WO2024125551A1 - 细胞周期蛋白k降解剂及其应用 - Google Patents

细胞周期蛋白k降解剂及其应用 Download PDF

Info

Publication number
WO2024125551A1
WO2024125551A1 PCT/CN2023/138417 CN2023138417W WO2024125551A1 WO 2024125551 A1 WO2024125551 A1 WO 2024125551A1 CN 2023138417 W CN2023138417 W CN 2023138417W WO 2024125551 A1 WO2024125551 A1 WO 2024125551A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkylene
compound
alkyl
halogen
pharmaceutically acceptable
Prior art date
Application number
PCT/CN2023/138417
Other languages
English (en)
French (fr)
Inventor
徐贝帝
俞智勇
韩晓军
常鑫
邱庆崇
章玲
王垚
何南海
王小寒
夏祥宇
Original Assignee
杭州阿诺生物医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州阿诺生物医药科技有限公司 filed Critical 杭州阿诺生物医药科技有限公司
Publication of WO2024125551A1 publication Critical patent/WO2024125551A1/zh

Links

Definitions

  • Tumors are the second largest killer threatening human health, with about 10 million people dying from tumors worldwide each year. Abnormal expression of cellular proteins is considered to be an important factor leading to the occurrence and development of tumors, so most drugs target these abnormally expressed proteins. Compared with traditional inhibitor-based drug development, drug-induced protein degradation is a new strategy for these tumor-related proteins. According to the mechanism of action, protein degraders can be divided into three categories, namely, protein hydrolysis targeting chimeras (PROTACs), monovalent degraders, and molecular glue degraders (Burslem, G.M. & Crews, C.M. Chem. Rev. 117, 11269–11301 (2017).).
  • PROTACs protein hydrolysis targeting chimeras
  • monovalent degraders monovalent degraders
  • molecular glue degraders Bourslem, G.M. & Crews, C.M. Chem. Rev. 117, 11269–11301 (2017).
  • Monovalent degraders induce degradation by binding to proteins and changing their conformation or other changes.
  • Molecular glues induce the degradation of target proteins by inducing the interaction between Culin-RING E3 ligase and target proteins.
  • the degradation of target proteins mediated by molecular glues may not depend on the ligand pocket of the target protein.
  • the thalidomide analogs (Simonetta, K.R. et al. Nat Commun 10, 1402 (2019))
  • aryl sulfonamide analogs Baek, K. et al. Nat Chem Biol 16, 2–3 (2020) reported so far are all developed according to this mechanism. Therefore, molecular glues can bring new hope to targets that were previously difficult to drug due to the lack of suitable ligand pockets.
  • Cyclin K is the most important cell cycle protein of cyclin-dependent kinase 12/13 (CDK12/13). eral.Int J Mol Sci.2021 Mar;22(6):2935). It can participate in the regulation of transcription, post-transcriptional modification, cell cycle, cell proliferation and other biological processes by forming a complex with CDK12/13. Studies have shown that CDK12/13 can participate in the regulation of transcription, post-transcriptional modification, cell cycle, cell proliferation and other biological processes by forming a complex with CDK12/13. The CDK12/13 complex phosphorylates the C-terminal domain of RNA polymerase II to regulate its activity, thereby regulating the expression of DNA damage repair genes such as BRCA1, ATR, FANC1, etc.
  • CDK12/13 is considered a potential target for tumor therapy (Cells 2020, 9(6), 1483;).
  • degraders targeting Cyclin K to affect the formation of CDK12/13 and Cyclin K protein complexes By designing degraders targeting Cyclin K to affect the formation of CDK12/13 and Cyclin K protein complexes, a new idea for inhibiting the function of CDK12/13 is provided.
  • Benjamin L. Ebert et al. reported (Nature 2020, 585, 293–297.) that the CDK inhibitor CR8 induces the degradation of Cyclin K protein by the mechanism of molecular glue degrader.
  • molecular glue degraders for Cyclin K there are few molecular glue degraders for Cyclin K, and there is an urgent need to discover more compounds with high degradation activity against Cyclin K for drug development.
  • the present invention provides a class of compounds with good Cyclin K degradation activity, and the use of the compounds and their stereoisomers, tautomers, solvates, pharmaceutically acceptable salts, metabolites, isotope derivatives, N-oxides or prodrugs, and pharmaceutical compositions containing the compounds in the treatment or prevention of cyclin K-related diseases.
  • Cy represents an 11-14 membered tricyclic aromatic condensed ring
  • W 1 each independently represents CR, N or a bond
  • W 3 each independently represents C or N, and at most two W 3 can be N at the same time;
  • W 4 each independently represents CR 1 , N, NR a , S or O;
  • R, R0 and R1 each independently represent hydrogen, halogen, nitro, cyano, -R a , -OR a , -SR a , -NR a R b , -C(O)R a , -C(O)OR a , -C(O)NR a R b , -NR a C(O)R b , -S(O) 2 R a , -S(O)R a , -S(O) 2 NR a R b , -P(O)R a R b , C 1 -C 6 alkyl, (C 2 -C 6 )alkenyl, (C 2 -C 6 )alkynyl, said alkyl, alkenyl or alkynyl being independently optionally substituted by 0 to 3 more selected from -OR a , -SR a , -NR a R b , -NR a
  • RL and RL ' each independently represent hydrogen, fluorine, C1 - C6 alkyl or C3 - C6 cycloalkyl, and RL and RL ' may form a 3-6 membered ring together with the carbon atom to which they are attached;
  • R2 represents halogen, -R a , -OR a , -SR a , nitro, cyano, -NR a R b , -NR a C(O)R b , -C(O)R a , -C(O)OR a , -C(O)NR a R b , -S(O) 2 R a , -S(O)R a , -S(O) 2 NR a R b , -P(O)R a R b , (C 2 -C 6 )alkenyl, (C 2 -C 6 )alkynyl;
  • R 3 represents C 1 -C 6 alkyl, C 1 -C 6 alkenyl, C 1 -C 6 alkynyl, C 3 -C 10 cycloalkyl, 3-10 membered heterocycloalkyl, C 6 -C 10 aryl, 5-10 membered heteroaryl, -NR M R N , -NHR M , -OR M , -SR M ;
  • R 3 represents C 1 -C 6 alkyl, C 1 -C 6 alkenyl, C 1 -C 6 alkynyl, C 3 -C 10 cycloalkyl, or 3-10 membered heterocycloalkyl, it may be optionally substituted by 0, 1, 2, or 3 substituents selected from the group consisting of oxo, nitro, halogen, cyano, -R a , -(C 0 -C 6 alkylene)OR a , -(C 0 -C 6 alkylene)SR a , -(C 0 -C 6 alkylene)NR a R b , -(C 0 -C 6 alkylene)NR a C(O)R b , -(C 0 -C 6 alkylene)C(O)R a , -(C 0 -C 6 alkylene)C(O)OR a , -(C 0 -C 6 alkylene)
  • R 3 represents a C 6 -C 10 aryl group or a 5-10 membered heteroaryl group, it may be optionally substituted by 0, 1, 2 or 3 substituents selected from the group consisting of nitro, halogen, cyano, -R a , -(C 0 -C 6 alkylene)OR a , -(C 0 -C 6 alkylene)SR a , -(C 0 -C 6 alkylene)NR a R b , -(C 0 -C 6 alkylene)NR a C(O)R b , -(C 0 -C 6 alkylene)C(O)R a , -(C 0 -C 6 alkylene)C(O)OR a , -(C 0 -C 6 alkylene)C(O)NR a R b , -(C 0 -C 6 alkylene) -(C 0 -C 6 alkylene
  • Ra and Rb each independently represent hydrogen, C1 - C6 alkyl or C3 - C8 cycloalkyl, and the alkyl or cycloalkyl may each be optionally substituted by 0, 1, 2 or 3 halogen atoms.
  • Cy represents:
  • W 1 each independently represents CR or N; W 2 , W 3 and W 4 are as defined above in formula (I).
  • Cy represents:
  • X each independently represents NR a , O or S
  • W 1 each independently represents CR or N
  • W 2 each independently represents CR 0 or N
  • W 4 each independently represents CR 1 or N.
  • Cy represents:
  • X each independently represents NR a , O or S
  • W 1 each independently represents CR or N
  • W 2 each independently represents CR 0 or N
  • W 4 each independently represents CR 1 or N.
