TW202203670A - 用於寬頻定位的位置輔助資料 - Google Patents

用於寬頻定位的位置輔助資料 Download PDF

Info

Publication number
TW202203670A
TW202203670A TW110120478A TW110120478A TW202203670A TW 202203670 A TW202203670 A TW 202203670A TW 110120478 A TW110120478 A TW 110120478A TW 110120478 A TW110120478 A TW 110120478A TW 202203670 A TW202203670 A TW 202203670A
Authority
TW
Taiwan
Prior art keywords
shape
information
reference signal
positioning
information indicative
Prior art date
Application number
TW110120478A
Other languages
English (en)
Inventor
索尼 阿卡拉力南
濤 駱
包敬超
亞力山德羅斯 瑪諾拉寇斯
茱安 莫托裘
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW202203670A publication Critical patent/TW202203670A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/04Details
    • G01S1/042Transmitters
    • G01S1/0428Signal details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/38Systems for determining direction or deviation from predetermined direction using adjustment of real or effective orientation of directivity characteristic of an antenna or an antenna system to give a desired condition of signal derived from that antenna or antenna system, e.g. to give a maximum or minimum signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0236Assistance data, e.g. base station almanac
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

可以向接收設備提供發送的RF訊號的波束形狀的取決於頻率的變化。波束形狀資訊可以包括例如波束的增益和多個方位角和仰角方向、波束的主瓣(和可選的旁瓣)的視軸和寬度、關於用於發送波束的天線面板的天線元件的方向圖的資訊和/或類似資訊。所提供的資訊的類型可以規定所要求的開銷量,並且因此我們根據傳送資訊的手段而改變。在本文描述的實施例中提供了額外細節。

