or a BSC.
  • the method further includes:
  • the first node sends first information to the second node, wherein the first information is used to assist the second node in determining the first configuration information, and the second node is a sender of the first signal.
  • the first information includes at least one of the following:
  • Channel state information between the first node and the second node such as uplink channel state information, downlink channel state information, and channel coherence time;
  • Cascade channel state information between the first node and the fourth node, and between the fourth node and the second node for example: uplink cascade channel state information, downlink cascade channel state information, cascade channel coherence time;
  • the fourth node is a reference node, which may be a Reconfigurable Intelligent Surface (RIS), a backscatter tag (BSC), or other passive devices or objects for auxiliary perception; wherein the fourth node is a reflection node of the first signal;
  • RIS Reconfigurable Intelligent Surface
  • BSC backscatter tag
  • the communication signal parameter configuration information may refer to the parameter configuration information about the communication signal in the second configuration information, such as: waveform type, subcarrier spacing, protection interval, bandwidth, Burst duration, time domain interval, transmitted signal power, signal format, signal direction, time resources, frequency resources, etc.
  • the communication signal parameter configuration information of the first node mentioned above may include communication signal parameter configuration information between the first node and the second node, such as communication signal parameter configuration information from the first node to the second node, and communication signal parameter configuration information from the second node to the first node; and/or, the communication signal parameter configuration information of the first node mentioned above may also include communication signal parameter configuration information between the first node and a fourth node (reference node), such as: communication signal parameter configuration information from the first node to the reference node, and communication signal parameter configuration information from the reference node to the first node.
  • reference node such as: communication signal parameter configuration information from the first node to the reference node, and communication signal parameter configuration information from the reference node to the first node.
  • the first configuration information is determined by the sending end of the first signal.
  • the first node provides auxiliary information for determining the first configuration information to the second node, such as: assisting the second node to determine whether the first signal is a LOS path or an NLOS path, selecting the fourth node that reflects the first signal, signal strength, etc.
  • the method further includes:
  • the first node obtains second information of the fourth node, wherein the second information is used to assist the first node in obtaining the reference path parameter measurement value.
  • the second information includes at least one of the position, velocity magnitude, velocity direction, and antenna panel orientation information of the fourth node.
  • the first node may receive second information sent by the fourth node.
  • the first node may receive second information sent by the second node, wherein the second node may be a device that obtains information such as the position, speed, speed direction, and antenna panel orientation information of the fourth node in advance.
  • the fourth node when the fourth node is the reflection node of the first signal, at least one item of information such as the position, velocity magnitude, velocity direction, antenna panel orientation information, etc. of the fourth node can help obtain the reference path parameter measurement value.
  • the method further includes:
  • the first node sends the first configuration information to the fourth node.
  • the fourth node can reflect the first signal based on the first configuration information, so that the first node can obtain the reference path parameter measurement value based on the first signal reflected by the fourth node.
  • the first configuration information may also be sent to the fourth node by other nodes, for example, the first configuration information is sent to the fourth node by the second node that sends the first signal.
  • the method further includes:
  • the first node obtains third information of the second node, wherein the third information is used to assist the first node in obtaining the reference path parameter measurement value, and the second node is the transmitter of the first signal.
  • the third information includes at least one of the following:
  • the first state information includes at least one of the following: speed magnitude, speed direction, antenna panel orientation, and antenna panel physical downtilt angle information;
  • Antenna array electrical downtilt information.
  • the first node can obtain a more accurate reference path parameter measurement value based on the third information of the second node.
  • reference path parameter measurement can be performed on each channel estimate/received second signal respectively to obtain the first random phase information of each channel estimate/received second signal.
  • the first node performs a downlink test on the first signal based on the first configuration information.
  • the method further comprises:
  • the first node sends the first configuration information to the second node; or,
  • the first node receives the first configuration information from the second node
  • the second node is a sending end of the first signal.
  • the first configuration information may be determined by a sending node of the first signal, that is, the second node, and sent to a receiving node of the first signal, that is, the first node.
  • the first configuration information may be determined by a receiving node of the first signal, that is, the first node, and reported to a sending node of the first signal, that is, the second node.
  • the method before the first node sends the second signal based on the second configuration information, the method further includes:
  • the first node receives the second configuration information from a third node; or,
  • the first node sends the second configuration information to the third node
  • the third node is a receiving end of the second signal.
  • the second configuration information may be determined by a sending node of the second signal, that is, a third node, and sent to a receiving node of the second signal, that is, the first node.
  • the second configuration information may be determined by a receiving node of the second signal, that is, the first node, and reported to a sending node of the second signal, that is, the third node.
  • the first node performs downlink measurement on the first signal based on the first configuration information to obtain a reference path parameter measurement value; the first node sends a second signal based on the second configuration information, wherein the second signal is used for the first service, and the first service is a perception service and/or a communication perception integrated service; wherein the target perception result of the first service is determined based on the target perception measurement value obtained after calibration based on the first random phase information and the first perception measurement value, the first random phase information is determined based on the first perception measurement value and the reference path parameter measurement value, and the first perception measurement value is determined based on the perception measurement of the second signal.
  • the first node can obtain the reference path parameter measurement value based on the downlink measurement, and the random phase information of the first node when sending the second signal can be estimated based on the reference path parameter measurement value, so that the perception measurement value or perception result with random phase interference can be randomly calibrated based on the random phase information, or the random phase in the perception measurement value or perception result can be eliminated, thereby improving the accuracy of the obtained target perception measurement value or target perception result, thereby improving the perception accuracy.
  • the execution subject of which may include a second node
  • the second node may include at least one of a communication device such as a terminal, a base station, a core network device, etc.
  • the perception method may include the following steps:
  • Step 601 The second node sends a first signal based on first configuration information, wherein the first configuration information is used to configure reference path parameter measurement; wherein the target perception result of the first service is determined based on a target perception measurement value obtained after calibration with a first random phase information and a first perception measurement value, the first random phase information is determined based on the first perception measurement value and a reference path parameter measurement value obtained based on the reference path parameter measurement, The first perception measurement value is determined based on the perception measurement of the second signal, the first service is a perception service and/or a communication and perception integrated service, and the receiving end of the first signal and the sending end of the second signal are first nodes.
  • the second node mentioned above may be a node that sends the first signal to the first node in the method embodiment shown in FIG. 5 , and will not be described in detail herein.
  • first configuration information first signal, reference path parameter measurement value, first random phase information, first service, first perception measurement value, target perception measurement value, and target perception result in the embodiment of the present application are the same as the meaning and function of the first configuration information, first signal, reference path parameter measurement value, first random phase information, first service, first perception measurement value, target perception measurement value, and target perception result in the method embodiment shown in Figure 5, and they are not repeated here.
  • the second node is used to send a first signal according to the first configuration information, so that the first node can perform reference path parameter measurement on the first signal based on the first configuration information to obtain a reference path parameter measurement value.
  • the process of the second node in executing the perception method can refer to the relevant instructions in the method embodiment shown in Figure 5, which will not be repeated here.
  • the reference path parameter measurement value includes a parameter measurement value of a line-of-sight propagation LOS path and/or a reflection path of the fourth node to the first signal.
  • the reference path parameter includes at least one of the following:
  • the Doppler frequency of the reference path or the Doppler frequency of the reference path and the rate of change of the Doppler frequency;
  • the delay of the reference path or the delay of the reference path and the rate of change of the delay
  • the departure pitch angle of the reference path or the departure pitch angle of the reference path and the rate of change of the departure pitch angle
  • the azimuth of arrival of the reference path or the azimuth of arrival of the reference path and the rate of change of the azimuth of arrival;
  • the arrival pitch angle of the reference path or the arrival pitch angle of the reference path and the rate of change of the arrival pitch angle
  • phase of a reference path or the phase of a reference path and the rate of change of the phase.
  • the first random phase information includes at least one of the following:
  • First indication information where the first indication information indicates information of antenna ports of the first node having the same or different random phases.
  • the method further includes:
  • the second node sends first information to the first node, wherein the first information is used to assist the first node in determining the first configuration information.
  • the first information includes at least one of the following:
  • the method further includes:
  • the second node acquires the second information of the fourth node
  • the second node sends the second information to the first node, wherein the second information is used to assist the first node in acquiring the reference path parameter measurement value.
  • the second information includes at least one item of the position, speed magnitude, speed direction, and antenna panel orientation information of the fourth node.
  • the method further includes:
  • the second node sends the first configuration information to the fourth node.
  • the method before the second node sends the first signal based on the first configuration information, the method further includes:
  • the second node sends the first configuration information to the first node; or,
  • the second node receives the first configuration information from the first node.
  • the sending time of the first signal includes at least two time units in the same uplink cycle, wherein the first node performs uplink transmission in the same uplink cycle, and the transmission state does not change.
  • the second node sends a first signal based on the first configuration information, so that the first node performs reference path parameter measurement based on receiving the first signal or the reflected signal of the first signal, and obtains a reference path parameter measurement value that can be used to perform random phase calibration on the transmission link of the first node.
  • the random phase information of the first node when sending the second signal can be estimated, so that based on the random phase information, the perception measurement value or perception result with random phase interference can be randomly phase calibrated or the random phase in the perception measurement value or perception result can be eliminated, thereby improving the accuracy of the obtained target perception measurement value or target perception result, thereby improving the perception accuracy.
  • the execution subject of which may include a third node
  • the third node may include at least one of communication devices such as a terminal, a base station, and a core network device.
  • the perception method may include the following steps:
  • Step 701 The third node measures the second signal based on the second configuration information to obtain a first perception measurement value, wherein the second configuration information is used to configure the first service, the first service is a perception service and/or a communication perception integrated service, and the transmitter of the second signal includes the first node; wherein the target perception result of the first service is determined based on a target perception measurement value obtained by calibrating the first perception measurement value based on first random phase information, the first random phase information is determined based on the first perception measurement value and a reference path parameter measurement value, and the reference path parameter measurement value is a measurement value when the first node receives the first signal.
  • the target perception result of the first service is determined based on a target perception measurement value obtained by calibrating the first perception measurement value based on first random phase information
  • the first random phase information is determined based on the first perception measurement value and a reference path parameter measurement value
  • the reference path parameter measurement value is a measurement value when the first node receives the first signal.
  • the third node may be a node that receives the second signal sent by the first node in the method embodiment shown in FIG. 5 to obtain The node to the first perception measurement value is not described in detail here.
  • the third node is used to perform perception measurement on the second signal sent by the first node according to the second configuration information to obtain a first perception measurement value, wherein, since the second signal introduces a random phase in the transmitter, the first perception measurement value has a random phase deflection.
  • the reference path parameter measurement value is obtained based on the first node receiving the first signal for reference path parameter measurement to calibrate and/or eliminate the random phase of the first perception measurement value, thereby obtaining a more accurate target perception measurement value and/or target perception result.
  • the process of the third node in executing the perception method can refer to the relevant description in the method embodiment shown in Figure 5, and will not be repeated here.
  • the method further includes:
  • the third node obtains the reference path parameter measurement value
  • the third node determines the first random phase information according to the reference path parameter measurement value and the first perception measurement value.
  • the method further includes:
  • the third node sends fourth information to the fifth node, wherein the fourth information includes at least one of the first perception measurement value, the target perception measurement value, the target perception result, and a first perception result, wherein the first perception result is a perception result determined based on the first perception measurement value.
  • the method further includes:
  • the third node calibrates the first perception measurement value based on the first random phase information to obtain the target perception measurement value.
  • the method further includes:
  • the third node determines the target perception result based on the target perception measurement value.
  • the third node calibrates the first perception measurement value based on the first random phase information to obtain the target perception measurement value, including:
  • the third node performs a channel state information CSI quotient or a CSI conjugate product based on the first perception measurement value of the second signal received to determine the target perception measurement value;
  • the third node obtains a random phase value and/or a random phase difference value of the second signal according to the reference path parameter measurement value, and performs random phase calibration on a first perception measurement value of a received second signal according to the random phase value and/or the random phase difference value to determine the target perception measurement value.
  • the method before the third node measures the second signal based on the second configuration information before, the method also includes:
  • the third node receives the second configuration information from the first node; or,
  • the third node sends the second configuration information to the first node.
  • the third node performs perception measurement on the second signal sent by the first node based on the second configuration information to obtain a first perception measurement value. Since the second signal introduces a random phase in the transmitter, the first perception measurement value has a random phase deflection.
  • the reference path parameter measurement value is obtained based on the first node receiving the first signal for reference path parameter measurement to calibrate and/or eliminate the random phase of the first perception measurement value, thereby obtaining a more accurate target perception measurement value and/or target perception result.
  • Scenario 1 As shown in FIG. 8a or FIG. 8b, assuming that the first node is a terminal (UE), and the second node and the third node are base stations (gNB), the perception process based on the perception method provided in the embodiment of the present application may include the following steps:
  • Step 1a The base station sends first configuration information to the UE, where the first configuration information is used to perform reference path parameter measurement.
  • the base station obtains first information, where the first information is used to assist the base station in determining first configuration information.
  • the first information includes at least one of the following:
  • Channel state information between UE and base station such as uplink channel state information, downlink channel state information, and channel coherence time;
  • Cascade channel state information between UE and reference node, and between reference node and base station such as uplink cascade channel state information, downlink cascade channel state information, and cascade channel coherence time;
  • the reference node may be a Reconfigurable Intelligent Surface (RIS), a backscatter tag (BSC), or other passive devices or objects used to assist in perception;
  • RIS Reconfigurable Intelligent Surface
  • BSC backscatter tag
  • Communication signal parameter configuration information between the UE and the base station for example: uplink (UE to base station) communication signal parameter configuration information, downlink (base station to UE) communication signal parameter configuration information.
  • the UE obtains second information of the reference node.
  • the second information is used to assist the UE in obtaining the reference path parameter measurement value.
  • the second information includes: the position, speed magnitude, speed direction, and antenna panel orientation information of the reference node.
  • the reference node may be a fourth node for reflecting the first signal.
  • the manner in which the UE obtains the second information may be: the base station obtains the second information of the reference node and then sends the second information to the UE, or the UE receives the second information from the reference node.
  • the UE obtains third information of the base station, where the third information is used to assist the UE in obtaining a reference path parameter measurement value.
  • the third information includes at least one of the following:
  • Base station antenna information including: total number of antenna ports, antenna formation, and antenna configuration information
  • Base station status information including: speed magnitude, speed direction, antenna panel orientation, and antenna panel physical downtilt angle information;
  • the electrical downtilt angle information of the antenna array of the base station is the electrical downtilt angle information of the antenna array of the base station.
  • the base station or the UE sends first configuration information to the reference node.
  • Step 2a The base station sends a first signal based on the first configuration information, where the first signal is used for reference path parameter measurement.
  • the UE obtains a reference path parameter measurement value based on the received first signal.
  • the reference path parameter includes at least one of the following:
  • the Doppler frequency of the reference path or the Doppler frequency and the rate of change of the Doppler frequency;
  • the delay of the reference path or the delay and the rate of change of the delay
  • the departure pitch angle of the reference path or the departure pitch angle and the rate of change of the departure pitch angle
  • the arrival azimuth of the reference path or the arrival azimuth and the rate of change of the arrival azimuth;
  • the arrival pitch angle of the reference path or the arrival pitch angle and the rate of change of the arrival pitch angle
  • the amplitude of the reference path or the amplitude and rate of change of the amplitude
  • phase of the reference path or the phase and rate of change of phase.
  • the reference path may be a LOS path or a first signal reflection path from a reference node.
  • Step 3a The UE sends the reference path parameter measurement value to the base station.
  • Step 4a The base station sends second configuration information to the UE, where the second configuration information is used to execute the perception/synaesthesia integration service.
  • Step 5a the UE sends a second signal based on the second configuration information, and the base station obtains a CSI quotient or a CSI conjugate product based on the received second signal, and further obtains a target perception measurement value/target perception result; or, obtains a random phase measurement value, and further obtains a target perception measurement value/target perception result.
  • Step 6a Optionally, the base station sends the target perception measurement value/target perception result to the perception function network element.
  • steps 1a to 6a may be repeated until the obtained multiple sets of channel estimates/received second signals meet the perception service requirements.
  • the sensing process based on the sensing method provided in the embodiment of the present application may include the following steps:
  • Step 1b The base station sends first configuration information to UE 1, where the first configuration information is used to perform reference path parameter measurement.
  • the base station obtains first information, where the first information is used to assist the base station in first configuration information.
  • the first information includes at least one of the following:
  • Channel state information between UE 1 and the base station such as uplink channel state information, downlink channel state information, and channel coherence time;
  • Cascade channel state information between UE 1 and the reference node, and between the reference node and the base station for example: uplink cascade channel Status information, downlink cascade channel status information, cascade channel coherence time;
  • the reference node may be a Reconfigurable Intelligent Surface (RIS), a backscatter tag (BSC), or other passive devices or objects for auxiliary perception;
  • RIS Reconfigurable Intelligent Surface
  • BSC backscatter tag
  • Communication signal parameter configuration information between UE 1 and the base station such as uplink communication signal parameter configuration information and downlink communication signal parameter configuration information
  • Channel state information between UE 2 and the base station such as uplink channel state information, downlink channel state information, and channel coherence time;
  • the reference node may be a Reconfigurable Intelligent Surface (RIS), a backscatter tag (BSC), or other passive devices or objects for auxiliary perception;
  • RIS Reconfigurable Intelligent Surface
  • BSC backscatter tag
  • Communication signal parameter configuration information between UE 2 and the base station for example: uplink communication signal parameter configuration information, downlink communication signal parameter configuration information.
  • UE 1 obtains second information of the reference node.
  • the second information is used to assist UE 1 in obtaining reference path parameter measurement values.
  • the second information includes: the position, speed magnitude, speed direction, and antenna panel orientation information of the reference node;
  • the way for UE 1 to obtain the second information can also be: the base station obtains the second information of the reference node, and then sends the second information to UE 1.
  • UE 1 obtains third information of the base station, and the third information is used to assist UE 1 in obtaining the reference path parameter measurement value.
  • the third information includes at least one of the following:
  • Base station antenna information including: total number of antenna ports, antenna formation, and antenna configuration information
  • Base station status information including: speed magnitude, speed direction, antenna panel orientation, and antenna panel physical downtilt angle information;
  • the electrical downtilt angle information of the antenna array of the base station is the electrical downtilt angle information of the antenna array of the base station.
  • the base station or UE 1 or UE 2 sends first configuration information to the reference node;
  • Step 2b the base station sends a first signal based on the first configuration information, where the first signal is used for reference path parameter measurement.
  • UE 1 obtains a reference path parameter measurement value based on the received first signal.
  • the reference path parameter is the same as the reference path parameter in the above embodiment, and will not be described in detail here.
  • Step 3b UE 1 sends the reference path parameter measurement value to UE 2; or, UE 1 sends the reference path parameter measurement value to the base station, and the base station forwards it to UE 2.
  • Step 4b UE 2 determines second configuration information and sends the second configuration information to UE 1, where the second configuration information is used to perform the perception/synaesthesia integration service; or, the base station determines the second configuration information and sends it to UE 1 and UE 2.
  • Step 5b UE 1 sends a second signal based on the second configuration information, and UE 2 obtains the CSI quotient or the CSI conjugate product based on the received second signal, and further obtains the target perception measurement value/target perception result; or, obtains the random phase measurement value, and further obtains the target perception measurement value/target perception result.
  • Step 6b UE 2 sends at least one of the first perception measurement value, the first perception result, the target perception measurement value and the target perception result to the base station or the perception function network element.
