WO2024131610A1 - 一种带酯基结构的聚氧烷基醚、醚类聚羧酸减水剂及其制备方法 - Google Patents

一种带酯基结构的聚氧烷基醚、醚类聚羧酸减水剂及其制备方法 Download PDF

Info

Publication number
WO2024131610A1
WO2024131610A1 PCT/CN2023/138375 CN2023138375W WO2024131610A1 WO 2024131610 A1 WO2024131610 A1 WO 2024131610A1 CN 2023138375 W CN2023138375 W CN 2023138375W WO 2024131610 A1 WO2024131610 A1 WO 2024131610A1
Authority
WO
WIPO (PCT)
Prior art keywords
ether
polyoxyalkyl
parts
reducing agent
ester
Prior art date
Application number
PCT/CN2023/138375
Other languages
English (en)
French (fr)
Inventor
林志君
张小芳
方云辉
柯余良
郭元强
林艳梅
陈展华
朱少宏
Original Assignee
科之杰新材料集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科之杰新材料集团有限公司 filed Critical 科之杰新材料集团有限公司
Publication of WO2024131610A1 publication Critical patent/WO2024131610A1/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention relates to the technical field of concrete admixtures, and in particular to a polyoxyalkyl ether with an ester structure, an ether-type polycarboxylic acid water reducer and a preparation method thereof.
  • Polycarboxylate water reducer has the advantages of high water reduction rate, adjustable molecular structure and green environmental protection. With the development of concrete industry and the improvement of various performance requirements of concrete, polycarboxylate water reducer has been widely and rapidly applied.
  • precast concrete is also one of the trends in concrete preparation.
  • Major projects often use precast concrete in important structures, and the strength control of precast concrete is particularly important.
  • the insufficient compressive strength of some structural corners will lead to failure of mechanical properties. Therefore, polycarboxylate water reducer must have the function of improving the compressive strength of concrete to a certain extent while ensuring workability.
  • slump-retaining water-reducing agent is one of the advantageous weapons to deal with complex working conditions.
  • the existing polycarboxylate water-reducing agent has good water-reducing performance, its slump-retaining performance is insufficient, and its ability to improve the early strength of concrete is insufficient.
  • technicians in this field will use a retarder with slump-retaining and retarding function when using the existing polycarboxylate water-reducing agent, but the final result is still not enough to meet the requirements.
  • the present invention provides a polyoxyalkyl ether with an ester structure, and its technical solution is as follows:
  • the polyoxyalkyl ether with an ester structure has the following structural formula:
  • H 2 C CH-CH 2 -CO-R1-OM 1 -R 2
  • R1 is an alkylene group having 3 or 4 carbon atoms
  • R2 is H or CH3
  • M1 is an alkylene oxide group having an ester structure.
  • the structural formula of M1 is as follows:
  • n 5-20.
  • it is prepared by a first ring-opening polymerization reaction of an unsaturated alcohol and an epoxypropionate in the presence of a catalyst;
  • the unsaturated alcohol is 1-allyloxyprop-1-ol or 4-(allyloxy)-1-butanol;
  • the epoxypropionate is methyl 2,3-epoxypropionate or ethyl 2,3-epoxypropionate.
  • the molar ratio of the unsaturated alcohol to the epoxypropionate is 1:(5-20); the first ring-opening polymerization reaction temperature is 90°C-200°C, and the reaction pressure is 0.1Mpa-0.8Mpa; wherein, when the reaction pressure is less than 0.2Mpa, the reaction temperature is greater than or equal to 100°C.
  • the present invention also provides an ether polycarboxylic acid water-reducing agent, which is polymerized by comonomers; the comonomers include polyoxyalkyl ethers, polyoxyalkyl ethers with ester structures, ester monomers and unsaturated acids; the polyoxyalkyl ethers with ester structures are the polyoxyalkyl ethers with ester structures described above.
  • the mass ratio of the ester monomer, polyoxyalkyl ether, polyoxyalkyl ether with ester structure and unsaturated acid is (3.5-7):100:(4-12):(4.5-12); the polymerization reaction temperature is 25°C-35°C, and the reaction time is 0.5h-1.5h.
  • the unsaturated acid is one or more combinations of acrylic acid, methacrylic acid, and maleic acid;
  • R 3 is an alkylene group having 1 to 5 carbon atoms
  • H 2 C CH-CH 2 -OR 1 - O -M 2 -R 2 wherein R 1 is an alkylene group having 3 or 4 carbon atoms; R 2 is H or CH 3 ; M 2 is a (A) x (B) y block polyether chain, (A) x and (B) y represent repeating units of polyoxyethylene or polyoxypropylene, x and y represent the repeating numbers of A and B, respectively, and x and y are integers of 0 to 100, and 10 ⁇ x+y ⁇ 200.
  • the M2 is a random copolymer molecular chain polymerized from ethylene oxide and propylene oxide.
  • the polyoxyalkyl ether is prepared by a second ring-opening polymerization reaction of an unsaturated alcohol and an alkylene oxide substance in the presence of a catalyst;
  • the unsaturated alcohol is 1-allyloxypropan-1-ol or 4-(allyloxy)-1-butanol;
  • the alkylene oxide substance is ethylene oxide and/or propylene oxide;
  • the second ring-opening polymerization reaction temperature is 80°C to 150°C, and the reaction pressure is 0.1Mpa to 0.8Mpa.
  • the present invention also provides a method for preparing the ether polycarboxylate water-reducing agent as described above, comprising the following preparation steps: mixing the ester monomer, the polyoxyalkyl ether and the polyoxyalkyl ether with an ester structure, adding an initiator solution, a chain transfer agent solution, an emulsifier solution and an unsaturated acid, and performing a polymerization reaction at 25° C. to 35° C. for a time of 0.5 h to 1.5 h to obtain the ether polycarboxylate water-reducing agent.
  • the ether polycarboxylate water-reducing agent provided by the present invention has the following beneficial effects:
  • the ether polycarboxylate water-reducing agent provided by the present invention has good water-reducing performance, can effectively improve the initial dispersion performance of concrete and the strength of concrete, and can reduce the sensitivity of concrete, and has the effects of slump prevention and mud resistance.
  • the present invention provides a preferred embodiment of a method for preparing an ether polycarboxylate water-reducing agent, which specifically comprises the following steps:
  • the ester monomer, the polyoxyalkyl ether and the polyoxyalkyl ether with an ester structure are mixed,
  • the initiator solution, chain transfer agent solution, emulsifier solution and unsaturated acid are added dropwise, and the polymerization reaction is carried out at 25° C. to 35° C. for 0.5 h to 1.5 h.
  • the mixture is kept warm for a period of time, and liquid alkali is added to adjust the pH to 6 to 7 to obtain the ether polycarboxylic acid water reducer.
  • the mass ratio of the ester monomer, the polyoxyalkyl ether, the polyoxyalkyl ether with an ester structure and the unsaturated acid is (3.5-7):100:(4-12):(4.5-12).
  • H 2 C CH-CH 2 -COR 1 -OM 1 -R 2 , R 1 is an alkylene group having 3 or 4 carbon atoms; R 2 is H or CH 3 ; M 1 is an alkylene oxide group having an ester structure.
  • n 5-20.
  • the polyoxyalkyl ether with an ester structure is prepared by a first ring-opening polymerization reaction of an unsaturated alcohol and an epoxypropionate under the action of a catalyst; wherein the unsaturated alcohol is selected from 1-allyloxyprop-1-ol or 4-(allyloxy)-1-butanol; the epoxypropionate is selected from methyl 2,3-epoxypropionate or ethyl 2,3-epoxypropionate, and the catalyst is selected from one or more combinations of sodium hydroxide, sodium ethoxide, sodium hydride, metallic potassium, and lithium aluminum tetrahydride; the molar ratio of the unsaturated alcohol to the epoxypropionate is 1:(5-20); the first ring-opening polymerization reaction temperature is 90°C-200°C, and the reaction pressure is 0.1Mpa-0.8Mpa; wherein, when the reaction pressure is less than 0.2Mpa, the reaction temperature is greater than or equal to 100°C.
  • the unsaturated alcohol
  • H 2 C CH-CH 2 -OR 1 -OM 2 -R 2 , wherein R 1 is an alkylene group having 3 or 4 carbon atoms; R 2 is H or CH 3 ; M 2 is a (A) x (B) y block polyether chain, (A) x and (B) y represent repeating units of polyoxyethylene or polyoxypropylene, x and y represent the repeating numbers of A and B, respectively, and x and y are integers of 0 to 100, and 10 ⁇ x+y ⁇ 200.
  • the structures of A and B may be the same, for example, both are -CH2CH2O- , or both are -CH2CH ( CH3 )O- or -CH ( CH3 ) CH2O- ; the structures of A and B may be different, for example, A may be -CH2CH2O- , and B may be -CH2CH ( CH3 )O- or -CH( CH3 ) CH2O- ; or A may be -CH2CH ( CH3 )O- or -CH( CH3 ) CH2O- , and B may be -CH2CH2O- .
  • the M2 is a random copolymer molecular chain polymerized from ethylene oxide and propylene oxide.
  • the polyoxyalkyl ether is prepared by a second ring-opening polymerization reaction of an unsaturated alcohol and an alkylene oxide substance under the action of a catalyst; wherein the unsaturated alcohol is selected from 1-allyloxypropan-1-ol or 4-(allyloxy)-1-butanol; the alkylene oxide substance is selected from ethylene oxide and/or propylene oxide; the catalyst is selected from one or more combinations of sodium hydroxide, sodium ethoxide, sodium hydride, metallic potassium, and lithium aluminum tetrahydride; the second ring-opening polymerization reaction temperature is 80°C to 150°C, and the reaction pressure is 0.1Mpa to 0.8Mpa.
  • the unsaturated alcohol is selected from 1-allyloxypropan-1-ol or 4-(allyloxy)-1-butanol
  • the alkylene oxide substance is selected from ethylene oxide and/or propylene oxide
  • the catalyst is selected from one or more combinations of sodium hydroxide, sodium ethoxide,
  • the alkylene oxide substance when the alkylene oxide substance is selected from ethylene oxide or propylene oxide, the molar ratio of the unsaturated alcohol to ethylene oxide or propylene oxide is 1: (10-100).
  • the alkylene oxide substance is selected from a mixture of ethylene oxide and propylene oxide, the molar ratio of the unsaturated alcohol to the mixture of ethylene oxide and propylene oxide is 1: (10-200).
  • the unsaturated acid is preferably one or more combinations of acrylic acid, methacrylic acid, and maleic acid;
  • R 3 is an alkylene group having 1 to 5 carbon atoms.
  • the oxidant is preferably one or more combinations of sodium persulfate, hydrogen peroxide, and tert-butyl hydroperoxide.
  • the reducing agent is preferably one or more combinations of sodium hypophosphite, ascorbic acid, ferrous sulfate, and 2-hydroxy-2-sulfinyl acetic acid disodium salt.
  • the chain transfer agent is preferably one or more combinations of 2-hydroxypropyl mercaptan, dithiobenzoate butyric acid, sodium formate, and potassium hypophosphite.
  • the emulsifier is preferably sorbitol polyoxyethylene ether tetraoleate.
