WO2024032538A1 - 校准方法、信息传输方法、装置及通信设备 - Google Patents

校准方法、信息传输方法、装置及通信设备 Download PDF

Info

Publication number
WO2024032538A1
WO2024032538A1 PCT/CN2023/111427 CN2023111427W WO2024032538A1 WO 2024032538 A1 WO2024032538 A1 WO 2024032538A1 CN 2023111427 W CN2023111427 W CN 2023111427W WO 2024032538 A1 WO2024032538 A1 WO 2024032538A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
information
service
signal
sensing
Prior art date
Application number
PCT/CN2023/111427
Other languages
English (en)
French (fr)
Inventor
李健之
陈保龙
姜大洁
姚健
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024032538A1 publication Critical patent/WO2024032538A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a calibration method, information transmission method, device and communication equipment.
  • sensing nodes in a mobile communication network can achieve sensing measurement of the status of a sensing target or the sensing environment by sending and receiving sensing signals.
  • the sensing measurement results are affected by hardware defects of the sensing nodes and the differences between sensing nodes.
  • the influence of non-ideal factors such as hardware differences and information processing differences between sensing nodes results in large errors in sensing results, and even the inability to perform integrated sensing/synaesthesia services.
  • Embodiments of the present application provide a calibration method, information transmission method, device and communication equipment, which can calibrate measurement values obtained through perception measurement based on information related to non-ideal factors of sensing nodes participating in sensing, so as to reduce the calibrated measurement results.
  • the deviation between the value and the true value improves the accuracy of the perception results based on the calibrated measurement value, thereby improving the perception performance.
  • a calibration method which method includes:
  • the first node obtains first information and obtains a first measurement value, wherein the first information is used to indicate non-ideal factors that exist when at least one sensing node performs a first service, and the first service includes a sensing service or Communication perception integrated service, the non-ideal factors include factors that cause at least one of frequency deviation, time deviation, power deviation, amplitude deviation and phase deviation between the first measured value and the real value;
  • the first node performs calibration processing on the first measurement value based on the first information to obtain a second measurement value, wherein the sensing result of the first service is determined based on the second measurement value.
  • a calibration device applied to the first node, and the device includes:
  • a first acquisition module configured to acquire first information and acquire a first measurement value, wherein the first information is used to indicate non-ideal factors that exist when at least one sensing node performs a first service, and the first service Including sensing services or communication sensing integrated services, the non-ideal factors include factors that cause at least one of frequency deviation, time deviation, power deviation, amplitude deviation and phase deviation between the first measured value and the real value. ;
  • a calibration module configured to perform calibration processing on the first measurement value based on the first information to obtain a second measurement value, wherein the sensing result of the first service is determined based on the second measurement value.
  • an information transmission method which method includes:
  • the second node sends first information to the first node, where the first information is used to indicate non-ideal factors that exist when at least one sensing node performs the first service, and the first information is used to evaluate the first
  • the first measured value of the service is calibrated, and the first service includes a sensing service or a communication sensing integrated service.
  • the non-ideal factors include frequency deviation, time deviation, and power between the first measured value and the true value.
  • an information transmission device applied to the second node, and the device includes:
  • the first sending module is configured to send first information to the first node, where the first information is used to indicate non-ideal factors that exist when at least one sensing node performs the first service, and the first information is used to The first measurement value of the first service is calibrated, and the first service includes a perception service or a communication perception integrated service.
  • the non-ideal factors include frequency deviation between the first measurement value and the true value, A factor of at least one of time deviation, power deviation, amplitude deviation and phase deviation.
  • a communication device in a fifth aspect, includes a processor and a memory.
  • the memory stores a program or instructions that can be run on the processor.
  • the program or instructions are implemented when executed by the processor. The steps of the method described in the first aspect or the third aspect.
  • a communication device including a processor and a communication interface
  • the communication interface is used to obtain first information and obtain a first measurement value, wherein the first information is used to indicate that at least one sensing node is executing the first Non-ideal factors existing in a service, the first service including perception service or communication perception integrated service, the non-ideal factors include frequency deviation, time deviation, power between the first measured value and the real value A factor of at least one of deviation, amplitude deviation, and phase deviation;
  • the processor is configured to perform calibration processing on the first measurement value based on the first information to obtain a second measurement value, wherein the first service The sensing result is determined based on the second measurement value;
  • the communication interface is used to send first information to the first node, where the first information is used to indicate the presence of at least one sensing node when executing the first service.
  • the first information is used to calibrate the first measurement value of the first service
  • the first service includes a perception service or a communication perception integrated service
  • the non-ideal factors include causing the first There is at least one factor among frequency deviation, time deviation, power deviation, amplitude deviation and phase deviation between a measured value and the real value.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first or third aspect are implemented. .
  • a chip in an eighth aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the first aspect or the third aspect. the method described.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the first aspect or the third aspect. The steps of the method described in this aspect.
  • the first node obtains first information and obtains a first measurement value, wherein the first information is used to indicate non-ideal factors that exist when at least one sensing node performs the first service, and the The first business includes Perception service or communication perception integrated service, the non-ideal factors include factors that cause at least one of frequency deviation, time deviation, power deviation, amplitude deviation and phase deviation between the first measured value and the real value;
  • the first node performs calibration processing on the first measurement value based on the first information to obtain a second measurement value, wherein the sensing result of the first service is determined based on the second measurement value.
  • the first node can calibrate the first measurement value obtained through sensing measurement according to the non-ideal factors of the sensing node of the first service, so as to reduce the deviation between the calibrated second measurement value and the real value, and improve the performance based on The accuracy of the perception result obtained by the second measurement value thereby improves the perception performance.
  • Figure 1 is a schematic structural diagram of a wireless communication system to which embodiments of the present application can be applied;
  • Figure 2 is a flow chart of a calibration method provided by an embodiment of the present application.
  • Figure 3a is a schematic diagram of the first sensing mode
  • Figure 3b is a schematic diagram of the second sensing mode
  • Figure 4 is a flow chart of an information transmission method provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a calibration device provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of an information transmission device provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • Mobile Internet Device MID
  • AR augmented reality
  • VR virtual reality
  • robots wearable devices
  • Vehicle User Equipment Vehicle User Equipment
  • pedestrian terminal Pedestrian User Equipment, PUE
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • personal computers personal computer, PC
  • the network side device 12 may include an access network device or a core network device, where the access network device may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or a wireless access network unit.
  • Access network equipment may include base stations, Wireless Local Area Networks (WLAN) access points or WiFi nodes, etc.
  • the base stations may be called Node B, Evolved Node B (eNB), access point, base transceiver station ( Base Transceiver Station (BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), home B-node, home evolved B-node, transmitting and receiving point ( Transmission Reception Point (TRP) or some other appropriate terminology in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only in the NR system The base station is introduced as an example, and the specific type of base station is not limited.
  • Core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Service Discovery function (Edge Application Server Discovery Function, EASDF), Unified Data Management (UDM), Unified Data Repository (UDR), Home Subscriber Server (HSS), centralized network configuration ( Centralized network configuration (CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (Local NEF, or L-NEF), Binding Support Function (Binding Support Function, BSF), application function (Application Function, AF), etc.
  • MME mobility management entities
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • PCF Policy Control Function
  • Wireless communication and radar sensing have been developing in parallel, but the intersection is limited. They have many commonalities in signal processing algorithms, equipment, and to a certain extent system architecture. In recent years, traditional radar is developing towards more general wireless sensing. Wireless sensing can broadly refer to retrieving information from received radio signals. For wireless sensing related to sensing the target position, common signal processing methods can be used to estimate target signal reflection delay, arrival angle, departure angle, Doppler and other dynamic parameters; for sensing the physical characteristics of the target, the device can be /Object/Activity's intrinsic signal patterns are measured to achieve this. The two sensing methods can be called sensing parameter estimation and pattern recognition respectively. In this sense, wireless sensing refers to more general sensing technologies and applications that use radio signals.
  • Integrated Sensing And Communication has the potential to integrate wireless sensing into large-scale mobile networks, here called Perceptive Mobile Networks (PMNs).
  • Sensing mobile networks are capable of providing both communication and wireless sensing services, and are expected to become a ubiquitous wireless sensing solution due to their large broadband coverage and strong infrastructure.
  • Perceptual mobile networks can be widely used in communication and sensing in the fields of transportation, communications, energy, precision agriculture, and security. It can also provide complementary sensing capabilities to existing sensor networks, with unique day and night operation capabilities and the ability to penetrate fog, foliage and even solid objects.
  • CSI channel state information
  • the impact of the receiving node on CSI may include:
  • PAU Power Amplifier Uncertainty
  • LNA Low Noise Amplifier
  • PGA Programmable Gain Amplifier
  • I and Q branch devices The inphase (I) and quadrature (quadrature, Q) paths are unbalanced.
  • the performance limitations of the I and Q branch devices mean that the local oscillator signal phase cannot be guaranteed to be strictly 90° different, the gain of the two signals is different, and there is a DC offset, etc., which in turn leads to the destruction of the orthogonality of the baseband signal and the deterioration of CSI.
  • Time-frequency synchronization deviation Factors such as clock deviation and non-ideal synchronization between the sending node and the receiving node bring about problems such as carrier frequency offset (Carrier Frequency Offset), sampling frequency offset (Sampling Frequency Offset), symbol timing offset (Symbol Timing Offset), etc. It will affect the accuracy of speed estimation or cause ambiguity in ranging.
  • Antenna/array amplitude and phase error Including when using beamforming for sensing, the beamforming amplitude and phase errors will cause the formed beam shape (beam gain, beam width, side lobe level) to be inconsistent with the actual situation, and then the channel information after beamforming will be used for processing. This leads to a decrease in accuracy during perception, causing angle and reflected power estimation errors. In addition, beam switching delay will also increase the impact of interference and noise on the perception results.
  • the first measurement value is also calibrated based on the non-ideal factors that exist when the sensing node performs the first service, so that the second measurement value obtained after calibration is consistent with the first measurement value.
  • the deviation between the real values is reduced, so that when the perception result of the first service is determined based on the second measurement value, the accuracy of the perception result can be improved.
  • Base stations in mobile communication networks including one or more Transmission Reception Points (TRP) on the base station, user equipment (User Equipment, UE) (including one or more antenna sub-arrays/panels on the UE) (Panel)), can be used as a sensing node participating in the integrated sensing/synaesthesia service.
  • TRP Transmission Reception Point
  • UE User Equipment
  • Panel User Equipment
  • the sensing signal can be Signals that do not contain transmission information, such as existing LTE/NR synchronization and reference signals (including: synchronization signals and physical broadcast channel (Synchronization Signal and PBCH block, SSB) signals, channel state information (Channel State Information, CSI) reference signals (CSI Reference Signal, CSI-RS), demodulation reference signal (Demodulation Reference Signal, DMRS), channel sounding reference signal (Sounding Reference Signal, SRS), positioning reference signal (Positioning Reference Signal, PRS), phase tracking reference signal ( Phase-Tracking Reference Signal (PTRS), etc.), of course, the sensing signal can also be single-frequency continuous wave (Continuous Wave, CW), frequency modulated continuous wave (Frequency Modulated CW, FMCW) commonly used in radar, and ultra-wideband Gaussian pulse, etc.
  • CSI Channel State Information
  • CSI-RS channel state information reference signals
  • demodulation reference signal Demodulation Reference Signal
  • DMRS channel sounding reference signal
  • PRS positioning reference signal
  • the sensing signal can also be a newly designed dedicated sensing signal with good correlation characteristics and low peak-to-average power ratio (PAPR), or a newly designed synaesthesia integrated
  • PAPR peak-to-average power ratio
  • the new signal not only carries certain information, but also has good sensing performance.
  • the new signal is composed of at least one dedicated sensing signal/reference signal and at least one communication signal spliced in the time domain and/or frequency domain/ Combination/superposition, the type of the sensing signal is not specifically limited here, and for convenience of explanation, the above signals are collectively referred to as the first signal in the following embodiments.
  • nodes that send and/or receive the above-mentioned first signal are collectively called sensing nodes.
  • the sensing mode is divided into a first sensing mode and a second sensing mode.
  • sensing in the first sensing mode Node A sends a first signal
  • sensing node B receives the first signal.
  • the sensing node A and sensing node B are not the same device and are physically located separately.
  • the same sensing node (A/B/C) spontaneously receives the first signal, that is, the sensing signal sending and receiving are performed by the same device, and the sensing node sends the signal by itself The echo is sensed.
  • the first device shown in Figure 3a and Figure 3b may be a core network device, such as: a sensing function network element (Sensing Function, SF), access and mobility management function (Access and Mobility Management Function (AMF), sensing application server in the core network, etc.
  • a sensing function network element Sensing Function, SF
  • AMF Access and Mobility Management Function
  • the number of signal sending nodes and/or signal receiving nodes of the first service may be 1 or at least two. As shown in Figure 3a and Figure 3b, it is only a possible example and does not constitute a structure here. Specific limitations.
  • the execution subject may be the first node, which is not specifically limited here.
  • a calibration method provided by the embodiment of the present application may include the following steps:
  • Step 201 The first node obtains first information and obtains a first measurement value, where the first information is used to indicate non-ideal factors that exist when at least one sensing node performs a first service, and the first service includes For sensing services or communication sensing integrated services, the non-ideal factors include factors that cause at least one of frequency deviation, time deviation, power deviation, amplitude deviation and phase deviation between the first measured value and the real value.
  • Step 202 The first node performs calibration processing on the first measurement value based on the first information to obtain a second measurement value, wherein the sensing result of the first service is determined based on the second measurement value.
  • the first node represents the node that calibrates the first measurement value.
  • the perceptual measurement quantity corresponding to the first measurement value includes at least one of the following:
  • the channel impulse response between the signal sending node and the signal receiving node of the first service is the channel impulse response between the signal sending node and the signal receiving node of the first service.
  • the signal receiving node measures the above-mentioned perceptual measurement quantity of the first signal, and there is a deviation between the obtained first measurement value and the true value.
  • the first node may include a core network (such as a sensing network function/aware network element in the core network) device. At least one of equipment, terminal and base station.
  • a core network such as a sensing network function/aware network element in the core network
  • the first node may include at least one of the following:
  • a signal sending node the signal sending node is used to send a first signal related to the first service
  • a signal receiving node the signal receiving node is used to measure the first signal to obtain the first measurement value
  • a computing node the computing node is configured to determine the sensing result of the first service according to the second measurement value.
  • the signal sending node may represent a sensing node that sends a sensing signal
  • the signal receiving node represents a sensing node that receives the sensing signal to obtain the first measurement value
  • the computing node represents a sensing node that calculates the sensing result of the first service based on the second measurement value. node.
  • the first node may obtain the first measurement value from the signal receiving node; in the case where the first node includes a signal receiving node, the first node may obtain the above-mentioned value through sensing measurement.
  • the first measurement value in the case where the first node includes a computing node, the first node number can determine the sensing result of the first service based on the calibrated second measurement value.
  • node A sends the first signal and measures the echo signal of the first signal to obtain the first measurement value.
  • node A is both a signal sending node and a signal receiving node.
  • the above-mentioned computing node may be a device in the core network, or may be at least one of the above-mentioned signal sending node and signal receiving node.
  • node A sends the first signal
  • node B transmits the first signal.
  • the signal is measured to obtain the first measurement value
  • the first measurement value is calibrated to obtain the second measurement value.
  • the sensing result of the first service is calculated based on the second measurement value.
  • the node B receives the signal as node, first node and compute node.
  • the sensing node of the first service may include one or at least two, for example: one signal sending node and at least two signal receiving nodes, or at least two signal sending nodes and at least two signal receiving nodes. Receiving nodes, or at least two signal sending nodes and one signal receiving node, or at least one signal sending and receiving node.
  • the first node in the embodiment of the present application may be at least one of the above-mentioned sensing nodes.
  • the first node may also be the first device, which will not be elaborated here.
  • At least one of the signal sending node, the signal receiving node and the computing node that performs the first sensing service can be reused to calibrate the first measurement value.
  • the basis for calibrating the first measurement value may include non-ideal factors that exist when at least one sensing node performs the first service, for example: non-ideal factors caused by the hardware structure of the signal sending node, non-ideal factors caused by the hardware structure of the signal receiving node Non-ideal factors caused by non-ideal factors, hardware differences or signal processing differences between the signal sending node and the signal receiving node.
  • the non-ideal factors may be caused by hardware defects of nodes participating in sensing, or may be caused by active regulation by signal sending nodes and/or signal receiving nodes, which are not specifically limited here.
  • This non-ideal factor may affect the accuracy of the first measurement. For example: Assume that the signal transmission power agreed in advance by the signal sending node is 100W. However, due to the active power control of the signal sending node or the lack of power amplifier hardware, trap, the real signal transmission power of the signal sending node is 99W. When the signal receiving node receives the first signal, it still thinks that the transmission power of the first signal is 100W. Therefore, based on the received power of the first signal and the The transmission power is 100W, and the first measurement value determined (such as the reflected signal strength of the sensing target, the path loss between sensing nodes, etc.) deviates from the true value.
  • the first measurement value determined such as the reflected signal strength of the sensing target, the path loss between sensing nodes, etc.
  • the method by which the first node obtains the first information may include at least one of the following:
  • the first node obtains at least part of the pre-stored first information
  • the first node receives at least part of the first information from other sensing nodes (eg, signal receiving nodes, signal transmitting nodes) or the first device.
  • sensing nodes eg, signal receiving nodes, signal transmitting nodes
  • the first information includes at least one of the following:
  • the parameter information of the reference path may include at least one of the following: amplitude, phase, delay , the departure azimuth angle relative to the signal sending node of the first service, the departure pitch angle relative to the signal sending node of the first service, the arrival azimuth angle relative to the signal receiving node of the first service, relative to the first service
  • the arrival pitch angle of a service signal receiving node can be a Line of Sight (LOS) propagation path or any specified reflection path.
  • the reference path represents the reference path used to calibrate the first measurement value obtained by subsequent sensing measurements.
  • the reference path is For the LOS path, according to the line-of-sight distance between the signal sending node and the signal receiving node, it is known that the delay of the LOS path is 100 ns. Then the first node can calibrate the subsequent first measurement value based on the LOS path with a delay of 100 ns as the benchmark. Assume that the LOS path delay actually obtained based on the first measurement value is 102ns. After calibration processing, the LOS path delay obtained from the second measurement value should be 100ns. The above only uses the delay information of the reference path as an example. For the above The reference diameter amplitude, phase, departure azimuth angle, departure elevation angle, arrival azimuth angle, and arrival elevation angle are the same and will not be repeated here;
  • the Doppler frequency of at least one reference path of the channel between the signal transmitting node and the signal receiving node of the first service wherein, in the case where the number of the first measurement values is greater than one, if the first measurement value If a measurement value is related to the Doppler frequency, the Doppler frequency for obtaining the first measurement value can be calibrated based on the Doppler frequency of at least one reference path; for example: assuming that the reference path is a LOS path, since the signal sending node and If the relative position of the signal receiving node remains unchanged and the Doppler frequency of the LOS path is 0 Hz, then the first node can calibrate the subsequent first measurement value based on the LOS path with the Doppler frequency of 0 Hz as the benchmark. Assume that the Doppler frequency of the LOS path actually obtained based on the first measurement value greater than one is 5ns. After calibration, the LOS path delay obtained based on the second measurement value greater than one should be 0Hz;
  • the first instruction information is used to instruct to divide the first measurement value obtained by the first antenna and the first measurement value obtained by the second antenna to obtain the first value, wherein the signal receiving node of the first service includes the first antenna and the second antenna, and the second measurement value includes the first value.
  • the first indication information indicates which two receiving antennas obtain the first measurement values to be divided, wherein the two receiving antennas Dividing the first measured values obtained can eliminate the interference of some non-ideal factors. For example, when the non-ideal factors of the two receiving antennas are the same, divide the first measured values of the two receiving antennas. , the result obtained can be eliminated The influence of non-ideal factors;
  • First identification information when the number of the first measurement values is greater than one, the first identification information indicates the first measurement value used to obtain the parameter information of the at least one reference path, wherein the An identification information may be used to indicate which first measurement value or group of first measurement values is used as a reference for calibration;
  • the second information includes information related to the time offset between at least two signal receiving nodes of the first service, wherein when the number of signal receiving nodes is at least two, Time asynchrony between at least two signal receiving nodes can be eliminated or reduced through the second information.
  • the second information includes at least one of the following: measurement time offset information, measurement period information, and measurement timestamp information. For example: in the process of using multiple signal receiving nodes to track the trajectory of a sensing target, multiple signal receiving nodes are required to perform simultaneous measurements. However, due to the influence of non-ideal factors, the measurement moments of different signal receiving nodes may be too different. , at this time, a reference time can be indicated by the signal sending node or the first device to provide a reference for the calibration of all signal receiving nodes;
  • the transmission power control information of the signal sending node of the first service may include at least one of the following: an adjustment value of the transmission power in the analog domain, an adjustment value of the transmission power in the digital domain, A control factor used to control the transmission power of the first signal related to the first service.
  • the adjustment value of the transmit power in the analog domain and the adjustment value of the transmit power in the digital domain may be relative to the adjustment value of the transmit power when the first signal was sent last time, or may be relative to any specified time when the first signal was sent.
  • the adjustment value of the transmission power, the control factor of the transmission power may be a control factor used to control the transmission power of the first signal.
  • the transmission power of the first signal can be calibrated based on the transmission power control information;
  • the in-phase I-channel signal compensation information of the signal sending node of the first service wherein the I-channel signal compensation information can be the I-channel data amplitude compensation value or the compensation factor, and the I-channel signal compensation information is used to compensate the I-channel signal
  • the phase is calibrated to balance the IQ path;
  • the orthogonal Q-channel signal compensation information of the signal sending node of the first service wherein the Q-channel signal compensation information may be the Q-channel data amplitude compensation value or the compensation factor, and the Q-channel signal compensation information is used for Q-channel signal compensation information.
  • the phase of the signal is calibrated to balance the IQ circuit;
  • Antenna amplitude calibration information of the signal sending node of the first service is used to calibrate the amplitude of at least one transmitting antenna of the signal sending node.
  • the antenna amplitude calibration information includes at least one transmission of the signal sending node. Amplitude calibration value of antenna;
  • phase offset calibration information of the signal sending node of the first service is used to calibrate the phase offset of at least one transmitting antenna of the signal sending node.
  • the phase offset calibration information includes signal sending Phase calibration value of at least one transmit antenna of the node;
  • the received power control information of the signal receiving node of the first service, the received power control information of the signal receiving node is similar to the transmit power control information of the above-mentioned signal transmitting node, for example: the received power control information includes at least one of the following Items: the adjustment value of the received power in the analog domain, the adjustment value of the received power in the digital domain, the control factor used to control the received power of the first signal related to the first service, and based on the received power control information, it is possible to Calibrate the received power of the first signal;
  • the I-channel signal compensation information of the signal receiving node of the first service is similar to the I-channel signal compensation information of the signal sending node and has the same effect. It will not be discussed here. redundant;
  • the Q-channel signal compensation information of the signal receiving node of the first service is similar to the Q-channel signal compensation information of the signal sending node and has the same effect. It will not be discussed here. redundant;
  • the antenna amplitude calibration information of the signal receiving node of the first service is similar to the antenna amplitude calibration information of the signal sending node, and the antenna amplitude calibration information of the signal receiving node can be used The antenna amplitude of at least one receiving antenna of the calibration signal receiving node will not be described again here;
  • phase offset calibration information of the signal receiving node of the first service, the phase offset calibration information of the signal receiving node is similar to the phase offset calibration information of the signal transmitting node, and the phase offset of the signal receiving node
  • the calibration information can be used to calibrate the phase of at least one receiving antenna of the signal receiving node, which will not be described again here;
  • the signal receiving node of the first service obtains the timestamp information of the first measurement value, wherein the timestamp information can reflect the time at which each first measurement value is obtained, and the timestamp information can include relative to the specified reference time.
  • the time difference, the reference time may be specified by at least one of the signal sending node, the signal receiving node and the first device.
  • the timestamp information may include a required correlation between the timestamp serial number and the first measurement value. In this way, based on the correlation, it can be determined which timestamp each first measurement value corresponds to.
  • the timestamp information may calibrating the time offset between respective first measurement values;
  • Time offset calibration information between the signal sending node and the signal receiving node of the first service wherein the time offset calibration information can perform time calibration between the signal sending node and the signal receiving node;
  • the above-mentioned at least one reference path may be selected by at least one of the signal transmitting node, the signal receiving node and the first device, which will not be described again here.
  • the reference diameter is usually the LOS diameter.
  • the reference path is a non-line of sight (NLOS) propagation path
  • the reference path can also be a reference path with higher power or signal-to-noise ratio (SNR), or The NLOS reference path for which a certain parameter information is known.