  • the perception process based on the perception method provided in the embodiment of the present application may include the following steps:
  • Step 1c The base station sends first configuration information to the UE, where the first configuration information is used to perform reference path parameter measurement.
  • the base station obtains first information, where the first information is used to assist the base station in determining first configuration information; or, the UE sends first configuration information to the base station, where the first configuration information is used to perform reference path parameter measurement.
  • the content and meaning of the first information are the same as those of the first information in the embodiment shown in FIG. 8a or FIG. 8b , and are not described in detail here.
  • the UE obtains the first information, which is used to assist the UE in determining the first configuration information.
  • the content and meaning of the first information are the same as those of the first information in the embodiment shown in Figure 8a or Figure 8b, and are not repeated here.
  • the UE sends a first request to the base station, where the first request is used to request the base station to assist in performing reference path parameter measurement.
  • the UE obtains second information of the reference node.
  • the second information is used to assist the UE in obtaining the reference path parameter measurement value.
  • the meaning and acquisition method of the second information may be the same as the meaning and acquisition method of the second information in the embodiment shown in FIG. 8a or FIG. 8b, and will not be repeated here.
  • the UE obtains third information of the base station, and the third information is used to assist the UE in obtaining the reference path parameter measurement value.
  • the content and meaning of the third information are the same as the meaning of the third information in the embodiment shown in Figure 8a or Figure 8b, and will not be repeated here.
  • the base station or the UE sends first configuration information to the reference node.
  • Step 2c The base station sends a first signal based on the first configuration information, where the first signal is used for reference path parameter measurement.
  • the UE obtains a reference path parameter measurement value based on the received first signal.
  • the reference diameter parameter has the same meaning as the reference diameter parameter in the embodiment shown in FIG. 8a or FIG. 8b and will not be described in detail here.
  • Step 3c The UE determines second configuration information, where the second configuration information is used to perform a perception/synaesthesia integration service.
  • Step 4c The UE sends a second signal based on the second configuration information, and receives an echo signal of the second signal.
  • the UE obtains a random phase measurement value of its own antenna port based on the reference path parameter measurement value and the echo signal of the second signal.
  • Step 5c The UE further obtains the target perception signal based on the random phase measurement value and the echo signal of the second signal. Measurement quantity measurement value/target perception result.
  • Step 6c the UE sends at least one of the first perception measurement value, the first perception result, the target perception measurement value, and the target perception result to the base station or the perception function network element.
  • the sensing method provided in the embodiment of the present application can be executed by a sensing device.
  • the sensing device provided in the embodiment of the present application is described by taking the sensing method executed by the sensing device as an example.
  • an embodiment of the present application further provides a sensing device, which is applied to a first node.
  • the sensing device 900 includes:
  • a first measurement module 901 is configured to perform downlink measurement on a first signal based on first configuration information to obtain a reference path parameter measurement value;
  • a first sending module 902 is used to send a second signal based on the second configuration information, wherein the second signal is used for a first service, and the first service is a perception service and/or a communication perception integrated service;
  • the target perception result of the first service is determined based on the target perception measurement value obtained after calibrating the first random phase information and the first perception measurement value, the first random phase information is determined based on the first perception measurement value and the reference path parameter measurement value, and the first perception measurement value is determined based on the perception measurement of the second signal.
  • the sensing device 900 further includes:
  • the third sending module is used to send the reference path parameter measurement value to a third node, wherein the third node is a receiving end of the second signal.
  • the sensing device 900 further includes:
  • a first acquisition module configured to acquire the first perception measurement value and/or a first perception result, wherein the first perception result is a perception result determined based on the first perception measurement value;
  • the first random phase calibration module is used to perform random phase calibration on the first perception measurement value and/or the first perception result based on the reference path parameter measurement value to obtain the target perception measurement value and/or the target perception result.
  • the reference path parameter measurement value includes a parameter measurement value of a line-of-sight propagation LOS path, and/or a reflection path of the fourth node to the first signal.
  • the reference path parameter includes at least one of the following:
  • the Doppler frequency of the reference path or the Doppler frequency of the reference path and the rate of change of the Doppler frequency;
  • the delay of the reference path or the delay of the reference path and the rate of change of the delay
  • the departure pitch angle of the reference path or the departure pitch angle of the reference path and the rate of change of the departure pitch angle
  • the azimuth of arrival of the reference path or the azimuth of arrival of the reference path and the rate of change of the azimuth of arrival;
  • the arrival pitch angle of the reference path or the arrival pitch angle of the reference path and the rate of change of the arrival pitch angle
  • phase of a reference path or the phase of a reference path and the rate of change of the phase.
  • the first random phase information includes at least one of the following:
  • First indication information where the first indication information indicates information of antenna ports of the first node having the same or different random phases.
  • the sensing device 900 further includes:
  • the fourth sending module is used to send first information to the second node, wherein the first information is used to assist the second node to determine the first configuration information, and the second node is the sender of the first signal.
  • the first information includes at least one of the following:
  • the sensing device 900 further includes:
  • the second acquisition module is used to acquire second information of the fourth node, wherein the second information is used to assist the first node in acquiring the reference path parameter measurement value.
  • the second information includes at least one of the position, velocity magnitude, velocity direction, and antenna panel orientation information of the fourth node.
  • the sensing device 900 further includes:
  • a fifth sending module is configured to send the first configuration information to the fourth node.
  • the sensing device 900 further includes:
  • the third acquisition module is used to acquire third information of the second node, wherein the third information is used to assist the first node in acquiring the reference path parameter measurement value, and the second node is the sender of the first signal.
  • the third information includes at least one of the following:
  • the first state information includes at least one of the following: speed magnitude, speed direction, antenna panel orientation, and antenna panel physical downtilt angle information;
  • Antenna array electrical downtilt information.
  • the sensing device 900 further includes:
  • a sixth sending module configured to send the first configuration information to the second node
  • a first receiving module configured to receive the first configuration information from a second node
  • the second node is a sending end of the first signal.
  • the sensing device 900 further includes:
  • a second receiving module configured to receive the second configuration information from a third node
  • a seventh sending module configured to send the second configuration information to a third node
  • the third node is a receiving end of the second signal.
  • the first node and the second node are the same node, and the second node is a sender of the first signal; or,
  • the second node and the third node are the same node, the second node is a transmitter of the first signal, and the third node is a receiver of the second signal.
  • the first node is a terminal.
  • the sending time of the first signal includes at least two time units in the same uplink cycle, wherein the first node performs uplink transmission in the same uplink cycle, and the transmission state does not change.
  • the perception device provided in the embodiment of the present application can implement each process implemented by the first node in the method embodiment shown in Figure 5 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • an embodiment of the present application further provides a sensing device, which is applied to a second node.
  • the sensing device 1000 includes:
  • a second sending module 1001 is configured to send a first signal based on first configuration information, wherein the first configuration information is used to configure reference path parameter measurement;
  • the target perception result of the first service is determined based on the target perception measurement value obtained after calibrating the first random phase information and the first perception measurement value
  • the first random phase information is determined based on the first perception measurement value and the reference path parameter measurement value obtained based on the reference path parameter measurement
  • the first perception measurement value is determined based on the perception measurement of the second signal
  • the first service is a perception service and/or a communication perception integrated service
  • the receiving end of the first signal and the sending end of the second signal are the first node.
  • the reference path parameter measurement value includes a parameter measurement value of a line-of-sight propagation LOS path, and/or a reflection path of the fourth node to the first signal.
  • the reference path parameter includes at least one of the following:
  • the Doppler frequency of the reference path or the Doppler frequency of the reference path and the rate of change of the Doppler frequency;
  • the delay of the reference path or the delay of the reference path and the rate of change of the delay
  • the departure pitch angle of the reference path or the departure pitch angle of the reference path and the rate of change of the departure pitch angle
  • the azimuth of arrival of the reference path or the azimuth of arrival of the reference path and the rate of change of the azimuth of arrival;
  • the arrival pitch angle of the reference path or the arrival pitch angle of the reference path and the rate of change of the arrival pitch angle
  • phase of a reference path or the phase of a reference path and the rate of change of the phase.
  • First indication information where the first indication information indicates information of antenna ports of the first node having the same or different random phases.
  • the sensing device 1000 further includes:
  • An eighth sending module is used to send first information to the first node, wherein the first information is used to assist the first node in determining the first configuration information.
  • the first information includes at least one of the following:
  • the sensing device 1000 further includes:
  • a fourth acquisition module used to acquire second information of the fourth node
  • a ninth sending module is used to send the second information to the first node, wherein the second information is used to assist the first node in obtaining the reference path parameter measurement value.
  • the second information includes at least one of the position, velocity magnitude, velocity direction, and antenna panel orientation information of the fourth node.
  • the sensing device 1000 further includes:
  • the tenth sending module is used to send the first configuration information to the fourth node.
  • the sensing device 1000 further includes:
  • an eleventh sending module configured to send the first configuration information to the first node
  • the third receiving module is used to receive the first configuration information from the first node.
  • the sending time of the first signal includes at least two time units in the same uplink cycle, wherein the first node performs uplink transmission in the same uplink cycle, and the transmission state does not change.
  • the second measurement module 1101 is configured to measure the second signal based on the second configuration information to obtain a first perception measurement value, wherein the second configuration information is used to configure a first service, the first service is a perception service and/or a communication perception integrated service, and the sender of the second signal includes a first node;
  • the target perception result of the first service is determined based on the target perception measurement value obtained after calibrating the first perception measurement value based on the first random phase information, and the first random phase information is determined based on the first perception measurement value and the reference path parameter measurement value, and the reference path parameter measurement value is the measurement value when the first node receives the first signal.
  • the sensing device 1100 further includes:
  • a fifth acquisition module used to acquire the reference path parameter measurement value
  • the first determination module is used to determine the first random phase information according to the reference path parameter measurement value and the first perception measurement value.
  • the sensing device 1100 further includes:
  • a twelfth sending module is used to send fourth information to the fifth node, wherein the fourth information includes at least one of the first perception measurement value, the target perception measurement value, the target perception result, and a first perception result, wherein the first perception result is a perception result determined based on the first perception measurement value.
  • the sensing device 1100 further includes:
  • the second random phase calibration module is used to calibrate the first perception measurement value based on the first random phase information to obtain the target perception measurement value.
  • the sensing device 1100 further includes:
  • the second determination module is used to determine the target perception result based on the target perception measurement value.
  • the second random phase calibration module is specifically used to:
  • a random phase value and/or a random phase difference value of the second signal is obtained, and a random phase calibration is performed on the first perception measurement value of the second signal received according to the random phase value and/or the random phase difference value to determine the target perception measurement value.
  • the sensing device 1100 further includes:
  • a fourth receiving module configured to receive the second configuration information from the first node
  • a thirteenth sending module is used to send the second configuration information to the first node.
  • the sensing device provided in the embodiment of the present application can implement each process implemented by the third node in the method embodiment shown in Figure 7 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application further provides a communication device 1200, including a processor 1201 and a memory 1202, the memory 1202 stores a program or instruction that can be run on the processor 1201, for example, when the communication device 1200 acts as a first node, the program or instruction is executed by the processor 1201 to implement the method shown in FIG.
  • the communication device 1200 is used as the second node, the program or instruction is executed by the processor 1201 to implement the steps of the method embodiment shown in Figure 6, and the same technical effect can be achieved.
  • the communication device 1200 is used as the third node, the program or instruction is executed by the processor 1201 to implement the steps of the method embodiment shown in Figure 7, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a communication device, including a processor and a communication interface.
  • the communication interface when the communication is set to the first node, the communication interface is used to perform downlink measurement on the first signal based on the first configuration information to obtain a reference path parameter measurement value; the communication interface is also used to send a second signal based on the second configuration information, wherein the second signal is used for a first service, and the first service is a perception service and/or a communication-perception integrated service; wherein the target perception result of the first service is determined based on a target perception measurement value obtained after calibration based on the first random phase information and the first perception measurement value, the first random phase information is determined based on the first perception measurement value and the reference path parameter measurement value, and the first perception measurement value is determined based on the perception measurement of the second signal.
  • the communication interface is used to send a first signal based on first configuration information, wherein the first configuration information is used to configure reference path parameter measurement; wherein the target perception result of the first service is determined based on a target perception measurement value obtained after calibration with the first random phase information and the first perception measurement value, the first random phase information is determined based on the first perception measurement value and the reference path parameter measurement value obtained based on the reference path parameter measurement, the first perception measurement value is determined based on a perception measurement of a second signal, the first service is a perception service and/or a communication-perception integrated service, and the receiving end of the first signal and the sending end of the second signal are the first node.
  • the communication interface is used to measure the second signal based on second configuration information to obtain a first perception measurement value
  • the second configuration information is used to configure a first service
  • the first service is a perception service and/or a communication perception integrated service
  • the transmitter of the second signal includes the first node
  • the target perception result of the first service is determined based on a target perception measurement value obtained by calibrating the first perception measurement value based on first random phase information
  • the first random phase information is determined based on the first perception measurement value and a reference path parameter measurement value
  • the reference path parameter measurement value is a measurement value when the first node receives the first signal.
  • This communication device embodiment corresponds to the above method embodiment.
  • Each implementation process and implementation method of the above method embodiment can be applied to this communication device embodiment and can achieve the same technical effect.
  • the terminal 1300 includes but is not limited to: a radio frequency unit 1301, a network module 1302, an audio output unit 1303, an input unit 1304, a sensor 1305, a display unit 1306, a user input unit 1307, an interface unit 1308, a memory 1309 and at least some of the components of the processor 1310.
  • the terminal 1300 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 1310 through a power management system, so that the power management system can manage charging, discharging, and power consumption.
  • a power source such as a battery
  • the terminal structure shown in FIG. 13 does not constitute a limitation on the terminal.
  • the present invention may include more or fewer components than those shown in the figure, or some components may be combined, or the components may be arranged differently, which will not be described in detail here.
  • the input unit 1304 may include a graphics processing unit (GPU) 13041 and a microphone 13042, and the graphics processor 13041 processes the image data of the static picture or video obtained by the image capture device (such as a camera) in the video capture mode or the image capture mode.
  • the display unit 1306 may include a display panel 13061, and the display panel 13061 may be configured in the form of a liquid crystal display, an organic light emitting diode, etc.
  • the user input unit 1307 includes a touch panel 13071 and at least one of other input devices 13072.
  • the touch panel 13071 is also called a touch screen.
  • the touch panel 13071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 13072 may include, but are not limited to, a physical keyboard, function keys (such as a volume control key, a switch key, etc.), a trackball, a mouse, and a joystick, which will not be repeated here.
  • the RF unit 1301 can transmit the data to the processor 1310 for processing; in addition, the RF unit 1301 can send uplink data to the network side device.
  • the RF unit 1301 includes but is not limited to an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • the memory 1309 can be used to store software programs or instructions and various data.
  • the memory 1309 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
  • the memory 1309 may include a volatile memory or a non-volatile memory, or the memory 1309 may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a double data rate synchronous dynamic random access memory (DDRSDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous link dynamic random access memory (SLDRAM) and a direct memory bus random access memory (DRRAM).
  • the memory 1309 in the embodiment of the present application includes but is not limited to these and any other suitable types of memory.
  • the processor 1310 may include one or more processing units; optionally, the processor 1310 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to an operating system, a user interface, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It is understandable that the modem processor may not be integrated into the processor 1310.
  • the terminal 1300 serves as the first node.
  • the radio frequency unit 1301 is used for:
  • the target perception result of the first service is determined based on the target perception measurement value obtained after calibrating the first random phase information and the first perception measurement value, the first random phase information is determined based on the first perception measurement value and the reference path parameter measurement value, and the first perception measurement value is determined based on the perception measurement of the second signal.
  • the radio frequency unit 1301 is further used to send the reference path parameter measurement value to a third node, wherein the third node is a receiving end of the second signal.
  • the RF unit 1301 or the processor 1310 is further configured to obtain the first perception measurement value and/or a first perception result, wherein the first perception result is a perception result determined based on the first perception measurement value;
  • the processor 1310 is further configured to perform random phase calibration on the first perception measurement value and/or the first perception result based on the reference path parameter measurement value to obtain the target perception measurement value and/or the target perception result.
  • the reference path parameter measurement value includes a parameter measurement value of a line-of-sight propagation LOS path, and/or a reflection path of the fourth node to the first signal.
  • the reference path parameter includes at least one of the following:
  • the Doppler frequency of the reference path or the Doppler frequency of the reference path and the rate of change of the Doppler frequency;
  • the delay of the reference path or the delay of the reference path and the rate of change of the delay
  • the departure pitch angle of the reference path or the departure pitch angle of the reference path and the rate of change of the departure pitch angle
  • the azimuth of arrival of the reference path or the azimuth of arrival of the reference path and the rate of change of the azimuth of arrival;
  • the arrival pitch angle of the reference path or the arrival pitch angle of the reference path and the rate of change of the arrival pitch angle
  • phase of a reference path or the phase of a reference path and the rate of change of the phase.
  • the first random phase information includes at least one of the following:
  • the first indication information is used to indicate information of antenna ports of the first node having the same or different random phases.
  • the radio frequency unit 1301 is further used to send first information to a second node, wherein the first information is used to assist the second node in determining the first configuration information, and the second node is a sender of the first signal.
  • the first information includes at least one of the following:
  • the radio frequency unit 1301 is further used to obtain second information of the fourth node, wherein the second information is used to assist the first node in obtaining the reference path parameter measurement value.
  • the second information includes at least one of the position, velocity magnitude, velocity direction, and antenna panel orientation information of the fourth node.
  • the radio frequency unit 1301 is further used to send the first configuration information to the fourth node.
  • the radio frequency unit 1301 is further used to obtain third information of the second node, wherein the third information is used to assist the first node in obtaining the reference path parameter measurement value, and the second node is the transmitter of the first signal.
  • the third information includes at least one of the following:
  • the first state information includes at least one of the following: speed magnitude, speed direction, antenna panel orientation, and antenna panel physical downtilt angle information;
  • Antenna array electrical downtilt information.
  • the RF unit 1301 before performing the downlink measurement on the first signal based on the first configuration information, is further configured to:
  • the second node is a sending end of the first signal.
  • the radio frequency unit 1301 is further configured to:
  • the third node is a receiving end of the second signal.
  • the first node and the second node are the same node, and the second node is a sender of the first signal; or,
  • the second node and the third node are the same node, the second node is a transmitter of the first signal, and the third node is a receiver of the second signal.
  • the sending time of the first signal includes at least two time units in the same uplink cycle, wherein the first node performs uplink transmission in the same uplink cycle, and the transmission state does not change.
  • the terminal 1300 can implement the functions performed by each model of the perception device shown in Figure 9, and can achieve the same beneficial effects. To avoid repetition, it will not be repeated here.
  • the terminal 1300 serves as the second node.
  • the radio frequency unit 1301 is configured to send a first signal based on first configuration information, wherein the first configuration information is used to configure reference path parameter measurement;
  • the target perception result of the first service is determined based on the target perception measurement value obtained after calibrating the first random phase information and the first perception measurement value
  • the first random phase information is determined based on the first perception measurement value and the reference path parameter measurement value obtained based on the reference path parameter measurement
  • the first perception measurement value is determined based on the perception measurement of the second signal
  • the first service is a perception service and/or a communication perception integrated service
  • the receiving end of the first signal and the sending end of the second signal are the first node.
  • the reference path parameter measurement value includes a parameter measurement value of a line-of-sight propagation LOS path, and/or a reflection path of the fourth node to the first signal.
