WO2024130978A1 - 车辆加速控制方法、车辆和计算机存储介质 - Google Patents
车辆加速控制方法、车辆和计算机存储介质 Download PDFInfo
- Publication number
- WO2024130978A1 WO2024130978A1 PCT/CN2023/099630 CN2023099630W WO2024130978A1 WO 2024130978 A1 WO2024130978 A1 WO 2024130978A1 CN 2023099630 W CN2023099630 W CN 2023099630W WO 2024130978 A1 WO2024130978 A1 WO 2024130978A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- value
- torque compensation
- compensation coefficient
- accelerator pedal
- Prior art date
Links
- 230000001133 acceleration Effects 0.000 title claims abstract description 119
- 238000000034 method Methods 0.000 title claims abstract description 48
- 230000008859 change Effects 0.000 claims abstract description 74
- 238000004590 computer program Methods 0.000 claims description 12
- 238000012423 maintenance Methods 0.000 claims description 5
- 239000000446 fuel Substances 0.000 claims description 4
- 230000006870 function Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 4
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2045—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2250/00—Driver interactions
- B60L2250/26—Driver interactions by pedal actuation
Definitions
- the present application relates to the field of vehicle technology, and in particular to a vehicle acceleration control method, a vehicle and a computer storage medium.
- the driver accelerates by stepping on the accelerator pedal.
- the torque output by the drive motor cannot exceed the maximum output torque value of the motor in the normal mode, and the vehicle cannot have a large acceleration in a short time, which cannot meet the driver's emergency acceleration needs and make the driver unable to experience the fun of extreme driving.
- the present application aims to solve at least one of the technical problems existing in the prior art.
- one purpose of the present application is to propose a vehicle acceleration control method, which can make the output torque of the drive motor exceed the maximum output torque value in a short time and maintain it for a short time in the track mode through the torque compensation value, so as to meet the driver's emergency acceleration intention, thereby improving the driver's driving experience.
- a second object of the present application is to provide a vehicle.
- the third objective of this application is to provide a computer storage medium.
- the first aspect of the present application provides a vehicle acceleration control method, which includes: in track mode, obtaining the accelerator pedal opening change rate and the vehicle's remaining energy value; determining a target torque compensation value based on the accelerator pedal opening change rate and the vehicle's remaining energy value; and controlling the vehicle acceleration with the sum of the target torque compensation value and the maximum output torque value.
- the emergency situation of the driver's emergency acceleration intention is judged by the change rate of the accelerator pedal opening, and the target torque compensation value is determined in combination with the vehicle's remaining energy value.
- the target torque compensation value is compensated to the maximum output torque value to control the vehicle acceleration, so that the output torque of the drive motor exceeds the maximum output torque value in the normal mode in a short time and is maintained for a short time, so that the vehicle has a large acceleration in a short time to control the vehicle to quickly increase the driving speed, thereby meeting the driver's emergency acceleration needs and allowing the driver to experience the fun of extreme driving.
- the acceleration of the vehicle before controlling the acceleration of the vehicle with the sum of the target torque compensation value and the maximum output torque value, it also includes: obtaining a current accelerator pedal value; determining that the current accelerator pedal value meets a preset emergency acceleration condition and the vehicle is not in a turning state; wherein the current accelerator pedal value is greater than a preset opening threshold, and the maintenance time of the current accelerator pedal value is greater than a preset time.
- determining that the vehicle is not in a turning state includes: obtaining a steering wheel angle value of the vehicle; and if the steering wheel angle value is less than or equal to a preset angle threshold, determining that the vehicle is not in a turning state.
- the preset turning angle threshold is 5°.
- the current accelerator pedal value is the depth of the accelerator pedal stepped on by the driver when controlling the driving speed of the vehicle at the current moment.
- the remaining energy value is the remaining capacity value of the power battery in the vehicle or the remaining fuel value of the vehicle.
- the target torque compensation value is determined based on the accelerator pedal opening change rate and the vehicle remaining energy value, including: determining a target torque compensation coefficient based on the accelerator pedal opening change rate and the vehicle remaining energy value; obtaining the target torque compensation value based on the target torque compensation coefficient and the maximum output torque value.
- determining the target torque compensation coefficient according to the accelerator pedal opening change rate and the vehicle remaining energy value includes: determining The accelerator pedal opening change rate is greater than the first preset opening change rate; if the vehicle's remaining energy value is greater than the first energy threshold, the first torque compensation coefficient is used as the target torque compensation coefficient; if the vehicle's remaining energy value is less than or equal to the first energy threshold and greater than the second energy threshold, the second torque compensation coefficient is used as the target torque compensation coefficient; if the vehicle's remaining energy value is less than or equal to the second energy threshold and greater than the third energy threshold, the third torque compensation coefficient is used as the target torque compensation coefficient; wherein, the first energy threshold>the second energy threshold>the third energy threshold, the first torque compensation coefficient>the second torque compensation coefficient>the third torque compensation coefficient>0.
- determining the target torque compensation coefficient based on the accelerator pedal opening change rate and the vehicle remaining energy value also includes: determining that the accelerator pedal opening change rate is less than or equal to the first preset opening change rate and greater than the second preset opening change rate; if the vehicle remaining energy value is greater than the second energy threshold, then using the second torque compensation coefficient as the target torque compensation coefficient; if the vehicle remaining energy value is less than or equal to the second energy threshold and greater than the third energy threshold, then using the third torque compensation coefficient as the target torque compensation coefficient.
- determining the target torque compensation coefficient based on the accelerator pedal opening change rate and the vehicle remaining energy value also includes: determining that the accelerator pedal opening change rate is less than or equal to the second preset opening change rate and greater than a third preset opening change rate; determining that the vehicle remaining energy value is greater than the third energy threshold, then using the third torque compensation coefficient as the target torque compensation coefficient.
- obtaining the target torque compensation value according to the target torque compensation coefficient and the maximum output torque value includes: calculating the product value of the target torque compensation coefficient and the maximum output torque value, and using the product value as the target torque compensation value.
- the second aspect of the present application provides a vehicle, comprising: at least one processor; a memory communicatively connected to at least one of the processors; wherein the memory stores a computer program executable by at least one of the processors, and when at least one of the processors executes the computer program, the vehicle acceleration control method described in the above embodiment is implemented.
- the torque compensation value can be used to make the output torque of the drive motor exceed the maximum output torque value in a short time and maintain it for a short time, so as to meet the driver's emergency acceleration intention and thus improve the driver's driving experience.
- a third aspect of the present application provides a computer storage medium on which a computer program is stored, wherein the computer program, when executed by a processor, implements the vehicle acceleration control method described in the above embodiment.
- FIG1 is a flow chart of a vehicle acceleration control method according to an embodiment of the present application.
- FIG. 2 are schematic diagrams showing changes in vehicle speed, power of a driving motor and output torque over time according to an embodiment of the present application;
- FIG3 is a flow chart of a vehicle acceleration control method according to another embodiment of the present application.
- FIG. 4 is a structural block diagram of a vehicle according to an embodiment of the present application.
- Vehicle 10 Processor 1; Memory 2.
- the first embodiment of the present application provides a vehicle acceleration control method.
- the torque compensation value can be used to make the output torque of the drive motor exceed the maximum output torque value in a short time and maintain it for a short time, so as to meet the driver's emergency acceleration intention and improve the driver's driving experience.
- the vehicle acceleration control method according to an embodiment of the present application is described below with reference to FIG. 1 .
- the method includes: steps S1 to S3 .
- Step S1 in track mode, obtaining the accelerator pedal opening change rate and the vehicle remaining energy value.
- the accelerator pedal opening change rate may be understood as the change in the accelerator pedal opening over a period of time.
- the track mode activation judgment module judges whether the vehicle activates the track mode. If the vehicle activates the track mode, when the vehicle is in the track mode, the signal acquisition module collects the accelerator pedal opening change rate and the vehicle's remaining energy value in real time, and performs signal processing on the collected accelerator pedal opening change rate and the vehicle's remaining energy value, such as performing signal processing on the above collected data through common signal processing methods such as Kalman filtering.
- the remaining energy value of the vehicle may be the remaining capacity value of the power battery in the vehicle or the remaining fuel value of the vehicle. That is, after determining the urgency of the driver's emergency acceleration intention, the torque compensation value output by the drive motor needs to be increased or decreased according to the remaining capacity value of the power battery in the vehicle or the remaining fuel value of the vehicle, so as to maximize the power of the drive motor.
- the remaining capacity value can be understood as the remaining power of the power battery.
- Step S2 determining a target torque compensation value according to an accelerator pedal opening change rate and a vehicle remaining energy value.
- the prior art does not consider the influence of the remaining power of the battery on satisfying the driver's emergency acceleration intention, so the present application determines the target torque compensation value based on the accelerator pedal opening change rate and the vehicle's remaining energy value. That is to say, if the vehicle is not in a turning state, it means that the vehicle is in a safe driving state, so the torque control module determines the target torque compensation value according to the accelerator pedal opening change rate and the vehicle's remaining energy value, so as to control the drive motor to output the corresponding target torque compensation value to respond to the driver's emergency acceleration intention.
- the urgency of the driver's emergency acceleration intention is identified by judging the magnitude of the accelerator pedal opening change rate.