  • the parameter information of the reference path can be obtained based on perceptual prior information.
  • the parameter information of the reference path may also be a measurement value with errors that includes the influence of non-ideal factors, which will not be described in detail here.
  • the above time offset calibration information may include at least one of the following:
  • the signal sending node of the first service indicates the channel state information CSI or channel impulse response phase calibration value of the signal receiving node of the first service
  • the signal sending node of the first service indicates the CSI or channel impulse response calibration coefficient of the signal receiving node of the first service.
  • Time calibration can reduce the deviation between the sampling time point and the expected time point caused by hardware non-ideal factors such as the tone clock when the signal receiving node samples the first signal.
  • the deviation between the above sampling time points and the expected time points will cause the estimated frequency to be error, producing false frequencies.
  • the deviation between the above sampling time point and the expected time point can easily cause each sensing node to It is impossible to sample at the same time, which ultimately leads to large errors in the perception results.
  • the frequency offset calibration information between the signal sending node and the signal receiving node of the first service includes at least one of the following:
  • the frequency calibration value between the signal sending node and the signal receiving node of the first service is the frequency calibration value between the signal sending node and the signal receiving node of the first service
  • the signal sending node of the first service indicates the CSI or channel impulse response phase calibration value of the signal receiving node of the first service
  • the signal sending node of the first service indicates the CSI or channel impulse response calibration coefficient of the signal receiving node of the first service.
  • the frequency offset in the integrated sensing/communication sensing system mainly refers to the inevitable drift between the transmitter and the receiver due to the inevitable drift of the clock crystal oscillator, causing the transmitter and receiver to change over time. Accurate synchronization cannot be achieved.
  • the transmitted baseband signal is s 0 (t)
  • the carrier frequency is f c
  • the transmitted signal is at the same time, it is assumed that the wireless channel between the transmitter and the receiver is
  • L is the total number of multipaths in the channel
  • ⁇ l is the delay of the lth multipath
  • f d,l is the Doppler frequency of the lth multipath.
  • the known signal s 0 (t) and the carrier frequency are f c .
  • H(f,t) can be obtained, that is, the CSI matrix containing the sensing information is obtained.
  • perceptual measurement quantities such as ⁇ l , f d,l, etc., can be obtained using parameter estimation algorithms such as FFT or MUSIC.
  • the baseband transmission signal s 0 (t) can be obtained.
  • the clock frequency deviation ⁇ f 1 (t), ⁇ f 2 (t) often changes with time, so even if the real values ⁇ l and f d,l of the perceptual measurement quantities remain unchanged, their first measurement value ⁇ ′ l , f′ d,l change with time, which brings difficulties to calibration.
  • the error introduced by frequency offset will act on different perceptual measurement quantities at the same time, and for any perceptual measurement quantity, the specific size of the error depends on the estimation accuracy of other perceptual measurement quantities. If the perceptual measurement quantity also includes the multipath complex amplitude a l , the above conclusion is also valid and will not be described again here.
  • the first node knows that the real delay value of any l-th multipath is ⁇ l (usually a LOS path, but in some cases it can also be any NLOS path, such as the NLOS reflection path of the sensing reference node. So
  • the reference node can be a reconfigurable intelligent reflective surface (RIS), etc.), and the measured delay of the l-th multipath is ⁇ ′ l .
  • the first node can first perform delay calibration on all multipaths in the CSI matrix, that is, perform delay calibration on all multipaths in the CSI matrix through the following formula (4):
  • the first node knows that the true Doppler frequency value of any l-th multipath in a certain time period T is f d,l (generally also the LOS path, in some cases it can also be any NLOS path), perform Doppler calibration based on the CSI matrix after time delay calibration.
  • T the true Doppler frequency value of any l-th multipath in a certain time period T is f d,l (generally also the LOS path, in some cases it can also be any NLOS path)
  • Doppler calibration based on the CSI matrix after time delay calibration.
  • the calibrated CSI of the time t s in the T time period (where t s is the time difference relative to the reference time) can be obtained, that is, the time in the T time period is determined by the following formula (6) Calibrated CSI for t s :
  • the channel delay and multi-channel frequency can also be achieved by using the CSI ratio of the two antennas.
  • time offset calibration and frequency offset can be realized based on a single antenna. calibration.
  • the method further includes:
  • the first node determines the sensing result of the first service based on the second measurement value; or,
  • the first node In the case where the first node does not include a computing node, the first node sends the second measurement value to the computing node, wherein the computing node is configured to determine the second measurement value based on the second measurement value. Perceived results of the first business.
  • Case 1 For the case where the first node includes a computing node, the first node and the computing node may be the same node. or device:
  • the first device can obtain the first signal from the sensing node B.
  • Measurement value obtain the above-mentioned first information from sensing node A and/or sensing node B, calibrate the first measurement value based on the first information to obtain the second measurement value, and then calculate the first service based on the second measurement value perceived results.
  • the first device taking the sensing node A to send a first signal and receive an echo signal of the first signal, and the first node and the computing node to be a first device, the first device can obtain the first signal from the sensing node A.
  • a measured value and the above-mentioned first information, and the first measured value is calibrated based on the first information to obtain a second measured value, and then the sensing result of the first service is calculated based on the second measured value.
  • computing nodes can be reused to calibrate the first measurement value.
  • Case 2 For the case where the first node does not include a computing node, the first node and the computing node may be different nodes or devices:
  • the sensing node A to send the first signal
  • the sensing node B to receive the first signal
  • the first node is the sensing node B
  • the computing node is the sensing node A or the first device.
  • the sensing node B The first signal may be sensed and measured to obtain the first measurement value
  • the first information may be obtained from the sensing node A and/or the first device
  • the first measurement value may be calibrated based on the first information to obtain the second measurement value.
  • the sensing node B may also send the second measurement value to the computing node (the sensing node A or the first device).
  • the sensing node A taking the sensing node A to send the first signal, the sensing node B to receive the first signal, the first node is the sensing node A, and the computing node is the first device, the sensing node A can obtain the first signal from the sensing node. B obtains the first measurement value, obtains the first information from the sensing node B and/or the first device, and calibrates the first measurement value based on the first information to obtain the second measurement value. Then the sensing node A can also The second measurement value is sent to the first device.
  • the sensing node A taking the sensing node A to send a first signal and receive an echo signal of the first signal, the first node is the sensing node A, and the computing node is the first device, the sensing node A can Perform sensing measurement on the echo signal of a signal to obtain a first measurement value, obtain first information from the first device, calibrate the first measurement value based on the first information, obtain a second measurement value, and then sense the node A can also send the second measurement value to the first device.
  • the first node may also send the calibrated second measurement value to the computing node, so that the computing node can obtain a more accurate sensing result based on the second measurement value.
  • the first node obtains the first information, including:
  • the first node receives the first information from the second node, wherein the second node includes the signal sending node of the first service, the signal receiving node of the first service and the computing node, and with At least one node different from the first node.
  • the first node receives the above-mentioned first information from at least one of the signal sending node, the signal receiving node and the computing node of the first service, so that the first node learns the information of the signal sending node, the signal receiving node and the computing node.
  • Non-ideal factors and calibrating the first measurement value accordingly can improve the accuracy of the calibration.
  • the non-ideal factors of the signal sending node and/or the signal receiving node of the first service may change with time.
  • the second node may be based on the signal sending node and/or the signal receiving node.
  • the signal receiving node sends the updated sensing prior information and/or the updated first measurement value to the first node, so that the first node can learn based on the updated first information.
  • the method before the first node receives the first information from the second node, the method further includes:
  • the first node sends third information to the second node
  • the third information includes at least one of the following: the first measurement value, the historical measurement value of the perceptual measurement quantity corresponding to the first measurement value, and fourth information.
  • the third information is used to assist the The second node determines the first information
  • the fourth information is related to at least one of the following of the signal sending node and/or signal receiving node of the first service: physical status information, hardware information, sensing capability information, communication capability information;
  • the above-mentioned third information is used to provide a basis for the second node to determine the above-mentioned first information.
  • the above-mentioned fourth information may be a priori information, and the first node may acquire the a priori information before acquiring the above-mentioned first information. For example, if the third information includes the above-mentioned first measurement value and the hardware information of the signal sending node and the signal receiving node, then the second node can determine how to calibrate the first measurement value based on the third information, thereby feeding back to the first node First information used to calibrate the first measurement value.
  • the physical status information includes at least one of the following:
  • Target status information of the signal receiving node of the first service includes at least one of the movement speed information, position information and antenna array orientation information of the signal reception node, wherein the movement speed information It can include the speed and direction of movement.
  • the position information can be the position coordinates relative to a predetermined reference position.
  • the above target status information can also include the antenna array orientation information of the signal receiving node.
  • the first node may send the target status information of the above-mentioned signal receiving node to the second node;
  • the target status information of the signal sending node of the first service is similar to the target status information of the above-mentioned signal receiving node.
  • the above-mentioned first node is a signal sending node. node, the first node can send the target status information of the signal sending node to the second node;
  • the target antenna pairs include the transmitting antenna of the signal transmitting node of the first service and the receiving antenna of the signal receiving node of the first service.
  • the measurement quantity of the signal may be related to the distance information between the target antenna pair.
  • the transmission delay of the first signal is positively related to the absolute distance between the target antenna pair. In this way, based on the distance information between the target antenna pair, how Only by calibrating the first measurement value of the measurement quantity can the calibrated second measurement value conform to the distance information between the above-mentioned target antenna pairs.
  • the above target state information can have an impact on the measured quantity of the first signal, so that based on the target state information, it can be determined how to calibrate the first measured value of the measured quantity, so that the calibrated second measured value can be Comply with the target status information of the above-mentioned signal sending node and/or signal receiving node.
  • the hardware information includes at least one of the following: number of physical antennas, maximum transmit power, power amplification amplifier gain, power amplifier bandwidth, power amplifier efficiency, power amplifier linearity, power amplifier maximum output power, minimum adjustment step size in the analog domain of power control, minimum adjustment step size in the digital domain of power control, analog to digital converter (Analog to Digital Converter, ADC) dynamic range, digital to analog converter (Digital to Analog Converter, DAC) dynamic range, perceptual sensitivity.
  • ADC Analog to Digital Converter
  • DAC Digital to Analog Converter
  • the above-mentioned hardware information may include the above-mentioned hardware information of signal transmitting and receiving and/or signal receiving nodes, which can have an impact on the transmitting power, receiving power, accuracy of transmitting power, accuracy of receiving power, etc. of the first signal.
  • the second node After sending the above hardware information to the second node, the second node can determine the deviation between the transmitted signal received by the signal transmitter and the expected first signal based on the hardware information, and/or, the received signal of the signal receiving node and the expected first signal. Deviations between the expected first signals are used to determine how to calibrate the first measurement value, that is, to determine the first information for calibrating the first measurement value, which will not be described again here.
  • the perception capability information and/or communication capability information in the fourth information may include at least one of the following:
  • the communication capability information of the signal receiving node of the first service is the communication capability information of the signal receiving node of the first service.
  • the sensing capability information may include at least one of the following: maximum bandwidth available for sensing, time domain resources available for sensing, frequency domain resources available for sensing, antenna port resources available for sensing, and number of physical antennas available for sensing , wherein the antenna port resources available for sensing include: the number of antenna ports available for sensing, and the mapping relationship between the antenna ports and physical antennas.
  • the above time domain resources and frequency domain resources may include time and frequency resource locations, resource frequency domain density, frequency domain quantity, resource time domain length/number, density/period, etc.
  • the above-mentioned sensing sensitivity may be the minimum receivable first signal strength that can be normally perceived by the signal receiving node to maintain the first service, which may be expressed in terms of power or intensity.
  • the above sensing capability information can reflect the sensing capability of the sensing node, which helps the second node determine how to calibrate the first measurement value accordingly.
  • the sensing capability information includes time domain resources that can be used for sensing
  • the second node can The time-domain deviation of the first measured value is determined from this.
  • the above communication capability information may include at least one of the following: maximum bandwidth available for communication, time domain resources available for communication, frequency domain resources available for communication, antenna port resources available for communication, physical antennas available for communication
  • the number of antenna ports available for communication includes: the number of antenna ports available for communication, and the mapping relationship between the antenna ports and physical antennas.
  • the communication capability information can reflect the communication capability of the sensing node. Based on the communication capability, the second node can be assisted to determine the interference of non-ideal factors in the communication capability on the first measurement value.
  • At least one of the time domain resources, frequency domain resources, antenna port resources and physical antennas that can be used for sensing can be combined with the time domain resources, frequency domain resources, antenna port resources and physical antennas that can be used for communication. At least one of the physical antennas partially or completely overlaps, which is not specifically limited here.
  • the first node may be the same node as the second node.
  • the first node may determine the above-mentioned first node based on the third information. Information is not specifically limited here.
  • the first node obtains the first measurement value, including:
  • the first node In the case where the first node includes a signal receiving node of the first service, the first node measures the first signal related to the first service to obtain the first measurement value; and/ or,
  • the signal receiving node of the first service can be multiplexed as the first node to calibrate the first measurement value. In this way, the signal receiving node of the first service does not need to transmit the first measurement value to the first node.
  • the first node when the first node does not include a signal receiving node of the first service, the first node receives the signal from the signal receiving node of the first service. First measurement.
  • the first node and the signal receiving node of the first service are different nodes, for example, the signal receiving node of the first service does not have the ability to calibrate the first measurement value, etc., at this time, the first node receives the signal from the first service.
  • the signal of a service receives the first measurement value of the node and calibrates the first measurement value based on the first information. In this way, the process of calibrating the first measurement value can be made more flexible.
  • the first node obtains first information and obtains a first measurement value, wherein the first information is used to indicate non-ideal factors that exist when at least one sensing node performs the first service, and the The first service includes a sensing service or a communication sensing integrated service, and the non-ideal factors include causing at least one of frequency deviation, time deviation, power deviation, amplitude deviation and phase deviation between the first measured value and the real value. factor of the term; the first node performs calibration processing on the first measurement value based on the first information to obtain a second measurement value, wherein the sensing result of the first service is determined based on the second measurement value .
  • the first node can calibrate the first measurement value obtained through sensing measurement according to the non-ideal factors of the sensing node of the first service, so as to reduce the deviation between the calibrated second measurement value and the real value, and improve the performance based on The accuracy of the perception result obtained by the second measurement value thereby improves the perception performance.
  • the execution subject may include a second node, and the second node may include at least one of a terminal, a base station, a core network device and other communication equipment, as shown in Figure 4
  • the information transmission method may include the following steps:
  • Step 401 The second node sends first information to the first node, where the first information is used to indicate non-ideal factors that exist when at least one sensing node performs the first service, and the first information is used to analyze the first information.
  • the first measurement value of the first service is calibrated.
  • the first service includes a perception service or a communication perception integrated service.
  • the non-ideal factors include frequency deviation and time between the first measurement value and the true value. A factor of at least one of deviation, power deviation, amplitude deviation, and phase deviation.
  • the above-mentioned second node may be a node that provides the first information to the first node in the method embodiment as shown in Figure 2.
  • the second node may be a signal sending node, a signal receiving node and a computing node of the first service. At least one of them will not be repeated here.
  • the second node includes at least one of the following:
  • a signal sending node the signal sending node is used to send a first signal related to the first service
  • a signal receiving node the signal receiving node is used to measure the first signal to obtain the first measurement value
  • the computing node is configured to determine the sensing result of the first service according to a second measurement value, the second measurement value is a measurement obtained by calibrating the first measurement value according to the first information. value;
  • the second node is different from the first node.
  • the first information includes at least one of the following:
  • Parameter information of at least one reference path of the channel between the signal sending node and the signal receiving node of the first service
  • the first indication information is used to instruct to divide the first measurement value obtained by the first antenna measurement and the first measurement value obtained by the second antenna measurement to obtain a first value
  • the signal receiving node of the first service includes the first antenna and the second antenna
  • the second measurement value includes the first value
  • First identification information if the number of the first measurement values is greater than one, the first identification information indicates the first measurement value used to obtain the parameter information of the at least one reference path;
  • the second information including information related to the time offset between at least two signal receiving nodes of the first service
  • Orthogonal Q-channel signal compensation information of the signal sending node of the first service is Orthogonal Q-channel signal compensation information of the signal sending node of the first service
  • the signal receiving node of the first service obtains the timestamp information of the first measurement value
  • Time offset calibration information between the signal sending node and the signal receiving node of the first service
  • Frequency offset calibration information between the signal sending node and the signal receiving node of the first service is
  • the method before the second node sends the first information to the first node, the method further includes:
  • the second node obtains third information, wherein the third information includes at least one of the following: the first measurement value, the historical measurement value of the perceptual measurement quantity corresponding to the first measurement value, and fourth information,
  • the fourth information is related to at least one of the following of the signal sending node and/or the signal receiving node of the first service: physical status information, hardware information, sensing capability information, and communication capability information;
  • the second node determines the first information based on the third information.
  • the above-mentioned second node can receive the third information from the first node, and can also receive the third information from other nodes that perform the first service.
  • the sensing node A sends a first signal
  • the sensing node When B receives the first signal, the first node is the sensing node B, and the computing node is the sensing node A or the first device, if the second node is the first device, the first device can receive signals from the sensing node A and/or Or sense the above third information of Node B.
  • the perceptual measurement quantity corresponding to the first measurement value includes at least one of the following:
  • the channel impulse response between the signal sending node and the signal receiving node of the first service is the channel impulse response between the signal sending node and the signal receiving node of the first service.
  • the physical status information includes at least one of the following:
  • the target status information of the signal receiving node of the first service includes at least one of the movement speed information, position information and antenna array orientation information of the signal receiving node;
  • the target status information of the signaling node of the first service
  • the target antenna pair includes a transmitting antenna of a signal sending node of the first service and a receiving antenna of a signal receiving node of the first service.
  • the fourth information includes at least one of the following:
  • the communication capability information of the signal receiving node of the first service is the communication capability information of the signal receiving node of the first service.
  • the perceptual capability information includes at least one of the following:
  • the maximum bandwidth available for sensing the time domain resources available for sensing, the frequency domain resources available for sensing, the antenna port resources available for sensing, and the number of physical antennas available for sensing, where the antenna port resources available for sensing Including: the number of antenna ports that can be used for sensing, and the mapping relationship between antenna ports and physical antennas;
  • the hardware information includes at least one of the following: number of physical antennas, maximum transmit power, power amplifier gain, power amplifier bandwidth, power amplifier efficiency, power amplifier linearity, power amplifier maximum output power, and minimum adjustment step size of the analog domain of power control. , the minimum adjustment step size in the digital domain of power control, the dynamic range of the analog-to-digital converter ADC, the dynamic range of the digital-to-analog converter DAC, and the sensing sensitivity;
  • the communication capability information includes at least one of the following:
  • the maximum bandwidth that can be used for communication, the time domain resources that can be used for communication, the frequency domain resources that can be used for communication, the antenna port resources that can be used for communication, and the number of physical antennas that can be used for communication, where the antenna port resources that can be used for communication include: The number of antenna ports available for communication and the mapping relationship between antenna ports and physical antennas.
  • the method further includes:
  • the second node receives a second measurement value from the first node, wherein the second measurement value is a measurement value obtained by calibrating the first measurement value according to the first information;
  • the second node determines the sensing result of the first service according to the second measurement value, or the second node sends the second measurement value to a computing node, wherein the computing node is used to determine the sensing result of the first service according to the second measurement value.
  • the second measurement value determines the perception result of the first service.
  • the second node may also serve as a computing node to determine the sensing result of the first service based on the second measurement value.
  • the method further includes:
  • the second node measures the first signal related to the first service to obtain the first measurement value
  • the second node sends the first measurement value to the first node.
  • the second node can also serve as a signal receiving node for the first service, thereby measuring the first signal to obtain the first measurement value, and sending the first measurement value to the first node, so that the first node The first measurement is calibrated based on the first information.
  • the parameter information of the reference path includes at least one of the following:
  • the second information includes at least one of the following:
  • Measurement time offset information information, measurement period information, and measurement timestamp information.
  • the transmit power control information includes at least one of the following:
  • the received power control information includes at least one of the following:
  • the adjustment value of the received power in the analog domain the adjustment value of the received power in the digital domain, and the control factor used to control the received power of the first signal related to the first service.
  • the time offset calibration information between the signal sending node and the signal receiving node of the first service includes at least one of the following:
  • the signal sending node of the first service indicates the channel state information CSI of the signal receiving node of the first service Or channel impulse response phase calibration value;
  • the signal sending node of the first service indicates the CSI or channel impulse response calibration coefficient of the signal receiving node of the first service.
  • the frequency offset calibration information between the signal sending node and the signal receiving node of the first service includes at least one of the following:
  • the frequency calibration value between the signal sending node and the signal receiving node of the first service is the frequency calibration value between the signal sending node and the signal receiving node of the first service
  • the signal sending node of the first service indicates the CSI or channel impulse response phase calibration value of the signal receiving node of the first service
  • the signal sending node of the first service indicates the CSI or channel impulse response calibration coefficient of the signal receiving node of the first service.
  • the second node provides the first information to the first node, so that the first node calibrates the first measurement value based on the first information, so that the calibrated second measurement value can overcome non-ideal factors. interference, and the deviation from the true value is reduced. In this way, when the perception result of the first service is determined based on the second measurement value, the perception accuracy can be improved.
  • sensing node A sends a first signal
  • sensing node B receives the first signal
  • the first node is sensing node B
  • the computing node is sensing node A or the first device.
  • the calibration method and information transmission method provided by the embodiment of the present application may include the following processes:
  • Step 1a Sensing node A or the first device obtains sensing prior information.
  • the sensing prior information is used to assist sensing node A or the first device in determining the first information.
  • the first information is used to assist the sensing node B in calibrating the subsequent first measurement value.
  • the above-mentioned perceptual prior information may be the fourth information in the method embodiment as shown in Figure 2.
  • the fourth information may specifically include at least one of the following:
  • Target status information of sensing node B target status information of sensing node A, absolute distance between the target antenna pair of sensing node A and sensing node B, hardware information of sensing node B, hardware information of sensing node A, sensing node B The sensing and/or communication capability information of sensing node A, and the sensing and/or communication capability information of sensing node A.
  • Step 2a The sensing node B receives the first signal and obtains the first measurement value. The sensing node B feeds back the first measurement value to the sensing node A or the first device.
  • the first measurement value is a measurement value of a perceptual measurement quantity affected by non-ideal factors.
  • step 2a can be performed first and then step 1a, or step 1a can be performed first and then step 2a, or step 1a can be performed simultaneously.
  • step 2a for example: sensing node B first receives the first signal and obtains the first measurement value, and then sensing node B sends the first measurement value and the target status information and hardware information of sensing node B to sensing node A or the first device. as well as Perception and/or communication capability information.
  • Step 3a Sensing node A or the first device sends the first information to sensing node B based on the sensing prior information and the first measurement value sent by sensing node B.
  • the first information is used to assist the sensing node B in calibrating the first measurement value.
  • the first information may specifically include at least one of the following:
  • Parameter information of at least one reference path of the channel between sensing node A and sensing node B is selected by sensing node A or the first device and is a reference path for sensing node B to perform subsequent measurement value calibration.
  • the first information includes the Doppler frequency of at least one reference path of the channel between sensing node A and sensing node B, where, the The reference path can be selected by sensing node A;
  • the first information may also include the first indication information in the above embodiment
  • the first information may also include the first identification information as in the above embodiment
  • the first information sent by sensing node A to sensing node B also includes the above The second information in the embodiment
