WO2024131572A1 - 暂堵剂组合物、暂堵剂及其制备方法和应用 - Google Patents

暂堵剂组合物、暂堵剂及其制备方法和应用 Download PDF

Info

Publication number
WO2024131572A1
WO2024131572A1 PCT/CN2023/137529 CN2023137529W WO2024131572A1 WO 2024131572 A1 WO2024131572 A1 WO 2024131572A1 CN 2023137529 W CN2023137529 W CN 2023137529W WO 2024131572 A1 WO2024131572 A1 WO 2024131572A1
Authority
WO
WIPO (PCT)
Prior art keywords
temporary plugging
plugging agent
agent
temperature
copolymer
Prior art date
Application number
PCT/CN2023/137529
Other languages
English (en)
French (fr)
Inventor
王尧
龙华
李学良
马昌明
刘佩衡
李�瑞
柳燕丽
王斯雯
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Publication of WO2024131572A1 publication Critical patent/WO2024131572A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/512Compositions based on water or polar solvents containing organic compounds macromolecular compounds containing cross-linking agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/426Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells for plugging
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/5045Compositions based on water or polar solvents containing inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/516Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls characterised by their form or by the form of their components, e.g. encapsulated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/602Compositions for stimulating production by acting on the underground formation containing surfactants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/887Compositions based on water or polar solvents containing organic compounds macromolecular compounds containing cross-linking agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/92Compositions for stimulating production by acting on the underground formation characterised by their form or by the form of their components, e.g. encapsulated material
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/10Nanoparticle-containing well treatment fluids