- the torque compensation value output by the drive motor required by the vehicle is larger, but because the power battery provides the power required for the torque compensation value output by the drive motor, and the larger the torque compensation value, the larger the power required, so after determining the urgency of the driver's emergency acceleration intention, the torque compensation value corresponding to the drive motor is adaptively increased or decreased according to the vehicle's remaining energy value, thereby determining the target torque compensation value according to the accelerator pedal opening change rate and the vehicle's remaining energy value, so as to control the drive motor to output the corresponding target torque compensation value, so that the vehicle accelerates to meet the driver's emergency acceleration needs.
- Step S3 controlling vehicle acceleration with the sum of the target torque compensation value and the maximum output torque value.
- the present application proposes a vehicle acceleration control method. Since the drive motor still has the ability to output torque under the maximum output torque value of the normal mode, the sum of the target torque compensation value and the maximum output torque value is calculated, and the sum is used as the output torque of the drive motor, that is, the target torque compensation value is compensated to the maximum output torque value, so that the output torque of the drive motor exceeds the maximum output torque value in the normal mode in a short time, and the output torque of the drive motor exceeds the maximum output torque value.
- the maintenance time is short, so that the vehicle has a large acceleration in a short time to control the vehicle to quickly increase the driving speed, thereby meeting the driver's emergency acceleration needs and allowing the driver to experience the fun of extreme driving.
- the emergency situation of the driver's emergency acceleration intention is judged by the change rate of the accelerator pedal opening, and the target torque compensation value is determined in combination with the remaining energy value of the vehicle.
- the target torque compensation value is compensated to the maximum output torque value to control the acceleration of the vehicle, so that the output torque of the drive motor exceeds the maximum output torque value in the normal mode in a short time and is maintained for a short time, so that the vehicle has a large acceleration in a short time to control the vehicle to quickly increase the driving speed, thereby meeting the driver's emergency acceleration needs and allowing the driver to experience the fun of extreme driving.
- the vehicle acceleration control method before controlling the vehicle acceleration with the sum of the target torque compensation value and the maximum output torque value, the vehicle acceleration control method further includes: obtaining a current accelerator pedal value; and determining that the current accelerator pedal value satisfies a preset emergency acceleration condition and the vehicle is not in a turning state.
- the preset emergency acceleration condition is: the current accelerator pedal value is greater than a preset opening threshold, and the maintenance time of the current accelerator pedal value is greater than a preset time.
- the current accelerator pedal value can be understood as the depth of the accelerator pedal stepped by the driver when controlling the vehicle's driving speed at the current moment.
- the steering state can be understood as the state in which the vehicle's driving direction changes.
- the signal acquisition module collects the current accelerator pedal value in real time and performs signal processing on the collected current accelerator pedal value. Since the driver controls the vehicle to accelerate by stepping on the accelerator pedal, the driver's emergency acceleration is judged by the current accelerator pedal value. If the current accelerator pedal value is greater than the preset opening threshold, and the duration of the current accelerator pedal value is greater than the preset duration, the current accelerator pedal value is large, and the large current accelerator pedal value is maintained for a period of time, which means that the driver expects the vehicle to perform emergency acceleration so that the vehicle can achieve a higher speed.
- the driver may have accidentally stepped on the accelerator pedal, which means that the driver has no emergency acceleration intention, and the vehicle is controlled not to respond to the driver's emergency acceleration intention.
- the vehicle driving state judgment module when the vehicle driving state judgment module recognizes that the driver's driving intention is an emergency acceleration intention, it judges whether the vehicle is in a turning state, where the turning state can be left turning and right turning, and controls whether the vehicle responds to the driver's emergency acceleration intention based on the judgment result. If the vehicle is in a turning state, if controlling the vehicle to accelerate at this time will cause an accident, the driver's emergency acceleration intention will not be responded to; if the vehicle is not in a turning state, it means that the vehicle is in a safe driving state, and the driver's emergency acceleration intention will be responded to to ensure that the vehicle performs emergency acceleration in a safe driving state to protect the driver's personal safety.
- whether the vehicle is in a turning state can be judged based on relevant steering data of the vehicle, such as steering wheel angle value or turn signal status data, and there is no limitation on this.
- determining whether the vehicle is in a turning state includes: obtaining a steering wheel angle value; if the steering wheel angle value is greater than a preset angle threshold, determining that the vehicle is in a turning state; if the steering wheel angle value is less than or equal to the preset angle threshold, determining that the vehicle is not in a turning state.
- the preset turning angle threshold may be understood as a steering wheel turning angle threshold for changing the driving direction of the vehicle calibrated according to an experiment.
- the preset turning angle threshold may be 5°.
- the driving direction of the vehicle is controlled by controlling the rotation of the steering wheel.
- the steering wheel angle value is too large, the driving direction of the vehicle will change, so the steering wheel angle value can be used to determine whether the vehicle is in a turning state.
- the signal acquisition module collects the steering wheel angle value of the vehicle in real time during driving. If the steering wheel angle value is greater than the preset angle threshold, it means that the steering wheel angle value increases and causes the vehicle to deviate from the original driving direction, then it is determined that the vehicle is in a turning state, and the driver's emergency acceleration intention is not responded to at this time.
- the steering wheel angle value is less than or equal to the preset angle threshold, it means that the steering wheel angle value is within the range of the original driving direction of the vehicle, then it is determined that the vehicle is not in a turning state, and the vehicle is in a safe driving state at this time, then the driver's emergency acceleration intention is responded to.
- the target torque compensation value is determined based on the accelerator pedal opening change rate and the vehicle remaining energy value, including: determining the target torque compensation coefficient based on the accelerator pedal opening change rate and the vehicle remaining energy value; and obtaining the target torque compensation value based on the target torque compensation coefficient and the maximum output torque value.
- the target torque compensation coefficient is a coefficient calibrated through a large number of experiments.
- the higher the urgency of the driver's emergency acceleration intention the greater the torque compensation value of the drive motor output required by the vehicle.
- the power battery provides the power required for the drive motor output torque compensation
- the vehicle tank provides the oil required for the drive motor output torque compensation
- the target torque compensation coefficient is determined by the accelerator pedal opening rate and the vehicle's remaining energy value, so as to increase or decrease the torque compensation value of the drive motor output by the target torque compensation coefficient.
- a corresponding table of the torque compensation coefficient corresponding to the accelerator pedal opening rate and the vehicle's remaining energy value is pre-stored in the vehicle, that is, under different accelerator pedal opening rates and vehicle's remaining energy values, there are corresponding different torque compensation coefficients, wherein the higher the accelerator pedal opening rate and the vehicle's remaining energy value are, the higher the corresponding torque compensation coefficient is.
- the optimal target torque compensation coefficient is obtained by the accelerator pedal opening rate and the vehicle's remaining energy value, and the torque compensation value output by the drive motor is adjusted by the target torque compensation coefficient. It can be understood that the larger the target torque compensation coefficient, the larger the target torque compensation value.
- the sum of the adjusted target torque compensation value and the maximum output torque value is used as the peak value of the output torque of the drive motor, so that the vehicle has a greater acceleration to control the acceleration of the vehicle, so that the driver can experience the fun of extreme driving to meet the driver's emergency acceleration needs.
- the remaining power of the power battery can be obtained by the sensor built into the battery pack, and the remaining oil value in the vehicle tank can be obtained by the oil level sensor attached to the tank.
- the target torque compensation coefficient is determined according to the accelerator pedal opening change rate and the vehicle remaining energy value, including: determining that the accelerator pedal opening change rate is greater than a first preset opening change rate; if the vehicle remaining energy value is greater than a first energy threshold, using the first torque compensation coefficient as the target torque compensation coefficient; if the vehicle remaining energy value is less than or equal to the first energy threshold and greater than a second energy threshold, using the second torque compensation coefficient as the target torque compensation coefficient; if the remaining energy value of the vehicle is less than or equal to the second energy threshold and greater than the third energy threshold, the third torque compensation coefficient is used as the target torque compensation coefficient.
- the preset opening change rate can be understood as the change rate of the accelerator pedal opening set according to the driver's emergency acceleration intention.
- the first energy threshold can be understood as the threshold for sufficient power of the power battery.
- the second energy threshold can be understood as the threshold for relatively sufficient power of the power battery.
- the third energy threshold can be understood as the threshold for insufficient power of the power battery.
- the torque compensation coefficient can be understood as a coefficient calibrated by test according to the driver's emergency acceleration intention and the remaining power of the power battery, and the torque compensation coefficient is less than 0.2.
- the torque compensation value corresponding to the first torque compensation coefficient K1 is the first torque compensation value ⁇ T1 , in which case the peak value of the output torque of the drive motor is Tm1 , the output power of the drive motor is P1 , and the speed of the vehicle is V1;
- the torque compensation value corresponding to the second torque compensation coefficient K2 is the second torque compensation value ⁇ T2 , in which case the peak value of the output torque of the drive motor is Tm2 , the output power of the drive motor is P2 , and the speed of the vehicle is V2;
- the torque compensation value corresponding to the third torque compensation coefficient K3 is the third torque compensation value ⁇ T3 , in which case the peak value of the output torque of the drive motor is Tm3 , the output power of the drive motor is P3 , and the speed of the vehicle is V3.