  • the signal receiving node (sensing node B) is multiplexed to calibrate the first measurement value.
  • the sensing node B can obtain the non-ideal factors that exist when the sensing node B performs the first service. , eliminating the need to pass.
  • Step 4a The sensing node B calibrates the first measurement value based on the first information of the sensing node A to obtain a second measurement value, and the sensing node B sends the second measurement value to the sensing node A or the first device.
  • the above-mentioned second measurement value is a measurement value of the perceptual measurement quantity that eliminates at least part of the non-ideal factors.
  • Step 5a The sensing node A or the first device calculates the sensing result based on at least one set of second measurement values, and sends the sensing result to the sensing requester.
  • the number of sensing nodes A can be one or at least two, and the number of sensing nodes B can also be one or at least two.
  • the above-mentioned first node can be any at least one of the at least two sensing node Bs.
  • the first node can also obtain the first information of other sensing node Bs, and based on the first information of each sensing node B information to calibrate the first measurement value of the sensing node B.
  • sensing node A sends a first signal
  • sensing node B receives the first signal
  • the first node is sensing node A
  • the computing node is sensing node A or the first device.
  • the calibration method and information transmission method provided by the embodiment of the present application may include the following processes:
  • Step 1b Sensing node A or the first device obtains sensing prior information.
  • the sensing prior information is used to assist node A or the first device in calibrating the subsequent first measurement value.
  • the above-mentioned perceptual prior information has the same specific meaning as the perceptual prior information in scenario one, and will not be described again here.
  • Step 2b The sensing node B receives the first signal and obtains the first measurement value. The sensing node B feeds back the first measurement value to the sensing node A.
  • Step 3b Sensing node B sends the first information to sensing node A.
  • the first information is used to assist sensing node A in calibrating the first measurement value.
  • the first information may specifically include at least one of the following:
  • the sensing node B obtains the timestamp information of the first measurement value, where the timestamp may be a time difference relative to any specified reference time.
  • the designated reference time is jointly agreed upon by sensing node A and sensing node B. If the sensing node B needs to obtain no less than one set of first measurement values when performing integrated sensing/synaesthesia services, the timestamp information must be no less than one set; and optionally, the timestamp information may also include a timestamp.
  • the relationship between the serial number and the first measured value serial number is jointly agreed upon by sensing node A and sensing node B.
  • the signal sending node (sensing node A) is multiplexed to calibrate the first measurement value.
  • the sensing node A can obtain the non-ideal factors that exist when the sensing node A performs the first service. , eliminating the need to pass.
  • Step 4b The sensing node A calibrates the first measurement value based on the first information of the sensing node B to obtain the second measurement value.
  • the sensing node A may send the second measurement value to the first device.
  • Step 5b The sensing node A or the first device calculates the sensing result based on at least one set of second measurement values, and sends the sensing result to the sensing requester.
  • step 3b can also be executed before step 2b, or at the same time as step 2b. implement.
  • step 3b can be performed before step 2b or at the same time; if the first information also contains the above-mentioned options 3), 4 ) and option 6) to If one item is missing, step 3b can be performed after or at the same time as step 2b; or, the first information can be split into multiple parts, and the multiple parts can be sent in multiple times.
  • the number of sensing nodes A can be one or at least two, and the number of sensing nodes B can also be one or at least two.
  • the above-mentioned first node may be any at least one of the at least two sensing nodes A.
  • the first node may also obtain the first information of other sensing nodes A, and compare the first information of each sensing node A according to the first information of the sensing nodes A. Calibration is performed based on the first measurement value obtained from the first signal sent by the sensing node A.
  • sensing node A sends a first signal
  • sensing node B receives the first signal
  • the first node and the computing node are the first devices.
  • the calibration method and information transmission method provided by the embodiment of the present application may include the following processes:
  • Step 1c The first device obtains sensing prior information.
  • the perceptual prior information is used to assist the first device in calibrating subsequent first measurement values.
  • the above-mentioned perceptual prior information has the same specific meaning as the perceptual prior information in scenario one, and will not be described again here.
  • Step 2c The sensing node B receives the first signal, obtains the first measurement value, and sends the first measurement value to the first device.
  • Step 3c Sensing node A and/or sensing node B sends the first information to the first device.
  • the first information is used to assist the first device in calibrating the first measurement value.
  • the first information may specifically include at least one of the following:
  • Parameter information of at least one reference path of the channel between sensing node A and sensing node B can be selected by sensing node B and is a reference path for the first device to calibrate subsequent measurement values.
  • the first information may also include the first indication information in the above embodiment
  • Antenna amplitude and phase offset calibration information of sensing node A and/or sensing node B is provided.
  • Step 4c The first device calibrates the first measurement value based on the first information of node A and/or node B to obtain a second measurement value.
  • the second measurement value is a perceptual measurement value that eliminates at least part of the non-ideal factors.
  • Step 5c The first device calculates the sensing result based on at least one set of second measurement values, and sends the sensing result to the sensing requester.
  • step 3c can also be executed before step 2c, or at the same time as step 2c. implement.
  • step 3c can be performed before step 2c or at the same time; if the first information also contains the above options 1), option 2 ), option 5) and option 6), step 3c can be performed after step 2c or at the same time; alternatively, the first information can be split into multiple parts, and the multiple parts can be sent in multiple times.
  • the number of sensing node A can be one or at least two
  • the number of sensing node B can also be one or at least two.
  • the above-mentioned first node can obtain the first information of all sensing nodes A and sensing node B, and calibrate the first measurement value accordingly.
  • a certain first measurement value is the pair of sensing node B1 from The first signal of the sensing node A1 is obtained by sensing measurement, and then the first measurement value can be calibrated based on the first information of the sensing node A1 and the sensing node B1.
  • sensing node A sends a first signal and receives an echo signal of the first signal
  • the first node and the computing node are the first devices.
  • the calibration method and information transmission method provided by the embodiment of the present application may include the following processes:
  • Step 1d The first device obtains sensing prior information.
  • the sensing prior information is used to assist the first device in determining the first information.
  • the above-mentioned perceptual prior information may include at least one of the following:
  • Target status information of sensing node A sensing and/or communication capability information of sensing node A, and hardware information of sensing node A.
  • Step 2d The sensing node A sends the first signal, receives the echo signal of the first signal, obtains the first measurement value, and the sensing node A sends the first measurement value to the first device.
  • Step 3d Sensing node A sends the first information to the first device.
  • the first information is used to assist the first device in calibrating the first measurement value.
  • the first information may include at least one of the following:
  • Sensing node A obtains the timestamp information of the first measurement value.
  • Step 4d The first device calibrates the first measurement value based on the first information of the sensing node A to obtain the second measurement value.
  • Step 5d The first device calculates the sensing result based on at least one set of second measurement values, and sends the sensing result to the sensing requester.
  • step 3d can also be executed before step 2d, or at the same time as step 2d. implement.
  • step 3d can be performed before step 2d or at the same time; if the first information also contains the above-mentioned option 4), step 3d 3d can be performed after or at the same time as step 2d; alternatively, the first information can be split into multiple parts, and the multiple parts can be sent in multiple times.
  • the number of sensing nodes A may be one or at least two. If the number of sensing nodes A is at least two, then the first node can obtain the first information of all sensing nodes A, And the first measurement value measured based on the corresponding sensing node A is calibrated accordingly.
  • sensing node A sends a first signal and receives an echo signal of the first signal.
  • the first node is sensing node A
  • the computing node is a first device.
  • the number of sensing nodes A may be greater than 1.
  • Step 1e The first device obtains sensing prior information.
  • the sensing prior information is used to assist the first device in determining the first information.
  • the above-mentioned perceptual prior information has the same specific meaning as the perceptual prior information in scenario one, and will not be described again here.
  • Step 2e The sensing node A sends the first signal, receives the echo signal of the first signal, obtains the first measurement value and the timestamp information of the first measurement value, and the sensing node A sends the first measurement value and the first measurement value to the first device. Timestamp information of the first measured value.
  • Step 3e The first device sends the first information to at least one sensing node A.
  • the first information is used to assist the sensing node A in calibrating the subsequent first measurement value.
  • the first information may include at least one of the following:
  • Reference path parameter information Reference path parameter information, measurement time offset (time offset) information, measurement period information, and measurement timestamp information specified by the first device.
  • Step 4e The sensing node A calibrates the first measurement value based on the sixth information of the first device to obtain the second measurement value, and the sensing node A sends the second measurement value to the first device.
  • Step 5e The first device calculates the sensing result based on at least one set of second measurement values, and sends the sensing result to the sensing requester.
  • the number of sensing nodes A may be at least two.
  • each sensing node A obtains the first measurement value, it also obtains the timestamp information of the first measurement value. Based on the timestamp information, at least The first measurement values of the two sensing nodes A are time synchronized and calibrated.
  • the execution subject may be a calibration device.
  • the calibration device performing the calibration method is taken as an example to illustrate the calibration device provided by the embodiment of the present application.
  • the embodiment of the present application also provides a calibration device, which is applied to the first node.
  • the calibration device 500 includes:
  • the first acquisition module 501 is used to acquire first information and acquire first measurement values, where the first information is used to indicate non-ideal factors that exist when at least one sensing node performs the first service, and the first The service includes a perception service or a communication-aware integrated service, and the non-ideal factors include causing a gap between the first measured value and the true value.
  • the calibration module 502 is configured to perform calibration processing on the first measurement value based on the first information to obtain a second measurement value, wherein the sensing result of the first service is determined based on the second measurement value.
  • the first node includes at least one of the following:
  • a signal sending node the signal sending node is used to send a first signal related to the first service
  • a signal receiving node the signal receiving node is used to measure the first signal to obtain the first measurement value
  • a computing node the computing node is configured to determine the sensing result of the first service according to the second measurement value.
  • the first information includes at least one of the following:
  • Parameter information of at least one reference path of the channel between the signal sending node and the signal receiving node of the first service
  • the first indication information is used to instruct to divide the first measurement value obtained by the first antenna measurement and the first measurement value obtained by the second antenna measurement to obtain a first value
  • the signal receiving node of the first service includes the first antenna and the second antenna
  • the second measurement value includes the first value
  • First identification information if the number of the first measurement values is greater than one, the first identification information indicates the first measurement value used to obtain the parameter information of the at least one reference path;
  • the second information including information related to the time offset between at least two signal receiving nodes of the first service
  • Orthogonal Q-channel signal compensation information of the signal sending node of the first service is Orthogonal Q-channel signal compensation information of the signal sending node of the first service
  • the signal receiving node of the first service obtains the timestamp information of the first measurement value
  • Time offset calibration information between the signal sending node and the signal receiving node of the first service
  • Frequency offset calibration information between the signal sending node and the signal receiving node of the first service is
  • the calibration device 500 also includes:
  • a first determination module configured to determine based on the second measurement value when the first node includes a computing node. Determine the perception result of the first service; or,
  • a second sending module configured to send the second measurement value to the computing node when the first node does not include a computing node, wherein the computing node is configured to determine based on the second measurement value The perception result of the first service.
  • the first acquisition module 501 is specifically used to:
  • the second node includes a signal sending node of the first service, a signal receiving node of the first service and a computing node, and is connected with the first node At least one node is different.
  • the calibration device 500 also includes:
  • a third sending module configured to send third information to the second node
  • the third information includes at least one of the following: the first measurement value, the historical measurement value of the perceptual measurement quantity corresponding to the first measurement value, and fourth information.
  • the third information is used to assist the The second node determines the first information
  • the fourth information is related to at least one of the following of the signal sending node and/or signal receiving node of the first service: physical status information, hardware information, sensing capability information, communication capability information;
  • the perceptual measurement quantity corresponding to the first measurement value includes at least one of the following:
  • the channel impulse response between the signal sending node and the signal receiving node of the first service is the channel impulse response between the signal sending node and the signal receiving node of the first service.
  • the physical status information includes at least one of the following:
  • the target status information of the signal receiving node of the first service includes at least one of the movement speed information, position information and antenna array orientation information of the signal receiving node;
  • the target status information of the signaling node of the first service
  • the target antenna pair includes a transmitting antenna of a signal sending node of the first service and a receiving antenna of a signal receiving node of the first service.
  • the fourth information includes at least one of the following:
  • the communication capability information of the signal receiving node of the first service is the communication capability information of the signal receiving node of the first service.
  • the perceptual capability information includes at least one of the following:
  • the maximum bandwidth available for sensing the time domain resources available for sensing, the frequency domain resources available for sensing, the antenna port resources available for sensing, and the number of physical antennas available for sensing, where the antenna port resources available for sensing Including: the number of antenna ports that can be used for sensing, and the mapping relationship between antenna ports and physical antennas;
  • the hardware information includes at least one of the following: number of physical antennas, maximum transmit power, power amplifier gain, power amplifier bandwidth, power amplifier efficiency, power amplifier linearity, power amplifier maximum output power, power
  • the minimum adjustment step size of the analog domain of control the minimum adjustment step size of the digital domain of power control, the dynamic range of the analog-to-digital converter ADC, the dynamic range of the digital-to-analog converter DAC, and the sensing sensitivity;
  • the communication capability information includes at least one of the following:
  • the maximum bandwidth that can be used for communication, the time domain resources that can be used for communication, the frequency domain resources that can be used for communication, the antenna port resources that can be used for communication, and the number of physical antennas that can be used for communication, where the antenna port resources that can be used for communication include: The number of antenna ports available for communication and the mapping relationship between antenna ports and physical antennas.
  • the first acquisition module 501 includes:
  • a measurement unit configured to measure the first signal related to the first service by the first node to obtain the first signal when the first node includes a signal receiving node of the first service. measurement value;
  • a first receiving unit configured to receive the first measurement from the signal receiving node of the first service when the first node does not include a signal receiving node of the first service. value.
  • the parameter information of the reference path includes at least one of the following:
  • the second information includes at least one of the following:
  • Measurement time offset information information, measurement period information, and measurement timestamp information.
  • the transmit power control information includes at least one of the following:
  • the received power control information includes at least one of the following:
  • the adjustment value of the received power in the analog domain the adjustment value of the received power in the digital domain, and the control factor used to control the received power of the first signal related to the first service.
  • the time offset calibration information between the signal sending node and the signal receiving node of the first service includes at least one of the following:
  • the signal sending node of the first service indicates the channel state information CSI or channel impulse response phase calibration value of the signal receiving node of the first service
  • the signal sending node of the first service indicates the CSI or channel impulse response calibration coefficient of the signal receiving node of the first service.
  • the frequency offset calibration information between the signal sending node and the signal receiving node of the first service includes at least one of the following:
  • the frequency calibration value between the signal sending node and the signal receiving node of the first service is the frequency calibration value between the signal sending node and the signal receiving node of the first service
  • the signal sending node of the first service indicates the CSI or channel impulse response phase calibration value of the signal receiving node of the first service
  • the signal sending node of the first service indicates the CSI or channel impulse response calibration coefficient of the signal receiving node of the first service.
  • the calibration device provided by the embodiment of the present application can implement each process implemented by the first node in the method embodiment shown in Figure 2, and achieve the same technical effect. To avoid duplication, details will not be described here.
  • the execution subject may be an information transmission device.
  • an information transmission device performing an information transmission method is used as an example to illustrate the information transmission device provided by the embodiment of the present application.
  • the embodiment of the present application also provides an information transmission device, which is applied to the second node.
  • the information transmission device 600 includes:
  • the first sending module 601 is configured to send first information to the first node, where the first information is used to indicate non-ideal factors that exist when at least one sensing node performs the first service, and the first information is used to indicate Calibrate the first measured value of the first service, the first service includes a sensing service or a communication-aware integrated service, and the non-ideal factors include causing a frequency deviation between the first measured value and the true value , a factor of at least one of time deviation, power deviation, amplitude deviation and phase deviation.
  • the second node includes at least one of the following:
  • a signal sending node the signal sending node is used to send a first signal related to the first service
  • a signal receiving node the signal receiving node is used to measure the first signal to obtain the first measurement value
  • the computing node is configured to determine the sensing result of the first service according to a second measurement value, the second measurement value is a measurement obtained by calibrating the first measurement value according to the first information. value;
  • the second node is different from the first node.
  • the first information includes at least one of the following:
  • Parameter information of at least one reference path of the channel between the signal sending node and the signal receiving node of the first service
  • the first indication information is used to instruct to divide the first measurement value obtained by the first antenna measurement and the first measurement value obtained by the second antenna measurement to obtain a first value
  • the signal receiving node of the first service includes the first antenna and the second antenna
  • the second measurement value includes the first value
  • First identification information if the number of the first measurement values is greater than one, the first identification information indicates the first measurement value used to obtain the parameter information of the at least one reference path;
  • the second information including information related to the time offset between at least two signal receiving nodes of the first service
  • Orthogonal Q-channel signal compensation information of the signal sending node of the first service is Orthogonal Q-channel signal compensation information of the signal sending node of the first service
  • the signal receiving node of the first service obtains the timestamp information of the first measurement value
  • Time offset calibration information between the signal sending node and the signal receiving node of the first service
  • Frequency offset calibration information between the signal sending node and the signal receiving node of the first service is
  • the information transmission device 600 also includes:
  • the second acquisition module is used to acquire third information, wherein the third information includes at least one of the following: the first measurement value, the historical measurement value of the perceptual measurement quantity corresponding to the first measurement value, the fourth Information, the fourth information is related to at least one of the following of the signal sending node and/or the signal receiving node of the first service: physical status information, hardware information, sensing capability information, and communication capability information;
  • the second determination module is used to determine the first information according to the third information.
  • the perceptual measurement quantity corresponding to the first measurement value includes at least one of the following:
  • the channel impulse response between the signal sending node and the signal receiving node of the first service is the channel impulse response between the signal sending node and the signal receiving node of the first service.
  • the physical status information includes at least one of the following:
  • the target status information of the signal receiving node of the first service includes at least one of the movement speed information, position information and antenna array orientation information of the signal receiving node;
  • the target status information of the signaling node of the first service
  • the target antenna pair includes a transmitting antenna of a signal sending node of the first service and a receiving antenna of a signal receiving node of the first service.
  • the fourth information includes at least one of the following:
  • the communication capability information of the signal receiving node of the first service is the communication capability information of the signal receiving node of the first service.
  • the perceptual capability information includes at least one of the following:
  • the hardware information includes at least one of the following: number of physical antennas, maximum transmit power, power amplifier gain, power amplifier bandwidth, power amplifier efficiency, power amplifier linearity, power amplifier maximum output power, and minimum adjustment step size of the analog domain of power control. , the minimum adjustment step size in the digital domain of power control, the dynamic range of the analog-to-digital converter ADC, the dynamic range of the digital-to-analog converter DAC, and the sensing sensitivity;
  • the communication capability information includes at least one of the following:
  • the maximum bandwidth that can be used for communication, the time domain resources that can be used for communication, the frequency domain resources that can be used for communication, the antenna port resources that can be used for communication, and the number of physical antennas that can be used for communication, where the antenna port resources that can be used for communication include: The number of antenna ports available for communication and the mapping relationship between antenna ports and physical antennas.
  • the information transmission device 600 also includes:
  • a receiving module configured to receive a second measurement value from the first node, wherein the second measurement value is a measurement value obtained by calibrating the first measurement value according to the first information;
  • a third determining module or a fourth sending module the third determining module is configured to determine the sensing result of the first service according to the second measurement value, the fourth sending module and the second node send the The two measurement values are sent to the computing node, where the computing node is used to determine the sensing result of the first service according to the second measurement value.
  • the information transmission device 600 further includes:
  • a measurement module configured to measure the first signal related to the first service to obtain the first measurement value
  • a fifth sending module configured to send the first measurement value to the first node.
  • the parameter information of the reference path includes at least one of the following:
  • the second information includes at least one of the following:
  • Measurement time offset information information, measurement period information, and measurement timestamp information.
  • the transmit power control information includes at least one of the following:
  • the received power control information includes at least one of the following:
  • the adjustment value of the received power in the analog domain the adjustment value of the received power in the digital domain, and the control factor used to control the received power of the first signal related to the first service.
  • the time offset calibration information between the signal sending node and the signal receiving node of the first service includes: At least one of the following:
  • the signal sending node of the first service indicates the channel state information CSI or channel impulse response phase calibration value of the signal receiving node of the first service
  • the signal sending node of the first service indicates the CSI or channel impulse response calibration coefficient of the signal receiving node of the first service.
  • the frequency offset calibration information between the signal sending node and the signal receiving node of the first service includes at least one of the following:
  • the frequency calibration value between the signal sending node and the signal receiving node of the first service is the frequency calibration value between the signal sending node and the signal receiving node of the first service
  • the signal sending node of the first service indicates the CSI or channel impulse response phase calibration value of the signal receiving node of the first service
  • the signal sending node of the first service indicates the CSI or channel impulse response calibration coefficient of the signal receiving node of the first service.
  • the calibration device provided by the embodiment of the present application can implement each process implemented by the second node in the method embodiment shown in Figure 4, and achieve the same technical effect. To avoid duplication, details will not be described here.
  • this embodiment of the present application also provides a communication device 700, which includes a processor 701 and a memory 702.
  • the memory 702 stores programs or instructions that can be run on the processor 701, for example.
  • the communication device 700 serves as the first node
  • the program or instruction is executed by the processor 701
  • each step of the method embodiment shown in Figure 2 is implemented, and the same technical effect can be achieved.
  • the communication device 700 serves as the second node
  • the program or instruction is executed by the processor 701
  • each step of the method embodiment shown in Figure 4 is implemented, and the same technical effect can be achieved. To avoid duplication, the details will not be described here.
  • An embodiment of the present application also provides a communication device, including a processor and a communication interface.
  • the communication interface when the communication is set to the first node, the communication interface is used to obtain the first information and obtain the first measurement value, wherein the first information is used to Indicates non-ideal factors that exist when at least one sensing node performs the first service.
  • the first service includes a sensing service or a communication-aware integrated service.
  • the non-ideal factors include causing a gap between the first measured value and the true value.
  • There is at least one factor of frequency deviation, time deviation, power deviation, amplitude deviation, and phase deviation; the processor is configured to perform calibration processing on the first measurement value based on the first information to obtain a second measurement value , wherein the sensing result of the first service is determined based on the second measurement value.
  • the communication interface is used to send first information to the first node, wherein the first information is used to indicate at least Non-ideal factors that exist when a sensing node performs the first service.
  • the first information is used to calibrate the first measurement value of the first service.
  • the first service includes a sensing service or a communication sensing integrated service.
  • the non-ideal factors include factors that cause at least one of frequency deviation, time deviation, power deviation, amplitude deviation and phase deviation between the first measured value and the real value.
  • This communication device embodiment corresponds to the above-mentioned method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this communication device embodiment, and can achieve the same technical effect.
  • Embodiments of the present application also provide a readable storage medium.
  • Programs or instructions are stored on the readable storage medium.
  • the program or instructions are executed by a processor, each process of the method embodiment shown in Figure 2 or Figure 4 is implemented. , and can achieve the same technical effect, so to avoid repetition, they will not be described again here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions.
  • the implementation is as shown in Figure 2 or Figure 4. Each process of the method embodiment is shown, and the same technical effect can be achieved. To avoid repetition, the details will not be described here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement Figure 2 or Figure 4
  • the computer program/program product is executed by at least one processor to implement Figure 2 or Figure 4
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Abstract