  • the amount of the oxidant is 2.5% to 4% of the total mass of the polyoxyalkyl ether
  • the amount of the reducing agent is 1% to 3.5% of the total mass of the polyoxyalkyl ether
  • the amount of the chain transfer agent is 1% to 2.5% of the total mass of the polyoxyalkyl ether.
  • the amount of the emulsifier is 0.8 to 2% of the total mass of the polyoxyalkyl ether.
  • Point-TS8 polycarboxylate water-reducing agent mother liquor and sodium gluconate were selected and compounded in amounts of 0.2% and 0.03% of the mass of the cementitious material, respectively, for concrete verification.
  • Example 1-3 and Comparative Example 1-7 were compared with machine-made sand concrete: Hongshi PO42.5R cement was used as raw material, and the concrete base mix ratio was: cement 287kg/m 3 , fly ash 123kg/m 3 , machine-made sand 827kg/m 3 , gravel 1011kg/m 3 , wherein the machine-made sand and stone powder content was 1%; wherein, the water-reducing agent dosage of Example 1-3 was 0.2% (in terms of solid content) of the mass of the cementitious material, the water-reducing agent dosage of Comparative Example 1-4 and Comparative Example 6-7 was 0.2% (in terms of solid content) of the mass of the cementitious material, and the admixture dosage of Comparative Example 5 referred to the specific compounding formula, and the base sample was no admixture added; Example 1-3 and Comparative Example 1-7 adopted the above base mix ratio, and carried out performance tests such as slump and expansion according to GB 8076-2008 "Concrete Ad
  • Examples 1-3 are better than those of the benchmark sample and Comparative Examples 1-7. Combining the results of Examples 1-3, it can be seen that after adding the ether polycarboxylate water-reducing agent product provided by the embodiment of the present invention, the initial dispersion performance and slump resistance performance of the concrete can be effectively improved, while the strength of the concrete can be improved, and the sensitivity of the concrete can be reduced when the content of machine-made sand and gravel powder is high. It can be seen that the ether polycarboxylate water-reducing agent product provided by the embodiment of the present invention has a more significant slump resistance and anti-mud effect.
  • Comparative Example 1 uses 4-hydroxybutyl vinyl ether to replace the unsaturated alcohol in the embodiment
  • Comparative Example 2 uses ethylene glycol monovinyl ether to replace the unsaturated alcohol in the embodiment
  • Comparative Example 3 uses 2-methyl-1-butene-4-ol to replace the unsaturated alcohol in the embodiment
  • the embodiment of the present invention uses unsaturated alcohol, and compared with the solution of using 4-hydroxybutyl vinyl ether, ethylene glycol monovinyl ether or 2-methyl-1-butene-4-ol as an initiator to prepare a polyoxyalkyl ether with an ester structure
  • the embodiment of the present invention has a significant improvement in the initial water-reducing performance of concrete.
  • Comparative Example 4 does not use a polyoxyalkyl ether with an ester structure to participate in the polymerization reaction. From the test results of Example 1 and Comparative Example 4, it can be seen that when Comparative Example 4 does not use a polyether monomer with an ester group, compared with the embodiments, the collapse retention performance of the concrete in Comparative Example 4 decreases, and the concrete strength also decreases slightly.
  • Comparative Example 5 uses an existing water-reducing agent and a retarder with a slump-retaining and retarding effect in combination; it can be seen from the test results of Example 1 and Comparative Example 5 that, compared with the method of using an existing water-reducing agent to compound a retarder, the ether polycarboxylic acid water-reducing agent provided by the embodiment of the present invention not only has better water-reducing performance, but also greatly improves the slump-retaining performance, and at the same time, both the early strength and the late strength of the concrete are improved.
  • Comparative Example 6 no ester monomer is added to participate in the polymerization reaction, and in Comparative Example 7, hydroxyethyl acrylate is used to replace the ester monomer in the embodiment; from the test results of Example 1, Comparative Example 6 and Comparative Example 7, it can be seen that compared with the solution of not adding ester monomer or using other types of existing ester monomers, the embodiment of the present invention adopts a specific ester monomer, so that the prepared polycarboxylic acid water-reducing agent has better slump retention performance and can improve the strength of concrete.
  • the ether polycarboxylate water-reducing agent provided in the embodiment of the present invention has good water-reducing performance, can effectively improve the initial dispersion performance of concrete and improve the strength of concrete, and can reduce the sensitivity of concrete, and has the effects of slump prevention and anti-mud.
  • the present invention provides a polyoxyalkyl ether with an ester structure, an ether polycarboxylic acid water reducer and a preparation method thereof
  • the method shall at least include the following design concepts, action mechanisms and beneficial effects:
  • the polyoxyalkyl ether with an ester structure provided by the present invention is prepared by a first ring-opening polymerization reaction of unsaturated alcohols, such as 1-allyloxypropan-1-ol (carbon structure is 3+3) and 4-(allyloxy)-1-butanol (carbon structure is 3+4), with epoxypropionate.
  • unsaturated alcohols such as 1-allyloxypropan-1-ol (carbon structure is 3+3) and 4-(allyloxy)-1-butanol (carbon structure is 3+4), with epoxypropionate.
  • the polyoxyalkyl ether with ester structure introduces multiple ester groups, and introduces a large number of carboxyl groups after hydrolysis, which not only forms a complex with calcium ions on the surface of cement particles, but also the chain segments penetrate into the pore solution and form a complex with calcium ions in the solution, greatly reducing the concentration of calcium ions in the pore solution.
  • a large number of hydroxyl groups are introduced to form a cement particle covering network, hindering the material exchange of calcium ions and hydration products, delaying the nucleation rate of hydration products on the surface of cement particles, playing a role in slump protection, and also delaying the nucleation rate of hydration products in the solution. Therefore, the polyoxyalkyl ether with ester structure is introduced into the polycarboxylic acid water reducer as a comonomer, which can play a role in slowing setting and slump protection.
  • the ether polycarboxylate water-reducing agent provided by the present invention not only introduces a polyoxyalkyl ether comonomer with an ester structure, but also introduces a diene ester monomer to form a cross-linked structure, so that the structure of the ether polycarboxylate water-reducing agent is slightly cross-linked.
  • the hydrolysis of the cross-linked structure is slower than that of the water reducer obtained by copolymerization of monomers containing ester groups, anhydride groups, etc.
  • the ether polycarboxylate water reducer provided by the present invention gradually hydrolyzes, thereby continuously releasing carboxylate groups that contribute to the water reduction effect, thereby compensating for the lost water reduction rate and achieving the effect of maintaining slump.
  • the carboxylate radical When the ester group is hydrolyzed, the carboxylate radical is released, and the carboxylate radical is adsorbed on the surface of calcium ions and cement particles or hydration products, further reducing the calcium ion concentration of the solution, and it covers the nucleation sites of the hydration products, which can prolong the nucleation time of the hydration products, inhibit the growth of Ca(OH) 2 and AFt crystal nuclei, slow down the hydration rate, and prolong the cement hydration induction period, thereby playing a role in improving the dispersibility, and at the same time, the ether polycarboxylate water reducer provided by the present invention has an excellent slump retention effect.
  • the polycarboxylate superplasticizer product released after hydrolysis still has a large number of carboxylates, which can be freely dispersed in the negatively charged area of cement particles or complexed with calcium ions, further filling the nucleation sites of hydration products, and further Hinder the formation of hydration products.
  • the released carboxylic acid and hydroxyl groups have strong ability to complex calcium ions, which enhances the adsorption capacity of the water reducer. They can continuously combine with calcium ions released during cement hydration, inhibit the hydration of hydrated minerals and the growth of hydration products, thereby greatly delaying the cement hydration process.
  • the small molecular carboxyl groups released by them can enter the intercalation of mud powder, reduce the adsorption of mud powder on water reducer, and improve the anti-mud effect of polycarboxylic acid water reducer.
  • the existing 4-carbon or 5-carbon water reducer has a reaction temperature of up to 60°C during its preparation, requiring heating equipment.
  • the existing 2+2 or 2+4 water reducer has a short reaction time, excellent water reduction rate and collapse retention performance, and is also recognized by the current market, but its macromonomer has a high reaction activity and requires low-temperature equipment; the existing production costs of both are high.
  • the unsaturated alcohol preferably uses 1-allyloxyprop-1-ol (carbon structure is 3+3) and/or 4-(allyloxy)-1-butanol (carbon structure is 3+4), which uses a terminal olefin initiator (i.e., an unsaturated alcohol) with a 3+3 carbon structure and a 3+4 carbon structure, so that the reaction temperature is controlled at room temperature (i.e., 25°C to 35°C) in the process of preparing an ether polycarboxylic acid water-reducing agent using the polyoxyalkyl ether with an ester structure as a comonomer.
  • 1-allyloxyprop-1-ol carbon structure is 3+3
  • 4-(allyloxy)-1-butanol carbon structure is 3+4 carbon structure
  • reaction activity is low and it does not need to react under low temperature conditions, which plays a role in energy conservation and environmental protection, and caters to the effect of dual carbon emission reduction.
  • 4-carbon and 5-carbon polycarboxylic acid water-reducing agents it does not need to be heated for reaction, which also saves energy.
  • the ether polycarboxylate water-reducing agent provided by the present invention has simple preparation process operation, mild reaction conditions, is easy to mass produce, and has a safe and pollution-free production process, and is an environmentally friendly product.