Definitions

  • the invention relates to the technical field of oilfield chemistry, and in particular to a temporary plugging agent composition, a temporary plugging agent, and a preparation method and application thereof.
  • thermal recovery technology As the main means of heavy oil development, thermal recovery technology has been widely used in the development of heavy oil reservoirs at home and abroad.
  • thermal oil recovery methods include steam stimulation, steam drive, hot water drive, fire burning oil layer, electromagnetic heating, thermochemical method and other methods.
  • steam stimulation and steam drive are the most widely used methods with the largest oil production.
  • the injected steam may advance along the high permeability strip.
  • inter-well steam channeling interference will occur, affecting the normal production of adjacent wells and reducing the thermal recovery effect.
  • the temperature of 105 sub-injection wells in the group exceeded 70°C, and the steam channeling problem was serious.
  • the formation near the wellbore was empty due to high-temperature rock dissolution, resulting in the inability to establish a circulation for the operation well.
  • the best way to solve this problem is to inject chemical agents with a certain plugging strength into the oil layer to ensure the consistency of reservoir permeability.
  • Liquid phase hydrogel has been proven to be one of the most effective methods for reservoir consistency control.
  • the polymer gel system has the best performance and is the most widely used.
  • the system consists of polymers, cross-linking systems and additives.
  • the prepared gel solution is injected into the formation and aged for a period of time to form a gel. After the gel is formed, the viscosity of the gel system is greatly increased, achieving the purpose of plugging the formation.
  • Commonly used polymer systems are mainly polyacrylamide (PAM) and partially hydrolyzed polyacrylamide (HPAM).
  • PAM polyacrylamide
  • HPAM partially hydrolyzed polyacrylamide
  • it is not suitable for systems such as steam drive and SAGD that require temperatures exceeding 150°C.
  • the most widely used high-temperature resistant plugging agent in the industry is cement-based solid phase material.
  • cement-based plugging agents have good temperature resistance and high compressive strength, the curing time at high temperature is difficult to control. Once flash solidification occurs during the plugging process, it will bring risks to the construction. Therefore, the existing plugging agents are difficult to meet the needs of measures under extreme well conditions.
  • the purpose of the present invention is to overcome the problems of poor temperature resistance of temporary plugging agents in the prior art and difficulty in controlling the curing time at high temperatures, and to provide a temporary plugging agent composition, a temporary plugging agent and a preparation method and application thereof.
  • the temporary plugging agent obtained by the present invention is a gel system with temperature sensing function and high temperature resistance.
  • the present invention provides a temporary plugging agent composition in the first aspect.
  • the temporary plugging agent composition comprises, based on the total weight of the material, 0.3-0.5wt% of a temperature-sensitive copolymer, 0.01-0.015wt% of a biological surfactant, 0.8-1.5wt% of a polyphenol crosslinking agent, 0.5-0.8wt% of a curing agent, 0.5-1wt% of nano zirconium oxide, 0.01-0.015wt% of an initiator, 0.1-0.5wt% of cobalt chloride and 95.67-97.78wt% of water.
  • a second aspect of the present invention provides a method for preparing a temporary plugging agent, the preparation method comprising:
  • the third aspect of the present invention provides a temporary plugging agent obtained by the aforementioned preparation method.
  • a fourth aspect of the present invention provides use of the temporary plugging agent in heavy oil production.
  • the present invention forms a gel system with a thermosensitive copolymer, a polyphenol crosslinking agent and a curing agent, and simultaneously adds a certain amount of nano zirconium oxide and cobalt chloride to form a composite temporary plugging system.
  • the gel system is a non-rigid structure and is easily destroyed by bacteria and ammonium persulfate.
  • the nano zirconium oxide and cobalt chloride are dissolved by thin oil. Therefore, the temporary plugging system can break the gel immediately and will not block the oil well. The broken gel fragments will not cause pump jams. At the same time, it has the advantages of no pollution, no damage to the reservoir, and low cost.
  • the temporary plugging agent of the present invention is a nano copolymer gel system, which uses a cross-linking agent with a special structure to cross-link the stable copolymer molecules to form a nano-network structure with an average size of about 500nm.
  • the nanoparticles embedded in the middle can further reduce the network structure size of the high-strength nano gel and improve the gel stability.
  • the nano-micron structure has a significant steric hindrance effect on water molecules, and the copolymer and cross-linking agent themselves have good stability and high chemical bond energy, which ensures the high strength and temperature resistance, salt resistance and shear resistance of the high-strength nano gel.
  • Fig. 1 is an electron microscope image of the nano thermosensitive gel prepared by the present invention
  • Fig. 2 is an electron microscope image of a common gel
  • FIG3 is a schematic diagram of the network structure of a conventional heat-resistant gel, a heat-resistant copolymer system and the nano copolymer gel of the present invention.
  • the first aspect of the present invention provides a temporary plugging agent composition, based on the total weight of the temporary plugging agent composition
  • the temporary plugging agent composition comprises: 0.3-0.5wt% of temperature-sensitive copolymer, 0.01-0.015wt% of biological surfactant, 0.8-1.5wt% of polyphenol crosslinking agent, 0.5-0.8wt% of curing agent, 0.5-1wt% of nano zirconium oxide, 0.01-0.015wt% of initiator, 0.1-0.5wt% of cobalt chloride and 95.67-97.78wt% of water.
  • the temperature-sensitive copolymer in the system forms a three-dimensional mesh gel with a polyphenol crosslinker and a curing agent;
  • the polyphenol crosslinker molecule has multiple reactive phenolic hydroxyl groups, which can form additional crosslinking sites by coupling with free radicals in the curing agent.
  • the crosslinking density of the material increases significantly with the increase of the polyphenol content, thereby increasing the temperature stability of the system.
  • the curing agent reacts with the polyphenol crosslinker to solidify, thereby increasing the toughness and viscosity of the gel.
  • the biological surfactant plays the role of solubilization, emulsification, wetting, foaming, dispersion, and reducing surface tension in the system, and is also degradable, destroying the gel structure after a period of time.
  • the agent mainly controls the gelation time, and the greater the amount added, the shorter the gelation time.
  • Nano zirconium oxide can increase the temperature stability of the system.
  • Cobalt chloride is a structural support agent of the gel system, which can prevent the gel from dehydrating.
  • the temporary plugging agent composition has better temperature resistance, salt resistance and shear resistance.
  • the temperature-sensitive copolymer is obtained by polymerizing acrylamide, N-vinyl-2-pyrrolidone and 2-acrylamide-2-methylacrylic acid as monomers.
  • the weight ratio of acrylamide, N-vinyl-2-pyrrolidone and 2-acrylamide-2-methacrylic acid is 1.5-2:1-1.25:1-1.25.
  • the relative density of the temperature-sensitive copolymer of the present invention is 1.1-1.3.
  • the polyphenol cross-linking agent is p-bromophenol, 2-bromo-4-methylphenol or 2,4,6-tribromophenol.
  • the biological surfactant is rhamnolipid or sophorolipid.
  • the curing agent is 3,3'-dimethyl-4,4-diaminodicyclohexylmethane, m-phenylenediamine or diaminodiphenylmethane.
  • the initiator is a persulfate.
  • the initiator is potassium persulfate, sodium persulfate or ammonium persulfate.
  • the particle size of the nano zirconium oxide is 10-50 nm, for example, 10 nm, 15 nm, 20 nm, 30 nm, 40 nm, 50 nm and any value in the range consisting of any two values, preferably 20-40 nm.
  • nano zirconium oxide can also be added in the form of nano zirconium oxide dispersion, and the main preparation method includes: dispersing nano zirconium oxide powder in an aqueous medium to form a highly dispersed, homogenized and stabilized nano zirconium oxide aqueous slurry.
  • commercially available nano zirconium oxide dispersion can also be used, which has good stability, omitting the pre-dispersion step, and can be directly shaken and added to the system for use.
  • the concentration of the nano zirconium oxide dispersion is 20-40%, more preferably 30%.
  • a second aspect of the present invention provides a method for preparing a temporary plugging agent, the preparation method comprising:
  • the temporary plugging agent of the present invention is a gel system with temperature sensing function, high temperature resistance and recoverability (with gel breaking function).
  • the temperature-sensitive material of the present invention is a low-viscosity fluid at low temperatures. Once the temperature exceeds the phase transition point, it can form a semi-solid, water-insoluble colloid in a short time. Since its thickening temperature is controllable, the solidification time can be adjusted in real time according to the temperature of the plugging formation, which not only ensures construction safety, but also can utilize the formation temperature field to achieve selective plugging, expand the heating radius of subsequent steam injection, and improve the thermal recovery effect of heavy oil.
  • FIG 1 it is an electron microscope image of the nano thermosensitive gel prepared by the present invention, and as shown in Figure 2, it is an electron microscope image of a common gel.
  • the schematic diagram of the network structure of the nano copolymer gel of the present invention is shown in Figure 3.
  • the nano copolymer solution of the present invention adopts nano and stable copolymer molecules with special structures to cross-link to form a nano network structure with an average size of about 500nm.
  • the nano particles embedded in the middle can further reduce the network structure size of the high-strength nano gel and improve stability.
  • the nano-micron structure has a significant steric hindrance effect on water molecules, and the copolymer has good stability and high chemical bond energy, ensuring high strength and heat resistance, salt resistance and shear resistance.
  • the concentration of the biosurfactant in the biosurfactant dispersion is 0.01-0.015 wt %.
  • the weight ratio of the biological surfactant to the thermosensitive copolymer, the polyphenol crosslinking agent, the curing agent, the nano zirconium oxide, the initiator and the cobalt chloride is 0.01-0.015:0.3-0.5:0.8-1.5:0.5-0.8:0.5-1:0.01-0.015:0.1-0.5.
  • the temperature-sensitive copolymer is obtained by polymerizing acrylamide, N-vinyl-2-pyrrolidone and 2-acrylamide-2-methylacrylic acid as monomers.
  • the weight ratio of acrylamide, N-vinyl-2-pyrrolidone and 2-acrylamide-2-methacrylic acid is 1.5-2:1-1.25:1-1.25.
  • the polyphenol cross-linking agent is p-bromophenol, 2-bromo-4-methylphenol or 2,4,6-tribromophenol.
  • the biological surfactant is rhamnolipid or sophorolipid.
  • the curing agent is 3,3'-dimethyl-4,4-diaminodicyclohexylmethane, m-phenylenediamine or diaminodiphenylmethane.
  • the initiator is a persulfate.
  • the initiator is a persulfate, preferably potassium persulfate, sodium persulfate or ammonium persulfate.
  • the particle size of the nano zirconium oxide is 10-50 nm, for example, 10 nm, 15 nm, 20 nm, 30 nm, 40 nm, 50 nm and any value in the range consisting of any two values, preferably 20-40 nm.
  • nano zirconium oxide can also be added in the form of nano zirconium oxide dispersion, and the main preparation method includes: dispersing nano zirconium oxide powder in an aqueous medium to form a highly dispersed, homogenized and stabilized nano zirconium oxide aqueous slurry.
  • commercially available nano zirconium oxide dispersion can also be used, which has good stability, omitting the pre-dispersion step, and can be directly shaken and added to the system for use.
  • the concentration of the nano zirconium oxide dispersion is 20-40%, more preferably 30%.
  • the conditions of the first treatment include: a stirring speed of 100-200 rpm, a temperature of 50-60° C., a pressure of 1-1.5 MPa, and a time of 10-15 min.
  • step (2) specifically comprises: firstly adding a polyphenol crosslinking agent and a curing agent to the copolymer mother solution in sequence at a stirring speed of 100-200 rpm, stirring for 5-10 minutes, and then adding nano zirconium oxide and an initiator.
  • the second treatment comprises: first stirring at 50-60°C and 1.5-2 MPa at a speed of 200-250 rpm, and then aging at 60-80°C for 6-8 hours.
  • the third aspect of the present invention provides a temporary plugging agent prepared by the preparation method of the second aspect.
  • the temporary plugging agent of the present invention is a nano thermosensitive gel.
  • nano thermosensitive gel of different concentrations high-strength nanogels (three systems of low viscosity, medium viscosity and high viscosity) with different properties and uses can be prepared.
  • the high-temperature curing time can also be controlled to 4-48h, which can be adjusted according to site needs.
  • the temporary plugging agent of the present invention can be used for temporary plugging, profile adjustment, plugging and well killing of high-temperature and high-salinity oil and gas reservoirs.
  • the temporary plugging agent composition provided in the first aspect of the present invention undergoes a cross-linking reaction in a high-temperature autoclave at 120°C to generate a temporary plugging agent gel.
  • the viscosity of the temporary plugging agent gel is measured after 24 hours and can reach 20,000-30,000 mPa.s.
  • the temperature is then raised to 180°C, and the viscosity of the temporary plugging agent gel is measured after 48 hours and can reach 15,000-18,000 mPa.s.
  • the temporary plugging agent composition includes: 0.3wt% of thermosensitive copolymer, 0.01wt% of biological surfactant, 0.8wt% of polyphenol crosslinking agent, 0.5wt% of curing agent, 0.5wt% of nano zirconium oxide, 0.01wt% of initiator, 0.5wt% of cobalt chloride and 97.38wt% of water.
  • the amount of thermosensitive copolymer added is changed, and a crosslinking reaction occurs in a high-temperature autoclave, and the viscosity-temperature data of nano thermosensitive gels with different concentrations can be obtained after gelation.
  • Table 1 The results are shown in Table 1.
  • the present invention uses a HAAKE MARSIII modular rheometer (HAAKE MARSIII rheometer equipped with a closed measurement system), heats the instrument to the required measurement temperature range, and uses a magnetic rotor to measure the viscosity and viscoelasticity of the fluid in the closed container.
  • the shear rate when measuring the viscosity of the system is 5s -1
  • the shear rate range of the system rheological curve test is 0.01s - 1-10s -1 .
  • the comparative data of the temperature-sensitive temporary plugging agent nanogel obtained by the present invention and the existing colloid types are shown in Table 2.
  • the schematic diagram of the network structure of conventional temperature-resistant gel, temperature-resistant copolymer system and the nano-copolymer gel of the present invention is shown in FIG3 .
  • the nano gel of the present invention adopts nano and stable copolymer molecules with special structures to form a nano mesh structure with an average size of about 500nm.