本申请公开了一种校准方法、信息传输方法、装置及通信设备,属于通信技术领域,本申请实施例的校准方法包括:第一节点获取第一信息,以及获取第一测量值,其中,所述第一信息用于指示至少一个感知节点在执行第一业务时存在的非理想因素,所述第一业务包括感知业务或通信感知一体化业务,所述非理想因素包括造成所述第一测量值与真实值之间存在频率偏差、时间偏差、功率偏差、幅度偏差、相位偏差中的至少一项的因素;所述第一节点基于所述第一信息对所述第一测量值进行校准处理,得到第二测量值,其中,所述第一业务的感知结果基于所述第二测量值确定。

Description

校准方法、信息传输方法、装置及通信设备
相关申请的交叉引用
本申请主张在2022年08月12日提交的中国专利申请No.202210968980.9的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种校准方法、信息传输方法、装置及通信设备。
背景技术
在相关技术中,移动通信网络中的感知节点可以通过发送和接收感知信号,来实现对感知目标的状态或感知环境的感知测量,但是,感知测量结果受到感知节点的硬件缺陷、感知节点之间的硬件差异、感知节点之间的信息处理差异等非理想因素的影响,造成感知结果的误差较大,甚至无法进行感知/通感一体化业务。
发明内容
本申请实施例提供一种校准方法、信息传输方法、装置及通信设备,能够根据参与感知的感知节点的非理想因素相关的信息对通过感知测量得到的测量值进行校准,以缩小校准后的测量值与真实值之间的偏差,提升了基于该校准后的测量值得到的感知结果的准确性,从而提升了感知性能。
第一方面,提供了一种校准方法,该方法包括:
第一节点获取第一信息,以及获取第一测量值,其中,所述第一信息用于指示至少一个感知节点在执行第一业务时存在的非理想因素,所述第一业务包括感知业务或通信感知一体化业务,所述非理想因素包括造成所述第一测量值与真实值之间存在频率偏差、时间偏差、功率偏差、幅度偏差、相位偏差中的至少一项的因素;
所述第一节点基于所述第一信息对所述第一测量值进行校准处理,得到第二测量值,其中,所述第一业务的感知结果基于所述第二测量值确定。
第二方面,提供了一种校准装置,应用于第一节点,该装置包括:
第一获取模块,用于获取第一信息,以及获取第一测量值,其中,所述第一信息用于指示至少一个感知节点在执行第一业务时存在的非理想因素,所述第一业务包括感知业务或通信感知一体化业务,所述非理想因素包括造成所述第一测量值与真实值之间存在频率偏差、时间偏差、功率偏差、幅度偏差、相位偏差中的至少一项的因素;
校准模块,用于基于所述第一信息对所述第一测量值进行校准处理,得到第二测量值,其中,所述第一业务的感知结果基于所述第二测量值确定。
第三方面,提供了一种信息传输方法,该方法包括:
第二节点向第一节点发送第一信息,其中,所述第一信息用于指示至少一个感知节点在执行第一业务时存在的非理想因素,所述第一信息用于对所述第一业务的第一测量值进行校准,所述第一业务包括感知业务或通信感知一体化业务,所述非理想因素包括造成所述第一测量值与真实值之间存在频率偏差、时间偏差、功率偏差、幅度偏差、相位偏差中的至少一项的因素。
第四方面,提供了一种信息传输装置,应用于第二节点,该装置包括:
第一发送模块,用于向第一节点发送第一信息,其中,所述第一信息用于指示至少一个感知节点在执行第一业务时存在的非理想因素,所述第一信息用于对所述第一业务的第一测量值进行校准,所述第一业务包括感知业务或通信感知一体化业务,所述非理想因素包括造成所述第一测量值与真实值之间存在频率偏差、时间偏差、功率偏差、幅度偏差、相位偏差中的至少一项的因素。
第五方面,提供了一种通信设备,该通信设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第三方面所述的方法的步骤。
第六方面,提供了一种通信设备,包括处理器及通信接口;
其中,在所述通信设备为第一节点的情况下,所述通信接口用于获取第一信息,以及获取第一测量值,其中,所述第一信息用于指示至少一个感知节点在执行第一业务时存在的非理想因素,所述第一业务包括感知业务或通信感知一体化业务,所述非理想因素包括造成所述第一测量值与真实值之间存在频率偏差、时间偏差、功率偏差、幅度偏差、相位偏差中的至少一项的因素;所述处理器用于基于所述第一信息对所述第一测量值进行校准处理,得到第二测量值,其中,所述第一业务的感知结果基于所述第二测量值确定;
在所述通信设备为第二节点的情况下,所述通信接口用于向第一节点发送第一信息,其中,所述第一信息用于指示至少一个感知节点在执行第一业务时存在的非理想因素,所述第一信息用于对所述第一业务的第一测量值进行校准,所述第一业务包括感知业务或通信感知一体化业务,所述非理想因素包括造成所述第一测量值与真实值之间存在频率偏差、时间偏差、功率偏差、幅度偏差、相位偏差中的至少一项的因素。
第七方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面或第三方面所述的方法的步骤。
第八方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面或第三方面所述的方法。
第九方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面或第三方面所述的方法的步骤。
在本申请实施例中,第一节点获取第一信息,以及获取第一测量值,其中,所述第一信息用于指示至少一个感知节点在执行第一业务时存在的非理想因素,所述第一业务包括 感知业务或通信感知一体化业务,所述非理想因素包括造成所述第一测量值与真实值之间存在频率偏差、时间偏差、功率偏差、幅度偏差、相位偏差中的至少一项的因素;所述第一节点基于所述第一信息对所述第一测量值进行校准处理,得到第二测量值,其中,所述第一业务的感知结果基于所述第二测量值确定。这样,第一节点能够根据第一业务的感知节点的非理想因素对通过感知测量得到的第一测量值进行校准,以缩小校准后的第二测量值与真实值之间的偏差,提升了基于该第二测量值得到的感知结果的准确性,从而提升了感知性能。
附图说明
图1是本申请实施例能够应用的一种无线通信系统的结构示意图;
图2是本申请实施例提供的一种校准方法的流程图;
图3a是第一感知方式的示意图;
图3b是第二感知方式的示意图;
图4是本申请实施例提供的一种信息传输方法的流程图;
图5是本申请实施例提供的一种校准装置的结构示意图;
图6是本申请实施例提供的一种信息传输装置的结构示意图;
图7是本申请实施例提供的一种通信设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于 其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE Vehicle User Equipment,)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Networks,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
无线通信和雷达传感(Communication&Sensing,C&S)一直在并行发展,但交集有限。它们在信号处理算法、设备以及一定程度上的系统架构方面都有很多共性。近年来,传统雷达正朝着更通用的无线感知方向发展。无线感知可广泛地指从接收到的无线电信号中检索信息。对于感知目标位置相关的无线感知,可以通过常用的信号处理方法,对目标信号反射时延、到达角、离开角、多普勒等动力学参数进行估计;对于感知目标物理特征,可以通过对设备/对象/活动的固有信号模式进行测量来实现。两种感知方式可以分别称为感知参数估计以及模式识别。在这个意义上,无线感知是指使用无线电信号的更通用的传感技术和应用。
通信和感知一体化(Integrated Sensing And Communication,ISAC)有潜力将无线感知集成到大规模移动网络中,在这里称为感知移动网络(Perceptive Mobile Networks,PMNs)。感知移动网络能够同时提供通信和无线感知服务,并且由于其较大的宽带覆盖范围和强大的基础设施,有望成为一种无处不在的无线传感解决方案。感知移动网络可以广泛应用于交通、通信、能源、精准农业和安全领域的通信和传感。它还可以为现有的传感器网络提供互补的传感能力,具有独特的昼夜操作功能,能够穿透雾、树叶甚至固体物体。一些常见的感知业务如下表1所示:
表1
在通感一体化中,获取精确的测量信息尤为重要,而参与感知业务的节点的器件和硬件电路的非理想因素会显著影响测量精度。例如:在基站和终端之间发送和接收的感知方式中,提取信道状态信息(Channel State Information,CSI)进行感知,是通感一体化的主要实现方式。该过程中,获取质量较好的感知信道尤其重要,而一些非理想因素将导致的CSI测量误差,从而显著影响感知的精度。
例如:接收节点对CSI的影响可以包括:
1)功放不确定性(Power Amplifier Uncertainty,PAU),或信号接收功率的不确定性。由于低噪声放大器(Low Noise Amplifier,LNA),可编程增益放大器(Programmable Gain Amplifier,PGA)等器件的非理想导致实际的增益调整与预期不符,进而使得测量得到的CSI幅度不准确。
2)同相(Inphase,I)和正交(quadrature,Q)路不平衡。I、Q支路器件性能的局限性使得本振信号相位不能保证严格相差90°、两路信号增益存在差异以及存在直流偏置等,进而导致基带信号的正交性被破坏,造成CSI恶化。
3)时频同步偏差。发送节点和接收节点之间的时钟偏差、非理想同步等因素带来载波频率偏移(Carrier Frequency Offset)、取样频率偏移(Sampling Frequency Offset)、符号定时偏移(Symbol Timing Offset)等问题,会影响对速度估计的准确性或导致测距模糊。
4)天线/阵列幅相误差。包括在利用波束赋形进行感知时,波束赋形幅度和相位误差,将导致形成的波束形状(波束增益、波束宽度、旁瓣水平)与实际不符,进而在基于波束赋形后的信道信息进行感知时导致精度下降,造成角度和反射功率估计误差。此外,波束切换延迟也会加大干扰和噪声对感知结果的影响。
由上可知,相关技术中,在执行感知/通感一体化业务需求时,基于参与感知的节点自身硬件缺陷、节点之间的硬件差异、节点之间的信号处理差异等非理想因素,将导致感知性能下降,甚至无法进行感知/通感一体化业务。
本申请实施例中,在感知节点测量得到第一测量值之后,还基于感知节点在执行第一业务时存在的非理想因素来校准第一测量值,以使校准后得到的第二测量值与真实值之间的偏差缩小,这样,在根据第二测量值来确定第一业务的感知结果时,能够提升感知结果的准确性。
移动通信网络中的基站(包括基站上的某1个或多个传输接收点(Transmission Reception Point,TRP)、用户设备(User Equipment,UE)(包括UE上1个或多个天线子阵列/面板(Panel)),可以作为参与感知/通感一体化业务的感知节点。通过感知节点发送和接收感知信号,可以实现对某个区域或者某个实体目标进行感知。其中,所述感知信号可以是不包含传输信息的信号,如现有的LTE/NR同步和参考信号(包括:同步信号和物理广播信道(Synchronization Signal and PBCH block,SSB)信号、信道状态信息(Channel State Information,CSI)参考信号(CSI Reference Signal,CSI-RS)、解调参考信号(Demodulation Reference Signal,DMRS)、信道探测参考信号(Sounding Reference Signal,SRS)、定位参考信号(Positioning Reference Signal,PRS)、相位追踪参考信号(Phase-Tracking Reference Signal,PTRS)等),当然,该感知信号也可以是雷达常用的单频连续波(Continuous Wave,CW)、调频连续波(Frequency Modulated CW,FMCW),以及超宽带高斯脉冲等。此外,该感知信号还可以是新设计的专用感知信号,具有良好的相关特性和低峰均功率比(Peak-to-Average Power Ratio,PAPR),或者新设计的通感一体 化信号,既承载一定信息,同时又具有较好的感知性能,例如,该新信号由至少一种专用感知信号/参考信号,和至少一种通信信号在时域和/或频域上拼接/组合/叠加而成,在此对感知信号的类型不作具体限定,且为了便于说明,以下实施例中将上述信号统一称之为第一信号。
为了便于说明,本申请实施例中,将发送和/或接收上述第一信号的节点统一称之为感知节点。
本申请实施例中,根据感知信号的发送节点和接收节点是否为同一设备,将感知方式分为第一感知方式和第二感知方式,其中,如图3a所示,在第一感知方式下感知节点A发送第一信号,感知节点B接收第一信号,该感知节点A和感知节点B不是同一设备,且物理位置分离。如图3b所示,在第二感知方式下,由同一感知节点(A/B/C)自发自收第一信号,即感知信号发送和接收由同一设备执行,该感知节点通过接收自己发送信号的回波进行感知。
需要说明的是,如图3a和图3b中所示的第一设备可以是核心网设备,例如:核心网中的感知功能网元(Sensing Function,SF)、接入和移动管理功能(Access and Mobility Management Function,AMF)、核心网中的感知应用服务器等。
此外,本申请实施例中,第一业务的信号发送节点和/或信号接收节点的数量可以是1个或者至少两个,如图3a和图3b仅作为一种可能的示例,在此不构成具体限定。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的校准方法、信息传输方法、校准装置、信息传输装置以及通信设备进行详细地说明。
请参阅图2,本申请实施例提供的一种校准方法,其执行主体可以是第一节点,在此不作具体限定。
如图2所示,本申请实施例提供的一种校准方法可以包括以下步骤:
步骤201、第一节点获取第一信息,以及获取第一测量值,其中,所述第一信息用于指示至少一个感知节点在执行第一业务时存在的非理想因素,所述第一业务包括感知业务或通信感知一体化业务,所述非理想因素包括造成所述第一测量值与真实值之间存在频率偏差、时间偏差、功率偏差、幅度偏差、相位偏差中的至少一项的因素。
步骤202、所述第一节点基于所述第一信息对所述第一测量值进行校准处理,得到第二测量值,其中,所述第一业务的感知结果基于所述第二测量值确定。
本申请实施例中,第一节点表示对第一测量值进行校准的节点。该第一测量值对应的感知测量量包括以下至少一项:
所述第一业务的信号发送节点与信号接收节点之间的频域信道响应;
所述第一业务的信号发送节点与信号接收节点之间的信道冲激响应。
信号接收节点通过对第一信号的上述感知测量量进行测量,所得到的第一测量值与真实值之间存在偏差。
在实施中,该第一节点可以包括核心网(如核心网中的感知网络功能/感知网元)设 备、终端和基站中的至少一个。
可选地,该第一节点可以包括以下至少一项:
信号发送节点,所述信号发送节点用于发送与所述第一业务相关的第一信号;
信号接收节点,所述信号接收节点用于对所述第一信号进行测量,得到所述第一测量值;
计算节点,所述计算节点用于根据所述第二测量值确定所述第一业务的感知结果。
其中,信号发送节点可以表示发送感知信号的感知节点,信号接收节点表示接收感知信号,以获取第一测量值的感知节点,计算节点表示根据第二测量值计算所述第一业务的感知结果的节点。
在第一节点包括信号发送节点的情况下,该第一节点可以从信号接收节点获取第一测量值;在该第一节点包括信号接收节点的情况下,该第一节点可以通过感知测量获取上述第一测量值;在第一节点包括计算节点的情况下,该第一节点号可以根据校准后的第二测量值确定第一业务的感知结果。
需要说明的是,上述信号发送节点和信号接收节点可以是同一节点,例如:如图3a所示,节点A发送第一信号,并对第一信号的回波信号进行测量,得到第一测量值,此时,节点A既是信号发送节点又是信号接收节点。
此外,上述计算节点可以是核心网中的设备,也可能是上述信号发送节点和信号接收节点中的至少一项,例如:如图3b所示,节点A发送第一信号,节点B对第一信号进行测量,得到第一测量值,并根据对第一测量值进行校准,得到第二测量值,同时,根据第二测量值计算得到第一业务的感知结果,此时,节点B作为信号接收节点、第一节点和计算节点。
需要说明的是,在实施中,第一业务的感知节点可以包括一个或者至少两个,例如:一个信号发送节点和至少两个信号接收节点,或者,至少两个信号发送节点和至少两个信号接收节点,或者,至少两个信号发送节点和一个信号接收节点,或者,至少一个信号收发节点。此时,本申请实施例中的第一节点可以是上述感知节点中的任意至少一个,当然,第一节点还可以是第一设备,在此不作具体阐述。
本实施方式中,可以复用执行第一感知业务的信号发送节点、信号接收节点和计算节点中的至少一项来对第一测量值进行校准。
其中,对第一测量值进行校准的依据可以包括至少一个感知节点在执行第一业务时存在的非理想因素,例如:信号发送节点的硬件结构造成的非理想因素、信号接收节点的硬件结构造成的非理想因素、信号发送节点与信号接收节点之间的硬件差异或信号处理差异等造成的非理想因素。其中,该非理想因素可能是参与感知的节点的硬件缺陷导致的,也可能是信号发送节点和/或信号接收节点进行主动调控导致的,在此不作具体限定。
该非理想因素可能影响第一测量值的准确性。例如:假设信号发送节点事先约定的信号发射功率为100W,但是,由于信号发送节点的主动功率控制,或者功率放大器硬件缺 陷,信号发送节点的真实信号发射功率为99W,信号接收节点在接收到第一信号时,仍然认为该第一信号的发射功率为100W,从而基于第一信号的接收功率与该第一信号的发射功率100W,来确定的第一测量值(如感知目标的反射信号强度、感知节点之间的路径损耗等)与真实值具有偏差。
需要说明的是,第一节点获取第一信息的方式,可以包括以下至少一项:
第一节点获取预先存储的第一信息的至少部分;
第一节点接收来自其他感知节点(例如:信号接收节点、信号发送节点)或第一设备的第一信息的至少部分。
作为一种可选的实施方式,所述第一信息包括以下至少一项:
1)所述第一业务的信号发送节点和信号接收节点之间的信道的至少一条参考径的参数信息,可选地,该参考径的参数信息可以包括以下至少一项幅度、相位、时延、相对所述第一业务的信号发送节点的离开方位角、相对所述第一业务的信号发送节点的离开俯仰角、相对所述第一业务的信号接收节点的到达方位角、相对所述第一业务的信号接收节点的到达俯仰角。该参考径可以是视距(Line of Sight,LOS)传播径或者任意指定的反射径,该参考径表示作为对后续感知测量得到的第一测量值进行校准的参考径,例如:假设参考径为LOS径,根据信号发送节点与信号接收节点间视距距离获知LOS径的时延为100ns,则第一节点可以基于时延为100ns的LOS径为基准,对后续的第一测量值进行校准。假设实际基于第一测量值得到LOS径时延为102ns,经过校准处理后,应使得得到的第二测量值的LOS径时延为100ns;上述仅以参考径的时延信息举例,对于所述参考径幅度、相位、离开方位角、离开俯仰角、到达方位角、到达俯仰角同理,在此不再赘述;
2)所述第一业务的信号发送节点和信号接收节点之间的信道的至少一条参考径的多普勒频率,其中,在所述第一测量值的数量大于一个的情况下,若该第一测量值与多普勒频率相关,则可以基于至少一条参考径的多普勒频率对获取第一测量值的多普勒频率进行校准;例如:假设参考径为LOS径,由于信号发送节点与信号接收节点相对位置不变,LOS径的多普勒频率为0Hz,则第一节点可以基于多普勒频率为0Hz的LOS径为基准,对后续的第一测量值进行校准。假设实际基于数量大于一个的第一测量值得到LOS径多普勒频率为5ns,经过校准处理后,应使得基于数量大于一个的第二测量值得到的LOS径时延为0Hz;
3)第一指示信息,所述第一指示信息用于指示对第一天线测量得到的所述第一测量值与第二天线测量得到的所述第一测量值进行相除处理,得到第一值,其中,所述第一业务的信号接收节点包括所述第一天线和所述第二天线,所述第二测量值包括所述第一值。在信号接收节点能够从至少两个接收天线获得第一测量值的情况下,通过第一指示信息指示将哪两个接收天线获得的第一测量值进行相除处理,其中,将两个接收天线获得的第一测量值进行相除处理,能够消除部分非理想因素的干扰,例如:在两个接收天线的非理想因素相同时,通过将这两个接收天线的第一测量值进行相除处理,所得到的结果可以消除 非理想因素影响;
4)第一标识信息,在所述第一测量值的数量大于一个的情况下,所述第一标识信息指示用于获取所述至少一条参考径的参数信息的第一测量值,其中,第一标识信息可以用于指示将哪一个或哪一组第一测量值作为参考,进行校准;
5)第二信息,所述第二信息包括所述第一业务的至少两个信号接收节点之间的时间偏移相关的信息,其中,在信号接收节点的数量为至少两个的情况下,通过第二信息可以消除或减小至少两个信号接收节点之间的时间不同步。可选地,所述第二信息包括以下至少一项:测量时间偏移信息、测量周期信息、测量时间戳信息。例如:在采用多个信号接收节点对感知目标进行轨迹追踪的过程中,需要多个信号接收节点进行同时测量,但是,由于非理想因素的影响,可能导致不同信号接收节点的测量时刻太不一样,此时,可以由信号发送节点或第一设备指示一个基准时间,为全部信号接收节点的校准提供参考;
6)所述第一业务的信号发送节点的发射功率控制信息,其中,所述发射功率控制信息可以包括以下至少一项:发射功率在模拟域的调整值、发射功率在数字域的调整值、用于控制与所述第一业务相关的第一信号的发射功率的控制因子。该发射功率在模拟域的调整值和发射功率在数字域的调整值,可以是相对上一次发送第一信号时的发射功率的调整值,也可以是相对任意指定的一次发送第一信号时的发射功率的调整值,该发送功率的控制因子,可以是用于控制第一信号的发射功率的控制因子。基于该发射功率控制信息能够对第一信号的发射功率进行校准;
7)所述第一业务的信号发送节点的同相I路信号补偿信息,其中,I路信号补偿信息可以是I路数据幅度补偿值或补偿因子,该I路信号补偿信息用于对I路信号的相位进行校准,以使IQ路平衡;
8)所述第一业务的信号发送节点的正交Q路信号补偿信息,其中,Q路信号补偿信息可以是Q路数据幅度补偿值或补偿因子,该Q路信号补偿信息用于对Q路信号的相位进行校准,以使IQ路平衡;
9)所述第一业务的信号发送节点的天线幅度校准信息,该天线幅度校准信息用于校准信号发送节点的至少一个发射天线的幅度,例如:天线幅度校准信息包括信号发送节点的至少一个发射天线的幅度校准值;
10)所述第一业务的信号发送节点的相位偏移校准信息,该相位偏移校准信息用于校准信号发送节点的至少一个发射天线的相位偏移,例如:相位偏移校准信息包括信号发送节点的至少一个发射天线的相位校准值;
11)所述第一业务的信号接收节点的接收功率控制信息,该信号接收节点的接收功率控制信息与上述信号发送节点的发射功率控制信息相似,例如:所述接收功率控制信息包括以下至少一项:接收功率在模拟域的调整值、接收功率在数字域的调整值、用于控制与所述第一业务相关的第一信号的接收功率的控制因子,且基于该接收功率控制信息能够对第一信号的接收功率进行校准;
12)所述第一业务的信号接收节点的I路信号补偿信息,该信号接收节点的I路信号补偿信息,与信号发送节点的I路信号补偿信息相似,且具有相同作用,在此不再赘述;
13)所述第一业务的信号接收节点的Q路信号补偿信息,该信号接收节点的Q路信号补偿信息,与信号发送节点的Q路信号补偿信息相似,且具有相同作用,在此不再赘述;
14)所述第一业务的信号接收节点的天线幅度校准信息,该信号接收节点的天线幅度校准信息,与信号发送节点的天线幅度校准信息相似,且该信号接收节点的天线幅度校准信息可以用于校准信号接收节点的至少一个接收天线的天线幅度,在此不再赘述;
15)所述第一业务的信号接收节点的相位偏移校准信息,该信号接收节点的相位偏移校准信息,与信号发送节点的相位偏移校准信息相似,且该信号接收节点的相位偏移校准信息可以用于校准信号接收节点的至少一个接收天线的相位,在此不再赘述;
16)所述第一业务的信号接收节点获取所述第一测量值的时间戳信息,其中,时间戳信息可以反映获取各个第一测量值的时间,该时间戳信息可以包括相对指定参考时间的时间差,该参考时间可以由信号发送节点、信号接收节点和第一设备中的至少一项指定。可选地,所述时间戳信息可以包括时间戳序号与第一测量值需要的关联关系,这样,基于该关联关系,可以确定每一个第一测量值对应哪一个时间戳,该时间戳信息可以对各个第一测量值之间的时间偏移进行校准;
17)所述第一业务的信号发送节点与信号接收节点之间的时偏校准信息,其中,该时偏校准信息可以对信号发送节点与信号接收节点之间进行时间校准;
18)所述第一业务的信号发送节点与信号接收节点之间的频偏校准信息,其中,该时偏校准信息可以对信号发送节点与信号接收节点之间进行频率校准。
需要说明的是,在实施中,上述至少一条参考径可以由信号发送节点、信号接收节点和第一设备中的至少一项选定,在此不再赘述。
此外,该参考径通常为LOS径。若该参考径为非视距(Non Line of Sight,NLOS)传播径,该参考径也可以为某条功率或者信噪比(Signal-to-Noise Ratio,SNR)较高的参考径,或者是某条参数信息已知的NLOS参考径。该参考径的参数信息可以基于感知先验信息得到。
在一些实施例中,该参考径的参数信息也可以是包含非理想因素影响的带有误差的测量值,在此不作具体赘述。
可选地,上述时偏校准信息可以包括以下至少一项:
所述第一业务的信号发送节点与信号接收节点之间的时间校准值;
所述第一业务的信号发送节点指示所述第一业务的信号接收节点的信道状态信息CSI或信道冲激响应相位校准值;
所述第一业务的信号发送节点指示所述第一业务的信号接收节点的CSI或信道冲激响应校准系数。
本实施方式中,基于上述时偏校准信息可以对信号发送节点与信号接收节点之间进行 时间校准,这样,可以降低信号接收节点在对第一信号进行采样时,存在的音时钟等硬件非理想因素导致的采样时间点与预期的时间点之间的偏差。