Landscapes

  • Polyethers (AREA)

Abstract

本发明涉及混凝土外加剂技术领域,特别涉及一种带酯基结构的聚氧烷基醚、醚类聚羧酸减水剂及其制备方法。该醚类聚羧酸减水剂由共聚单体聚合而成;所述共聚单体包括聚氧烷基醚、带酯基结构的聚氧烷基醚、酯类单体以及不饱和酸。本发明提供的醚类聚羧酸减水剂,在具有良好减水性能的同时,其能够有效提高混凝土初始分散性能和提高混凝土强度,并且能降低混凝土敏感性,其具有保坍效果和抗泥效果。

Description

一种带酯基结构的聚氧烷基醚、醚类聚羧酸减水剂及其制备方法
相关申请的交叉引用
本申请要求于2022年12月20日提交中国专利局的申请号为202211643696.0、名称为《一种带酯基结构的聚氧烷基醚、醚类聚羧酸减水剂及其制备方法》的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及混凝土外加剂技术领域,特别涉及一种带酯基结构的聚氧烷基醚、醚类聚羧酸减水剂及其制备方法。
背景技术
聚羧酸减水剂因其高减水率,分子结构可调和绿色环保等优点。随着混凝土行业发展,对混凝土各种性能要求的提高,聚羧酸减水剂得到广泛迅速的应用。
随着行业的发展,对于聚羧酸减水剂的性能要求不单只停留在减水性能上,市场上对具有多功能的聚羧酸减水剂的需求日益增大,例如:
现今,预制混凝土也是混凝土制备的趋势之一,重大工程往往也在重要结构上采用预制混凝土,而预制混凝土的强度控制显得尤为重要。其中,一些结构转弯处的抗压强度不足会导致力学性能失效。因此,聚羧酸减水剂在保证工作性的同时,还需具备一定程度上能提高混凝土抗压强度的功能。
此外,我国幅员辽阔,各地原材料组成各不相同,一些地区机制砂原材料中石粉含量较高,导致聚羧酸减水剂敏感性问题。具体表现为需要大掺量 聚羧酸减水剂,因此,聚羧酸减水剂的抗泥性能也不容忽视。
并且,各地混凝土工况复杂,需要新拌混凝土维持较长时间的流动性能。因此,保坍型减水剂是应对复杂工况的有利武器之一。
然而,现有聚羧酸减水剂虽然具有良好的减水性能,但其保坍性能不足,且提高混凝土的早期强度的能力不足;为解决保坍性能不足的问题,本领域技术人员在使用现有聚羧酸减水剂时,会将具有保坍缓凝功能的缓凝剂与之复配使用,但是最终的结果还是不足以满足要求。
综上,如何开发一款聚羧酸减水剂,其具有良好减水性能的同时,能够降低混凝土敏感性、提高混凝土初始分散性能,从而使得其具有高保坍性能,且能够提高混凝土的强度,正是本领域技术人员致力于解决的问题。
发明内容
为解决上述背景技术中提到的现有聚羧酸减水剂的不足。本发明提供一种带酯基结构的聚氧烷基醚,其技术方案如下:
该带酯基结构的聚氧烷基醚,其结构式如下:
H2C=CH-CH2-C-O-R1-O-M1-R2
其中,R1为碳原子数为3或4个的亚烷基;R2为H或CH3;M1为带酯基结构的环氧烷基。
在一些实施例中,所述M1的结构式如下:
其中,所述n为5~20。
在一些实施例中,其由不饱和醇与环氧丙酸酯,在催化剂作用下进行第一开环聚合反应制得;所述不饱和醇为1-烯丙基氧基丙-1-醇或4-(烯丙氧基)-1-丁醇;所述环氧丙酸酯为2,3-环氧丙酸甲酯或2,3-环氧丙酸乙酯。
在一些实施例中,所述不饱和醇与所述环氧丙酸酯的摩尔比为1:(5~20);所述第一开环聚合反应温度为90℃~200℃,且反应压力为0.1Mpa~0.8Mpa;其中,当反应压力小于0.2Mpa时,反应温度大于等于100℃。
本发明还提供一种醚类聚羧酸减水剂,其由共聚单体聚合而成;所述共聚单体包括聚氧烷基醚、带酯基结构的聚氧烷基醚、酯类单体以及不饱和酸;所述带酯基结构的聚氧烷基醚采用如上所述的带酯基结构的聚氧烷基醚。
在一些实施例中,所述酯类单体、聚氧烷基醚、带酯基结构的聚氧烷基醚与不饱和酸的质量比为(3.5~7):100:(4~12):(4.5~12);所述聚合反应温度为25℃~35℃,反应时间为0.5h~1.5h。
在一些实施例中,所述不饱和酸为丙烯酸、甲基丙烯酸、马来酸中的一种或多种组合;
所述酯类单体的结构式如下:
其中,R3为碳原子数为1~5的亚烷基;
所述聚氧烷基醚的结构式如下:
H2C=CH-CH2-O-R1-O-M2-R2其中,R1为碳原子数为3或4的亚烷基;R2为H或CH3;M2为(A)x(B)y嵌段聚醚链,(A)x、(B)y表示为聚氧乙烯或聚氧丙烯的重复单元,x、y分别表示为A的重复数量和B的重复数量,x、y为0~100的整数,且10≤x+y≤200。
在一些实施例中,所述M2为由环氧乙烷和环氧丙烷聚合而成的无规共聚物分子链。
在一些实施例中,所述聚氧烷基醚由不饱和醇与环氧烷烃类物质,在催化剂作用下进行第二开环聚合反应制得;所述不饱和醇为1-烯丙基氧基丙-1-醇或4-(烯丙氧基)-1-丁醇;所述环氧烷烃类物质为环氧乙烷和/或环氧丙烷;所述第二开环聚合反应温度为80℃~150℃,且反应压力为0.1Mpa~0.8Mpa。
本发明还提供一种如上所述的醚类聚羧酸减水剂的制备方法,其包括以下制备步骤:将所述酯类单体、所述聚氧烷基醚与所述带酯基结构的聚氧烷基醚混合,并加入引发剂溶液,链转移剂溶液,乳化剂溶液和不饱和酸,在25℃~35℃下进行聚合反应时间0.5h~1.5h,制得所述醚类聚羧酸减水剂。
相比现有技术,本发明提供的醚类聚羧酸减水剂,具有以下有益效果:
本发明提供的醚类聚羧酸减水剂,在具有良好减水性能的同时,其能够有效提高混凝土初始分散性能和提高混凝土强度,并且能降低混凝土敏感性,其具有保坍效果和抗泥效果。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供一种醚类聚羧酸减水剂的制备方法的优选实施方案,具体包括如下步骤:
将所述酯类单体、所述聚氧烷基醚与所述带酯基结构的聚氧烷基醚混合, 并滴加引发剂溶液,链转移剂溶液,乳化剂溶液和不饱和酸,在25℃~35℃下进行聚合反应时间0.5h~1.5h,反应结束后,保温一段时间,加入液碱调节pH至6~7,即制得所述醚类聚羧酸减水剂。
其中,所述酯类单体、聚氧烷基醚、带酯基结构的聚氧烷基醚与不饱和酸的质量比为(3.5~7):100:(4~12):(4.5~12)。
(1)对于共聚单体:
带酯基结构的聚氧烷基醚:
所述带酯基结构的聚氧烷基醚的结构式如下:
H2C=CH-CH2-C-O-R1-O-M1-R2,R1为碳原子数为3或4个的亚烷基;R2为H或CH3;M1为带酯基结构的环氧烷基。
所述M1的结构式如下:
其中,所述n为5~20。
优选地,带酯基结构的聚氧烷基醚由不饱和醇与环氧丙酸酯,在催化剂作用下进行第一开环聚合反应制得;其中,所述不饱和醇选用1-烯丙基氧基丙-1-醇或4-(烯丙氧基)-1-丁醇;所述环氧丙酸酯选用2,3-环氧丙酸甲酯或2,3-环氧丙酸乙酯,所述催化剂选用氢氧化钠、乙醇钠、氢化钠、金属钾、四氢铝锂中的的一种或多种组合;所述不饱和醇与所述环氧丙酸酯的摩尔比为1:(5~20);所述第一开环聚合反应温度为90℃~200℃,且反应压力为0.1Mpa~0.8Mpa;其中,当反应压力小于0.2Mpa时,反应温度大于等于100℃。
聚氧烷基醚:
所述聚氧烷基醚的结构式如下:
H2C=CH-CH2-O-R1-O-M2-R2,其中,R1为碳原子数为3或4的亚烷基;R2为H或CH3;M2为(A)x(B)y嵌段聚醚链,(A)x、(B)y表示为聚氧乙烯或聚氧丙烯的重复单元,x、y分别表示为A的重复数量和B的重复数量,x、y为0~100的整数,且10≤x+y≤200。
需要说明的是:本发明的聚氧烷基醚中,A、B的结构可以相同,例如同为-CH2CH2O-,或同为-CH2CH(CH3)O-或-CH(CH3)CH2O-;A、B的结构可以不相同,例如,可以是A为-CH2CH2O-,B为-CH2CH(CH3)O-或-CH(CH3)CH2O-;也可以是A为-CH2CH(CH3)O-或-CH(CH3)CH2O-,B为-CH2CH2O-。
优选地,所述M2为由环氧乙烷和环氧丙烷聚合而成的无规共聚物分子链。
优选地,所述聚氧烷基醚由不饱和醇与环氧烷烃类物质,在催化剂作用下进行第二开环聚合反应制得;其中,所述不饱和醇选用1-烯丙基氧基丙-1-醇或4-(烯丙氧基)-1-丁醇;所述环氧烷烃类物质选用环氧乙烷和/或环氧丙烷;所述催化剂选用氢氧化钠、乙醇钠、氢化钠、金属钾、四氢铝锂中的的一种或多种组合;所述第二开环聚合反应温度为80℃~150℃,且反应压力为0.1Mpa~0.8Mpa。
优选地,当所述环氧烷烃类物质选用环氧乙烷或环氧丙烷其中一种,所述不饱和醇与环氧乙烷或环氧丙烷的摩尔比为1:(10~100)。当所述环氧烷烃类物质选用环氧乙烷和环氧丙烷两种混合,所述不饱和醇与环氧乙烷和环氧丙烷混合物的摩尔比为1:(10~200)。
不饱和酸和酯类单体:
所述不饱和酸优选丙烯酸、甲基丙烯酸、马来酸中的一种或多种组合;
所述酯类单体的结构式如下:
其中,R3为碳原子数为1~5的亚烷基。
其他聚合反应原料:
优选地,所述氧化剂优选过硫酸钠、双氧水、叔丁基过氧化氢中的一种或多种组合。所述还原剂优选次磷酸钠、抗坏血酸、硫酸亚铁、2-羟基-2-亚磺酸基乙酸二钠盐中的一种或多种组合。所述链转移剂优选2-羟基丙硫醇、二硫代苯甲酸酯丁酸、甲酸钠、次磷酸钾中的一种或多种组合。所述乳化剂优选山梨醇聚氧乙烯醚四油酸酯。其中,进一步优选地,所述氧化剂用量为聚氧烷基醚总质量的2.5%~4%,所述还原剂用量为聚氧烷基醚总质量的1%~3.5%,所述链转移剂用量为聚氧烷基醚总质量的1%~2.5%。所述乳化剂用量为聚氧烷基醚总质量的0.8~2%。
本发明还提供如下所示实施例和对比例:
实施例1
(1)带酯基聚氧烷基醚制备:向1.5L的不锈钢高压反应釜中,按重量份计,投入32.6份4-(烯丙氧基)-1-丁醇和1份氢氧化钠,搅拌均匀;将反应釜抽真空至-0.1Mpa,采用N2置换3次。将反应釜升温至80℃,向反应釜连续投入127.5份2,3-环氧丙酸甲酯,控制反应温度为110℃,反应压力为0.4Mpa。反应时间为4~5h。待产物冷却后,加入中和剂,收集产物;
(2)聚氧烷基醚制备:向1.5L的不锈钢高压反应釜中,按重量份计,投入58.6份4-(烯丙氧基)-1-丁醇和1份氢氧化钠,搅拌均匀;将反应釜抽真空至-0.1Mpa,采用N2置换3次。将反应釜升温至80℃,向反应釜连续投入990份环氧乙烷,控制反应温度为120℃,反应压力为0.3Mpa。反应至反应釜压 力不再下降时停止反应。待产物冷却后,加入中和剂,收集产物;
(3)共聚反应:按重量份计,先将6份戊二酸二乙烯酯、5份带酯基结构的聚氧烷基醚、100份聚氧烷基醚、1份次磷酸钠、1份山梨醇聚氧乙烯醚四油酸酯和123.8份水,加入第一反应容器中搅拌均匀,3份过硫酸钠与20份水混合均匀于第一滴加装置中;2份2-羟基丙硫醇与20份水混合均匀于第二滴加装置中;6份丙烯酸与20份水混合均匀于第三滴加装置中;常温下向第一反应容器中依次开始滴加第一滴加装置、第二滴加装置和第三滴加装置中的物料,于60min分别滴加完第三滴加装置、第二滴加装置、第一滴加装置中的物料,恒温反应30min;
(4)加入重量份为11份32%质量浓度的氢氧化钠,即得到浓度为40%的所述醚类聚羧酸减水剂。
实施例2
(1)带酯基聚氧烷基醚制备:向1.5L的不锈钢高压反应釜中,按重量份计,投入51.3份1-烯丙基氧基丙-1-醇和1.5份乙醇钠,搅拌均匀;将反应釜抽真空至-0.1Mpa,采用N2置换3次。将反应釜升温至140℃,向反应釜连续投入409.4份2,3-环氧丙酸乙酯,控制反应温度为160℃,反应压力为0.1Mpa。反应时间为5~6h。待产物冷却后,加入中和剂,收集产物;
(2)聚氧烷基醚制备:向1.5L的不锈钢高压反应釜中,按重量份计,投入20.5份1-烯丙基氧基丙-1-醇和1.5份乙醇钠,搅拌均匀;将反应釜抽真空至-0.1Mpa,采用N2置换3次。将反应釜升温至80℃,向反应釜连续投入818.8份环氧丙烷,控制反应温度为110℃,反应压力为0.5Mpa。反应至反应釜压力不再下降时停止反应。待产物冷却后,加入中和剂,收集产物;
(3)共聚反应:按重量份计,先将7份己二酸二乙烯基酯、7份带酯基结构的聚氧烷基醚、100份聚氧烷基醚、2份山梨醇聚氧乙烯醚四油酸酯和 114份水,加入第一反应容器中搅拌均匀,2.5份双氧水与20份水混合均匀于第一滴加装置中;1.8份抗坏血酸、1.5份二硫代苯甲酸酯丁酸与20份水混合均匀于第二滴加装置中;12份甲基丙烯酸与20份水混合均匀于第三滴加装置中;常温下向第一反应容器中依次开始滴加第一滴加装置、第二滴加装置和第三滴加装置中的物料,于50min分别滴加完第三滴加装置、第二滴加装置、第一滴加装置中的物料,恒温反应30min;