  • the nanoparticles embedded in the middle can further reduce the mesh structure size of the high-strength nano gel and improve stability.
  • the nano-micron structure has a significant steric effect on water molecules, and the copolymer has good stability and high chemical bond energy, ensuring high strength and heat resistance, salt resistance and shear resistance.
  • the average size of the mesh structure formed by linear cross-linking of polymer molecules and cross-linking agents is generally tens of microns.
  • the force between water and polymer molecules in the gel system is mainly the weaker intermolecular force between the polar groups in the polymer molecules and the water molecules. It is easy to lose water at high temperature (120°C-150°C) or high shear rate. At the same time, the polymer molecules shrink or even degrade, causing water and gel mesh structure phase separation and gel failure.
  • Thermosensitive properties The gelling temperature is adjustable: 50°C-180°C, and the gelling can be controlled at different temperatures;
  • the viscosity parameter (mPa ⁇ s) was measured using a HAAKE MARSIII modular rheometer (HAAKE MARSIII rheometer is equipped with a closed measurement system. The instrument was heated to the temperature range required for measurement, and a magnetic rotor was used to measure the viscosity and viscoelasticity of the fluid in a closed container.
  • Viscosity retention rate viscosity of temporary plugging agent after aging/viscosity of temporary plugging agent before aging ⁇ 100wt%.
  • the fourth aspect of the present invention provides use of the temporary plugging agent of the third aspect in heavy oil production.
  • the concentration, dosage and injection parameters of the temporary plugging agent should be adjusted according to different well conditions and well temperatures.
  • the specific application method of the temporary plugging agent provided by the present invention is as follows: first, a temporary plugging agent composition is designed according to the well temperature and the temporary plugging agent is prepared, then the required amount and injection rate of the temporary plugging agent are calculated according to the leakage rate and formation thickness of the well, and then on-site construction is carried out, the end pressure and the wellhead pressure after 3 days are recorded, and whether the temporary plugging is successful is evaluated.
  • the dosage of the temporary plugging agent is 5-9 m 3 /m, and the injection rate is 0.5-0.6 m 3 /min.
  • the dosage of the temporary plugging agent is 10-15 m 3 /m, and the injection rate is 1-1.2 m 3 /min.
  • the dosage of the temporary plugging agent is 20-25 m 3 /m, and the injection rate is 2-2.5 m 3 /min.
  • the first type is that when the formation temperature is 120-150°C but not including 150°C, based on the total weight of the temporary plugging agent composition as 100wt%, the temporary plugging agent composition includes: 0.3-0.4wt% of temperature-sensitive copolymer, 0.01-0.015wt% of surfactant, 0.8-1.0wt% of polyphenol crosslinking agent, 0.5-0.6wt% of curing agent, 0.5-0.8wt% of nano zirconium oxide, 0.01-0.015wt% of initiator, 0.1-0.3wt% of cobalt chloride and the balance of water.
  • the temporary plugging agent composition when the formation temperature is 150-200°C, based on the total weight of the temporary plugging agent composition as 100wt%, includes: 0.4-0.5wt% of temperature-sensitive copolymer, 0.01-0.015wt% of surfactant, 1.0-1.5wt% of polyphenol crosslinking agent, 0.6-0.8wt% of curing agent, 0.8-1.0wt% of nano zirconium oxide, 0.01-0.015wt% of initiator, 0.3-0.5wt% of cobalt chloride and the balance of water.
  • the temporary plugging agent composition comprises, based on the total weight of the temporary plugging agent composition as 100wt%, 0.5wt% of the temperature-sensitive copolymer, 0.01wt% of the surfactant, 1.5wt% of the polyphenol crosslinking agent, 0.8wt% of the curing agent, 1wt% of nano zirconium oxide, 0.01wt% of initiator, 0.5wt% of cobalt chloride and the balance of water.
  • Acrylamide (AM)/N-vinyl-2-pyrrolidone (NVP)/2-acrylamide-2-methylacrylic acid (AMPS) thermosensitive copolymer was purchased from Aisen (China) Flocculant Co., Ltd., with a molecular weight of 3-5 million.
  • Nano-zirconia dispersion was purchased from Hangzhou Zhitai Purification Technology Co., Ltd.
  • the particle size of nano-zirconia was 30 nm
  • the concentration of nano-zirconia was 20-40%
  • the dispersion medium was water.
  • Cobalt chloride is anhydrous cobalt chloride, a blue crystalline powder, purchased from Baoding Fusai Cobalt Nickel New Materials Co., Ltd., with a molecular formula of CoCl and a molecular weight of 129.839.
  • Rhamnolipid was purchased from Sichuan Sansen Biotechnology Co., Ltd., model R5L.
  • Viscosity parameters (mpa ⁇ s): HAAKE MARSIII modular rheometer (HAAKE MARSIII rheometer equipped with a closed measurement system) was used. The instrument was heated to the temperature range required for measurement, and a magnetic rotor was used to measure the viscosity and viscoelasticity of the fluid in the closed container. The shear rate for measuring the viscosity of the system was 5s -1 , and the shear rate range for the system rheological curve test was 0.01s -1 -10s -1 .
  • Well Du 84-46-62 needs to implement temporary plugging technology.
  • the target layer temperature was tested to be 135°C.
  • the absorption test of water injection showed that the formation loss rate was 6.7m3 /h and the target plugging formation was 12.8m.
  • Step 1 Design the concentration of temporary plugging agent according to the well temperature.
  • the well temperature is 135°C.
  • the specific composition of the temporary plugging agent design is:
  • the third step is to prepare the following specific materials according to the total amount of temporary plugging agent:
  • Step 4 On-site construction: the temporary plugging agent prepared above is added into a tanker and transported to the site. A 700-type pump truck is used for injection on site. The injection rate is designed to be 1m 3 /min according to the formation leakage situation.
  • Step 5 End of construction: the final pressure was 9.1MPa. Three days later, the wellhead pressure was observed to be 8.9MPa, indicating a successful temporary plugging.
  • the target layer temperature was tested to be 186°C.
  • the absorption test of water injection showed that the loss rate of the formation was 3.4m3 /h, and the target plugging formation was 24.2m.
  • Step 1 Design the concentration of temporary plugging agent according to the well temperature.
  • the well temperature is 186°C.
  • the specific composition of the temporary plugging agent design is:
  • the third step is to prepare the following specific materials according to the total amount of temporary plugging agent:
  • thermosensitive copolymer After the thermosensitive copolymer is completely dissolved, add 1210 kg of p-bromophenol and 726 kg of 3,3'-dimethyl-4,4-diaminodicyclohexylmethane in sequence while keeping the stirring speed unchanged. After stirring for 5 minutes, add 968 kg of nano zirconium oxide and 12.1 kg of ammonium persulfate.
  • Step 4 On-site construction: the temporary plugging agent prepared above is added into a tanker and transported to the site. Two 700-type pump trucks are used for injection on site. The injection rate is designed to be 0.5 m 3 /min according to the formation leakage situation.
  • Step 5 End of construction: the final pressure was 8.2MPa. Three days later, the wellhead pressure was observed to be 8.1MPa, indicating a successful temporary plugging.
  • Well Du 84-56-152 needs to implement temporary plugging technology.
  • the target layer temperature was tested to be 251°C.
  • the absorption test of water injection showed that the formation loss rate was 16.9m3 /h, and the target plugging formation was 46.7m.
  • Step 1 Design the concentration of temporary plugging agent according to the well temperature.
  • the well temperature is 251°C.
  • the specific composition of the temporary plugging agent design is:
  • the third step is to prepare the following specific materials according to the total amount of temporary plugging agent:
  • Step 4 On-site construction: the temporary plugging agent prepared above is added into a tanker and transported to the site. Two 1000-type pump trucks are used for injection on site. The injection rate is designed to be 2m 3 /min according to the formation leakage situation.
  • the fifth step of construction was completed, and the final pressure was 7.9MPa. Three days later, the wellhead pressure was observed to be 7.4MPa, and the temporary plugging was successful.
  • Well Du 84-46-62 needs to implement temporary plugging technology.
  • the target layer temperature was tested to be 135°C.
  • the absorption test of water injection showed that the formation loss rate was 6.7m3 /h and the target plugging formation was 12.8m.
  • Step 1 Design the concentration of temporary plugging agent according to the well temperature.
  • the well temperature is 135°C.
  • the specific composition of the temporary plugging agent design is:
  • the third step is to prepare the following specific materials according to the total amount of temporary plugging agent:
  • Step 4 On-site construction: the temporary plugging agent prepared above is added into a tanker and transported to the site. A 700-type pump truck is used for injection on site. The injection rate is designed to be 1m 3 /min according to the formation leakage situation.
  • Step 5 Construction is completed, the final pressure is 11.9MPa, and temporary plugging is successful.
  • Example 2 Different from Example 1, when the weight of acrylamide (AM)/N-vinyl-2-pyrrolidone (NVP)/2-acrylamide-2-methylacrylic acid (AMPS) thermosensitive copolymer was changed, the viscosity of the temporary plugging agent increased to 502 mPa ⁇ s, and the final actual injection amount of temporary plugging was 86 m 3 . To complete the construction, the ending pressure was 11.9 MPa, and the temporary plugging was successful.
  • AM acrylamide
  • NDP N-vinyl-2-pyrrolidone
  • AMPS acrylamide-2-methylacrylic acid
  • Well Du 84-46-62 needs to implement temporary plugging technology.
  • the target layer temperature was tested to be 135°C.
  • the absorption test of water injection showed that the formation loss rate was 6.7m3 /h and the target plugging formation was 12.8m.
  • Step 1 Design the concentration of temporary plugging agent according to the well temperature.
  • the well temperature is 135°C.
  • the specific composition of the temporary plugging agent design is:
  • the third step is to prepare the following specific materials according to the total amount of temporary plugging agent:
  • thermosensitive copolymer After the thermosensitive copolymer is completely dissolved, add 1024 kg of p-bromophenol and 640 kg of 3,3'-dimethyl-4,4-diaminodicyclohexylmethane in sequence while keeping the stirring speed unchanged. After stirring for 5 minutes, add 640 kg of nano zirconium oxide and 12.8 kg of potassium persulfate.
  • Step 4 On-site construction: the temporary plugging agent prepared above is added into a tanker and transported to the site. A 700-type pump truck is used for injection on site. The injection rate is designed to be 1m 3 /min according to the formation leakage situation.
  • Step 5 Construction is completed, the final pressure is 9.1MPa, and temporary plugging is successful.
  • Well Du 84-46-62 needs to implement temporary plugging technology.
  • the target layer temperature was tested to be 135°C.
  • the absorption test of water injection showed that the formation loss rate was 6.7m3 /h and the target plugging formation was 12.8m.
  • Step 1 Design the concentration of temporary plugging agent according to the well temperature.
  • the well temperature is 135°C.
  • the specific composition of the temporary plugging agent design is:
  • the third step is to prepare the following specific materials according to the total amount of temporary plugging agent:
  • Step 4 On-site construction: the temporary plugging agent prepared above is added into a tanker and transported to the site. A 700-type pump truck is used for injection on site. The injection rate is designed to be 1m 3 /min according to the formation leakage situation.
  • Step 5 End of construction: the final pressure is 10.1MPa. Three days later, the wellhead pressure is observed to be 10.1MPa, indicating a successful temporary plugging.
  • Example 1 The difference from Example 1 is that the amount of nano zirconium oxide is increased, and the construction effect is better.
  • Well Du 84-46-62 needs to implement temporary plugging technology.
  • the target layer temperature was tested to be 135°C.
  • the absorption test of water injection showed that the formation loss rate was 6.7m3 /h and the target plugging formation was 12.8m.
  • Step 1 Design the concentration of temporary plugging agent according to the well temperature.
  • the well temperature is 135°C.
  • the specific composition of the temporary plugging agent design is:
  • the third step is to prepare the following specific materials according to the total amount of temporary plugging agent:
  • Step 4 On-site construction: the temporary plugging agent prepared above is added into a tanker and transported to the site. A 700-type pump truck is used for injection on site. The injection rate is designed to be 1m 3 /min according to the formation leakage situation.
  • Step 5 Construction is completed, the final pressure is 0MPa, and temporary plugging fails.
  • Comparative Example 1 is not a solution within the protection scope, so the temporary plugging agent does not undergo a curing reaction during the injection process, and the temporary plugging fails.
  • Well Du 84-46-62 needs to implement temporary plugging technology.
  • the target layer temperature was tested to be 135°C.
  • the absorption test of water injection showed that the formation loss rate was 6.7m3 /h and the target plugging formation was 12.8m.
  • Step 1 Design the concentration of temporary plugging agent according to the well temperature.
  • the well temperature is 135°C.
  • the specific composition of the temporary plugging agent design is:
  • the third step is to prepare the following specific materials according to the total amount of temporary plugging agent:
  • Step 4 On-site construction: the temporary plugging agent prepared above is added into a tanker and transported to the site. A 700-type pump truck is used for injection on site. The injection rate is designed to be 1m 3 /min according to the formation leakage situation.
  • Step 5 Construction is completed, the final pressure is 0MPa, and temporary plugging fails.
  • Well Du 84-46-62 needs to implement temporary plugging technology.
  • the target layer temperature was tested to be 135°C.
  • the absorption test of water injection showed that the formation loss rate was 6.7m3 /h and the target plugging formation was 12.8m.
  • On-site construction the temporary plugging agent prepared above is added into a tanker and transported to the site.
  • a 700-type pump truck is used for injection on site.
  • the injection speed is designed to be 1m 3 /min according to the formation leakage situation.
  • Step 5 Construction is completed, the final pressure is 0MPa, and temporary plugging fails.
  • Comparative Example 3 uses a polyacrylamide temporary plugging system, which has a temperature resistance of only 95°C. Therefore, it hydrates rapidly at 135°C underground.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明涉及油田化学技术领域,公开了暂堵剂组合物、暂堵剂及其制备方法和应用。以所述暂堵剂组合物的总重量计,所述暂堵剂组合物包括:温敏性共聚物0.3-0.5wt%,生物表活剂0.01-0.015wt%,多酚交联剂0.8-1.5wt%,固化剂0.5-0.8wt%,纳米氧化锆0.5-1wt%,引发剂0.01-0.015wt%,氯化钴0.1-0.5wt%和水95.67-97.78wt%。本发明通过将温敏性共聚物与多酚交联剂和固化剂形成凝胶体系,同时添加一定量的纳米氧化锆和氯化钴形成复合暂堵体系,所述凝胶体系属于非刚性结构,易被细菌及过硫酸铵破坏,纳米氧化锆和氯化钴被稀油溶解,因而该暂堵体系能即时破胶,不会将油井堵死,且破胶碎片不会造成卡泵事故,同时具有无污染、对储层无伤害,成本低廉的优点。