在应用中,上述采样时间点与预期的时间点之间的偏差,对于基于等时间间隔采样数据的参数估计算法(例如标准快速傅里叶变换(Fast Fourier Transform,FFT)),将导致估计频率误差,产生虚假频率。对于需要多个节点同步感知的感知/通感一体化业务,例如多个感知节点联合对无源运动目标的轨迹追踪,上述采样时间点与预期的时间点之间的偏差,容易导致各感知节点无法同时采样,最终导致感知结果产生较大误差。
可选地,所述第一业务的信号发送节点与信号接收节点之间的频偏校准信息,包括以下至少一项:
所述第一业务的信号发送节点与信号接收节点之间的频率校准值;
所述第一业务的信号发送节点指示所述第一业务的信号接收节点的CSI或信道冲激响应相位校准值;
所述第一业务的信号发送节点指示所述第一业务的信号接收节点的CSI或信道冲激响应校准系数。
在一种可能的实现方式中,感知/通信感知一体化系统中的频率偏移,主要指发射机与接收机之间,由于时钟晶振存在不可避免的漂移,导致发射机、接收机随着时间推移无法实现精确同步。
假设发射基带信号为s0(t),载频为fc,发射信号为同时假设发射机和接收机之间的无线信道为其中L为信道中的多径总数,τl为第l条多径的时延,fd,l为第l条多径的多普勒频率。理想情况下,发射信号经过信道后,接收机天线接收信号为
对于感知系统中的信号接收节点,已知信号s0(t)以及载频为fc,基于接收信号r(t)即可得到H(f,t),即得到包含了感知信息的CSI矩阵。进一步地,使用FFT或者MUSIC等参数估计算法又可得到感知测量量,例如τl、fd,l等。
对于通信系统中的信号接收节点,基于已知载频为fc,对接收信号下变频,并完成信道估计获得CSI,则得到即可得到基带发送信号s0(t)。
然而,由于时钟晶振漂移,实际发射机的信号载频为f′c=fc+Δf1(t),实际接收机侧下变频频率为f″c=fc+Δf2(t)。对于感知系统中的接收机来说,天线接收信号可以表示为如下公式(1):
其中,τ′l(t)=τl+Δτ(t)=τl+Δf1(t)τl。经过下变频,得到的带有频偏的信道估计可以表示为以下公式(2):
其中,f′d,l(t)=fd,l+[Δf1(t)-Δf2(t)]/t=fd,l++Δf3(t)。由上可见,由于发射机和接收机的频偏存在,会导致感知测量量估计时得到的第一测量值并不是真实值,两者之间存在误差。此外,时钟频偏Δf1(t),Δf2(t)往往是随着时间变化的,因此即使感知测量量的真实值τl、fd,l保持不变,它们的第一测量值τ′l、f′d,l却是随时间变化的,这对校准带来了困难。
需要说明的是,上述公式(2)还可以表示为以下公式(3):
由此可见,频偏引入的误差会同时作用于不同感知测量量,且对于任意一个感知测量量,该误差的具体大小取决于其它感知测量量的估计精确度。若感知测量量还包括多径复振幅al,上述结论同样成立,在此不做赘述。
值得注意的是,由于频偏引入的误差,会作用在CSI的所有多径上,且引入的误差大小对于所有多径都相同(见公式(2)、公式(3))。
作为一种可选地校准方法过程如下:
假设第一节点已知任意第l条多径的真实时延值为τl(一般为LOS径,在某些情况下也可以为任意NLOS径,例如已知感知参考节点的NLOS反射径。所述参考节点可以是可重构智能反射表面(RIS)等),测量得到的第l条多径的时延为τ′l。则第一节点可以首先对CSI矩阵所有多径进行时延校准,即通过以下公式(4)对CSI矩阵所有多径进行时延校准:
另一方面,假设第一节点已知某个时间段T内任意第l条多径的真实多普勒频率值为fd,l(一般也为LOS径,在某些情况下也可以为任意NLOS径),基于时延校准后的CSI矩阵,进行多普勒校准。首先,需要基于CSI矩阵提取已知时延为τl的多径复振幅(包含 多普勒),利用最大似然估计以下公式(5):
对该径的多普勒进行校准,可以得到T时间段内时刻ts(其中,ts为相对参考时刻的时间差)的校准后的CSI,即通过如下公式(6)确定T时间段内时刻ts的校准后的CSI:
此时,第l条多径的感知测量量τl、fd,l的误差均已被校除。由于频偏造成的误差对所有多径的作用相同,所以其它所有多径由于频偏导致的误差也能被校除。需要指出的是,对多普勒频率进行校准时,由于频偏误差是随时间变化的的,需要逐个对每个CSI样本基于公式(6)进行校准。
此外,一般我们无法确知T时段内第l条多径的真实复振幅al,因此在校准时,不同ts时刻的样本需要有1个统一的参考时刻(一般可以选择为T时段内第1个样本的采样时刻),进而确定ts大小、确定每个CSI样本的相位校准值。换句话说,上述多普勒校准本质上是多个连续CSI样本之间相对相位的校准。
值得提出的是,若感知系统中的发射机或接收机具备多天线,由于多天线往往使用的是同一个时钟源,还可以通过利用两个天线的CSI比的方法实现信道时延、多普勒的校准,消除频偏对它们引入的误差。该方法实现简单、运算量小,但要求设备具备多天线,校准后将损失一个天线端口的信道信息,具体在此不做赘述。
本申请实施例中,基于上述信号发送节点与信号接收节点之间的时偏校准信息、信号发送节点与信号接收节点之间的频偏校准信息,基于单天线便可以实现时偏校准和频偏校准。
作为一种可选的实施方式,在所述第一节点基于所述第一信息对所述第一测量值进行校准处理,得到第二测量值之后,所述方法还包括:
在所述第一节点包括计算节点的情况下,所述第一节点根据所述第二测量值确定所述第一业务的感知结果;或者,
在所述第一节点不包括计算节点的情况下,所述第一节点向所述计算节点发送所述第二测量值,其中,所述计算节点用于根据所述第二测量值确定所述第一业务的感知结果。
情况一,对于第一节点包括计算节点的情况,第一节点与计算节点可以是同一个节点 或设备:
在一种可能的实现方式中,以感知节点A发送第一信号,感知节点B接收第一信号,第一节点和计算节点为第一设备为例,第一设备可以从感知节点B获取第一测量值,从感知节点A和/或感知节点B获取上述第一信息,并基于第一信息对第一测量值进行校准,得到第二测量值,然后,根据第二测量值计算得到第一业务的感知结果。
在一种可能的实现方式中,以感知节点A发送第一信号并接收第一信号的回波信号,第一节点和计算节点为第一设备为例,第一设备可以从感知节点A获取第一测量值和上述第一信息,并基于第一信息对第一测量值进行校准,得到第二测量值,然后,根据第二测量值计算得到第一业务的感知结果。
本实施方式中,可以复用计算节点来校准第一测量值。
情况二,对于第一节点不包括计算节点的情况,第一节点与计算节点可以是不同的节点或设备:
在一种可能的实现方式中,以感知节点A发送第一信号,感知节点B接收第一信号,第一节点为感知节点B,计算节点为感知节点A或第一设备为例,感知节点B可以对第一信号进行感知测量,得到第一测量值,并从感知节点A和/或第一设备获取第一信息,以及基于该第一信息对第一测量值进行校准,得到第二测量值,然后感知节点B还可以将第二测量值发送给计算节点(感知节点A或第一设备)。
在一种可能的实现方式中,以感知节点A发送第一信号,感知节点B接收第一信号,第一节点为感知节点A,计算节点为第一设备为例,感知节点A可以从感知节点B获取第一测量值,并从感知节点B和/或第一设备获取第一信息,以及基于该第一信息对第一测量值进行校准,得到第二测量值,然后感知节点A还可以将第二测量值发送给第一设备。
在一种可能的实现方式中,以感知节点A发送第一信号并接收第一信号的回波信号,第一节点为感知节点A,计算节点为第一设备为例,感知节点A可以对第一信号的回波信号进行感知测量,得到第一测量值,并获取来自第一设备的第一信息,以及基于该第一信息对第一测量值进行校准,得到第二测量值,然后感知节点A还可以将第二测量值发送给第一设备。
本实施方式中,第一节点在校准第一测量值之后,还可以将校准后的第二测量值发送给计算节点,以使计算节点基于该第二测量值得到更加准确的感知结果。
作为一种可选的实施方式,所述第一节点获取第一信息,包括:
所述第一节点接收来自第二节点的第一信息,其中,所述第二节点包括所述第一业务的信号发送节点、所述第一业务的信号接收节点和计算节点中的,且与所述第一节点不同的至少一个节点。
本实施方式中,第一节点从第一业务的信号发送节点、信号接收节点和计算节点中的至少一个节点接收上述第一信息,使第一节点获知信号发送节点、信号接收节点和计算节点的非理想因素,并据此对第一测量值进行校准,能够提升校准的精确度。
需要说明的是,在一些实施例中,第一业务的信号发送节点和/或信号接收节点的非理想因素可以是随时间变化的,此时,第二节点可以基于该信号发送节点和/或信号接收节点更新后的感知先验信息,和/或,更新后的第一测量值,向第一节点发送更新后的第一信息,这样,第一节点可以根据更新后的第一信息来获知信号发送节点和/或信号接收节点当前的非理想因素。
可选地,在所述第一节点接收来自第二节点的第一信息之前,所述方法还包括:
所述第一节点向所述第二节点发送第三信息;
其中,所述第三信息包括以下至少一项:所述第一测量值,所述第一测量值对应的感知测量量的历史测量值、第四信息,所述第三信息用于辅助所述第二节点确定所述第一信息,所述第四信息与所述第一业务的信号发送节点和/或信号接收节点的以下至少一项相关:物理状态信息、硬件信息、感知能力信息、通信能力信息;
其中,上述第三信息用于为第二节点确定上述第一信息提供依据。上述第四信息可以是先验信息,第一节点可以在获取上述第一信息之前,便获取该先验信息。例如:第三信息包括上述第一测量值,以及信号发送节点和信号接收节点的硬件信息,则第二节点可以基于该第三信息确定如何对第一测量值进行校准,从而向第一节点反馈用于校准第一测量值的第一信息。
可选地,所述物理状态信息包括以下至少一项:
1)所述第一业务的信号接收节点的目标状态信息,所述目标状态信息包括所述信号接收节点的运动速度信息、位置信息和天线阵列朝向信息中的至少一项,其中,运动速度信息可以包括运送到速度大小和运动方向,位置信息可以是相对某个预先确定的参考位置的位置坐标,在多天线场景下,上述目标状态信息还可以包括信号接收节点的天线阵列朝向信息,在实施中,上述第一节点为信号接收节点时,该第一节点可以向第二节点发送上述信号接收节点的目标状态信息;
2)所述第一业务的信号发送节点的所述目标状态信息,该信号发送节点的所述目标状态信息与上述信号接收节点的目标状态信息相似,在实施中,上述第一节点为信号发送节点时,该第一节点可以向第二节点发送该信号发送节点的目标状态信息;
3)目标天线对之间的距离信息,所述目标天线对包括所述第一业务的信号发送节点的发射天线和所述第一业务的信号接收节点的接收天线,在实施中,对第一信号的测量量可能与目标天线对之间的距离信息相关,例如:第一信号的传输时延与目标天线对之间的绝对距离正相关,这样,基于该目标天线对之间的距离信息如何对的测量量的第一测量值进行校准,才能够使得校准后的第二测量值符合上述目标天线对之间的距离信息。
在实施中,上述目标状态信息能够对第一信号的测量量产生影响,从而基于该目标状态信息可以确定如何对的测量量的第一测量值进行校准,才能够使得校准后的第二测量值符合上述信号发送节点和/或信号接收节点的目标状态信息。
可选地,所述硬件信息包括以下至少一项:物理天线数量、最大发射功率、功率放大 器增益、功率放大器带宽、功率放大器效率、功率放大器线性度、功率放大器最大输出功率、功率控制的模拟域最小调整步长、功率控制的数字域最小调整步长、模数转换器(Analog to Digital Converter,ADC)的动态范围、数模转换器(Digital to Analog Converter,DAC)的动态范围、感知灵敏度。
其中,上述硬件信息可以包括信号发送接收和/或信号接收节点的上述硬件信息,能够对第一信号的发送功率、接收功率、发送功率的精确度、接收功率的精确度等产生影响,这样,在将上述硬件信息发送给第二节点之后,第二节点可以基于该硬件信息可以确定信号发送接收的发送信号与预期的第一信号之间的偏差,和/或,信号接收节点的接收信号与预期的第一信号之间的偏差,从而据此确定如何校准第一测量值,即确定用于校准第一测量值的第一信息,在此不再赘述。
可选地,所述第四信息中的感知能力信息和/或通信能力信息,可以包括以下至少一项:
所述第一业务的信号发送节点的感知能力信息;
所述第一业务的信号发送节点的通信能力信息;
所述第一业务的信号接收节点的感知能力信息;
所述第一业务的信号接收节点的通信能力信息。
其中,感知能力信息可以包括以下至少一项:可用于感知的最大带宽、可用于感知的时域资源、可用于感知的频域资源、可用于感知的天线端口资源、可用于感知的物理天线数量,其中,所述可用于感知的天线端口资源包括:可用于感知的天线端口数量、天线端口与物理天线的映射关系。
上述时域资源和频域资源可以包括时频资源位置、资源频域密度、频域数量、资源时域长度/数量、密度/周期等。上述感知灵敏度可以是为保持第一业务的信号接收节点能够正常感知的最小可接收第一信号强度,其可以用功率或强度表示。
上述感知能力信息可以反映感知节点的感知能力,有助于第二节点据此确定如何校准第一测量值,例如:在感知能力信息包括可用于感知的时域资源的情况下,第二节点可以据此确定第一测量值的时域偏差。
此外,上述通信能力信息可以包括以下至少一项:可用于通信的最大带宽、可用于通信的时域资源、可用于通信的频域资源、可用于通信的天线端口资源、可用于通信的物理天线数量,其中,可用于通信的天线端口资源包括:可用于通信的天线端口数量、天线端口与物理天线的映射关系。
该通信能力信息可以反映感知节点的通信能力,基于该通信能力,可以辅助第二节点确定通信能力上的非理想因素对第一测量值的干扰。
需要说明的是,在实施中可用于感知的时域资源、频域资源、天线端口资源以及物理天线中的至少一项,可以与可用于通信的时域资源、频域资源、天线端口资源以及物理天线中的至少一项部分或完全重叠,在此不作具体限定。
值得提出的是,在一些实施方式中,第一节点可能与第二节点为相同节点,例如:第一节点在获取来自其他感知节点的第三信息时,可以基于该第三信息确定上述第一信息,在此不作具体限定。
在一种可能的实现方式中,所述第一节点获取第一测量值,包括:
在所述第一节点包括所述第一业务的信号接收节点的情况下,所述第一节点对与所述第一业务相关的第一信号进行测量,得到所述第一测量值;和/或,
这样,可以复用第一业务的信号接收节点作为第一节点来校准第一测量值,这样,第一业务的信号接收节点无需将第一测量值传递至第一节点。
在另一种可能的实现方式中,在所述第一节点不包括所述第一业务的信号接收节点的情况下,所述第一节点接收来自所述第一业务的信号接收节点的所述第一测量值。
这样,在第一节点与第一业务的信号接收节点为不同节点的情况下,例如:第一业务的信号接收节点不具有校准第一测量值的能力等,此时,第一节点接收来自第一业务的信号接收节点的第一测量值,并基于第一信息对该第一测量值进行校准,这样,可以使得校准第一测量值的过程更加灵活。
在本申请实施例中,第一节点获取第一信息,以及获取第一测量值,其中,所述第一信息用于指示至少一个感知节点在执行第一业务时存在的非理想因素,所述第一业务包括感知业务或通信感知一体化业务,所述非理想因素包括造成所述第一测量值与真实值之间存在频率偏差、时间偏差、功率偏差、幅度偏差、相位偏差中的至少一项的因素;所述第一节点基于所述第一信息对所述第一测量值进行校准处理,得到第二测量值,其中,所述第一业务的感知结果基于所述第二测量值确定。这样,第一节点能够根据第一业务的感知节点的非理想因素对通过感知测量得到的第一测量值进行校准,以缩小校准后的第二测量值与真实值之间的偏差,提升了基于该第二测量值得到的感知结果的准确性,从而提升了感知性能。
请参阅图4,本申请实施例提供的信息传输方法,其执行主体可以包括第二节点,该第二节点可以包括终端、基站、核心网设备等通信设备中的至少一项,如图4所示,该信息传输方法可以包括以下步骤:
步骤401、第二节点向第一节点发送第一信息,其中,所述第一信息用于指示至少一个感知节点在执行第一业务时存在的非理想因素,所述第一信息用于对所述第一业务的第一测量值进行校准,所述第一业务包括感知业务或通信感知一体化业务,所述非理想因素包括造成所述第一测量值与真实值之间存在频率偏差、时间偏差、功率偏差、幅度偏差、相位偏差中的至少一项的因素。
其中,上述第二节点可以是如图2所示方法实施例中,向第一节点提供第一信息的节点,该第二节点可以是第一业务的信号发送节点、信号接收节点和计算节点中的至少一项,在此不再赘述。
需要说明的是,本申请实施例中的上述第一信息、非理想因素、对第一测量值的校准 等含义和作用与如图2所示方法实施例中的第一信息、非理想因素、对第一测量值的校准等含义和作用相同,在此不再赘述。
可选地,所述第二节点包括以下至少一项:
信号发送节点,所述信号发送节点用于发送与所述第一业务相关的第一信号;
信号接收节点,所述信号接收节点用于对所述第一信号进行测量,得到所述第一测量值;
计算节点,所述计算节点用于根据第二测量值确定所述第一业务的感知结果,所述第二测量值为根据所述第一信息对所述第一测量值进行校准后得到的测量值;
其中,所述第二节点与所述第一节点不同。
可选地,所述第一信息包括以下至少一项:
所述第一业务的信号发送节点和信号接收节点之间的信道的至少一条参考径的参数信息;
所述第一业务的信号发送节点和信号接收节点之间的信道的至少一条参考径的多普勒频率;
第一指示信息,所述第一指示信息用于指示对第一天线测量得到的所述第一测量值与第二天线测量得到的所述第一测量值进行相除处理,得到第一值,其中,所述第一业务的信号接收节点包括所述第一天线和所述第二天线,所述第二测量值包括所述第一值;
第一标识信息,在所述第一测量值的数量大于一个的情况下,所述第一标识信息指示用于获取所述至少一条参考径的参数信息的第一测量值;
第二信息,所述第二信息包括所述第一业务的至少两个信号接收节点之间的时间偏移相关的信息;
所述第一业务的信号发送节点的发射功率控制信息;
所述第一业务的信号发送节点的同相I路信号补偿信息;
所述第一业务的信号发送节点的正交Q路信号补偿信息;
所述第一业务的信号发送节点的天线幅度校准信息;
所述第一业务的信号发送节点的相位偏移校准信息;
所述第一业务的信号接收节点的接收功率控制信息;
所述第一业务的信号接收节点的I路信号补偿信息;
所述第一业务的信号接收节点的Q路信号补偿信息;
所述第一业务的信号接收节点的天线幅度校准信息;
所述第一业务的信号接收节点的相位偏移校准信息;
所述第一业务的信号接收节点获取所述第一测量值的时间戳信息;
所述第一业务的信号发送节点与信号接收节点之间的时偏校准信息;
所述第一业务的信号发送节点与信号接收节点之间的频偏校准信息。
可选地,在所述第二节点向第一节点发送第一信息之前,所述方法还包括:
所述第二节点获取第三信息,其中,所述第三信息包括以下至少一项:所述第一测量值,所述第一测量值对应的感知测量量的历史测量值、第四信息,所述第四信息与所述第一业务的信号发送节点和/或信号接收节点的以下至少一项相关:物理状态信息、硬件信息、感知能力信息、通信能力信息;
所述第二节点根据所述第三信息确定所述第一信息。
在实施中,上述第二节点可以接收来自第一节点的所述第三信息,也可以接收来自执行第一业务的其他节点的第三信息,例如:在感知节点A发送第一信号,感知节点B接收第一信号,第一节点为感知节点B,计算节点为感知节点A或第一设备的情况下,若第二节点为第一设备,则该第一设备可以接收来自感知节点A和/或感知节点B的上述第三信息。
可选地,所述第一测量值对应的感知测量量包括以下至少一项:
所述第一业务的信号发送节点与信号接收节点之间的频域信道响应;
所述第一业务的信号发送节点与信号接收节点之间的信道冲激响应。
可选地,所述物理状态信息包括以下至少一项:
所述第一业务的信号接收节点的目标状态信息,所述目标状态信息包括所述信号接收节点的运动速度信息、位置信息和天线阵列朝向信息中的至少一项;
所述第一业务的信号发送节点的所述目标状态信息;
目标天线对之间的距离信息,所述目标天线对包括所述第一业务的信号发送节点的发射天线和所述第一业务的信号接收节点的接收天线。
可选地,所述第四信息包括以下至少一项:
所述第一业务的信号发送节点的感知能力信息;
所述第一业务的信号接收节点的感知能力信息;
所述第一业务的信号发送节点的通信能力信息;
所述第一业务的信号接收节点的通信能力信息。
可选地,所述感知能力信息包括以下至少一项:
可用于感知的最大带宽、可用于感知的时域资源、可用于感知的频域资源、可用于感知的天线端口资源、可用于感知的物理天线数量,其中,所述可用于感知的天线端口资源包括:可用于感知的天线端口数量、天线端口与物理天线的映射关系;
和/或,
所述硬件信息包括以下至少一项:物理天线数量、最大发射功率、功率放大器增益、功率放大器带宽、功率放大器效率、功率放大器线性度、功率放大器最大输出功率、功率控制的模拟域最小调整步长、功率控制的数字域最小调整步长、模数转换器ADC的动态范围、数模转换器DAC的动态范围、感知灵敏度;
和/或,
所述通信能力信息包括以下至少一项:
可用于通信的最大带宽、可用于通信的时域资源、可用于通信的频域资源、可用于通信的天线端口资源、可用于通信的物理天线数量,其中,可用于通信的天线端口资源包括:可用于通信的天线端口数量、天线端口与物理天线的映射关系。
可选地,在所述第二节点向第一节点发送第一信息之后,所述方法还包括:
所述第二节点接收来自所述第一节点的第二测量值,其中,所述第二测量值为根据所述第一信息对所述第一测量值进行校准后得到的测量值;
所述第二节点根据所述第二测量值确定所述第一业务的感知结果,或者所述第二节点将所述第二测量值发送至计算节点,其中,所述计算节点用于根据所述第二测量值确定所述第一业务的感知结果。
本实施方式中,第二节点还可以作为计算节点,以根据第二测量值来确定第一业务的感知结果。
可选地,在所述第二节点包括所述第一业务的信号接收节点的情况下,所述方法还包括:
所述第二节点对所述第一业务相关的第一信号进行测量,得到所述第一测量值;
所述第二节点向所述第一节点发送所述第一测量值。
本实施方式中,第二节点还可以作为第一业务的信号接收节点,从而对第一信号进行测量,得到第一测量值,并向第一节点发送该第一测量值,以使第一节点基于第一信息对该第一测量值进行校准。
可选地,参考径的所述参数信息包括一下至少一项:
幅度、相位、时延、相对所述第一业务的信号发送节点的离开方位角、相对所述第一业务的信号发送节点的离开俯仰角、相对所述第一业务的信号接收节点的到达方位角、相对所述第一业务的信号接收节点的到达俯仰角。
可选地,所述第二信息包括以下至少一项:
测量时间偏移信息、测量周期信息、测量时间戳信息。
可选地,所述发射功率控制信息包括以下至少一项:
发射功率在模拟域的调整值、发射功率在数字域的调整值、用于控制与所述第一业务相关的第一信号的发射功率的控制因子;
和/或,
所述接收功率控制信息包括以下至少一项:
接收功率在模拟域的调整值、接收功率在数字域的调整值、用于控制与所述第一业务相关的第一信号的接收功率的控制因子。
可选地,所述第一业务的信号发送节点与信号接收节点之间的时偏校准信息,包括以下至少一项:
所述第一业务的信号发送节点与信号接收节点之间的时间校准值;
所述第一业务的信号发送节点指示所述第一业务的信号接收节点的信道状态信息CSI 或信道冲激响应相位校准值;
所述第一业务的信号发送节点指示所述第一业务的信号接收节点的CSI或信道冲激响应校准系数。
可选地,所述第一业务的信号发送节点与信号接收节点之间的频偏校准信息,包括以下至少一项:
所述第一业务的信号发送节点与信号接收节点之间的频率校准值;
所述第一业务的信号发送节点指示所述第一业务的信号接收节点的CSI或信道冲激响应相位校准值;
所述第一业务的信号发送节点指示所述第一业务的信号接收节点的CSI或信道冲激响应校准系数。
本申请实施例中,第二节点向第一节点提供第一信息,以使第一节点基于该第一信息对第一测量值进行校准,以使校准后的第二测量值能够克服非理想因素的干扰,且与真实值之间的偏差减小,这样,基于该第二测量值确定第一业务的感知结果时,能够提升感知精度。
为了便于说明本申请实施例提供的校准方法和信息传输方法,以如下五种应用场景为例进行举例说明:
场景一
如图3a所示,感知节点A发送第一信号,感知节点B接收第一信号,第一节点为感知节点B,计算节点为感知节点A或第一设备。此时,本申请实施例提供的校准方法和信息传输方法可以包括以下过程:
步骤1a、感知节点A或第一设备获取感知先验信息。所述感知先验信息用于辅助感知节点A或第一设备确定第一信息。所述第一信息用于辅助感知节点B对后续的第一测量值进行校准。
其中,上述感知先验信息可以是如图2所示方法实施例中的第四信息,本实施例中,该第四信息具体可以包括以下至少一项:
感知节点B的目标状态信息、感知节点A的目标状态信息、感知节点A与感知节点B的目标天线对之间的绝对距离、感知节点B的硬件信息、感知节点A的硬件信息、感知节点B的感知和/或通信能力信息、感知节点A的感知和/或通信能力信息。
步骤2a、感知节点B接收第一信号,并获得第一测量值,感知节点B向感知节点A或第一设备反馈第一测量值。
其中,所述第一测量值为包含了非理想因素影响的感知测量量的测量值。
需要说明的是,在实施中,并不限定上述步骤1a和步骤2a的顺序,例如:可以先执行步骤2a再执行步骤1a,或者先执行步骤1a再执行步骤2a,或者,可以同时执行步骤1a和步骤2a,例如:感知节点B先接收第一信号,并获得第一测量值,然后感知节点B向感知节点A或第一设备发送第一测量值和感知节点B的目标状态信息、硬件信息以及 感知和/或通信能力信息。
步骤3a、感知节点A或第一设备基于感知节点B发送的感知先验信息和第一测量值,向感知节点B发送第一信息。
其中,所述第一信息用于辅助感知节点B对第一测量值进行校准,本实施例中,第一信息具体可以包括以下至少一项:
感知节点A和感知节点B之间信道的至少1条参考径的参数信息,所述参考径由感知节点A或第一设备选定,为感知节点B进行后续测量量测量值校准的参考径。
若步骤2a中感知节点B提供了连续不少于1组第一测量值,则第一信息包括感知节点A和感知节点B之间信道的至少1条参考径的多普勒频率,其中,该参考径可以由感知节点A选定;
若感知节点B的第一测量值能够从多个接收天线获得,则第一信息还可以包括如上实施例中的第一指示信息;
若步骤2a中感知节点B提供了连续不少于1组第一测量值,则第一信息还可以包如上实施例中的第一标识信息;
若感知节点B的个数大于1,且至少1个感知节点B的至少一项感知先验信息(例如位置信息)不可用,则感知节点A向感知节点B发送的第一信息中还包括如上实施例中的第二信息;
感知节点A的发射功率控制信息;
感知节点A的IQ路信号补偿信息;
感知节点A与感知节点B之间的时偏校准信息;
感知节点A与感知节点B之间的频偏校准信息
感知节点A的天线幅度、相位偏移校准信息。
需要说明的是,上述场景一中,复用信号接收节点(感知节点B)来校准第一测量值,此时,感知节点B可以获取该感知节点B在执行第一业务时存在的非理想因素,从而无需传递。