Description

用於寬頻定位的位置輔助資料
概括而言,本公開內容涉及無線通訊的領域,並且更具體地,本公開內容涉及使用射頻(RF)訊號來確定用戶設備(UE)的位置。
在資料通訊網路中,可以使用各種定位技術來確定行動電子設備(本文中被稱為UE)的位置。這些定位技術中的一些定位技術可以涉及確定由UE和/或發送接收點(TRP)用於發送一個或多個RF訊號的波束的角度資訊。例如,UE可以使用由一個或多個TRP發送的RF訊號的波束形狀資訊來確定一個或多個離開角(AoD)。這些測量與關於一個或多個TRP的位置的資訊一起可以用於確定UE的位置。
本文提供的實施例通過向接收設備提供指示波束形狀的資訊來考慮發送的RF訊號(在本文中也被稱為“Tx波束”)的波束形狀的取決於頻率的變化。波束形狀資訊可以包括例如波束的增益和多個方位角和仰角方向、波束的主瓣(和可選的旁瓣)的視軸和寬度、關於用於發送波束的天線面板的天線元件的方向圖的資訊、和/或類似資訊。所提供的資訊的類型可以指示所要求的開銷量,並且因此我們根據傳送資訊的手段進行改變。在本文描述的實施例中提供了額外細節。
根據本公開內容,一種在發送設備處的指示用於無線寬頻系統中的用戶設備(UE)的定位的波束相關資訊的示例方法包括:接收對用於所述UE的所述定位的射頻(RF)參考訊號的計劃波束測量的指示。所述方法還包括:發送所述RF參考訊號。所述方法還包括:向定位實體或接收設備中的任一者或兩者發送指示在發送所述RF參考訊號時使用的波束的形狀的資訊,其中,所述波束的所述形狀是取決於頻率的。
根據本公開內容,一種在定位實體處的用於無線寬頻系統中的用戶設備(UE)的定位的示例方法包括:獲得由發送設備發送的射頻(RF)參考訊號的波束測量資訊。所述方法還包括:從所述發送設備接收指示由所述發送設備用於發送所述RF參考訊號的波束的形狀的資訊,其中,所述波束的所述形狀是取決於頻率的。所述方法還包括:基於所述波束測量資訊和指示所述波束的所述形狀的所述資訊來確定所述UE的位置。
根據本公開內容,一種用於指示用於無線寬頻系統中的用戶設備(UE)的定位的波束相關資訊的示例發送設備包括:收發機、記憶體、與所述收發機和所述記憶體通訊地耦合的一個或多個處理器,其中,所述一個或多個處理器被配置為:接收對用於所述UE的所述定位的射頻(RF)參考訊號的計劃波束測量的指示。所述一個或多個處理單元還被配置為:經由所述收發機來發送所述RF參考訊號。所述一個或多個處理單元還被配置為:向定位實體或接收設備中的任一者或兩者發送指示在發送所述RF參考訊號時使用的波束的形狀的資訊,其中,所述波束的所述形狀是取決於頻率的。
根據本公開內容,一種用於無線寬頻系統中的用戶設備(UE)的定位的示例定位實體包括:收發機、記憶體、與所述收發機和所述記憶體通訊地耦合的一個或多個處理器,其中,所述一個或多個處理器被配置為:獲得由發送設備發送的射頻(RF)參考訊號的波束測量資訊。所述一個或多個處理單元還被配置為:經由所述收發機來從所述發送設備接收指示由所述發送設備用於發送所述RF參考訊號的波束的形狀的資訊,其中,所述波束的所述形狀是取決於頻率的。所述一個或多個處理單元還被配置為:基於所述波束測量資訊和指示所述波束的所述形狀的所述資訊來確定所述UE的位置。
根據本公開內容,一種用於指示用於無線寬頻系統中的用戶設備(UE)的定位的波束相關資訊的示例裝置包括:用於接收對用於所述UE的所述定位的射頻(RF)參考訊號的計劃波束測量的指示的單元。所述裝置還包括:用於發送所述RF參考訊號的單元。所述裝置還包括:用於向定位實體或接收設備中的任一者或兩者發送指示在發送所述RF參考訊號時使用的波束的形狀的資訊的單元,其中,所述波束的所述形狀是取決於頻率的。
根據本公開內容,一種用於無線寬頻系統中的用戶設備(UE)的定位的示例裝置包括:用於獲得由發送設備發送的射頻(RF)參考訊號的波束測量資訊的單元。所述裝置還包括:用於從所述發送設備接收指示由所述發送設備用於發送所述RF參考訊號的波束的形狀的資訊的單元,其中,所述波束的所述形狀是取決於頻率的。所述裝置還包括:用於基於所述波束測量資訊和指示所述波束的所述形狀的所述資訊來確定所述UE的位置的單元。
根據本公開內容,一種示例非暫時性計算機可讀媒體存儲用於指示用於無線寬頻系統中的用戶設備(UE)的定位的波束相關資訊的指令,所述指令包括:用於接收對用於所述UE的所述定位的射頻(RF)參考訊號的計劃波束測量的指示的代碼。所述指令還包括:用於發送所述RF參考訊號的代碼。所述指令還包括:用於向定位實體或接收設備中的任一者或兩者發送指示在發送所述RF參考訊號時使用的波束的形狀的資訊的代碼,其中,所述波束的所述形狀是取決於頻率的。
根據本公開內容,另一種示例非暫時性計算機可讀媒體存儲用於無線寬頻系統中的用戶設備(UE)的定位的指令,所述指令包括:用於獲得由發送設備發送的射頻(RF)參考訊號的波束測量資訊的代碼。所述指令還包括:用於從所述發送設備接收指示由所述發送設備用於發送所述RF參考訊號的波束的形狀的資訊的代碼,其中,所述波束的所述形狀是取決於頻率的。所述指令還包括:用於基於所述波束測量資訊和指示所述波束的所述形狀的所述資訊來確定所述UE的位置的代碼。
本發明內容既不旨在識別所要求保護的主題的關鍵或必要特徵,也不旨在單獨用於確定所要求保護的主題的範圍。應當通過參考本公開內容的整個說明書的適當部分、任何或所有附圖以及每個請求項來理解主題。將在下面的說明書、申請專利範圍和附圖中更詳細地描述上述內容連同其它特徵和示例。
出於描述各個實施例的創新方面的目的,以下描述涉及某些實現。然而,本領域技術人員將易於認識到的是,本文的教導可以用多種不同的方式來應用。所描述的實現可以在能夠根據諸如以下各項中的任何一項之類的任何通訊標準來發送和接收射頻(RF)訊號的任何設備、系統或網路中實現:電氣與電子工程師協會(IEEE)IEEE 802.11標準(包括被識別為Wi-Fi®技術的標準)、藍牙®標準、分碼多存取(CDMA)、分頻多存取(FDMA)、分時多存取(TDMA)、全球行動通訊系統(GSM)、GSM/通用封包無線電服務(GPRS)、增強型資料GSM環境(EDGE)、陸地集群無線電(TETRA)、寬頻-CDMA(W-CDMA)、演進資料優化(EV-DO)、1xEV-DO、EV-DO Rev A、EV-DO Rev B、高速率封包資料(HPRD)、高速封包存取(HSPA)、高速下行鏈路封包存取(HSDPA)、高速上行鏈路封包存取(HSUPA)、演進型高速封包存取(HSPA+)、長期演進(LTE)、高級行動電話系統(AMPS)、或者用於在無線、蜂巢式或物聯網(IoT)網路(例如,利用3G、4G、5G、6G技術、或其另外的實現的技術的系統)內進行通訊的其它已知訊號。
現在將關於附圖來描述若干說明性實施例,附圖構成實施例的一部分。雖然下文描述了可以在其中實現本公開內容的一個或多個方面的特定實施例,但是可以使用其它實施例,並且可以在不脫離本公開內容的範圍的情況下進行各種修改。
如本文中使用的,“RF訊號”包括通過發射機(或發送設備)與接收機(或接收設備)之間的空間來傳輸資訊的電磁波。如本文中使用的,發射機可以向接收機發送單個“RF訊號”或多個“RF訊號”。然而,由於RF訊號通過多徑通道的傳播特性,因此接收機可能接收與每個發送的RF訊號相對應的多個“RF訊號”。在發射機與接收機之間的不同路徑上發送的相同的RF訊號可以被稱為“多徑”RF訊號。
圖1是根據一實施例的定位系統100的簡化圖示,其中UE 105、位置伺服器160和/或定位系統100的其它組件可以使用本文提供的技術來確定和估計UE 105的位置。本文描述的技術可以由定位系統100的一個或多個組件來實現。定位系統100可以包括:UE 105;用於諸如全球定位系統(GPS)、GLONASS、伽利略或北斗之類的全球導航衛星系統(GNSS)的一個或多個衛星110(也被稱為空間飛行器(SV));基站120;存取點(AP)130;位置伺服器160;網路170;以及外部客戶端180。一般來說,定位系統100可以基於由UE 105接收和/或從UE 105發送的RF訊號以及發送和/或接收RF訊號的其它組件(例如,GNSS衛星110、基站120、AP 130)的已知位置來估計UE 105的位置。關於圖2更詳細地討論了關於特定位置估計技術的額外細節。
應當注意的是,圖1僅提供了各種組件的一般性示出,可以酌情使用其中的任何一個或所有組件,並且可以根據需要複製其中的每個組件。具體地,儘管僅示出了一個UE 105,但是將理解的是,許多UE(例如,數百、數千、數百萬等)可以利用定位系統100。類似地,定位系統100可以包括比圖1所示的更大或更小數量的基站120和/或AP 130。所示出的將定位系統100中的各個組件進行連接的連接包括資料和信令連接,其可以包括額外(中間)組件、直接或間接實體和/或無線連接和/或額外網路。此外,可以根據期望的功能來重新排列、組合、分離、替換和/或省略組件。在一些實施例中,例如,外部客戶端180可以直接連接到位置伺服器160。本領域的普通技術人員將認識到對所示的組件的許多修改。
根據期望的功能,網路170可以包括各種無線和/或有線網路中的任何一種。網路170可以例如包括公用和/或私有網路、局域網和/或廣域網等的任何組合。此外,網路170可以利用一種或多種有線和/或無線通訊技術。在一些實施例中,網路170可以包括例如蜂巢式或其它行動網路、無線局域網(WLAN)、無線廣域網(WWAN)和/或互聯網。網路170的示例包括長期演進(LTE)無線網路、第五代(5G)無線網路(也被稱為新無線電(NR)無線網路或5G NR無線網路)、Wi-Fi WLAN、以及互聯網。LTE、5G和NR是由第三代合作夥伴計劃(3GPP)定義或正在定義的無線技術。網路170還可以包括一個以上的網路和/或一種以上的網路類型。
基站120和存取點(AP)130通訊地耦合到網路170。在一些實施例中,基站120可以由蜂巢式網路提供商擁有、維護和/或操作,並且可以採用如本文在下面描述的各種無線技術中的任何一種。取決於網路170的技術,基站120可以包括節點B、演進型節點B(eNodeB或eNB)、基站收發機(BTS)、無線電基站(RBS)、NR NodeB(gNB)、下一代eNB(ng-eNB)等。作為gNB或ng-eNB的基站120可以是下一代無線存取網路(NG-RAN)的一部分,在網路170是5G網路的情況下,NG-RAN可以連接到5G核心網路(5GC)。AP 130可以包括例如Wi-Fi AP或藍牙®AP。因此,UE 105可以通過使用第一通訊鏈路133經由基站120存取網路170,從而與網路連接的設備(諸如位置伺服器160)發送和接收資訊。另外或替代地,由於AP 130也可以與網路170通訊地耦合,所以UE 105可以使用第二通訊鏈路135與網路連接的設備和互聯網連接的設備(包括位置伺服器160)進行通訊。
如本文中使用的,術語“基站”通常可以是指單個實體傳輸點或多個共置的實體傳輸點,其可以位於基站120處。發送接收點(TRP)(也被稱為發送/接收點)對應於這種類型的傳輸點,並且術語“TRP”可以在本文中與術語“gNB”、“ng-eNB”和“基站”互換地使用。在一些情況下,基站120可以包括多個TRP,例如,其中每個TRP與基站120的不同天線或不同天線陣列相關聯。實體傳輸點可以包括基站120的天線陣列(例如,如在多輸入多輸出(MIMO)系統中和/或在基站採用波束成形的情況下)。術語“基站”可以另外是指多個非共置的實體傳輸點,實體傳輸點可以是分布式天線系統(DAS)(經由傳輸媒體連接到公共源的空間上分離的天線的網路)或遠程無線電頭端(RRH)(連接到服務基站的遠程基站)。
如本文中使用的,術語“小區”通常可以是指用於與基站120的通訊的邏輯通訊實體,並且可以與用於對經由相同或不同載波來操作的相鄰小區進行區分的識別符(例如,實體小區識別符(PCID)、虛擬小區識別符(VCID))相關聯。在一些示例中,載波可以支持多個小區,並且不同的小區可以是根據不同的協議類型(例如,機器類型通訊(MTC)、窄帶物聯網(NB-IoT)、增強型行動寬頻(eMBB)或其它協議類型)來配置的,所述不同的協議類型可以為不同類型的設備提供存取。在一些情況下,術語“小區”可以是指邏輯實體在其上進行操作的地理覆蓋區域的一部分(例如,扇區)。
位置伺服器160可以包括伺服器和/或其它計算設備,其被配置為確定UE 105的估計位置和/或向UE 105提供資料(例如,“輔助資料”),以有助於UE 105進行位置測量和/或位置確定。根據一些實施例,位置伺服器160可以包括家庭安全用戶平面位置(SUPL)位置平臺(H-SLP),其可以支持由開放行動聯盟(OMA)定義的SUPL用戶平面(UP)位置解決方案,並且可以基於存儲在位置伺服器160中的用於UE 105的訂制資訊來支持用於UE 105的位置服務。在一些實施例中,位置伺服器160可以包括發現SLP(D-SLP)或緊急SLP(E-SLP)。位置伺服器160還可以包括增強型服務行動位置中心(E-SMLC),其支持使用針對UE 105的LTE無線電存取的控制平面(CP)位置解決方案來定位UE 105。位置伺服器160還可以包括位置管理功能單元(LMF),其支持使用針對UE 105的NR或LTE無線電存取的控制平面(CP)位置解決方案來定位UE 105。
在CP位置解決方案中,從網路170的角度來看,可以使用現有的網路介面和協議以及作為信令來在網路170的元素之間以及與UE 105交換用於控制和管理UE 105的位置的信令。在UP位置解決方案中,從網路170的角度來看,可以將用於控制和管理UE 105的位置的信令作為資料(例如,作為使用互聯網協議(IP)和/或傳輸控制協議(TCP)傳送的資料)在位置伺服器160和UE 105之間交換。
如前所述(並且在下文更詳細地討論的),UE 105的估計位置可以是基於從UE 105發送和/或由UE 105接收的RF訊號的測量的。具體地,這些測量可以提供關於UE 105與定位系統100中的一個或多個組件(例如,GNSS衛星110、AP 130、基站120)的相對距離和/或角度的資訊。可以基於距離和/或角度測量連同一個或多個組件的已知位置來以幾何方式(例如,使用多角度和/或多邊)估計UE 105的估計位置。
儘管諸如APs130和基站120之類的地面組件可以是固定的,但是各實施例並不限於此。可以使用行動組件。例如,在一些實施例中,可以至少部分地基於在UE 105與一個或多個UE 145(其可以是行動或固定的)之間傳送的RF訊號140的測量來估計UE 105的位置。當在特定UE 105的位置確定中使用一個或多個其它UE 145時,要確定其位置的UE 105可以被稱為“目標UE”,並且所使用的一個或多個其它UE 145中的每一者可以被稱為“錨UE”。對於目標UE的位置確定,一個或多個錨UE的相應位置可以是已知的和/或與目標UE聯合確定。一個或多個其它UE 145與UE 105之間的直接通訊可以包括側行鏈路和/或類似的設備到設備(D2D)通訊技術。由3GPP定義的側行鏈路是依據基於蜂巢式的LTE和NR標準的D2D通訊的形式。
可以在各種應用中使用UE 105的估計位置,例如,以輔助UE 105的用戶的測向或導航或者輔助另一用戶(例如,與外部客戶端180相關聯)定位UE 105。“位置”在本文中也被稱為“地點估計(location estimate)”、“估計地點(estimated location)”、“地點(location)”、“位置(position)”、“位置估計(position estimate)”、“位置鎖定(position fix)”、“估計位置(estimated position)”、“地點鎖定(location fix)”或“鎖定(fix)”。確定位置的過程可以被被稱為“定位”、“位置確定”、“地點確定”等。UE 105的位置可以包括UE 105的絕對位置(例如,經度和緯度以及可能包括高度)或UE 105的相對位置(例如,被表達為南或北、東或西的距離的位置,以及可能高於或低於某個其它已知的固定位置或某個其它位置(諸如UE 105在某個已知的先前時間的位置))。位置可以被指定為大地測量位置,其包括可以是絕對(例如,緯度、經度和可選的高度)、相對(例如,相對於某個已知的絕對位置)或局部(例如,根據相對於局部區域(諸如工廠、倉庫、大學校園、購物中心、體育場或會展中心)定義的座標系的X、Y和可選的Z座標)的座標。位置可以替代地是市政位置,那麼可以包括以下各項中的一項或多項:街道地址(例如,包括國家、州、縣、市、道路和/或街道的名稱或標簽、和/或道路或街道編號)、和/或地方、建築物、建築物的一部分、建築物樓層和/或建築物內的房間等的標簽或名稱。位置還可以包括不確定度或誤差指示,諸如預期位置出錯的水平距離和可能的垂直距離,或者對預期UE 105以某種置信度水平(例如,95%置信度)位於其內的區域或體積(例如,圓或橢圓)的指示。
外部客戶端180可以是可以與UE 105具有某種關聯(例如,可以由UE 105的用戶訪問)的web伺服器或遠程應用,或者可以是向某一個或多個其他用戶提供位置服務(其可以包括獲得和提供UE 105的位置)(例如,以啟用諸如朋友或親屬查找器、資產跟蹤或者兒童或寵物位置之類的服務)的伺服器、應用或計算機系統。另外或替代地,外部客戶端180可以獲得UE 105的位置並且將其提供給緊急服務提供商、政府機構等。
如前所述,可以使用無線通訊網路(諸如基於LTE或基於5G NR的網路)來實現示例定位系統100。圖2示出了5G NR定位系統200的圖,其示出了實現5G NR的定位系統(例如,定位系統100)的實施例。5G NR定位系統200可以被配置為通過使用存取節點210、214、216(其可以與圖1的基站120和存取點130相對應)和(可選地)LMF 220(其可以與位置伺服器160相對應)實現一種或多種定位方法,來確定UE 105的位置。此處,5G NR定位系統200包括UE 105以及5G NR網路的組件,5G NR網路包括下一代(NG)無線電存取網路(RAN)(NG-RAN)235和5G核心網路(5G CN)240。5G網路還可以被稱為NR網路;NG-RAN 235可以被稱為5G RAN或NR RAN;並且5G CN 240可以被稱為NG核心網路。5G NR定位系統200還可以利用來自諸如全球定位系統(GPS)或類似系統(例如,GLONASS、伽利略、北斗、印度區域導航衛星系統(IRNSS))之類的GNSS系統中的GNSS衛星110的資訊。下文描述了5G NR定位系統200的額外組件。5G NR定位系統200可以包括額外或替代組件。