Description

暂堵剂组合物、暂堵剂及其制备方法和应用
相关申请的交叉引用
本申请要求2022年12月23日提交的中国专利申请202211666070.1的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及油田化学技术领域,具体涉及暂堵剂组合物、暂堵剂及其制备方法和应用。
背景技术
热采技术作为稠油开发的主要手段,已经广泛应用于国内外稠油油藏的开发。常用的热力采油方法包括蒸汽吞吐、蒸汽驱、热水驱、火烧油层、电磁加热、热化学法等几种方法,其中蒸汽吞吐和蒸汽驱是使用范围最广,采出油量最多的方法。但随着开发的深入,层间渗透率差异以及蒸汽/气体超覆等因素影响,注入蒸汽可能会沿高渗条带突进。当两口井之间的高渗透条带连通后,就会出现井间汽窜干扰现象,影响邻井的正常生产,降低热采效果。如齐40块蒸汽驱有105口分注井组内油井温度超过70℃,汽窜问题严重,SAGD区块油井在作业过程中地层近井地带由于岩石高温溶蚀亏空,导致作业压井无法建立循环,针对此问题解决的最好办法就是向油层中注入具有一定封堵强度的化学药剂来保证储层渗透率的一致性。
液相水凝胶以已被证明是储层一致性控制最有效的方法之一。目前性能最好,应用最广泛的是聚合物凝胶体系。该体系由聚合物、交联体系和添加剂组成,将配置好的凝胶溶液注入地层中老化一段时间成胶,成胶后的凝胶体系粘度大幅度提升,达到封堵地层的目的。常用的聚合物体系主要有聚丙烯酰胺(PAM)、部分水解聚丙烯酰胺(HPAM)为主。但针对蒸汽驱和SAGD这种对于温度超过150℃这种体系十分不适用。目前业内应用最多的耐高温堵剂为水泥类固相材料,水泥类堵剂虽然耐温好,抗压强度高,但在高温下的固化时间难以控制,一旦封窜过程中出现闪凝,会给施工带来风险。因此,现有的堵剂难以满足极端井况下的措施需求。
发明内容
本发明的目的是为了克服现有技术存在的暂堵剂耐温性差和高温下的固化时间难以控制的问题,提供暂堵剂组合物、暂堵剂及其制备方法和应用,本发明得到的暂堵剂为具有感温功能和耐高温的凝胶体系。
为了实现上述目的,本发明第一方面提供一种暂堵剂组合物,以所述暂堵剂组合 物的总重量计,所述暂堵剂组合物包括:温敏性共聚物0.3-0.5wt%,生物表活剂0.01-0.015wt%,多酚交联剂0.8-1.5wt%,固化剂0.5-0.8wt%,纳米氧化锆0.5-1wt%,引发剂0.01-0.015wt%,氯化钴0.1-0.5wt%和水95.67-97.78wt%。
本发明第二方面提供一种暂堵剂的制备方法,所述制备方法包括:
(1)将生物表活剂溶于水中,形成生物表活剂分散液;将温敏性共聚物溶于所述生物表活剂分散液中,进行第一处理,待共聚物完全溶解后,得到共聚物母液;
(2)向所述共聚物母液中加入多酚交联剂、固化剂、纳米氧化锆和引发剂,得到凝胶体系;
(3)向所述凝胶体系中加入氯化钴,进行第二处理,得到暂堵剂。
本发明第三方面提供前述的制备方法制得的暂堵剂。
本发明第四方面提供前述暂堵剂在稠油开采中的应用。
通过上述技术方案,本发明所取得的有益技术效果如下:
1)本发明通过将温敏性共聚物与多酚交联剂和固化剂形成凝胶体系,同时添加一定量的纳米氧化锆和氯化钴形成复合暂堵体系,所述凝胶体系属于非刚性结构,易被细菌及过硫酸铵破坏,纳米氧化锆和氯化钴被稀油溶解,因而该暂堵体系能即时破胶,不会将油井堵死,且破胶碎片不会造成卡泵事故,同时具有无污染、对储层无伤害,成本低廉的优点。
2)本发明的暂堵剂为纳米共聚物凝胶体系,采用具有特殊结构的交联剂与稳定的共聚物分子交联,形成平均尺寸500nm左右的纳米网状结构,中间镶嵌的纳米粒子可进一步减小高强度纳米凝胶的网状结构尺寸,提高凝胶稳定性。纳微米结构对水分子具有显著的空间位阻效应,且共聚物和交联剂本身稳定性好、化学键能高,保证高强度纳米凝胶的高强度和耐温、耐盐和耐剪性能。
附图说明
图1是本发明制得的纳米温敏凝胶的电镜图;
图2是普通凝胶的电镜图;
图3是常规耐温凝胶、耐温共聚物体系和本发明纳米共聚物凝胶的网状结构示意图。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明第一方面提供一种暂堵剂组合物,以所述暂堵剂组合物的总重量计,所述 暂堵剂组合物包括:温敏性共聚物0.3-0.5wt%,生物表活剂0.01-0.015wt%,多酚交联剂0.8-1.5wt%,固化剂0.5-0.8wt%,纳米氧化锆0.5-1wt%,引发剂0.01-0.015wt%,氯化钴0.1-0.5wt%和水95.67-97.78wt%。
依据本发明,体系中的温敏性共聚物与多酚交联剂和固化剂形成三维网状凝胶;多酚交联剂分子上具有多个反应性酚羟基,可以通过与固化剂中的自由基偶联形成额外的交联位点。材料的交联密度随多酚含量的增加而显著提高,增加体系耐温稳定性。固化剂,与多酚交联剂发生反应固化,能够提高凝胶的韧性和粘性。生物表活剂在体系中起到增溶、乳化、润湿、发泡、分散、降低表面张力等作用,同时有降解性,一段时间后破坏凝胶结构。该药剂主要控制成胶时间,加入量越大成胶时间越短。纳米氧化锆可增加体系的耐温稳定性。氯化钴是凝胶体系的结构支撑剂,可防止凝胶脱水。
依据本实施方式,该暂堵剂组合物具有更好的耐温、耐盐和耐剪切性能。
在本发明的一些实施方式中,所述温敏性共聚物是以丙烯酰胺、N-乙烯基-2-吡咯烷酮和2-丙烯酰胺-2-甲基丙烯酸为单体聚合得到的。
在本发明的一些优选实施方式中,丙烯酰胺、N-乙烯基-2-吡咯烷酮和2-丙烯酰胺-2-甲基丙烯酸的重量比为1.5-2:1-1.25:1-1.25。
本发明的温敏性共聚物的相对密度为1.1-1.3。
在本发明的一些实施方式中,所述多酚交联剂为对溴苯酚、2-溴-4-甲基苯酚或2,4,6-三溴苯酚。
在本发明的一些实施方式中,所述生物表活剂为鼠李糖脂或槐糖脂。
在本发明的一些实施方式中,所述固化剂为3,3'-二甲基-4,4-二氨基二环己基甲烷、间苯二胺或二氨基二苯基甲烷。
在本发明的一些实施方式中,所述引发剂为过硫酸盐类。
优选地,所述引发剂为过硫酸钾、过硫酸钠或过硫酸铵。
在本发明的一些实施方式中,所述纳米氧化锆的粒径为10-50nm,例如10nm、15nm、20nm、30nm、40nm、50nm以及任意两个数值组成的范围中的任意值,优选为20-40nm。
本发明中,纳米氧化锆还可以以纳米氧化锆分散液的形式加入,主要制备方法包括:将纳米氧化锆粉体分散在水相介质中,形成高度分散化、均匀化和稳定化的纳米氧化锆水性浆料。也可选用市售的纳米氧化锆分散液,其稳定性能好,省去预分散步骤,可直接摇匀加入体系使用。优选地,纳米氧化锆分散液的浓度为20-40%,更优选为30%。
本发明第二方面提供一种暂堵剂的制备方法,所述制备方法包括:
(1)将生物表活剂溶于水中,形成生物表活剂分散液;将温敏性共聚物溶于所述生物表活剂分散液中,进行第一处理,待共聚物完全溶解后,得到共聚物母液;
(2)向所述共聚物母液中加入多酚交联剂、固化剂、纳米氧化锆和引发剂,得到凝胶体系;
(3)向所述凝胶体系中加入氯化钴,进行第二处理,得到暂堵剂。
本发明的暂堵剂为具有感温功能和耐高温和可恢复(具备破胶功能)的凝胶体系。
本发明的温敏型材料,低温时为低黏度流体,温度一旦超过相转变点,短时间内即能形成半固态、不溶于水的胶态,由于其稠化温度可控,因此可以根据封堵地层的温度来实时调控固化时间,既保证施工安全,又可以利用地层温场实现选择性封堵,扩大后续注入蒸汽的加热半径,提高稠油热采开发效果。
如图1所示为本发明制得的纳米温敏凝胶的电镜图,如图2所示为普通凝胶的电镜图。本发明纳米共聚物凝胶的网状结构示意图,如图3所示。本发明的纳米共聚物溶液采用具有特殊结构的纳米与稳定的共聚物分子交联,形成平均尺寸500nm左右的纳米网状结构,中间镶嵌的纳米粒子可进一步减小高强度纳米凝胶的网状结构尺寸,提高稳定性。纳微米结构对水分子具有显著的空间位阻效应,且共聚物稳定性好、化学键能高,保证高强度和耐温、耐盐和耐剪性能。
在本发明的一些实施方式中,所述生物表活剂分散液中,生物表活剂的浓度为0.01-0.015wt%。
在本发明的一些实施方式中,所述生物表活剂与温敏性共聚物、多酚交联剂、固化剂、纳米氧化锆、引发剂和氯化钴的重量比为0.01-0.015:0.3-0.5:0.8-1.5:0.5-0.8:0.5-1:0.01-0.015:0.1-0.5。
在本发明的一些实施方式中,所述温敏性共聚物是以丙烯酰胺、N-乙烯基-2-吡咯烷酮和2-丙烯酰胺-2-甲基丙烯酸为单体聚合得到的。
在本发明的一些优选实施方式中,丙烯酰胺、N-乙烯基-2-吡咯烷酮和2-丙烯酰胺-2-甲基丙烯酸的重量比为1.5-2:1-1.25:1-1.25。
在本发明的一些实施方式中,所述多酚交联剂为对溴苯酚、2-溴-4-甲基苯酚或2,4,6-三溴苯酚。
在本发明的一些实施方式中,所述生物表活剂为鼠李糖脂或槐糖脂。
在本发明的一些实施方式中,所述固化剂为3,3'-二甲基-4,4-二氨基二环己基甲烷、间苯二胺或二氨基二苯基甲烷。
在本发明的一些实施方式中,所述引发剂为过硫酸盐类。
优选地,所述引发剂为过硫酸盐类,优选为过硫酸钾、过硫酸钠或过硫酸铵。
在本发明的一些实施方式中,所述纳米氧化锆的粒径为10-50nm,例如10nm、15nm、20nm、30nm、40nm、50nm以及任意两个数值组成的范围中的任意值,优选为20-40nm。
本发明中,纳米氧化锆还可以以纳米氧化锆分散液的形式加入,主要制备方法包括:将纳米氧化锆粉体分散在水相介质中,形成高度分散化、均匀化和稳定化的纳米氧化锆水性浆料。也可选用市售的纳米氧化锆分散液,其稳定性能好,省去预分散步骤,可直接摇匀加入体系使用。优选地,纳米氧化锆分散液的浓度为20-40%,更优选为30%。
在本发明的一些实施方式中,步骤(1)中,所述第一处理的条件包括:搅拌速度为100-200rpm,温度为50-60℃,压力为1-1.5MPa,时间为10-15min。
在本发明的一些实施方式中,步骤(2)具体包括:在100-200rpm的搅拌速度下,先向所述共聚物母液中依次加入多酚交联剂和固化剂,搅拌5-10min后,再加入纳米氧化锆和引发剂。
在本发明的一些实施方式中,步骤(3)中,所述第二处理包括:先在50-60℃和1.5-2MPa下以200-250rpm的速度搅拌,然后在60-80℃下陈化6-8h。
本发明第三方面提供前述第二方面的制备方法制得的暂堵剂。
本发明的暂堵剂为纳米温敏凝胶,采用不同浓度纳米温敏凝胶,可制得不同性能和用途的高强度纳米凝胶(低粘、中粘、高粘三种体系),通过改变体系配方也可控制高温固化时间4-48h,根据现场需要调节。
本发明的暂堵剂可用于高温、高盐油气藏暂堵、调剖、堵漏和压井。
本发明第一方面提供的暂堵剂组合物在120℃高温釜中发生交联反应,生成暂堵剂凝胶,24h后测暂堵剂凝胶的粘度,可达到20000-30000mPa.s;然后升温至180℃,48h后测暂堵剂凝胶的粘度,可达到15000-18000mPa.s。
以下面的暂堵剂组合物为例来说明,该暂堵剂组合物包括:温敏性共聚物0.3wt%,生物表活剂0.01wt%,多酚交联剂0.8wt%,固化剂0.5wt%,纳米氧化锆0.5wt%,引发剂0.01wt%,氯化钴0.5wt%和水97.38wt%。在此基础上,改变温敏性共聚物的添加量,在高温釜中发生交联反应,可得到不同浓度配方纳米温敏凝胶成胶后的粘温数据,结果见表1。
本发明采用HAAKE MARSIII模块化流变仪(HAAKE MARSIII流变仪配备有密闭测量系统),将仪器加温至所需测量的温度区间,采用磁转子测量密闭容器中流体的粘度和粘弹性。测量体系粘度时的剪切速率为5s-1,体系流变曲线测试的剪切速率范围为0.01s-1-10s-1
表1不同浓度配方纳米温敏凝胶成胶后粘温数据