(4)加入重量份为11份32%质量浓度的氢氧化钠,即得到浓度为40%的所述醚类聚羧酸减水剂。
实施例3
(1)带酯基聚氧烷基醚制备:向1.5L的不锈钢高压反应釜中,按重量份计,投入53.6份1-烯丙基氧基丙-1-醇和1.2份金属钾,搅拌均匀;将反应釜抽真空至-0.1Mpa,采用N2置换3次。将反应釜升温至70℃,向反应釜连续投入612份2,3-环氧丙酸甲酯,控制反应温度为130℃,反应压力为0.3Mpa。反应时间为5~5.5h。待产物冷却后,加入中和剂,收集产物;
(2)聚氧烷基醚制备:向1.5L的不锈钢高压反应釜中,按重量份计,投入42.9份1-烯丙基氧基丙-1-醇和1.3份金属钾,搅拌均匀;将反应釜抽真空至-0.1Mpa,采用N2置换3次。将反应釜升温至80℃,向反应釜连续投入487.4份环氧乙烷、642.5份环氧丙烷,控制反应温度为120℃,反应压力为0.6Mpa。反应至反应釜压力不再下降时停止反应。待产物冷却后,加入中和剂,收集产物;
(3)共聚反应:按重量份计,先将4.5份戊二酸二乙烯酯、9份带酯基结构的聚氧烷基醚、100份聚氧烷基醚、3.2份硫酸亚铁1%溶液、1.5份山梨醇聚氧乙烯醚四油酸酯和115.6份水,加入第一反应容器中搅拌均匀,4份叔丁基过氧化氢与20份水混合均匀于第一滴加装置中;1份甲酸钠与20份水混 合均匀于第二滴加装置中;9份马来酸与20份水混合均匀于第三滴加装置中;常温下向第一反应容器中依次开始滴加第一滴加装置、第二滴加装置和第三滴加装置中的物料,于65min分别滴加完第三滴加装置、第二滴加装置、第一滴加装置中的物料,恒温反应30min;
(4)加入重量份为11份32%质量浓度的氢氧化钠,即得到浓度为40%的所述醚类聚羧酸减水剂。
对比例1(4-羟丁基乙烯基醚替代实施例中不饱和醇)
(1)带酯基聚氧烷基醚制备:向1.5L的不锈钢高压反应釜中,按重量份计,投入29份4-羟丁基乙烯基醚和1份氢氧化钠,搅拌均匀;将反应釜抽真空至-0.1Mpa,采用N2置换3次。将反应釜升温至80℃,向反应釜连续投入127.5份2,3-环氧丙酸甲酯,控制反应温度为110℃,反应压力为0.4Mpa。反应时间为4~5h。待产物冷却后,加入中和剂,收集产物;
(2)聚氧烷基醚制备:向1.5L的不锈钢高压反应釜中,按重量份计,投入52.29份4-羟丁基乙烯基醚和1份氢氧化钠,搅拌均匀;将反应釜抽真空至-0.1Mpa,采用N2置换3次。将反应釜升温至80℃,向反应釜连续投入990份环氧乙烷,控制反应温度为120℃,反应压力为0.3Mpa。反应至反应釜压力不再下降时停止反应。待产物冷却后,加入中和剂,收集产物;
(3)共聚反应:按重量份计,先将6份戊二酸二乙烯酯、5份带酯基结构的聚氧烷基醚、100份聚氧烷基醚、1份次磷酸钠、1份山梨醇聚氧乙烯醚四油酸酯和123.8份水,加入第一反应容器中搅拌均匀,3份过硫酸钠与20份水混合均匀于第一滴加装置中;2份2-羟基丙硫醇与20份水混合均匀于第二滴加装置中;6份丙烯酸与20份水混合均匀于第三滴加装置中;常温下向第一反应容器中依次开始滴加第一滴加装置、第二滴加装置和第三滴加装置中的物料,于60min分别滴加完第三滴加装置、第二滴加装置、第一滴加装 置中的物料,恒温反应30min;
(4)加入重量份为11份32%质量浓度的氢氧化钠,即得到浓度为40%的混凝土减水剂。
对比例2(乙二醇单乙烯基醚替代实施例中不饱和醇)
(1)带酯基聚氧烷基醚制备:向1.5L的不锈钢高压反应釜中,按重量份计,投入22份乙二醇单乙烯基醚和1份氢氧化钠,搅拌均匀;将反应釜抽真空至-0.1Mpa,采用N2置换3次。将反应釜升温至80℃,向反应釜连续投入127.5份2,3-环氧丙酸甲酯,控制反应温度为110℃,反应压力为0.4Mpa。反应时间为4~5h。待产物冷却后,加入中和剂,收集产物;
(2)聚氧烷基醚制备:向1.5L的不锈钢高压反应釜中,按重量份计,投入39.645份乙二醇单乙烯基醚和1份氢氧化钠,搅拌均匀;将反应釜抽真空至-0.1Mpa,采用N2置换3次。将反应釜升温至80℃,向反应釜连续投入990份环氧乙烷,控制反应温度为120℃,反应压力为0.3Mpa。反应至反应釜压力不再下降时停止反应。待产物冷却后,加入中和剂,收集产物;
(3)共聚反应:按重量份计,先将6份戊二酸二乙烯酯、5份带酯基结构的聚氧烷基醚、100份聚氧烷基醚、1份次磷酸钠、1份山梨醇聚氧乙烯醚四油酸酯和123.8份水,加入第一反应容器中搅拌均匀,3份过硫酸钠与20份水混合均匀于第一滴加装置中;2份2-羟基丙硫醇与20份水混合均匀于第二滴加装置中;6份丙烯酸与20份水混合均匀于第三滴加装置中;常温下向第一反应容器中依次开始滴加第一滴加装置、第二滴加装置和第三滴加装置中的物料,于60min分别滴加完第三滴加装置、第二滴加装置、第一滴加装置中的物料,恒温反应30min;
(4)加入重量份为11份32%质量浓度的氢氧化钠,即得到浓度为40%的混凝土减水剂。
对比例4(2-甲基-1-丁烯-4-醇替代实施例中不饱和醇)
(1)带酯基聚氧烷基醚制备:向1.5L的不锈钢高压反应釜中,按重量份计,投入21.5份2-甲基-1-丁烯-4-醇和1份氢氧化钠,搅拌均匀;将反应釜抽真空至-0.1Mpa,采用N2置换3次。将反应釜升温至80℃,向反应釜连续投入127.5份2,3-环氧丙酸甲酯,控制反应温度为110℃,反应压力为0.4Mpa。反应时间为4~5h。待产物冷却后,加入中和剂,收集产物;
(2)聚氧烷基醚制备:向1.5L的不锈钢高压反应釜中,按重量份计,投入38.8份2-甲基-1-丁烯-4-醇和1份氢氧化钠,搅拌均匀;将反应釜抽真空至-0.1Mpa,采用N2置换3次。将反应釜升温至80℃,向反应釜连续投入990份环氧乙烷,控制反应温度为120℃,反应压力为0.3Mpa。反应至反应釜压力不再下降时停止反应。待产物冷却后,加入中和剂,收集产物;