  • the reference path parameter includes at least one of the following:
  • the Doppler frequency of the reference path or the Doppler frequency of the reference path and the rate of change of the Doppler frequency;
  • the delay of the reference path or the delay of the reference path and the rate of change of the delay
  • the departure pitch angle of the reference path or the departure pitch angle of the reference path and the rate of change of the departure pitch angle
  • the azimuth of arrival of the reference path or the azimuth of arrival of the reference path and the rate of change of the azimuth of arrival;
  • the arrival pitch angle of the reference path or the arrival pitch angle of the reference path and the rate of change of the arrival pitch angle
  • phase of a reference path or the phase of a reference path and the rate of change of the phase.
  • the first random phase information includes at least one of the following:
  • the first indication information is used to indicate information of antenna ports of the first node having the same or different random phases.
  • the radio frequency unit 1301 is further used to send first information to the first node, wherein the first information is used to assist the first node in determining the first configuration information.
  • the first information includes at least one of the following:
  • the radio frequency unit 1301 is further configured to:
  • the second information is sent to the first node, wherein the second information is used to assist the first node in obtaining the reference path parameter measurement value.
  • the second information includes at least one of the position, velocity magnitude, velocity direction, and antenna panel orientation information of the fourth node.
  • the radio frequency unit 1301 is further used to send the first configuration information to the fourth node.
  • the radio frequency unit 1301 is further configured to:
  • the first configuration information is received from the first node.
  • the sending time of the first signal includes at least two time units in the same uplink cycle, wherein the first node performs uplink transmission in the same uplink cycle, and the transmission state does not change.
  • the terminal 1300 can implement the functions performed by each model of the perception device shown in Figure 10, and can achieve the same beneficial effects. To avoid repetition, it will not be repeated here.
  • the terminal 1300 serves as a third node.
  • the radio frequency unit 1301 is configured to measure the second signal based on the second configuration information to obtain a first perception measurement value, wherein the second configuration information is used to configure a first service, the first service is a perception service and/or a communication perception integrated service, and the transmitter of the second signal includes a first node;
  • the target perception result of the first service is determined based on the target perception measurement value obtained after calibrating the first perception measurement value based on the first random phase information, and the first random phase information is determined based on the first perception measurement value and the reference path parameter measurement value, and the reference path parameter measurement value is the measurement value when the first node receives the first signal.
  • the radio frequency unit 1301 is further configured to obtain a measurement value of a reference diameter parameter
  • the processor 1310 is configured to determine the first random phase information according to the reference path parameter measurement value and the first perception measurement value.
  • the radio frequency unit 1301 is further used to send fourth information to the fifth node, wherein the fourth information includes at least one of the first perception measurement value, the target perception measurement value, the target perception result, and the first perception result, wherein the first perception result is a perception result determined based on the first perception measurement value.
  • the processor 1310 is further configured to calibrate the first perception measurement value based on the first random phase information to obtain the target perception measurement value.
  • the processor 1310 is further configured to determine the target perception result based on the target perception measurement value.
  • the calibrating the first perception measurement value based on the first random phase information to obtain the target perception measurement value performed by the processor 1310 includes:
  • a random phase value and/or a random phase difference value of the second signal is obtained, and a random phase calibration is performed on the first perception measurement value of the second signal received according to the random phase value and/or the random phase difference value to determine the target perception measurement value.
  • the RF unit 1301 is further configured to:
  • the terminal 1300 can implement the functions performed by each model of the perception device shown in Figure 11, and can achieve the same beneficial effects. To avoid repetition, it will not be repeated here.
  • the network side device 1400 includes: an antenna 1401, a radio frequency device 1402, a baseband device 1403, a processor 1404, and a memory 1405.
  • the antenna 1401 is connected to the radio frequency device 1402.
  • the radio frequency device 1402 receives information through the antenna 1401 and sends the received information to the baseband device 1403 for processing.
  • the baseband device 1403 processes the information to be sent and sends it to the radio frequency device 1402.
  • the radio frequency device 1402 processes the received information and sends it out through the antenna 1401.
  • the method executed by the network-side device in the above embodiment may be implemented in the baseband device 1403, which includes a baseband processor.
  • the baseband device 1403 may include, for example, at least one baseband board, on which multiple chips are arranged, as shown in Figure 14, one of which is, for example, a baseband processor, which is connected to the memory 1405 through a bus interface to call the program in the memory 1405 and execute the network device operations shown in the above method embodiment.
  • the network side device may also include a network interface 1406, which is, for example, a Common Public Radio Interface (CPRI).
  • CPRI Common Public Radio Interface
  • the network side device 1400 of the embodiment of the present application also includes: instructions or programs stored in the memory 1405 and executable on the processor 1404.
  • the processor 1404 calls the instructions or programs in the memory 1405 to execute the methods executed by the modules shown in Figures 9 and/or 10 and/or 11, and achieves the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
  • a program or instruction is stored.
  • each process of the method embodiment shown in at least one of Figures 5, 6 and 7 is implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
  • the present application embodiment further provides a chip, the chip comprising a processor and a communication interface, the communication interface and The processor is coupled, and the processor is used to run a program or instruction to implement each process of the method embodiment shown in at least one of Figures 5, 6 and 7, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • the embodiments of the present application further provide a computer program/program product, which is stored in a storage medium and is executed by at least one processor to implement the various processes of the method embodiments shown in at least one of Figures 5, 6 and 7, and can achieve the same technical effect. To avoid repetition, it will not be described here.
  • the technical solution of the present application can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, a magnetic disk, or an optical disk), and includes a number of instructions for enabling a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as ROM/RAM, a magnetic disk, or an optical disk
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种感知方法、感知装置及通信设备,属于通信技术领域,本申请实施例的感知方法包括:第一节点基于第一配置信息对第一信号进行下行测量,得到参考径参数测量值;所述第一节点基于第二配置信息发送第二信号,其中,所述第二信号用于第一业务,所述第一业务为感知业务和/或通信感知一体化业务;其中,所述第一业务的目标感知结果基于第一随机相位信息和第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和所述参考径参数测量值确定,所述第一感知测量量测量值基于对所述第二信号的感知测量确定。

Description

感知方法、感知装置及通信设备
相关申请的交叉引用
本申请主张在2022年12月21日在中国提交的中国专利申请No.202211652027.X的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种感知方法、感知装置及通信设备。
背景技术
在相关技术中,移动通信网络中的感知节点可以通过发送和接收感知信号,来实现对感知目标的状态或感知环境的感知测量,在通信感知一体化(Integrated Sensing and Communication,ISAC)中,获取精确的测量信息尤为重要。
但是,用户设备(User Equipment,UE)(以下也将UE称之为终端)的器件和硬件电路的非理想因素会显著影响测量精度。在基站和终端之间发送和接收感知信号的感知方式中,提取信道状态信息(Channel State Information,CSI)进行感知,是通信感知一体的主要实现方式之一。然而,一些非理想因素会导致CSI测量存在误差,显著影响感知的精度。例如:目前基于参考信号(例如探测参考信号(Sounding Reference Signal,SRS))进行信道估计时,基站侧上行信道估计在时间上相位不连续,即不同上行时刻信道估计间存在随机相位偏移。若用户设备(User Equipment,UE)具备大于1个射频通道,则在不同射频通道都将引入不同的随机相位。该随机相位对通信性能几乎没影响,但会引入上行感知误差,甚至导致无法进行感知业务。
发明内容
本申请实施例提供一种感知方法、感知装置及通信设备,能够基于下行参考径参数测量得到的参考径参数测量值来确定感知信号的发送端的随机相位估计值,并基于该随机相位估计值对感知测量量测量值中的随机相位进行校准,以缩小校准后的感知测量量测量值与感知测量量真实值之间的偏差,提升了基于该校准后的感知测量量测量值得到的感知结果的准确性,从而提升了感知性能。
第一方面,提供了一种感知方法,该方法包括:
第一节点基于第一配置信息对第一信号进行下行测量,得到参考径参数测量值;
所述第一节点基于第二配置信息发送第二信号,其中,所述第二信号用于第一业务,所述第一业务为感知业务和/或通信感知一体化业务;
其中,所述第一业务的目标感知结果基于第一随机相位信息和第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和所述参考径参数测量值确定,所述第一感知测量量测量值基于对所述第二信号的感知测量确定。
第二方面,提供了一种感知装置,应用于第一节点,该装置包括:
第一测量模块,用于基于第一配置信息对第一信号进行下行测量,得到参考径参数测量值;
第一发送模块,用于基于第二配置信息发送第二信号,其中,所述第二信号用于第一业务,所述第一业务为感知业务和/或通信感知一体化业务;
其中,所述第一业务的目标感知结果基于第一随机相位信息和第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和所述参考径参数测量值确定,所述第一感知测量量测量值基于对所述第二信号的感知测量确定。
第三方面,提供了一种感知方法,该方法包括:
第二节点基于第一配置信息发送第一信号,其中,所述第一配置信息用于配置参考径参数测量;
其中,第一业务的目标感知结果基于第一随机相位信息和第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和基于所述参考径参数测量得到的参考径参数测量值确定,所述第一感知测量量测量值基于对第二信号的感知测量确定,所述第一业务为感知业务和/或通信感知一体化业务,所述第一信号的接收端和所述第二信号的发送端为第一节点。
第四方面,提供了一种感知装置,应用于第二节点,该装置包括:
第二发送模块,用于基于第一配置信息发送第一信号,其中,所述第一配置信息用于配置参考径参数测量;
其中,第一业务的目标感知结果基于第一随机相位信息和第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和基于所述参考径参数测量得到的参考径参数测量值确定,所述第一感知测量量测量值基于对第二信号的感知测量确定,所述第一业务为感知业务和/或通信感知一体化业务,所述第一信号的接收端和所述第二信号的发送端为第一节点。
第五方面,提供了一种感知方法,该方法包括:
第三节点基于第二配置信息对第二信号进行测量,得到第一感知测量量测量值,其中,所述第二配置信息用于配置第一业务,所述第一业务为感知业务和/或通信感知一体化业务,所述第二信号的发送端包括第一节点;
其中,所述第一业务的目标感知结果基于第一随机相位信息对所述第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一 感知测量量测量值和参考径参数测量值确定,所述参考径参数测量值为第一节点接收第一信号时的测量值。
第六方面,提供了一种感知装置,应用于第三节点,该装置包括:
第二测量模块,用于基于第二配置信息对第二信号进行测量,得到第一感知测量量测量值,其中,所述第二配置信息用于配置第一业务,所述第一业务为感知业务和/或通信感知一体化业务,所述第二信号的发送端包括第一节点;
其中,所述第一业务的目标感知结果基于第一随机相位信息对所述第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和参考径参数测量值确定,所述参考径参数测量值为第一节点接收第一信号时的测量值。
第七方面,提供了一种通信设备,该通信设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第三方面或第五方面所述的方法的步骤。
第八方面,提供了一种通信设备,包括处理器及通信接口;
其中,在所述通信设备为第一节点的情况下,所述通信接口用于基于第一配置信息对第一信号进行下行测量,得到参考径参数测量值;所述通信接口还用于基于第二配置信息发送第二信号,其中,所述第二信号用于第一业务,所述第一业务为感知业务和/或通信感知一体化业务;其中,所述第一业务的目标感知结果基于第一随机相位信息和第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和所述参考径参数测量值确定,所述第一感知测量量测量值基于对所述第二信号的感知测量确定。
在所述通信设备为第二节点的情况下,所述通信接口用于基于第一配置信息发送第一信号,其中,所述第一配置信息用于配置参考径参数测量;其中,第一业务的目标感知结果基于第一随机相位信息和第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和基于所述参考径参数测量得到的参考径参数测量值确定,所述第一感知测量量测量值基于对第二信号的感知测量确定,所述第一业务为感知业务和/或通信感知一体化业务,所述第一信号的接收端和所述第二信号的发送端为第一节点;
在所述通信设备为第三节点的情况下,所述通信接口用于基于第二配置信息对第二信号进行测量,得到第一感知测量量测量值,其中,所述第二配置信息用于配置第一业务,所述第一业务为感知业务和/或通信感知一体化业务,所述第二信号的发送端包括第一节点;其中,所述第一业务的目标感知结果基于第一随机相位信息对所述第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和参考径参数测量值确定,所述参考径参数测量值为第一节点接收第一信号时的测量值。
第九方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面或第三方面或第五方面所述的方法的步骤。
第十方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面或第三方面或第五方面所述的方法。
第十一方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面或第三方面或第五方面所述的方法的步骤。
在本申请实施例中,第一节点基于第一配置信息对第一信号进行下行测量,得到参考径参数测量值;所述第一节点基于第二配置信息发送第二信号,其中,所述第二信号用于第一业务,所述第一业务为感知业务和/或通信感知一体化业务;其中,所述第一业务的目标感知结果基于第一随机相位信息和第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和所述参考径参数测量值确定,所述第一感知测量量测量值基于对所述第二信号的感知测量确定。这样,第一节点可以基于下行测量获取参考径参数测量值,基于该参考径参数测量值能够估计第一节点在发送第二信号时的随机相位信息,从而能够基于该随机相位信息对存在随机相位干扰的感知测量量测量值或感知结果进行随机相位校准或者消除感知测量量测量值或感知结果中的随机相位,提升得到的目标感知测量量测量值或目标感知结果的精确度,进而提升了感知精度。
附图说明
图1是本申请实施例能够应用的一种无线通信系统的结构示意图;
图2是感知方式的示意图;
图3a是随机相位测量信号时频域位置示意图;
图3b是参考径参数提取示意图之一;
图3c随机相位偏转示意图之一;
图4a是不同天线端口随机相位示意图;
图4b是参考径参数提取示意图之二;
图4c是随机相位偏转示意图之二;
图5是本申请实施例提供的一种感知方法的流程图;
图6是本申请实施例提供的另一种感知方法的流程图;
图7是本申请实施例提供的另一种感知方法的流程图;
图8a是应用场景一的交互过程示意图;
图8b是应用场景二的交互过程示意图;
图8c是应用场景三的交互过程示意图;
图8d是应用场景四的交互过程示意图;
图9是本申请实施例提供的一种感知装置的结构示意图;
图10是本申请实施例提供的另一种感知装置的结构示意图;
图11是本申请实施例提供的另一种感知装置的结构示意图;
图12是本申请实施例提供的一种通信设备的结构示意图;
图13是本申请实施例提供的一种终端的硬件结构示意图;
图14是本申请实施例提供的一种网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有 无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Networks,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
无线通信和雷达传感(Communication&Sensing,C&S)一直在并行发展,但交集有限。它们在信号处理算法、设备以及一定程度上的系统架构方面都有很多共性。近年来,传统雷达正朝着更通用的无线感知方向发展。无线感知可广泛地指从接收到的无线电信号中检索信息。对于感知目标位置相关的无线感知,可以通过常用的信号处理方法,对目标信号反射时延、到达角、离开角、多普勒等动力学参数进行估计;对于感知目标物理特征,可以通过对设备/对象/活动的固有信号模式进行测量来实现。两种感知方式可以分别称为感知参数估计以及模式识别。在这个意义上,无线感知是指使用无线电信号的更通用的传感技术和应用。
通信和感知一体化(Integrated Sensing And Communication,ISAC)有潜力将无线感知集成到大规模移动网络中,在这里称为感知移动网络(Perceptive Mobile Networks, PMNs),具体可以参考文献[1]:Rahman,Md Lushanur,et al."Enabling joint communication and radio sensing in mobile networks–a survey."arXiv preprint arXiv:2006.07559(2020)。在此不作过多阐述。
感知移动网络能够同时提供通信和无线感知服务,并且由于其较大的宽带覆盖范围和强大的基础设施,有望成为一种无处不在的无线传感解决方案。感知移动网络可以广泛应用于交通、通信、能源、精准农业和安全领域的通信和传感。它还可以为现有的传感器网络提供互补的传感能力,具有独特的昼夜操作功能,能够穿透雾、树叶甚至固体物体。一些常见的感知业务如下表1所示:
表1
移动通信网络中的基站(包括基站上的某1个或多个发送接收点(Transmission Reception Point,TRP)、用户设备(User Equipment,UE)(包括UE上1个或多个天线子阵列/面板(Panel)),可以作为参与感知/通感一体化业务的感知节点。通过接收该感知信号可以支持感知业务,例如:通过接收该信号可得到感知测量量或者感知结果。
所述感知信号可以是不包含传输信息的信号,如现有的LTE/NR同步和参考信号(包括:同步信号和物理广播信道(Synchronization Signal and PBCH block,SSB)信号、信道状态信息(Channel State Information,CSI)参考信号(CSI Reference Signal,CSI-RS)、解调参考信号(Demodulation Reference Signal,DMRS)、信道探测参考信号(Sounding Reference Signal,SRS)、定位参考信号(Positioning Reference Signal,PRS)、相位追踪参考信号(Phase-Tracking Reference Signal,PTRS)等),也可以是雷达常用的单频连续波(Continuous Wave,CW)、调频连续波(Frequency Modulated Continuous Wave,FMCW), 以及超宽带高斯脉冲等。此外,该感知信号还可以是新设计的专用感知信号,具有良好的相关特性和低峰均功率比(Peak-to-Average Power Ratio,PAPR),或者新设计的通感一体化信号,既承载一定信息,同时具有较好的感知性能,例如,该新信号为至少一种专用感知信号/参考信号,和至少一种通信信号在时域和/或频域上拼接/组合/叠加而成。在此对感知信号的类型不作具体限定,且为了便于说明,以下实施例中将上述信号统一称之为感知信号或第二信号。
为了便于说明,本申请实施例中,将发送和/或接收上述第二信号的节点统一称之为感知节点。具体的,将第二信号的发送节点称之为第一节点,将第二信号的接收节点称之为第三节点,此外,还将第一信号的发送节点称之为第二节点,将第一信号的接收节点称之为第一节点,即第一信号的接收节点和第二信号的发送节点为同一节点。
本申请实施例中,第二信号的发送节点和接收节点可以是同一设备或不同的设备,例如:感知节点A发送第二信号,感知节点B接收第二信号,该感知节点A和感知节点B不是同一设备,且物理位置分离;或者,感知节点A自发自收第二信号,即感知信号的发送和接收由同一设备执行,该感知节点通过接收自己发送的信号回波进行感知。
例如:如图2所示,基于感知信号的发送节点和接收节点的不同,可以分为以下6种感知方式:
方式1、基站自发自收感知。在这种感知方式下,基站A发送感知信号,并通过接收该感知信号的回波来进行感知测量。
方式2、基站间进行空口感知。此时,基站B接收基站A发送的感知信号,进行感知测量。
方式3、上行空口感知。此时,基站A接收终端A发送的感知信号,进行感知测量。
方式4、下行空口感知。此时,终端B接收基站B发送的感知信号,进行感知测量。
方式5、终端自发自收感知。此时,终端A发送感知信号,并通过接收该感知信号的回波来进行感知测量。
方式6、终端间旁链路(Sidelink)感知。此时,终端B接收终端A发送的感知信号,进行感知测量。
需要说明的是,在一种实施方式中,同一感知业务可以采用上述感知方式1至感知方式6中的任一种或者至少两种,为了便于说明,本申请实施例中,以同一感知业务采用一种感知方式为例进行举例说明,此外,本申请实施例中通常将感知信号的发送节点称之为第一节点,将感知信号的接收节点称之为第三节点,在此不构成具体限定。
需要说明的是,本申请实施例中的第一节点和第二节点可能是同一节点,即第一节点发送第二信号并接收第二信号的回波信号,得到第一感知测量量测量值;或者,上述第二节点和第三节点可能是同一节点,即第二节点发送第一信号,以供第一节点获取参考径参数测量值,此外,第二节点还接收第二信号,得到第一感知测量量测量值。
此外,本申请实施例中的第一节点通常为终端,如:手机、电脑、智能眼镜等,基于 终端的体积成本受限,使得终端的硬件和/或软件会引入随机相位偏转,本申请实施例的目的便是消除或降低该随机相位偏转对感知结果的干扰,以提升感知精度。
在通信感知一体化中,获取精确的测量信息尤为重要,而参与感知业务的节点的器件和硬件电路的非理想因素会显著影响测量精度。例如:在基站和终端之间发送和接收的感知方式中,提取信道状态信息(Channel State Information,CSI)进行感知,是通感一体化的主要实现方式之一。该过程中,获取质量较好的信道信息尤其重要,而一些非理想因素将导致CSI测量存在误差,从而显著影响感知的精度。
例如:如参考文献[2]:Zhuo,Y.,Zhu,H.,Xue,H.,&Chang,S.(2017,May).Perceiving accurate CSI phases with commodity WiFi devices.In IEEE INFOCOM 2017-IEEE Conference on Computer Communications(pp.1-9).IEEE.分析的,接收节点对CSI的影响可以包括:
1)功放不确定性(Power Amplifier Uncertainty,PAU),或信号接收功率的不确定性。由于低噪声放大器(Low Noise Amplifier,LNA),可编程增益放大器(Programmable Gain Amplifier,PGA)等器件的非理想导致实际的增益调整与预期不符,进而使得测量得到的CSI幅度不准确。
2)同相(Inphase,I)和正交(quadrature,Q)路不平衡。I、Q支路器件性能的局限性使得本振信号相位不能保证严格相差90°、两路信号增益存在差异以及存在直流偏置等,进而导致基带信号的正交性被破坏,造成CSI恶化。
3)时频同步偏差。发送节点和接收节点之间的时钟偏差、非理想同步等因素带来载波频率偏移(Carrier Frequency Offset)、取样频率偏移(Sampling Frequency Offset)、符号定时偏移(Symbol Timing Offset)等问题,会影响对速度估计的准确性或导致测距模糊。参考文献[3]:Zhang,J.A.,Wu,K.,Huang,X.,Guo,Y.J.,Zhang,D.,&Heath Jr,R.W.(2022).Integration of Radar Sensing into Communications with Asynchronous Transceivers.arXiv preprint arXiv:2203.16043.中归纳了共用参考时钟、单站中多天线互相关、多站联合消除定时误差等方法,并阐述了可以通过改善全球定位系统(Global Positioning System,GPS)时钟、放宽单节点感知需求、多节点测量与目标关联等方式应对时钟偏差对感知的影响。
4)天线/阵列幅相误差。包括在利用波束赋形进行感知时,波束赋形幅度和相位误差,将导致形成的波束形状(波束增益、波束宽度、旁瓣水平)与实际不符,进而在基于波束赋形后的信道信息进行感知时导致精度下降,造成角度和反射功率估计误差。此外,波束切换延迟也会加大干扰和噪声对感知结果的影响。例如:参考文献[4]:Tadayon,N.,Rahman,M.T.,Han,S.,Valaee,S.,&Yu,W.(2019).Decimeter ranging with channel state information.IEEE Transactions on Wireless Communications,18(7),3453-3468.总结了发送端对CSI的影响,主要包括加窗、预编码、波束赋形等对接收端不可知的处理导致接收端无法获取真实的信道信息。
5)时间域随机相位。该随机相位来自于发射机天线、射频模块(包括连接射频通道上的各种器件)、数字处理模块、时钟模块的其中至少一者在信号发送和接收过程中状态 发生了变化(例如开启、关闭、从一个状态转变为另一个状态等)。若设备具有不止1套发射机,则每套发射机可能会产生独立的随机相位。若每套发射机与至少一个天线连接,则不同发射机连接的天线/天线子阵列具有不同的随机相位。该随机相位一般在发射信号带宽内是一致的,但不同时刻上产生的随机相位值是不同的,呈现在某个弧度范围内随机分布。
由上可知,相关技术中,以感知信号的发送端为UE,接收端为基站为例,在基于参考信号(例如SRS)进行信道估计时,基站侧上行信道估计在时间上相位不连续,即不同上行时刻信道估计间存在随机相位偏移。若UE具备大于1个射频通道,则在不同射频通道都将引入不同的随机相位。该随机相位对通信性能几乎没影响,但会引入上行感知误差,甚至导致无法进行感知业务。
本申请实施例中,针对第一节点在发送感知信号时,会引入随机相位偏移,进而造成感知精度低甚至无法进行感知业务的问题,发送感知信号的第一节点还对用于参考径测量的第一信号进行测量,得到参考径参数测量值,基于上行与下行的信道互易性,能够根据该下行参考径参数测量值得到第一节点发送的感知信号时的上行随机相位和/或基于参考径参数测量值对应的随机相位信息对携带随机相位偏移的感知测量量测量值进行随机相位校准或消除,降低随机相位偏差对感知测量量测量值和/或感知结果的干扰。其中,基于下行的第一信号进行参考径参数测量的过程中,由于下行没有随机相位问题,且下行测量信号配置灵活,使得随机相位估计能够很准确,确保了随机相位校准具有高性能,有效解决了上行随机相位对上行感知性能的影响,提升了感知/通感一体化性能。
为了便于理解,在此先对本申请实施例中的原理进行解释说明:
1)、基于CSI商/CSI共轭乘积的随机相位校准原理:
感知信号发射机或感知信号接收机具备多天线,由于多天线往往使用的是同一个时钟源,可以通过CSI商或CSI共轭乘积的方法实现信道时延、多普勒的校准,消除频偏或随机相位对它们引入的误差。其中,CSI商的解释说明可以参考文献[5]:Zeng,Youwei,et al."FarSense:Pushing the range limit of WiFi-based respiration sensing with CSI ratio of two antennas."Proceedings of the ACM on Interactive,Mobile,Wearable and Ubiquitous Technologies 3.3(2019):1-26.