由表1可见,在聚合物的添加量为0.3-0.5wt%时,具有更好的粘度范围,更适于稠油开采中汽窜的封堵。
本发明得到的温敏型暂堵剂纳米凝胶与现有的胶体类型的对比数据,见表2。常规耐温凝胶、耐温共聚物体系和本发明纳米共聚物凝胶的网状结构示意图,如图3所示。
表2
由表2可见,本发明的纳米凝胶采用具有特殊结构的纳米与稳定的共聚物分子交联,形成平均尺寸500nm左右的纳米网状结构,中间镶嵌的纳米粒子可进一步减小高强度纳米凝胶的网状结构尺寸,提高稳定性。纳微米结构对水分子具有显著的空间位阻效应,且共聚物稳定性好、化学键能高,保证高强度和耐温、耐盐和耐剪性能。常用聚合物类有机交联凝胶中,聚合物分子与交联剂线性交联形成的网状结构平均尺寸一般为几十微米,凝胶体系中水与聚合物分子间的作用力主要是聚合物分子中的极性基团与水分子间较弱的分子间作用力,在高温(120℃-150℃)或较高剪切速率下容易失水,同时聚合物分子收缩甚至降解,造成水与凝胶网状结构分相、凝胶失效。
本发明的暂堵剂具有如下效果:
(1)注入性能好:成胶前粘度低(5-1000mPa·s);
(2)温敏特性:成胶温度可调:50℃-180℃,可控制在不同温度成胶;
(3)成胶后粘度稳定:200mPa·s-100000mPa·s,加固化剂可增至几十万mPa·s以上;
(4)耐温性能好(可达180-250℃):温度敏感性低,成胶状态和粘度随着温度 升高而缓慢降低。成胶粘度18500mPa·s纳米凝胶250℃老化10天后粘度下降至8700mPa·s;
(5)耐剪切性能好:10s-1搅拌1小时粘度保持率在70wt%以上,地层孔隙剪切后可成胶深度是常规凝胶的3倍以上;
(6)耐盐性能好:与10万矿化度水接触成胶后粘度保持率70wt%-80wt%,采用10万矿化度水混配成胶粘度保持率30wt%-40wt%;
(7)暂堵效果好:根据不同井温,井况设计不同暂堵工艺,封堵有效率>95%。
粘度参数(mpa·s)采用HAAKE MARSIII模块化流变仪(HAAKE MARSIII流变仪配备有密闭测量系统,将仪器加温至所需测量的温度区间,采用磁转子测量密闭容器中流体的粘度和粘弹性。
粘度保持率=老化后暂堵剂的粘度/老化前暂堵剂的粘度×100wt%。
本发明第四方面提供前述第三方面的暂堵剂在稠油开采中的应用。
依据本发明,在现场使用过程中,要根据不同井况和井温来调整暂堵剂的浓度、用量、注入参数。
本发明提供的暂堵剂的具体应用方法如下:先根据井温设计暂堵剂组合物并制备暂堵剂,再根据该井的漏失速度和地层厚度计算暂堵剂需求用量和注入速度,然后进行现场施工,记录结束压力及3天后的井口压力,并评估是否暂堵成功。
在本发明的一些实施方式中,当地层漏失速度为1-5m3/h但不包括5m3/h时,所述暂堵剂的用量为5-9m3/m,注入速度为0.5-0.6m3/min。
在本发明的一些实施方式中,当地层漏失速度为5-10m3/h时,所述暂堵剂的用量为10-15m3/m,注入速度为1-1.2m3/min。
在本发明的一些实施方式中,当地层漏失速度>10m3/h时,所述暂堵剂的用量为20-25m3/m,注入速度为2-2.5m3/min。
依据本发明,根据目标暂堵井温分为三种井况:
第一种,当地层温度为120-150℃但不包括150℃时,以暂堵剂组合物的总重量为100wt%计,暂堵剂组合物包括:温敏性共聚物0.3-0.4wt%、表活剂0.01-0.015wt%、多酚交联剂0.8-1.0wt%、固化剂0.5-0.6wt%、纳米氧化锆0.5-0.8wt%、引发剂0.01-0.015wt%、氯化钴0.1-0.3wt%和余量的水。
第二种,当地层温度为150-200℃时,以暂堵剂组合物的总重量为100wt%计,暂堵剂组合物包括:温敏性共聚物0.4-0.5wt%、表活剂0.01-0.015wt%、多酚交联剂1.0-1.5wt%、固化剂0.6-0.8wt%、纳米氧化锆0.8-1.0wt%、引发剂0.01-0.015wt%、氯化钴0.3-0.5wt%和余量的水。
第三种,当地层大于200℃时,以暂堵剂组合物的总重量为100wt%计,暂堵剂组合物包括:温敏性共聚物0.5wt%、表活剂0.01wt%、多酚交联剂1.5wt%、固化剂0.8wt%、 纳米氧化锆1wt%、引发剂0.01wt%、氯化钴0.5wt%和余量的水。
以下通过实施例对本发明进行详细说明,但本发明的保护范围并不限于下述说明。以下实施例和对比例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购途径获得的常规产品。
以下实施例中:
丙烯酰胺(AM)/N-乙烯基-2-吡咯烷酮(NVP)/2-丙烯酰胺-2-甲基丙烯酸(AMPS)温敏性共聚物,购自爱森(中国)絮凝剂有限公司,分子量为300-500万。
纳米氧化锆分散液,购自杭州智钛净化科技有限公司,纳米氧化锆的粒径为30nm,纳米氧化锆的浓度为20-40%,分散介质为水。
氯化钴为无水氯化钴,为蓝色结晶性粉末,购自保定福赛钴镍新材料有限公司,分子式CoCl,分子量129.839。
鼠李糖脂,购自四川三森生物科技有限公司,型号为R5L。
粘度参数(mpa·s):采用HAAKE MARSIII模块化流变仪(HAAKE MARSIII流变仪配备有密闭测量系统),将仪器加温至所需测量的温度区间,采用磁转子测量密闭容器中流体的粘度和粘弹性。测量体系粘度时的剪切速率为5s-1,体系流变曲线测试的剪切速率范围为0.01s-1-10s-1
实施例1
杜84-46-62井需要实施暂堵工艺,在暂堵前测试目标层井温为135℃,通过注水测试吸收性显示,地层的漏失速度为6.7m3/h,目标封堵地层为12.8m。
第一步:根据井温设计,暂堵剂的浓度,井温为135℃,暂堵剂设计的具体组成为:
第二步,根据该井的漏失速度和地层厚度计算暂堵剂需求用量,该漏失速度下,堵剂的用量为10m3/m,油层厚度为12.8m,则堵剂用量V=10×12.8=128m3
第三步,按暂堵剂总体用量计算,准备如下具体材料:
丙烯酰胺(AM)/N-乙烯基-2-吡咯烷酮(NVP)/2-丙烯酰胺-2-甲基丙烯酸(AMPS)温敏性共聚物重量W1=0.3wt%×128m3=384kg;
鼠李糖脂W2=0.01wt%×128m3=12.8kg;
对溴苯酚W3=1.5wt%×128m3=1920kg;
3,3'-二甲基-4,4-二氨基二环己基甲烷W4=0.5wt%×128m3=640kg;
纳米氧化锆W5=0.5wt%×128m3=640kg;
引发剂过硫酸钾W6=0.01wt%×128m3=12.8kg;
无水氯化钴W7=0.1wt%×128m3=128kg;
水W8≈124,000kg。
①制备共聚物母液:将12.8kg的鼠李糖脂溶于124,000kg的水中,同时将384kg的温敏性共聚物丙烯酰胺(AM)-N-乙烯基-2-吡咯烷酮(NVP)-2-丙烯酰胺-2-甲基丙烯酸(AMPS)加入溶液中,搅拌速度100rpm,温度50℃;
②制备凝胶体系:待温敏性共聚物完全溶解后,搅拌速度不变,依次加入1920kg的对溴苯酚和640kg的3,3'-二甲基-4,4-二氨基二环己基甲烷,搅拌5min后,加入640kg的纳米氧化锆和12.8kg的过硫酸钾;
③嵌入氯化钴:搅拌速度加至200rpm,加入128kg的无水氯化钴,反应釜中加压至2MPa。
④制备暂堵剂:将反应釜温度调节至80℃,6h后完成暂堵剂制备,测试暂堵剂粘度为280mPa·s。
第四步,现场施工:将上述制备得到的暂堵剂加入罐车中拉运至现场,现场采用1台700型泵车注入,根据地层漏失情况,注入速度设计为1m3/min。
第五步,施工结束:结束压力9.1MPa,3天后观察井口压力为8.9MPa,暂堵成功。
实施例2
齐40-21-54井需要实施暂堵工艺,在暂堵前测试目标层井温为186℃,通过注水测试吸收性显示,地层的漏失速度为3.4m3/h,目标封堵地层为24.2m。
第一步:根据井温设计,暂堵剂的浓度,井温为186℃,暂堵剂设计的具体组成为:
第二步,根据该井的漏失速度和地层厚度计算暂堵剂需求用量,该漏失速度下,堵剂的用量为5m3/m,油层厚度为24.2m,则堵剂用量V=5×24.2=121m3
第三步,按暂堵剂总体用量计算,准备如下具体材料:
丙烯酰胺(AM)/N-乙烯基-2-吡咯烷酮(NVP)/2-丙烯酰胺-2-甲基丙烯酸(AMPS)温敏性共聚物重量W1=0.4wt%×121m3=484kg;
鼠李糖脂W2=0.01wt%×121m3=12.1kg;
对溴苯酚W3=1.0wt%×121m3=1210kg;
3,3'-二甲基-4,4-二氨基二环己基甲烷W4=0.6wt%×121m3=726kg;
纳米氧化锆W5=0.8wt%×121m3=968kg;
引发剂过硫酸铵W6=0.01wt%×121m3=12.1kg;
无水氯化钴W7=0.3wt%×121m3=384kg;
水W8≈117,000kg。
①制备共聚物母液:将12.1kg的鼠李糖脂溶于117,000kg的水中,同时将484kg的丙烯酰胺(AM)/N-乙烯基-2-吡咯烷酮(NVP)/2-丙烯酰胺-2-甲基丙烯酸(AMPS)温敏性共聚物加入溶液中,搅拌速度150rpm,温度50℃;
②制备凝胶体系:待温敏性共聚物完全溶解后,搅拌速度不变,依次加入1210kg的对溴苯酚和726kg的3,3'-二甲基-4,4-二氨基二环己基甲烷,搅拌5min后,加入968kg的纳米氧化锆和12.1kg的过硫酸铵;
③嵌入氯化钴:搅拌速度加至200rpm,加入384kg的无水氯化钴,反应釜中加压至2MPa。
④制备暂堵剂:将反应釜温度调节至80℃,7h后完成暂堵剂制备,测试暂堵剂粘度为549mPa·s。
第四步,现场施工:将上述制备得到的暂堵剂加入罐车中拉运至现场,现场采用2台700型泵车注入,根据地层漏失情况,注入速度设计为0.5m3/min。
第五步,施工结束:结束压力8.2MPa,3天后观察井口压力为8.1MPa,暂堵成功。
实施例3
杜84-56-152井需要实施暂堵工艺,在暂堵前测试目标层井温为251℃,通过注水测试吸收性显示,地层的漏失速度为16.9m3/h,目标封堵地层为46.7m。
第一步:根据井温设计,暂堵剂的浓度,井温为251℃,暂堵剂设计的具体组成为:
第二步,根据该井的漏失速度和地层厚度计算暂堵剂需求用量,该漏失速度下,堵剂的用量为20m3/m,油层厚度为46.7m,则堵剂用量V=20×46.7=934m3
第三步,按暂堵剂总体用量计算,准备如下具体材料:
丙烯酰胺(AM)/N-乙烯基-2-吡咯烷酮(NVP)/2-丙烯酰胺-2-甲基丙烯酸(AMPS)温敏性共聚物重量W1=0.5wt%×934m3=4670kg;
鼠李糖脂W2=0.01wt%×934m3=93.4kg;
对溴苯酚W3=0.8wt%×934m3=7472kg;
3,3'-二甲基-4,4-二氨基二环己基甲烷W4=0.8wt%×934m3=7472kg;
纳米氧化锆W5=1wt%×934m3=9340kg;
引发剂过硫酸铵W6=0.01wt%×934m3=93.4kg;
无水氯化钴W7=0.5wt%×934m3=4670kg;
水W8≈900,000kg。
①制备共聚物母液:将93.4kg的鼠李糖脂溶于900,000kg的水中,同时将4670kg的丙烯酰胺(AM)/N-乙烯基-2-吡咯烷酮(NVP)/2-丙烯酰胺-2-甲基丙烯酸(AMPS)温敏性共聚物加入溶液中,搅拌速度150rpm,温度50℃;
②制备凝胶体系:待温敏性共聚物完全溶解后,搅拌速度不变,依次加入7472kg的对溴苯酚和7472kg的3,3'-二甲基-4,4-二氨基二环己基甲烷,搅拌5min后,加入9340kg的纳米氧化锆和93.4kg的过硫酸铵;
③嵌入氯化钴:搅拌速度加至200rpm,加入4670kg的无水氯化钴,反应釜中加压至2MPa。
④制备暂堵剂:将反应釜温度调节至80℃,8h后完成暂堵剂制备,测试暂堵剂粘度为962mPa·s。
第四步,现场施工:将上述制备得到的暂堵剂加入罐车中拉运至现场,现场采用2台1000型泵车注入,根据地层漏失情况,注入速度设计为2m3/min。
第五步施工结束,结束压力7.9MPa,3天后观察井口压力为7.4MPa,暂堵成功。
实施例4
杜84-46-62井需要实施暂堵工艺,在暂堵前测试目标层井温为135℃,通过注水测试吸收性显示,地层的漏失速度为6.7m3/h,目标封堵地层为12.8m。
第一步:根据井温设计,暂堵剂的浓度,井温为135℃,暂堵剂设计的具体组成为:

第二步,根据该井的漏失速度和地层厚度计算暂堵剂需求用量,该漏失速度下,堵剂的用量为10m3/m,油层厚度为12.8m,则堵剂用量V=10×12.8=128m3
第三步,按暂堵剂总体用量计算,准备如下具体材料:
丙烯酰胺(AM)/N-乙烯基-2-吡咯烷酮(NVP)/2-丙烯酰胺-2-甲基丙烯酸(AMPS)温敏性共聚物重量W1=0.4wt%×128m3=512kg;
鼠李糖脂W2=0.01wt%×128m3=12.8kg;
对溴苯酚W3=0.8wt%×128m3=1920kg;
3,3'-二甲基-4,4-二氨基二环己基甲烷W4=0.5wt%×128m3=640kg;
纳米氧化锆W5=0.5wt%×128m3=640kg;
引发剂过硫酸钾W6=0.01wt%×128m3=12.8kg;
无水氯化钴W7=0.1wt%×128m3=128kg;
水W8≈124,000kg。
①制备共聚物母液:将12.8kg的鼠李糖脂溶于124,000kg的水中,同时将512kg的丙烯酰胺(AM)/N-乙烯基-2-吡咯烷酮(NVP)/2-丙烯酰胺-2-甲基丙烯酸(AMPS)温敏性共聚物加入溶液中,搅拌速度100rpm,温度50℃;
②制备凝胶体系:待共聚物完全溶解后,搅拌速度不变,依次加入1920kg的对溴苯酚和640kg的3,3'-二甲基-4,4-二氨基二环己基甲烷,搅拌5min后,加入640kg的纳米氧化锆和12.8kg的过硫酸钾;
③嵌入氯化钴:搅拌速度加至200rpm,加入128kg的无水氯化钴,反应釜中加压至2MPa。
④制备暂堵剂:将反应釜温度调节至80℃,6h后完成暂堵剂制备,测试暂堵剂粘度为502mPa·s。
第四步,现场施工:将上述制备得到的暂堵剂加入罐车中拉运至现场,现场采用1台700型泵车注入,根据地层漏失情况,注入速度设计为1m3/min。
第五步,施工结束,结束压力11.9MPa,暂堵成功。
与实施例1不同的是,当改变丙烯酰胺(AM)/N-乙烯基-2-吡咯烷酮(NVP)/2-丙烯酰胺-2-甲基丙烯酸(AMPS)温敏性共聚物重量后,暂堵剂粘度上升为502mPa·s,最终实际注入暂堵剂量为86m3,为完成施工,结束压力为11.9MPa,暂堵成功。
实施例5
杜84-46-62井需要实施暂堵工艺,在暂堵前测试目标层井温为135℃,通过注水测试吸收性显示,地层的漏失速度为6.7m3/h,目标封堵地层为12.8m。
第一步:根据井温设计,暂堵剂的浓度,井温为135℃,暂堵剂设计的具体组成为:
第二步,根据该井的漏失速度和地层厚度计算暂堵剂需求用量,该漏失速度下,堵剂的用量为10m3/m,油层厚度为12.8m,则堵剂用量V=10×12.8=128m3
第三步,按暂堵剂总体用量计算,准备如下具体材料:
丙烯酰胺(AM)/N-乙烯基-2-吡咯烷酮(NVP)/2-丙烯酰胺-2-甲基丙烯酸(AMPS)温敏性共聚物重量W1=0.3wt%×128m3=384kg;
鼠李糖脂W2=0.01wt%×128m3=12.8kg;
对溴苯酚W3=0.8wt%×128m3=1024kg;
3,3'-二甲基-4,4-二氨基二环己基甲烷W4=0.5wt%×128m3=640kg;
纳米氧化锆W5=0.5wt%×128m3=640kg;
引发剂过硫酸钾W6=0.01wt%×128m3=12.8kg;
无水氯化钴W7=0.1wt%×128m3=128kg;
水W8≈124,000kg。
①制备共聚物母液:将12.8kg的鼠李糖脂溶于124,000kg的水中,同时将384kg的丙烯酰胺(AM)/N-乙烯基-2-吡咯烷酮(NVP)/2-丙烯酰胺-2-甲基丙烯酸(AMPS)温敏性共聚物加入溶液中,搅拌速度100rpm,温度50℃;
②制备凝胶体系:待温敏性共聚物完全溶解后,搅拌速度不变,依次加入1024kg的对溴苯酚和640kg的3,3'-二甲基-4,4-二氨基二环己基甲烷,搅拌5min后,加入640kg的纳米氧化锆和12.8kg的过硫酸钾;
③嵌入氯化钴:搅拌速度加至200rpm,加入128kg的无水氯化钴,反应釜中加压至2MPa。
④制备暂堵剂:将反应釜温度调节至80℃,6h后完成暂堵剂制备,测试暂堵剂粘度为294mPa·s。
第四步,现场施工:将上述制备得到的暂堵剂加入罐车中拉运至现场,现场采用1台700型泵车注入,根据地层漏失情况,注入速度设计为1m3/min。
第五步,施工结束,结束压力9.1MPa,暂堵成功。
实施例6
杜84-46-62井需要实施暂堵工艺,在暂堵前测试目标层井温为135℃,通过注水测试吸收性显示,地层的漏失速度为6.7m3/h,目标封堵地层为12.8m。
第一步:根据井温设计,暂堵剂的浓度,井温为135℃,暂堵剂设计的具体组成为:
第二步,根据该井的漏失速度和地层厚度计算暂堵剂需求用量,该漏失速度下,堵剂的用量为10m3/m,油层厚度为12.8m,则堵剂用量V=10×12.8=128m3
第三步,按暂堵剂总体用量计算,准备如下具体材料:
丙烯酰胺(AM)/N-乙烯基-2-吡咯烷酮(NVP)/2-丙烯酰胺-2-甲基丙烯酸(AMPS)温敏性共聚物重量W1=0.3wt%×128m3=384kg;
鼠李糖脂W2=0.01wt%×128m3=12.8kg;
对溴苯酚W3=1.5wt%×128m3=1920kg;
3,3'-二甲基-4,4-二氨基二环己基甲烷W4=0.5wt%×128m3=640kg;
纳米氧化锆W5=1wt%×128m3=1280kg;
引发剂过硫酸钾W6=0.01wt%×128m3=12.8kg;
无水氯化钴W7=0.1wt%×128m3=128kg;
水W8≈124,000kg。
①制备共聚物母液:将12.8kg的鼠李糖脂溶于124,000kg的水中,同时将384kg的丙烯酰胺(AM)/N-乙烯基-2-吡咯烷酮(NVP)/2-丙烯酰胺-2-甲基丙烯酸(AMPS)温敏性共聚物加入溶液中,搅拌速度100rpm,温度50℃;
②制备凝胶体系:待共聚物完全溶解后,搅拌速度不变,依次加入1920kg的对溴苯酚和640kg的3,3'-二甲基-4,4-二氨基二环己基甲烷,搅拌5min后,加入640kg的纳米氧化锆和12.8kg的过硫酸钾;
③嵌入氯化钴:搅拌速度加至200rpm,加入128kg的无水氯化钴,反应釜中加压至2MPa。
④制备暂堵剂:将反应釜温度调节至80℃,6h后完成暂堵剂制备,测试暂堵剂粘度为412mPa·s。
第四步,现场施工:将上述制备得到的暂堵剂加入罐车中拉运至现场,现场采用1台700型泵车注入,根据地层漏失情况,注入速度设计为1m3/min。
第五步,施工结束:结束压力10.1MPa,3天后观察井口压力为10.1MPa,暂堵成功。
与实施例1不同的是增加了纳米氧化锆的用量,施工效果更好。
对比例1
杜84-46-62井需要实施暂堵工艺,在暂堵前测试目标层井温为135℃,通过注水测试吸收性显示,地层的漏失速度为6.7m3/h,目标封堵地层为12.8m。
第一步:根据井温设计,暂堵剂的浓度,井温为135℃,暂堵剂设计的具体组成为:
第二步,根据该井的漏失速度和地层厚度计算暂堵剂需求用量,该漏失速度下,堵剂的用量为10m3/m,油层厚度为12.8m,则堵剂用量V=10×12.8=128m3
第三步,按暂堵剂总体用量计算,准备如下具体材料:
丙烯酰胺(AM)/N-乙烯基-2-吡咯烷酮(NVP)/2-丙烯酰胺-2-甲基丙烯酸(AMPS)温敏性共聚物重量W1=0.1wt%×128m3=128kg;
鼠李糖脂W2=0.005wt%×128m3=6.4kg;
对溴苯酚W3=0.2wt%×128m3=256kg;
3,3'-二甲基-4,4-二氨基二环己基甲烷W4=0.1wt%×128m3=128kg;
纳米氧化锆W5=0.1wt%×128m3=128kg;
引发剂过硫酸钾W6=0.005wt%×128m3=6.4kg;
无水氯化钴W7=0.05wt%×128m3=64kg;
水W8≈127,000kg。
①制备共聚物母液:将6.4kg的鼠李糖脂溶于127,000kg的水中,同时将128kg的丙烯酰胺(AM)/N-乙烯基-2-吡咯烷酮(NVP)/2-丙烯酰胺-2-甲基丙烯酸(AMPS)温敏性共聚物加入溶液中,搅拌速度100rpm,温度50℃;
②制备凝胶体系:待共聚物完全溶解后,搅拌速度不变,依次加入256kg的对溴苯酚和128kg的3,3'-二甲基-4,4-二氨基二环己基甲烷,搅拌5min后,加入128kg的纳 米氧化锆和6.4kg的过硫酸钾;
③嵌入氯化钴:搅拌速度加至200rpm,加入64kg的无水氯化钴,反应釜中加压至2MPa。
④制备暂堵剂:将反应釜温度调节至80℃,6h后完成暂堵剂制备,测试暂堵剂粘度为91mPa·s。
第四步,现场施工:将上述制备得到的暂堵剂加入罐车中拉运至现场,现场采用1台700型泵车注入,根据地层漏失情况,注入速度设计为1m3/min。
第五步,施工结束,结束压力0MPa,暂堵失败。
与实施例1不同的是,对比例1不在保护范围内的方案,因此暂堵剂在注入过程中暂堵剂未发生固化反应,暂堵失败。
对比例2
杜84-46-62井需要实施暂堵工艺,在暂堵前测试目标层井温为135℃,通过注水测试吸收性显示,地层的漏失速度为6.7m3/h,目标封堵地层为12.8m。
第一步:根据井温设计,暂堵剂的浓度,井温为135℃,暂堵剂设计的具体组成为:
第二步,根据该井的漏失速度和地层厚度计算暂堵剂需求用量,该漏失速度下,堵剂的用量为10m3/m,油层厚度为12.8m,则堵剂用量V=10×12.8=128m3
第三步,按暂堵剂总体用量计算,准备如下具体材料:
鼠李糖脂W2=0.01wt%×128m3=12.8kg;
对溴苯酚W3=1.5wt%×128m3=1920kg;
3,3'-二甲基-4,4-二氨基二环己基甲烷W4=0.5wt%×128m3=640kg;
纳米氧化锆W5=0.5wt%×128m3=640kg;
过硫酸钾W6=0.01wt%×128m3=12.8kg;
无水氯化钴W7=0.1wt%×128m3=128kg;
水W8≈124,000kg。
①制备母液:将12.8kg的鼠李糖脂溶于124,000kg的水中,搅拌速度100rpm,温度50℃;
②制备凝胶体系:待共聚物完全溶解后,搅拌速度不变,依次加入1920kg的对溴 苯酚和640kg的3,3'-二甲基-4,4-二氨基二环己基甲烷,搅拌5min后,加入640kg的纳米氧化锆和12.8kg的过硫酸钾;
③嵌入氯化钴:搅拌速度加至200rpm,加入128kg的无水氯化钴,反应釜中加压至2MPa。
④制备暂堵剂:将反应釜温度调节至80℃,6h后完成暂堵剂制备,测试暂堵剂粘度为15mPa·s。
第四步,现场施工:将上述制备得到的暂堵剂加入罐车中拉运至现场,现场采用1台700型泵车注入,根据地层漏失情况,注入速度设计为1m3/min。
第五步,施工结束,结束压力0MPa,暂堵失败。
与实施例1不同的是,对比例2中未加入温敏性共聚物,因此根本制备不成暂堵剂,实现不到暂堵油层的效果。
对比例3
杜84-46-62井需要实施暂堵工艺,在暂堵前测试目标层井温为135℃,通过注水测试吸收性显示,地层的漏失速度为6.7m3/h,目标封堵地层为12.8m。
本对比例中采用了常规的暂堵配方:
按暂堵剂总体用量计算,准备如下具体材料:
聚丙烯酰胺重量W1=0.3wt%×128m3=384kg;
苯酚W2=0.4wt%×128m3=512kg;
甲醛W3=0.4wt%×128m3=512kg;
树皮粉W4=0.5wt%×128m3=640kg;
水W8≈126,000kg。
①制备共聚物母液:将384kg的聚丙烯酰胺溶于126,000kg的水中,搅拌速度100rpm,温度50℃;
②制备凝胶体系:待聚丙烯酰胺完全溶解后,搅拌速度不变,依次加入512kg的苯酚和512kg的甲醛,搅拌5min后,加入640kg的树皮粉。测试暂堵剂粘度为563mPa·s。
现场施工:将上述制备得到的暂堵剂加入罐车中拉运至现场,现场采用1台700型泵车注入,根据地层漏失情况,注入速度设计为1m3/min。
第五步,施工结束,结束压力0MPa,暂堵失败。
与实施例1不同的是,对比例3采用了聚丙烯酰胺暂堵体系,该体系耐温仅95℃, 因此在135℃的地层下迅速水化。
上述实施例1-6及对比例1-3得到的暂堵剂的性能结果见表3。
表3
通过表3的结果可以看出,采用本发明保护范围内的实施例1、2、3具有明显更好的效果。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (18)