(3)共聚反应:按重量份计,先将6份戊二酸二乙烯酯、5份带酯基结构的聚氧烷基醚、100份聚氧烷基醚、1份次磷酸钠、1份山梨醇聚氧乙烯醚四油酸酯和123.8份水,加入第一反应容器中搅拌均匀,3份过硫酸钠与20份水混合均匀于第一滴加装置中;2份2-羟基丙硫醇与20份水混合均匀于第二滴加装置中;6份丙烯酸与20份水混合均匀于第三滴加装置中;常温下向第一反应容器中依次开始滴加第一滴加装置、第二滴加装置和第三滴加装置中的物料,于60min分别滴加完第三滴加装置、第二滴加装置、第一滴加装置中的物料,恒温反应30min;
(4)加入重量份为11份32%质量浓度的氢氧化钠,即得到浓度为40%的混凝土减水剂。
对比例4(无带酯基结构的聚氧烷基醚参与聚合反应)
(1)聚氧烷基醚制备:向1.5L的不锈钢高压反应釜中,按重量份计,投入58.6份4-(烯丙氧基)-1-丁醇和1份氢氧化钠,搅拌均匀;将反应釜抽真 空至-0.1Mpa,采用N2置换3次。将反应釜升温至80℃,向反应釜连续投入990份环氧乙烷,控制反应温度为120℃,反应压力为0.3Mpa。反应至反应釜压力不再下降时停止反应。待产物冷却后,加入中和剂,收集产物;
(3)共聚反应:按重量份计,先将6份戊二酸二乙烯酯、100份聚氧烷基醚、1份次磷酸钠、1份山梨醇聚氧乙烯醚四油酸酯和116.3份水,加入第一反应容器中搅拌均匀,3份过硫酸钠与20份水混合均匀于第一滴加装置中;2份2-羟基丙硫醇与20份水混合均匀于第二滴加装置中;6份丙烯酸与20份水混合均匀于第三滴加装置中;常温下向第一反应容器中依次开始滴加第一滴加装置、第二滴加装置和第三滴加装置中的物料,于60min分别滴加完第三滴加装置、第二滴加装置、第一滴加装置中的物料,恒温反应30min;
(4)加入重量份为11份32%质量浓度的氢氧化钠,即得到浓度为40%的混凝土减水剂。
对比例5
选择市售Point-TS8型聚羧酸减水剂母液与葡萄糖酸钠,以用量分别为胶凝材料质量的0.2%和0.03%进行复配,以进行混凝土验证。
对比例6(不加酯类单体参与聚合反应)
(1)带酯基聚氧烷基醚制备:向1.5L的不锈钢高压反应釜中,按重量份计,投入32.6份4-(烯丙氧基)-1-丁醇和1份氢氧化钠,搅拌均匀;将反应釜抽真空至-0.1Mpa,采用N2置换3次。将反应釜升温至80℃,向反应釜连续投入127.5份2,3-环氧丙酸甲酯,控制反应温度为110℃,反应压力为0.4Mpa。反应时间为4~5h。待产物冷却后,加入中和剂,收集产物;
(2)聚氧烷基醚制备:向1.5L的不锈钢高压反应釜中,按重量份计,投入58.6份4-(烯丙氧基)-1-丁醇和1份氢氧化钠,搅拌均匀;将反应釜抽真空至-0.1Mpa,采用N2置换3次。将反应釜升温至80℃,向反应釜连续投入990 份环氧乙烷,控制反应温度为120℃,反应压力为0.3Mpa。反应至反应釜压力不再下降时停止反应。待产物冷却后,加入中和剂,收集产物;
(3)共聚反应:按重量份计,先将5份带酯基结构的聚氧烷基醚、100份聚氧烷基醚、1份次磷酸钠、1份山梨醇聚氧乙烯醚四油酸酯和114.8份水,加入第一反应容器中搅拌均匀,3份过硫酸钠与20份水混合均匀于第一滴加装置中;2份2-羟基丙硫醇与20份水混合均匀于第二滴加装置中;6份丙烯酸与20份水混合均匀于第三滴加装置中;常温下向第一反应容器中依次开始滴加第一滴加装置、第二滴加装置和第三滴加装置中的物料,于60min分别滴加完第三滴加装置、第二滴加装置、第一滴加装置中的物料,恒温反应30min;
(4)加入重量份为11份32%质量浓度的氢氧化钠,即得到浓度为40%的混凝土减水剂。
对比例7(丙烯酸羟乙酯替代实施例中酯类单体)
(1)带酯基聚氧烷基醚制备:向1.5L的不锈钢高压反应釜中,按重量份计,投入32.6份4-(烯丙氧基)-1-丁醇和1份氢氧化钠,搅拌均匀;将反应釜抽真空至-0.1Mpa,采用N2置换3次。将反应釜升温至80℃,向反应釜连续投入127.5份2,3-环氧丙酸甲酯,控制反应温度为110℃,反应压力为0.4Mpa。反应时间为4~5h。待产物冷却后,加入中和剂,收集产物;
(2)聚氧烷基醚制备:向1.5L的不锈钢高压反应釜中,按重量份计,投入58.6份4-(烯丙氧基)-1-丁醇和1份氢氧化钠,搅拌均匀;将反应釜抽真空至-0.1Mpa,采用N2置换3次。将反应釜升温至80℃,向反应釜连续投入990份环氧乙烷,控制反应温度为120℃,反应压力为0.3Mpa。反应至反应釜压力不再下降时停止反应。待产物冷却后,加入中和剂,收集产物;
(3)共聚反应:按重量份计,先将6份丙烯酸羟乙酯丙烯酸羟乙酯、5 份带酯基结构的聚氧烷基醚、100份聚氧烷基醚、1份次磷酸钠、1份山梨醇聚氧乙烯醚四油酸酯和123.8份水,加入第一反应容器中搅拌均匀,3份过硫酸钠与20份水混合均匀于第一滴加装置中;2份2-羟基丙硫醇与20份水混合均匀于第二滴加装置中;6份丙烯酸与20份水混合均匀于第三滴加装置中;常温下向第一反应容器中依次开始滴加第一滴加装置、第二滴加装置和第三滴加装置中的物料,于60min分别滴加完第三滴加装置、第二滴加装置、第一滴加装置中的物料,恒温反应30min;
(4)加入重量份为11份32%质量浓度的氢氧化钠,即得到浓度为40%的混凝土减水剂。
实施例和对比例的产物的性能测试:
将实施例1-3与对比例1-7合成的减水剂产品用机制砂混凝土对比:以红狮PO42.5R水泥为原料,混凝土基准配合比为:水泥287kg/m3、粉煤灰123kg/m3、机制砂827kg/m3、石子1011kg/m3,其中机制砂石粉含量为1%;其中,实施例1-3减水剂掺量为胶凝材料质量的0.2%(折固份),对比例1-4和对比例6-7减水剂掺量为胶凝材料质量的0.2%(折固份),对比例5外加剂掺量参照具体复配配方,基准样为未添加外加剂;实施例1-3和对比例1-7采用上述基准配合比,并根据GB 8076-2008《混凝土外加剂》进行其坍落度、扩展度等性能测试,混凝土测试结果如表1所示;
按以上外加剂掺量对实施例1-3和对比例6-7合成的产品进行抗泥性能测试:采用上述基准配合比,区别仅在于:其中的机制砂石粉含量调整为5%,其余条件不变;根据GB 8076-2008《混凝土外加剂》测试其坍落度、扩展度等性能测试,抗泥性能测试结果如表2所示。
表1混凝土性能测试数据