- the greater the torque compensation coefficient the greater the torque compensation value.
- the peak value of the output torque of the drive motor is greater, that is, T m1 >T m2 >T m3 >T max ; and before the output power of the drive motor reaches the maximum output power T max , the greater the torque compensation coefficient, the greater the output power, that is, P1>P2>P3>Pmax; and before the speed of the vehicle reaches the maximum speed V max , the greater the torque compensation coefficient, the greater the speed of the vehicle, that is, V1>V2>V3>V max . Therefore, in the present application, the torque compensation value is increased or decreased by selecting the torque compensation coefficient to meet the different urgency of the driver's emergency acceleration intention and the emergency acceleration requirements under the remaining energy value of the vehicle.
- the size of the accelerator pedal opening angle is used to identify the urgency of the driver's acceleration intention.
- the larger the accelerator pedal opening rate the more urgent the driver's acceleration intention is. and the preset opening change rate to classify the urgency of the driver's emergency acceleration intention. Greater than the first preset opening change rate If it can be expressed as The accelerator pedal opening rate If the urgency of the acceleration intention is higher, that is, the accelerator pedal is stepped on quickly, it is determined that the driver has a strong intention to accelerate.
- the higher the urgency of the acceleration intention the higher the speed the driver expects the vehicle to reach, and the drive motor outputs a larger torque compensation value.
- the power battery provides the power required for the torque compensation value output by the drive motor, and the larger the torque compensation value, the greater the power required, the power status of the power battery needs to be considered.
- the torque compensation value output by the drive motor is adaptively increased or decreased according to the remaining energy value of the vehicle, thereby maximizing the power of the drive motor and allowing the driver to experience the fun of extreme driving.
- the target torque compensation coefficient is selected by the remaining energy value SOC 0 of the vehicle to increase or decrease the target torque compensation value. If the remaining energy value SOC 0 of the vehicle is greater than the first energy threshold SOC 1 , such as SOC 0 >SOC 1 , it means that the power of the power battery is very sufficient, and there is no need to reduce the torque compensation value output by the drive motor at this time.
- the first torque compensation coefficient K 1 is used as the target torque compensation coefficient to obtain the first torque compensation value ⁇ T 1 corresponding to the first torque compensation coefficient K 1 as the target torque compensation value, so as to control the drive motor to output the first torque compensation value ⁇ T 1 to meet the driver's high emergency acceleration intention, and because the first torque compensation value ⁇ T 1 is large, the speed V1 of the vehicle is high. If the vehicle's remaining energy value SOC 0 is less than or equal to the first energy threshold SOC 1 and greater than the second energy threshold SOC 2 , such as can be expressed as SOC 2 ⁇ SOC 0 ⁇ SOC 1 , it means that the power battery has sufficient power. At this time, the torque compensation value output by the drive motor should be relatively lowered to save the power battery.
- the second torque compensation coefficient K 2 is used as the target torque compensation coefficient to obtain the second torque compensation value ⁇ T 2 corresponding to the second torque compensation coefficient K 2 as the target torque compensation value, so as to control the drive motor to output the second torque compensation value ⁇ T 2 to meet the driver's high emergency acceleration intention, and the second torque compensation value ⁇ T 2 is less than the first torque compensation value ⁇ T 1 , so that the vehicle's speed V2 is lower than the speed V1. If the vehicle's remaining energy value SOC 0 is less than or equal to the second energy threshold SOC 2 and greater than the third energy threshold SOC 3 , such as can be expressed as SOC 3 ⁇ SOC 0 ⁇ SOC 2 , it means that the power battery is low.
- the torque compensation value of the drive motor should be reduced to the greatest extent, and the third torque compensation coefficient K 3 is used as the target torque compensation coefficient to obtain the third torque compensation value ⁇ T 3 corresponding to the third torque compensation coefficient K 3 as the target torque compensation value, so as to control the drive motor to output the third torque compensation value ⁇ T 3 to meet the driver's high emergency acceleration intention, and the third torque compensation value ⁇ T 3 is lower than the second torque compensation value ⁇ T 2 , so that the vehicle speed V3 is lower than the speed V2.
- determining the target torque compensation coefficient based on the accelerator pedal opening rate of change and the vehicle's remaining energy value also includes: determining that the accelerator pedal opening rate of change is less than or equal to a first preset opening rate of change and greater than a second preset opening rate of change; if the vehicle's remaining energy value is greater than the second energy threshold, then using the second torque compensation coefficient as the target torque compensation coefficient; if the vehicle's remaining energy value is less than or equal to the second energy threshold and greater than the third energy threshold, then using the third torque compensation coefficient as the target torque compensation coefficient.
- the accelerator pedal opening rate and the preset opening change rate to classify the urgency of the driver's emergency acceleration intention. Less than or equal to the first preset opening change rate and is greater than the second preset opening change rate If it can be expressed as The accelerator pedal opening rate If the accelerator pedal is larger, that is, the accelerator pedal is stepped on quickly, it is determined that the driver's emergency acceleration intention is strong. At this time, the power required for the torque compensation value output by the drive motor is moderate. Therefore, it is determined whether the vehicle's remaining energy value SOC 0 is greater than the second energy threshold SOC 2 to meet the driver's emergency acceleration intention.
- the second torque compensation coefficient K 2 is used as the target torque compensation coefficient to obtain the second torque compensation value ⁇ T 2 corresponding to the second torque compensation coefficient K 2 as the target torque compensation value, so as to control the drive motor to output the second torque compensation value ⁇ T 2 to meet the driver's strong emergency acceleration intention.
- the vehicle's remaining energy value SOC 0 is less than or equal to the second energy threshold SOC 2 and greater than the third energy threshold SOC 3 , as can be expressed as SOC 3 ⁇ SOC 0 ⁇ SOC 2 , it means that the power battery is low, and the third torque compensation coefficient K 3 is used as the target torque compensation coefficient to obtain the third torque compensation value ⁇ T 3 corresponding to the third torque compensation coefficient K 3 as the target torque compensation value, so as to control the drive motor to output the third torque compensation value ⁇ T 3 to meet the driver's strong emergency acceleration demand.
- determining the target torque compensation coefficient based on the accelerator pedal opening rate and the vehicle's remaining energy value also includes: determining that the accelerator pedal opening rate is less than or equal to a second preset opening rate and greater than a third preset opening rate; determining that the vehicle's remaining energy value is greater than a third energy threshold, and using the third torque compensation coefficient as the target torque compensation coefficient.
- the accelerator pedal opening rate and the preset opening change rate to classify the urgency of the driver's emergency acceleration intention. Less than or equal to the second preset opening change rate and is greater than the third preset opening change rate If it can be expressed as The accelerator pedal opening rate If the accelerator pedal is stepped on slowly, it is determined that the driver's acceleration intention is weak. At this time, the amount of electricity required for the torque compensation value output by the drive motor is small. Therefore, judging whether the vehicle's remaining energy value SOC 0 is greater than the third energy threshold SOC 3 can satisfy the driver's weak emergency acceleration intention.
- the third torque compensation coefficient K 3 is used as the target torque compensation coefficient to obtain the third torque compensation value ⁇ T 3 corresponding to the third torque compensation coefficient K 3 as the target torque compensation value. If it is determined that the vehicle's remaining energy value SOC 0 is less than or equal to the third energy threshold, which can be expressed as SOC 0 ⁇ SOC 3 , it means that the power of the power battery cannot satisfy the driver's weak emergency acceleration intention, and the vehicle is controlled to exit the emergency acceleration mode.
- obtaining the target torque compensation value according to the target torque compensation coefficient and the maximum output torque value includes: calculating the product value of the target torque compensation coefficient and the maximum output torque value, and using the product value as the target torque compensation value.
- the target torque compensation coefficient is the second torque compensation coefficient K 2
- the second torque compensation value ⁇ T 2 is used as the target torque compensation value ⁇ T
- the target torque compensation coefficient is the third torque compensation coefficient K 3
- the third torque compensation value ⁇ T 3 is used as the target torque compensation value ⁇ T
- T m1 >T m2 >T m3 >T max that is, when the target torque compensation coefficient is higher, the corresponding target torque compensation value and the peak value of the output torque of the drive motor are larger, and from the slope of the curve of the output torque and time in FIG2 , it can be obtained that the drive motor can also increase the output torque faster, and can break through the maximum output torque value T max of the drive motor to a certain extent, so that the vehicle can respond to the driver's emergency acceleration intention faster, and the vehicle has a greater acceleration for a period of time.
- the vehicle acceleration control method according to an embodiment of the present application is illustrated by way of example, and the specific contents are as follows.
- Step S7 obtaining the vehicle status signal, such as the current accelerator pedal value, accelerator pedal opening rate of change The vehicle's remaining energy value SOC 0 and track mode signal, etc., and the status signal is processed through common signal processing methods such as Kalman filtering.
- vehicle status signal such as the current accelerator pedal value, accelerator pedal opening rate of change
- the status signal is processed through common signal processing methods such as Kalman filtering.
- Step S8 determining whether the vehicle has activated the track mode, if so, executing step S9, otherwise executing step S6.
- Step S9 determining whether the current accelerator pedal value ⁇ 0 is greater than a preset opening threshold ⁇ 1 , that is, whether ⁇ 0 > ⁇ 1 is satisfied. If so, executing step S10, otherwise executing step S6.