應當注意的是,圖2僅提供了各種組件的一般性示出,可以酌情使用其中的任何一個或所有組件,並且可以根據需要複製或省略其中的每個組件。具體地,儘管僅示出了一個UE 105,但是將理解的是,許多UE(例如,數百、數千、數百萬等)可以利用5G NR定位系統200。類似地,5G NR定位系統200可以包括更大(或更小)數量的GNSS衛星110、gNB 210、ng-eNB 214、無線局域網(WLAN)216、存取和行動性管理功能單元(AMF)215、外部客戶端230和/或其它組件。所示出的將5G NR定位系統200中的各個組件進行連接的連接包括資料和信令連接,其可以包括額外(中間)組件、直接或間接實體和/或無線連接和/或額外網路。此外,可以根據期望的功能來重新排列、組合、分離、替換和/或省略組件。
UE 105可以包括和/或被稱為設備、行動設備、無線設備、行動終端、終端、行動站(MS)、啟用安全用戶平面位置(SUPL)的終端(SET)或某種其它名稱。此外,UE 105可以對應於蜂巢式電話、智慧型電話、膝上型計算機、平板設備、個人資料助理(PDA)、導航設備、物聯網(IoT)設備或某個其它便攜式或可行動設備。通常,但非必要地,UE 105可以支持使用一種或多種無線電存取技術(RAT)的無線通訊,諸如使用GSM、CDMA、W-CDMA、LTE、高速封包資料(HRPD)、IEEE 802.11 Wi-Fi®、藍牙、微波存取全球互操作性(WiMAXTM )、5G NR(例如,使用NG-RAN 235和5G CN 240)等。UE 105還可以支持使用WLAN 216的無線通訊,WLAN 216(類似於一種或多種RAT,並且如先前關於圖1所述)可以連接到其它網路(諸如互聯網)。使用這些RAT中的一種或多種RAT可以允許UE 105與外部客戶端230進行通訊(例如,經由在圖2中未示出的5G CN 240的元件,或者可能經由閘道行動位置中心(GMLC)225)和/或允許外部客戶端230接收關於UE 105的位置資訊(例如,經由GMLC 225)。圖2的外部客戶端230可以對應於圖1的外部客戶端180,如在5G NR網路中實現或者與5G NR網路通訊地耦合。
UE 105可以包括單個實體或者可以包括多個實體,諸如在個域網中,其中用戶可以使用音頻、視頻和/或資料I/O設備和/或身體傳感器以及單獨的有線或無線數據機。UE 105的位置的估計可以被稱為地點(location)、地點估計(location estimate)、地點鎖定(location fix)、鎖定(fix)、位置(position)、位置估計(position estimate)或位置鎖定(position fix),並且可以是大地測量的,由此為UE 105提供位置座標(例如,緯度和經度),該位置座標可以包括或者可以不包括高度分量(例如,海拔高度、高於地平面、樓板平面或地下室層的高度、或者低於地平面、樓板平面或地下室層的深度)。替代地,UE 105的位置可以被表達為市政位置(例如,作為郵政地址或建築物中的某個點或小區域(諸如特定房間或樓層)的名稱)。UE 105的位置也可以被表達為預期UE 105以某種機率或置信度水準(例如,67%、95%等)位於其內的區域或體積(以大地測量方式或以市政形式定義)。UE 105的位置還可以是相對位置,包括例如相對於已知位置處的某個原點定義的距離和方向或相對X、Y(和Z)座標,該已知位置可以是以大地測量方式、以市政術語或通過參考在地圖、樓層平面圖或建築平面圖上指示的點、區域或體積來定義的。在本文包含的描述中,除非另有指示,否則術語位置的使用可以包括這些變型中的任何一個。當計算UE的位置時,通常求解局部X、Y和可能的Z座標,並且然後如果需要,將局部座標轉換為絕對座標(例如,對於緯度、經度以及高於或低於平均海平面的高度)。
在圖2中所示的NG-RAN 235中的基站可以對應於圖1中的基站120,並且可以包括NR NodeB(gNB)210-1和210-2(本文中統稱為並且一般性地稱為gNB 210)。NG-RAN 235中的gNB 210對可以彼此連接(例如,如圖2所示直接地或者經由其它gNB 210間接地)。基站(gNB 210和/或ng-eNB 214)之間的通訊介面可以被稱為Xn介面237。經由UE 105與gNB 210中的一個或多個gNB 210之間的無線通訊來向UE 105提供對5G網路的存取,gNB 210可以使用5G NR代表UE 105提供對5G CN 240的無線通訊存取。基站(gNB 210和/或ng-eNB 214)和UE 105之間的無線介面可以被稱為Uu介面239。5G NR無線電存取也可以被稱為NR無線電存取或5G無線電存取。在圖2中,假設用於UE 105的服務gNB為gNB 210-1,但是其它gNB(例如,gNB 210-2)可以在UE 105行動到另一位置的情況下充當服務gNB,或者可以充當輔gNB以向UE 105提供額外的吞吐量和頻寬。
在圖2中所示的NG-RAN 235中的基站也可以或者替代地包括下一代演進型節點B,也被稱為ng-eNB 214。ng-eNB 214可以例如直接地或經由其它gNB 210和/或其它ng-eNB間接地連接到NG-RAN 235中的一個或多個gNB 210。ng-eNB 214可以向UE 105提供LTE無線存取和/或演進型LTE(eLTE)無線存取。圖2中的一些gNB 210(例如,gNB 210-2)和/或ng-eNB 214可以被配置為用作僅定位信標,其可以發送訊號(例如,定位參考訊號(PRS))和/或可以廣播輔助資料以輔助UE105的定位,但是可能不從UE 105或從其它UE接收訊號。應注意的是,雖然在圖2中僅示出了一個ng-eNB 214,但是一些實施例可以包括多個ng-eNB 214。基站210、214可以經由Xn通訊介面彼此直接通訊。另外或替代地,基站210、214可以直接地或間接地與5G NR定位系統200的其它組件(諸如LMF 220和AMF 215)進行通訊。
5G NR定位系統200還可以包括一個或多個WLAN 216,其可以連接到5G CN 240中的非3GPP互通功能(N3IWF)250(例如,在不可信WLAN 216的情況下)。例如,WLAN 216可以支持用於UE 105的IEEE 802.11 Wi-Fi存取,並且可以包括一個或多個Wi-Fi AP(例如,圖1的AP 130)。此處,N3IWF 250可以連接到5G CN 240中的其它元素,諸如AMF 215。在一些實施例中,WLAN 216可以支持諸如藍牙之類的另一種RAT。N3IWF 250可以提供對UE 105對5G CN 240中的其它元素的安全存取的支持和/或可以支持由WLAN 216和UE 105使用的一個或多個協議與由5G CN 240的其它元素(諸如AMF 215)使用的一個或多個協議的互通。例如,N3IWF 250可以支持與UE 105的IPsec隧道建立、與UE 105的IKEv2/IPsec協議的終止、分別用於控制平面和用戶平面的與5G CN 240的N2和N3介面的終止、跨越N1介面在UE 105和AMF 215之間的上行鏈路(UL)和下行鏈路(DL)控制平面非存取層(NAS)信令的中繼。在一些其它實施例中,WLAN 216可以直接地連接到5G CN 240中的元素(例如,AMF 215,如圖2中的虛線所示),而不是經由N3IWF 250。例如,如果WLAN 216是針對5G CN 240的可信WLAN,並且可以使用可信WLAN互通功能(TWIF)(在圖2中未示出)(其可以是WLAN 216內部的元素)啟用,則可以發生WLAN 216到5G CN 240的直接連接。應注意的是,雖然在圖2中僅示出一個WLAN 216,但是一些實施例可以包括多個WLAN 216。
存取節點可以包括實現UE 105與AMF 215之間的通訊的各種網路實體中的任何網路實體。這可以包括gNB 210、ng-eNB 214、WLAN 216和/或其它類型的蜂巢式基站。然而,提供本文描述的功能的存取節點可以另外或替代地包括實現與在圖2中未示出的各種RAT(其可以包括非蜂巢式技術)中的任何RAT的通訊的實體。因此,如本文在下面描述的實施例中使用的術語“存取節點”可以包括但不必限於gNB 210、ng-eNB 214或WLAN 216。
在一些實施例中,存取節點(諸如gNB 210、ng-eNB 214或WLAN 216)(單獨或與5G NR定位系統200的其它組件相結合)可以被配置為:響應於從LMF 220接收針對位置資訊的請求,獲得從UE 105接收的上行鏈路(UL)訊號的位置測量和/或從UE 105獲得下行鏈路(DL)位置測量,DL位置測量是由UE 105針對UE 105從一個或多個存取節點接收的DL訊號而獲得的。如所提及的,雖然圖2描繪了分別被配置為根據5G NR、LTE和Wi-Fi通訊協議進行通訊的存取節點210、214和216,但是可以使用被配置為根據其它通訊協議進行通訊的存取節點,諸如舉例而言,將寬頻分碼多存取(WCDMA)協議用於通用行動通訊服務(UMTS)地面無線電存取網路(UTRAN)的節點B、將LTE協議用於演進型UTRAN(E-UTRAN)的eNB、或者將藍牙協議用於WLAN的藍牙®信標。例如,在向UE 105提供LTE無線存取的4G演進型封包系統(EPS)中,RAN可以包括E-UTRAN,E-UTRAN可以包括基站,基站包括支持LTE無線存取的eNB。用於EPS的核心網路可以包括演進封包核心(EPC)。那麼,EPS可以包括E-UTRAN加EPC,其中E-UTRAN對應於NG-RAN 235,並且EPC對應於圖2中的5GCN 240。本文描述的用於獲得UE 105的市政位置的方法和技術可以適用於此類其它網路。
gNB 210和ng-eNB 214可以與AMF 215進行通訊,AMF 215針對定位功能與LMF 220進行通訊。AMF 215可以支持UE 105的行動性,包括UE 105從第一RAT的存取節點210、214或216到第二RAT的存取節點210、214或216的小區改變和切換。AMF 215還可以參與支持到UE 105的信令連接以及用於UE 105的可能的資料和語音承載。LMF 220可以支持在UE 105存取NG-RAN 235或WLAN 216時使用CP位置解決方案對UE 105的定位,並且可以支持定位過程和方法,包括UE輔助的/基於UE的和/或基於網路的過程/方法,諸如輔助GNSS(A-GNSS)、觀測到達時間差(OTDOA)(其在NR中可以被稱為到達時間差(TDOA))、即時運動學(RTK)、精確點定位(PPP)、差分GNSS(DGNSS)、增強型小區ID(ECID)、到達角(AOA)、離開角(AoD)、WLAN定位、往返訊號傳播延遲(RTT)、多小區RTT和/或其它定位過程和方法。LMF 220還可以處理例如從AMF 215或從GMLC 225接收的針對UE 105的位置服務請求。LMF 220可以連接到AMF 215和/或GMLC 225。在一些實施例中,諸如5GCN 240之類的網路可以另外或替代地實現其它類型的位置支持模組,諸如演進型服務行動位置中心(E-SMLC)或SUPL位置平臺(SLP)。應注意的是,在一些實施例中,可以在UE 105處執行定位功能(包括對UE 105的位置的確定)的至少一部分(例如,通過測量由無線節點(諸如gNB 210、ng-eNB 214和/或WLAN 216)發送的下行鏈路PRS(DL-PRS)訊號和/或使用例如由LMF 220提供給UE 105的輔助資料)。
閘道行動位置中心(GMLC)225可以支持從外部客戶端230接收的針對UE 105的位置請求,並且可以將這樣的位置請求轉發給AMF 215以由AMF 215轉發給LMF 220。可以將來自LMF 220的位置響應(例如,包含針對UE 105的位置估計)直接地或經由AMF 215類似地返回給GMLC 225,並且GMLC 225然後可以將位置響應(例如,包含位置估計)返回給外部客戶端130。
網路開放功能單元(NEF)245可以被包括在5GCN 240中。NEF 245可以支持將與5GCN 240和UE 105有關的能力和事件安全地公開給外部客戶端230(那麼其可以被稱為存取功能單元(AF)),並且可以使得能夠將資訊從外部客戶端230安全地提供給5GCN 240。NEF 245可以連接到AMF 215和/或GMLC 225,以用於獲得UE 105的位置(例如,市政位置)並且將該位置提供給外部客戶端230的目的。
如圖2中進一步所示,LMF 220可以使用如3GPP技術規範(TS)38.445中定義的NR定位協議附件(NRPPa)與gNB 210和/或與ng-eNB 214進行通訊。可以經由AMF 215在gNB 210與LMF 220之間和/或在ng-eNB 214與LMF 220之間傳遞NRPPa訊息。如圖2中進一步所示,LMF 220和UE 105可以使用如3GPP TS 37.355中定義的LTE定位協議(LPP)進行通訊。此處,可以經由AMF 215和用於UE 105的服務gNB 210-1或服務ng-eNB 214在UE 105與LMF 220之間傳遞LPP訊息。例如,可以使用用於基於服務的操作的訊息來在LMF 220與AMF 215之間傳遞LPP訊息(例如,基於超文本傳輸協議(HTTP)),並且可以使用5G NAS協議來在AMF 215與UE 105之間傳遞LPP訊息。LPP協議可以用於支持使用UE輔助的和/或基於UE的定位方法(諸如A-GNSS、RTK、TDOA、多小區RTT、AoD和/或ECID)對UE 105的定位。NRPPa協議可以用於支持使用基於網路的定位方法(諸如ECID、AOA、上行鏈路TDOA(UL-TDOA))對UE 105的定位,和/或可以由LMF 220用於從gNB 210和/或ng-eNB 214獲得位置相關資訊,諸如定義來自gNB 210和/或ng-eNB 214的DL-PRS傳輸的參數。
在UE 105存取WLAN 216的情況下,LMF 220可以按照與剛剛針對UE 105存取gNB 210或ng-eNB 214描述的方式類似的方式,使用NRPPa和/或LPP來獲得UE 105的位置。因此,可以經由AMF 215和N3IWF 250在WLAN 216與LMF 220之間傳遞NRPPa訊息,以支持對UE 105的基於網路的定位和/或從WLAN 216向LMF 220傳遞其它位置資訊。替代地,可以經由AMF 215在N3IWF 250與LMF 220之間傳遞NRPPa訊息,以支持基於對於N3IWF 250已知或可訪問並且使用NRPPa從N3IWF 250傳遞到LMF 220的位置相關資訊和/或位置測量對UE 105的基於網路的定位。類似地,可以經由AMF 215、N3IWF 250和用於UE 105的服務WLAN 216在UE 105與LMF 220之間傳遞LPP和/或LPP訊息,以支持LMF 220對UE 105的UE輔助的或基於UE的定位。
5G NR定位系統200中,定位方法可以被分類為“UE輔助的”或“基於UE的”。這可以取決於針對確定UE 105的位置的請求源自何處。例如,如果該請求源自UE(例如,來自UE所執行的應用或“app”),則定位方法可以被分類為基於UE的。另一方面,如果該請求源自外部客戶端或AF 230、LMF 220、或5G網路內的其它設備或服務,則定位方法可以被分類為UE輔助的(或“基於網路的”)。
在UE輔助的定位方法的情況下,UE 105可以獲得位置測量並且將測量發送給位置伺服器(例如,LMF 220)以計算針對UE 105的位置估計。對於RAT相關定位方法,位置測量可以包括針對gNB 210、ng-eNB 214和/或用於WLAN 216的一個或多個存取點的以下各項中的一項或多項:接收訊號強度指示符(RSSI)、往返訊號傳播時間(RTT)、參考訊號接收功率(RSRP)、參考訊號接收品質(RSRQ)、參考訊號時間差(RSTD)、到達時間(TOA)、AOA、接收時間-發送時間差(Rx-Tx)、差分AOA(DAOA)、AoD、或定時提前(TA)。另外或替代地,可以對由其它UE發送的側行鏈路訊號進行類似的測量,如果其它UE的位置已知,則它們可以用作用於對UE 105的定位的錨點。位置測量還可以或替代地包括針對RAT無關的定位方法的測量,諸如GNSS(例如,用於GNSS衛星110的GNSS偽距、GNSS碼相位和/或GNSS載波相位)、WLAN等。
在基於UE的定位方法的情況下,UE 105可以獲得位置測量(例如,其可以與針對UE輔助的定位方法的位置測量相同或相似),並且還可以計算UE 105的位置(例如,借助于從諸如LMF 220、SLP之類的位置伺服器接收的或由gNB 210、ng-eNB 214或WLAN 216廣播的輔助資料)。
在基於網路的定位方法的情況下,一個或多個基站(例如,gNB 210和/或ng-eNB 214)、一個或多個AP(例如,在WLAN 216中)或N3IWF 250可以獲得針對由UE 105發送的訊號的位置測量(例如,RSSI、RTT、RSRP、RSRQ、AOA或TOA的測量),和/或在N3IWF 250的情況下可以接收由UE 105或由WLAN 216中的AP獲得的測量,並且可以將測量發送給位置伺服器(例如,LMF 220)以計算針對UE 105的位置估計。