  • W 1 each independently represents CR or N; wherein R each independently represents hydrogen, halogen, cyano, -R a or -OR a ; preferably, R each independently represents hydrogen, halogen or -R a ; more preferably, R each independently represents hydrogen, C 1 -C 6 alkyl.
  • W 2 each independently represents CR 0 or N; wherein R 0 each independently represents hydrogen, halogen, cyano, -R a or -OR a ; preferably, R 0 each independently represents hydrogen, halogen, cyano or -R a ; more preferably, R each independently represents hydrogen, cyano, C 1 -C 6 alkyl.
  • W4 each independently represents CR1 or N; wherein R1 each independently represents hydrogen, halogen, cyano, C1 - C6 alkyl, C3 - C8 cycloalkyl, -ORa , -SRa , -NRaRb , -C(O) Ra , -C(O) ORa , -C(O) NRaRb , -NRaC (O) Rb , -S(O) 2Ra , -S(O) Ra , wherein the C1 - C6 alkyl may be independently substituted with 0, 1, 2, or 3 substituents selected from halogen, -ORa , -SRa , -NRaRb , -NRaC (O) Rb , -C(O) Ra , -C(O) ORa , -C(O) NRaRb , -S(O) 2Ra , -S(O)
  • W4 each independently represents CR1 or N; wherein R1 each independently represents hydrogen, halogen, cyano, C1 - C6 alkyl, C3 - C8 cycloalkyl, -ORa , -SRa , -NRaRb , -C(O) Ra , -C(O)NRaRb, -NRaC ( O) Rb , -S(O) 2Ra , the C1 - C6 alkyl may each be optionally substituted with 0, 1, 2, or 3 substituents selected from halogen, ORa , SRa , NRaRb , NRaC (O) Rb , wherein Rb in the -NRaC (O) Rb may be optionally substituted with 0, 1, or 2 substituents selected from -( C0 - C3 alkylene) ORa , -( C0 - C3 alkylene) SRa , -( C0
  • W 4 each independently represents CR 1 or N; wherein R 1 each independently represents hydrogen, halogen, cyano, C 1 -C 6 alkyl, C 3 -C 8 cycloalkyl, -(C 0 -C 6 alkylene)OR a , -(C 0 -C 6 alkylene)SR a , -(C 0 -C 6 alkylene)NR a R b , -(C 0 -C 6 alkylene)NR a C(O)R b .
  • RL and RL ' each independently represent hydrogen or fluorine; preferably, RL and RL ' are both hydrogen.
  • R3 represents C1 - C6 alkyl, C3 - C10 cycloalkyl, 3-10 membered heterocycloalkyl, and the alkyl, cycloalkyl, and heterocycloalkyl are each independently substituted by 0, 1, 2, or 3 substituents selected from the following: oxo, halogen, cyano, -R a , -(C 0 -C 6 alkylene)OR a , -(C 0 -C 6 alkylene)SR a , -(C 0 -C 6 alkylene)NR a R b , -(C 0 -C 6 alkylene)NR a C(O)R b , -(C 0 -C 6 alkylene)C(O)R a , -(C 0 -C 6 alkylene)C(O)OR a , -(C 0 -C 6 alkylene)C(O)OR a , -
  • R3 represents a C6 - C10 aryl group or a 5-10 membered heteroaryl group, and the aryl group and the heteroaryl group are each independently substituted by 0, 1, 2, or 3 substituents selected from the following: halogen, cyano, -R a , -(C 0 -C 6 alkylene)OR a , -(C 0 -C 6 alkylene)SR a , -(C 0 -C 6 alkylene)NR a R b , -(C 0 -C 6 alkylene)NR a C(O)R b , -(C 0 -C 6 alkylene)C(O)R a , -(C 0 -C 6 alkylene)C(O)NR a R b , -(C 0 -C 6 alkylene)S(O) 2 R a , -(C 0 -C 6 alkylene)S(O) 2 R
  • R3 represents -NRMRN , -NHRM , -ORM , -SRM , RM and RN each independently represent C1 - C6 alkyl, -( C0 - C6 alkylene)( C3 - C10 cycloalkyl), -( C0 - C6 alkylene)(3-10 membered heterocycloalkyl), -( C0 - C6 alkylene)( C6 - C10 aryl), -( C0 - C6 alkylene)(5-10 membered heteroaryl); RM and RN each optionally may be substituted by 0, 1, 2, or 3 substituents selected from the group consisting of oxo, nitro, halogen, cyano, -R a , -( C0 - C6 alkylene)OR a , -( C0 - C6 alkylene)SR a , -( C0 - C6 alkylene)
  • R3 represents -NRMRN , -NHRM , -ORM , -SRM , RM and RN each independently represent C1 - C6 alkyl, -( C0 - C6 alkylene)( C3 - C10 cycloalkyl), -( C0 - C6 alkylene)(3-10 membered heterocycloalkyl), -( C0 - C6 alkylene)( C6 - C10 aryl), -( C0 - C6 alkylene)(5-10 membered heteroaryl); RM and RN each optionally may be substituted by 0, 1, 2, or 3 substituents selected from the group consisting of oxo, nitro, halogen, cyano, -R a , -( C0 - C6 alkylene)OR a , -( C0 - C6 alkylene)SR a , -( C0 - C6 alkylene)
  • R3 represents -NRMRN , -NHRM , -ORM , -SRM , wherein RM and RN each independently represent hydrogen or C1 - C6 alkyl, -( C0 - C6 alkylene)( C3 - C10 cycloalkyl), -( C0 - C6 alkylene)(3-10 membered heterocycloalkyl), -( C0 -C6 alkylene)( C6 - C10 aryl), -( C0 - C6 alkylene)( 5-10 membered heteroaryl); and said RM and RN each independently may be substituted by 0, 1, 2, or 3 substituents selected from the following: oxo, nitro, halogen, cyano, -R a , -( C0 - C6 alkylene)OR a , -( C0 - C6 alkylene)SR a , -( C0 - C6 alkyl
  • R3 represents -NHRM , -ORM , -SRM , wherein RM each independently represents C1 - C6 alkyl, -( C0 - C6 alkylene)( C3 -C10 cycloalkyl), -( C0 - C6 alkylene)( 3-10 membered heterocycloalkyl); RM each independently may be substituted by 0, 1, 2, or 3 substituents selected from the following: oxo, halogen, cyano, -R a , -( C0 - C6 alkylene)OR a , -( C0 - C6 alkylene)SR a , -( C0 - C6 alkylene)NR a R b , -( C0 - C6 alkylene)NR a C(O)R b , -( C0 - C6 alkylene)C(O)R a , -( C0 - C0 - C
  • R 3 represents -NHR M , -OR M , -SR M , wherein RM each independently represents C 1 -C 6 alkyl, -(C 0 -C 6 alkylene)(C 3 -C 10 cycloalkyl), -(C 0 -C 6 alkylene)(3-10 membered heterocycloalkyl), and the RM may be optionally substituted by 0, 1, 2, or 3 substituents selected from the following: oxo, halogen, cyano, -R a , -(C 0 -C 6 alkylene)OR a , -(C 0 -C 6 alkylene)SR a , -(C 0 -C 6 alkylene)NR a R b , -NR a C(O)R b , -C(O)R a , -C(O)NR a R b , -S(O) 2 R
  • R 3 represents -NHR M , -OR M , -SR M , wherein RM each independently represents C 1 -C 6 alkyl, -(C 0 -C 6 alkylene)(C 3 -C 10 cycloalkyl), -(C 0 -C 6 alkylene)(3-10 membered heterocycloalkyl), and the RM may be optionally substituted by 0, 1, 2, or 3 substituents selected from the following: oxo, halogen, cyano, -R a , -OR a , -SR a , -NR a R b , -NR a C(O)R b , -C(O)R a , -C(O)NR a R b , -S(O) 2 R a , -S(O)R a , -S(O) 2 NR a R b , -P(O
  • R3 represents -NHRM , -ORM , -SRM , wherein RM each independently represents C1 - C6 alkyl, -( C0 - C6 alkylene)( C3 - C10 cycloalkyl), -( C0 - C6 alkylene)(3-10 membered heterocycloalkyl), and the RM may be optionally substituted by 0, 1, 2, or 3 substituents selected from the following: oxo, halogen, cyano, -ORa , -SRa , -NRaRb , -NRaC(O) Rb , -C(O) Ra , -C (O) NRaRb , -S(O) 2Ra , -S (O) Ra , -S(O) 2NRaRb , -P(O) RaRb ; more preferably, RM each independently may be substituted by 0, 1 , 2
  • R3 represents -NRMRN , -NHRM , -ORM , -SRM , preferably R3 represents -NHRM , -ORM , -SRM , wherein RM and RN each independently represent a -( C0 - C6 alkylene)(3-10 membered heterocycloalkyl) containing a N atom which may be substituted by 0, 1, 2, or 3 substituents selected from the following substituents: oxo, nitro, halogen, cyano, -R a , -( C0 - C6 alkylene)OR a , -( C0 - C6 alkylene)SR a , -( C0 - C6 alkylene)NR a R b , -( C0 - C6 alkylene)NR a C(O)R b , -( C0 - C6 alkylene)C(O)R a ,
  • Ra and Rb each independently represent hydrogen, C1 - C3 alkyl or C3 - C6 cycloalkyl, and the alkyl and cycloalkyl may be optionally substituted by 0, 1, 2 or 3 halogen atoms.