该方法实现简单、运算量较小,但要求发射机、接收机至少一者具备多天线,且通过各天线获得的感知测量量测量值上引入的非理想因素(频偏,或随机相位)是相同的。
例如,感知信号接收机的天线1的信道估计为其中H1(f,t)为天线1的真实CSI,为非理想因素引入的相位差。同样地,天线2的信道估计为H2(f,t)为天线2的真实CSI。则CSI商可以表示为以下公式:
且CSI共轭乘积可以表示为以下公式:
由上可知,通过CSI商或CSI共轭乘积,信道估计中因非理想因素引入的相位差被消除,本申请实施例中,可以基于消除基于相位差后的进行感知测量量测量值提取,以实现对感知测量量测量值的随机相位校准,在此不做赘述。
2)、基于参考径的随机相位校准原理:
假设发射基带信号为s0(t),载频为fc,发射信号为同时假设发射机和接收机之间的无线信道为其中L为信道中的多径总数,τl为第l条多径的时延,fd,l为第l条多径的多普勒频率。理想情况下,发射信号经过信道后,接收机天线接收信号为
对于感知接收机,已知信号s0(t)以及载频为fc,基于接收信号r(t)即可得到H(f,t),即得到包含了感知信息的CSI矩阵。进一步地,使用快速傅里叶变换(Fast Fourier Transform,FFT)或者多重信号分类(Multiple Signal Classification,MUSIC)等参数估计算法又可得到感知测量量,例如τl、fd,l等。对于通信接收机,基于已知载频为fc,对接收信号下变频,并完成信道估计获得CSI,则得到即可得到基带发送信号s0(t)。
然而,由于随机相位的引入,发射信号变为其中为随机相位。
对于感知接收机来说,天线接收信号可以表示为以下公式:
经过下变频,得到的带有随机相位偏转的信道估计为:
当每次采样时刻t引入的随机相位均不一样时,即则不考虑干扰和噪声情况下基于相邻2次信道估计得到的多普勒频率可以表示为以下公式:
基于多次采样使用FFT或者MUSIC等参数估计算法将得到很多互不相同的虚假多普勒频率成份,最终导致无法准确估计真实多普勒。
值得注意的是,由于随机相位会作用在CSI的所有多径上,且引入的随机相位值大小对于所有多径都相同(见等式(1)、(2))。一种可选地校准方法过程如下。假设根据感知先验信息,已知任意第l条多径的真实时延值为τ′l(一般也为视距传播(Line Of Sight,LOS)径,在某些情况下也可以为任意非视距传播(Non Line-Of-Sight,NLOS)径),例如已知感知参考节点(比如智能表面(Reconfigurable Intelligent Surface,RIS)、反向散射标签(backscatter,BSC))的NLOS反射径。测量得到的第l条多径的时延为τ′l。这里假设由于其他非理想因素,Δτ=τ′ll,首先对CSI矩阵所有多径进行时延校准即:
另一方面,假设已知某个时间段T内任意第l条多径的真实多普勒频率值为fd,l(一般也为LOS径,在某些情况下也可以为NLOS径),基于时延校准后的CSI矩阵,进行多普勒校准。首先,需要基于CSI矩阵提取已知时延为τl的多径复振幅(包含多普勒),利用最大似然估计得到以下公式:
对该径的多普勒进行校准,可以得到T时间段内时刻ts(其中,ts为相对参考时刻的时间差)的校准后的CSI,即:
其中,Δfd=fd,l-f′d,l。此时第l条多径的感知测量量τl、fd,l的误差已被消除。由于随机相位造成的误差对所有多径的作用相同,所以其它所有多径由于频偏导致的误差也能被消除。需要指出的是,对多普勒频率进行校准时,由于随机误差在每次采样时取值 不同(在某个弧度范围内近似均匀随机分布),需要逐个对每个CSI样本基于等式(6)进行校准。此外,一般我们无法确知T时段内第l条多径的真实复振幅al,因此在校准时,不同ts时刻的样本需要有1个统一的参考时刻(一般可以选择为T时段内第1个样本的采样时刻),进而确定ts大小、确定每个CSI样本的相位校准值。换句话说,上述多普勒校准本质上是多个连续CSI样本之间相对相位的校准。
3)、不同时刻随机相位估计方法:
在上述基于参考径的随机相位校准原理2)的基础上,一种较为实用的不同时刻的随机相位估计方法如下。
假设同1个上行周期内的至少2个不同的上行时隙上,放置了用于随机相位估计的导频(参考信号)/感知信号,如图3a所示。一般地,1个上行周期内,至少要求具有2个上行时隙。对于具备多个发射射频链路的设备,每个射频链路均要求具有至少2个上行时隙。接收端基于所述随机相位估计的导频(参考信号)/感知信号得到的信道估计,并在频域上对信道估计进行快速傅里叶逆变换(Inverse Fast Fourier Transform,IFFT),得到信道的冲激响应。多个上行时隙对应得到多个不同时刻的冲激响应,如图3b所示。IFFT操作的目的是获取信道的参考径(一般为LOS径或者参考节点(RIS/BSC)构造的NLOS径)参数,例如参考径的时延、幅度、相位等。
一般地,在同一个上行周期内的不同上行时隙之间,不会存在随机相位偏转。假设不同上行时隙间隔时间满足信道的参考径的相位近似线性变化,基于该上行周期内的至少2个不同上行时隙的信道参考径的相位,可以很容易地外推出下1个上行周期上行时隙时刻的参考径相位。然而,经过上下行切换后,下1个上行周期上行时隙时刻的参考径相位引入了随机相位偏转(随机相位差)。如图3c所示,参考径的外推相位和实际测量相位的相位差,即为需要估计的随机相位值。对不同上行时隙做同样操作,得到所有随机相位值。需要指出的是,根据实际参考径的多普勒取值不同,图3c折线斜率可以是正、负或者0。在所有不同上行时隙信道估计/接收信号中补偿对应随机相位值,即可实现目标信号多普勒的准确测量。
4)、不同天线端口随机相位估计方法:
由于不同射频链路的随机相位不同,不同天线端口间具有随机相位差,导致角度测量存在误差。在上述基于参考径的随机相位校准原理2)的基础上,一种较为实用的不同天线端口的随机相位估计方法如下。
假设发射机具有4个天线端口(4个独立射频链路),接收端基于接收到的4端口发射信号进行信号离开角(以离开方位角为例说明,用θ表示)估计时,需要获得各端口发射信号的相位差。然而,由于各端口随机相位的影响,从接收机侧看,各天线端口的信号发射方向都不一样(即图4a中的“等效信号发射方向”)。
首先,接收端基于用于随机相位估计的导频(参考信号)/感知信号得到多个发射天 线端口的信道估计,并在频域上分别对各端口信道估计进行IFFT,得到信道的冲激响应,如图4b所示。IFFT操作的目的是获取信道的参考径(一般为LOS径或者参考节点(RIS/BSC)构造的NLOS径)参数,例如参考径的时延、幅度、相位等。
假设发射机阵列为线性阵列(其他阵列同理),以天线端口0为的参考径相位φ0(t)为参考相位,且假设已知参考径的离开角为θ,则天线端口n的参考径相位应为其中,d0,dn分别为天线端口0和天线端口n距离天线阵列参考位置的距离,λ为信号波长,如图4c所示。实际天线端口n的参考径相位φn(t),因此天线端口n需要校准的随机相位值为Δφn=φn(t)-φ′n(t)。需要指出的是,根据实际参考径的角度取值不同,图4c折线斜率可以是正、负或者0。依次对天线端口1,2,…,n进行上述操作,即可得到所有天线端口需要校准的随机相位值。在所有天线端口信道估计/接收信号中补偿对应随机相位值,即可实现目标信号角度的准确测量。
需要指出的是,本申请实施例提供的感知方法,既适用于第一节点至少1个天线端口的不同上行时刻的随机相位测量、估计、校准,也适用于第一节点至少2个不同天线端口间的随机相位的测量、估计、校准。应理解的是,所述随机相位测量、估计、校准操作,可以达到以下2种效果中的至少一项:
(1)消除第一节点至少1个天线端口的不同上行时刻的随机相位,或消除第一节点至少2个不同天线端口的随机相位,进而消除随机相位对多普勒测量和/或角度测量的影响;
(2)以某个天线端口、某个上行时刻的信道参考径相位作为参考相位,使其他天线端口和/或该天线端口其他上行时刻的信道参考径相位与该参考相位保持连续性/一致性,进而消除随机相位对多普勒测量和/或角度测量的影响。
基于上述描述,应理解,在本申请实施例中的“随机相位”概念也包括随机相位间的差值。当本申请实施例用于对第一节点至少1个天线端口不同上行时刻的随机相位测量、估计、校准时,能够消除所述随机相位对多普勒测量的影响;当本申请实施例用于对第一节点至少2个不同天线端口间的随机相位的测量、估计、校准时,能够消除所述随机相位对角度(包括方位角、俯仰角)测量的影响。
其中,对第一节点至少1个天线端口不同上行时刻的随机相位的估计方法,参见上述基于参考径的随机相位校准原理2)和不同时刻随机相位估计方法3);对第一节点至少2个不同天线端口间的随机相位的估计方法,参见上述基于参考径的随机相位校准原理2)和不同天线端口随机相位估计方法4)。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的感知方法、感知 装置以及通信设备进行详细地说明。
请参阅图5,本申请实施例提供的一种感知方法,其执行主体可以是第一节点,在此不作具体限定。
如图5所示,本申请实施例提供的一种感知方法可以包括以下步骤:
步骤501、第一节点基于第一配置信息对第一信号进行下行测量,得到参考径参数测量值。
其中,第一节点基于第一配置信息对第一信号进行下行测量可以是第一节点作为第一信号的接收端,该第一信号可以是由第二节点发送的信号。可选地,该第一信号可以是由第二节点发送的且经参考节点反射的信号,其中,参考节点可以是具有反射功能的设备,如RIS或BSC等,为了便于说明,以下实施例中将参考节点也称之为第四节点。
步骤502、所述第一节点基于第二配置信息发送第二信号,其中,所述第二信号用于第一业务,所述第一业务为感知业务和/或通信感知一体化业务。
其中,所述第一业务的目标感知结果基于第一随机相位信息和第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和所述参考径参数测量值确定,所述第一感知测量量测量值基于对所述第二信号的感知测量确定。
一种实施方式中,第一配置信息可以是包括:用于配置参考径参数测量的相关配置信息,和/或,用于参考径参数测量的第一信号的相关配置信息。基于该第一配置信息可以实现参考径参数的测量,得到所述参考径参数测量值。
一种实施方式中,第二配置信息可以包括用于配置感知测量的相关配置信息,和/或,用于感知测量的第一信号的相关配置信息。基于该第二配置信息可以实现感知测量,得到所述第一感知测量量测量值,其中,基于第一节点发送第二信号时存在随机相位偏差,造成第一感知测量量测量值与真实值之间存在差异。
一种实施方式中,上述第一配置信息和第二配置信息的内容可以相同或相似,为了便于说明,以第二配置信息为例对第一配置信息和第二配置信息的内容进行举例说明,对于第一配置信息,则可以参考以下实施例中对第二配置信息的相关说明。
可选地,所述第二配置信息包括以下至少一项:
所述第二信号的波形类型,例如:正交频分复用(Orthogonal Frequency Division Multiplex,OFDM)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)、正交时频空调制(Orthogonal Time Frequency and Space,OTFS)、FMCW、脉冲信号等;
所述第二信号的子载波间隔,例如:OFDM系统的子载波间隔为30KHz;
所述第二信号的保护间隔,即从信号结束发送时刻到该信号的最迟回波信号被接收的时刻之间的时间间隔,该参数正比于最大感知距离,例如:可以通过2dmax/c计算得到该保护间隔,其中,dmax是最大感知距离(属于感知需求),例如对于自发自收的第二信号, dmax代表第二信号收发点到信号反射点的最大距离,在某些情况下,OFDM信号循环前缀(Cyclic Prefix,CP)可以起到最小保护间隔的作用;
所述第二信号的带宽,该参数反比于距离分辨率,可以通过c/(2Δd)得到,其中Δd是距离分辨率(属于感知需求);c是光速;
所述第二信号的数据突发(Burst)持续时间,该参数反比于速率分辨率(属于感知需求),该参数是第二信号的时间跨度,主要为了计算多普勒频偏,该参数可通过c/(2fcΔv)计算得到;其中,Δv是速度分辨率;fc是感知信号的载频;
所述第二信号的时域间隔,该参数可通过c/(2fcvrange)计算得到,其中,vrange是目标最大速度减去最小速度(属于感知需求),该参数是相邻的两个感知信号之间的时间间隔;
所述第二信号的发送信号功率,例如:从-20dBm到23dBm每隔2dBm取一个值;
所述第二信号的信号格式,例如:信号格式是SRS、DMRS、定位参考信号(Positioning Reference Signal,PRS)等,或者其他预定义的信号,以及相关的序列格式等信息;
所述第二信号的信号方向,例如:第二信号的方向或者波束信息;
所述第二信号的时间资源,例如:第二信号所在的时隙索引或者时隙的符号索引。其中,时间资源分为两种:一种是一次性的时间资源,例如,一个符号发送一个全向的感知信号;一种是非一次性的时间资源,例如,多组周期性的时间资源或者不连续的时间资源(可包含开始时间和结束时间),每一组周期性的时间资源发送同一方向的感知信号,不同组的周期性时间资源上的波束方向不同;
所述第二信号的频率资源,例如:第二信号的中心频点、带宽、资源块(Resource Block,RB)或者子载波、频域参考位置(Point A),起始带宽位置等;
所述第二信号的准共址(Quasi co-location,QCL)关系,例如:第二信号包括多个资源,每个资源与一个SSB QCL,QCL类型包括:Type A、Type B、Type C或者Type D;
参与所述第一业务的节点(第一节点或第二节点)的天线配置信息。
可选地,所述天线配置信息包括以下至少一项:
用于发送所述第二信号的天线阵元ID;
用于发送所述第二信号的天线端口ID;
用于接收所述第二信号的天线阵元ID;
用于接收所述第二信号的天线端口ID;
用于发送所述第二信号的天线面板(panel)ID和天线阵元ID;
用于接收所述第二信号的天线面板ID和天线阵元ID;
用于发送所述第二信号的天线阵元相对天线阵列上的目标局部参考点的位置信息,该位置信息可以用笛卡尔坐标(x,y,z)或者球坐标表示;
用于接收所述第二信号的天线阵元相对天线阵列上的目标局部参考点的位置信息,该位置信息可以用笛卡尔坐标(x,y,z)或者球坐标表示;
用于发送所述第二信号的天线面板相对天线阵列上的目标局部参考点的位置信息,以及目标天线面板中用于发送所述第二信号的天线阵元相对所述目标天线面板上的统一参考点的位置信息,其中,所述目标天线面板为选中的用于发送所述第二信号的天线面,统一参考点可以是天线面板(panel)的中心点;
天线阵元的第一比特图(bitmap)信息,所述第一比特图信息用于指示发送所述第二信号的天线阵元和/或不发送所述第二信号的天线阵元,例如:该bitmap使用“1”指示对应的天线阵元被选择用于发送和/或接收感知信号,使用“0”表示对应的阵元未被选择,当然,也可反过来,即bitmap使用“0”指示对应的天线阵元被选择用于发送和/或接收感知信号,使用“1”表示对应的阵元未被选择;
天线面板的第二比特图信息,所述第二比特图信息用于指示发送所述第二信号的天线面板和/或不发送所述第二信号的天线面板,例如:该bitmap使用“1”指示对应的panel被选择用于发送和/或接收感知信号,使用“0”表示对应的panel未被选择,当然,也可反过来,即bitmap使用“0”指示对应的panel被选择用于发送和/或接收感知信号,使用“1”表示对应的panel未被选择;对于被选择的panel,天线配置信息还可以包括选择的panel内的天线阵元的第一比特图信息。
天线阵元幅相增益信息,即天线阵元pattern信息。
一种实施方式中,所述感知测量量测量值包括以下至少一项感知测量量的测量值:
第一级测量量,所述第一级测量量可以是接收信号/原始信道信息,其具体包括以下至少一项:接收信号的响应复数结果、接收信道的响应复数结果、幅度、相位、I路及其运算结果、Q路及其运算结果;其中,I路/Q路的运算结果中的运算可以包括以下至少一项:加、减、乘、除、矩阵加、矩阵减、矩阵乘、矩阵转置、三角关系运算、平方根运算和幂次运算等,以及上述运算结果的门限检测结果、最大/最小值提取结果等;此外,该运算还可以包括FFT/IFFT、离散傅里叶变换(Discrete Fourier Transform,DFT)/离散傅里叶逆变换(Inverse Discrete Fourier Transform,IDFT)、二维快速傅里叶变换(Two-Dimensional Fast Fourier Transform,2D-FFT)、三维快速傅里叶变换(Three-Dimensional Fast Fourier Transform,3D-FFT)、匹配滤波、自相关运算、小波变换和数字滤波等,以及上述运算结果的门限检测结果、最大/最小值提取结果等
第二级测量量,所述第二级测量量可以是基本测量量,其具体可以包括以下至少一项:时延、多普勒、角度、强度,以及时延、多普勒、角度、强度中至少两项的多维组合表示;
第三级测量量,所述第三级测量量可以是基本属性/状态,其具体可以包括以下至少一项:距离、速度、朝向、空间位置、加速度;
第四级测量量,所述第四级测量量可以是进阶属性/状态,其具体可以包括以下至少一项:轨迹、动作、表情、生命体征、数量、成像结果、天气、空气质量、形状、材质、成分、所述第一业务对应的感知目标是否存在。
可选地,所述感知测量量还可以包括对应的标签信息,如以下至少一项:
感知信号标识信息;
感知测量配置标识信息;
感知业务信息,如感知业务ID;
数据订阅ID;
测量量用途,如:通信、感知、通信和感知;
时间信息;
参与所述第一业务的节点信息,例如:第一节点的ID、位置、设备朝向等;
感知链路信息,例如:感知链路序号、收发节点标识;
测量量说明信息,所述测量量说明信息可以包括测量量的形式,如:幅度值、相位值、幅度和相位结合的复数值;所述测量量说明信息也可以包括资源类型,如:时域测量结果、频域资源测量结果;
测量量指标信息,例如:信噪比(Signal-to-Noise Ratio,SNR)、感知SNR。
一种实施方式中,第一节点对第一信号进行下行测量,得到参考径参数测量值,可以是第一节点对接收的第一信号进行测量,得到以所述第一节点为接收端的下行参考径的参数测量值。其中,由于第一节点接收第一信号时没有随机相位问题,且下行测量信号配置灵活,使得基于该下行测量得到的参考径参数测量值进行随机相位估计时能够得到很准确随机相位估计结果,进而使得随机相位校准的性能提高,有效解决了上行随机相位对上行感知性能的影响,提升了感知/通感一体化性能。
可选地,参考径参数可以包括以下至少一项:
参考径的多普勒频率,或者,参考径的多普勒频率及多普勒频率的变化速率;
参考径的时延,或者,参考径的时延及时延的变化速率;
参考径的离开方位角,或者,参考径的离开方位角及离开方位角的变化速率;
参考径的离开俯仰角,或者,参考径的离开俯仰角及离开俯仰角的变化速率;
参考径的到达方位角,或者,参考径的到达方位角及到达方位角的变化速率;
参考径的到达俯仰角,或者,参考径的到达俯仰角及到达俯仰角的变化速率;
参考径的幅度,或者,参考径的幅度及幅度的变化速率;
参考径的相位,或者,参考径的相位及相位的变化速率。
其中,参考径参数测量值可以是对上述参考径参数进行测量所得到的值。