UE 105的定位也可以被分類為基於UL、DL或DL-UL的,這取決於用於定位的訊號的類型。例如,如果定位僅是基於在UE 105處(例如,從基站或其它UE)接收的訊號的,則定位可以被分類為基於DL的。另一方面,如果定位僅是基於由UE 105發送的訊號(例如,其可以由基站或其它UE接收)的,則定位可以被分類為基於UL的。基於DL-UL的定位包括基於由UE 105發送和接收的訊號的定位,諸如基於RTT的定位。側行鏈路(SL)輔助的定位包括在UE 105與一個或多個其它UE之間傳送的訊號。根據一些實施例,如本文描述的UL、DL或DL-UL定位能夠使用SL信令作為SL、DL或DL-UL信令的補充或替換。
取決於定位的類型(例如,基於UL、DL或DL-UL的),所使用的參考訊號的類型可以不同。例如,對於基於DL的定位,這些訊號可以包括PRS(例如,由基站發送的DL-PRS或由其它UE發送的SL-PRS),其可以用於TDOA、AoD和RTT測量。可以用於定位的其它參考訊號(UL、DL或DL-UL)可以包括探測參考訊號(SRS)、通道狀態資訊參考訊號(CSI-RS)、同步訊號(例如,同步訊號塊(SSB)同步訊號(SS))、實體上行鏈路控制通道(PUCCH)、實體上行鏈路共享通道(PUSCH)、實體側行鏈路共享通道(PSSCH)、解調參考訊號(DMRS)等。此外,可以在Tx波束中發送和/或在Rx波束中接收參考訊號(例如,使用波束成形技術),這可能影響角度測量,諸如AoD和/或AOA。
圖3通過舉例的方式示出了簡化環境300,其包括產生用於發送RF參考訊號的定向波束的兩個基站120-1和120-2(它們可以對應於圖1的基站120和/或圖2的gNB 210和/或ng-eNB 214)和UE 105。對於每次波束掃描,將定向波束中的每個定向波束旋轉,例如,旋轉120或360度,這可以週期性地重複。每個定向波束可以包括RF參考訊號(例如,PRS資源),其中基站120-1產生包括Tx波束305-a、305-b、305-c、305-d、305-e、305-f、305-g和305-h的RF參考訊號集合,並且基站120-2產生包括Tx波束309-a、309-b、309-c、309-d、309-e、309-f、309-g和309-h的RF參考訊號集合。因為UE 105還可以包括天線陣列,所以其可以使用波束成形來接收由基站120-1和120-2發送的RF參考訊號,以形成相應的接收波束(Rx波束)311-a和311-b。
對來自基站120-1的波束305-c的選擇可以是來自接收側波束掃描操作,其中UE 105確定用於包括Tx波束305-c和Rx波束311-a的波束對的RF參考訊號(例如,使用參考訊號接收功率(RSRP))是最高的(在所有Tx波束305和Rx波束311組合當中)。類似的過程可以用於確定波束對309-b和311-b。以這種方式,在圖3中用陰影示出的波束對可以用於進行位置相關測量以確定UE 105的位置。
圖4是下行鏈路AoD(DL-AoD)測量過程400的實施例的圖形表示,其中由波束410提供的角度資訊可以用於確定UE 105的位置。然而,可以注意到,用於提供波束資訊的實施例(在下面更詳細地描述)不限於這樣的過程。其它實施例可以包括額外或替代類型的測量和/或定位過程。測量可以例如包括AoD和AoA,其包括仰角(垂直)到達角(ZoA)和/或仰角離開角(ZoD)。
在圖4中,基站120-a、120-b和120-c使用相應的波束410-a、410-b和410-c來發送相應的RF參考訊號。如所提到的,UE 105可以進行對相應的RF參考訊號的RSRP測量,其可以用於確定相應的DL-AoD。在一些實施例中,例如,在基於網路的定位中,UE 105可以將RSRP測量傳送給位置伺服器以確定DL-AoD。在其它實施例中,例如,在基於UE的定位中,UE 105可以確定DL-AoD。DL-AoD(對應於角度420-a、420-b和420-c)可以是關於參考方向或平面的。然後,可以將DL-AoD與基站位置430-a、430-b和430-c一起用於對UE 105的位置進行三角測量。可以注意到,在其它情況或實施例中,可以使用不同數量的基站120來確定UE 105的位置。此外,在一些實施例中,除了DL-AoD資訊之外,還可以使用距離測量(例如,UE 105與一個或多個基站120之間的距離,如例如使用RTT測量的)來計算UE 105的位置。
為了在UE處確定由基站120發送的RF參考訊號的DL-AoD,UE可能需要具有關於基站120發送RF參考訊號所利用的相應波束410的形狀的額外資訊。與在圖3和4中所示的簡化波束形狀不同,波束形狀可以在幅度和方向上變化,並且可能具有旁瓣。此外,由於可以在寬頻率範圍(例如,24-29 GHz)上傳送寬頻系統中的RF參考訊號,因此波束410可能受到波束偏斜問題的影響。在圖5A和5B中示出了關於波束偏斜的額外資訊。
圖5A是天線增益相對於方位角的曲線圖。此處,方位角零處的主瓣表示參考波束502的主瓣。用於該參考波束502的載波頻率是發送波束502的天線陣列被調諧到的載波頻率。也就是說,天線陣列中的天線元件被間隔開(例如,λ/2,其中λ是波長)以適應特定載波頻率的波長。另外,碼字(用於每個天線元件的相位偏移和權重)被設計為適應載波頻率。
增益和波束方向可能取決於各種因素,諸如頻率、極化和朝向。在寬頻系統可能使用的變化的頻率的情況下,波束可能受到“波束偏斜”的影響,其中波束方位角(和/或仰角)和增益隨著不同頻率的使用而變化。也就是說,取決於頻率是高於還是低於參考波束502的參考頻率,主瓣的角度可能移位(例如,增加或減小,如波束504和波束506所示)。類似地,波束成形增益可能基於參考頻率與使用的載波頻率之間的差異而與參考頻率處的視軸方向上的波束成形增益不同。這種頻率依賴性可以是基於發射天線陣列所使用的特定物理特性和碼字的。
此處可以注意到,出於說明的目的,在圖5A中所示的曲線圖中繪製的天線增益被簡化。在實際的實施例中,參考波束502和其它波束504、506的波束形狀可能更複雜。此外,其它波束504、506的波束形狀可以隨頻率變化(除了角度之外)。
圖5B示出了一種設置,其中出於確定UE 120的位置的目的,UE 120可以進行對由基站110發送的RF參考訊號的測量以確定DL-AoD(類似於在圖4中所示的過程)。圖5B還示出了RF參考訊號的相應波束的角度可以如何根據用於發送RF參考訊號的頻率而變化。也就是說,基站110可能以第二角度520-b發送第二Tx波束510-b,而不是以對應的第一角度520-A使用第一Tx波束510-a來發送RF參考訊號,其中第一角度520-a和第二角度520-b之間的差異是由於波束偏斜導致的。
在UE 120處的波束偏斜可能更明顯。也就是說,根據一些實施例,UE可以發送用於位置確定的上行鏈路(UL)RF參考訊號,其中用於發送RF參考訊號的波束受到波束偏斜的影響。與基站110不同(基站110可以具有調諧到寬頻頻譜內的不同頻率以幫助減少波束偏斜的多個前端(天線陣列/面板和相關聯的發送電路),UE 120可能僅具有單個前端。因此,用於由UE 120發送的RF訊號的Tx波束可能更容易跨越整個頻譜而受到波束偏斜的影響。對於Rx波束,進一步的波束偏斜也可能是一個問題,因為元件之間的空間和碼本也影響如何從特定方向接收訊號。
為了幫助確保對RF參考訊號的精確測量,本文提供的實施例通過提供關於在向接收設備發送RF參考訊號時使用的Tx波束的波束形狀的資訊,來解決由波束偏斜引起的波束問題(以及對波束形狀的其它依賴於頻率的影響)。如圖4和5B中提及的,對RF參考訊號的發送可以由基站(或者更具體地說,TRP)進行,並且接收設備可以是UE 120。然而,在替代實施例中,發送設備可以包括UE 120,接收設備可以包括TRP。另外,在一些實施例中,可以與發送設備共享Rx波束資訊。
根據期望的功能,可以向接收設備傳送波束形狀資訊的方式可以改變。例如,對於可以用於確定用於UE 120的位置確定的角度資訊的給定RF參考訊號(PRS、CRS、CSI-RS等)或RF參考訊號集合,可以提供RF參考訊號的Tx波束的完整波束形狀。這可以包括例如用於Tx波束的每個方位角和仰角方向上的增益。方位角和仰角方向的粒度可能取決於UE 120進行的測量和/或針對UE 120的位置確定的精度的限制。然而,可以注意到,以這種方式提供完整波束形狀可能花費大量開銷。如果波束/碼本動態地改變,則可能需要頻繁地傳送波束形狀。
用於傳送波束形狀的其它選項包括傳送以下各項中的一項或多項: 1、主瓣的視軸方向和波束寬度。可選地,該資訊可以包括一個或多個旁瓣的視軸方向和波束寬度。這可以在每個天線或每個波束的基礎上提供。這可以涉及比傳送完整波束形狀少得多的開銷小,並且因此可能更有利於頻繁更新(例如,在測量多個RF參考訊號的情況下)。 2、天線元件方向圖、碼字和麵板(天線陣列)佈局。面板(天線陣列)佈局可以包括例如不同面板中的元件的排列(例如,使用笛卡爾座標或極座標來描述元件位置)、天線元件的類型(例如,貼片或偶極子)等。天線元件方向圖可以描述每個天線元件的輻射方向圖。與碼字一起,天線元件方向圖和天線陣列佈局可以允許確定波束形狀。在一些實施例中,可以按照lambda/N間隔(在其中傳送參考波長(lambda))來描述一切。在不同的面板中,天線元件的方向圖可以是不同的。儘管以這種方式提供天線元件方向圖和麵板佈局可能需要大的開銷,但是其指示不變的硬體方式,並且因此可能不要求太多動態資訊。也就是說,動態資訊可以包括應用於元件以創建Tx波束的實際權重相位和/或幅度。利用天線元件方向圖和麵板佈局以及動態資訊,接收設備(例如,UE 120)然後可以計算Tx波束的完整波束形狀。 3、索引識別符。在一些實施例中,接收設備可以具有本地存儲(例如,預加載在記憶體中)的用於不同類型的發送設備的波束形狀資訊的資料庫。(由於天線/RF前端製造商數量有限,因此可能存在在多種設備類型之間共享的一些波束形狀資訊,這可以節省用於存儲用於不同類型的發送設備的波束形狀資訊的空間要求。)索引識別符(諸如數字、字、代碼、設備類型等)可以被提供給接收設備,以使接收設備能夠查找存儲的用於發送RF參考訊號的Tx波束的波束形狀資訊。該波束形狀資訊可以包括先前提及的資訊(例如,完整波束形狀、視軸方向和波束寬度、天線元件方向圖/面板佈局等)中的任何資訊。 4、一個或多個等式。可以使用一個或多個等式來準確地近似一些波束形狀,這些等式可以考慮頻率依賴性。因此,可以將這樣的等式傳送給接收設備以確定RF參考訊號的波束形狀。 5、其它實施例可以提供額外資訊來傳送針對波束形狀的頻率依賴性。例如,根據一些實施例,可以提供參考載波頻率或頻寬,其可以是除了主瓣的視軸和/或波束寬度之外的。在一些實施例中,該資訊還可以包括旁瓣508的數量和/或其相對強度、指向方向、波束寬度等。在一些實施例中,視軸和波束寬度資訊可以包括用於旁瓣中的一個或多個旁瓣(例如,幅度高於臨界值的突出旁瓣)和主瓣的資訊。
如所提及的,一些資訊可能已經傳送了頻率依賴性(例如,使用等式)。在一些實施例中,可以提供用於多個頻率的多個資訊集合(例如,用於不同頻率的視軸和波束寬度。)
在一些實施例中,可以在每個頻率層的基礎上提供波束形狀資訊,以幫助傳送波束形狀頻率依賴性。在一些實施例中,如果頻寬小於臨界值值,則可以在每個頻率層的基礎上提供資訊。否則,可以將頻寬劃分為子帶或頻寬部分(BWP),並且可以在每個子帶/BWP的基礎上傳送波束形狀資訊。
為了減少信令開銷,可以提供在參考頻率處具有完整描述(例如,每個角度處的波束成形增益)的基準或參考波束形狀。波束形狀資訊將描述與基準波束形狀相比的增量。根據一些實施例,基準波束形狀可以包括可以被提供給接收設備或接收設備所已知的預定波束形狀。例如,預定波束形狀可以包括由相關標準定義的波束形狀或者由發送設備或位置伺服器提供的波束形狀。對於其中發送設備發送許多RF參考訊號的情況,發送設備可以提供描述用於發送一個RF參考訊號(例如,第一RF參考訊號)的波束的基準波束形狀,然後為用於發送其它RF參考訊號的波束提供波束形狀的差或增量。
在一些實施例中,還可以向接收設備提供組延遲資訊,其中組延遲可能影響接收設備所採取的對RF參考訊號的測量。也就是說,以類似於波束形狀的方式,針對RF參考訊號的組延遲可以是取決於頻率的。因此,根據一些實施例,還可以將該組延遲資訊提供給接收設備。因為組延遲可以是特定於特定RF前端或面板的,所以可以為用於發送RF參考訊號的每個RF前端或面板提供組延遲資訊。此外,與用於傳送波束形狀資訊的選項類似,可以參照參考載波頻率或頻寬來提供組延遲(使用差分指示來指示頻率依賴性)。替代地,可以簡單地為不同的相應載波頻率提供不同的組延遲。
根據一些實施例,可以使用一個或多個不同的5G NR信令層來向接收設備提供波束形狀資訊和/或組延遲資訊。例如,可以使用L1(例如,下行鏈路控制資訊(DCI)、上行鏈路控制資訊(UCI)或側行鏈路控制資訊(SCI))、L2(例如,MAC控制元素(MAC-CE))或L3(例如,使用LPP/NRPPa的無線電資源控制(RRC))來傳送資訊。由於不同層的不同能力(例如,傳送資訊的速度、傳送大量資訊的能力等),因此可以基於不同層的使用來選擇傳送的資訊的格式(例如,完整波束形狀、主瓣的視軸/頻寬、等式、索引等)。
儘管波束形狀(波束偏斜)和組延遲的變化可能由於在頻率方面相對於參考頻率的小方差而發生,但是小方差可能最終不會影響基於對RF參考訊號進行的測量的UE 120的位置確定的精度。因此,各實施例可以建立臨界值頻率,在該臨界值頻率處,波束形狀和組延遲可能影響位置確定精度。這些臨界值頻率(它們對於波束形狀和組延遲可以相同或不同)可以用於確定是否要向接收設備傳送波束形狀資訊或組延遲資訊。
圖6A是根據一實施例的在發送設備處的用於指示用於無線寬頻系統中的UE的定位的波束相關資訊的方法600-A的流程圖。如上文在各實施例中提及的,寬頻系統可以是指其中在波束的形狀方面的頻率依賴性可能影響接收設備所採取的RF訊號的測量(其可以用於確定UE的位置)的系統。用於執行在圖6A中所示的框中所示的功能的單元可以包括UE或基站(TRP)的硬體和/或軟體組件。在圖7和8中示出了UE和基站的示例組件,下文更詳細地描述這些組件。
在框610處,功能包括接收對用於UE的定位的RF參考訊號的計劃波束測量的指示。例如,發送設備(例如,TRP或UE)可以接收以下各項:位置伺服器關於將由接收設備執行RF參考訊號的計劃波束測量的通知或指示、和/或來自位置伺服器或接收設備的關於向接收設備和/或確定UE的位置的定位實體提供指示RF參考訊號的波束的形狀的資訊。根據一些實施例,定位實體可以包括UE本身或位置伺服器。根據一些實施例,定位實體可以包括接收設備(例如,TRP或UE)。在其它實施例中,定位實體可以包括位置伺服器或其它設備。根據一些實施例,在RF參考訊號的傳輸中對波束的使用可以由一種或多種相關的無線通訊和/或位置確定標準來管理。如所提及的,根據所採取的測量,發送設備和接收設備可以改變。在一些情況下,例如,發送設備可以包括TRP,並且接收設備可以包括UE。在其它情況下,發送設備可以包括UE,並且接收設備可以包括TRP。在一些情況下,例如在基於側行鏈路的位置確定中,發送設備可以包括第一UE,並且接收設備可以包括第二UE。根據一些實施例,計劃波束測量包括AoA或AoD測量(其可以包括ZoA或ZoD測量)。根據一些實施例,框610處的功能可以在發送RF參考訊號(在框620處)之後發生。並且因此,框610中的指示可以是完成測量。
用於執行框610處的功能的單元可以包括無線通訊介面730、處理單元710和/或UE 105的其它組件,如圖7中所示。替代地,用於執行框610處的功能的單元可以包括無線通訊介面830、處理單元810和/或基站(TRP)800的其它組件,如圖8中所示。
在框620處,功能包括發送RF參考訊號。發送可以包括使用一個或多個波束,其可以具有一個或多個相應的形狀。額外細節見下文。
用於執行框620處的功能的單元可以包括無線通訊介面730、處理單元710和/或UE 105的其它組件,如圖7所示。替代地,用於執行框610處的功能的單元可以包括無線通訊介面830、處理單元810和/或基站800的其它組件,如圖8所示。
在框630處,功能包括向定位實體或接收設備中的任一者或兩者發送指示在發送RF參考訊號時使用的波束的形狀的資訊,其中,波束的形狀是取決於頻率的。根據接收設備的設備類型和/或定位實體是否包括接收設備,該功能可以改變。例如,在UE輔助的方法中,UE可以測量多個RF參考訊號(例如,多個PRS資源,其中每個PRS資源是通過TRP側的相應的Tx波束來發送的)的RSRP值。在這種情況下,UE可以不需要波束形狀,但是替代地可以將指示波束形狀的資訊提供給從UE接收RSRP值的位置伺服器。對於TRP是接收設備的情況,接收設備可以進行角度測量,並且因此可以利用指示波束形狀的資訊。
如在上文描述的各個實施例中提及的,可以使用指示波束的形狀的不同類型的資訊。例如,在一些實施例中,指示波束的形狀的資訊可以是波束在多個方位角和仰角方向上的增益、波束的主瓣的視軸和寬度、用於發送波束的天線面板的天線元件的輻射方向圖、用於參考頻率或頻寬的波束的形狀、或在接收設備處索引的識別描述波束的形狀的資訊的識別符、或其組合。在一些實施例中,指示波束的形狀的資訊還可以包括波束的主瓣的視軸、波束成形增益和寬度以及(可選的)波束的一個或多個旁瓣的視軸和寬度。在這樣的實施例中,還可以提供針對主瓣和/或旁瓣的增益。在一些實施例中,指示波束的形狀的資訊還可以包括指示針對用於發送波束的天線元件的組合權重的資訊。根據其中指示波束的形狀的資訊包括指示用於發送波束的天線面板的天線元件的輻射方向圖的資訊的一些實施例,指示波束的形狀的資訊還可以包括指示天線面板的天線元件的幾何形狀和佈局的資訊。如所提及的,資訊還可以包括差分資訊,從而使得接收設備能夠基於頻率或頻寬的變化來確定波束的形狀的變化。
用於執行框630處的功能的單元可以包括無線通訊介面730、處理單元710和/或UE 105的其它組件,如圖7所示。替代地,用於執行框610處的功能的單元可以包括無線通訊介面830、處理單元810和/或基站800的其它組件,如圖8所示。
如在上文描述的實施例中提及的,根據一些實施例,可以在方法600-A中包括額外的功能。例如,方法600-A的一些實施例還可以包括:確定RF參考訊號的傳輸中的組延遲的頻率依賴性;以及向定位實體或接收設備中的任一者或兩者發送指示組延遲的資訊。可以採用對參考頻率或頻寬的差分指示的形式、使用等式、和/或提供用於多個載波頻率的組延遲,來提供該頻率依賴性。