  • Ra and Rb each independently represent hydrogen or a C1 - C3 alkyl group, which may be optionally substituted by 0, 1, 2 or 3 halogen atoms.
  • the present invention covers any combination of the above embodiments.
  • the compound represented by formula (I) is any of the following compounds:
  • Another aspect of the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a compound as described in the present invention, or a stereoisomer, tautomer, solvate, pharmaceutically acceptable salt, metabolite, isotopic derivative, N-oxide or prodrug thereof, and optionally a pharmaceutically acceptable carrier, diluent or excipient.
  • Another aspect of the present invention relates to a compound of formula (I) of the present invention, or its stereoisomer, tautomer, solvate, pharmaceutically acceptable salt, metabolite, isotope derivative, N-oxide or prodrug, or the use of the pharmaceutical composition of the present invention in the preparation of a drug for preventing or treating a disease or condition associated with Cyclin K protein.
  • the disease or condition is selected from tumors, cancers, viral infections, inflammation-related diseases and autoimmune diseases.
  • Another aspect of the present invention relates to a method for treating a disease or condition associated with Cyclin K protein, which comprises administering to a mammal in need thereof a compound of the present invention, or its stereoisomers, tautomers, solvates, pharmaceutically acceptable salts, metabolites, isotopic derivatives, N-oxides or prodrugs, or a pharmaceutical composition of the present invention.
  • Figure 1 shows the degradation of Cyclin K induced by compounds 12, 17, and 18 at different concentrations after HEK293 cells were treated for 6 hours.
  • a salt, solvate, or hydrate of a compound is an alternative form of the compound, and they can all be converted into the compound under certain conditions. Therefore, it should be noted that when a compound is mentioned in this article, it generally also includes its pharmaceutically acceptable salts, and further includes its solvates and hydrates.
  • prodrugs, metabolites, and N-oxides thereof are also generally included.
  • the "stereoisomer" of the compound of formula (I) of the present invention means that when the compound of formula (I) has an asymmetric carbon atom, enantiomers will be produced; when the compound has a carbon-carbon double bond or a cyclic structure, cis-trans isomers will be produced; when the compound has a ketone or oxime, etc., it will produce tautomers. All enantiomers, diastereomers, racemates, cis-trans isomers, tautomers, geometric isomers, diastereomers, rotational isomers, and mixtures thereof of the compound of formula (I) are included in the scope of the present invention.
  • the "pharmaceutically acceptable salt” of the present invention refers to a pharmaceutically acceptable acid and base addition salt or a solvate thereof.
  • Such pharmaceutically acceptable salts include salts of the following acids: hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid, sulfurous acid, formic acid, toluenesulfonic acid, methanesulfonic acid, nitric acid, benzoic acid, citric acid, tartaric acid, maleic acid, hydroiodic acid, alkanoic acid (such as acetic acid, HOOC-(CH 2 )n-COOH (wherein n is 0 to 4)), etc.
  • Alkaline salts sodium salts, potassium salts, calcium salts, ammonium salts, etc.
  • the pharmaceutically acceptable salts of the present invention can be prepared by conventional methods, for example, by dissolving the compound of the present invention in a water-miscible organic solvent (e.g., acetone, methanol, ethanol and acetonitrile), adding an excess of an organic acid or an aqueous inorganic acid solution thereto to precipitate the salt from the resulting mixture, removing the solvent and the remaining free acid therefrom, and then isolating the precipitated salt.
  • a water-miscible organic solvent e.g., acetone, methanol, ethanol and acetonitrile
  • the precursors or metabolites of the present invention may be precursors or metabolites known in the art, as long as the precursors or metabolites are converted to compounds by in vivo metabolism.
  • prodrugs refer to those prodrugs of the compounds of the present invention, which are suitable for contact with human and lower animal tissues within the scope of reasonable medical judgment, without undue toxicity, irritation, allergic reactions, etc., and are considered to have a reasonable benefit/risk ratio and are effective for their intended use.
  • prodrug refers to a compound that is rapidly converted in vivo to produce the parent compound of the above formula, for example, by metabolism in vivo.
  • the present invention describes cis- and trans- (or E- and Z-) geometric isomers of the compounds of the present invention, and they can be separated into mixtures of isomers or separated isomeric forms.
  • the compounds of the present invention can be isolated in optically active or racemic form.
  • All methods for preparing the compounds of the present invention and the intermediates prepared therein are considered to be part of the present invention.
  • they can be prepared by Conventional methods (e.g., by chromatography or fractional crystallization) are used for separation.
  • the end product of the present invention is obtained in free (neutral) or salt form. Both the free form and the salt of these end products are within the scope of the present invention.
  • one form of the compound can be converted into another form.
  • a free base or acid can be converted into a salt; a salt can be converted into a free compound or another salt; a mixture of isomeric compounds of the present invention can be separated into individual isomers.
  • the compounds of the present invention can exist in a variety of tautomeric forms, in which hydrogen atoms are transposed to other parts of the molecule and the chemical bonds between the atoms of the molecule are rearranged. It should be understood that all tautomeric forms that may exist are included in the present invention.
  • linking groups when the listed linking groups do not specify their connection direction, their connection direction is arbitrary, for example L is -C(O)NH-, in which case -C(O)NH- can be connected to phenyl and cyclohexyl in the order of reading from left to right to form It is also possible to connect phenyl and cyclohexyl in the reverse reading order from left to right to form Combinations of linking groups and linked groups are permissible only if such combinations result in stable compounds.
  • substituents of the present invention are independent of each other and not interrelated, for example, for Ra (or Rb ) in a substituent, it is independent of each other in the definitions of different substituents.
  • Ra (or Rb ) when Ra (or Rb ) is selected as a definition in a substituent, it does not mean that the Ra (or Rb ) has the same definition in other substituents.
  • NR a R b when the definition of Ra (or Rb ) is selected from hydrogen, it does not mean that in -C(O)-NR a R b , Ra (or Rb ) is necessarily hydrogen.
  • Ra when there are more than one Ra (or Rb ) in a substituent, these Ra (or Rb ) are also independent of each other.
  • these Ra (or Rb ) when there are more than one Ra (or Rb ) in a substituent, these Ra (or Rb ) are also independent of each other.
  • the substituent -(CR a R b ) m -O-(CR a R b ) n - when m+n is greater than or equal to 2, the m+n Ra (or Rb ) are independent of each other, and they can have the same or different meanings.
  • substituents such as alkyl, cycloalkyl, aryl, heterocyclyl, halogen, hydroxy, alkoxy, oxo, alkanoyl, aryloxy, alkanoyloxy, amino, alkylamino, arylamino, arylalkylamino, disubstituted amine groups (wherein the two amino substituents are selected from alkyl, aryl or arylalkyl), alkanoylamino, aroylamino, aralkanoylamino, substituted alkanoylamino, substituted arylamino, substituted aralkanoylamino, thio, alkylthio, arylthio, arylalkylthio, arylthiocarbonyl, arylalkyl Thiocarbonyl, alkylsulfon
  • alkyl is intended to include branched and straight chain saturated aliphatic hydrocarbon groups having a specified number of carbon atoms.