步骤4a、感知节点B基于感知节点A的第一信息,对第一测量值进行校准,得到第二测量值,且感知节点B向感知节点A或第一设备发送所述第二测量值。
其中,上述第二测量值为消除了至少部分非理想因素的感知测量量的测量值。
步骤5a、感知节点A或第一设备基于至少1组第二测量值,计算得到感知结果,并将感知结果发送至感知请求方。
需要说明的是,上述场景一中,感知节点A的数量可以是1个或至少两个,感知节点B的数量也可以是一个或至少两个,此时,若感知节点B的数量为至少两个,则上述第一节点可以是该至少两个感知节点B中的任意至少一项,此时,第一节点还可以获取其他感知节点B的第一信息,并根据各个感知节点B的第一信息来对该感知节点B的第一测量值进行校准。
场景二
如图3a所示,感知节点A发送第一信号,感知节点B接收第一信号,第一节点为感知节点A,计算节点为感知节点A或第一设备。此时,本申请实施例提供的校准方法和信息传输方法可以包括以下过程:
步骤1b、感知节点A或第一设备获取感知先验信息。所述感知先验信息用于辅助节点A或第一设备对后续第一测量值进行校准。
其中,上述感知先验信息与场景一中的感知先验信息的具体含义相同,在此不再赘述。
步骤2b、感知节点B接收第一信号,并获得第一测量值,感知节点B向感知节点A反馈第一测量值。
步骤3b、感知节点B向感知节点A发送第一信息。
其中,所述第一信息用于辅助感知节点A对第一测量值进行校准。本实施例中,第一信息具体可以包括以下至少一项:
1)感知节点B的接收功率控制信息;
2)感知节点B的IQ路信号补偿信息;
3)感知节点A与感知节点B之间的时偏校准信息;
4)感知节点A与感知节点B之间的频偏校准信息
5)感知节点B的天线幅度、相位偏移校准信息;
6)感知节点B获得第一测量值的时间戳信息,其中,所述时间戳可以是相对任意一个指定参考时间的时间差。所述指定的参考时间为感知节点A与感知节点B共同约定。若感知节点B在进行感知/通感一体化业务时需要获取不少于1组第一测量值,则时间戳信息也不少于1组;且可选地,时间戳信息还可以包括时间戳序号与第一测量值序号的关联关系。
需要说明的是,上述场景二中,复用信号发送节点(感知节点A)来校准第一测量值,此时,感知节点A可以获取该感知节点A在执行第一业务时存在的非理想因素,从而无需传递。
步骤4b、感知节点A基于感知节点B的第一信息,对第一测量值进行校准,得到第二测量值。
可选地,在计算节点为第一设备时,本步骤中,感知节点A可以向第一设备发送所述第二测量值。
步骤5b、感知节点A或第一设备基于至少1组第二测量值,计算得到感知结果,并将感知结果发送至感知请求方。
需要说明的是,本实施例中,并不限定上述步骤2b和步骤3b的执行顺序,例如:根据所述第一信息具体内容不同,步骤3b也可以在步骤2b之前执行,或者与步骤2b同时执行。例如,若第一信息仅包含上述选项1)、选项2)和选项5)的至少一项时,步骤3b可在步骤2b之前或同时执行;若第一信息还包含上述选项3)、选项4)和选项6)的至 少一项,步骤3b可在步骤2b之后或同时执行;或者,所述第一信息可以拆分成多个部分,该多个部分可以分多次发送。
此外,上述场景二中,感知节点A的数量可以是1个或至少两个,感知节点B的数量也可以是一个或至少两个,此时,若感知节点A的数量为至少两个,则上述第一节点可以是该至少两个感知节点A中的任意至少一个,此时,第一节点还可以获取其他感知节点A的第一信息,并根据各个感知节点A的第一信息来对与基于该感知节点A发送的第一信号获取的第一测量值进行校准。
场景三
如图3a所示,感知节点A发送第一信号,感知节点B接收第一信号,第一节点和计算节点为第一设备。此时,本申请实施例提供的校准方法和信息传输方法可以包括以下过程:
步骤1c、第一设备获取感知先验信息。所述感知先验信息用于辅助第一设备对后续第一测量值进行校准。
其中,上述感知先验信息与场景一中的感知先验信息的具体含义相同,在此不再赘述。
步骤2c、感知节点B接收第一信号,并获得第一测量值,且向第一设备发送第一测量值。
步骤3c、感知节点A和/或感知节点B向第一设备发送第一信息。
其中,所述第一信息用于辅助第一设备对第一测量值进行校准,本实施例中,第一信息具体可以包括以下至少一项:
感知节点A和感知节点B之间信道的至少1条参考径的参数信息,所述参考径可以由感知节点B选定,为第一设备进行后续测量量测量值校准的参考径。
若感知节点B的第一测量值能够从多个接收天线获得,则第一信息还可以包括如上实施例中的第一指示信息;
感知节点A和/或感知节点B的接收功率控制信息;
感知节点A和/或感知节点B的IQ路信号补偿信息;
感知节点A与感知节点B之间的时偏校准信息;
感知节点A与感知节点B之间的频偏校准信息
感知节点A和/或感知节点B的天线幅度、相位偏移校准信息。
步骤4c、第一设备基于节点A和/或节点B的第一信息,对第一测量值进行校准,得到第二测量值。
其中,所述第二测量值为消除了至少部分非理想因素的感知测量量测量值。
步骤5c、第一设备基于至少1组第二测量值,计算得到感知结果,并将感知结果发送至感知请求方。
需要说明的是,本实施例中,并不限定上述步骤2c和步骤3c的执行顺序,例如:根据所述第一信息具体内容不同,步骤3c也可以在步骤2c之前执行,或者与步骤2c同时 执行。例如,若第一信息仅包含上述选项3)、选项4)和选项7)的至少一项时,步骤3c可在步骤2c之前或同时执行;若第一信息还包含上述选项1)、选项2)、选项5)和选项6)的至少一项,步骤3c可在步骤2c之后或同时执行;或者,所述第一信息可以拆分成多个部分,该多个部分可以分多次发送。
此外,上述场景三中,感知节点A的数量可以是1个或至少两个,感知节点B的数量也可以是一个或至少两个,此时,若感知节点A和/或感知节点B的数量为至少两个,则上述第一节点可以获取全部感知节点A和感知节点B的第一信息,并据此对第一测量值进行校准,例如:某一第一测量值为感知节点B1对来自感知节点A1的第一信号进行感知测量得到,则可以基于感知节点A1和感知节点B1的第一信息对该第一测量值进行校准。
场景四
如图3b所示,感知节点A发送第一信号并接收第一信号的回波信号,第一节点和计算节点为第一设备。此时,本申请实施例提供的校准方法和信息传输方法可以包括以下过程:
步骤1d、第一设备获取感知先验信息。
其中,所述感知先验信息用于辅助第一设备确定第一信息。本实施例中,上述感知先验信息可以包括以下至少一项:
感知节点A的目标状态信息、感知节点A的感知和/或通信能力信息、感知节点A的硬件信息。
步骤2d、感知节点A发送第一信号,并接收第一信号的回波信号,获得第一测量值,且感知节点A向第一设备发送第一测量值。
步骤3d、感知节点A向第一设备发送第一信息。
其中,所述第一信息用于辅助第一设备对第一测量值进行校准。本实施例中,第一信息可以包括以下至少一项:
1)感知节点A的发射功率控制信息;
2)感知节点A的接收功率控制信息;
3)感知节点A的IQ路信号补偿信息;
4)感知节点A的天线幅度、相位偏移校准信息;
5)感知节点A获得第一测量值的时间戳信息。
步骤4d、第一设备基于感知节点A的第一信息,对第一测量值进行校准,得到第二测量值。
步骤5d、第一设备基于至少1组第二测量值,计算得到感知结果,并将感知结果发送至感知请求方。
需要说明的是,本实施例中,并不限定上述步骤2d和步骤3d的执行顺序,例如:根据所述第一信息具体内容不同,步骤3d也可以在步骤2d之前执行,或者与步骤2d同时 执行。例如,若第一信息仅包含上述选项1)、选项2)和选项3)的至少一项时,步骤3d可在步骤2d之前或同时执行;若第一信息还包含上述选项4)时,步骤3d可在步骤2d之后或同时执行;或者,所述第一信息可以拆分成多个部分,该多个部分可以分多次发送。
此外,上述场景四中,感知节点A的数量可以是1个或至少两个,其中,若感知节点A的数量为至少两个,则上述第一节点可以获取全部感知节点A的第一信息,并据此对基于对应的感知节点A测量得到的第一测量值进行校准。
场景五
如图3b所示,感知节点A发送第一信号并接收第一信号的回波信号,第一节点为感知节点A,计算节点为第一设备,其中,感知节点A的数量可以大于1。此时,本申请实施例提供的校准方法和信息传输方法可以包括以下过程:
步骤1e、第一设备获取感知先验信息。所述感知先验信息用于辅助第一设备确定第一信息。
其中,上述感知先验信息与场景一中的感知先验信息的具体含义相同,在此不再赘述。
步骤2e、感知节点A发送第一信号,并接收第一信号的回波信号,获得第一测量值和第一测量值的时间戳信息,且感知节点A向第一设备发送第一测量值和第一测量值的时间戳信息。
步骤3e、第一设备向至少一个感知节点A发送第一信息。
其中,所述第一信息用于辅助感知节点A对后续第一测量值进行校准。本实施例中,第一信息可以包括以下至少一项:
第一设备指定的参考径参数信息、测量时间偏移(时偏)信息、测量周期信息、测量时间戳信息。
步骤4e、感知节点A基于第一设备的第六信息,对第一测量值进行校准,得到第二测量值,且感知节点A向第一设备发送第二测量值。
步骤5e、第一设备基于至少1组第二测量值,计算得到感知结果,并将感知结果发送至感知请求方。
上述场景五中,感知节点A的数量可以是至少两个,每一个感知节点A在获取第一测量值时,还获取该第一测量值的时间戳信息,基于该时间戳信息,可以对至少两个感知节点A的第一测量值进行时间同步校准。
本申请实施例提供的校准方法,执行主体可以为校准装置。本申请实施例中以校准装置执行校准方法为例,说明本申请实施例提供的校准装置。
参照图5,本申请实施例还提供了一种校准装置,应用于第一节点,如图5所示,该校准装置500包括:
第一获取模块501,用于获取第一信息,以及获取第一测量值,其中,所述第一信息用于指示至少一个感知节点在执行第一业务时存在的非理想因素,所述第一业务包括感知业务或通信感知一体化业务,所述非理想因素包括造成所述第一测量值与真实值之间存在 频率偏差、时间偏差、功率偏差、幅度偏差、相位偏差中的至少一项的因素;
校准模块502,用于基于所述第一信息对所述第一测量值进行校准处理,得到第二测量值,其中,所述第一业务的感知结果基于所述第二测量值确定。
可选地,所述第一节点包括以下至少一项:
信号发送节点,所述信号发送节点用于发送与所述第一业务相关的第一信号;
信号接收节点,所述信号接收节点用于对所述第一信号进行测量,得到所述第一测量值;
计算节点,所述计算节点用于根据所述第二测量值确定所述第一业务的感知结果。
可选地,所述第一信息包括以下至少一项:
所述第一业务的信号发送节点和信号接收节点之间的信道的至少一条参考径的参数信息;
所述第一业务的信号发送节点和信号接收节点之间的信道的至少一条参考径的多普勒频率;
第一指示信息,所述第一指示信息用于指示对第一天线测量得到的所述第一测量值与第二天线测量得到的所述第一测量值进行相除处理,得到第一值,其中,所述第一业务的信号接收节点包括所述第一天线和所述第二天线,所述第二测量值包括所述第一值;
第一标识信息,在所述第一测量值的数量大于一个的情况下,所述第一标识信息指示用于获取所述至少一条参考径的参数信息的第一测量值;
第二信息,所述第二信息包括所述第一业务的至少两个信号接收节点之间的时间偏移相关的信息;
所述第一业务的信号发送节点的发射功率控制信息;
所述第一业务的信号发送节点的同相I路信号补偿信息;
所述第一业务的信号发送节点的正交Q路信号补偿信息;
所述第一业务的信号发送节点的天线幅度校准信息;
所述第一业务的信号发送节点的相位偏移校准信息;
所述第一业务的信号接收节点的接收功率控制信息;
所述第一业务的信号接收节点的I路信号补偿信息;
所述第一业务的信号接收节点的Q路信号补偿信息;
所述第一业务的信号接收节点的天线幅度校准信息;
所述第一业务的信号接收节点的相位偏移校准信息;
所述第一业务的信号接收节点获取所述第一测量值的时间戳信息;
所述第一业务的信号发送节点与信号接收节点之间的时偏校准信息;
所述第一业务的信号发送节点与信号接收节点之间的频偏校准信息。
可选地,校准装置500还包括:
第一确定模块,用于在所述第一节点包括计算节点的情况下,根据所述第二测量值确 定所述第一业务的感知结果;或者,
第二发送模块,用于在所述第一节点不包括计算节点的情况下,向所述计算节点发送所述第二测量值,其中,所述计算节点用于根据所述第二测量值确定所述第一业务的感知结果。
可选地,所述第一获取模块501具体用于:
接收来自第二节点的第一信息,其中,所述第二节点包括所述第一业务的信号发送节点、所述第一业务的信号接收节点和计算节点中的,且与所述第一节点不同的至少一个节点。
可选地,校准装置500还包括:
第三发送模块,用于向所述第二节点发送第三信息;
其中,所述第三信息包括以下至少一项:所述第一测量值,所述第一测量值对应的感知测量量的历史测量值、第四信息,所述第三信息用于辅助所述第二节点确定所述第一信息,所述第四信息与所述第一业务的信号发送节点和/或信号接收节点的以下至少一项相关:物理状态信息、硬件信息、感知能力信息、通信能力信息;
可选地,所述第一测量值对应的感知测量量包括以下至少一项:
所述第一业务的信号发送节点与信号接收节点之间的频域信道响应;
所述第一业务的信号发送节点与信号接收节点之间的信道冲激响应。
可选地,所述物理状态信息包括以下至少一项:
所述第一业务的信号接收节点的目标状态信息,所述目标状态信息包括所述信号接收节点的运动速度信息、位置信息和天线阵列朝向信息中的至少一项;
所述第一业务的信号发送节点的所述目标状态信息;
目标天线对之间的距离信息,所述目标天线对包括所述第一业务的信号发送节点的发射天线和所述第一业务的信号接收节点的接收天线。
可选地,所述第四信息包括以下至少一项:
所述第一业务的信号发送节点的感知能力信息;
所述第一业务的信号接收节点的感知能力信息;
所述第一业务的信号发送节点的通信能力信息;
所述第一业务的信号接收节点的通信能力信息。
可选地,所述感知能力信息包括以下至少一项:
可用于感知的最大带宽、可用于感知的时域资源、可用于感知的频域资源、可用于感知的天线端口资源、可用于感知的物理天线数量,其中,所述可用于感知的天线端口资源包括:可用于感知的天线端口数量、天线端口与物理天线的映射关系;
和/或,
所述硬件信息包括以下至少一项:物理天线数量、最大发射功率、功率放大器增益、功率放大器带宽、功率放大器效率、功率放大器线性度、功率放大器最大输出功率、功率 控制的模拟域最小调整步长、功率控制的数字域最小调整步长、模数转换器ADC的动态范围、数模转换器DAC的动态范围、感知灵敏度;
和/或,
所述通信能力信息包括以下至少一项:
可用于通信的最大带宽、可用于通信的时域资源、可用于通信的频域资源、可用于通信的天线端口资源、可用于通信的物理天线数量,其中,可用于通信的天线端口资源包括:可用于通信的天线端口数量、天线端口与物理天线的映射关系。
可选地,所述第一获取模块501,包括:
测量单元,用于在所述第一节点包括所述第一业务的信号接收节点的情况下,所述第一节点对与所述第一业务相关的第一信号进行测量,得到所述第一测量值;和/或,
第一接收单元,用于在所述第一节点不包括所述第一业务的信号接收节点的情况下,所述第一节点接收来自所述第一业务的信号接收节点的所述第一测量值。
可选地,参考径的所述参数信息包括一下至少一项:
幅度、相位、时延、相对所述第一业务的信号发送节点的离开方位角、相对所述第一业务的信号发送节点的离开俯仰角、相对所述第一业务的信号接收节点的到达方位角、相对所述第一业务的信号接收节点的到达俯仰角。
可选地,所述第二信息包括以下至少一项:
测量时间偏移信息、测量周期信息、测量时间戳信息。
可选地,所述发射功率控制信息包括以下至少一项:
发射功率在模拟域的调整值、发射功率在数字域的调整值、用于控制与所述第一业务相关的第一信号的发射功率的控制因子;
和/或,
所述接收功率控制信息包括以下至少一项:
接收功率在模拟域的调整值、接收功率在数字域的调整值、用于控制与所述第一业务相关的第一信号的接收功率的控制因子。
可选地,所述第一业务的信号发送节点与信号接收节点之间的时偏校准信息,包括以下至少一项:
所述第一业务的信号发送节点与信号接收节点之间的时间校准值;
所述第一业务的信号发送节点指示所述第一业务的信号接收节点的信道状态信息CSI或信道冲激响应相位校准值;
所述第一业务的信号发送节点指示所述第一业务的信号接收节点的CSI或信道冲激响应校准系数。
可选地,所述第一业务的信号发送节点与信号接收节点之间的频偏校准信息,包括以下至少一项:
所述第一业务的信号发送节点与信号接收节点之间的频率校准值;
所述第一业务的信号发送节点指示所述第一业务的信号接收节点的CSI或信道冲激响应相位校准值;
所述第一业务的信号发送节点指示所述第一业务的信号接收节点的CSI或信道冲激响应校准系数。
本申请实施例提供的校准装置能够实现图2所示方法实施例中第一节点实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例提供的信息传输方法,执行主体可以为信息传输装置。本申请实施例中以信息传输装置执行信息传输方法为例,说明本申请实施例提供的信息传输装置。
参照图6,本申请实施例还提供了一种信息传输装置,应用于第二节点,如图6所示,该信息传输装置600包括:
第一发送模块601,用于向第一节点发送第一信息,其中,所述第一信息用于指示至少一个感知节点在执行第一业务时存在的非理想因素,所述第一信息用于对所述第一业务的第一测量值进行校准,所述第一业务包括感知业务或通信感知一体化业务,所述非理想因素包括造成所述第一测量值与真实值之间存在频率偏差、时间偏差、功率偏差、幅度偏差、相位偏差中的至少一项的因素。
可选地,所述第二节点包括以下至少一项:
信号发送节点,所述信号发送节点用于发送与所述第一业务相关的第一信号;
信号接收节点,所述信号接收节点用于对所述第一信号进行测量,得到所述第一测量值;
计算节点,所述计算节点用于根据第二测量值确定所述第一业务的感知结果,所述第二测量值为根据所述第一信息对所述第一测量值进行校准后得到的测量值;
其中,所述第二节点与所述第一节点不同。
可选地,所述第一信息包括以下至少一项:
所述第一业务的信号发送节点和信号接收节点之间的信道的至少一条参考径的参数信息;
所述第一业务的信号发送节点和信号接收节点之间的信道的至少一条参考径的多普勒频率;
第一指示信息,所述第一指示信息用于指示对第一天线测量得到的所述第一测量值与第二天线测量得到的所述第一测量值进行相除处理,得到第一值,其中,所述第一业务的信号接收节点包括所述第一天线和所述第二天线,所述第二测量值包括所述第一值;
第一标识信息,在所述第一测量值的数量大于一个的情况下,所述第一标识信息指示用于获取所述至少一条参考径的参数信息的第一测量值;
第二信息,所述第二信息包括所述第一业务的至少两个信号接收节点之间的时间偏移相关的信息;
所述第一业务的信号发送节点的发射功率控制信息;
所述第一业务的信号发送节点的同相I路信号补偿信息;
所述第一业务的信号发送节点的正交Q路信号补偿信息;
所述第一业务的信号发送节点的天线幅度校准信息;
所述第一业务的信号发送节点的相位偏移校准信息;
所述第一业务的信号接收节点的接收功率控制信息;
所述第一业务的信号接收节点的I路信号补偿信息;
所述第一业务的信号接收节点的Q路信号补偿信息;
所述第一业务的信号接收节点的天线幅度校准信息;
所述第一业务的信号接收节点的相位偏移校准信息;
所述第一业务的信号接收节点获取所述第一测量值的时间戳信息;
所述第一业务的信号发送节点与信号接收节点之间的时偏校准信息;
所述第一业务的信号发送节点与信号接收节点之间的频偏校准信息。
可选地,信息传输装置600还包括:
第二获取模块,用于获取第三信息,其中,所述第三信息包括以下至少一项:所述第一测量值,所述第一测量值对应的感知测量量的历史测量值、第四信息,所述第四信息与所述第一业务的信号发送节点和/或信号接收节点的以下至少一项相关:物理状态信息、硬件信息、感知能力信息、通信能力信息;
第二确定模块,用于根据所述第三信息确定所述第一信息。
可选地,所述第一测量值对应的感知测量量包括以下至少一项:
所述第一业务的信号发送节点与信号接收节点之间的频域信道响应;
所述第一业务的信号发送节点与信号接收节点之间的信道冲激响应。
可选地,所述物理状态信息包括以下至少一项:
所述第一业务的信号接收节点的目标状态信息,所述目标状态信息包括所述信号接收节点的运动速度信息、位置信息和天线阵列朝向信息中的至少一项;
所述第一业务的信号发送节点的所述目标状态信息;
目标天线对之间的距离信息,所述目标天线对包括所述第一业务的信号发送节点的发射天线和所述第一业务的信号接收节点的接收天线。
可选地,所述第四信息包括以下至少一项:
所述第一业务的信号发送节点的感知能力信息;
所述第一业务的信号接收节点的感知能力信息;
所述第一业务的信号发送节点的通信能力信息;
所述第一业务的信号接收节点的通信能力信息。
可选地,所述感知能力信息包括以下至少一项:
可用于感知的最大带宽、可用于感知的时域资源、可用于感知的频域资源、可用于感知的天线端口资源、可用于感知的物理天线数量,其中,所述可用于感知的天线端口 资源包括:可用于感知的天线端口数量、天线端口与物理天线的映射关系;
和/或,
所述硬件信息包括以下至少一项:物理天线数量、最大发射功率、功率放大器增益、功率放大器带宽、功率放大器效率、功率放大器线性度、功率放大器最大输出功率、功率控制的模拟域最小调整步长、功率控制的数字域最小调整步长、模数转换器ADC的动态范围、数模转换器DAC的动态范围、感知灵敏度;
和/或,
所述通信能力信息包括以下至少一项:
可用于通信的最大带宽、可用于通信的时域资源、可用于通信的频域资源、可用于通信的天线端口资源、可用于通信的物理天线数量,其中,可用于通信的天线端口资源包括:可用于通信的天线端口数量、天线端口与物理天线的映射关系。
可选地,信息传输装置600还包括:
接收模块,用于接收来自所述第一节点的第二测量值,其中,所述第二测量值为根据所述第一信息对所述第一测量值进行校准后得到的测量值;
第三确定模块或者第四发送模块,所述第三确定模块用于根据所述第二测量值确定所述第一业务的感知结果,所述第四发送模块所述第二节点将所述第二测量值发送至计算节点,其中,所述计算节点用于根据所述第二测量值确定所述第一业务的感知结果。
可选地,在所述第二节点包括所述第一业务的信号接收节点的情况下,信息传输装置600还包括:
测量模块,用于对所述第一业务相关的第一信号进行测量,得到所述第一测量值;
第五发送模块,用于向所述第一节点发送所述第一测量值。
可选地,参考径的所述参数信息包括一下至少一项:
幅度、相位、时延、相对所述第一业务的信号发送节点的离开方位角、相对所述第一业务的信号发送节点的离开俯仰角、相对所述第一业务的信号接收节点的到达方位角、相对所述第一业务的信号接收节点的到达俯仰角。
可选地,所述第二信息包括以下至少一项:
测量时间偏移信息、测量周期信息、测量时间戳信息。
可选地,所述发射功率控制信息包括以下至少一项:
发射功率在模拟域的调整值、发射功率在数字域的调整值、用于控制与所述第一业务相关的第一信号的发射功率的控制因子;
和/或,
所述接收功率控制信息包括以下至少一项:
接收功率在模拟域的调整值、接收功率在数字域的调整值、用于控制与所述第一业务相关的第一信号的接收功率的控制因子。
可选地,所述第一业务的信号发送节点与信号接收节点之间的时偏校准信息,包括以 下至少一项:
所述第一业务的信号发送节点与信号接收节点之间的时间校准值;
所述第一业务的信号发送节点指示所述第一业务的信号接收节点的信道状态信息CSI或信道冲激响应相位校准值;
所述第一业务的信号发送节点指示所述第一业务的信号接收节点的CSI或信道冲激响应校准系数。
可选地,所述第一业务的信号发送节点与信号接收节点之间的频偏校准信息,包括以下至少一项:
所述第一业务的信号发送节点与信号接收节点之间的频率校准值;
所述第一业务的信号发送节点指示所述第一业务的信号接收节点的CSI或信道冲激响应相位校准值;
所述第一业务的信号发送节点指示所述第一业务的信号接收节点的CSI或信道冲激响应校准系数。
本申请实施例提供的校准装置能够实现图4所示方法实施例中第二节点实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图7所示,本申请实施例还提供一种通信设备700,包括处理器701和存储器702,存储器702上存储有可在所述处理器701上运行的程序或指令,例如,该通信设备700作为第一节点时,该程序或指令被处理器701执行时实现如图2所示方法实施例的各个步骤,且能达到相同的技术效果。该通信设备700作为第二节点时,该程序或指令被处理器701执行时实现如图4所示方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种通信设备,包括处理器和通信接口。
在一种可选的实施方式中,在所述通信设为第一节点的情况下,所述通信接口用于获取第一信息,以及获取第一测量值,其中,所述第一信息用于指示至少一个感知节点在执行第一业务时存在的非理想因素,所述第一业务包括感知业务或通信感知一体化业务,所述非理想因素包括造成所述第一测量值与真实值之间存在频率偏差、时间偏差、功率偏差、幅度偏差、相位偏差中的至少一项的因素;所述处理器用于基于所述第一信息对所述第一测量值进行校准处理,得到第二测量值,其中,所述第一业务的感知结果基于所述第二测量值确定。
在另一种可选的实施方式中,在所述通信设备为第二节点的情况下,所述通信接口用于向第一节点发送第一信息,其中,所述第一信息用于指示至少一个感知节点在执行第一业务时存在的非理想因素,所述第一信息用于对所述第一业务的第一测量值进行校准,所述第一业务包括感知业务或通信感知一体化业务,所述非理想因素包括造成所述第一测量值与真实值之间存在频率偏差、时间偏差、功率偏差、幅度偏差、相位偏差中的至少一项的因素。
该通信设备实施例与上述方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该通信设备施例中,且能达到相同的技术效果。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现如图2或图4所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如图2或图4所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如图2或图4所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (35)