  1. 一种暂堵剂组合物,其特征在于,以所述暂堵剂组合物的总重量计,所述暂堵剂组合物包括:温敏性共聚物0.3-0.5wt%,生物表活剂0.01-0.015wt%,多酚交联剂0.8-1.5wt%,固化剂0.5-0.8wt%,纳米氧化锆0.5-1wt%,引发剂0.01-0.015wt%,氯化钴0.1-0.5wt%和水95.67-97.78wt%。
  2. 根据权利要求1所述的暂堵剂组合物,其中,所述温敏性共聚物是以丙烯酰胺、N-乙烯基-2-吡咯烷酮和2-丙烯酰胺-2-甲基丙烯酸为单体聚合得到的;
    优选地,丙烯酰胺、N-乙烯基-2-吡咯烷酮和2-丙烯酰胺-2-甲基丙烯酸的重量比为1.5-2:1-1.25:1-1.25。
  3. 根据权利要求1或2所述的暂堵剂组合物,其中,所述多酚交联剂为对溴苯酚、2-溴-4-甲基苯酚或2,4,6-三溴苯酚。
  4. 根据权利要求1或2所述的暂堵剂组合物,其中,所述生物表活剂为鼠李糖脂或槐糖脂。
  5. 根据权利要求1或2所述的暂堵剂组合物,其中,所述固化剂为3,3'-二甲基-4,4-二氨基二环己基甲烷、间苯二胺或二氨基二苯基甲烷。
  6. 根据权利要求1或2所述的暂堵剂组合物,其中,所述引发剂为过硫酸盐类;
    优选地,所述引发剂为过硫酸钾、过硫酸钠或过硫酸铵。
  7. 根据权利要求1或2所述的暂堵剂组合物,其中,所述纳米氧化锆的粒径为10-50nm。
  8. 一种暂堵剂的制备方法,其特征在于,所述制备方法包括:
    (1)将生物表活剂溶于水中,形成生物表活剂分散液;将温敏性共聚物溶于所述生物表活剂分散液中,进行第一处理,待共聚物完全溶解后,得到共聚物母液;
    (2)向所述共聚物母液中加入多酚交联剂、固化剂、纳米氧化锆和引发剂,得到凝胶体系;
    (3)向所述凝胶体系中加入氯化钴,进行第二处理,得到暂堵剂。
  9. 根据权利要求8所述的制备方法,其中,所述生物表活剂分散液中,生物表活剂的浓度为0.01-0.015wt%。
  10. 根据权利要求8或9所述的制备方法,其中,所述生物表活剂与温敏性共聚物、多酚交联剂、固化剂、纳米氧化锆、引发剂和氯化钴的重量比为0.01-0.015:0.3-0.5:0.8-1.5:0.5-0.8:0.5-1:0.01-0.015:0.1-0.5。
  11. 根据权利要求8或9所述的制备方法,其中,所述温敏性共聚物是以丙烯酰胺、N-乙烯基-2-吡咯烷酮和2-丙烯酰胺-2-甲基丙烯酸为单体聚合得到的;
    优选地,丙烯酰胺、N-乙烯基-2-吡咯烷酮和2-丙烯酰胺-2-甲基丙烯酸的重量比为 1.5-2:1-1.25:1-1.25。
  12. 根据权利要求8或9所述的制备方法,其中,所述多酚交联剂为对溴苯酚、2-溴-4-甲基苯酚或2,4,6-三溴苯酚;
    和/或,所述生物表活剂为鼠李糖脂或槐糖脂;
    和/或,所述固化剂为3,3'-二甲基-4,4-二氨基二环己基甲烷、间苯二胺或二氨基二苯基甲烷;
    和/或,所述引发剂为过硫酸盐类,优选为过硫酸钾、过硫酸钠或过硫酸铵;
    和/或,所述纳米氧化锆的粒径为10-50nm。
  13. 根据权利要求8或9所述的制备方法,其中,步骤(1)中,所述第一处理的条件包括:搅拌速度为100-200rpm,温度为50-60℃,压力为1-1.5MPa,时间为10-15min。
  14. 根据权利要求8或9所述的制备方法,其中,步骤(2)具体包括:在100-200rpm的搅拌速度下,先向所述共聚物母液中依次加入多酚交联剂和固化剂,搅拌5-10min后,再加入纳米氧化锆和引发剂。
  15. 根据权利要求8或9所述的制备方法,其中,步骤(3)中,所述第二处理包括:先在50-60℃和1.5-2MPa下以200-250rpm的速度搅拌,然后在60-80℃下陈化6-8h。
  16. 由权利要求8-15中任意一项所述的制备方法制得的暂堵剂。
  17. 权利要求16所述的暂堵剂在稠油开采中的应用。
  18. 根据权利要求17所述的应用,其中,当地层漏失速度为1-5m3/h但不包括5m3/h时,所述暂堵剂的用量为5-9m3/m,注入速度为0.5-0.6m3/min;
    或,当地层漏失速度为5-10m3/h时,所述暂堵剂的用量为10-15m3/m,注入速度为1-1.2m3/min;
    或,当地层漏失速度>10m3/h时,所述暂堵剂的用量为20-25m3/m,注入速度为2-2.5m3/min。
PCT/CN2023/137529 2022-12-23 2023-12-08 暂堵剂组合物、暂堵剂及其制备方法和应用 WO2024131572A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211666070.1 2022-12-23
CN202211666070.1A CN118240538A (zh) 2022-12-23 2022-12-23 暂堵剂组合物、暂堵剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2024131572A1 true WO2024131572A1 (zh) 2024-06-27