  • C 1 -C 6 alkyl means an alkyl group having 1 to 6 carbon atoms.
  • alkyl groups include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, etc.
  • Preferred alkyl groups of the present invention include C 1 -C 6 alkyl or C 1 -C 4 alkyl.
  • Alkyl groups may be unsubstituted or substituted, and when substituted, they may be substituted at any available attachment point, and the substituents are preferably selected from one or more of deuterium, halogen, hydroxyl, amino, cyano, alkyl, alkoxy, haloalkyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl.
  • alkylene is intended to include branched and straight-chain saturated aliphatic hydrocarbon groups having a specified number of carbon atoms, which are residues derived from the same carbon atom or two different carbon atoms of a parent alkane by removing two hydrogen atoms.
  • C 0 -C 6 alkylene means an alkylene group having 0 to 6 carbon atoms
  • C 0 alkylene means that the alkylene group is absent (a bond).
  • alkylene groups include, but are not limited to, methylene (-CH 2 -), 1,1-ethylene (-CH(CH 3 )-), 1,2-ethylene (-CH 2 CH 2 -), 1,1-propylene (-CH(CH 2 CH 3 )-), 1,2-propylene (-CH 2 CH(CH 3 )-), 1,3-propylene (-CH 2 CH 2 CH 2 -), 1,4-butylene (-CH 2 CH 2 CH 2 CH 2 -), and the like.
  • Preferred alkylene groups of the present invention include C 0 -C 6 alkylene groups.
  • alkenyl refers to a straight or branched hydrocarbon group containing one or more double bonds and generally having a length of 2 to 20 carbon atoms.
  • C2 - C6 alkenyl contains two to six carbon atoms.
  • Alkenyl includes, but is not limited to, for example, vinyl, propenyl, butenyl, 1-methyl-2-buten-1-yl, etc.
  • Preferred alkenyl groups of the present invention include C2 - C6 alkenyl.
  • alkynyl refers to a straight or branched hydrocarbon group containing one or more triple bonds and generally having a length of 2 to 20 carbon atoms.
  • a "C 2 -C 6 alkynyl” contains two to six carbon atoms.
  • Representative alkynyl groups include, but are not limited to, ethynyl, 1-propynyl, 1-butynyl, etc.
  • Preferred alkynyl groups of the present invention include C 2 -C 6 alkynyl groups.
  • alkoxy refers to -O-alkyl.
  • C 1 -C 6 alkoxy (or alkyloxy) is intended to include C 1 , C 2 , C 3 , C 4 , C 5 , C 6 alkoxy.
  • alkoxy include, but are not limited to, methoxy, ethoxy, propoxy (e.g., n-propoxy and isopropoxy) and tert-butoxy.
  • alkylthio or “thioalkoxy” means an alkyl group as defined above connected via a sulfur bridge with a specified number of carbon atoms; for example, methyl-S- and ethyl-S-.
  • Preferred alkoxy groups of the present invention include C 1 -C 6 alkoxy or C 1 -C 4 alkoxy.
  • aryl alone or as part of a larger moiety such as “aralkyl”, “aralkyloxy” or “aryloxyalkyl”, refers to a monocyclic, bicyclic or tricyclic ring system having a total of 5 to 12 ring members, wherein at least one ring in the system is aromatic and wherein each ring in the system contains 3 to 7 ring members.
  • aryl refers to an aromatic ring system, which includes but is not limited to phenyl, biphenyl, indanyl, 1-naphthyl, 2-naphthyl and tetrahydronaphthyl.
  • aralkyl or "arylalkyl” refers to an alkyl residue attached to an aryl ring. Non-limiting examples include benzyl, phenethyl, etc.
  • the fused aryl group may be attached to another group at a suitable position on the cycloalkyl ring or the aromatic ring.
  • the dashed line drawn from the ring system indicates that the bond may be attached to any suitable ring atom.
  • the aryl group may be unsubstituted or substituted, and when substituted, it may be substituted at any available point of attachment, and the substituents are preferably selected from one or more of deuterium, halogen, hydroxy, amino, cyano, alkyl, alkoxy, haloalkyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl.
  • halo or “halogen” includes fluorine, chlorine, bromine and iodine.
  • Haloalkyl is intended to include branched and straight-chain saturated aliphatic hydrocarbon groups having a specified number of carbon atoms and substituted with one or more halogens. Examples of haloalkyl include, but are not limited to, fluoromethyl, difluoromethyl, trifluoromethyl, trichloromethyl, pentafluoroethyl, pentachloroethyl, 2,2,2-trifluoroethyl, heptafluoropropyl and heptachloropropyl. Examples of haloalkyl also include "fluoroalkyl” which is intended to include branched and straight-chain saturated aliphatic hydrocarbon groups having a specified number of carbon atoms and substituted with one or more fluorine atoms.
  • haloalkoxy or "haloalkyloxy” means a haloalkyl group as defined above with a specified number of carbon atoms connected via an oxygen bridge.
  • C 1 -C 6 haloalkoxy is intended to include C 1 , C 2 , C 3 , C 4 , C 5 , C 6 haloalkoxy.
  • Examples of haloalkoxy include, but are not limited to, trifluoromethoxy, 2,2,2-trifluoroethoxy and pentafluoroethoxy.
  • haloalkylthio or “thiohaloalkoxy” means The radicals represent haloalkyl groups as defined above having the indicated number of carbon atoms attached via a sulphur bridge; for example trifluoromethyl-S- and pentafluoroethyl-S-.
  • Cx1 - Cx2 when referring to some substituent groups, the expression Cx1 - Cx2 is used, which means that the number of carbon atoms in the substituent group may be x1 to x2 .
  • C0 - C8 means that the group contains 0, 1, 2, 3, 4, 5, 6, 7 or 8 carbon atoms
  • C1 - C8 means that the group contains 1, 2, 3, 4, 5, 6, 7 or 8 carbon atoms
  • C2 - C8 means that the group contains 2, 3, 4, 5, 6, 7 or 8 carbon atoms
  • C3 - C8 means that the group contains 3, 4, 5, 6, 7 or 8 carbon atoms
  • C4 - C8 means that the group contains 4, 5, 6, 7 or 8 carbon atoms
  • C0 - C6 means that the group contains 0, 1, 2, 3, 4, 5 or 6 carbon atoms
  • C1 - C6 means that the group contains 1, 2, 3, 4, 5 or 6 carbon atoms
  • C2 - C6 means that the group contains 2, 3, 4, 5 or 6 carbon atoms
  • x1-x2-membered ring when referring to a cyclic group (such as an aryl group, a heteroaryl group, a cycloalkyl group and a heterocycloalkyl group), the expression "x1-x2-membered ring" is used, which means that the number of ring atoms of the group can be x1 to x2.
  • the 3-12-membered cyclic group can be a 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11- or 12-membered ring, and the number of ring atoms thereof can be 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12;
  • a 3-6-membered ring means that the cyclic group can be a 3-, 4-, 5- or 6-membered ring, and the number of ring atoms thereof can be 3, 4, 5 or 6;
  • a 3-8-membered ring means that the cyclic group can be a 3-, 4-, 5-, 6-, 7- or 8-membered ring, and the number of ring atoms thereof can be 3, 4, 5, 6, 7 or 8;
  • a 3-9-membered ring means that the cyclic group can be a 3-, 4-, 5-, 6-, 7- or 8-membered ring, and the number of ring atoms thereof can be 3, 4, 5, 6, 7, 8 or 9; 4-7 membered ring
  • the ring atoms can be carbon atoms or heteroatoms, such as heteroatoms selected from N, O and S.
  • the heterocyclic ring can contain 1, 2, 3 or 4 ring heteroatoms, such as heteroatoms selected from N, O and S.
  • one or more halogens may be independently selected from fluorine, chlorine, bromine and iodine.
  • heteroaryl refers to a monocyclic or polycyclic aromatic group containing one or more identical or different heteroatoms, including monocyclic heteroaryl and bicyclic or polycyclic ring systems containing at least one heteroaromatic ring (an aromatic ring system containing at least one heteroatom), which may have 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14
  • the heteroaryl group may be unsubstituted or substituted, and when substituted, it may be substituted at any available point of attachment, and the substituents are preferably selected from one or more of deuterium, halogen, hydroxyl, amino, cyano, alkyl, alkoxy, haloalkyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl.