  1. 一种校准方法,包括:
    第一节点获取第一信息,以及获取第一测量值,其中,所述第一信息用于指示至少一个感知节点在执行第一业务时存在的非理想因素,所述第一业务包括感知业务或通信感知一体化业务,所述非理想因素包括造成所述第一测量值与真实值之间存在频率偏差、时间偏差、功率偏差、幅度偏差、相位偏差中的至少一项的因素;
    所述第一节点基于所述第一信息对所述第一测量值进行校准处理,得到第二测量值,其中,所述第一业务的感知结果基于所述第二测量值确定。
  2. 根据权利要求1所述的方法,其中,所述第一节点包括以下至少一项:
    信号发送节点,所述信号发送节点用于发送与所述第一业务相关的第一信号;
    信号接收节点,所述信号接收节点用于对所述第一信号进行测量,得到所述第一测量值;
    计算节点,所述计算节点用于根据所述第二测量值确定所述第一业务的感知结果。
  3. 根据权利要求2所述的方法,其中,所述第一信息包括以下至少一项:
    所述第一业务的信号发送节点和信号接收节点之间的信道的至少一条参考径的参数信息;
    所述第一业务的信号发送节点和信号接收节点之间的信道的至少一条参考径的多普勒频率;
    第一指示信息,所述第一指示信息用于指示对第一天线测量得到的所述第一测量值与第二天线测量得到的所述第一测量值进行相除处理,得到第一值,其中,所述第一业务的信号接收节点包括所述第一天线和所述第二天线,所述第二测量值包括所述第一值;
    第一标识信息,在所述第一测量值的数量大于一个的情况下,所述第一标识信息指示用于获取所述至少一条参考径的参数信息的第一测量值;
    第二信息,所述第二信息包括所述第一业务的至少两个信号接收节点之间的时间偏移相关的信息;
    所述第一业务的信号发送节点的发射功率控制信息;
    所述第一业务的信号发送节点的同相I路信号补偿信息;
    所述第一业务的信号发送节点的正交Q路信号补偿信息;
    所述第一业务的信号发送节点的天线幅度校准信息;
    所述第一业务的信号发送节点的相位偏移校准信息;
    所述第一业务的信号接收节点的接收功率控制信息;
    所述第一业务的信号接收节点的I路信号补偿信息;
    所述第一业务的信号接收节点的Q路信号补偿信息;
    所述第一业务的信号接收节点的天线幅度校准信息;
    所述第一业务的信号接收节点的相位偏移校准信息;
    所述第一业务的信号接收节点获取所述第一测量值的时间戳信息;
    所述第一业务的信号发送节点与信号接收节点之间的时偏校准信息;
    所述第一业务的信号发送节点与信号接收节点之间的频偏校准信息。
  4. 根据权利要求1至3中任一项所述的方法,其中,在所述第一节点基于所述第一信息对所述第一测量值进行校准处理,得到第二测量值之后,所述方法还包括:
    在所述第一节点包括计算节点的情况下,所述第一节点根据所述第二测量值确定所述第一业务的感知结果;或者,
    在所述第一节点不包括计算节点的情况下,所述第一节点向所述计算节点发送所述第二测量值,其中,所述计算节点用于根据所述第二测量值确定所述第一业务的感知结果。
  5. 根据权利要求1至3中任一项所述的方法,其中,所述第一节点获取第一信息,包括:
    所述第一节点接收来自第二节点的第一信息,其中,所述第二节点包括所述第一业务的信号发送节点、所述第一业务的信号接收节点和计算节点中的,且与所述第一节点不同的至少一个节点。
  6. 根据权利要求5所述的方法,其中,在所述第一节点接收来自第二节点的第一信息之前,所述方法还包括:
    所述第一节点向所述第二节点发送第三信息;
    其中,所述第三信息包括以下至少一项:所述第一测量值,所述第一测量值对应的感知测量量的历史测量值、第四信息,所述第三信息用于辅助所述第二节点确定所述第一信息,所述第四信息与所述第一业务的信号发送节点和/或信号接收节点的以下至少一项相关:物理状态信息、硬件信息、感知能力信息、通信能力信息。
  7. 根据权利要求6所述的方法,其中,所述第一测量值对应的感知测量量包括以下至少一项:
    所述第一业务的信号发送节点与信号接收节点之间的频域信道响应;
    所述第一业务的信号发送节点与信号接收节点之间的信道冲激响应。
  8. 根据权利要求6所述的方法,其中,所述物理状态信息包括以下至少一项:
    所述第一业务的信号接收节点的目标状态信息,所述目标状态信息包括所述信号接收节点的运动速度信息、位置信息和天线阵列朝向信息中的至少一项;
    所述第一业务的信号发送节点的所述目标状态信息;
    目标天线对之间的距离信息,所述目标天线对包括所述第一业务的信号发送节点的发射天线和所述第一业务的信号接收节点的接收天线。
  9. 根据权利要求6所述的方法,其中,所述第四信息包括以下至少一项:
    所述第一业务的信号发送节点的感知能力信息;
    所述第一业务的信号接收节点的感知能力信息;
    所述第一业务的信号发送节点的通信能力信息;
    所述第一业务的信号接收节点的通信能力信息。
  10. 根据权利要求9所述的方法,其中,所述感知能力信息包括以下至少一项:
    可用于感知的最大带宽、可用于感知的时域资源、可用于感知的频域资源、可用于感知的天线端口资源、可用于感知的物理天线数量,其中,所述可用于感知的天线端口资源包括:可用于感知的天线端口数量、天线端口与物理天线的映射关系;
    和/或,
    所述硬件信息包括以下至少一项:物理天线数量、最大发射功率、功率放大器增益、功率放大器带宽、功率放大器效率、功率放大器线性度、功率放大器最大输出功率、功率控制的模拟域最小调整步长、功率控制的数字域最小调整步长、模数转换器ADC的动态范围、数模转换器DAC的动态范围、感知灵敏度;
    和/或,
    所述通信能力信息包括以下至少一项:
    可用于通信的最大带宽、可用于通信的时域资源、可用于通信的频域资源、可用于通信的天线端口资源、可用于通信的物理天线数量,其中,可用于通信的天线端口资源包括:可用于通信的天线端口数量、天线端口与物理天线的映射关系。
  11. 根据权利要求1至3中任一项所述的方法,其中,所述第一节点获取第一测量值,包括:
    在所述第一节点包括所述第一业务的信号接收节点的情况下,所述第一节点对与所述第一业务相关的第一信号进行测量,得到所述第一测量值;和/或,
    在所述第一节点不包括所述第一业务的信号接收节点的情况下,所述第一节点接收来自所述第一业务的信号接收节点的所述第一测量值。
  12. 根据权利要求3所述的方法,其中,参考径的所述参数信息包括一下至少一项:
    幅度、相位、时延、相对所述第一业务的信号发送节点的离开方位角、相对所述第一业务的信号发送节点的离开俯仰角、相对所述第一业务的信号接收节点的到达方位角、相对所述第一业务的信号接收节点的到达俯仰角。
  13. 根据权利要求3所述的方法,其中,所述第二信息包括以下至少一项:
    测量时间偏移信息、测量周期信息、测量时间戳信息。
  14. 根据权利要求3所述的方法,其中,所述发射功率控制信息包括以下至少一项:
    发射功率在模拟域的调整值、发射功率在数字域的调整值、用于控制与所述第一业务相关的第一信号的发射功率的控制因子;
    和/或,
    所述接收功率控制信息包括以下至少一项:
    接收功率在模拟域的调整值、接收功率在数字域的调整值、用于控制与所述第一业务相关的第一信号的接收功率的控制因子。
  15. 根据权利要求3所述的方法,其中,所述第一业务的信号发送节点与信号接收节点之间的时偏校准信息,包括以下至少一项:
    所述第一业务的信号发送节点与信号接收节点之间的时间校准值;
    所述第一业务的信号发送节点指示所述第一业务的信号接收节点的信道状态信息CSI或信道冲激响应相位校准值;
    所述第一业务的信号发送节点指示所述第一业务的信号接收节点的CSI或信道冲激响应校准系数。
  16. 根据权利要求3所述的方法,其中,所述第一业务的信号发送节点与信号接收节点之间的频偏校准信息,包括以下至少一项:
    所述第一业务的信号发送节点与信号接收节点之间的频率校准值;
    所述第一业务的信号发送节点指示所述第一业务的信号接收节点的CSI或信道冲激响应相位校准值;
    所述第一业务的信号发送节点指示所述第一业务的信号接收节点的CSI或信道冲激响应校准系数。
  17. 一种信息传输方法,包括:
    第二节点向第一节点发送第一信息,其中,所述第一信息用于指示至少一个感知节点在执行第一业务时存在的非理想因素,所述第一信息用于对所述第一业务的第一测量值进行校准,所述第一业务包括感知业务或通信感知一体化业务,所述非理想因素包括造成所述第一测量值与真实值之间存在频率偏差、时间偏差、功率偏差、幅度偏差、相位偏差中的至少一项的因素。
  18. 根据权利要求17所述的方法,其中,所述第二节点包括以下至少一项:
    信号发送节点,所述信号发送节点用于发送与所述第一业务相关的第一信号;
    信号接收节点,所述信号接收节点用于对所述第一信号进行测量,得到所述第一测量值;
    计算节点,所述计算节点用于根据第二测量值确定所述第一业务的感知结果,所述第二测量值为根据所述第一信息对所述第一测量值进行校准后得到的测量值;
    其中,所述第二节点与所述第一节点不同。
  19. 根据权利要求18所述的方法,其中,所述第一信息包括以下至少一项:
    所述第一业务的信号发送节点和信号接收节点之间的信道的至少一条参考径的参数信息;
    所述第一业务的信号发送节点和信号接收节点之间的信道的至少一条参考径的多普勒频率;
    第一指示信息,所述第一指示信息用于指示对第一天线测量得到的所述第一测量值与第二天线测量得到的所述第一测量值进行相除处理,得到第一值,其中,所述第一业务的信号接收节点包括所述第一天线和所述第二天线,所述第二测量值包括所述第一值;
    第一标识信息,在所述第一测量值的数量大于一个的情况下,所述第一标识信息指示用于获取所述至少一条参考径的参数信息的第一测量值;
    第二信息,所述第二信息包括所述第一业务的至少两个信号接收节点之间的时间偏移相关的信息;
    所述第一业务的信号发送节点的发射功率控制信息;
    所述第一业务的信号发送节点的同相I路信号补偿信息;
    所述第一业务的信号发送节点的正交Q路信号补偿信息;
    所述第一业务的信号发送节点的天线幅度校准信息;
    所述第一业务的信号发送节点的相位偏移校准信息;
    所述第一业务的信号接收节点的接收功率控制信息;
    所述第一业务的信号接收节点的I路信号补偿信息;
    所述第一业务的信号接收节点的Q路信号补偿信息;
    所述第一业务的信号接收节点的天线幅度校准信息;
    所述第一业务的信号接收节点的相位偏移校准信息;
    所述第一业务的信号接收节点获取所述第一测量值的时间戳信息;
    所述第一业务的信号发送节点与信号接收节点之间的时偏校准信息;
    所述第一业务的信号发送节点与信号接收节点之间的频偏校准信息。
  20. 根据权利要求17至19中任一项所述的方法,其中,在所述第二节点向第一节点发送第一信息之前,所述方法还包括:
    所述第二节点获取第三信息,其中,所述第三信息包括以下至少一项:所述第一测量值,所述第一测量值对应的感知测量量的历史测量值、第四信息,所述第四信息与所述第一业务的信号发送节点和/或信号接收节点的以下至少一项相关:物理状态信息、硬件信息、感知能力信息、通信能力信息;
    所述第二节点根据所述第三信息确定所述第一信息。
  21. 根据权利要求20所述的方法,其中,所述第一测量值对应的感知测量量包括以下至少一项:
    所述第一业务的信号发送节点与信号接收节点之间的频域信道响应;
    所述第一业务的信号发送节点与信号接收节点之间的信道冲激响应。
  22. 根据权利要求20所述的方法,其中,所述物理状态信息包括以下至少一项:
    所述第一业务的信号接收节点的目标状态信息,所述目标状态信息包括所述信号接收节点的运动速度信息、位置信息和天线阵列朝向信息中的至少一项;
    所述第一业务的信号发送节点的所述目标状态信息;
    目标天线对之间的距离信息,所述目标天线对包括所述第一业务的信号发送节点的发射天线和所述第一业务的信号接收节点的接收天线。
  23. 根据权利要求20所述的方法,其中,所述第四信息包括以下至少一项:
    所述第一业务的信号发送节点的感知能力信息;
    所述第一业务的信号接收节点的感知能力信息;
    所述第一业务的信号发送节点的通信能力信息;
    所述第一业务的信号接收节点的通信能力信息。
  24. 根据权利要求23所述的方法,其中,所述感知能力信息包括以下至少一项:
    可用于感知的最大带宽、可用于感知的时域资源、可用于感知的频域资源、可用于感知的天线端口资源、可用于感知的物理天线数量,其中,所述可用于感知的天线端口资源包括:可用于感知的天线端口数量、天线端口与物理天线的映射关系;
    和/或,
    所述硬件信息包括以下至少一项:物理天线数量、最大发射功率、功率放大器增益、功率放大器带宽、功率放大器效率、功率放大器线性度、功率放大器最大输出功率、功率控制的模拟域最小调整步长、功率控制的数字域最小调整步长、模数转换器ADC的动态范围、数模转换器DAC的动态范围、感知灵敏度;
    和/或,
    所述通信能力信息包括以下至少一项:
    可用于通信的最大带宽、可用于通信的时域资源、可用于通信的频域资源、可用于通信的天线端口资源、可用于通信的物理天线数量,其中,可用于通信的天线端口资源包括:可用于通信的天线端口数量、天线端口与物理天线的映射关系。
  25. 根据权利要求17至19中任一项所述的方法,其中,在所述第二节点向第一节点发送第一信息之后,所述方法还包括:
    所述第二节点接收来自所述第一节点的第二测量值,其中,所述第二测量值为根据所述第一信息对所述第一测量值进行校准后得到的测量值;
    所述第二节点根据所述第二测量值确定所述第一业务的感知结果,或者所述第二节点将所述第二测量值发送至计算节点,其中,所述计算节点用于根据所述第二测量值确定所述第一业务的感知结果。
  26. 根据权利要求17至19中任一项所述的方法,其中,在所述第二节点包括所述第一业务的信号接收节点的情况下,所述方法还包括:
    所述第二节点对所述第一业务相关的第一信号进行测量,得到所述第一测量值;
    所述第二节点向所述第一节点发送所述第一测量值。
  27. 根据权利要求19所述的方法,其中,参考径的所述参数信息包括一下至少一项:
    幅度、相位、时延、相对所述第一业务的信号发送节点的离开方位角、相对所述第一业务的信号发送节点的离开俯仰角、相对所述第一业务的信号接收节点的到达方位角、相对所述第一业务的信号接收节点的到达俯仰角。
  28. 根据权利要求19所述的方法,其中,所述第二信息包括以下至少一项:
    测量时间偏移信息、测量周期信息、测量时间戳信息。
  29. 根据权利要求19所述的方法,其中,所述发射功率控制信息包括以下至少一项:
    发射功率在模拟域的调整值、发射功率在数字域的调整值、用于控制与所述第一业务相关的第一信号的发射功率控制因子;
    和/或,
    所述接收功率控制信息包括以下至少一项:
    接收功率在模拟域的调整值、接收功率在数字域的调整值、用于控制与所述第一业务相关的第一信号的接收功率的控制因子。
  30. 根据权利要求19所述的方法,其中,所述第一业务的信号发送节点与信号接收节点之间的时偏校准信息,包括以下至少一项:
    所述第一业务的信号发送节点与信号接收节点之间的时间校准值;
    所述第一业务的信号发送节点指示所述第一业务的信号接收节点的信道状态信息CSI或信道冲激响应相位校准值;
    所述第一业务的信号发送节点指示所述第一业务的信号接收节点的CSI或信道冲激响应校准系数。
  31. 根据权利要求19所述的方法,其中,所述第一业务的信号发送节点与信号接收节点之间的频偏校准信息,包括以下至少一项:
    所述第一业务的信号发送节点与信号接收节点之间的频率校准值;
    所述第一业务的信号发送节点指示所述第一业务的信号接收节点的CSI或信道冲激响应相位校准值;
    所述第一业务的信号发送节点指示所述第一业务的信号接收节点的CSI或信道冲激响应校准系数。
  32. 一种校准装置,应用于第一节点,所述装置包括:
    第一获取模块,用于获取第一信息,以及获取第一测量值,其中,所述第一信息用于指示至少一个感知节点在执行第一业务时存在的非理想因素,所述第一业务包括感知业务或通信感知一体化业务,所述非理想因素包括造成所述第一测量值与真实值之间存在频率偏差、时间偏差、功率偏差、幅度偏差、相位偏差中的至少一项的因素;
    校准模块,用于基于所述第一信息对所述第一测量值进行校准处理,得到第二测量值,其中,所述第一业务的感知结果基于所述第二测量值确定。
  33. 一种信息传输装置,应用于第二节点,所述装置包括:
    第一发送模块,用于向第一节点发送第一信息,其中,所述第一信息用于指示至少一个感知节点在执行第一业务时存在的非理想因素,所述第一信息用于对所述第一业务的第一测量值进行校准,所述第一业务包括感知业务或通信感知一体化业务,所述非理想因素包括造成所述第一测量值与真实值之间存在频率偏差、时间偏差、功率偏差、幅度偏差、相位偏差中的至少一项的因素。
  34. 一种通信设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的 程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至16中任一项所述的校准方法的步骤,或者实现如权利要求17至30中任一项所述的信息传输方法的步骤。
  35. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至16中任一项所述的校准方法的步骤,或者实现如权利要求17至30中任一项所述的信息传输方法的步骤。
PCT/CN2023/111427 2022-08-12 2023-08-07 校准方法、信息传输方法、装置及通信设备 WO2024032538A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210968980.9A CN117639966A (zh) 2022-08-12 2022-08-12 校准方法、信息传输方法、装置及通信设备
CN202210968980.9 2022-08-12