在一些情況下,所述波束可以是用於發送RF參考訊號的多個波束中的一個波束。在這樣的情況下,方法600-A的一些實施例還可以包括向定位實體或接收設備中的任一者或兩者發送指示多個波束中的每個波束的波束形狀的資訊。可選地,多個波束中的每個波束對應於用於RF參考訊號的相應的頻率層、頻寬部分(BWP)或經配置的連續頻率塊。在一些實施例中,方法600-A還可以包括確定用於指示波束的形狀的資訊的格式。如所提及的,可以基於在其中提供資訊的層來確定該格式。因此,對於方法600-A的一些實施例,至少部分地基於指示波束的形狀的資訊是經由L1、L2還是L3信令被發送給UE來確定格式。如先前提及的,可以相對於參考或基準波束形狀來傳送波束形狀。因此,根據一些實施例,指示波束的形狀的資訊可以包括指示在RF參考訊號的傳輸中使用的波束的形狀與參考波束形狀之間的一個或多個差異的資訊。
如另外提及的,根據一些實施例,指示波束的形狀的資訊包括指示在RF參考訊號的傳輸中使用的波束的形狀與參考波束形狀之間的一個或多個差異的資訊。此處,參考波束形狀可以包括如在相關標準中定義的和/或預先提供給接收設備的預定或已知波束形狀。另外或替代地,參考波束形狀可以包括在發送RF參考訊號時使用的許多波束形狀之一的波束形狀。
圖6B是根據一實施例的在定位實體處的用於無線寬頻系統中的用戶設備(UE)的定位的方法600-B的流程圖。再次,寬頻系統可以是指其中波束的形狀的頻率依賴性可能影響接收設備所採取的RF訊號的測量(其可以用於確定UE的位置)的系統。用於執行在圖6B中所示的框中所示的功能的單元可以包括UE或伺服器(例如,位置伺服器160)的硬體和/或軟體組件。再次,在圖7和8中示出了UE和基站的示例組件,下文更詳細地描述了這些組件。
在框650處,功能包括獲得由發送設備發送的RF參考訊號的波束測量資訊。例如,波束測量資訊可以包括例如RSRP測量資訊或其它AoD或AoA相關測量。更廣泛地說,波束測量資訊可以包括與AoA或AoD測量有關的資訊。對於其中定位實體包括UE的實施例,獲得波束測量資訊可以包括在UE處執行對RF參考訊號的測量。對於其中定位實體包括伺服器的實施例,獲得波束測量資訊可以包括在伺服器處從UE或TRP(例如,進行測量的接收設備)接收波束測量資訊。發送設備可以包括TRP或UE。
用於執行框650處的功能的單元可以包括無線通訊介面730、處理單元710和/或UE 105的其它組件,如圖7所示。替代地,用於執行框650處的功能的單元可以包括無線通訊介面830、處理單元810和/或位置伺服器800的其它組件,如圖8所示。
在框660處,功能包括從發送設備接收指示由發送設備用於發送RF參考訊號的波束的形狀的資訊,其中,波束的形狀是取決於頻率的。根據一些實施例,指示波束的形狀的資訊包括指示以下各項的資訊:波束在多個方位角和仰角方向上的增益、波束的主瓣的視軸和寬度、用於發送波束的天線面板的天線元件的輻射方向圖、用於參考頻率或頻寬的波束的形狀、或在接收設備處索引的識別描述波束的形狀的資訊的識別符、或其組合。根據一些實施例,指示波束的形狀的資訊還包括波束的一個或多個旁瓣的視軸、波束成形增益和寬度。根據一些實施例,指示波束的形狀的資訊包括指示用於發送波束的天線面板的天線元件的輻射方向圖的資訊,並且還包括指示針對用於發送波束的天線元件的組合權重的資訊。根據一些實施例,指示波束的形狀的資訊包括指示用於發送波束的天線面板的天線元件的輻射方向圖的資訊,其中,指示波束的形狀的資訊還包括指示天線面板的天線元件的幾何形狀和佈局的資訊。
用於執行框660處的功能的單元可以包括無線通訊介面730、處理單元710和/或UE 105的其它組件,如圖7所示。替代地,用於執行框660處的功能的單元可以包括無線通訊介面830、處理單元810和/或位置伺服器800的其它組件,如圖8所示。
在框670處,功能包括基於波束測量資訊和指示波束的形狀的資訊來確定UE的位置。此處,確定UE的位置可以包括基於在框660處接收的指示波束的形狀的資訊來修改或校正在框650處接收的波束測量資訊。替代地,可以基於指示波束的形狀的資訊來以不同方式解釋、加權和/或使用波束測量資訊。技術可以改變。
如在上文描述的各個實施例中提及的,各實施例可以實現一個或多個額外特徵。例如,根據一些實施例,方法600-B還可以包括接收指示RF參考訊號的傳輸中的組延遲的資訊。此處,確定UE的位置可以是進一步基於指示組延遲的資訊。根據一些實施例,波束可以是用於發送RF參考訊號的多個波束中的一個波束。在這樣的實施例中,該方法還可以包括針對多個波束中的每個波束,接收指示波束的形狀的資訊。可選地,多個波束中的每個波束可以對應於用於RF參考訊號的相應的頻率層、頻寬部分(BWP)或經配置的連續頻率塊。根據一些實施例,指示波束的形狀的資訊可以包括指示在RF參考訊號的傳輸中使用的波束的形狀與參考波束形狀之間的一個或多個差異的資訊。
用於執行框670處的功能的單元可以包括無線通訊介面730、處理單元710和/或UE 105的其它組件,如圖7所示。替代地,用於執行框670處的功能的單元可以包括無線通訊介面830、處理單元810和/或基站120的其它組件,如圖8所示。
圖7示出了UE 105的實施例,可以如本文在上面(例如,與圖1-6相關聯地)描述的那樣利用UE 105。例如,UE 105可以執行在圖6和6B中所示的方法的功能中的一個或多個功能。應當注意的是,圖7意在僅提供各種組件的一般性說明,可以利用其中的任何或全部組件(視情況而定)。可以注意到,在一些情況下,通過圖7示出的組件可以局限於單個實體設備和/或分佈在各種聯網設備之間,所述各種聯網設備可以被設置在不同的實體位置處。此外,如先前提及的,在先前描述的實施例中討論的UE的功能可以由在圖7中所示的硬體和/或軟體組件中的一者或多者來執行。
UE 105被示為包括可以經由總線705電耦合(或者可以以其它方式進行通訊,視情況而定)的硬體元件。硬體元件可以包括處理單元710,其可以包括但不限於一個或多個通用處理器、一個或多個專用處理器(諸如數位訊號處理器(DSP)晶片、圖形加速處理器、專用積體電路(ASIC)等)、和/或其它處理結構或單元。如圖7所示,一些實施例可以具有單獨的DSP 720,這取決於期望的功能。可以在處理單元710和/或無線通訊介面730(下文討論)中提供基於無線通訊的位置確定和/或其它確定。UE 105還可以包括:一個或多個輸入設備770,其可以包括但不限於一個或多個鍵盤、觸控螢幕、觸控板、麥克風、按鈕、撥號盤、開關等;以及一個或多個輸出設備715,其可以包括但不限於一個或多個顯示器(例如,觸控螢幕)、發光二極體(LED)、揚聲器等。
UE 105還可以包括可以使UE 105能夠與其它設備進行通訊(如在上文實施例中描述)的無線通訊介面730,其可以包括但不限於數據機、網卡、紅外通訊設備、無線通訊設備和/或晶片組(諸如藍牙®設備、IEEE 802.11設備、IEEE 802.15.4設備、Wi-Fi設備、WiMAX設備、WAN設備和/或各種蜂巢式設備)等。無線通訊介面730可以允許例如經由eNB、gNB、ng-eNB、存取點、各種基站和/或其它存取節點類型和/或其它網路組件、計算機系統、和/或與TRP通訊地耦合的任何其它電子設備來與網路的TRP傳送(例如,發送和接收)資料和信令,如本文描述的。可以經由發送和/或接收無線訊號734的一個或多個無線通訊天線732來執行通訊。根據一些實施例,無線通訊天線732可以包括多個離散的天線、天線陣列或其任何組合。天線732能夠使用波束(例如,Tx波束和Rx波束)來發送和接收無線訊號。可以使用數位和/或類比波束成形技術以及相應的數位和/或類比電路來執行波束成形。無線通訊介面730可以包括這樣的電路。
取決於期望的功能,無線通訊介面730可以包括用於與基站(例如,ng-eNB和gNB)和其它地面收發機(諸如無線設備和存取點)進行通訊的單獨的接收機和發射機、或收發機、發射機和/或接收機的任何組合。UE 105可以與可以包括各種網路類型的不同的資料網路進行通訊。例如,無線廣域網(WWAN)可以是CDMA網路、分時多存取(TDMA)網路、分頻多存取(FDMA)網路、正交分頻多存取(OFDMA)網路、單載波分頻多存取(SC-FDMA)網路、WiMAX(IEEE 802.16)網路等。CDMA網路可以實現一個或多個RAT,諸如CDMA2000®、WCDMA等。CDMA2000®包括IS-95、IS-2000和/或IS-856標準。TDMA網路可實現GSM、數位高級行動電話系統(D-AMPS)或某種其它RAT。OFDMA網路可以採用LTE、改進的LTE、5G NR等。在來自3GPP的文檔中描述了5G NR、LTE、改進的LTE、GSM和WCDMA。在來自名為“第三代合作夥伴計劃2”(3GPP2)的聯盟的文檔中描述了CDMA2000®。3GPP和3GPP2文檔可公開獲得。無線局域網(WLAN)也可以是IEEE 802.11x網路,並且無線個域網(WPAN)可以是藍牙網路、IEEE 802.15x或某種其它類型的網路。本文描述的技術也可以用於WWAN、WLAN和/或WPAN的任何組合。
UE 105還可以包括傳感器740。傳感器740可以包括但不限於一個或多個慣性傳感器和/或其它傳感器(例如,加速度計、陀螺儀、相機、磁強計、高度計、麥克風、接近度傳感器、光傳感器、氣壓計等),其中的一些可以用於獲得位置相關測量和/或其它資訊。
UE 105的實施例還可以包括全球導航衛星系統(GNSS)接收機780,其能夠使用天線782(其可以與天線732相同)從一個或多個GNSS衛星接收訊號784。基於GNSS訊號測量的定位可以用於補充和/或併入本文描述的技術。GNSS接收機780可以使用傳統技術來從GNSS系統(諸如全球定位系統(GPS)、伽利略、GLONASS、日本上空的准天頂衛星系統(QZSS)、印度上空的IRNSS、中國上空的北斗導航衛星系統(BDS)等)的GNSS衛星110提取UE 105的位置。此外,GNSS接收機780可以與各種增強系統(例如,基於衛星的增強系統(SBAS))一起使用,所述增強系統可以與一個或多個全球和/或區域導航衛星系統(例如,廣域增強系統(WAAS)、歐洲對地靜止導航覆蓋服務(EGNOS)、多功能衛星增強系統(MSAS)和地球靜止增強導航系統(GAGAN)等)相關聯或以其它方式被啟用以與其一起使用。
可以注意到,儘管在圖7中將GNSS接收機780示出為不同的組件,但是各實施例不限於此。如本文所使用的,術語“GNSS接收機”可以包括被配置為獲得GNSS測量(來自GNSS衛星的測量)的硬體和/或軟體組件。因此,在一些實施例中,GNSS接收機可以包括由一個或多個處理單元(諸如處理單元710、DSP 720和/或無線通訊介面730內的處理單元(例如,在數據機中))執行(作為軟體)的測量引擎。GNSS接收機還可以可選地包括定位引擎,其可以使用來自測量引擎的GNSS測量來使用擴展卡爾曼濾波器(EKF)、加權最小二乘(WLS)、hatch濾波器、粒子濾波器等來確定GNSS接收機的位置。定位引擎也可以由一個或多個處理單元(諸如處理單元710或DSP 720)來執行。
UE 105還可以包括記憶體760和/或與記憶體760相通訊。記憶體760可以包括但不限於本地和/或網路可訪問儲存裝置;磁盤驅動器;驅動器陣列;光學儲存設備;固態儲存設備,諸如隨機存取記憶體(RAM)、和/或只讀記憶體(ROM),其可以是可編程、可閃速更新的等等。此類儲存設備可以被配置為實現任何適當的資料儲存,包括但不限於各種檔案系統、資料庫結構等。
UE 105的記憶體760還可以包括軟體元件(在圖7中未示出),包括操作系統、設備驅動器、可執行庫和/或其它代碼,諸如一個或多個應用程式,其可以包括由各個實施例提供的計算機程式,和/或可以被設計為實現由其它實施例提供的方法和/或配置由其它實施例提供的系統,如本文描述的。僅通過舉例的方式,可以將關於上文討論的方法描述的一個或多個過程實現為記憶體760中的可由UE 105(和/或UE 105內的處理單元710或DSP 720)執行的代碼和/或指令。然後,在一些實施例中,可以使用這樣的代碼和/或指令來配置和/或適配通用計算機(或其它設備)以執行根據所描述的方法的一個或多個操作。
圖8示出了基站120的實施例,可以如本文在上面(例如,與圖1-6相關聯地)描述的那樣利用基站120。應當注意的是,圖8意在僅提供各種組件的一般性說明,可以利用其中的任何或全部組件(視情況而定)。在一些實施例中,基站120可以對應於gNB、ng-eNB和/或(更一般地)TRP。
基站120被示為包括可以經由總線805電耦合(或者可以以其它方式進行通訊,視情況而定)的硬體元件。硬體元件可以包括處理單元810,其可以包括但不限於一個或多個通用處理器、一個或多個專用處理器(諸如DSP晶片、圖形加速處理器、ASIC等)、和/或其它處理結構或單元。如圖8所示,一些實施例可以具有單獨的DSP 820,這取決於期望的功能。根據一些實施例,可以在處理單元810和/或無線通訊介面830(下文討論)中提供位置確定和/或基於無線通訊的其它確定。基站120還可以包括:一個或多個輸入設備,其可以包括但不限於一個或多個鍵盤、顯示器、鼠標、麥克風、按鈕、撥號盤、開關等;以及一個或多個輸出設備,其可以包括但不限於顯示器、發光二極體(LED)、揚聲器等。
基站120還可以包括可以使基站120能夠如本文描述地進行通訊的無線通訊介面830,其可以包括但不限於數據機、網卡、紅外通訊設備、無線通訊設備和/或晶片組(諸如藍牙®設備、IEEE 802.11設備、IEEE 802.15.4設備、Wi-Fi設備、WiMAX設備、蜂巢式通訊設施)等。無線通訊介面830可以允許向UE、其它基站/TRP(例如,eNB、gNB和ng-eNB)和/或本文描述的其它網路組件、計算機系統和/或任何其它電子設備傳送(例如,發送和接收)資料和信令。可以經由發送和/或接收無線訊號834的一個或多個無線通訊天線832攜帶通訊。
基站120還可以包括網路介面880,網路介面880可以包括對有線通訊技術的支持。網路介面880可以包括數據機、網卡、晶片組等。網路介面880可以包括一個或多個輸入和/或輸出通訊介面,以允許與網路、通訊網路伺服器、計算機系統和/或本文描述的任何其它電子設備交換資料。
在許多實施例中,基站120還可以包括記憶體860。記憶體860可以包括但不限於本地和/或網路可訪問儲存裝置;磁盤驅動器;驅動器陣列;光學儲存設備;固態儲存設備,諸如RAM、和/或ROM,其可以是可編程的、可閃速更新的等。此類儲存設備可以被配置為實現任何適當的資料存儲,包括但不限於各種檔案系統、資料庫結構等。
基站120的記憶體860還可以包括軟體元件(在圖8中未示出),包括操作系統、設備驅動器、可執行庫和/或其它代碼,諸如一個或多個應用程式,其可以包括由各個實施例提供的計算機程式,和/或可以被設計為實現由其它實施例提供的方法和/或配置由其它實施例提供的系統,如本文描述的。僅通過舉例的方式,可以將關於上文討論的方法描述的一個或多個過程實現為記憶體860中的可由基站120(和/或基站120內的處理單元810或DSP 820)執行的代碼和/或指令。然後,在一些實施例中,可以使用這樣的代碼和/或指令來配置和/或適配通用計算機(或其它設備)以執行根據所描述的方法的一個或多個操作。對於本領域技術人員將顯而易見的是,可以根據具體要求進行實質性的改變。例如,還可以使用定制硬體,和/或可以用硬體、軟體(包括可移植軟體,諸如applet等)或兩者來實現特定元素。此外,可以採用到諸如網路輸入/輸出設備之類的其它計算設備的連接。
參照附圖,可以包括記憶體的組件可以包括非暫時性機器可讀媒體。如本文使用的,術語“機器可讀媒體”和“計算機可讀媒體”指代參與提供使得機器以特定方式操作的資料的任何儲存媒體。在上文提供的實施例中,各種機器可讀媒體可以涉及向處理單元和/或其它設備提供指令/代碼以供執行。另外或替代地,機器可讀媒體可以用於存儲和/或攜帶這樣的指令/代碼。在許多實現中,計算機可讀媒體是實體和/或有形儲存媒體。這樣的媒體可以採用多種形式,包括但不限於非易失性媒體、易失性媒體和傳輸媒體。計算機可讀媒體的常見形式包括例如磁性和/或光學媒體、具有孔圖案的任何其它實體媒體、RAM、可編程ROM(PROM)、可擦除PROM(EPROM)、閃速EPROM、任何其它記憶體晶片或盒、如下文描述的載波、或計算機可以從中讀取指令和/或代碼的任何其它媒體。
本文討論的方法、系統和設備是示例。各個實施例可以酌情省略、替代或添加各種過程或組件。例如,關於某些實施例描述的特徵可以組合在各個其它實施例中。實施例的不同方面和元素可以以類似方式組合。本文提供的圖的各種組件可以用硬體和/或軟體來體現。此外,技術不斷發展,並且因此,許多元素是示例,其不將本公開內容的範圍限制於那些特定示例。
已經證明,主要出於常用的原因,有時將這樣的訊號稱為位元、資訊、值、元素、符號、字符、變量、術語、數字、數值等是方便的。然而,應當理解的是,所有這些或類似術語將與適當的物理量相關聯,並且僅僅是方便的標簽。除非另有特別說明,否則從上文討論中顯而易見的是,將明白貫穿本說明書討論,使用諸如“處理”、“運算”、“計算”、“確定”、“查明”、“識別”、“關聯”、“測量”、“執行”等的術語是指特定裝置的動作或過程,諸如專用計算機或類似的專用電子計算設備。因此,在本說明書的上下文中,專用計算機或類似的專用電子計算設備能夠操縱或變換訊號,這些訊號通常被表示為專用計算機或類似的專用電子計算設備的記憶體、寄存器或其它資訊儲存設備、傳輸設備、或顯示設備內的實體電子、電氣或磁量。
如本文中使用的,術語“和”和“或”可以包括各種含義,也預期這些含義至少部分地取決於使用這些術語的上下文。通常,如果使用“或”來關聯列表(諸如A、B或C),則其旨在意指A、B和C(此處在包含性意義上使用)以及A、B或C(此處在排他性意義上使用)。另外,如本文中使用的,術語“一個或多個”可以用於以單數形式描述任何特徵、結構或特性,或者可以用於描述特徵、結構或特性的某種組合。然而,應當注意的是,這僅僅是說明性示例,並且所要求保護的主題不限於該示例。此外,如果術語“中的至少一個”用於關聯列表(諸如A、B或C),則其可以被解釋為意指A、B和/或C的任何組合,諸如A、AB、AA、AAB、AABBCCC等。