  • heterocycloalkyl or “heterocyclyl” refers to a saturated or partially unsaturated monocyclic or polycyclic heterocycloalkyl system, wherein 1, 2, 3 or 4 ring atoms are heteroatoms independently selected from N, O and S, and the rest are carbon atoms, wherein the N atom may be optionally quaternized, and the N and S atoms may be optionally oxidized (i.e., NO, SO and SO 2 ). It includes monocyclic heterocycles, bicyclic heterocycles and tricyclic heterocycle systems, wherein the bicyclic heterocycles and tricyclic heterocycle systems include spirocyclic heterocycles, annular heterocycles and bridged heterocycles.
  • Heterocycloalkyl may be unsubstituted or substituted, and when substituted, it may be substituted at any available attachment point, and the substituents are preferably one or more selected from deuterium, halogen, hydroxyl, amino, cyano, alkyl, alkoxy, haloalkyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl.
  • the term "3-10 membered heterocycloalkyl” or “3-10 membered heterocyclyl” refers to a saturated or partially unsaturated monocyclic or polycyclic heterocycloalkyl system consisting of 3 to 10 ring atoms, wherein 1, 2, 3 or 4 ring atoms are heteroatoms independently selected from N, O and S, and the rest are carbon atoms, wherein the N atom may be optionally quaternized, and the N and S atoms may be optionally oxidized (i.e., NO, SO and SO 2 ). When the total number of S and O atoms in the heterocycle exceeds 1, these heteroatoms are not adjacent to each other.
  • the "3-10 membered heterocyclyl” may be a 3, 4, 5, 6, 7, 8, 9 or 10 membered heterocyclyl.
  • 3-10 membered heterocyclic groups include, but are not limited to, azetidinyl, oxetanyl, pyrrolidinyl (including 2-pyrrolidinyl and 3-pyrrolidinyl), piperidinyl (including 2-piperidinyl, 3-piperidinyl and 4-piperidinyl, etc.), piperazinyl, hexahydropyridazinyl, morpholinyl, dioxanyl, hexahydropyridazinyl, azepane, 1,4-diazepane, cyclopentylpyrrolidinyl, pyrrolidinylpyrrolidinyl, cyclopropylspiropiperazinyl, cyclobutylspiroazepane 1.1]heptanyl, 3,6-diazabicyclo[3.1.1]heptyl, 3,8-diazabicyclo[3.2.1]octanyl or
  • cycloalkyl refers to a saturated or partially unsaturated monocyclic or polycyclic alkyl system, the ring atoms of which are all carbon atoms. It includes monocyclic alkyl, cycloalkyl, spirocyclic alkyl and bridged cycloalkyl. Cycloalkyl can be unsubstituted or substituted, and when substituted, it can be substituted at any usable point of attachment, and the substituent is preferably selected from one or more of deuterium, halogen, hydroxyl, amino, cyano, alkyl, alkoxy, haloalkyl, cycloalkyl, heterocycloalkyl, aryl and heteroaryl.
  • C 3 -C 10 cycloalkyl refers to a saturated or partially unsaturated monocyclic or polycyclic alkyl system consisting of 3 to 10 ring atoms, and the ring atoms are all carbon atoms. It includes monocyclic alkyl, paracycloalkyl, spirocycloalkyl and bridged cycloalkyl.
  • the "3-12 membered cycloalkyl” can be a 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11- or 12-membered cycloalkyl.
  • 3-12 membered heterocyclic groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclopentylparacyclopentyl, cyclobutylspirocyclobutyl or bicyclo[1.1.1]pentyl, etc.
  • paracyclic ring or “condensed ring” refers to a polycyclic group formed by two or more cyclic structures sharing two adjacent atoms.
  • aromatic fused ring refers to a fused ring having aromaticity, wherein the aromaticity of the fused ring can be determined according to methods commonly used in the art, such as the Huckel rule, when the number of conjugated ⁇ electrons of the fused ring is 4n+2, it is determined to be aromatic.
  • bridged ring refers to a polycyclic group in which two rings in the system share two or more ring atoms.
  • spirocycle refers to a polycyclic group in which single rings share a carbon atom (called a spiro atom).
  • substituted means that at least one hydrogen atom is replaced by a non-hydrogen group, provided that normal valence is maintained and the substitution results in a stable compound.
  • nitrogen atoms e.g., amines
  • these nitrogen atoms can be converted to N-oxides by treatment with an oxidizing agent (e.g., mCPBA and/or hydrogen peroxide) to obtain other compounds of the invention.
  • an oxidizing agent e.g., mCPBA and/or hydrogen peroxide
  • the nitrogen atoms shown and claimed are considered to encompass both the shown nitrogen and its N-oxide to obtain the derivatives of the invention.
  • any variable occurs more than one time in any constituent or formula for a compound, its definition at each occurrence is independent of its definition at every other occurrence.
  • the group may be optionally substituted with up to three R groups, and R at each occurrence is independent.
  • R is selected from the definition of R. Also, combinations of substituents and/or variables are permissible only if such combinations result in stable compounds.
  • the term "patient” refers to an organism treated by the method of the present invention.
  • Such organisms preferably include but are not limited to mammals (e.g., mice, apes/monkeys, horses, cattle, pigs, dogs, cats, etc.) and most preferably refer to humans.
  • the term "effective amount” means the amount of a drug or medicament (i.e., the compound of the present invention) that will cause a biological or medical response of a tissue, system, animal or human being sought by, for example, a researcher or clinician.
  • therapeutically effective amount means an amount that results in improved treatment, cure, prevention or alleviation of a disease, condition or side effect, or reduces the rate of progression of a disease or condition, compared to a corresponding subject that has not received the above amount.
  • An effective amount can be administered in one or more administrations, applications or dosages and is not intended to be limited by a specific formulation or route of administration. The term also includes an effective amount that enhances normal physiological function within its scope.
  • the term "treatment” includes its broad meaning, covering therapeutic treatment and/or preventive treatment of a subject. Specifically, the “treatment” includes any treatment that leads to the alleviation, inhibition, elimination and improvement and/or prevention of a condition, disease, disorder, etc., such as alleviating, reducing, regulating, improving, eliminating, preventing, preventing or improving its symptoms.
  • the therapeutic treatment includes alleviating, inhibiting or improving the symptoms or conditions of the disease; inhibiting the occurrence of complications; improving potential metabolic syndrome; inhibiting the occurrence of diseases or symptoms, such as controlling the development of diseases or conditions; alleviating diseases or symptoms; reducing diseases or symptoms; alleviating complications caused by diseases or symptoms, or treating signs caused by diseases or symptoms.
  • the preventive treatment includes prior treatment to prevent, block or delay, slow down the occurrence or development of diseases or conditions or reduce the severity of diseases or conditions.
  • therapeutic agent also includes agents or reagents that have therapeutic and/or prophylactic effects on a subject.
  • the term "pharmaceutical” or “pharmaceutically acceptable” is used herein to refer to those compounds, substances, compositions and/or dosage forms that are suitable for use in contact with human and animal tissues without excessive toxicity, irritation, allergic reaction and/or other problems or complications, and are commensurate with a reasonable benefit/risk ratio, within the scope of reasonable medical judgment.
  • the term "pharmaceutical carrier” means a pharmaceutical substance, composition or vehicle, such as a liquid or solid filler, diluent, excipient, manufacturing aid (e.g., lubricant, talc, magnesium stearate, calcium stearate or zinc stearate or stearic acid) or solvent encapsulating material, which is involved in the delivery of the subject compound from an organ or body to a pharmaceutically acceptable substance.
  • manufacturing aid e.g., lubricant, talc, magnesium stearate, calcium stearate or zinc stearate or stearic acid
  • solvent encapsulating material e.g., solvent encapsulating material, which is involved in the delivery of the subject compound from an organ or body to a pharmaceutically acceptable substance.
  • Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the patient.
  • the term "pharmaceutical composition” means a composition comprising a compound of the present invention and at least one other pharmaceutical carrier.