Family

ID=91563050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/137529 WO2024131572A1 (zh) 2022-12-23 2023-12-08 暂堵剂组合物、暂堵剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN118240538A (zh)
WO (1) WO2024131572A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112034A (zh) * 2015-08-11 2015-12-02 中国石油天然气股份有限公司 一种耐高温凝胶转向剂及其制备方法与应用
CN107793685A (zh) * 2016-09-06 2018-03-13 中国石油化工股份有限公司 交联聚合物弱凝胶及其制备方法和应用
CN107794025A (zh) * 2016-09-06 2018-03-13 中国石油化工股份有限公司 复合交联剂及其制备方法和应用
CN109385259A (zh) * 2018-11-15 2019-02-26 中国石油大学(北京) 一种am-amps-nvp三元共聚物-pr耐温调剖剂及其制备方法与应用
US20210115317A1 (en) * 2019-10-16 2021-04-22 Southwest Petroleum University Particulate profile control agent self-adaptive to size of formation pore throat and preparation method thereof
CN113025292A (zh) * 2021-03-23 2021-06-25 中国石油大学(华东) 一种热采水平井修井前封堵水平井筒用高强度冻胶暂堵剂及其制备方法
CN113773822A (zh) * 2020-06-10 2021-12-10 中国石油天然气股份有限公司 蒸汽驱调剖剂及其制备方法与应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112034A (zh) * 2015-08-11 2015-12-02 中国石油天然气股份有限公司 一种耐高温凝胶转向剂及其制备方法与应用
CN107793685A (zh) * 2016-09-06 2018-03-13 中国石油化工股份有限公司 交联聚合物弱凝胶及其制备方法和应用
CN107794025A (zh) * 2016-09-06 2018-03-13 中国石油化工股份有限公司 复合交联剂及其制备方法和应用
CN109385259A (zh) * 2018-11-15 2019-02-26 中国石油大学(北京) 一种am-amps-nvp三元共聚物-pr耐温调剖剂及其制备方法与应用
US20210115317A1 (en) * 2019-10-16 2021-04-22 Southwest Petroleum University Particulate profile control agent self-adaptive to size of formation pore throat and preparation method thereof
CN113773822A (zh) * 2020-06-10 2021-12-10 中国石油天然气股份有限公司 蒸汽驱调剖剂及其制备方法与应用
CN113025292A (zh) * 2021-03-23 2021-06-25 中国石油大学(华东) 一种热采水平井修井前封堵水平井筒用高强度冻胶暂堵剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MICHAEL FEVEN MATTEWS, FATHIMA ARSHIA, ALYEMNI EMAN, JIN HUANG, ALMOHSIN AYMAN, ALSHARAEH EDREESE H.: "Enhanced Polyacrylamide Polymer Gels Using Zirconium Hydroxide Nanoparticles for Water Shutoff at High Temperatures: Thermal and Rheological Investigations", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, AMERICAN CHEMICAL SOCIETY, vol. 57, no. 48, 5 December 2018 (2018-12-05), pages 16347 - 16357, XP093183487, ISSN: 0888-5885, DOI: 10.1021/acs.iecr.8b04126 *
YONGLI YUAN, YONG WU: "Study on Synthesis and Thermal Resistance of Polyacrylamide Hydrogel Crosslinked with P-phenylenediamine", SHANDONG CHEMICAL INDUSTRY, vol. 48, no. 4, 23 February 2019 (2019-02-23), pages 25 - 27, XP093183486, DOI: 10.19319/j.cnki.issn.1008-021x.2019.04.009 *

Also Published As

Publication number Publication date
CN118240538A (zh) 2024-06-25

Similar Documents

Publication Publication Date Title
Amir et al. In situ organically cross‐linked polymer gel for high‐temperature reservoir conformance control: A review
Zhu et al. Polymer gel systems for water management in high-temperature petroleum reservoirs: a chemical review
CN110591679B (zh) 一种与地层孔喉尺寸自适应的颗粒调剖剂及其制备方法
CN104927828B (zh) 耐高温有机锆交联剂及其制备方法以及一种压裂液冻胶及其制备方法
CN113122220B (zh) 一种变粘压裂液及其制备方法
CN109971451B (zh) 一种压裂液用氧化石墨烯纳米交联剂及其制备方法
CN112480887B (zh) 一种基于纤维素的温敏型凝胶堵漏剂及其制备方法
CN105085799A (zh) 一种缓膨型纳米弹性微球深部调剖驱油剂的制备方法及其应用
CN106566516B (zh) 一种结构可控的胍胶压裂液纳米交联剂的制备方法
CN105199706A (zh) 一种适用于聚合物压裂液体系的有机锆交联剂及其制备方法
CN108531153B (zh) 一种耐高温石油树脂分散体堵剂及其制备方法与应用
CN103525393B (zh) 一种速溶型酸液稠化剂及其制备方法与应用
CN113549434A (zh) 一种保护储层的抗高温可降解凝胶堵漏体系及制备与应用
CN106751977A (zh) 高耐热的沥青微裂纹自修复用微胶囊及其制备方法
CN111269335A (zh) 一种缓交联主客体包合凝胶深部调驱剂及其制备方法、应用
CN110079286A (zh) 一种堵漏用延迟交联凝胶组合物及其制备方法
CN110257031A (zh) 一种油田微颗粒水凝胶调剖堵水剂及其制备方法
CN106590560A (zh) 一种冻胶暂堵剂
Tessarolli et al. Hydrogels applied for conformance-improvement treatment of oil reservoirs
CN111909306A (zh) 双水相pam/amps纳米微球乳胶及制备方法和应用
CN104017131A (zh) 聚合物微凝胶驱油剂及其制备方法和应用
WO2024131572A1 (zh) 暂堵剂组合物、暂堵剂及其制备方法和应用
CN104927005B (zh) 一种预交联凝胶体膨颗粒耐碱调剖剂及其制备方法与用途
Qin et al. In situ composite of graphene oxide in polyacrylamide to enhance strength of hydrogel with polyethyleneimine as crosslinker
CN113150758B (zh) 一种pH敏感型暂堵剂及其制备方法和在低渗透油藏开采中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23905739

Country of ref document: EP

Kind code of ref document: A1