在描述了若干實施例之後,在不脫離本公開內容的精神的情況下,可以使用各種修改、替代構造和等效物。例如,上述元素可以僅僅是較大系統的組件,其中,其它規則可以優先於或以其它方式修改各個實施例的應用。此外,可以在考慮上述元素之前、期間或之後採取多個步驟。因此,上述描述不限制本公開內容的範圍。
鑒於該描述,各實施例可以包括特徵的不同組合。在以下編號的條款中描述了實現示例:條款 1 一種在發送設備處的指示用於無線寬頻系統中的用戶設備(UE)的定位的波束相關資訊的方法,所述方法包括:接收對用於所述UE的所述定位的射頻(RF)參考訊號的計劃波束測量的指示;發送所述RF參考訊號;以及向定位實體或接收設備中的任一者或兩者發送指示在發送所述RF參考訊號時使用的波束的形狀的資訊,其中,所述波束的所述形狀是取決於頻率的。條款 2 根據條款1所述的方法,其中,所述定位實體包括所述接收設備。條款 3 根據條款1-2中任一項所述的方法,其中,所述定位實體包括所述UE、發送接收點(TRP)、或位置伺服器。條款 4 根據條款1-3中任一項所述的方法,其中,所述發送設備包括TRP或UE。條款 5 根據條款1-4中任一項所述的方法,其中,所述計劃波束測量包括到達角(AoA)或離開角(AoD)測量。條款 6 根據條款1-5中任一項所述的方法,其中,指示所述波束的所述形狀的所述資訊包括指示以下各項的資訊:所述波束在多個方位角和仰角方向上的增益、所述波束的主瓣的視軸和寬度、用於發送所述波束的天線面板的天線元件的輻射方向圖、用於參考頻率或頻寬的所述波束的形狀、或在所述接收設備處索引的識別描述所述波束的所述形狀的資訊的識別符、或其組合。條款 7 根據條款6所述的方法,其中,指示所述波束的所述形狀的資訊還包括所述波束的一個或多個旁瓣的視軸、波束成形增益和寬度。條款 8 根據條款6-7中任一項所述的方法,其中,指示所述波束的所述形狀的所述資訊包括指示用於發送所述波束的所述天線面板的所述天線元件的所述輻射方向圖的資訊,並且還包括指示針對用於發送所述波束的所述天線元件的組合權重的資訊。條款 9 根據條款6-8中任一項所述的方法,其中,指示所述波束的所述形狀的所述資訊包括指示用於發送所述波束的所述天線面板的所述天線元件的所述輻射方向圖的資訊,並且其中,指示所述波束的所述形狀的所述資訊還包括指示所述天線面板的所述天線元件的幾何形狀和佈局的資訊。條款 10 根據條款1-9中任一項所述的方法,還包括:確定所述RF參考訊號的所述發送中的組延遲的頻率依賴性;以及向所述定位實體或所述接收設備中的任一者或兩者發送指示所述組延遲的資訊。條款 11 根據條款1-10中任一項所述的方法,其中,所述波束是用於發送所述RF參考訊號的多個波束中的一個波束,並且其中,所述方法還包括:針對所述多個波束中的每個波束,向所述定位實體或所述接收設備中的任一者或兩者發送指示所述波束的形狀的資訊。條款 12 根據條款11所述的方法,其中,所述多個波束中的每個波束對應於用於所述RF參考訊號的相應的頻率層、頻寬部分(BWP)、或經配置的連續頻率塊。條款 13 根據條款11-12中任一項所述的方法,還包括:至少部分地基於指示所述波束的形狀的所述資訊是經由L1、L2還是L3信令被發送給所述UE,來確定用於指示所述波束的所述形狀的所述資訊的格式。條款 14 根據條款1-13中任一項所述的方法,其中,指示所述波束的所述形狀的所述資訊包括指示在所述RF參考訊號的所述發送中使用的所述波束的所述形狀與參考波束形狀之間的一個或多個差異的資訊。條款 15 一種在定位實體處的用於無線寬頻系統中的用戶設備(UE)的定位的方法,所述方法包括:獲得由發送設備發送的射頻(RF)參考訊號的波束測量資訊;從所述發送設備接收指示由所述發送設備用於發送所述RF參考訊號的波束的形狀的資訊,其中,所述波束的所述形狀是取決於頻率的;以及基於所述波束測量資訊和指示所述波束的所述形狀的所述資訊來確定所述UE的位置。條款 16 根據條款15所述的方法,其中,所述定位實體包括所述UE,並且其中,獲得波束測量資訊包括:在所述UE處執行對所述RF參考訊號的測量。條款 17 根據條款15-16中任一項所述的方法,其中,所述定位實體包括伺服器,並且其中,獲得波束測量資訊包括:在所述伺服器處從所述UE接收所述波束測量資訊。條款 18 根據條款15-17中任一項所述的方法,其中,所述發送設備包括TRP或UE。條款 19 根據條款15-18中任一項所述的方法,其中,所述波束測量資訊包括與到達角(AoA)或離開角(AoD)測量有關的資訊。條款 20 根據條款15-19中任一項所述的方法,其中,指示所述波束的所述形狀的所述資訊包括指示以下各項的資訊:所述波束在多個方位角和仰角方向上的增益、所述波束的主瓣的視軸和寬度、用於發送所述波束的天線面板的天線元件的輻射方向圖、用於參考頻率或頻寬的所述波束的形狀、或在接收設備處索引的識別描述所述波束的所述形狀的資訊的識別符、或其組合。條款 21 根據條款20所述的方法,其中,指示所述波束的所述形狀的所述資訊還包括所述波束的一個或多個旁瓣的視軸、波束成形增益和寬度。條款 22 根據條款20-21中任一項所述的方法,其中,指示所述波束的所述形狀的所述資訊包括指示用於發送所述波束的所述天線面板的所述天線元件的所述輻射方向圖的資訊,並且還包括指示針對用於發送所述波束的所述天線元件的組合權重的資訊。條款 23 根據條款20-22中任一項所述的方法,其中,指示所述波束的所述形狀的所述資訊包括指示用於發送所述波束的所述天線面板的所述天線元件的所述輻射方向圖的資訊,並且其中,指示所述波束的所述形狀的所述資訊還包括指示所述天線面板的所述天線元件的幾何形狀和佈局的資訊。條款 24 根據條款20-23中任一項所述的方法,還包括:接收指示所述RF參考訊號的所述發送中的組延遲的資訊,其中,確定所述UE的所述位置是進一步基於指示所述組延遲的所述資訊的。條款 25 根據條款15-24中任一項所述的方法,其中,所述波束是用於發送所述RF參考訊號的多個波束中的一個波束,並且其中,所述方法還包括:針對所述多個波束中的每個波束,接收指示所述波束的形狀的資訊。條款 26 根據條款25所述的方法,其中,所述多個波束中的每個波束對應於用於所述RF參考訊號的相應的頻率層、頻寬部分(BWP)、或經配置的連續頻率塊。條款 27 根據條款15-26中任一項所述的方法,其中,指示所述波束的所述形狀的所述資訊包括指示在所述RF參考訊號的所述發送中使用的所述波束的所述形狀與參考波束形狀之間的一個或多個差異的資訊。條款 28 一種用於指示用於無線寬頻系統中的用戶設備(UE)的定位的波束相關資訊的發送設備,所述發送設備包括:收發機;記憶體;以及與所述收發機和所述記憶體通訊地耦合的一個或多個處理器,其中,所述一個或多個處理器被配置為:接收對用於所述UE的所述定位的射頻(RF)參考訊號的計劃波束測量的指示;經由所述收發機來發送所述RF參考訊號;以及向定位實體或接收設備中的任一者或兩者發送指示在發送所述RF參考訊號時使用的波束的形狀的資訊,其中,所述波束的所述形狀是取決於頻率的。條款 29 根據條款28所述的發送設備,其中,所述發送設備包括TRP或UE。條款 30 根據條款28-29中任一項所述的發送設備,其中,所述一個或多個處理器被配置為:在指示所述波束的所述形狀的所述資訊中包括以下各項:所述波束在多個方位角和仰角方向上的增益、所述波束的主瓣的視軸和寬度、用於發送所述波束的天線面板的天線元件的輻射方向圖、用於參考頻率或頻寬的所述波束的形狀、或在所述接收設備處索引的識別描述所述波束的所述形狀的資訊的識別符、或其組合。條款 31 根據條款30所述的發送設備,其中,所述一個或多個處理器被配置為:在指示所述波束的所述形狀的所述資訊中包括所述波束的一個或多個旁瓣的視軸、波束成形增益和寬度。條款 32 根據條款30-31中任一項所述的發送設備,其中,所述一個或多個處理器被配置為:在指示用於發送所述波束的所述天線面板的所述天線元件的所述輻射方向圖的資訊中包括指示針對用於發送所述波束的所述天線元件的組合權重的資訊。條款 33 根據條款30-32中任一項所述的發送設備,其中,所述一個或多個處理器被配置為:在指示用於發送所述波束的所述天線面板的所述天線元件的所述輻射方向圖的所述資訊中包括指示所述天線面板的所述天線元件的幾何形狀和佈局的資訊。條款 34 根據條款28-33中任一項所述的發送設備,其中,所述一個或多個處理器還被配置為:確定所述RF參考訊號的所述發送中的組延遲的頻率依賴性;以及向所述定位實體或所述接收設備中的任一者或兩者發送指示所述組延遲的資訊。條款 35 根據條款28-34中任一項所述的發送設備,其中,所述波束是用於發送所述RF參考訊號的多個波束中的一個波束,並且其中,所述一個或多個處理器還被配置為:針對所述多個波束中的每個波束,向所述定位實體或所述接收設備中的任一者或兩者發送指示所述波束的形狀的資訊。條款 36 根據條款35所述的發送設備,其中,所述多個波束中的每個波束對應於用於所述RF參考訊號的相應的頻率層、頻寬部分(BWP)、或經配置的連續頻率塊。條款 37 根據條款35-36中任一項所述的發送設備,其中,所述一個或多個處理器還被配置為:至少部分地基於指示所述波束的形狀的所述資訊是經由L1、L2還是L3信令被發送給所述UE,來確定用於指示所述波束的所述形狀的所述資訊的格式。條款 38 根據條款28-37中任一項所述的發送設備,其中,所述一個或多個處理器被配置為:在指示所述波束的所述形狀的所述資訊中包括指示在所述RF參考訊號的所述發送中使用的所述波束的所述形狀與參考波束形狀之間的一個或多個差異的資訊。條款 39 一種用於無線寬頻系統中的用戶設備(UE)的定位的定位實體,所述定位實體包括:收發機;記憶體;以及與所述收發機和所述記憶體通訊地耦合的一個或多個處理器,其中,所述一個或多個處理器被配置為:獲得由發送設備發送的射頻(RF)參考訊號的波束測量資訊;經由所述收發機來從所述發送設備接收指示由所述發送設備用於發送所述RF參考訊號的波束的形狀的資訊,其中,所述波束的所述形狀是取決於頻率的;以及基於所述波束測量資訊和指示所述波束的所述形狀的所述資訊來確定所述UE的位置。條款 40 根據條款39所述的定位實體,其中,所述定位實體包括所述UE,並且其中,為了獲得波束測量資訊,所述一個或多個處理器被配置為:執行對所述RF參考訊號的測量。條款 41 根據條款39-40中任一項所述的定位實體,其中,所述定位實體包括伺服器,並且其中,為了獲得波束測量資訊,所述一個或多個處理器被配置為:從所述UE接收所述波束測量資訊。條款 42 根據條款39-41中任一項所述的定位實體,其中,所述發送設備包括TRP或UE。條款 43 根據條款39-42中任一項所述的定位實體,其中,為了獲得所述波束測量資訊,所述一個或多個處理器被配置為:獲得與到達角(AoA)或離開角(AoD)測量有關的資訊。條款 44 根據條款39-43中任一項所述的定位實體,其中,為了接收指示所述波束的所述形狀的所述資訊,所述一個或多個處理器被配置為接收指示以下各項的資訊:所述波束在多個方位角和仰角方向上的增益、所述波束的主瓣的視軸和寬度、用於發送所述波束的天線面板的天線元件的輻射方向圖、用於參考頻率或頻寬的所述波束的形狀、或在接收設備處索引的識別描述所述波束的所述形狀的資訊的識別符、或其組合。條款 45 根據條款44所述的定位實體,其中,為了接收指示所述波束的所述形狀的所述資訊,所述一個或多個處理器被配置為:接收指示所述波束的一個或多個旁瓣的視軸、波束成形增益和寬度的資訊。條款 46 根據條款44-45中任一項所述的定位實體,其中,所述一個或多個處理器被配置為:接收指示針對用於發送所述波束的所述天線元件的組合權重的資訊。條款 47 根據條款44-46中任一項所述的定位實體,其中,所述一個或多個處理器被配置為:接收指示所述天線面板的所述天線元件的幾何形狀和佈局的資訊。條款 48 根據條款44-47中任一項所述的定位實體,其中,所述一個或多個處理器還被配置為:接收指示所述RF參考訊號的所述發送中的組延遲的資訊,其中,確定所述UE的所述位置是進一步基於指示所述組延遲的所述資訊的。條款 49 根據條款39-48中任一項所述的定位實體,其中,所述波束是用於發送所述RF參考訊號的多個波束中的一個波束,並且其中,所述一個或多個處理器還被配置為:針對所述多個波束中的每個波束,接收指示所述波束的形狀的資訊。條款 50 根據條款49所述的定位實體,其中,所述多個波束中的每個波束對應於用於所述RF參考訊號的相應的頻率層、頻寬部分(BWP)、或經配置的連續頻率塊。條款 51 根據條款39-50中任一項所述的定位實體,其中,為了接收指示所述波束的所述形狀的所述資訊,所述一個或多個處理器被配置為:接收指示在所述RF參考訊號的所述發送中使用的所述波束的所述形狀與參考波束形狀之間的一個或多個差異的資訊。條款 52 一種用於指示用於無線寬頻系統中的用戶設備(UE)的定位的波束相關資訊的裝置,所述裝置包括:用於接收對用於所述UE的所述定位的射頻(RF)參考訊號的計劃波束測量的指示的單元;用於發送所述RF參考訊號的單元;以及用於向定位實體或接收設備中的任一者或兩者發送指示在發送所述RF參考訊號時使用的波束的形狀的資訊的單元,其中,所述波束的所述形狀是取決於頻率的。條款 53 根據條款52所述的裝置,其中,所述計劃波束測量包括到達角(AoA)或離開角(AoD)測量。條款 54 一種用於無線寬頻系統中的用戶設備(UE)的定位的裝置,所述裝置包括:用於獲得由發送設備發送的射頻(RF)參考訊號的波束測量資訊的單元;用於從所述發送設備接收指示由所述發送設備用於發送所述RF參考訊號的波束的形狀的資訊的單元,其中,所述波束的所述形狀是取決於頻率的;以及用於基於所述波束測量資訊和指示所述波束的所述形狀的所述資訊來確定所述UE的位置的單元。條款 55 根據條款54所述的裝置,其中,所述波束測量資訊包括與到達角(AoA)或離開角(AoD)測量有關的資訊。條款 56 一種存儲用於指示用於無線寬頻系統中的用戶設備(UE)的定位的波束相關資訊的指令的非暫時性計算機可讀媒體,所述指令包括用於進行以下操作的代碼:接收對用於所述UE的所述定位的射頻(RF)參考訊號的計劃波束測量的指示;發送所述RF參考訊號;以及向定位實體或接收設備中的任一者或兩者發送指示在發送所述RF參考訊號時使用的波束的形狀的資訊,其中,所述波束的所述形狀是取決於頻率的。條款 57 一種存儲用於無線寬頻系統中的用戶設備(UE)的定位的指令的非暫時性計算機可讀媒體,所述指令包括用於進行以下操作的代碼:獲得由發送設備發送的射頻(RF)參考訊號的波束測量資訊;從所述發送設備接收指示由所述發送設備用於發送所述RF參考訊號的波束的形狀的資訊,其中,所述波束的所述形狀是取決於頻率的;以及基於所述波束測量資訊和指示所述波束的所述形狀的所述資訊來確定所述UE的位置。
100:系統 105:UE 110:元素 120:基站 120-a~120-c:基站 130:存取點 133:通訊鏈路 135:通訊鏈路 140:RF訊號 145:UE 160:伺服器 170:網路 180:客戶端 200:定位系統 210-1:節點 210-2:節點 214:節點 215:AMF 216:節點 220:LMF 225:GMLC 230:客戶端 235:NG-RAN 237:介面 239:介面 240:核心網路 245:NEF 250:N3IWF 300:環境 305a~305h:波束 309a~309h:波束 311a~311b:波束 400:測量過程 410-a~410-c:波束 420-a~420-c:波束 430-a~430-c:波束 502:波束 504:波束 506:波束 508:旁瓣 510-a~510-b:波束 520-a~520-b:角度 600-A:方法 610:框 620:框 630:框 600-B:方法 650:框 660:框 670:框 705:總線 710:處理單元 715:輸出設備 720:DSP 730:無線通訊介面 732:天線 734:訊號 740:傳感器 760:記憶體 770:輸入設備 780:接收機 782:天線 784:訊號 800:基站 805:總線 810:處理單元 820:DSP 830:無線通訊介面 832:天線 834:訊號 860:記憶體 880:網路介面
圖1是根據一實施例的定位系統的簡化圖示。
圖2是第五代(5G)新無線電(NR)定位系統的圖,其示出了實現5G NR的定位系統(例如,如圖1所示)的實施例。
圖3是包括產生用於發送射頻(RF)參考訊號的定向波束的兩個基站以及UE的簡化環境的圖。
圖4是根據一實施例的下行鏈路(DL)離開角(AoD)(DL-AoD)測量過程的實施例的圖形表示。
圖5A是繪製天線增益相對於方位角的曲線圖,其示出了波束偏斜。
圖5B是示出根據一實施例的設置的圖,在該設置中,為了確定用戶設備(UE)的位置,UE可以測量由基站發送的RF參考訊號以確定DL-AoD。
圖6A是根據一實施例的在發送設備處的指示用於無線寬頻系統中的UE的定位的波束相關資訊的方法的流程圖。
圖6B是根據一實施例的在定位實體處的用於無線寬頻系統中的用戶設備(UE)的定位的方法的流程圖。
圖7是可以在如本文描述的實施例中利用的UE的實施例的方塊圖。
圖8是可以在如本文描述的實施例中利用的基站的實施例的方塊圖。
根據某些示例實現,各個附圖中的相似的附圖標記指示相似的元素。另外,可以通過在用於元素的第一數字後面跟隨有字母或者連字符和第二數字來指示該元素的多個實例。例如,元素110的多個實例可以被指示為110-1、110-2、110-3等或110a、110b、110c等。當僅使用第一數字來指代這樣的元素時,將理解為該元素的任何實例(例如,前面示例中的元素110將指代元素110-1、110-2和110-3或元素110a、110b和110c)
600-A:方法
610:框
620:框
630:框