一种实施方式中,基于上述参考径参数测量值,可以通过CSI商或CSI共轭乘积的方法,实现信道多普勒的校准,消除随机相位对感知信号发射机或感知信号接收机引入的误差,得到目标感知测量量测量值,该过程具体可以参考上述基于CSI商/CSI共轭乘积的随机相位校准原理1)中的解释说明,在此不再赘述。
一种实施方式中,第一随机相位信息可以包括感知测量的真实的相位值,或者是非理想因素引入的相位差,例如:基于参考径测量估计的相位和实际感知测量的相位的相位差。
可选地,所述第一随机相位信息包括以下至少一项:
所述第一节点的至少一个天线端口在不同上行时刻的随机相位的差值;
所述第一节点的至少两个天线端口的随机相位的差值;
所述第一节点的每一个天线端口的随机相位值;
第一指示信息,所述第一指示信息指示所述第一节点的随机相位相同或者不同的天线端口的信息。
一种实施方式中,所述第一信号的发送时刻包括同一个上行周期内的至少两个时间单元,其中,所述第一节点在同一个上行周期内进行上行传输,且传输状态不发生改变。
其中,一个上行周期内,第一节点的天线端口的传输状态不发生切换,即该上行周期内,第一节点的天线端口不会由上行状态切换为下行状态。通常,认为在一个上行周期内的不同上行时隙之间,不会存在随机相位偏转,假设不同上行时隙间隔时间满足信道的参考径的相位近似线性变化,基于该上行周期内的至少2个不同上行时隙的信道参考径的相位,可以很容易地外推出下1个上行周期上行时隙时刻的参考径相位,从而能够实现不同时刻的随机相位估计。具体可以参考上述不同时刻随机相位估计方法3)中的说明,在此不再赘述。
一种实施方式中,在所述第一节点的天线端口为N个的情况下,可以针对每一个天线端口独立进行参考径测量,即进行N次参考径测量,以得到每一个天线端口各自的第一随机相位信息,或者得到任意至少两个天线端口的随机相位的差值。其具体过程可以参考上述基于不同天线端口随机相位估计方法4)中的解释说明,在此不再赘述。
一种实施方式中,第一节点的不同天线端口可以共用一个射频链路,此时,共用一个射频链路的天线端口的随机相位可以相同,通过第一指示信息指示所述第一节点的随机相位相同或者不同的天线端口的信息,可以对于每一个射频链路对应的天线端口中仅指示其中一个天线端口的随机相位,并通过指示哪一些天线端口的随机相位相同来降低指示每一个天线端口的随机相位的信息比特数。例如:使第二节点(包括第二信号接收端、目标感知测量量测量值/目标感知结果的计算节点)结合多输入多输出(Multi Input Multi Output,MIMO)感知相关的感知需求/感知服务质量(Quality of Service,QoS),确定第一节点发送第二信号的发射天线端口,最终获得准确的MIMO/多端口感知测量量测量值/感知结果。
值得提出的是,所述第一节点参考径参数测量的作用至少包括以下至少一项:
i.获取参考径参数测量值,并进一步基于第一感知测量量测量值和所述参考径参数测量值,获取/完善第一节点的天线端口的第一随机相位信息(包括随机相位值)。第三节点(包括第二信号接收端、目标感知测量量测量值/目标感知结果计算节点)基于所述第一随机相位信息(包括随机相位值)对结果进行校准,消除所述随机相位对感知测量量测量值/感知结果的影响;
ii.所述第一随机相位信息还包括指示随机相位相同/不同的天线端口的信息,使第二节点(包括第一信号接收端、感知测量量测量值/感知结果计算节点)结合MIMO感知相关的感知需求/感知QoS,确定第一节点的发射天线端口,最终获得准确的MIMO/多端口 感知测量量测量值/感知结果;
iii.获取参考径参数测量值,以辅助第三节点(包括第二信号接收端、感知测量量测量值/感知结果计算节点)获得感知测量量测量值/感知结果。
一种实施方式中,第一感知测量量测量值可以是携带随机相位偏移的感知测量量测量值,基于参考径参数测量值能够得到第一感知测量量测量值中引入的随机相位,从而消除该第一感知测量量测量值中的随机相位,实现随机相位校准,这样,可以得到与第二信号的发射机的相位一致的目标感知测量量测量值,即降低了随机相位对目标感知测量量测量值的干扰,这样,基于该目标感知测量量测量值便可以得到感知精度更高的目标感知结果。
需要说明的是,在另一种实施方式中,也可以基于第一感知测量量测量值先计算第一感知结果,此时,第一感知结果表示受随机相位偏移干扰的感知结果,然后,再基于参考径参数测量值对第一感知结果进行随机相位校准,以得到与第二信号的发射机的相位一致的目标感知结果,即降低了随机相位对目标感知结果的干扰,使得目标感知结果的精度更高。
作为一种可选的实施方式,所述方法还包括:
所述第一节点向第三节点发送所述参考径参数测量值,其中,所述第三节点为所述第二信号的接收端。
本实施方式中,第三节点基于第二信号进行感知测量,以得到第一感知测量量测量值,第一节点可以将参考径参数测量值发送给第三节点,以使第三节点根据该参考径参数测量值对第一感知测量量测量值和/或基于该第一感知测量量测量值确定的第一感知结果进行随机相位校准,得到所述目标感知测量量测量值和/或目标感知结果。
作为一种可选的实施方式,所述方法还包括:
所述第一节点获取所述第一感知测量量测量值和/或第一感知结果,其中,所述第一感知结果为基于所述第一感知测量量测量值确定的感知结果;
所述第一节点基于所述参考径参数测量值对所述第一感知测量量测量值和/或第一感知结果进行随机相位校准,得到所述目标感知测量量测量值和/或目标感知结果。
一种实施方式中,第一节点发送第二信号,且第三节点基于第二信号进行感知测量,以得到第一感知测量量测量值,此时,第一节点获取所述第一感知测量量测量值和/或第一感知结果,可以是第一节点接收来自第三节点的所述第一感知测量量测量值和/或第一感知结果。
一种实施方式中,第一节点发送第二信号,并基于第二信号的回波信号进行感知测量,以得到第一感知测量量测量值,此时,第一节点获取所述第一感知测量量测量值和/或第一感知结果,可以是第一节点测量得到所述第一感知测量量测量值和/或基于所述第一感知测量量测量值确定的第一感知结果。
本实施方式中,可以由第一节点执行随机相位校准。
值得提出的是,进行随机相位校准的节点还可以是除了第一节点和第三节点之外的其 他节点,例如:核心网中的感知功能网元、应用服务器等,在此不作具体限定。
作为一种可选的实施方式,所述参考径参数测量值包括LOS径的参数测量值,和/或第四节点对所述第一信号的反射径。
一种实施方式中,LOS径表示第一信号为端对端传输的信号,如:第一节点接收的第一信号是第二节点发送的信号。
一种实施方式中,第一节点接收的第一信号可以是第二节点发送并经第四节点反射后的信号,其中,第四节点可以包括RIS和/或BSC。
作为一种可选的实施方式,所述方法还包括:
所述第一节点向第二节点发送第一信息,其中,所述第一信息用于辅助所述第二节点确定所述第一配置信息,所述第二节点为所述第一信号的发送端。
可选地,所述第一信息包括以下至少一项:
所述第一节点和所述第二节点之间的信道状态信息,例如:上行信道状态信息、下行信道状态信息、信道相干时间;
所述第一节点到第四节点,以及所述第四节点到所述第二节点之间的级联信道状态信息,例如:上行级联信道状态信息、下行级联信道状态信息、级联信道相干时间;所述第四节点为参考节点,可以是智能表面(Reconfigurable Intelligent Surface,RIS)、反向散射标签(Backscatter,BSC),或者其他无源的、用于辅助感知的设备或物体;其中,所述第四节点为所述第一信号的反射节点;
所述第一节点的通信信号参数配置信息。
一种实施方式中,通信信号参数配置信息可以参考第二配置信息中关于通信信号的参数配置信息,如:波形类型、子载波间隔、保护间隔、带宽、Burst持续时间、时域间隔、发送信号功率、信号格式、信号方向、时间资源、频率资源等。
一种实施方式中,上述所述第一节点的通信信号参数配置信息,可以包括第一节点与第二节点之间的通信信号参数配置信息,如第一节点到第二节点的通信信号参数配置信息,以及第二节点到第一节点的通信信号参数配置信息;和/或,上述所述第一节点的通信信号参数配置信息,还可以包括第一节点与第四节点(参考节点)之间的通信信号参数配置信息,如:第一节点到参考节点的通信信号参数配置信息,以及参考节点到第一节点的通信信号参数配置信息。
本实施方式中,由第一信号的发送端确定第一配置信息,此时,第一节点向第二节点提供用于确定第一配置信息的辅助信息,如:辅助第二节点确定第一信号为LOS径还是NLOS径、选择反射第一信号的第四节点、信号强度等等。
作为一种可选的实施方式,在第四节点为所述第一信号的反射节点的情况下,所述方法还包括:
所述第一节点获取所述第四节点的第二信息,其中,所述第二信息用于辅助所述第一节点获取所述参考径参数测量值。
可选地,所述第二信息包括所述第四节点的位置、速度大小、速度方向、天线面板朝向信息中的至少一项。
一种实施方式中,所述第一节点可以接收所述第四节点发送的第二信息。
一种实施方式中,所述第一节点可以接收第二节点发送的第二信息,其中,第二节点可以事先获取第四节点的位置、速度大小、速度方向、天线面板朝向信息等信息的设备。
本实施方式中,在第四节点为所述第一信号的反射节点的情况下,基于第四节点的位置、速度大小、速度方向、天线面板朝向信息等信息中的至少一项,可以有助于获取所述参考径参数测量值。
作为一种可选的实施方式,所述方法还包括:
所述第一节点向所述第四节点发送所述第一配置信息。
本实施方式中,通过向第四节点发送所述第一配置信息,可以使第四节点基于该第一配置信息对第一信号进行反射,以使第一节点能够基于第四节点反射的第一信号获取参考径参数测量值。
需要说明的是,在另一种可选的实施方式中,也可以由其他节点向第四节点发送第一配置信息,例如:由发送第一信号的第二节点向第四节点发送第一配置信息。
作为一种可选的实施方式,所述方法还包括:
所述第一节点获取第二节点的第三信息,其中,所述第三信息用于辅助所述第一节点获取所述参考径参数测量值,所述第二节点为所述第一信号的发送端。
可选地,所述第三信息包括以下至少一项:
位置信息;
天线信息;
第一状态信息,所述第一状态信息包括以下至少一项:速度大小、速度方向、天线面板朝向、天线面板物理下倾角信息;
平均发射功率;
最大发射功率;
接收机灵敏度;
波束赋形信息;
预编码信息;
天线阵列电下倾角信息。
本申请实施例中,第一节点基于第二节点的上述第三信息,能够获取更加准确的参考径参数测量值。
一种实施方式中,若需要对连续多组信道估计/接收到的第二信号进行随机相位估计和校准,则可以分别对每一个信道估计/接收到的第二信号进行参考径参数测量,以得到每一个信道估计/接收到的第二信号的第一随机相位信息。
作为一种可选的实施方式,在所述第一节点基于第一配置信息对第一信号进行下行测 量之前,所述方法还包括:
所述第一节点向第二节点发送所述第一配置信息;或者,
所述第一节点接收来自第二节点的所述第一配置信息;
其中,所述第二节点为所述第一信号的发送端。
一种实施方式中,可以由第一信号的发送节点,即第二节点确定第一配置信息,并下发给第一信号的接收节点,即第一节点。
一种实施方式中,可以由第一信号的接收节点,即第一节点确定第一配置信息,并上报给第一信号的发送节点,即第二节点。
作为一种可选的实施方式,在所述第一节点基于第二配置信息发送第二信号之前,所述方法还包括:
所述第一节点接收来自第三节点的所述第二配置信息;或者,
所述第一节点向第三节点发送所述第二配置信息;
其中,所述第三节点为所述第二信号的接收端。
一种实施方式中,可以由第二信号的发送节点,即第三节点确定第二配置信息,并下发给第二信号的接收节点,即第一节点。
一种实施方式中,可以由第二信号的接收节点,即第一节点确定第二配置信息,并上报给第二信号的发送节点,即第三节点。
在本申请实施例中,第一节点基于第一配置信息对第一信号进行下行测量,得到参考径参数测量值;所述第一节点基于第二配置信息发送第二信号,其中,所述第二信号用于第一业务,所述第一业务为感知业务和/或通信感知一体化业务;其中,所述第一业务的目标感知结果基于第一随机相位信息和第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和所述参考径参数测量值确定,所述第一感知测量量测量值基于对所述第二信号的感知测量确定。这样,第一节点可以基于下行测量获取参考径参数测量值,基于该参考径参数测量值能够估计第一节点在发送第二信号时的随机相位信息,从而能够基于该随机相位信息对存在随机相位干扰的感知测量量测量值或感知结果进行随机相位校准或者消除感知测量量测量值或感知结果中的随机相位,提升得到的目标感知测量量测量值或目标感知结果的精确度,进而提升了感知精度。
请参阅图6,本申请实施例提供的另一种感知方法,其执行主体可以包括第二节点,该第二节点可以包括终端、基站、核心网设备等通信设备中的至少一项,如图6所示,该感知方法可以包括以下步骤:
步骤601、第二节点基于第一配置信息发送第一信号,其中,所述第一配置信息用于配置参考径参数测量;其中,第一业务的目标感知结果基于第一随机相位信息和第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和基于所述参考径参数测量得到的参考径参数测量值确定,所 述第一感知测量量测量值基于对第二信号的感知测量确定,所述第一业务为感知业务和/或通信感知一体化业务,所述第一信号的接收端和所述第二信号的发送端为第一节点。
上述第二节点可以是如图5所示方法实施例中,向第一节点发送第一信号的节点,在此不再赘述。
需要说明的是,本申请实施例中的上述第一配置信息、第一信号、参考径参数测量值、第一随机相位信息、第一业务、第一感知测量量测量值、目标感知测量量测量值、目标感知结果的含义和作用与如图5所示方法实施例中的第一配置信息、第一信号、参考径参数测量值、第一随机相位信息、第一业务、第一感知测量量测量值、目标感知测量量测量值、目标感知结果的含义和作用相同,在此不再赘述。
本申请实施例中,第二节点用于根据第一配置信息发送第一信号,以供第一节点基于第一配置信息对该第一信号进行参考径参数测量,得到参考径参数测量值,第二节点在执行感知方法中的过程可以参考如图5所示方法实施例中的相关说明,在此不再赘述。
作为一种可选的实施方式,所述参考径参数测量值包括视距传播LOS径的参数测量值,和/或第四节点对所述第一信号的反射径。
作为一种可选的实施方式,参考径参数包括以下至少一项:
参考径的多普勒频率,或者,参考径的多普勒频率及多普勒频率的变化速率;
参考径的时延,或者,参考径的时延及时延的变化速率;
参考径的离开方位角,或者,参考径的离开方位角及离开方位角的变化速率;
参考径的离开俯仰角,或者,参考径的离开俯仰角及离开俯仰角的变化速率;
参考径的到达方位角,或者,参考径的到达方位角及到达方位角的变化速率;
参考径的到达俯仰角,或者,参考径的到达俯仰角及到达俯仰角的变化速率;
参考径的幅度,或者,参考径的幅度及幅度的变化速率;
参考径的相位,或者,参考径的相位及相位的变化速率。
作为一种可选的实施方式,所述第一随机相位信息包括以下至少一项:
所述第一节点的至少一个天线端口在不同上行时刻的随机相位的差值;
所述第一节点的至少两个天线端口的随机相位的差值;
所述第一节点的每一个天线端口的随机相位值;
第一指示信息,所述第一指示信息指示所述第一节点的随机相位相同或者不同的天线端口的信息。
作为一种可选的实施方式,所述方法还包括:
所述第二节点向所述第一节点发送第一信息,其中,所述第一信息用于辅助所述第一节点确定所述第一配置信息。
作为一种可选的实施方式,所述第一信息包括以下至少一项:
所述第一节点和所述第二节点之间的信道状态信息;
所述第一节点到第四节点,以及所述第四节点到所述第二节点之间的级联信道状态信 息,其中,所述第四节点为所述第一信号的反射节点;
所述第一节点的通信信号参数配置信息。
作为一种可选的实施方式,在第四节点为所述第一信号的反射节点的情况下,所述方法还包括:
所述第二节点获取所述第四节点的第二信息;
所述第二节点向所述第一节点发送所述第二信息,其中,所述第二信息用于辅助所述第一节点获取所述参考径参数测量值。
作为一种可选的实施方式,所述第二信息包括所述第四节点的位置、速度大小、速度方向、天线面板朝向信息中的至少一项。
作为一种可选的实施方式,所述方法还包括:
所述第二节点向所述第四节点发送所述第一配置信息。
作为一种可选的实施方式,在所述第二节点基于第一配置信息发送第一信号之前,所述方法还包括:
所述第二节点向所述第一节点发送所述第一配置信息;或者,
所述第二节点接收来自所述第一节点的所述第一配置信息。
作为一种可选的实施方式,所述第一信号的发送时刻包括同一个上行周期内的至少两个时间单元,其中,所述第一节点在同一个上行周期内进行上行传输,且传输状态不发生改变。
本申请实施例中,第二节点基于第一配置信息发送第一信号,以使第一节点基于接收第一信号或第一信号的反射信号来进行参考径参数测量,得到可用于对第一节点的发射链路进行随机相位校准的参考径参数测量值,这样,基于该参考径参数测量值能够估计第一节点在发送第二信号时的随机相位信息,从而能够基于该随机相位信息对存在随机相位干扰的感知测量量测量值或感知结果进行随机相位校准或者消除感知测量量测量值或感知结果中的随机相位,提升得到的目标感知测量量测量值或目标感知结果的精确度,进而提升了感知精度。
请参阅图7,本申请实施例提供的另一种感知方法,其执行主体可以包括第三节点,该第三节点可以包括终端、基站、核心网设备等通信设备中的至少一项,如图7所示,该感知方法可以包括以下步骤:
步骤701、第三节点基于第二配置信息对第二信号进行测量,得到第一感知测量量测量值,其中,所述第二配置信息用于配置第一业务,所述第一业务为感知业务和/或通信感知一体化业务,所述第二信号的发送端包括第一节点;其中,所述第一业务的目标感知结果基于第一随机相位信息对所述第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和参考径参数测量值确定,所述参考径参数测量值为第一节点接收第一信号时的测量值。
上述第三节点可以是如图5所示方法实施例中,接收第一节点发送的第二信号,以得 到第一感知测量量测量值的节点,在此不再赘述。
需要说明的是,本申请实施例中的上述第二配置信息、第一信号、第二信号、参考径参数测量值、第一随机相位信息、第一业务、第一感知测量量测量值、目标感知测量量测量值、目标感知结果的含义和作用与如图5所示方法实施例中的第一配置信息、第一信号、第二信号、参考径参数测量值、第一随机相位信息、第一业务、第一感知测量量测量值、目标感知测量量测量值、目标感知结果的含义和作用相同,在此不再赘述。
本申请实施例中,第三节点用于根据第二配置信息对第一节点发送的第二信号进行感知测量,以得到第一感知测量量测量值,其中,由于第二信号在发送机引入了随机相位,使得第一感知测量量测量值存在随机相位偏转,本申请实施例中,基于第一节点接收用于参考径参数测量的第一信号来得到参考径参数测量值,来校准和/或消除第一感知测量量测量值的随机相位,从而得到更加准确的目标感知测量量测量值和/或目标感知结果,第三节点在执行感知方法中的过程可以参考如图5所示方法实施例中的相关说明,在此不再赘述。
作为一种可选的实施方式,所述方法还包括:
所述第三节点获取所述参考径参数测量值;
所述第三节点根据所述参考径参数测量值和所述第一感知测量量测量值,确定所述第一随机相位信息。
作为一种可选的实施方式,所述方法还包括:
所述第三节点向第五节点发送第四信息,其中,所述第四信息包括所述第一感知测量量测量值、所述目标感知测量量测量值、所述目标感知结果、第一感知结果中的至少一项,其中,所述第一感知结果为基于所述第一感知测量量测量值确定的感知结果。
作为一种可选的实施方式,所述方法还包括:
所述第三节点基于所述第一随机相位信息对所述第一感知测量量测量值进行校准,得到所述目标感知测量量测量值。
作为一种可选的实施方式,所述方法还包括:
所述第三节点基于所述目标感知测量量测量值确定所述目标感知结果。
作为一种可选的实施方式,所述第三节点基于所述第一随机相位信息对所述第一感知测量量测量值进行校准,得到所述目标感知测量量测量值,包括:
所述第三节点基于接收所述第二信号的第一感知测量量测量值进行信道状态信息CSI商或CSI共轭乘积,以确所述目标感知测量量测量值;
或者,
所述第三节点根据所述参考径参数测量值,获取所述第二信号的随机相位值和/或随机相位差值,并根据所述随机相位值和/或随机相位差值对接收所述第二信号的第一感知测量量测量值进行随机相位校准,以确定所述目标感知测量量测量值。
作为一种可选的实施方式,在所述第三节点基于第二配置信息对第二信号进行测量之 前,所述方法还包括:
所述第三节点接收来自所述第一节点的所述第二配置信息;或者,
所述第三节点向所述第一节点发送所述第二配置信息。
本申请实施例中,第三节点基于第二配置信息对第一节点发送的第二信号进行感知测量,得到第一感知测量量测量值,由于第二信号在发送机引入了随机相位,使得第一感知测量量测量值存在随机相位偏转,本申请实施例中,基于第一节点接收用于参考径参数测量的第一信号来得到参考径参数测量值,来校准和/或消除第一感知测量量测量值的随机相位,从而得到更加准确的目标感知测量量测量值和/或目标感知结果。
为了便于说明本申请实施例提供的感知方法和感知方法,以如下三种应用场景为例进行举例说明:
场景一:如图8a或图8b所示,假设第一节点是终端(UE),第二节点和第三节点是基站(gNB),则基于本申请实施例提供的感知方法的感知过程可以包括以下步骤:
步骤1a、基站向UE发送第一配置信息,所述第一配置信息用于执行参考径参数测量。
可选地,在步骤1a之前,基站获取第一信息,所述第一信息用于辅助基站确定第一配置信息。所述第一信息包括以下至少一项:
1)UE和基站之间的信道状态信息,例如:上行信道状态信息、下行信道状态信息、信道相干时间;
2)UE到参考节点、参考节点到基站之间的级联信道状态信息,例如:上行级联信道状态信息、下行级联信道状态信息、级联信道相干时间;所述参考节点可以是智能表面(Reconfigurable Intelligent Surface,RIS)、反向散射标签(Backscatter,BSC),或者其他无源的、用于辅助感知的设备或物体;
3)UE与基站之间的通信信号参数配置信息,例如:上行(UE到基站)通信信号参数配置信息、下行(基站到UE)通信信号参数配置信息。
可选地,在步骤1a之前,UE获取参考节点的第二信息。所述第二信息用于辅助UE获取参考径参数测量值。所述第二信息包括:参考节点的位置、速度大小、速度方向、天线面板朝向信息。其中,参考节点可以是用于反射第一信号的第四节点。
其中,UE获取第二信息的方式可以是:基站获取参考节点的第二信息,再将所述第二信息发送给UE,或者,UE从参考节点接收第二信息。
可选地,在步骤1a之前,UE获取基站的第三信息,所述第三信息用于辅助UE获取参考径参数测量值。所述第三信息包括以下至少一项:
基站的位置信息;
基站的天线信息,包括:天线端口总数、天线阵型、天线配置信息;
基站的状态信息,包括:速度大小、速度方向、天线面板朝向、天线面板物理下倾角信息;
基站的平均发射功率、最大发射功率、接收机灵敏度等信息;
基站的波束赋形和/或预编码信息;
基站的天线阵列电下倾角信息。
可选地,基站或UE向所述参考节点发送第一配置信息。
步骤2a、基站基于第一配置信息发送第一信号,所述第一信号用于参考径参数测量。UE基于接收到的第一信号,获取参考径参数测量值。
所述参考径参数包括一下至少一项:
参考径的多普勒频率,或多普勒频率及多普勒频率的变化速率;
参考径的时延,或时延及时延的变化速率;
参考径的离开方位角,或离开方位角及离开方位角的变化速率;
参考径的离开俯仰角,或离开俯仰角及离开俯仰角的变化速率;
参考径的到达方位角,或到达方位角及到达方位角的变化速率;
参考径的到达俯仰角,或到达俯仰角及到达俯仰角的变化速率;
参考径的幅度,或幅度及幅度的变化速率;
参考径的相位,或相位及相位的变化速率。
可选地,所述参考径可以是LOS径或者来自参考节点的第一信号反射径。
步骤3a、UE将所述参考径参数测量值发送给基站。
步骤4a、基站向UE发送第二配置信息,所述第二配置信息用于执行感知/通感一体化业务。
步骤5a、UE基于第二配置信息发送第二信号,基站基于接收到的第二信号,获取CSI商或CSI共轭乘积,并进一步获取目标感知测量量测量值/目标感知结果;或者,获取随机相位测量值,并进一步获取目标感知测量量测量值/目标感知结果。
步骤6a、可选地,基站将所述目标感知测量量测量值/目标感知结果发送给感知功能网元。
需要说明的是,若需要对连续多组信道估计/接收到的第一信号进行随机相位估计和校准,则可以重复步骤1a~步骤6a,直到获得的多组信道估计/接收到的第二信号满足感知业务需求。
场景二:如图8c或图8d所示,假设第一节点是UE1,第二节点为基站,第三节点是UE2,则基于本申请实施例提供的感知方法的感知过程可以包括以下步骤:
步骤1b、基站向UE 1发送第一配置信息,所述第一配置信息用于执行参考径参数测量。
可选地,在步骤1b之前,基站获取第一信息,所述第一信息用于辅助基站第一配置信息。所述第一信息包括以下至少一项:
UE 1和基站之间的信道状态信息,例如:上行信道状态信息、下行信道状态信息、信道相干时间;
UE 1到参考节点、参考节点到基站之间的级联信道状态信息,例如:上行级联信道 状态信息、下行级联信道状态信息、级联信道相干时间;所述参考节点可以是智能表面(Reconfigurable Intelligent Surface,RIS)、反向散射标签(Backscatter,BSC),或者其他无源的、用于辅助感知的设备或物体;
UE 1与基站之间的通信信号参数配置信息,例如:上行通信信号参数配置信息、下行通信信号参数配置信息;
UE 2和基站之间的信道状态信息,例如:上行信道状态信息、下行信道状态信息、信道相干时间;
UE 2到参考节点、参考节点到基站之间的级联信道状态信息,例如:上行级联信道状态信息、下行级联信道状态信息、级联信道相干时间;所述参考节点可以是智能表面(Reconfigurable Intelligent Surface,RIS)、反向散射标签(Backscatter,BSC),或者其他无源的、用于辅助感知的设备或物体;
UE 2与基站之间的通信信号参数配置信息,例如:上行通信信号参数配置信息、下行通信信号参数配置信息。
可选地,在步骤1b之前,UE 1获取参考节点的第二信息。所述第二信息用于辅助UE 1获取参考径参数测量值。所述第二信息包括:参考节点的位置、速度大小、速度方向、天线面板朝向信息;
其中,UE 1获取第二信息的方式还可以是:基站获取参考节点的第二信息,再将所述第二信息发送给UE 1。
可选地,在步骤1b之前,UE 1获取基站的第三信息,所述第三信息用于辅助UE 1获取参考径参数测量值。所述第三信息包括以下至少一项:
基站的位置信息;
基站的天线信息,包括:天线端口总数、天线阵型、天线配置信息;
基站的状态信息,包括:速度大小、速度方向、天线面板朝向、天线面板物理下倾角信息;
基站的平均发射功率、最大发射功率、接收机灵敏度等信息;
基站的波束赋形和/或预编码信息;
基站的天线阵列电下倾角信息。
可选地,基站或UE 1或UE 2向所述参考节点发送第一配置信息;
步骤2b、基站基于第一配置信息发送第一信号,所述第一信号用于参考径参数测量。UE 1基于接收到的第一信号,获取参考径参数测量值。所述参考径参数与如上实施例中的所述参考径参数相同,在此不再赘述。
步骤3b、UE 1将所述参考径参数测量值发送给UE 2;或者,UE 1将所述参考径参数测量值发送给基站,基站再转发给UE 2。
步骤4b、UE 2确定第二配置信息,并向UE 1发送第二配置信息,所述第二配置信息用于执行感知/通感一体化业务;或者,基站确定第二配置信息,并发送给UE 1和UE 2。
步骤5b、UE 1基于第二配置信息发送第二信号,UE 2基于接收到的第二信号,获取CSI商或CSI共轭乘积,并进一步获取目标感知测量量测量值/目标感知结果;或者,获取随机相位测量值,并进一步获取目标感知测量量测量值/目标感知结果。
步骤6b、可选地,UE 2将第一感知测量量测量值、第一感知结果、目标感知测量量测量值和目标感知结果中的至少一项发送给基站或感知功能网元。
同如图8a或图8b所示实施例,若需要对连续多组信道估计/接收到的第一信号进行随机相位估计和校准,则本申请的上述步骤1b至步骤6b可以重复执行多次。
场景三:假设第一节点和第三节点是同一UE,第二节点为基站,则基于本申请实施例提供的感知方法的感知过程可以包括以下步骤:
步骤1c、基站向UE发送第一配置信息,所述第一配置信息用于执行参考径参数测量。
可选地,在步骤1c之前,基站获取第一信息,所述第一信息用于辅助基站确定第一配置信息;或者,UE向基站发送第一配置信息,所述第一配置信息用于执行参考径参数测量。
其中,第一信息的内容和含义与如图8a或图8b所示实施例中的第一信息的含义相同,在此不再赘述。
进一步地,在UE向基站发送第一配置信息之前,UE获取第一信息,所述第一信息用于辅助UE确定第一配置信息。其中,第一信息的内容和含义与如图8a或图8b所示实施例中的第一信息的含义相同,在此不再赘述。
可选地,在步骤1c之前,UE向基站发送第一请求,所述第一请求用于请求基站协助执行参考径参数测量。
可选地,在步骤1c之前,UE获取参考节点的第二信息。所述第二信息用于辅助UE获取参考径参数测量值。所述第二信息的含义以及获取方式可以与如图8a或图8b所示实施例中的第二信息的含义以及获取方式相同,在此不再赘述。
可选地,在步骤1c之前,UE获取基站的第三信息,所述第三信息用于辅助UE获取参考径参数测量值。所述第三信息的内容和含义与如图8a或图8b所示实施例中的第三信息的含义相同,在此不再赘述。
可选地,基站或UE向所述参考节点发送第一配置信息。
步骤2c、基站基于第一配置信息发送第一信号,所述第一信号用于参考径参数测量。UE基于接收到的第一信号,获取参考径参数测量值。
所述参考径参数与如图8a或图8b所示实施例中的参考径参数的含义相同,在此不再赘述。
步骤3c、UE确定第二配置信息,所述第二配置信息用于执行感知/通感一体化业务。
步骤4c、UE基于第二配置信息发送第二信号,并接收第二信号的回波信号。UE基于所述参考径参数测量值以及第二信号的回波信号,获取自身天线端口的随机相位测量值。
步骤5c、UE基于所随机相位测量值以及第二信号的回波信号,进一步获取目标感知 测量量测量值/目标感知结果。
步骤6c、可选地,UE将第一感知测量量测量值、第一感知结果、目标感知测量量测量值和目标感知结果中的至少一项发送给基站或感知功能网元。
同如图8a或图8b所示实施例,若需要对连续多组信道估计/接收到的第一信号进行随机相位估计和校准,则本申请的上述步骤1c至步骤6c可以重复执行多次。
本申请实施例提供的感知方法,执行主体可以为感知装置。本申请实施例中以感知装置执行感知方法为例,说明本申请实施例提供的感知装置。
参照图9,本申请实施例还提供了一种感知装置,应用于第一节点,如图9所示,该感知装置900包括:
第一测量模块901,用于基于第一配置信息对第一信号进行下行测量,得到参考径参数测量值;
第一发送模块902,用于基于第二配置信息发送第二信号,其中,所述第二信号用于第一业务,所述第一业务为感知业务和/或通信感知一体化业务;
其中,所述第一业务的目标感知结果基于第一随机相位信息和第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和所述参考径参数测量值确定,所述第一感知测量量测量值基于对所述第二信号的感知测量确定。
可选地,感知装置900还包括:
第三发送模块,用于向第三节点发送所述参考径参数测量值,其中,所述第三节点为所述第二信号的接收端。
可选地,感知装置900还包括:
第一获取模块,用于获取所述第一感知测量量测量值和/或第一感知结果,其中,所述第一感知结果为基于所述第一感知测量量测量值确定的感知结果;
第一随机相位校准模块,用于基于所述参考径参数测量值对所述第一感知测量量测量值和/或第一感知结果进行随机相位校准,得到所述目标感知测量量测量值和/或目标感知结果。
可选地,所述参考径参数测量值包括视距传播LOS径的参数测量值,和/或第四节点对所述第一信号的反射径。
可选地,参考径参数包括以下至少一项:
参考径的多普勒频率,或者,参考径的多普勒频率及多普勒频率的变化速率;
参考径的时延,或者,参考径的时延及时延的变化速率;
参考径的离开方位角,或者,参考径的离开方位角及离开方位角的变化速率;
参考径的离开俯仰角,或者,参考径的离开俯仰角及离开俯仰角的变化速率;
参考径的到达方位角,或者,参考径的到达方位角及到达方位角的变化速率;
参考径的到达俯仰角,或者,参考径的到达俯仰角及到达俯仰角的变化速率;
参考径的幅度,或者,参考径的幅度及幅度的变化速率;
参考径的相位,或者,参考径的相位及相位的变化速率。
可选地,所述第一随机相位信息包括以下至少一项:
所述第一节点的至少一个天线端口在不同上行时刻的随机相位的差值;
所述第一节点的至少两个天线端口的随机相位的差值;
所述第一节点的每一个天线端口的随机相位值;
第一指示信息,所述第一指示信息指示所述第一节点的随机相位相同或者不同的天线端口的信息。
可选地,感知装置900还包括:
第四发送模块,用于向第二节点发送第一信息,其中,所述第一信息用于辅助所述第二节点确定所述第一配置信息,所述第二节点为所述第一信号的发送端。
可选地,所述第一信息包括以下至少一项:
所述第一节点和所述第二节点之间的信道状态信息;
所述第一节点到第四节点,以及所述第四节点到所述第二节点之间的级联信道状态信息,其中,所述第四节点为所述第一信号的反射节点;
所述第一节点的通信信号参数配置信息。
可选地,在第四节点为所述第一信号的反射节点的情况下,感知装置900还包括:
第二获取模块,用于获取所述第四节点的第二信息,其中,所述第二信息用于辅助所述第一节点获取所述参考径参数测量值。
可选地,所述第二信息包括所述第四节点的位置、速度大小、速度方向、天线面板朝向信息中的至少一项。
可选地,感知装置900还包括:
第五发送模块,用于向所述第四节点发送所述第一配置信息。
可选地,感知装置900还包括:
第三获取模块,用于获取第二节点的第三信息,其中,所述第三信息用于辅助所述第一节点获取所述参考径参数测量值,所述第二节点为所述第一信号的发送端。
可选地,所述第三信息包括以下至少一项:
位置信息;
天线信息;
第一状态信息,所述第一状态信息包括以下至少一项:速度大小、速度方向、天线面板朝向、天线面板物理下倾角信息;
平均发射功率;
最大发射功率;
接收机灵敏度;
波束赋形信息;
预编码信息;
天线阵列电下倾角信息。
可选地,感知装置900还包括:
第六发送模块,用于向第二节点发送所述第一配置信息;或者,
第一接收模块,用于接收来自第二节点的所述第一配置信息;
其中,所述第二节点为所述第一信号的发送端。
可选地,感知装置900还包括:
第二接收模块,用于接收来自第三节点的所述第二配置信息;或者,
第七发送模块,用于向第三节点发送所述第二配置信息;
其中,所述第三节点为所述第二信号的接收端。
可选地,所述第一节点和第二节点为相同节点,所述第二节点为所述第一信号的发送端;或者,
第二节点和第三节点为相同节点,所述第二节点为所述第一信号的发送端,所述第三节点为所述第二信号的接收端。
可选地,所述第一节点为终端。
可选地,所述第一信号的发送时刻包括同一个上行周期内的至少两个时间单元,其中,所述第一节点在同一个上行周期内进行上行传输,且传输状态不发生改变。
本申请实施例提供的感知装置能够实现图5所示方法实施例中第一节点实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
参照图10,本申请实施例还提供了一种感知装置,应用于第二节点,如图10所示,该感知装置1000包括:
第二发送模块1001,用于基于第一配置信息发送第一信号,其中,所述第一配置信息用于配置参考径参数测量;
其中,第一业务的目标感知结果基于第一随机相位信息和第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和基于所述参考径参数测量得到的参考径参数测量值确定,所述第一感知测量量测量值基于对第二信号的感知测量确定,所述第一业务为感知业务和/或通信感知一体化业务,所述第一信号的接收端和所述第二信号的发送端为第一节点。
可选地,所述参考径参数测量值包括视距传播LOS径的参数测量值,和/或第四节点对所述第一信号的反射径。
可选地,参考径参数包括以下至少一项:
参考径的多普勒频率,或者,参考径的多普勒频率及多普勒频率的变化速率;
参考径的时延,或者,参考径的时延及时延的变化速率;
参考径的离开方位角,或者,参考径的离开方位角及离开方位角的变化速率;
参考径的离开俯仰角,或者,参考径的离开俯仰角及离开俯仰角的变化速率;
参考径的到达方位角,或者,参考径的到达方位角及到达方位角的变化速率;
参考径的到达俯仰角,或者,参考径的到达俯仰角及到达俯仰角的变化速率;
参考径的幅度,或者,参考径的幅度及幅度的变化速率;
参考径的相位,或者,参考径的相位及相位的变化速率。
可选地,所述第一随机相位信息包括以下至少一项:
所述第一节点的至少一个天线端口在不同上行时刻的随机相位的差值;
所述第一节点的至少两个天线端口的随机相位的差值;
所述第一节点的每一个天线端口的随机相位值;
第一指示信息,所述第一指示信息指示所述第一节点的随机相位相同或者不同的天线端口的信息。
可选地,感知装置1000还包括:
第八发送模块,用于向所述第一节点发送第一信息,其中,所述第一信息用于辅助所述第一节点确定所述第一配置信息。
可选地,所述第一信息包括以下至少一项:
所述第一节点和所述第二节点之间的信道状态信息;
所述第一节点到第四节点,以及所述第四节点到所述第二节点之间的级联信道状态信息,其中,所述第四节点为所述第一信号的反射节点;
所述第一节点的通信信号参数配置信息。
可选地,在第四节点为所述第一信号的反射节点的情况下,感知装置1000还包括:
第四获取模块,用于获取所述第四节点的第二信息;
第九发送模块,用于向所述第一节点发送所述第二信息,其中,所述第二信息用于辅助所述第一节点获取所述参考径参数测量值。
可选地,所述第二信息包括所述第四节点的位置、速度大小、速度方向、天线面板朝向信息中的至少一项。
可选地,感知装置1000还包括:
第十发送模块,用于向所述第四节点发送所述第一配置信息。
可选地,感知装置1000还包括:
第十一发送模块,用于向所述第一节点发送所述第一配置信息;或者,
第三接收模块,用于接收来自所述第一节点的所述第一配置信息。
可选地,所述第一信号的发送时刻包括同一个上行周期内的至少两个时间单元,其中,所述第一节点在同一个上行周期内进行上行传输,且传输状态不发生改变。