- Step S10 determining whether the maintenance time t of the current accelerator pedal value is greater than the preset time t1, if so, executing step S11, otherwise executing step S6.
- Step S11 determining whether the steering wheel angle value is less than or equal to a preset angle threshold, if so, executing step S12, otherwise executing step S6.
- Step S12 Determine the accelerator pedal opening rate of change Is it greater than the first preset opening change rate? Whether it satisfies If yes, execute step S13, otherwise execute step S15.
- Step S13 determining whether the vehicle remaining energy value SOC 0 is greater than a first energy threshold value SOC 1 , that is, whether SOC 0 >SOC 1 is satisfied. If so, executing step S14, otherwise executing step S16.
- Step S14 the target torque compensation value ⁇ T is a first torque compensation value ⁇ T 1 .
- Step S15 determining the accelerator pedal opening change rate Is it greater than the second preset opening change rate? Whether it satisfies If yes, execute step S16, otherwise execute step S18.
- Step S16 determining whether the vehicle remaining energy value SOC 0 is greater than a second energy threshold value SOC 2 , that is, whether SOC 0 >SOC 2 is satisfied. If so, executing step S17, otherwise executing step S19.
- Step S17 the target torque compensation value ⁇ T is a second torque compensation value ⁇ T 2 .
- Step S18 determining the accelerator pedal opening change rate Is it greater than the third preset opening change rate? Whether it satisfies If yes, execute step S19, otherwise execute step S21.
- Step S19 determining whether the vehicle remaining energy value SOC 0 is greater than a third energy threshold value SOC 3 , that is, whether SOC 0 >SOC 3 is satisfied. If so, executing step S20 , otherwise executing step S21 .
- step S20 the target torque compensation value ⁇ T is a third torque compensation value ⁇ T 3 .
- Step S21 exit the emergency acceleration mode.
- a second aspect of the present application provides a vehicle 10 , as shown in FIG. 4 , wherein the vehicle 10 includes at least one processor 1 and a memory 2 communicatively connected to the at least one processor 1 .
- the memory 2 stores a computer program that can be executed by at least one processor 1 , and when at least one processor 1 executes the computer program, the vehicle acceleration control method in the above embodiment is implemented.
- the torque compensation value can be used to make the output torque of the drive motor exceed the maximum output torque value in a short time and maintain it for a short time, so as to meet the driver's emergency acceleration intention and improve the driver's driving experience.
- a third aspect of the present application provides a computer storage medium on which a computer program is stored, wherein the computer program, when executed by a processor, implements the vehicle acceleration control method in the above embodiment.
- any process or method description in a flowchart or otherwise described herein may be understood to represent a module, fragment or portion of code that includes one or more executable instructions for implementing the steps of a custom logical function or process, and the scope of the preferred embodiments of the present application includes additional implementations, in which functions may not be performed in the order shown or discussed, including performing functions in a substantially simultaneous manner or in the reverse order depending on the functions involved, which should be understood by technicians in the technical field to which the embodiments of the present application belong.
- the logic and/or steps represented in the flowchart or otherwise described herein, for example, may be considered as executable instructions for implementing the logical functions.
- the ordered list may be embodied in any computer-readable medium for use by, or in conjunction with, an instruction execution system, device, or apparatus (e.g., a computer-based system, a system including a processor, or other system that can fetch instructions from and execute instructions on, an instruction execution system, device, or apparatus).
- a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transmit a program for use by, or in conjunction with, an instruction execution system, device, or apparatus.