Claims (57)

  1. 一種在發送設備處的指示用於無線寬頻系統中的用戶設備(UE)的定位的波束相關資訊的方法,所述方法包括: 接收對用於所述UE的所述定位的射頻(RF)參考訊號的計劃波束測量的指示; 發送所述RF參考訊號;以及 向定位實體或接收設備中的任一者或兩者發送指示在發送所述RF參考訊號時使用的波束的形狀的資訊,其中,所述波束的所述形狀是取決於頻率的。
  2. 根據請求項1所述的方法,其中,所述定位實體包括所述接收設備。
  3. 根據請求項1所述的方法,其中,所述定位實體包括所述UE、發送接收點(TRP)、或位置伺服器。
  4. 根據請求項1所述的方法,其中,所述發送設備包括TRP或UE。
  5. 根據請求項1所述的方法,其中,所述計劃波束測量包括到達角(AoA)或離開角(AoD)測量。
  6. 根據請求項1所述的方法,其中,指示所述波束的所述形狀的所述資訊包括指示以下各項的資訊: 所述波束在多個方位角和仰角方向上的增益, 所述波束的主瓣的視軸和寬度, 用於發送所述波束的天線面板的天線元件的輻射方向圖, 用於參考頻率或頻寬的所述波束的形狀,或者 在所述接收設備處索引的識別描述所述波束的所述形狀的資訊的識別符,或者其組合。
  7. 根據請求項6所述的方法,其中,指示所述波束的所述形狀的所述資訊還包括所述波束的一個或多個旁瓣的視軸、波束成形增益和寬度。得
  8. 根據請求項6所述的方法,其中,指示所述波束的所述形狀的所述資訊包括指示用於發送所述波束的所述天線面板的所述天線元件的所述輻射方向圖的資訊,並且還包括指示針對用於發送所述波束的所述天線元件的組合權重的資訊。
  9. 根據請求項6所述的方法,其中,指示所述波束的所述形狀的所述資訊包括指示用於發送所述波束的所述天線面板的所述天線元件的所述輻射方向圖的資訊,並且其中,指示所述波束的所述形狀的所述資訊還包括指示所述天線面板的所述天線元件的幾何形狀和佈局的資訊。
  10. 根據請求項1所述的方法,還包括: 確定所述RF參考訊號的所述發送中的組延遲的頻率依賴性;以及 向所述定位實體或所述接收設備中的任一者或兩者發送指示所述組延遲的資訊。
  11. 根據請求項1所述的方法,其中,所述波束是用於發送所述RF參考訊號的多個波束中的一個波束,並且其中,所述方法還包括:針對所述多個波束中的每個波束,向所述定位實體或所述接收設備中的任一者或兩者發送指示所述波束的形狀的資訊。
  12. 根據請求項11所述的方法,其中,所述多個波束中的每個波束對應於用於所述RF參考訊號的相應的頻率層、頻寬部分(BWP)、或經配置的連續頻率塊。
  13. 根據請求項11所述的方法,還包括:至少部分地基於指示所述波束的形狀的所述資訊是經由L1、L2還是L3信令被發送給所述UE,來確定用於指示所述波束的所述形狀的所述資訊的格式。
  14. 根據請求項1所述的方法,其中,指示所述波束的所述形狀的所述資訊包括指示在所述RF參考訊號的所述發送中使用的所述波束的所述形狀與參考波束形狀之間的一個或多個差異的資訊。
  15. 一種在定位實體處的用於無線寬頻系統中的用戶設備(UE)的定位的方法,所述方法包括: 獲得由發送設備發送的射頻(RF)參考訊號的波束測量資訊; 從所述發送設備接收指示由所述發送設備用於發送所述RF參考訊號的波束的形狀的資訊,其中,所述波束的所述形狀是取決於頻率的;以及 基於所述波束測量資訊和指示所述波束的所述形狀的所述資訊來確定所述UE的位置。
  16. 根據請求項15所述的方法,其中,所述定位實體包括所述UE,並且其中,獲得波束測量資訊包括:在所述UE處執行對所述RF參考訊號的測量。
  17. 根據請求項15所述的方法,其中,所述定位實體包括伺服器,並且其中,獲得波束測量資訊包括:在所述伺服器處從所述UE接收所述波束測量資訊。
  18. 根據請求項15所述的方法,其中,所述發送設備包括TRP或UE。
  19. 根據請求項15所述的方法,其中,所述波束測量資訊包括與到達角(AoA)或離開角(AoD)測量有關的資訊。
  20. 根據請求項15所述的方法,其中,指示所述波束的所述形狀的所述資訊包括指示以下各項的資訊: 所述波束在多個方位角和仰角方向上的增益, 所述波束的主瓣的視軸和寬度, 用於發送所述波束的天線面板的天線元件的輻射方向圖, 用於參考頻率或頻寬的所述波束的形狀,或者 在接收設備處索引的識別描述所述波束的所述形狀的資訊的識別符,或者其組合。
  21. 根據請求項20所述的方法,其中,指示所述波束的所述形狀的所述資訊還包括所述波束的一個或多個旁瓣的視軸、波束成形增益和寬度。
  22. 根據請求項20所述的方法,其中,指示所述波束的所述形狀的所述資訊包括指示用於發送所述波束的所述天線面板的所述天線元件的所述輻射方向圖的資訊,並且還包括指示針對用於發送所述波束的所述天線元件的組合權重的資訊。
  23. 根據請求項20所述的方法,其中,指示所述波束的所述形狀的所述資訊包括指示用於發送所述波束的所述天線面板的所述天線元件的所述輻射方向圖的資訊,並且其中,指示所述波束的所述形狀的所述資訊還包括指示所述天線面板的所述天線元件的幾何形狀和佈局的資訊。
  24. 根據請求項15所述的方法,還包括:接收指示所述RF參考訊號的所述發送中的組延遲的資訊,其中,確定所述UE的所述位置是進一步基於指示所述組延遲的所述資訊的。
  25. 根據請求項15所述的方法,其中,所述波束是用於發送所述RF參考訊號的多個波束中的一個波束,並且其中,所述方法還包括:針對所述多個波束中的每個波束,接收指示所述波束的形狀的資訊。
  26. 根據請求項25所述的方法,其中,所述多個波束中的每個波束對應於用於所述RF參考訊號的相應的頻率層、頻寬部分(BWP)、或經配置的連續頻率塊。
  27. 根據請求項15所述的方法,其中,指示所述波束的所述形狀的所述資訊包括指示在所述RF參考訊號的所述發送中使用的所述波束的所述形狀與參考波束形狀之間的一個或多個差異的資訊。
  28. 一種用於指示用於無線寬頻系統中的用戶設備(UE)的定位的波束相關資訊的發送設備,所述發送設備包括: 收發機; 記憶體;以及 與所述收發機和所述記憶體通訊地耦合的一個或多個處理器,其中,所述一個或多個處理器被配置為: 接收對用於所述UE的所述定位的射頻(RF)參考訊號的計劃波束測量的指示; 經由所述收發機來發送所述RF參考訊號;以及 向定位實體或接收設備中的任一者或兩者發送指示在發送所述RF參考訊號時使用的波束的形狀的資訊,其中,所述波束的所述形狀是取決於頻率的。
  29. 根據請求項28所述的發送設備,其中,所述發送設備包括TRP或UE。
  30. 根據請求項28所述的發送設備,其中,所述一個或多個處理器被配置為在指示所述波束的所述形狀的所述資訊中包括以下各項: 所述波束在多個方位角和仰角方向上的增益, 所述波束的主瓣的視軸和寬度, 用於發送所述波束的天線面板的天線元件的輻射方向圖, 用於參考頻率或頻寬的所述波束的形狀,或者 在所述接收設備處索引的識別描述所述波束的所述形狀的資訊的識別符,或者其組合。
  31. 根據請求項30所述的發送設備,其中,所述一個或多個處理器被配置為:在指示所述波束的所述形狀的所述資訊中包括所述波束的一個或多個旁瓣的視軸、波束成形增益和寬度。
  32. 根據請求項30所述的發送設備,其中,所述一個或多個處理器被配置為:在指示用於發送所述波束的所述天線面板的所述天線元件的所述輻射方向圖的資訊中包括指示針對用於發送所述波束的所述天線元件的組合權重的資訊。
  33. 根據請求項30所述的發送設備,其中,所述一個或多個處理器被配置為:在指示用於發送所述波束的所述天線面板的所述天線元件的所述輻射方向圖的資訊中包括指示所述天線面板的所述天線元件的幾何形狀和佈局的資訊。
  34. 根據請求項28所述的發送設備,其中,所述一個或多個處理器還被配置為: 確定所述RF參考訊號的所述發送中的組延遲的頻率依賴性;以及 向所述定位實體或所述接收設備中的任一者或兩者發送指示所述組延遲的資訊。
  35. 根據請求項28所述的發送設備,其中,所述波束是用於發送所述RF參考訊號的多個波束中的一個波束,並且其中,所述一個或多個處理器還被配置為:針對所述多個波束中的每個波束,向所述定位實體或所述接收設備中的任一者或兩者發送指示所述波束的形狀的資訊。
  36. 根據請求項35所述的發送設備,其中,所述多個波束中的每個波束對應於用於所述RF參考訊號的相應的頻率層、頻寬部分(BWP)、或經配置的連續頻率塊。
  37. 根據請求項35所述的發送設備,其中,所述一個或多個處理器還被配置為:至少部分地基於指示所述波束的形狀的所述資訊是經由L1、L2還是L3信令被發送給所述UE,來確定用於指示所述波束的所述形狀的所述資訊的格式。
  38. 根據請求項28所述的發送設備,其中,所述一個或多個處理器被配置為:在指示所述波束的所述形狀的所述資訊中包括指示在所述RF參考訊號的所述發送中使用的所述波束的所述形狀與參考波束形狀之間的一個或多個差異的資訊。
  39. 一種用於無線寬頻系統中的用戶設備(UE)的定位的定位實體,所述定位實體包括: 收發機; 記憶體;以及 與所述收發機和所述記憶體通訊地耦合的一個或多個處理器,其中,所述一個或多個處理器被配置為: 獲得由發送設備發送的射頻(RF)參考訊號的波束測量資訊; 經由所述收發機來從所述發送設備接收指示由所述發送設備用於發送所述RF參考訊號的波束的形狀的資訊,其中,所述波束的所述形狀是取決於頻率的;以及 基於所述波束測量資訊和指示所述波束的所述形狀的所述資訊來確定所述UE的位置。
  40. 根據請求項39所述的定位實體,其中,所述定位實體包括所述UE,並且其中,為了獲得波束測量資訊,所述一個或多個處理器被配置為:執行對所述RF參考訊號的測量。
  41. 根據請求項39所述的定位實體,其中,所述定位實體包括伺服器,並且其中,為了獲得波束測量資訊,所述一個或多個處理器被配置為:從所述UE接收所述波束測量資訊。
  42. 根據請求項39所述的定位實體,其中,所述發送設備包括TRP或UE。
  43. 根據請求項39所述的定位實體,其中,為了獲得所述波束測量資訊,所述一個或多個處理器被配置為:獲得與到達角(AoA)或離開角(AoD)測量有關的資訊。
  44. 根據請求項39所述的定位實體,其中,為了接收指示所述波束的所述形狀的所述資訊,所述一個或多個處理器被配置為接收指示以下各項的資訊: 所述波束在多個方位角和仰角方向上的增益, 所述波束的主瓣的視軸和寬度, 用於發送所述波束的天線面板的天線元件的輻射方向圖, 用於參考頻率或頻寬的所述波束的形狀,或者 在接收設備處索引的識別描述所述波束的所述形狀的資訊的識別符,或者其組合。
  45. 根據請求項44所述的定位實體,其中,為了接收指示所述波束的所述形狀的所述資訊,所述一個或多個處理器被配置為:接收指示所述波束的一個或多個旁瓣的視軸、波束成形增益和寬度的資訊。
  46. 根據請求項44所述的定位實體,其中,所述一個或多個處理器被配置為:接收指示針對用於發送所述波束的所述天線元件的組合權重的資訊。
  47. 根據請求項44所述的定位實體,其中,所述一個或多個處理器被配置為:接收指示所述天線面板的所述天線元件的幾何形狀和佈局的資訊。
  48. 根據請求項39所述的定位實體,其中,所述一個或多個處理器還被配置為:接收指示所述RF參考訊號的所述發送中的組延遲的資訊,其中,確定所述UE的所述位置是進一步基於指示所述組延遲的所述資訊的。
  49. 根據請求項39所述的定位實體,其中,所述波束是用於發送所述RF參考訊號的多個波束中的一個波束,並且其中,所述一個或多個處理器還被配置為:針對所述多個波束中的每個波束,接收指示所述波束的形狀的資訊。
  50. 根據請求項49所述的定位實體,其中,所述多個波束中的每個波束對應於用於所述RF參考訊號的相應的頻率層、頻寬部分(BWP)、或經配置的連續頻率塊。
  51. 根據請求項39所述的定位實體,其中,為了接收指示所述波束的所述形狀的所述資訊,所述一個或多個處理器被配置為:接收指示在所述RF參考訊號的所述發送中使用的所述波束的所述形狀與參考波束形狀之間的一個或多個差異的資訊。
  52. 一種用於指示用於無線寬頻系統中的用戶設備(UE)的定位的波束相關資訊的裝置,所述裝置包括: 用於接收對用於所述UE的所述定位的射頻(RF)參考訊號的計劃波束測量的指示的單元; 用於發送所述RF參考訊號的單元;以及 用於向定位實體或接收設備中的任一者或兩者發送指示在發送所述RF參考訊號時使用的波束的形狀的資訊的單元,其中,所述波束的所述形狀是取決於頻率的。
  53. 根據請求項52所述的裝置,其中,所述計劃波束測量包括到達角(AoA)或離開角(AoD)測量。
  54. 一種用於無線寬頻系統中的用戶設備(UE)的定位的裝置,所述裝置包括: 用於獲得由發送設備發送的射頻(RF)參考訊號的波束測量資訊的單元; 用於從所述發送設備接收指示由所述發送設備用於發送所述RF參考訊號的波束的形狀的資訊的單元,其中,所述波束的所述形狀是取決於頻率的;以及 用於基於所述波束測量資訊和指示所述波束的所述形狀的所述資訊來確定所述UE的位置的單元。
  55. 根據請求項54所述的裝置,其中,所述波束測量資訊包括與到達角(AoA)或離開角(AoD)測量有關的資訊。
  56. 一種存儲用於指示用於無線寬頻系統中的用戶設備(UE)的定位的波束相關資訊的指令的非暫時性計算機可讀媒體,所述指令包括用於進行以下操作的代碼: 接收對用於所述UE的所述定位的射頻(RF)參考訊號的計劃波束測量的指示; 發送所述RF參考訊號;以及 向定位實體或接收設備中的任一者或兩者發送指示在發送所述RF參考訊號時使用的波束的形狀的資訊,其中,所述波束的所述形狀是取決於頻率的。
  57. 一種存儲用於無線寬頻系統中的用戶設備(UE)的定位的指令的非暫時性計算機可讀媒體,所述指令包括用於進行以下操作的代碼: 獲得由發送設備發送的射頻(RF)參考訊號的波束測量資訊; 從所述發送設備接收指示由所述發送設備用於發送所述RF參考訊號的波束的形狀的資訊,其中,所述波束的所述形狀是取決於頻率的;以及 基於所述波束測量資訊和指示所述波束的所述形狀的所述資訊來確定所述UE的位置。
TW110120478A 2020-06-04 2021-06-04 用於寬頻定位的位置輔助資料 TW202203670A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202063034841P 2020-06-04 2020-06-04
US63/034,841 2020-06-04
US17/338,504 US11792666B2 (en) 2020-06-04 2021-06-03 Location assistance data for wideband positioning
US17/338,504 2021-06-03