Publications (1)

Publication Number Publication Date
WO2024032538A1 true WO2024032538A1 (zh) 2024-02-15

Family

ID=89850827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111427 WO2024032538A1 (zh) 2022-08-12 2023-08-07 校准方法、信息传输方法、装置及通信设备

Country Status (2)

Country Link
CN (1) CN117639966A (zh)
WO (1) WO2024032538A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180122020A1 (en) * 2016-11-01 2018-05-03 Deere & Company Correcting bias in agricultural parameter monitoring
US20190226872A1 (en) * 2016-09-09 2019-07-25 Lucis Technologies (Shanghai) Co., Ltd. Environmental parameter measurement systems
CN113468899A (zh) * 2021-06-30 2021-10-01 中国科学技术大学 一种基于rfid的不携带标签的目标追踪方法
US20220003581A1 (en) * 2020-07-06 2022-01-06 Honeywell International Inc. Systems and methods for remote sensor calibration
CN114579556A (zh) * 2022-05-05 2022-06-03 中汽创智科技有限公司 一种数据处理方法、装置、设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190226872A1 (en) * 2016-09-09 2019-07-25 Lucis Technologies (Shanghai) Co., Ltd. Environmental parameter measurement systems
US20180122020A1 (en) * 2016-11-01 2018-05-03 Deere & Company Correcting bias in agricultural parameter monitoring
US20220003581A1 (en) * 2020-07-06 2022-01-06 Honeywell International Inc. Systems and methods for remote sensor calibration
CN113468899A (zh) * 2021-06-30 2021-10-01 中国科学技术大学 一种基于rfid的不携带标签的目标追踪方法
CN114579556A (zh) * 2022-05-05 2022-06-03 中汽创智科技有限公司 一种数据处理方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN117639966A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
Godrich et al. Target localization accuracy gain in MIMO radar-based systems
US10371783B2 (en) Direction finding antenna format
US10145933B2 (en) Angle determining system and method
CN106792508B (zh) 计算在蜂窝通信网络中的测距值的方法、可读介质和设备
US9301089B2 (en) Handling complex signal parameters by a positioning device, and apparatus
SE1650226A1 (en) Single node location system and method
CN107645465A (zh) 对无线电信号进行定时和定位的方法和系统
US11211993B2 (en) Communication apparatus, method and cellular network usable in a localization of a user equipment using a phase estimate
CN110022523A (zh) 用于终端设备定位的方法、装置及系统
CN110351658B (zh) 一种基于卷积神经网络的室内定位方法
KR20230073193A (ko) 레이더 간섭하의 셀룰러 통신들
US10499363B1 (en) Methods and apparatus for improved accuracy and positioning estimates
Talvitie et al. High-accuracy joint position and orientation estimation in sparse 5G mmWave channel
US20230180040A1 (en) Information reporting method, apparatus and device, and readable storage medium
JP2023533084A (ja) マルチパスを緩和した位置測位を提供する装置、システム及び方法
WO2022119670A1 (en) System and method for generating phase-coherent signaling when ranging between wireless communications nodes
CN112505622A (zh) 一种高精度单基站室内定位方法
TW202203670A (zh) 用於寬頻定位的位置輔助資料
Wolf et al. Coherent multi-channel ranging for narrowband LPWAN: Simulation and experimentation results
WO2024032538A1 (zh) 校准方法、信息传输方法、装置及通信设备
CN116033339A (zh) 一种信息上报方法、装置、设备及可读存储介质
Wolf et al. Improved multi-channel ranging precision bound for narrowband LPWAN in multipath scenarios
WO2022073462A1 (en) Method and apparatus for chirp signal-based pose estimation related application
Sark et al. An approach for implementation of ranging and positioning methods on a software defined radio
EP3711200B1 (en) Method and device for positioning communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851759

Country of ref document: EP

Kind code of ref document: A1