本申请实施例提供的感知装置能够实现图6所示方法实施例中第二节点实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
参照图11,本申请实施例还提供了一种感知装置,应用于第三节点,如图11所示,该感知装置1100包括:
第二测量模块1101,用于基于第二配置信息对第二信号进行测量,得到第一感知测量量测量值,其中,所述第二配置信息用于配置第一业务,所述第一业务为感知业务和/或通信感知一体化业务,所述第二信号的发送端包括第一节点;
其中,所述第一业务的目标感知结果基于第一随机相位信息对所述第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和参考径参数测量值确定,所述参考径参数测量值为第一节点接收第一信号时的测量值。
可选地,感知装置1100还包括:
第五获取模块,用于获取所述参考径参数测量值;
第一确定模块,用于根据所述参考径参数测量值和所述第一感知测量量测量值,确定所述第一随机相位信息。
可选地,感知装置1100还包括:
第十二发送模块,用于向第五节点发送第四信息,其中,所述第四信息包括所述第一感知测量量测量值、所述目标感知测量量测量值、所述目标感知结果、第一感知结果中的至少一项,其中,所述第一感知结果为基于所述第一感知测量量测量值确定的感知结果。
可选地,感知装置1100还包括:
第二随机相位校准模块,用于基于所述第一随机相位信息对所述第一感知测量量测量值进行校准,得到所述目标感知测量量测量值。
可选地,感知装置1100还包括:
第二确定模块,用于基于所述目标感知测量量测量值确定所述目标感知结果。
可选地,所述第二随机相位校准模块,具体用于:
基于接收所述第二信号的第一感知测量量测量值进行信道状态信息CSI商或CSI共轭乘积,以确所述目标感知测量量测量值;
或者,
根据所述参考径参数测量值,获取所述第二信号的随机相位值和/或随机相位差值,并根据所述随机相位值和/或随机相位差值对接收所述第二信号的第一感知测量量测量值进行随机相位校准,以确定所述目标感知测量量测量值。
可选地,感知装置1100还包括:
第四接收模块,用于接收来自所述第一节点的所述第二配置信息;或者,
第十三发送模块,用于向所述第一节点发送所述第二配置信息。
本申请实施例提供的感知装置能够实现图7所示方法实施例中第三节点实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图12所示,本申请实施例还提供一种通信设备1200,包括处理器1201和存储器1202,存储器1202上存储有可在所述处理器1201上运行的程序或指令,例如,该通信设备1200作为第一节点时,该程序或指令被处理器1201执行时实现如图5所示方 法实施例的各个步骤,且能达到相同的技术效果。该通信设备1200作为第二节点时,该程序或指令被处理器1201执行时实现如图6所示方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1200作为第三节点时,该程序或指令被处理器1201执行时实现如图7所示方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种通信设备,包括处理器和通信接口。
在第一种可选的实施方式中,在所述通信设为第一节点的情况下,所述通信接口用于基于第一配置信息对第一信号进行下行测量,得到参考径参数测量值;所述通信接口还用于基于第二配置信息发送第二信号,其中,所述第二信号用于第一业务,所述第一业务为感知业务和/或通信感知一体化业务;其中,所述第一业务的目标感知结果基于第一随机相位信息和第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和所述参考径参数测量值确定,所述第一感知测量量测量值基于对所述第二信号的感知测量确定。
在第二种可选的实施方式中,在所述通信设备为第二节点的情况下,所述通信接口用于基于第一配置信息发送第一信号,其中,所述第一配置信息用于配置参考径参数测量;其中,第一业务的目标感知结果基于第一随机相位信息和第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和基于所述参考径参数测量得到的参考径参数测量值确定,所述第一感知测量量测量值基于对第二信号的感知测量确定,所述第一业务为感知业务和/或通信感知一体化业务,所述第一信号的接收端和所述第二信号的发送端为第一节点。
在第三种可选的实施方式中,在所述通信设备为第二节点的情况下,所述通信接口用于基于第二配置信息对第二信号进行测量,得到第一感知测量量测量值,其中,所述第二配置信息用于配置第一业务,所述第一业务为感知业务和/或通信感知一体化业务,所述第二信号的发送端包括第一节点;其中,所述第一业务的目标感知结果基于第一随机相位信息对所述第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和参考径参数测量值确定,所述参考径参数测量值为第一节点接收第一信号时的测量值。
该通信设备实施例与上述方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该通信设备施例中,且能达到相同的技术效果。
本申请实施例还提供一种终端,如图13所示,该终端1300包括但不限于:射频单元1301、网络模块1302、音频输出单元1303、输入单元1304、传感器1305、显示单元1306、用户输入单元1307、接口单元1308、存储器1309以及处理器1310等中的至少部分部件。
本领域技术人员可以理解,终端1300还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1310逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图13中示出的终端结构并不构成对终端的限定,终端 可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1304可以包括图形处理单元(Graphics Processing Unit,GPU)13041和麦克风13042,图形处理器13041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1306可包括显示面板13061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板13061。用户输入单元1307包括触控面板13071以及其他输入设备13072中的至少一种。触控面板13071,也称为触摸屏。触控面板13071可包括触摸检测装置和触摸控制器两个部分。其他输入设备13072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1301接收来自网络侧设备的下行数据后,可以传输给处理器1310进行处理;另外,射频单元1301可以向网络侧设备发送上行数据。通常,射频单元1301包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1309可用于存储软件程序或指令以及各种数据。存储器1309可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1309可以包括易失性存储器或非易失性存储器,或者,存储器1309可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1309包括但不限于这些和任意其它适合类型的存储器。
处理器1310可包括一个或多个处理单元;可选地,处理器1310集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1310中。
一种实施方式中,在所述终端1300作为第一节点。
射频单元1301,用于:
基于第一配置信息对第一信号进行下行测量,得到参考径参数测量值;
基于第二配置信息发送第二信号,其中,所述第二信号用于第一业务,所述第一业务 为感知业务和/或通信感知一体化业务;
其中,所述第一业务的目标感知结果基于第一随机相位信息和第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和所述参考径参数测量值确定,所述第一感知测量量测量值基于对所述第二信号的感知测量确定。
可选地,射频单元1301,还用于向第三节点发送所述参考径参数测量值,其中,所述第三节点为所述第二信号的接收端。
可选地,射频单元1301或处理器1310,还用于获取所述第一感知测量量测量值和/或第一感知结果,其中,所述第一感知结果为基于所述第一感知测量量测量值确定的感知结果;
处理器1310,还用于基于所述参考径参数测量值对所述第一感知测量量测量值和/或第一感知结果进行随机相位校准,得到所述目标感知测量量测量值和/或目标感知结果。
可选地,所述参考径参数测量值包括视距传播LOS径的参数测量值,和/或第四节点对所述第一信号的反射径。
可选地,参考径参数包括以下至少一项:
参考径的多普勒频率,或者,参考径的多普勒频率及多普勒频率的变化速率;
参考径的时延,或者,参考径的时延及时延的变化速率;
参考径的离开方位角,或者,参考径的离开方位角及离开方位角的变化速率;
参考径的离开俯仰角,或者,参考径的离开俯仰角及离开俯仰角的变化速率;
参考径的到达方位角,或者,参考径的到达方位角及到达方位角的变化速率;
参考径的到达俯仰角,或者,参考径的到达俯仰角及到达俯仰角的变化速率;
参考径的幅度,或者,参考径的幅度及幅度的变化速率;
参考径的相位,或者,参考径的相位及相位的变化速率。
可选地,所述第一随机相位信息包括以下至少一项:
所述第一节点的至少一个天线端口在不同上行时刻的随机相位的差值;
所述第一节点的至少两个天线端口的随机相位的差值;
所述第一节点的每一个天线端口的随机相位值;
第一指示信息,所述第一指示信息用于指示所述第一节点的随机相位相同或者不同的天线端口的信息。
可选地,射频单元1301,还用于向第二节点发送第一信息,其中,所述第一信息用于辅助所述第二节点确定所述第一配置信息,所述第二节点为所述第一信号的发送端。
可选地,所述第一信息包括以下至少一项:
所述第一节点和所述第二节点之间的信道状态信息;
所述第一节点到第四节点,以及所述第四节点到所述第二节点之间的级联信道状态信息,其中,所述第四节点为所述第一信号的反射节点;
所述第一节点的通信信号参数配置信息。
可选地,在第四节点为所述第一信号的反射节点的情况下,射频单元1301,还用于获取所述第四节点的第二信息,其中,所述第二信息用于辅助所述第一节点获取所述参考径参数测量值。
可选地,所述第二信息包括所述第四节点的位置、速度大小、速度方向、天线面板朝向信息中的至少一项。
可选地,射频单元1301,还用于向所述第四节点发送所述第一配置信息。
可选地,射频单元1301,还用于获取第二节点的第三信息,其中,所述第三信息用于辅助所述第一节点获取所述参考径参数测量值,所述第二节点为所述第一信号的发送端。
可选地,所述第三信息包括以下至少一项:
位置信息;
天线信息;
第一状态信息,所述第一状态信息包括以下至少一项:速度大小、速度方向、天线面板朝向、天线面板物理下倾角信息;
平均发射功率;
最大发射功率;
接收机灵敏度;
波束赋形信息;
预编码信息;
天线阵列电下倾角信息。
可选地,射频单元1301在执行所述基于第一配置信息对第一信号进行下行测量之前,还用于:
向第二节点发送所述第一配置信息;或者,
接收来自第二节点的所述第一配置信息;
其中,所述第二节点为所述第一信号的发送端。
可选地,射频单元1301在执行所述基于第二配置信息发送第二信号之前,还用于:
接收来自第三节点的所述第二配置信息;或者,
向第三节点发送所述第二配置信息;
其中,所述第三节点为所述第二信号的接收端。
可选地,所述第一节点和第二节点为相同节点,所述第二节点为所述第一信号的发送端;或者,
第二节点和第三节点为相同节点,所述第二节点为所述第一信号的发送端,所述第三节点为所述第二信号的接收端。
可选地,所述第一信号的发送时刻包括同一个上行周期内的至少两个时间单元,其中,所述第一节点在同一个上行周期内进行上行传输,且传输状态不发生改变。
本实施方式中,终端1300能够实现如图9所示感知装置的各个模型执行的功能,且能够取得相同的有益效果,为避免重复,在此不再赘述。
一种实施方式中,在所述终端1300作为第二节点。
射频单元1301,用于基于第一配置信息发送第一信号,其中,所述第一配置信息用于配置参考径参数测量;
其中,第一业务的目标感知结果基于第一随机相位信息和第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和基于所述参考径参数测量得到的参考径参数测量值确定,所述第一感知测量量测量值基于对第二信号的感知测量确定,所述第一业务为感知业务和/或通信感知一体化业务,所述第一信号的接收端和所述第二信号的发送端为第一节点。
可选地,所述参考径参数测量值包括视距传播LOS径的参数测量值,和/或第四节点对所述第一信号的反射径。
可选地,参考径参数包括以下至少一项:
参考径的多普勒频率,或者,参考径的多普勒频率及多普勒频率的变化速率;
参考径的时延,或者,参考径的时延及时延的变化速率;
参考径的离开方位角,或者,参考径的离开方位角及离开方位角的变化速率;
参考径的离开俯仰角,或者,参考径的离开俯仰角及离开俯仰角的变化速率;
参考径的到达方位角,或者,参考径的到达方位角及到达方位角的变化速率;
参考径的到达俯仰角,或者,参考径的到达俯仰角及到达俯仰角的变化速率;
参考径的幅度,或者,参考径的幅度及幅度的变化速率;
参考径的相位,或者,参考径的相位及相位的变化速率。
可选地,所述第一随机相位信息包括以下至少一项:
所述第一节点的至少一个天线端口在不同上行时刻的随机相位的差值;
所述第一节点的至少两个天线端口的随机相位的差值;
所述第一节点的每一个天线端口的随机相位值;
第一指示信息,所述第一指示信息用于指示所述第一节点的随机相位相同或者不同的天线端口的信息。
可选地,射频单元1301,还用于向所述第一节点发送第一信息,其中,所述第一信息用于辅助所述第一节点确定所述第一配置信息。
可选地,所述第一信息包括以下至少一项:
所述第一节点和所述第二节点之间的信道状态信息;
所述第一节点到第四节点,以及所述第四节点到所述第二节点之间的级联信道状态信息,其中,所述第四节点为所述第一信号的反射节点;
所述第一节点的通信信号参数配置信息。
可选地,在第四节点为所述第一信号的反射节点的情况下,射频单元1301,还用于:
获取所述第四节点的第二信息;
向所述第一节点发送所述第二信息,其中,所述第二信息用于辅助所述第一节点获取所述参考径参数测量值。
可选地,所述第二信息包括所述第四节点的位置、速度大小、速度方向、天线面板朝向信息中的至少一项。
可选地,射频单元1301,还用于向所述第四节点发送所述第一配置信息。
可选地,射频单元1301在执行所述基于第一配置信息发送第一信号之前,还用于:
向所述第一节点发送所述第一配置信息;或者,
接收来自所述第一节点的所述第一配置信息。
可选地,所述第一信号的发送时刻包括同一个上行周期内的至少两个时间单元,其中,所述第一节点在同一个上行周期内进行上行传输,且传输状态不发生改变。
本实施方式中,终端1300能够实现如图10所示感知装置的各个模型执行的功能,且能够取得相同的有益效果,为避免重复,在此不再赘述。
一种实施方式中,在所述终端1300作为第三节点。
射频单元1301,用于基于第二配置信息对第二信号进行测量,得到第一感知测量量测量值,其中,所述第二配置信息用于配置第一业务,所述第一业务为感知业务和/或通信感知一体化业务,所述第二信号的发送端包括第一节点;
其中,所述第一业务的目标感知结果基于第一随机相位信息对所述第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和参考径参数测量值确定,所述参考径参数测量值为第一节点接收第一信号时的测量值。
可选地,射频单元1301,还用于获取所述参考径参数测量值;
处理器1310,用于根据所述参考径参数测量值和所述第一感知测量量测量值,确定所述第一随机相位信息。
可选地,射频单元1301,还用于向第五节点发送第四信息,其中,所述第四信息包括所述第一感知测量量测量值、所述目标感知测量量测量值、所述目标感知结果、第一感知结果中的至少一项,其中,所述第一感知结果为基于所述第一感知测量量测量值确定的感知结果。
可选地,处理器1310,还用于基于所述第一随机相位信息对所述第一感知测量量测量值进行校准,得到所述目标感知测量量测量值。
可选地,处理器1310,还用于基于所述目标感知测量量测量值确定所述目标感知结果。
可选地,处理器1310执行的所述基于所述第一随机相位信息对所述第一感知测量量测量值进行校准,得到所述目标感知测量量测量值,包括:
基于接收所述第二信号的第一感知测量量测量值进行信道状态信息CSI商或CSI共轭 乘积,以确所述目标感知测量量测量值;
或者,
根据所述参考径参数测量值,获取所述第二信号的随机相位值和/或随机相位差值,并根据所述随机相位值和/或随机相位差值对接收所述第二信号的第一感知测量量测量值进行随机相位校准,以确定所述目标感知测量量测量值。
可选地,射频单元1301在执行所述基于第二配置信息对第二信号进行测量之前,还用于:
接收来自所述第一节点的所述第二配置信息;或者,
向所述第一节点发送所述第二配置信息。
本实施方式中,终端1300能够实现如图11所示感知装置的各个模型执行的功能,且能够取得相同的有益效果,为避免重复,在此不再赘述。
本申请实施例还提供一种网络侧设备,如图14所示,该网络侧设备1400包括:天线1401、射频装置1402、基带装置1403、处理器1404和存储器1405。天线1401与射频装置1402连接。在上行方向上,射频装置1402通过天线1401接收信息,将接收的信息发送给基带装置1403进行处理。在下行方向上,基带装置1403对要发送的信息进行处理,并发送给射频装置1402,射频装置1402对收到的信息进行处理后经过天线1401发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置1403中实现,该基带装置1403包括基带处理器。
基带装置1403例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图14所示,其中一个芯片例如为基带处理器,通过总线接口与存储器1405连接,以调用存储器1405中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口1406,该接口例如为通用公共无线接口(Common Public Radio Interface,CPRI)。