- computer-readable media include the following: an electrical connection having one or more wires (electronic device), a portable computer disk case (magnetic device), a random access memory (RAM), a read-only memory (ROM), an erasable and programmable read-only memory (EPROM or flash memory), a fiber optic device, and a portable compact disk read-only memory (CDROM).
- the computer-readable medium may even be paper or other suitable medium on which the program is printed, since the program may be obtained electronically, for example, by optically scanning the paper or other medium and then editing, interpreting or processing in other suitable ways if necessary, and then stored in a computer memory.
- a plurality of steps or methods can be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
- a discrete logic circuit having a logic gate circuit for implementing a logic function for a data signal
- a dedicated integrated circuit having a suitable combination of logic gate circuits
- PGA programmable gate array
- FPGA field programmable gate array
- each functional unit in each embodiment of the present application may be integrated into a processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
- the above-mentioned integrated module may be implemented in the form of hardware or in the form of a software functional module. If the integrated module is implemented in the form of a software functional module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
- the storage medium mentioned above may be a read-only memory, a disk or an optical disk, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
一种车辆加速控制方法,包括:在赛道模式下,获取加速踏板开度变化率以及车辆剩余能量值;根据该加速踏板开度变化率和该车辆剩余能量值确定目标转矩补偿值;以该目标转矩补偿值与最大输出转矩值的和值控制该车辆加速。该车辆加速控制方法能够满足驾驶员的紧急加速需求,使得驾驶员体验到极限驾驶的乐趣。还提供了一种实现该车辆加速控制方法的车辆和计算机存储介质。
Description
相关申请的交叉引用
本申请要求在2022年12月23日提交至中国国家知识产权局、申请号为202211664930.8、名称为“车辆加速控制方法、车辆和计算机存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及车辆技术领域,尤其是涉及一种车辆加速控制方法、车辆和计算机存储介质。
相关技术中,驾驶员通过踩踏加速踏板进行加速。然而,当驾驶员通过快速踩踏加速踏板进行紧急加速时,驱动电机输出的转矩不能突破电机在常规模式下的最大输出转矩值,无法在短时间内使车辆具有较大的加速度,不能满足驾驶员的紧急加速需求,无法使驾驶员体验到极限驾驶的乐趣。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请的一个目的在于提出一种车辆加速控制方法,采用该方法可以在赛道模式下通过转矩补偿值使得驱动电机的输出扭矩在短时间内突破最大输出转矩值且维持时间较短,以满足驾驶员的紧急加速意图,从而提高驾驶员的驾驶体验。
本申请的目的之二在于提出一种车辆。
本申请的目的之三在于提出一种计算机存储介质。
为了解决上述问题,本申请第一方面实施例提供一种车辆加速控制方法,所述车辆加速控制方法包括:在赛道模式下,获取加速踏板开度变化率以及车辆剩余能量值;根据所述加速踏板开度变化率和所述车辆剩余能量值确定目标转矩补偿值;以所述目标转矩补偿值与最大输出转矩值的和值控制所述车辆加速。
根据本申请实施例的车辆加速控制方法,在赛道模式下通过加速踏板开度变化率来判断驾驶员的紧急加速意图的紧急情况,并结合车辆剩余能量值以确定目标转矩补偿值,将目标转矩补偿值补偿到最大输出转矩值控制车辆加速,从而使驱动电机的输出扭矩在短时间内突破在常规模式下的最大输出转矩值且维持时间较短,使得车辆在短时间内具有较大的加速度,以控制车辆快速提高行驶速度,从而满足驾驶员的紧急加速需求,使得驾驶员体验到极限驾驶的乐趣。
在一些实施例中,在以所述目标转矩补偿值与最大输出转矩值的和值控制所述车辆加速之前,还包括:获取当前加速踏板值;确定所述当前加速踏板值满足预设紧急加速条件且车辆未处于转向状态;其中,所述当前加速踏板值大于预设开度阈值,且所述当前加速踏板值的维持时长大于预设时长。
在一些实施例中,确定所述车辆未处于转向状态,包括:获取所述车辆的方向盘转角值;以及若所述方向盘转角值小于或等于预设转角阈值,则确定所述车辆未处于转向状态。
在一些实施例中,所述预设转角阈值为5°。
在一些实施例中,所述当前加速踏板值为驾驶员在当前时刻控制所述车辆的行驶速度时踩踏所述加速踏板的深度。
在一些实施例中,所述剩余能量值为车辆内动力电池的剩余容量值或车辆剩余油量值。
在一些实施例中,根据所述加速踏板开度变化率和所述车辆剩余能量值确定目标转矩补偿值,包括:根据所述加速踏板开度变化率和所述车辆剩余能量值确定目标扭矩补偿系数;根据所述目标扭矩补偿系数和所述最大输出转矩值获得所述目标转矩补偿值。
在一些实施例中,根据所述加速踏板开度变化率和所述车辆剩余能量值确定目标扭矩补偿系数,包括:确定
所述加速踏板开度变化率大于第一预设开度变化率;若所述车辆剩余能量值大于第一能量阈值,则以第一扭矩补偿系数作为所述目标扭矩补偿系数;若所述车辆剩余能量值小于或等于所述第一能量阈值且大于第二能量阈值,则以第二扭矩补偿系数作为所述目标扭矩补偿系数;若所述车辆剩余能量值小于或等于所述第二能量阈值且大于第三能量阈值,则以第三扭矩补偿系数作为所述目标扭矩补偿系数;其中,所述第一能量阈值>所述第二能量阈值>所述第三能量阈值,所述第一扭矩补偿系数>所述第二扭矩补偿系数>所述第三扭矩补偿系数>0。
在一些实施例中,根据所述加速踏板开度变化率和所述车辆剩余能量值确定目标扭矩补偿系数,还包括:确定所述加速踏板开度变化率小于或等于所述第一预设开度变化率且大于第二预设开度变化率;若所述车辆剩余能量值大于所述第二能量阈值,则以所述第二扭矩补偿系数作为所述目标扭矩补偿系数;若所述车辆剩余能量值小于或等于所述第二能量阈值且大于所述第三能量阈值,则以所述第三扭矩补偿系数作为所述目标扭矩补偿系数。
在一些实施例中,根据所述加速踏板开度变化率和所述车辆剩余能量值确定目标扭矩补偿系数,还包括:确定所述加速踏板开度变化率小于或等于所述第二预设开度变化率且大于第三预设开度变化率;确定所述车辆剩余能量值大于所述第三能量阈值,则以所述第三扭矩补偿系数作为所述目标扭矩补偿系数。
在一些实施例中,根据所述目标扭矩补偿系数和所述最大输出转矩值获得所述目标转矩补偿值,包括:计算所述目标扭矩补偿系数和所述最大输出转矩值的乘积值,将所述乘积值作为所述目标转矩补偿值。
本申请第二方面实施例提供一种车辆,包括:至少一个处理器;与至少一个所述处理器通信连接的存储器;其中,所述存储器中存储有可被至少一个所述处理器执行的计算机程序,至少一个所述处理器执行所述计算机程序时实现上述实施例中所述的车辆加速控制方法。
根据本申请实施例的车辆,可以在赛道模式下通过转矩补偿值使得驱动电机的输出扭矩在短时间内突破最大输出转矩值且维持时间较短,以满足驾驶员的紧急加速意图,从而提高驾驶员的驾驶体验。
本申请第三方面实施例提供一种计算机存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现上述实施例中所述的车辆加速控制方法。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请一个实施例的车辆加速控制方法的流程图;
图2中的(a)-(c)分别是根据本申请一个实施例的车辆速度、驱动电机的功率和输出扭矩随时间的变化的示意图;
图3是根据本申请另一个实施例的车辆加速控制方法的流程图;
图4是根据本申请一个实施例的车辆的结构框图。
附图标记:
车辆10;
处理器1;存储器2。
车辆10;
处理器1;存储器2。
参考附图描述的实施例是示例性的,下面详细描述本申请的实施例。
为了解决上述问题,本申请第一方面实施例提供一种车辆加速控制方法,采用该方法可以在赛道模式下通过转矩补偿值使得驱动电机的输出扭矩在短时间内突破最大输出转矩值且维持时间较短,以满足驾驶员的紧急加速意图,从而提高驾驶员的驾驶体验。
下面参考图1描述根据本申请实施例的车辆加速控制方法,如图1所示,该方法包括:步骤S1至步骤S3。
步骤S1,在赛道模式下,获取加速踏板开度变化率以及车辆剩余能量值。
其中,加速踏板开度变化率可以理解为加速踏板的开度在一段时间内的变化情况。
具体地,赛道模式激活判断模块判断车辆是否激活赛道模式。若车辆激活赛道模式,则在车辆处于赛道模式下时,信号采集模块实时采集加速踏板开度变化率以及车辆剩余能量值,并对采集到的加速踏板开度变化率以及车辆剩余能量值进行信号处理,如通过卡尔曼滤波等常用信号处理方式对上述采集数据进行信号处理。