  • “Pharmaceutical carrier” refers to a medium generally accepted in the art for delivering a biologically active agent to an animal (particularly a mammal), including (i.e.) adjuvants, excipients or vehicles, such as diluents, preservatives, fillers, flow regulators, disintegrants, wetting agents, emulsifiers, suspending agents, sweeteners, flavoring agents, aromatics, antibacterial agents, antifungal agents, lubricants and dispersants, depending on the nature of the mode of administration and dosage form.
  • the term "acceptable" means that a formulation component or active ingredient has no undue adverse effect on health and well-being for the general purpose of treatment.
  • cancer refers to an abnormal growth of cells that cannot be controlled and can metastasize (spread) under certain conditions.
  • This type of cancer includes, but is not limited to, solid tumors (such as bladder, intestine, brain, chest, uterus, heart, kidney, lung, lymphoid tissue (lymphoma), ovary, pancreas or other endocrine organs (such as thyroid), prostate, skin (melanoma) or blood tumors (such as non-leukemic leukemia).
  • the term "combination administration” or similar terms, as used herein, refers to administering several selected therapeutic drugs to one patient in the same or different administration methods at the same or different times.
  • the term “enhance” or “can enhance”, as used herein, means that the expected result can be increased or prolonged in terms of potency or duration. Therefore, in terms of enhancing the therapeutic effect of a drug, the term “can enhance” refers to the ability of a drug to increase or prolong the potency or duration in a system.
  • the “potency value” used herein refers to the ability to maximize the enhancement of another therapeutic drug in an ideal system.
  • immune disease refers to a disease or symptom caused by an adverse or harmful reaction to an endogenous or exogenous antigen, which usually results in cellular dysfunction, or damage and malfunction, or destruction of organs or tissues that may produce immune symptoms.
  • kit and “product package” are synonymous.
  • the term "subject”, “subject” or “patient” includes mammals and non-mammals.
  • Mammals include, but are not limited to, mammals: humans, non-human primates such as gorillas, apes and monkeys; agricultural animals such as cattle, horses, goats, sheep, pigs; livestock such as rabbits and dogs; experimental animals including rodents such as rats and mice and guinea pigs, etc.
  • Non-mammalian animals include, but are not limited to, birds, fish, etc.
  • the selected mammal is a human.
  • a compound or pharmaceutical composition after administration, can improve a disease, symptom or condition, especially improve its severity, delay the onset, slow the progression of the disease, or reduce the duration of the disease. Whether fixed or temporary administration, continuous or intermittent administration, can be attributed to or related to the administration.
  • the relevant raw materials and intermediates are purchased from commercial reagents (for example, from Bidex, Yao Shi, etc.).
  • reaction temperature is room temperature (10-30°C).
  • the compounds of the present invention are separated and purified by preparative TLC, silica gel column chromatography, Prep-HPLC and/or silica gel flash column chromatography (Flash column chromatography), and their structures are confirmed by 1 H NMR and/or MS. Reaction monitoring is performed by TLC or LC-MS.
  • Preparative HPLC usually uses alkaline method or acidic method (alkaline method mobile phase: acetonitrile/0.05% ammonium bicarbonate aqueous solution, acidic method mobile phase: acetonitrile/0.05% formic acid aqueous solution); the instrument is Thermo U3000AFC-3000; column: Globalsil C-18 12nm, 250x20mm, 10 ⁇ m, or equivalent; flow rate: 20mL/min, for gradient elution separation.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • Embodiment 9 is a diagrammatic representation of Embodiment 9:
  • Embodiment 10 is a diagrammatic representation of Embodiment 10:
  • Compound 10 was obtained by replacing tert-butyl (4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)carbamate with tert-butyl ((5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-2-yl)methyl)carbamate.
  • Embodiment 11 is a diagrammatic representation of Embodiment 11:
  • Embodiment 12 is a diagrammatic representation of Embodiment 12
  • Embodiment 13 is a diagrammatic representation of Embodiment 13:
  • Embodiment 14 is a diagrammatic representation of Embodiment 14:
  • Embodiment 15 is a diagrammatic representation of Embodiment 15:
  • Embodiment 16 is a diagrammatic representation of Embodiment 16:
  • Compound 16 was obtained by replacing tert-butyl (4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)carbamate with tert-butyl (2-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)carbamate and referring to the synthesis of compound 2.
  • Embodiment 17 is a diagrammatic representation of Embodiment 17:
  • Embodiment 18 is a diagrammatic representation of Embodiment 18:
  • Embodiment 19 is a diagrammatic representation of Embodiment 19:
  • Embodiment 20 is a diagrammatic representation of Embodiment 20.
  • Embodiment 21 is a diagrammatic representation of Embodiment 21.
  • Embodiment 22 is a diagrammatic representation of Embodiment 22.
  • Embodiment 23 is a diagrammatic representation of Embodiment 23.
  • (2R, 3R)-3-aminopentan-2-ol was used to replace (R)-2-aminobutanamide hydrochloride, and the synthesis of compound 4-c was referred to obtain compound 23-a.
  • Compound 23-a was used to replace compound 4-c, and compound 7-a was used to replace compound 2-c, and the synthesis of compound 4 was referred to obtain compound 23.
  • Embodiment 24 is a diagrammatic representation of Embodiment 24.
  • Embodiment 25 is a diagrammatic representation of Embodiment 25.
  • Embodiment 26 is a diagrammatic representation of Embodiment 26.
  • Embodiment 27 is a diagrammatic representation of Embodiment 27.
  • Embodiment 28 is a diagrammatic representation of Embodiment 28:
  • Embodiment 29 is a diagrammatic representation of Embodiment 29.
  • Embodiment 30 is a diagrammatic representation of Embodiment 30.
  • Embodiment 31 is a diagrammatic representation of Embodiment 31.
  • Embodiment 32 is a diagrammatic representation of Embodiment 32.
  • Embodiment 33 is a diagrammatic representation of Embodiment 33.
  • Embodiment 34 is a diagrammatic representation of Embodiment 34.
  • Embodiment 35 is a diagrammatic representation of Embodiment 35.
  • Embodiment 36 is a diagrammatic representation of Embodiment 36.
  • Embodiment 37 is a diagrammatic representation of Embodiment 37.
  • Embodiment 38 is a diagrammatic representation of Embodiment 38.
  • Embodiment 39 is a diagrammatic representation of Embodiment 39.
  • Embodiment 40 is a diagrammatic representation of Embodiment 40.
  • Embodiment 41 is a diagrammatic representation of Embodiment 41.
  • Embodiment 42 is a diagrammatic representation of Embodiment 42.
  • Embodiment 43 is a diagrammatic representation of Embodiment 43.
  • Embodiment 44 is a diagrammatic representation of Embodiment 44.
  • Embodiment 45 is a diagrammatic representation of Embodiment 45.
  • Embodiment 46 is a diagrammatic representation of Embodiment 46.
  • Embodiment 47 is a diagrammatic representation of Embodiment 47.
  • Embodiment 49 is a diagrammatic representation of Embodiment 49.
  • Embodiment 50 is a diagrammatic representation of Embodiment 50.
  • Embodiment 51 is a diagrammatic representation of Embodiment 51.
  • Embodiment 52 is a diagrammatic representation of Embodiment 52.
  • Embodiment 53 is a diagrammatic representation of Embodiment 53.
  • Embodiment 54 is a diagrammatic representation of Embodiment 54:
  • Embodiment 55 is a diagrammatic representation of Embodiment 55:
  • Embodiment 56 is a diagrammatic representation of Embodiment 56.
  • Embodiment 57
  • Embodiment 58
  • Embodiment 59 is a diagrammatic representation of Embodiment 59.
  • Embodiment 60 is a diagrammatic representation of Embodiment 60.
  • Embodiment 62
  • Embodiment 63
  • Embodiment 67 is a diagrammatic representation of Embodiment 67.
  • the crude product compound 67-a (1 g) was dissolved in 95% ethanol (20 mL), and sodium acetate (756 mg, 9.22 mmol) and hydroxylamine hydrochloride (320 mg, 4.61 mmol) were added. The mixture was stirred at room temperature for 4 hours. The reaction solution was concentrated, and water (30 mL) was added to the residue, and extracted three times with ethyl acetate (30 mL). The organic phases were combined, washed once with water and once with saturated brine, dried over anhydrous sodium sulfate, filtered, and concentrated to obtain the crude product compound 67-b (1.05 g). ESI-MS (m/z): 341.7 [M+H] + .