表2抗泥性能测试数据
从表1-2的结果可以看出:
实施例1-3的各项性能均优于基准样及对比例1-7,结合实施例1-3结果可以看出:加入本发明实施例提供的醚类聚羧酸减水剂产品后,能有效提高混凝土的初始分散性能和保坍性能,同时提高混凝土强度,并且能在机制砂石粉含量较高时降低混凝土敏感性,由此可见,本发明实施例提供的醚类聚羧酸减水剂产品具有较显著的保坍和抗泥效果。
对比例1采用4-羟丁基乙烯基醚替代实施例中不饱和醇,对比例2采用乙二醇单乙烯基醚替代实施例中不饱和醇,对比例3采用2-甲基-1-丁烯-4-醇替代实施例中不饱和醇;由实施例1和对比例1-3的测试结果可以看出:本发明实施例采用不饱和醇,相比使用4-羟丁基乙烯基醚、乙二醇单乙烯基醚或2-甲基-1-丁烯-4-醇作为起始剂制备带酯基结构的聚氧烷基醚的方案,本发明实施例在混凝土初始减水性能上有较大提高。
对比例4不采用带酯基结构的聚氧烷基醚参与聚合反应,由实施例1和对比例4的测试结果可以看出:对比例4不采用带酯基的聚醚单体时,相比实施例,对比例4混凝土保坍性能下降,混凝土强度也略有下降。
对比例5采用现有减水剂与具有保坍缓凝效果的缓凝剂复配使用;由实施例1和对比例5的测试结果可以看出,相比于采用现有的减水剂复配缓凝剂的方式,本发明实施例提供的醚类聚羧酸减水剂不仅具有更优的减水性能,而且保坍性能也大大提高,同时混凝土的早期强度和后期强度均得到提升。
对比例6不加酯类单体参与聚合反应,对比例7采用丙烯酸羟乙酯丙烯酸羟乙酯替代实施例中酯类单体;由实施例1和对比例6、对比例7的测试结果可以看出,相较于不加入酯类单体或使用现有其他类型的酯类单体的方案,本发明实施例采用特定的酯类单体,使得制得的聚羧酸减水剂具有更好的保坍性能,且能够提高混凝土的强度,同时,对石粉含量较高的机制砂具有更好的抗泥效果,表现为本发明实施例的混凝土在2h时仍有流动性能(具体详见表2中扩展度2小时的数据),而对比例6-7则均无流动性。
综上所述,本发明实施例提供的醚类聚羧酸减水剂,在具有良好减水性能的同时,其能够有效提高混凝土初始分散性能和提高混凝土强度,并且能降低混凝土敏感性,其具有保坍和抗泥效果。
本发明提供的带酯基结构的聚氧烷基醚、醚类聚羧酸减水剂及其制备方 法,至少包括以下设计构思、作用机理和有益效果:
1.本发明提供的带酯基结构的聚氧烷基醚利用不饱和醇,例如1-烯丙基氧基丙-1-醇(碳结构为3+3)及4-(烯丙氧基)-1-丁醇(碳结构为3+4),与环氧丙酸酯进行第一开环聚合反应制备而成。
该带酯基结构的聚氧烷基醚中引入了多段酯基,水解后引入大量羧基,不仅与水泥颗粒表面钙离子形成络合物,而且链段深入孔隙溶液中,也和溶液中钙离子形成络合物,极大程度上降低孔隙溶液中的钙离子浓度,同时引入大量羟基,形成水泥颗粒覆盖网,阻碍钙离子和水化产物的物质交换,延缓水泥颗粒表面水化产物的成核速率,起到保坍的作用,同时也延缓溶液中水化产物的成核速率。从而,该带酯基结构的聚氧烷基醚作为共聚单体引入聚羧酸减水剂,能够起到缓凝、保坍效果。
2.本发明提供的醚类聚羧酸减水剂,其不仅引入带酯基结构的聚氧烷基醚共聚单体,同时还引入双烯基之酯类单体以形成交联结构,使醚类聚羧酸减水剂的结构轻度交联。
在水泥的碱性条件下,交联结构的水解较慢于含有酯基、酸酐等基团的单体共聚得到的减水剂,随着时间的延长,本发明提供的醚类聚羧酸减水剂逐渐水解,从而不断释放出对减水效果有贡献的羧酸基团,从而补偿了损失的减水率,达到保持坍落度的效果。酯基水解时释放出羧酸根,羧酸根吸附于钙离子及水泥颗粒或水化产物表面,进一步降低溶液钙离子浓度,且其覆盖了水化产物成核点位,可延长水化产物的成核时间,抑制Ca(OH)2、AFt晶核生长,减缓水化速度,延长水泥水化诱导期,从而起到提高保持分散性的作用,同时使得本发明提供的醚类聚羧酸减水剂具有优良的保坍效果。
同时,水解后释放的聚羧酸减水剂产物仍带有大量羧酸根,可自由分散至水泥颗粒负电区域或络合钙离子,进一步填补水化产物成核点位,进一步 阻碍水化产物生成。释放出的羧酸及羟基络合钙离子能力强,增强了减水剂吸附能力,可以不断结合水泥水化时释放的钙离子,抑制了水化矿物的水化和水化产物的生长,从而大大延缓水泥水化过程,同时进一步释放自由水,混凝土后期水化程度更高,提高相同龄期下抗压强度。并且,其释放出的小分子羧基,可以进入泥粉的插层中,减少泥粉对减水剂的吸附,提高了聚羧酸减水剂的抗泥效果。
3、现有的4碳或5碳型减水剂,其制备过程中,反应温度高达60℃,需要加热设备。而现有的2+2型或2+4型减水剂,因其反应时间短,减水率及保坍性能均比较优异,也得到目前市场的认可,但其大单体反应活性较高,需要低温设备;现有的二者生产成本均较高。
本发明提供的带酯基结构的聚氧烷基醚中,不饱和醇优选采用1-烯丙基氧基丙-1-醇(碳结构为3+3)和/或4-(烯丙氧基)-1-丁醇(碳结构为3+4),其采用3+3碳结构、3+4碳结构的端烯起始剂(即不饱和醇),使得将带酯基结构的聚氧烷基醚作为共聚单体制备醚类聚羧酸减水剂的过程中,反应温度控制在室温(即25℃~35℃)即可。相较于2+2或2+4碳结构起始剂,其反应活性较低,不需要在低温条件下反应,起到节能环保,迎合双碳减排的效果。并且,相较于4碳、5碳聚羧酸减水剂,不需要加热进行反应,同样也节约了能源。
4.本发明提供的醚类聚羧酸减水剂,其制备过程工艺操作简单,反应条件温和,易于规模化生产,生产过程安全无污染,属环保产品。
综上,上述实施例中的具体参数或一些常用试剂或原料,为本发明构思下的具体实施例或优选实施例,而非对其限制;本领域技术人员在本发明构思及保护范围内,可以进行适应性调整。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对 其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种带酯基结构的聚氧烷基醚,其特征在于:其结构式如下:
    H2C=CH-CH2-C-O-R1-O-M1-R2
    其中,R1为碳原子数为3或4个的亚烷基;R2为H或CH3;M1为带酯基结构的环氧烷基。
  2. 根据权利要求1所述的带酯基结构的聚氧烷基醚,其特征在于,所述M1的结构式如下:
    其中,所述n为5~20。
  3. 根据权利要求1所述的带酯基结构的聚氧烷基醚,其特征在于,其由不饱和醇与环氧丙酸酯,在催化剂作用下进行第一开环聚合反应制得;
    所述不饱和醇为1-烯丙基氧基丙-1-醇或4-(烯丙氧基)-1-丁醇;所述环氧丙酸酯为2,3-环氧丙酸甲酯或2,3-环氧丙酸乙酯。
  4. 根据权利要求3所述的带酯基结构的聚氧烷基醚,其特征在于,所述不饱和醇与所述环氧丙酸酯的摩尔比为1:(5~20);
    所述第一开环聚合反应温度为90℃~200℃,且反应压力为0.1Mpa~0.8Mpa;其中,当反应压力小于0.2Mpa时,反应温度大于等于100℃。
  5. 一种醚类聚羧酸减水剂,其特征在于,由共聚单体聚合而成;所述共聚单体包括聚氧烷基醚、带酯基结构的聚氧烷基醚、酯类单体以及不饱和酸;
    所述带酯基结构的聚氧烷基醚采用如权利要求1-4任一项所述的带酯基结构的聚氧烷基醚。
  6. 根据权利要求5所述的醚类聚羧酸减水剂,其特征在于,所述酯类单体、聚氧烷基醚、带酯基结构的聚氧烷基醚与不饱和酸的质量比为(3.5~7):100:(4~12):(4.5~12);
    所述聚合反应温度为25℃~35℃,反应时间为0.5h~1.5h。
  7. 根据权利要求5所述的醚类聚羧酸减水剂,其特征在于,所述不饱和酸为丙烯酸、甲基丙烯酸、马来酸中的一种或多种组合;
    所述酯类单体的结构式如下:
    其中,R3为碳原子数为1~5的亚烷基;
    所述聚氧烷基醚的结构式如下:
    H2C=CH-CH2-O-R1-O-M2-R2,其中,R1为碳原子数为3或4的亚烷基;R2为H或CH3;M2为(A)x(B)y嵌段聚醚链,(A)x、(B)y表示为聚氧乙烯或聚氧丙烯的重复单元,x、y分别表示为A的重复数量和B的重复数量,x、y为0~100的整数,且10≤x+y≤200。
  8. 根据权利要求7所述的醚类聚羧酸减水剂,其特征在于,所述M2为由环氧乙烷和环氧丙烷聚合而成的无规共聚物分子链。
  9. 根据权利要求7所述的醚类聚羧酸减水剂,其特征在于,所述聚氧烷基醚由不饱和醇与环氧烷烃类物质,在催化剂作用下进行第二开环聚合反应制得;
    所述不饱和醇为1-烯丙基氧基丙-1-醇或4-(烯丙氧基)-1-丁醇;所述环氧烷烃类物质为环氧乙烷和/或环氧丙烷;
    所述第二开环聚合反应温度为80℃~150℃,且反应压力为0.1Mpa~ 0.8Mpa。
  10. 一种如权利要求5-9任一项所述的醚类聚羧酸减水剂的制备方法,其特征在于,包括以下制备步骤:
    将所述酯类单体、所述聚氧烷基醚与所述带酯基结构的聚氧烷基醚混合,并加入引发剂溶液,链转移剂溶液,乳化剂溶液和不饱和酸,在25℃~35℃下进行聚合反应时间0.5h~1.5h,制得所述醚类聚羧酸减水剂。
PCT/CN2023/138375 2022-12-20 2023-12-13 一种带酯基结构的聚氧烷基醚、醚类聚羧酸减水剂及其制备方法 WO2024131610A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211643696.0A CN115926138A (zh) 2022-12-20 2022-12-20 一种带酯基结构的聚氧烷基醚、醚类聚羧酸减水剂及其制备方法
CN202211643696.0 2022-12-20