在一些实施例中,车辆剩余能量值可以为车辆内动力电池的剩余容量值或车辆剩余油量值。也就是说,在确定驾驶员紧急加速意图的紧急程度后,需根据车辆内动力电池的剩余容量值或车辆剩余油量值,来增加或减少驱动电机输出的转矩补偿值,从而能够最大限度地发挥驱动电机的动力性。其中,剩余容量值可以理解为动力电池的剩余电量。
步骤S2,根据加速踏板开度变化率和车辆剩余能量值确定目标转矩补偿值。
具体地,现有技术中未考虑电池的剩余电量对满足驾驶员的紧急加速意图的影响,因此本申请基于加速踏板开度变化率和车辆剩余能量值来确定目标转矩补偿值。也就是说,若车辆未处于转向状态,则说明车辆在安全行驶的状态,因此扭矩控制模块根据加速踏板开度变化率和车辆剩余能量值确定目标转矩补偿值,以控制驱动电机输出相应的目标转矩补偿值来响应驾驶员的紧急加速意图。换言之,通过判断加速踏板开度变化率的大小来识别驾驶员紧急加速意图的紧急程度,当驾驶员紧急加速意图的紧急程度越高,则车辆所需的驱动电机输出的扭矩补偿值越大,但是由于动力电池提供驱动电机输出的扭矩补偿值所需的电量,并且扭矩补偿值越大所需的电量越大,因此在确定驾驶员紧急加速意图的紧急程度后再根据车辆剩余能量值,以适应性地增加或减少驱动电机对应的转矩补偿值,由此根据加速踏板开度变化率和车辆剩余能量值确定目标转矩补偿值,以控制驱动电机输出相应的目标转矩补偿值,使得车辆加速从而满足驾驶员的紧急加速需求。
步骤S3,以目标转矩补偿值与最大输出转矩值的和值控制车辆加速。
具体地,在赛道模式下驾驶员对于车辆的加速需求更为迫切,驾驶员希望车辆的行驶速度能在更短时间内快速提升,但现有的加速控制策略无法控制车辆快速提高行驶速度。基于此,本申请提出了一种车辆加速控制方法,由于驱动电机在常规模式的最大输出转矩值的情况下仍有输出扭矩的能力,因此通过计算目标转矩补偿值与最大输出转矩值的和值,将和值作为驱动电机的输出扭矩,即将目标转矩补偿值补偿到最大输出转矩值,从而使驱动电机的输出扭矩在短时间内突破在常规模式下的最大输出转矩值,且驱动电机的输出扭矩突破最大输出转矩值的维持时间较短,使得车辆在短时间内具有较大的加速度,以控制车辆快速提高行驶速度,从而满足驾驶员的紧急加速需求,使得驾驶员体验到极限驾驶的乐趣。
此外,若车辆未激活赛道模式,则无需对驱动电机的输出扭矩进行转矩补偿。
根据本申请实施例的车辆加速控制方法,在赛道模式下通过加速踏板开度变化率来判断驾驶员的紧急加速意图的紧急情况,并结合车辆剩余能量值来确定目标转矩补偿值,将目标转矩补偿值补偿到最大输出转矩值以控制车辆加速,从而使驱动电机的输出扭矩在短时间内突破在常规模式下的最大输出转矩值且维持时间较短,使得车辆在短时间内具有较大的加速度,以控制车辆快速提高行驶速度,从而满足驾驶员的紧急加速需求,使得驾驶员体验到极限驾驶的乐趣。
在一些实施例中,在以目标转矩补偿值与最大输出转矩值的和值控制车辆加速之前,车辆加速控制方法还包括:获取当前加速踏板值;确定当前加速踏板值满足预设紧急加速条件且车辆未处于转向状态。其中,预设紧急加速条件为:当前加速踏板值大于预设开度阈值,且当前加速踏板值的维持时长大于预设时长。
其中,当前加速踏板值可以理解为驾驶员在当前时刻控制车辆行驶速度时踩踏加速踏板的深度。转向状态可以理解为车辆行驶方向发生改变的状态。
具体地,车辆处于赛道模式下时,信号采集模块实时采集当前加速踏板值,并对采集到的当前加速踏板值进行信号处理。由于驾驶员通过踩踏加速踏板来控制车辆进行加速,因此通过当前加速踏板值来判断驾驶员的紧急加
速意图。若当前加速踏板值大于预设开度阈值,并且当前加速踏板值的维持时长大于预设时长,此时当前加速踏板值较大,并且在持续的一段时间保持较大的当前加速踏板值,则说明驾驶员期望车辆进行紧急加速,使得车辆获得较高的车速。若当前加速踏板值大于预设开度阈值,当前加速踏板值的维持时长不大于预设时长,此时驾驶员可能误踩踏加速踏板,则说明驾驶员没有紧急加速意图,则控制车辆不响应驾驶员的紧急加速意图。
基于此,当车辆行驶状态判断模块识别到驾驶员的驾驶意图为紧急加速意图后,判断车辆是否处于转向状态,其中,转向状态可以为左转向和右转向,并通过判断结果来控制车辆是否响应驾驶员的紧急加速意图。若车辆处于转向状态,此时若控制车辆加速会使车辆发生事故,则不响应驾驶员的紧急加速意图;若车辆未处于转向状态,则说明车辆处于安全行驶状态,则响应驾驶员的紧急加速意图,以确保车辆在安全行驶的状态下进行紧急加速,保护驾驶员的人身安全。
其中,对于判断车辆是否处于转向状态,可以通过车辆的相关转向数据来判断,如可以根据方向盘转角值或转向灯状态等数据进行判断,对此不作限制。
在一些实施例中,判断车辆是否处于转向状态包括:获取方向盘转角值;若方向盘转角值大于预设转角阈值,则确定车辆处于转向状态;若方向盘转角值小于或等于预设转角阈值,则确定车辆未处于转向状态。
其中,预设转角阈值可以理解为根据实验标定的车辆转换行驶方向的方向盘转角阈值,如预设转角阈值可以为5°。
具体地,在车辆行驶过程中,通过控制方向盘转动来控制车辆的行驶方向。当方向盘转角值过大时,会导致车辆的行驶方向发生改变,因此可通过方向盘转角值来判断车辆是否处于转向状态。信号采集模块实时采集车辆在行驶过程中的方向盘转角值。若方向盘转角值大于预设转角阈值,则说明方向盘转角值增大而导致车辆偏离原有的行驶方向,则确定车辆处于转向状态,此时不响应驾驶员的紧急加速意图。若方向盘转角值小于或等于预设转角阈值,则说明方向盘转角值处于车辆原有行驶方向的范围,则确定车辆未处于转向状态,此时车辆处于安全行驶状态,则响应驾驶员的紧急加速意图。
在一些实施例中,根据加速踏板开度变化率和车辆剩余能量值确定目标转矩补偿值,包括:根据加速踏板开度变化率和车辆剩余能量值确定目标扭矩补偿系数;以及根据目标扭矩补偿系数和最大输出转矩值获得目标转矩补偿值。
其中,目标扭矩补偿系数是通过大量试验标定的系数。
具体地,驾驶员的紧急加速意图的紧急程度越高,则车辆所需的驱动电机输出的扭矩补偿值越大。然而,由于动力电池提供驱动电机输出扭矩补偿所需的电量,以及车辆油箱提供驱动电机输出扭矩补偿所需的油量,因此在确定驾驶员紧急加速意图的紧急程度后,需根据动力电池的电量剩余情况或车辆油箱的剩余油量值,来增加或减少驱动电机输出的转矩补偿值,从而能够最大限度地发挥驱动电机的动力性。由此,本申请中通过加速踏板开度变化率和车辆剩余能量值确定目标扭矩补偿系数,以通过目标扭矩补偿系数增加或减少驱动电机输出的转矩补偿值。也就是说,车辆内预存有加速踏板开度变化率和车辆剩余能量值对应的扭矩补偿系数的对应表,即在不同的加速踏板开度变化率和车辆剩余能量值下,对应有不同的扭矩补偿系数,其中,加速踏板开度变化率和车辆剩余能量值越高,对应的扭矩补偿系数越高。另外,在相同的加速踏板开度变化率下,车辆剩余能量值越高则对应的扭矩补偿系数越高。由此,通过加速踏板开度变化率和车辆剩余能量值,来获得最优的目标扭矩补偿系数,通过目标扭矩补偿系数来调整驱动电机输出的转矩补偿值。可以理解的是,目标扭矩补偿系数越大,则目标转矩补偿值越大,再将调整后的目标转矩补偿值与最大输出转矩值的和值作为驱动电机的输出扭矩的峰值,使得车辆具有更大的加速度来控制车辆加速,从而使得驾驶员能体验到极限驾驶的乐趣,以满足驾驶员紧急加速的需求。其中,动力电池的电量剩余情况可由电池包内置的传感器获得,车辆油箱内剩余油量值可由油箱上附有的油量液位传感器获得。
在一些实施例中,根据加速踏板开度变化率和车辆剩余能量值确定目标扭矩补偿系数,包括:确定加速踏板开度变化率大于第一预设开度变化率;若车辆剩余能量值大于第一能量阈值,则以第一扭矩补偿系数作为目标扭矩补偿系数;若车辆剩余能量值小于或等于第一能量阈值且大于第二能量阈值,则以第二扭矩补偿系数作为目标扭矩
补偿系数;若车辆剩余能量值小于或等于第二能量阈值且大于第三能量阈值,则以第三扭矩补偿系数作为目标扭矩补偿系数。其中,第一能量阈值>第二能量阈值>第三能量阈值,第一扭矩补偿系数>第二扭矩补偿系数>第三扭矩补偿系数>0。
其中,预设开度变化率可以理解为根据驾驶员的紧急加速意图设定的加速踏板开度的变化率。预设开度变化率越大,驾驶员的紧急加速意图越高。第一能量阈值可以理解为动力电池的电量充足的阈值。第二能量阈值可以理解为动力电池的电量较为充足的阈值。第三能量阈值可以理解为动力电池的电量不充足的阈值。扭矩补偿系数可以理解为根据驾驶员的紧急加速意图和动力电池的剩余电量进行试验标定的系数,扭矩补偿系数小于0.2。
在实施例中,第一扭矩补偿系数K1对应的转矩补偿值为第一转矩补偿值ΔT1,在此情况下驱动电机的输出扭矩的峰值为Tm1,驱动电机的输出功率为P1,车辆的速度为V1;第二扭矩补偿系数K2对应的转矩补偿值为第二转矩补偿值ΔT2,在此情况下驱动电机的输出扭矩的峰值为Tm2,驱动电机的输出功率为P2,车辆的速度为V2;第三扭矩补偿系数K3对应的转矩补偿值为第三转矩补偿值ΔT3,在此情况下驱动电机的输出扭矩的峰值为Tm3,驱动电机的输出功率为P3,车辆的速度为V3。如图2所示,扭矩补偿系数越大则转矩补偿值越大,则在t1时间前,驱动电机的输出扭矩的峰值越大,即Tm1>Tm2>Tm3>Tmax;以及在驱动电机的输出功率达到最大输出功率Tmax之前,扭矩补偿系数越大则输出功率越大即P1>P2>P3>Pmax;以及车辆的速度达到最大速度Vmax之前,扭矩补偿系数越大则车辆的速度越大,即V1>V2>V3>Vmax。由此,本申请中通过选择扭矩补偿系数来增加或减少转矩补偿值,以满足驾驶员紧急加速意图的不同紧急程度和车辆剩余能量值下的紧急加速需求。
具体地,通过判断加速踏板开度变化率的大小来识别驾驶员的加速意图的紧急程度。当加速踏板开度变化率越大,则驾驶员的加速意图的紧急程度越高。因此,根据加速踏板开度变化率和预设开度变化率来划分驾驶员的紧急加速意图的紧急程度。若确定加速踏板开度变化率大于第一预设开度变化率如可表示为则说明加速踏板开度变化率较大,即加速踏板被快速地踏入,则判定驾驶员有很强的加速意图。当加速意图的紧急程度越高,则说明驾驶员期望车辆达到的速度越高,则驱动电机输出较大的扭矩补偿值。然而,由于动力电池提供驱动电机输出的扭矩补偿值所需的电量,且扭矩补偿值越大所需电量越大,因此需考虑动力电池的电量情况。在驾驶员加速意图的紧急程度相同的情况下,根据车辆剩余能量值适应性地增加或减少驱动电机输出的扭矩补偿值,从而能够最大限度地发挥驱动电机的动力性,使驾驶员可以体验到极限驾驶的乐趣。