  • Embodiment 68
  • Embodiment 69
  • the crude product compound 69-a (8 mg) was dissolved in N, N-dimethylformamide (2 mL), and methylamine tetrahydrofuran solution (2M, 34 ⁇ L) and glacial acetic acid (1 mg, 17 ⁇ mol) were added. The mixture was stirred at room temperature for 1 hour, sodium triacetoxyborohydride (18 mg, 85 ⁇ mol) was added, and the reaction was continued at room temperature overnight. The reaction solution was quenched by adding water (0.1 mL), and the mixture was purified by preparative liquid chromatography to obtain compound 69 (1.5 mg, yield 18.2%).
  • Embodiment 70 is a diagrammatic representation of Embodiment 70.
  • Embodiment 71
  • Embodiment 72 is a diagrammatic representation of Embodiment 72.
  • Embodiment 73
  • Embodiment 74
  • Embodiment 75 is a diagrammatic representation of Embodiment 75.
  • Embodiment 76
  • Embodiment 77
  • Compound 77 was obtained by replacing (3R,4S)-3-amino-4-hydroxypiperidine-1-carboxylic acid tert-butyl (3S,4R)-4-amino-3-hydroxypiperidine-1-carboxylate with tert-butyl (3S,4R)-4-amino-3-hydroxypiperidine-1-carboxylate and referring to the synthesis of Compound 75.
  • Embodiment 78
  • Embodiment 79
  • Embodiment 80 is a diagrammatic representation of Embodiment 80.
  • Embodiment 81
  • Embodiment 82
  • Embodiment 83
  • Embodiment 84
  • Embodiment 85 is a diagrammatic representation of Embodiment 85.
  • Embodiment 86
  • Compound 86 was obtained by replacing compound 7-a with compound 67-d and replacing (3R,4S)-3-amino-4-hydroxypyrrolidine-1-carboxylic acid tert-butyl ester with (3R,4S)-3-amino-4-hydroxypiperidine-1-carboxylic acid tert-butyl ester.
  • Embodiment 87
  • N-(tert-Butyloxycarbonyl)glycine (3.6 mg, 21 ⁇ mol) and N-hydroxysuccinimide (2.9 mg, 25 ⁇ mol) were dissolved in dichloromethane (2 mL), and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (6 mg, 31 ⁇ mol) was added. The mixture was stirred at room temperature for 0.5 hours, and compound 83 (10 mg, 21 ⁇ mol) and N,N-diisopropylethylamine (2.7 mg, 21 mmol) were added. Water (5 mL) was added to the reaction solution, and dichloromethane (10 mL) was used for extraction three times. The organic phases were combined and concentrated.
  • Embodiment 88
  • Embodiment 89
  • Embodiment 90 is a diagrammatic representation of Embodiment 90.
  • Embodiment 91 is a diagrammatic representation of Embodiment 91.
  • Compound 91-a was obtained by replacing (2R,3R)-2,3-butanediol with cis-3,4-dihydroxypyrrolidine-1-carboxylic acid tert-butyl ester and referring to the synthesis of compound 11-b.
  • Compound 7-a was replaced with compound 67-d
  • compound 75-b was replaced with compound 91-a.
  • Compound 91 was obtained by referring to the synthesis of compound 75.
  • Embodiment 92
  • Embodiment 93 is a diagrammatic representation of Embodiment 93.
  • Embodiment 94
  • Embodiment 95 is a diagrammatic representation of Embodiment 95:
  • Embodiment 96
  • Embodiment 97
  • Embodiment 98
  • Embodiment 99 is a diagrammatic representation of Embodiment 99:
  • Embodiment 100 is a diagrammatic representation of Embodiment 100.
  • Embodiment 101 is a diagrammatic representation of Embodiment 101.
  • This detection method is used to evaluate the biological activity of the compounds of the present invention at the cellular level.
  • Harvest HGC27 cells (purchased from the Chinese Academy of Sciences), resuspend in complete culture medium and adjust the cell density to 0.2x106 cells per ml. Add the cell suspension to a 96-well plate at 100 ⁇ L per well and culture overnight in a 37°C, 5% CO2 incubator. Prepare the compound to be tested and add it to the cell well plate so that the highest concentration of the compound is 10 ⁇ M. Set 8 concentration points according to 3-fold dilution. At the same time, set up 100% inhibition control wells, that is, wells with no cells but only an equal volume of complete culture medium; and 0% inhibition control wells, that is, wells with cells added with 0.1% DMSO. Culture the above cell plate at 37°C, 5% CO2 for 24 hours.
  • the compounds of the present invention have good growth inhibitory activity on HGC27 tumor cells.
  • This detection method is used to evaluate the biological activity of the compounds of the present invention at the cellular level.
  • NCI-N87 cells purchased from the Chinese Academy of Sciences
  • the cell suspension was added to a 96-well plate at 100 ⁇ L per well and cultured overnight in a 37°C, 5% CO2 incubator.
  • the test compound was prepared and added to the cell well plate so that the highest concentration of the compound was 10 ⁇ M. Eight concentration points were set according to 3-fold dilution. At the same time, 100% inhibition control wells were set, that is, wells with no cells but only an equal volume of complete medium; and 0% inhibition control wells were set, that is, wells with 0.1% DMSO added.
  • the above cell plates were cultured at 37°C, 5% CO2 for 72 hours. Remove the cell culture plate, add 25 ⁇ L CellTiter-Glo Luminescent Cell Viability reagent (promega cat#G7573) to each well, incubate in the dark for 10 minutes, and then transfer 100 ⁇ L to a white plate and use Molecular Devices SpectraMax i3 to detect chemiluminescence.
  • the calculated data were fitted with four parameters using Graphpad Prism software and the corresponding IC50 was calculated.
  • the compounds of the present invention have good growth inhibitory activity on NCI-N87 tumor cells.
  • HEK293 cells (ATCC, cat#CRL-1573) were harvested and the cell density was adjusted to 1x10 6 cells per ml. 1 ml of cell suspension was plated into 6-well plates and cultured overnight. The compound stock solution was diluted with DMSO to an appropriate concentration. The diluted compound was added to the cell wells at a ratio of 1:1000 with culture medium to ensure that the DMSO concentration in each well was 0.1%. At the same time, a negative control well was set up, i.e., complete culture medium containing 0.1% DMSO. After the compounds were fixed at the concentrations shown in the figure and at different times, the total cell protein was extracted using RIPA cell lysis buffer (Beyotime, cat#P0013B) with PMSF added.
  • RIPA cell lysis buffer Beyotime, cat#P0013B
  • each sample was subjected to subsequent SDS-PAGE and western blot experiments at a loading volume of 40 ⁇ g.
  • the specific conditions were: 120V constant voltage run for 90 minutes, followed by 320mA constant flow transfer for 60 minutes.
  • the antibody incubation was performed with the following ratio and incubation time.
  • the antibody information used in the experiment is as follows: Anti-GAPDH antibody (abcam, cat#ab9485), Anti-Cyclin K antibody (abcam, cat#ab85854), Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, HRP (invitrogen, cat#G-21234). ECL luminescent liquid (Thermo Fisher, cat#32209) was used for color development and luminescence. The final results were analyzed using a gel imaging system.
  • Figure 1 shows that compounds 12, 17, and 18 can significantly induce the degradation of Cyclin K compared with the control after treating HEK293 cells at different concentrations for 6 hours.