具体地,本申请实施例的网络侧设备1400还包括:存储在存储器1405上并可在处理器1404上运行的指令或程序,处理器1404调用存储器1405中的指令或程序执行图9和/或图10和/或图11所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现如图5、图6和图7中至少一项所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和 所述处理器耦合,所述处理器用于运行程序或指令,实现如图5、图6和图7中至少一项所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如图5、图6和图7中至少一项所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (41)

  1. 一种感知方法,包括:
    第一节点基于第一配置信息对第一信号进行下行测量,得到参考径参数测量值;
    所述第一节点基于第二配置信息发送第二信号,其中,所述第二信号用于第一业务,所述第一业务为感知业务和/或通信感知一体化业务;
    其中,所述第一业务的目标感知结果基于第一随机相位信息和第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和所述参考径参数测量值确定,所述第一感知测量量测量值基于对所述第二信号的感知测量确定。
  2. 根据权利要求1所述的方法,所述方法还包括:
    所述第一节点向第三节点发送所述参考径参数测量值,其中,所述第三节点为所述第二信号的接收端。
  3. 根据权利要求1所述的方法,所述方法还包括:
    所述第一节点获取所述第一感知测量量测量值和/或第一感知结果,其中,所述第一感知结果为基于所述第一感知测量量测量值确定的感知结果;
    所述第一节点基于所述参考径参数测量值对所述第一感知测量量测量值和/或第一感知结果进行随机相位校准,得到所述目标感知测量量测量值和/或目标感知结果。
  4. 根据权利要求1所述的方法,其中,所述参考径参数测量值包括视距传播LOS径的参数测量值,和/或第四节点对所述第一信号的反射径。
  5. 根据权利要求1所述的方法,其中,参考径参数包括以下至少一项:
    参考径的多普勒频率,或者,参考径的多普勒频率及多普勒频率的变化速率;
    参考径的时延,或者,参考径的时延及时延的变化速率;
    参考径的离开方位角,或者,参考径的离开方位角及离开方位角的变化速率;
    参考径的离开俯仰角,或者,参考径的离开俯仰角及离开俯仰角的变化速率;
    参考径的到达方位角,或者,参考径的到达方位角及到达方位角的变化速率;
    参考径的到达俯仰角,或者,参考径的到达俯仰角及到达俯仰角的变化速率;
    参考径的幅度,或者,参考径的幅度及幅度的变化速率;
    参考径的相位,或者,参考径的相位及相位的变化速率。
  6. 根据权利要求1所述的方法,其中,所述第一随机相位信息包括以下至少一项:
    所述第一节点的至少一个天线端口在不同上行时刻的随机相位的差值;
    所述第一节点的至少两个天线端口的随机相位的差值;
    所述第一节点的每一个天线端口的随机相位值;
    第一指示信息,所述第一指示信息用于指示所述第一节点的随机相位相同或者不同的天线端口的信息。
  7. 根据权利要求1所述的方法,所述方法还包括:
    所述第一节点向第二节点发送第一信息,其中,所述第一信息用于辅助所述第二节点确定所述第一配置信息,所述第二节点为所述第一信号的发送端。
  8. 根据权利要求7所述的方法,其中,所述第一信息包括以下至少一项:
    所述第一节点和所述第二节点之间的信道状态信息;
    所述第一节点到第四节点,以及所述第四节点到所述第二节点之间的级联信道状态信息,其中,所述第四节点为所述第一信号的反射节点;
    所述第一节点的通信信号参数配置信息。
  9. 根据权利要求1所述的方法,其中,在第四节点为所述第一信号的反射节点的情况下,所述方法还包括:
    所述第一节点获取所述第四节点的第二信息,其中,所述第二信息用于辅助所述第一节点获取所述参考径参数测量值。
  10. 根据权利要求9所述的方法,其中,所述第二信息包括所述第四节点的位置、速度大小、速度方向、天线面板朝向信息中的至少一项。
  11. 根据权利要求9所述的方法,所述方法还包括:
    所述第一节点向所述第四节点发送所述第一配置信息。
  12. 根据权利要求1所述的方法,所述方法还包括:
    所述第一节点获取第二节点的第三信息,其中,所述第三信息用于辅助所述第一节点获取所述参考径参数测量值,所述第二节点为所述第一信号的发送端。
  13. 根据权利要求12所述的方法,其中,所述第三信息包括以下至少一项:
    位置信息;
    天线信息;
    第一状态信息,所述第一状态信息包括以下至少一项:速度大小、速度方向、天线面板朝向、天线面板物理下倾角信息;
    平均发射功率;
    最大发射功率;
    接收机灵敏度;
    波束赋形信息;
    预编码信息;
    天线阵列电下倾角信息。
  14. 根据权利要求1至13中任一项所述的方法,其中,在所述第一节点基于第一配置信息对第一信号进行下行测量之前,所述方法还包括:
    所述第一节点向第二节点发送所述第一配置信息;或者,
    所述第一节点接收来自第二节点的所述第一配置信息;
    其中,所述第二节点为所述第一信号的发送端。
  15. 根据权利要求1至13中任一项所述的方法,其中,在所述第一节点基于第二配置信息发送第二信号之前,所述方法还包括:
    所述第一节点接收来自第三节点的所述第二配置信息;或者,
    所述第一节点向第三节点发送所述第二配置信息;
    其中,所述第三节点为所述第二信号的接收端。
  16. 根据权利要求1至13中任一项所述的方法,其中:
    所述第一节点和第二节点为相同节点,所述第二节点为所述第一信号的发送端;或者,
    第二节点和第三节点为相同节点,所述第二节点为所述第一信号的发送端,所述第三节点为所述第二信号的接收端。
  17. 根据权利要求1至13中任一项所述的方法,其中,所述第一节点为终端。
  18. 根据权利要求1至13中任一项所述的方法,其中,所述第一信号的发送时刻包括同一个上行周期内的至少两个时间单元,其中,所述第一节点在同一个上行周期内进行上行传输,且传输状态不发生改变。
  19. 一种感知方法,包括:
    第二节点基于第一配置信息发送第一信号,其中,所述第一配置信息用于配置参考径参数测量;
    其中,第一业务的目标感知结果基于第一随机相位信息和第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和基于所述参考径参数测量得到的参考径参数测量值确定,所述第一感知测量量测量值基于对第二信号的感知测量确定,所述第一业务为感知业务和/或通信感知一体化业务,所述第一信号的接收端和所述第二信号的发送端为第一节点。
  20. 根据权利要求19所述的方法,其中,所述参考径参数测量值包括视距传播LOS径的参数测量值,和/或第四节点对所述第一信号的反射径。
  21. 根据权利要求19所述的方法,其中,参考径参数包括以下至少一项:
    参考径的多普勒频率,或者,参考径的多普勒频率及多普勒频率的变化速率;
    参考径的时延,或者,参考径的时延及时延的变化速率;
    参考径的离开方位角,或者,参考径的离开方位角及离开方位角的变化速率;
    参考径的离开俯仰角,或者,参考径的离开俯仰角及离开俯仰角的变化速率;
    参考径的到达方位角,或者,参考径的到达方位角及到达方位角的变化速率;
    参考径的到达俯仰角,或者,参考径的到达俯仰角及到达俯仰角的变化速率;
    参考径的幅度,或者,参考径的幅度及幅度的变化速率;
    参考径的相位,或者,参考径的相位及相位的变化速率。
  22. 根据权利要求19所述的方法,其中,所述第一随机相位信息包括以下至少一项:
    所述第一节点的至少一个天线端口在不同上行时刻的随机相位的差值;
    所述第一节点的至少两个天线端口的随机相位的差值;
    所述第一节点的每一个天线端口的随机相位值;
    第一指示信息,所述第一指示信息用于指示所述第一节点的随机相位相同或者不同的天线端口的信息。
  23. 根据权利要求19所述的方法,所述方法还包括:
    所述第二节点向所述第一节点发送第一信息,其中,所述第一信息用于辅助所述第一节点确定所述第一配置信息。
  24. 根据权利要求23所述的方法,其中,所述第一信息包括以下至少一项:
    所述第一节点和所述第二节点之间的信道状态信息;
    所述第一节点到第四节点,以及所述第四节点到所述第二节点之间的级联信道状态信息,其中,所述第四节点为所述第一信号的反射节点;
    所述第一节点的通信信号参数配置信息。
  25. 根据权利要求19所述的方法,其中,在第四节点为所述第一信号的反射节点的情况下,所述方法还包括:
    所述第二节点获取所述第四节点的第二信息;
    所述第二节点向所述第一节点发送所述第二信息,其中,所述第二信息用于辅助所述第一节点获取所述参考径参数测量值。
  26. 根据权利要求25所述的方法,其中,所述第二信息包括所述第四节点的位置、速度大小、速度方向、天线面板朝向信息中的至少一项。
  27. 根据权利要求25所述的方法,所述方法还包括:
    所述第二节点向所述第四节点发送所述第一配置信息。
  28. 根据权利要求19至27中任一项所述的方法,其中,在所述第二节点基于第一配置信息发送第一信号之前,所述方法还包括:
    所述第二节点向所述第一节点发送所述第一配置信息;或者,
    所述第二节点接收来自所述第一节点的所述第一配置信息。
  29. 根据权利要求19至27中任一项所述的方法,其中,所述第一信号的发送时刻包括同一个上行周期内的至少两个时间单元,其中,所述第一节点在同一个上行周期内进行上行传输,且传输状态不发生改变。
  30. 一种感知方法,所述方法包括:
    第三节点基于第二配置信息对第二信号进行测量,得到第一感知测量量测量值,其中,所述第二配置信息用于配置第一业务,所述第一业务为感知业务和/或通信感知一体化业务,所述第二信号的发送端包括第一节点;
    其中,所述第一业务的目标感知结果基于第一随机相位信息对所述第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和参考径参数测量值确定,所述参考径参数测量值为第一节点接收第一信号时的测量值。
  31. 根据权利要求30所述的方法,所述方法还包括:
    所述第三节点获取所述参考径参数测量值;
    所述第三节点根据所述参考径参数测量值和所述第一感知测量量测量值,确定所述第一随机相位信息。
  32. 根据权利要求30所述的方法,所述方法还包括:
    所述第三节点向第五节点发送第四信息,其中,所述第四信息包括所述第一感知测量量测量值、所述目标感知测量量测量值、所述目标感知结果、第一感知结果中的至少一项,其中,所述第一感知结果为基于所述第一感知测量量测量值确定的感知结果。
  33. 根据权利要求31所述的方法,所述方法还包括:
    所述第三节点基于所述第一随机相位信息对所述第一感知测量量测量值进行校准,得到所述目标感知测量量测量值。
  34. 根据权利要求33所述的方法,所述方法还包括:
    所述第三节点基于所述目标感知测量量测量值确定所述目标感知结果。
  35. 根据权利要求33所述的方法,其中,所述第三节点基于所述第一随机相位信息对所述第一感知测量量测量值进行校准,得到所述目标感知测量量测量值,包括:
    所述第三节点基于接收所述第二信号的第一感知测量量测量值进行信道状态信息CSI商或CSI共轭乘积,以确所述目标感知测量量测量值;
    或者,
    所述第三节点根据所述参考径参数测量值,获取所述第二信号的随机相位值和/或随机相位差值,并根据所述随机相位值和/或随机相位差值对接收所述第二信号的第一感知测量量测量值进行随机相位校准,以确定所述目标感知测量量测量值。
  36. 根据权利要求30至35中任一项所述的方法,其中,在所述第三节点基于第二配置信息对第二信号进行测量之前,所述方法还包括:
    所述第三节点接收来自所述第一节点的所述第二配置信息;或者,
    所述第三节点向所述第一节点发送所述第二配置信息。
  37. 一种感知装置,应用于第一节点,所述装置包括:
    第一测量模块,用于基于第一配置信息对第一信号进行下行测量,得到参考径参数测量值;
    第一发送模块,用于基于第二配置信息发送第二信号,其中,所述第二信号用于第一业务,所述第一业务为感知业务和/或通信感知一体化业务;
    其中,所述第一业务的目标感知结果基于第一随机相位信息和第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和所述参考径参数测量值确定,所述第一感知测量量测量值基于对所述第二信号的感知测量确定。
  38. 一种感知装置,应用于第二节点,所述装置包括:
    第二发送模块,用于基于第一配置信息发送第一信号,其中,所述第一配置信息用于配置参考径参数测量;
    其中,第一业务的目标感知结果基于第一随机相位信息和第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和基于所述参考径参数测量得到的参考径参数测量值确定,所述第一感知测量量测量值基于对第二信号的感知测量确定,所述第一业务为感知业务和/或通信感知一体化业务,所述第一信号的接收端和所述第二信号的发送端为第一节点。
  39. 一种感知装置,应用于第三节点,所述装置包括:
    第二测量模块,用于基于第二配置信息对第二信号进行测量,得到第一感知测量量测量值,其中,所述第二配置信息用于配置第一业务,所述第一业务为感知业务和/或通信感知一体化业务,所述第二信号的发送端包括第一节点;
    其中,所述第一业务的目标感知结果基于第一随机相位信息对所述第一感知测量量测量值进行校准后得到的目标感知测量量测量值确定,所述第一随机相位信息基于所述第一感知测量量测量值和参考径参数测量值确定,所述参考径参数测量值为第一节点接收第一信号时的测量值。
  40. 一种通信设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至18中任一项所述的感知方法的步骤,或者实现如权利要求19至29中任一项所述的感知方法的步骤,或者实现如权利要求30至36中任一项所述的感知方法的步骤。
  41. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至18中任一项所述的感知方法的步骤,或者实现如权利要求19至29中任一项所述的感知方法的步骤,或者实现如权利要求30至36中任一项所述的感知方法的步骤。
PCT/CN2023/139332 2022-12-21 2023-12-18 感知方法、感知装置及通信设备 WO2024131689A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211652027.X 2022-12-21
CN202211652027.XA CN118233921A (zh) 2022-12-21 2022-12-21 感知方法、感知装置及通信设备

Publications (1)

Publication Number Publication Date
WO2024131689A1 true WO2024131689A1 (zh) 2024-06-27

Family

ID=91503497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/139332 WO2024131689A1 (zh) 2022-12-21 2023-12-18 感知方法、感知装置及通信设备

Country Status (2)

Country Link
CN (1) CN118233921A (zh)
WO (1) WO2024131689A1 (zh)

Also Published As

Publication number Publication date
CN118233921A (zh) 2024-06-21

Similar Documents

Publication Publication Date Title
US11031978B2 (en) Detection and ranging using multi-radio mobile devices
CN110857973B (zh) 一种到达角估计方法及设备
CN109155984B (zh) 确定通道时延的方法、定位方法和相关设备
JP2023519613A (ja) 無線ネットワーク内のユーザ装置の位置を特定するシステム及び方法
Guan et al. 3-D imaging using millimeter-wave 5G signal reflections
WO2021098780A1 (zh) 对目标物进行定位的方法及装置
US11307299B2 (en) Radio frequency based sensing using communication signals
KR20230017762A (ko) 하나 이상의 리시버 및 트랜스미터에 대한 tof를 결정하기 위한 시스템, 장치, 및/또는 방법
Kandel et al. Indoor localization using commodity Wi-Fi APs: techniques and challenges
Li et al. Configurable multipath-assisted indoor localization using active relay
Chen et al. 6G localization and sensing in the near field: Fundamentals, opportunities, and challenges
WO2024131689A1 (zh) 感知方法、感知装置及通信设备
WO2024131688A1 (zh) 感知方法、感知装置及通信设备
WO2022194144A1 (zh) 定位方法、终端及网络侧设备
WO2024131752A1 (zh) 感知方法、感知装置、通信设备及存储介质
WO2024131690A1 (zh) 感知方法、装置及设备
WO2024032538A1 (zh) 校准方法、信息传输方法、装置及通信设备
WO2024140841A1 (zh) 感知方法及装置
CN115529661A (zh) 定位处理方法、定位参考信号发送方法、装置及设备
WO2024140796A1 (zh) 传输处理方法、装置、终端及网络侧设备
Shih et al. CSI-embedded cooperative localization method for 3D indoor environments
WO2024114460A1 (zh) 测量方法、装置及设备
EP4387179A1 (en) Data transmission processing method and apparatus, communication device, and storage medium
WO2024109637A1 (zh) 信息发送方法、信息接收方法、装置及相关设备
WO2024099152A1 (zh) 信息传输方法、装置及通信设备