Publications (1)

Publication Number Publication Date
WO2024131610A1 true WO2024131610A1 (zh) 2024-06-27

Family

ID=86655833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/138375 WO2024131610A1 (zh) 2022-12-20 2023-12-13 一种带酯基结构的聚氧烷基醚、醚类聚羧酸减水剂及其制备方法

Country Status (2)

Country Link
CN (1) CN115926138A (zh)
WO (1) WO2024131610A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115926138A (zh) * 2022-12-20 2023-04-07 科之杰新材料集团有限公司 一种带酯基结构的聚氧烷基醚、醚类聚羧酸减水剂及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146005A (en) * 1989-10-06 1992-09-08 Th. Goldschmidt Ag Cationically curable oxalkylene ethers, method for their synthesis and their use as casting compounds, coating compositions or as reactive diluents for epoxide resins
JP2002234761A (ja) * 2001-02-01 2002-08-23 Nippon Shokubai Co Ltd セメント混和剤
CN101448873A (zh) * 2006-05-19 2009-06-03 陶氏康宁东丽株式会社 聚醚类及其制造方法
CN103145972A (zh) * 2006-06-21 2013-06-12 拜尔材料科学有限公司 含侧链丙烯酸酯和/或甲基丙烯酸酯的聚醚单醇和多元醇
JP2015174773A (ja) * 2014-03-12 2015-10-05 日本製紙株式会社 セメント混和剤およびこれを用いたセメント組成物
CN108264619A (zh) * 2016-12-30 2018-07-10 江苏苏博特新材料股份有限公司 降粘型聚羧酸减水剂的制备方法
CN112898501A (zh) * 2021-01-29 2021-06-04 武汉理工大学 一种低坍落度型减水剂及其制备方法
CN113307963A (zh) * 2021-06-08 2021-08-27 华南理工大学 一种合成缩水甘油基线形聚合物的方法
CN113980201A (zh) * 2021-11-17 2022-01-28 科之杰新材料集团有限公司 一种保坍型减水剂及其制备方法
CN113980202A (zh) * 2021-11-17 2022-01-28 科之杰新材料集团有限公司 一种聚羧酸减水剂及其制备方法
CN113999384A (zh) * 2021-11-01 2022-02-01 湖北凌安科技有限公司 功能复合型聚醚及其制备方法和应用
CN115873182A (zh) * 2022-12-20 2023-03-31 科之杰新材料集团有限公司 一种抗泥型保坍酯类聚羧酸减水剂及其制备方法
CN115926138A (zh) * 2022-12-20 2023-04-07 科之杰新材料集团有限公司 一种带酯基结构的聚氧烷基醚、醚类聚羧酸减水剂及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146005A (en) * 1989-10-06 1992-09-08 Th. Goldschmidt Ag Cationically curable oxalkylene ethers, method for their synthesis and their use as casting compounds, coating compositions or as reactive diluents for epoxide resins
JP2002234761A (ja) * 2001-02-01 2002-08-23 Nippon Shokubai Co Ltd セメント混和剤
CN101448873A (zh) * 2006-05-19 2009-06-03 陶氏康宁东丽株式会社 聚醚类及其制造方法
CN103145972A (zh) * 2006-06-21 2013-06-12 拜尔材料科学有限公司 含侧链丙烯酸酯和/或甲基丙烯酸酯的聚醚单醇和多元醇
JP2015174773A (ja) * 2014-03-12 2015-10-05 日本製紙株式会社 セメント混和剤およびこれを用いたセメント組成物
CN108264619A (zh) * 2016-12-30 2018-07-10 江苏苏博特新材料股份有限公司 降粘型聚羧酸减水剂的制备方法
CN112898501A (zh) * 2021-01-29 2021-06-04 武汉理工大学 一种低坍落度型减水剂及其制备方法
CN113307963A (zh) * 2021-06-08 2021-08-27 华南理工大学 一种合成缩水甘油基线形聚合物的方法
CN113999384A (zh) * 2021-11-01 2022-02-01 湖北凌安科技有限公司 功能复合型聚醚及其制备方法和应用
CN113980201A (zh) * 2021-11-17 2022-01-28 科之杰新材料集团有限公司 一种保坍型减水剂及其制备方法
CN113980202A (zh) * 2021-11-17 2022-01-28 科之杰新材料集团有限公司 一种聚羧酸减水剂及其制备方法
CN115873182A (zh) * 2022-12-20 2023-03-31 科之杰新材料集团有限公司 一种抗泥型保坍酯类聚羧酸减水剂及其制备方法
CN115926138A (zh) * 2022-12-20 2023-04-07 科之杰新材料集团有限公司 一种带酯基结构的聚氧烷基醚、醚类聚羧酸减水剂及其制备方法

Also Published As

Publication number Publication date
CN115926138A (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
CN110642993B (zh) 一种缓凝型醚类聚羧酸减水剂的制备方法
CN112724329A (zh) 降粘型聚羧酸混凝土减水剂及其制备方法
CN107586366B (zh) 一种改性聚羧酸减水剂及其制备方法
WO2014085996A1 (zh) 一种保坍型聚羧酸超塑化剂
CN110845672B (zh) 一种聚羧酸系混凝土减胶剂及其制备方法
CN108047396B (zh) 一种多阳离子抗泥型聚羧酸减水剂及其制备方法
CN109337024B (zh) 一种缓凝型聚羧酸减水剂的制备方法
WO2024131610A1 (zh) 一种带酯基结构的聚氧烷基醚、醚类聚羧酸减水剂及其制备方法
CN111944101A (zh) 一种适用于低品质骨料的高适应性聚羧酸减水剂的制备方法
CN108794700A (zh) 一种羧酸基聚合物及其制备方法和缓释型聚羧酸减水剂
CN107337769B (zh) 一种保坍型聚羧酸减水剂及其制备方法
CN105218757B (zh) 具有保坍功能的早强型聚羧酸减水剂及其制备方法
CN113150219B (zh) 一种高适应性抗泥型减水剂及其制备方法
CN110713573A (zh) 一种聚羧酸减水剂保坍母液的合成方法
CN111592264A (zh) 一种双羧基磺酸基聚羧酸减水剂及其制备方法
CN109021179B (zh) 一种膦酸基聚合物及其制备方法和磷酸基母液
CN110643003B (zh) 一种缓凝型酯类聚羧酸减水剂的制备方法
CN115873182A (zh) 一种抗泥型保坍酯类聚羧酸减水剂及其制备方法
CN112724332A (zh) 高抗渗性混凝土用聚合物及其制备方法
CN112608424B (zh) 一种酯醚共聚低泌水型聚羧酸减水剂及其制备方法
CN112707672A (zh) 一种层状钙铝双金属氢氧化物及其制备方法、早强型减水剂及其制备方法
CN109232828B (zh) 一种酯醚共聚型降粘型聚羧酸减水剂的制备方法
CN108084358B (zh) 一种保塌型聚羧酸减水剂的制备方法
CN112940199B (zh) 一种保水内养护抗裂型混凝土减水剂及其制备方法
CN110845654B (zh) 一种多羟基引气型混凝土用缓凝剂的制备方法