Publications (1)

Publication Number Publication Date
TW202203670A true TW202203670A (zh) 2022-01-16

Family

ID=78818110

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110120478A TW202203670A (zh) 2020-06-04 2021-06-04 用於寬頻定位的位置輔助資料

Country Status (8)

Country Link
US (2) US11792666B2 (zh)
EP (1) EP4162723A1 (zh)
JP (1) JP2023529252A (zh)
KR (1) KR20230020971A (zh)
CN (1) CN115669041A (zh)
BR (1) BR112022023962A2 (zh)
TW (1) TW202203670A (zh)
WO (1) WO2021247959A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102204783B1 (ko) * 2020-07-09 2021-01-18 전남대학교산학협력단 딥러닝 기반의 빔포밍 통신 시스템 및 방법
WO2023196703A1 (en) * 2022-04-06 2023-10-12 Qualcomm Incorporated Reporting hashed expected channel measurements
CN114867104B (zh) * 2022-07-07 2022-11-22 湖南警察学院 基于多波束的定位方法及装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100874017B1 (ko) * 2007-08-07 2008-12-17 한국전자통신연구원 주파수 재구성 배열 안테나 및 그 배열 간격 조절 방법
EP2541679A1 (en) * 2011-06-30 2013-01-02 Sony Corporation Wideband beam forming device, wideband beam steering device and corresponding methods
GB2517218B (en) * 2013-08-16 2017-10-04 Analog Devices Global Communication unit and method of antenna array calibration
US9287948B2 (en) * 2014-05-11 2016-03-15 Lg Electronics Inc. Method and apparatus for receiving downlink wireless signal
US20160191201A1 (en) * 2014-12-29 2016-06-30 Electronics And Telecommunications Research Institute Method and apparatus for transmitting channel quality indicator information of beams in communication system
CN107852582B (zh) * 2015-07-08 2021-03-23 瑞典爱立信有限公司 通信网络中用于提供位置信息的方法及设备
US10804952B2 (en) * 2016-04-11 2020-10-13 University Of Notre Dame Du Lac Enhanced cosite transmitter-receiver isolation
JP2019518364A (ja) * 2016-04-20 2019-06-27 コンヴィーダ ワイヤレス, エルエルシー 構成可能基準信号
US10194265B2 (en) * 2016-05-22 2019-01-29 Qualcomm Incorporated Systems and methods for supporting positioning beacons compatible with legacy wireless devices
US10021667B2 (en) * 2016-06-23 2018-07-10 Qualcomm Incorporated Positioning in beamformed communications
US10333209B2 (en) * 2016-07-19 2019-06-25 Toyota Motor Engineering & Manufacturing North America, Inc. Compact volume scan end-fire radar for vehicle applications
US11233612B2 (en) * 2017-08-01 2022-01-25 Qualcomm Incorporated Downlink positioning reference signal in multi-beam systems
US10757583B2 (en) * 2017-08-10 2020-08-25 Qualcomm Incorporated Uplink-based positioning reference signaling in multi-beam systems
US11678353B2 (en) * 2018-05-09 2023-06-13 Lg Electronics Inc. Method for performing uplink transmission in wireless communication system and device therefor
US11442135B2 (en) * 2018-05-31 2022-09-13 Qualcomm Incorporated Positioning methods for wireless networks that utilize beamformed communication
CN110958630B (zh) 2018-09-26 2021-01-22 电信科学技术研究院有限公司 一种测量方法及设备
US11576008B2 (en) * 2018-09-27 2023-02-07 Sony Group Corporation On demand positioning in a wireless communication system
WO2020065894A1 (ja) * 2018-09-27 2020-04-02 三菱電機株式会社 基地局、端末装置および測位方法
WO2020088785A1 (en) * 2018-10-29 2020-05-07 Nokia Technologies Oy Apparatus and method to estimate ue position
US11057861B2 (en) * 2018-10-31 2021-07-06 Qualcomm Incorporated Navigation and positioning system using radio beam support information
KR102610551B1 (ko) * 2018-11-01 2023-12-07 삼성전자주식회사 무선 통신 시스템에서 빔을 배치하는 장치 및 방법
US11963150B2 (en) * 2018-11-01 2024-04-16 Qualcomm Incorporated Positioning enhancements for locating a mobile device in a wireless network
CN112956136A (zh) * 2018-11-01 2021-06-11 上海诺基亚贝尔股份有限公司 用于定位参考信号测量的波束方向图交换
CN113795979B (zh) * 2019-03-26 2023-07-07 康普技术有限责任公司 用于基站天线的辐射元件

Also Published As

Publication number Publication date
KR20230020971A (ko) 2023-02-13
CN115669041A (zh) 2023-01-31
US11792666B2 (en) 2023-10-17
US20210385678A1 (en) 2021-12-09
EP4162723A1 (en) 2023-04-12
WO2021247959A1 (en) 2021-12-09
US20230379736A1 (en) 2023-11-23
BR112022023962A2 (pt) 2023-02-07
JP2023529252A (ja) 2023-07-10

Similar Documents

Publication Publication Date Title
US20220065979A1 (en) Assistance information for sidelink-assisted positioning
US11792666B2 (en) Location assistance data for wideband positioning
TW202202869A (zh) 用於基於雙靜態無線電的對象位置檢測的系統和方法
JP2024504975A (ja) サイドリンク(sl)アシスト測位のためのタイミングアドバンス(ta)ハンドリング
US20240162940A1 (en) Reference signal transmission for reconfigurable intelligent surface (ris)-aided positioning
US20240073644A1 (en) Location indication for uplink resources for positioning
US20240019524A1 (en) Reconfigurable intelligent surface (ris)-assisted timing error calibration for mobile device positioning
US20220116744A1 (en) Efficient Beam Pattern Feedback in Millimeter Wave Positioning Systems
US20230379867A1 (en) Positioning of an intelligent reflecting surface (irs) in a wireless communication network
US20230333194A1 (en) Sidelink-aided hybrid network positioning
WO2023146695A1 (en) Grouping of antennas for positioning of a user equipment
WO2024039941A1 (en) Out-of-coverage ue positioning with side-link
TW202232998A (zh) 利用基於蜂巢的雙基地/多基地雷達的ue被動rf感測
WO2023235001A1 (en) Timing advance for ntn positioning
TW202236887A (zh) 報告針對用於NR定位的基於UL或DL—UL的定位方法的UE UL Tx定時品質
EP4305443A1 (en) Differential angle of arrival (aoa) for low power mobile device positioning