基于此,当车辆剩余能量值较大时,动力电池的电量充足且可以满足驾驶员的紧急加速意图;当车辆剩余能量值较小时,动力电池的电量不足,则应当适应性地减少驱动电机输出的扭矩补偿值,以节约动力电池的电量。因此,本申请中通过车辆剩余能量值SOC0来选择目标扭矩补偿系数,以增加或减少目标转矩补偿值。若车辆剩余能量值SOC0大于第一能量阈值SOC1,如可表示为SOC0>SOC1,则说明动力电池的电量非常充足,此时无需减少驱动电机输出的转矩补偿值,则以第一扭矩补偿系数K1作为目标扭矩补偿系数,以获得第一扭矩补偿系数K1对应的第一转矩补偿值ΔT1作为目标转矩补偿值,以控制驱动电机输出第一转矩补偿值ΔT1来满足驾驶员很高的紧急加速意图,并且由于第一转矩补偿值ΔT1较大,使得车辆的速度V1较高。若车辆剩余能量值SOC0小于或等于第一能量阈值SOC1且大于第二能量阈值SOC2,如可表示为SOC2<SOC0≤SOC1,则说明动力电池的电量较为充足,此时应相对调低驱动电机输出的转矩补偿值,以节约动力电池的电量,则以第二扭矩补偿系数K2作为目标扭矩补偿系数,以获得第二扭矩补偿系数K2对应的第二转矩补偿值ΔT2作为目标转矩补偿值,以控制驱动电机输出第二转矩补偿值ΔT2来满足驾驶员很高的紧急加速意图,且第二转矩补偿值ΔT2小于第一转矩补偿值ΔT1,使得车辆的速度V2相较于速度V1较低。若车辆剩余能量值SOC0小于或等于第二能量阈值SOC2且大于第三能量阈值SOC3,如可表示为SOC3<SOC0≤SOC2,则说明动力电池的电量较低,此时应大程度地减少驱动电机的扭矩补偿值,以第三扭矩补偿系数K3作为目标扭矩补偿系数,以获得第三扭矩补偿系数K3对应的第三转矩补偿值ΔT3作为目标转矩补偿值,以控制驱动电机输出第三转矩补偿值ΔT3来满足驾驶员很高的紧急加速意图,且第三转矩补偿值ΔT3低于第二转矩补偿值ΔT2,使得车辆的速度V3相较于速度V2较低。
需要说明的是,在驾驶员加速意图的紧急程度相同的情况下,车辆剩余能量值SOC0越高,目标扭矩补偿系数、
目标转矩补偿值、驱动电机的输出扭矩、驱动电机的输出功率以及车辆的速度越大,由此,通过车辆剩余能量值SOC0来不同程度地满足驾驶员很强的紧急加速需求。
在一些实施例中,根据加速踏板开度变化率和车辆剩余能量值确定目标扭矩补偿系数,还包括:确定加速踏板开度变化率小于或等于第一预设开度变化率且大于第二预设开度变化率;若车辆剩余能量值大于第二能量阈值,则以第二扭矩补偿系数作为目标扭矩补偿系数;若车辆剩余能量值小于或等于第二能量阈值且大于第三能量阈值,则以第三扭矩补偿系数作为目标扭矩补偿系数。
具体地,根据加速踏板开度变化率和预设开度变化率来划分驾驶员的紧急加速意图的紧急程度。若确定加速踏板开度变化率小于或等于第一预设开度变化率且大于第二预设开度变化率如可表示为则说明加速踏板开度变化率较大即加速踏板被快速地踏入,则判定驾驶员的紧急加速意图较强,此时驱动电机输出的转矩补偿值所需电量适中,因此判断车辆剩余能量值SOC0是否大于第二能量阈值SOC2即可满足驾驶员的紧急加速意图,若车辆剩余能量值SOC0大于第二能量阈值SOC2,如可表示为SOC0>SOC2,则以第二扭矩补偿系数K2作为目标扭矩补偿系数,以获得第二扭矩补偿系数K2对应的第二转矩补偿值ΔT2作为目标转矩补偿值,以控制驱动电机输出第二转矩补偿值ΔT2来满足驾驶员较强的紧急加速意图。若车辆剩余能量值SOC0小于或等于第二能量阈值SOC2且大于第三能量阈值SOC3,如可表示为SOC3<SOC0≤SOC2,则说明动力电池的电量较低,则以第三扭矩补偿系数K3作为目标扭矩补偿系数,以获得第三扭矩补偿系数K3对应的第三转矩补偿值ΔT3作为目标转矩补偿值,以控制驱动电机输出第三转矩补偿值ΔT3来满足驾驶员较强的紧急加速需求。
在一些实施例中,根据加速踏板开度变化率和车辆剩余能量值确定目标扭矩补偿系数,还包括:确定加速踏板开度变化率小于或等于第二预设开度变化率且大于第三预设开度变化率;确定车辆剩余能量值大于第三能量阈值,则以第三扭矩补偿系数作为目标扭矩补偿系数。
具体地,根据加速踏板开度变化率和预设开度变化率来划分驾驶员的紧急加速意图的紧急程度。若确定加速踏板开度变化率小于或等于第二预设开度变化率且大于第三预设开度变化率如可表示为则说明加速踏板开度变化率较小即加速踏板被缓慢地踏入,则判定驾驶员的加速意图较弱,此时驱动电机输出的转矩补偿值所需电量较小,因此判断车辆剩余能量值SOC0是否大于第三能量阈值SOC3即可满足驾驶员较弱的紧急加速意图。若确定车辆剩余能量值SOC0大于第三能量阈值SOC3,如可表示为SOC0>SOC3,则以第三扭矩补偿系数K3作为目标扭矩补偿系数,以获得第三扭矩补偿系数K3对应的第三转矩补偿值ΔT3作为目标转矩补偿值。若确定车辆剩余能量值SOC0小于或等于第三能量阈值,如可表示为SOC0≤SOC3,则说明动力电池的电量无法满足驾驶员较弱的紧急加速意图,则控制车辆退出紧急加速模式。
在一些实施例中,根据目标扭矩补偿系数和最大输出转矩值获得目标转矩补偿值,包括:计算目标扭矩补偿系数和最大输出转矩值的乘积值,将该乘积值作为目标转矩补偿值。
其中,目标转矩补偿值ΔT=目标扭矩补偿系数K*最大输出转矩值Tmax。若目标扭矩补偿系数为第一扭矩补偿系数K1,则第一扭矩补偿系数K1和最大输出转矩值Tmax的乘积值为第一转矩补偿值ΔT1,如表示为ΔT1=K1Tmax,将第一转矩补偿值ΔT1作为目标转矩补偿值,则驱动电机的输出扭矩的峰值为Tm1=Tmax+K1Tmax。若目标扭矩补偿系数为第二扭矩补偿系数K2,则第二扭矩补偿系数K2和最大输出转矩值Tmax的乘积值为第二转矩补偿值ΔT2,如可表示为ΔT2=K2Tmax,将第二转矩补偿值ΔT2作为目标转矩补偿值ΔT,则驱动电机的输出扭矩的峰值为Tm2=Tmax+K2Tmax。若目标扭矩补偿系数为第三扭矩补偿系数K3,则第三扭矩补偿系数K3和最大输出转矩值Tmax的乘积值为第三转矩补偿值ΔT3,如可表示为ΔT3=K3Tmax,将第三转矩补偿值ΔT3作为目标转矩补偿值ΔT,则驱动电机的输出扭矩的峰值为Tm3=Tmax+K3Tmax。如图2所示,在t1时间点前,Tm1>Tm2>Tm3>Tmax,也就是说,当目标扭矩补偿系数越高,对应的目标转矩补偿值和驱动电机的输出扭矩的峰值越大,以及由图2中输出扭矩和时间的曲线斜率可得,驱动电机也可以更快地提高输出扭矩,并可以在一定程度上突破驱动电机的最大输出转矩值Tmax,使车辆能更快地响应驾驶员的紧急加速意图,并使车辆在一段时间内具有更大的加速度。当驱动电机的输出扭矩达到Tm1、Tm2、Tm3后,输出指令来控制驱动电机输出扭矩为最大输出转矩值Tmax,在t1时间点后驱动电机的输出扭矩为最大输出转矩值Tmax或低于最大输出
转矩值Tmax的输出扭矩。
下面参考图3,对本申请实施例的车辆加速控制方法进行举例说明,具体内容如下。
步骤S6,开始。
步骤S7,获取车辆的状态信号,状态信号如当前加速踏板值、加速踏板开度变化率车辆剩余能量值SOC0和赛道模式信号等,并通过卡尔曼滤波等常用信号处理方式对状态信号进行处理。
步骤S8,判断车辆是否激活赛道模式,若是,则执行步骤S9,反之执行步骤S6。
步骤S9,判断当前加速踏板值θ0是否大于预设开度阈值θ1,即是否满足θ0>θ1,若是,则执行步骤S10,反之执行步骤S6。
步骤S10,判断当前加速踏板值的维持时长t是否大于预设时长t1,若是,则执行步骤S11,反之执行步骤S6。
步骤S11,判断方向盘转角值是否小于或等于预设转角阈值,若是,则执行步骤S12,反之执行步骤S6。
步骤S12,判断加速踏板开度变化率是否大于第一预设开度变化率即是否满足若是,则执行步骤S13,反之执行步骤S15。
步骤S13,判断车辆剩余能量值SOC0是否大于第一能量阈值SOC1,即是否满足SOC0>SOC1,若是,则执行步骤S14,反之执行步骤S16。
步骤S14,目标转矩补偿值ΔT为第一转矩补偿值ΔT1。
步骤S15,判断加速踏板开度变化率是否大于第二预设开度变化率即是否满足若是,则执行步骤S16,反之执行步骤S18。
步骤S16,判断车辆剩余能量值SOC0是否大于第二能量阈值SOC2,即是否满足SOC0>SOC2,若是,则执行步骤S17,反之执行步骤S19。
步骤S17,目标转矩补偿值ΔT为第二转矩补偿值ΔT2。
步骤S18,判断加速踏板开度变化率是否大于第三预设开度变化率即是否满足若是,则执行步骤S19,反之执行步骤S21。
步骤S19,判断车辆剩余能量值SOC0是否大于第三能量阈值SOC3,即是否满足SOC0>SOC3,若是,则执行步骤S20,反之执行步骤S21。
步骤S20,目标转矩补偿值ΔT为第三转矩补偿值ΔT3。
步骤S21,退出紧急加速模式。
本申请第二方面实施例提供一种车辆10,如图4所示,该车辆10包括至少一个处理器1和与至少一个处理器1通信连接的存储器2。
其中,存储器2中存储有可被至少一个处理器1执行的计算机程序,至少一个处理器1执行计算机程序时实现上述实施例中的车辆加速控制方法。
需要说明的是,本申请实施例的车辆10的具体实现方式与本申请上述任意实施例的车辆加速控制方法的具体实现方式类似,具体请参见关于方法部分的描述,为了减少冗余,此处不再赘述。
根据本申请实施例的车辆10,可以在赛道模式下通过转矩补偿值使得驱动电机的输出扭矩在短时间内突破最大输出转矩值且维持时间较短,以满足驾驶员的紧急加速意图,从而提高驾驶员的驾驶体验。
本申请第三方面实施例提供一种计算机存储介质,其上存储有计算机程序,其中,计算机程序被处理器执行时实现上述实施例中的车辆加速控制方法。
在本说明书的描述中,流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令
的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。
Claims (13)
- 一种车辆加速控制方法,其特征在于,包括:在赛道模式下,获取加速踏板开度变化率以及车辆剩余能量值;根据所述加速踏板开度变化率和所述车辆剩余能量值确定目标转矩补偿值;以及以所述目标转矩补偿值与最大输出转矩值的和值控制所述车辆加速。
- 根据权利要求1所述的车辆加速控制方法,其特征在于,在以所述目标转矩补偿值与最大输出转矩值的和值控制所述车辆加速之前,还包括:获取当前加速踏板值;以及确定所述当前加速踏板值满足预设紧急加速条件且所述车辆未处于转向状态,其中,所述预设紧急加速条件为:所述当前加速踏板值大于预设开度阈值,且所述当前加速踏板值的维持时长大于预设时长。
- 根据权利要求2所述的车辆加速控制方法,其特征在于,确定所述车辆未处于转向状态,包括:获取所述车辆的方向盘转角值;以及若所述方向盘转角值小于或等于预设转角阈值,则确定所述车辆未处于转向状态。
- 根据权利要求3所述的车辆加速控制方法,其特征在于,所述预设转角阈值为5°。
- 根据权利要求2-4中任一项所述的车辆加速控制方法,其特征在于,所述当前加速踏板值为驾驶员在当前时刻控制所述车辆的行驶速度时踩踏所述加速踏板的深度。
- 根据权利要求1-5中任一项所述的车辆加速控制方法,其特征在于,所述剩余能量值为车辆内动力电池的剩余容量值或车辆剩余油量值。
- 根据权利要求1-6中任一项所述的车辆加速控制方法,其特征在于,根据所述加速踏板开度变化率和所述车辆剩余能量值确定目标转矩补偿值,包括:根据所述加速踏板开度变化率和所述车辆剩余能量值确定目标扭矩补偿系数;以及根据所述目标扭矩补偿系数和所述最大输出转矩值获得所述目标转矩补偿值。
- 根据权利要求7所述的车辆加速控制方法,其特征在于,根据所述加速踏板开度变化率和所述车辆剩余能量值确定目标扭矩补偿系数,包括:确定所述加速踏板开度变化率大于第一预设开度变化率;若所述车辆剩余能量值大于第一能量阈值,则以第一扭矩补偿系数作为所述目标扭矩补偿系数;若所述车辆剩余能量值小于或等于所述第一能量阈值且大于第二能量阈值,则以第二扭矩补偿系数作为所述目标扭矩补偿系数;以及若所述车辆剩余能量值小于或等于所述第二能量阈值且大于第三能量阈值,则以第三扭矩补偿系数作为所述目标扭矩补偿系数,其中,所述第一能量阈值>所述第二能量阈值>所述第三能量阈值,所述第一扭矩补偿系数>所述第二扭矩补偿系数>所述第三扭矩补偿系数>0。
- 根据权利要求8所述的车辆加速控制方法,其特征在于,根据所述加速踏板开度变化率和所述车辆剩余能量值确定目标扭矩补偿系数,还包括:确定所述加速踏板开度变化率小于或等于所述第一预设开度变化率且大于第二预设开度变化率;若所述车辆剩余能量值大于所述第二能量阈值,则以所述第二扭矩补偿系数作为所述目标扭矩补偿系数;以及若所述车辆剩余能量值小于或等于所述第二能量阈值且大于所述第三能量阈值,则以所述第三扭矩补偿系数 作为所述目标扭矩补偿系数。
- 根据权利要求9所述的车辆加速控制方法,其特征在于,根据所述加速踏板开度变化率和所述车辆剩余能量值确定目标扭矩补偿系数,还包括:确定所述加速踏板开度变化率小于或等于所述第二预设开度变化率且大于第三预设开度变化率;以及确定所述车辆剩余能量值大于所述第三能量阈值,则以所述第三扭矩补偿系数作为所述目标扭矩补偿系数。
- 根据权利要求8-10中任一项所述的车辆加速控制方法,其特征在于,根据所述目标扭矩补偿系数和所述最大输出转矩值获得所述目标转矩补偿值,包括:计算所述目标扭矩补偿系数和所述最大输出转矩值的乘积值,将所述乘积值作为所述目标转矩补偿值。
- 一种车辆(10),其特征在于,包括:至少一个处理器(1);存储器(2),所述存储器(2)与至少一个所述处理器(1)通信连接,其中,所述存储器(2)中存储有可被至少一个所述处理器(1)执行的计算机程序,至少一个所述处理器(1)执行所述计算机程序时实现根据权利要求1-11中任一项所述的车辆加速控制方法。
- 一种计算机存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现根据权利要求1-11中任一项所述的车辆加速控制方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211664930.8 | 2022-12-23 | ||
CN202211664930.8A CN118238626A (zh) | 2022-12-23 | 2022-12-23 | 车辆加速控制方法、车辆和计算机存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024130978A1 true WO2024130978A1 (zh) | 2024-06-27 |
Family
ID=91561285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/099630 WO2024130978A1 (zh) | 2022-12-23 | 2023-06-12 | 车辆加速控制方法、车辆和计算机存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118238626A (zh) |
WO (1) | WO2024130978A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108177559A (zh) * | 2017-12-28 | 2018-06-19 | 天津易众腾动力技术有限公司 | 一种电动汽车整车控制器计算输出扭矩的方法 |
CN109720213A (zh) * | 2017-10-30 | 2019-05-07 | 河南森源重工有限公司 | 一种车辆转矩控制方法及装置 |
CN110203191A (zh) * | 2019-06-04 | 2019-09-06 | 同济大学 | 一种混合动力车辆加速踏板的扭矩识别方法、系统与计算机可读存储介质 |
CN113135097A (zh) * | 2020-01-20 | 2021-07-20 | 北京新能源汽车股份有限公司 | 一种急加速控制方法、装置及电动汽车 |
CN113263922A (zh) * | 2021-07-04 | 2021-08-17 | 东北石油大学 | 基于电池参数解析的电机转矩补偿控制方法 |
EP4064275A1 (en) * | 2021-03-23 | 2022-09-28 | Tge-Pin Chuang | Vehicle output simulation system |
-
2022
- 2022-12-23 CN CN202211664930.8A patent/CN118238626A/zh active Pending
-
2023
- 2023-06-12 WO PCT/CN2023/099630 patent/WO2024130978A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109720213A (zh) * | 2017-10-30 | 2019-05-07 | 河南森源重工有限公司 | 一种车辆转矩控制方法及装置 |
CN108177559A (zh) * | 2017-12-28 | 2018-06-19 | 天津易众腾动力技术有限公司 | 一种电动汽车整车控制器计算输出扭矩的方法 |
CN110203191A (zh) * | 2019-06-04 | 2019-09-06 | 同济大学 | 一种混合动力车辆加速踏板的扭矩识别方法、系统与计算机可读存储介质 |
CN113135097A (zh) * | 2020-01-20 | 2021-07-20 | 北京新能源汽车股份有限公司 | 一种急加速控制方法、装置及电动汽车 |
EP4064275A1 (en) * | 2021-03-23 | 2022-09-28 | Tge-Pin Chuang | Vehicle output simulation system |
CN113263922A (zh) * | 2021-07-04 | 2021-08-17 | 东北石油大学 | 基于电池参数解析的电机转矩补偿控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN118238626A (zh) | 2024-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102837700B (zh) | 自动车辆 | |
WO2022127461A1 (zh) | 车速引导方法、装置、车辆及存储介质 | |
CN104627022B (zh) | 电动汽车的力矩滤波的控制方法 | |
WO2015169226A1 (en) | Vehicle parking interlock system and method | |
EP3656623A1 (en) | Uphill starting control method and control device | |
CN106740824A (zh) | 需求扭矩滤波方法、系统及混合动力汽车 | |
JP4281746B2 (ja) | ハイブリッド車両の運行制御システム | |
CN107599889A (zh) | 一种倒车控制方法、装置及电动汽车 | |
CN111942353B (zh) | 纯电动车辆紧急制动控制方法、整车控制器及控制装置 | |
CN115284893A (zh) | 电动汽车力矩分配方法、系统、计算机及可读存储介质 | |
WO2024130978A1 (zh) | 车辆加速控制方法、车辆和计算机存储介质 | |
WO2024183422A1 (zh) | 车辆的四驱模式切换方法、装置、车辆及存储介质 | |
WO2022037324A1 (zh) | 控制车辆行驶的方法、装置、车辆、设备、程序和介质 | |
CN117400739A (zh) | 能量回收控制方法、装置、车辆及存储介质 | |
CN116279402A (zh) | 新能源车扭矩过零控制方法、系统、新能源车及存储介质 | |
CN116552488A (zh) | 车辆的制动热衰退控制方法、装置、车辆及存储介质 | |
CN107253451B (zh) | 下坡时电动汽车定速巡航加速控制方法、装置及系统 | |
WO2023131272A1 (zh) | 车辆控制方法、装置和车辆 | |
CN112622637B (zh) | 车辆扭矩控制方法、装置、介质及车辆 | |
CN113442723B (zh) | 一种车辆的防误踩油门的控制方法、装置及车辆 | |
CN115709718A (zh) | 新手驾驶辅助方法、装置、车辆及存储介质 | |
CN115071431A (zh) | 新能源汽车安全驾驶控制系统、方法及新能源汽车 | |
CN114312354A (zh) | 一种双电机扭矩控制方法、装置及计算机可读存储介质 | |
CN111605411A (zh) | 跨控制器的主动阻尼防抖控制方法、系统及电动汽车 | |
WO2024207899A1 (zh) | 智能驾驶方法及相关装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23905165 Country of ref document: EP Kind code of ref document: A1 |