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

提供了一种细胞周期蛋白K降解剂化合物及其制备方法和应用。具体地,提供了具有式(I)结构的化合物及其药物组合物在预防和/或治疗细胞周期蛋白K相关疾病中的应用。

Description

细胞周期蛋白K降解剂及其应用 技术领域
本发明涉及一种降解细胞周期蛋白K的化合物,以及使用其治疗/预防细胞周期蛋白K相关病症的方法。
背景技术
肿瘤是威胁人类健康的第二大杀手,全世界每年有约1000万人死于肿瘤。细胞蛋白质的异常表达被认为是导致肿瘤发生发展的重要因素,因此大多数药物所针对的靶点都是这些表达异常的蛋白质。相较于传统的基于抑制剂的药物开发,药物诱导的蛋白质降解是针对这些肿瘤相关蛋白的新策略。根据作用机制,可以将蛋白降解子分为3类,即蛋白质水解靶向嵌合体(PROTAC),单价降解子以及分子胶降解子(Burslem,G.M.& Crews,C.M.Chem.Rev.117,11269–11301(2017).)。
PROTAC是目前使用最为广泛的靶向蛋白降解技术,通常由蛋白靶向结合区,E3泛素连接酶募集区以及连接子组成。PROTAC分子通过结合靶蛋白并募集E3连接酶,使得靶蛋白泛素化并最终导致靶蛋白的降解。由于PROTAC分子量较大(通常700-1200Da之间),使得它们的透膜能力与口服生物利用度较差。单价降解子和分子胶的分子量要远小于PROTAC分子,更契合Lipinski五原则(den Besten,W.etal.Nat Chem Biol 16,1157–1158(2020))。单价降解子通过与蛋白结合改变其构象或者其他变化来诱导其降解。分子胶则是通过诱导Culin-RING E3连接酶与靶蛋白的相互作用最终导致靶蛋白的降解。分子胶介导的靶蛋白的降解可以不依赖于靶蛋白的配体口袋,如目前已经报道的沙利度胺类似物(Simonetta,K.R.etal.Nat Commun 10,1402(2019))以及芳基磺胺类似物(Baek,K.etal.Nat Chem Biol 16,2–3(2020))等都是按照此类机制开发。因此,分子胶能够为之前因为缺少合适的配体口袋而难以成药的靶点带来的新的希望。
细胞周期蛋白K(Cyclin K,也称CCNK),是细胞周期蛋白依赖性激酶12/13(CDK12/13)最为主要的细胞周期蛋白(eral.Int J Mol Sci.2021 Mar;22(6):2935)。它能通过与CDK12/13形成复合物参与调控转录,转录后修饰,细胞周期,细胞增殖等多个生物学过程。研究表明,CDK12/13通过与Cyclin K形 成复合物,磷酸化RNA聚合酶II的C端结构域来调控其活性,进而调控DNA损伤修复基因的表达,如BRCA1,ATR,FANC1等(Malgorzata Krajewska etal.Nat Commun.2019 Apr 15;10(1):1757.)。CDK12/13被认为是一个潜在的肿瘤治疗靶点(Cells 2020,9(6),1483;),通过设计针对Cyclin K的降解子来影响CDK12/13与Cyclin K蛋白复合物的形成,为抑制CDK12/13的功能提供了新的思路。2020年Benjamin L.Ebert等人报道(Nature 2020,585,293–297.),CDK抑制剂CR8是以分子胶降解剂的机制诱导Cyclin K蛋白的降解。目前针对Cyclin K的分子胶类降解剂还很少,急需发现更多对Cyclin K具有高降解活性的化合物用于药物研发。
发明内容
本发明提供了一类具有良好Cyclin K降解活性的化合物,及所述化合物与其其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药、包含该化合物的药物组合物在治疗或者预防细胞周期蛋白K相关病症中的应用。
本发明的一个方面中,提供了具有式(I)结构的化合物或其药学上可接受的盐、前药、同位素衍生物、立体异构体、互变异构体、N-氧化物、溶剂化物、前药或其代谢产物:
其中:
Cy表示11-14元三环芳香稠环,Cy表示
各自独立地表示单键或者双键;
W1各自独立地表示CR、N或键;
W2各自独立地表示CR0、N、NRa、S或O;
W3各自独立地表示C或N,最多只能有2个W3同时为N;
W4各自独立地表示CR1、N、NRa、S或O;
R、R0和R1各自独立地表示氢、卤素、硝基、氰基、-Ra、-ORa、-SRa、-NRaRb、-C(O)Ra、-C(O)ORa、-C(O)NRaRb、-NRaC(O)Rb、-S(O)2Ra、-S(O)Ra、-S(O)2NRaRb、-P(O)RaRb、C1-C6烷基、(C2-C6)烯基、(C2-C6)炔基,所述烷基、烯基或炔基可独自任选地被0至3个选自-ORa、-SRa、-NRaRb、-NRaC(O)Rb、-C(O)Ra、-C(O)ORa、-C(O)NRaRb、-S(O)2Ra、-S(O)Ra、-S(O)2NRaRb、-P(O)RaRb的取代基取代;其中,所述-NRaC(O)Rb中的Rb任选地可被0个、1个或者2个选自-(C0-C3亚烷基)ORa、-(C0-C3亚烷基)SRa、-(C0-C3亚烷基)NRaRb的取代基取代;
RL和RL’各自独立地表示氢、氟、C1-C6烷基或者C3-C6环烷基,RL和RL’可以和与之相连的碳原子一起形成3-6元环;
R2表示卤素、-Ra、-ORa、-SRa、硝基、氰基、-NRaRb、-NRaC(O)Rb、-C(O)Ra、-C(O)ORa、-C(O)NRaRb、-S(O)2Ra、-S(O)Ra、-S(O)2NRaRb、-P(O)RaRb、(C2-C6)烯基、(C2-C6)炔基;
R3表示C1-C6烷基、C1-C6烯基、C1-C6炔基、C3-C10环烷基、3-10元杂环烷基、C6-C10芳基、5-10元杂芳基、-NRMRN、-NHRM、-ORM、-SRM
当R3表示C1-C6烷基、C1-C6烯基、C1-C6炔基、C3-C10环烷基、3-10元杂环烷基时,其任选的可被0、1、2、3个选自以下的取代基取代:氧代、硝基、卤素、氰基、-Ra、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRb、-(C0-C6亚烷基)NRaC(O)Rb、-(C0-C6亚烷基)C(O)Ra、-(C0-C6亚烷基)C(O)ORa、-(C0-C6亚烷基)C(O)NRaRb、-(C0-C6亚烷基)S(O)2Ra、-(C0-C6亚烷基)S(O)Ra、-(C0-C6亚烷基)S(O)2NRaRb、-(C0-C6亚烷基)P(O)RaRb
当R3表示C6-C10芳基或者5-10元杂芳基时,其任选的可被0、1、2、3个选自以下的取代基取代:硝基、卤素、氰基、-Ra、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRb、-(C0-C6亚烷基)NRaC(O)Rb、-(C0-C6亚烷基)C(O)Ra、-(C0-C6亚烷基)C(O)ORa、-(C0-C6亚烷基)C(O)NRaRb、-(C0-C6亚烷 基)S(O)2Ra、-(C0-C6亚烷基)S(O)Ra、-(C0-C6亚烷基)S(O)2NRaRb、-(C0-C6亚烷基)P(O)RaRb
当R3表示-NRMRN、-NHRM、-ORM、-SRM时,RM和RN各自独立地表示C1-C6烷基、-(C0-C6亚烷基)(C3-C10环烷基)、-(C0-C6亚烷基)(3-10元杂环烷基)、-(C0-C6亚烷基)(C6-C10芳基)、-(C0-C6亚烷基)(5-10元杂芳基);RM和RN各自任选的可被0、1、2、3个选自以下的取代基取代:氧代、硝基、卤素、氰基、-Ra、-(4-8元杂环烷基)、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRb、-(C0-C6亚烷基)NRaC(O)Rb、-(C0-C6亚烷基)C(O)Ra、-(C0-C6亚烷基)C(O)ORa、-(C0-C6亚烷基)C(O)NRaRb、-(C0-C6亚烷基)S(O)2Ra、-(C0-C6亚烷基)S(O)Ra、-(C0-C6亚烷基)S(O)2NRaRb、-(C0-C6亚烷基)P(O)RaRb;其中,当RM或者RN表示含有N原子的-(C0-C6亚烷基)(3-10元杂环烷基)且取代基位于所述N原子上时,所述取代基上位于所述N原子邻位的C原子可以进一步被氧代取代;
其中,Ra、Rb各自独立地表示氢、C1-C6烷基或者C3-C8环烷基,所述烷基或环烷基可各自任选地可被0、1、2、3个卤素原子取代。
在本发明的一些实施方案中,Cy表示:
其中W1各自独立地表示CR或N;W2、W3和W4如上文式(I)所定义。
在本发明的一些实施方案中,Cy表示:
其中,X各自独立地表示NRa、O或S;W1各自独立地表示CR或N;W2各自独立地表示CR0或N;W4各自独立地表示CR1或N。
在本发明的一些优选实施方案中,Cy表示:
其中,X各自独立地表示NRa、O或S;W1各自独立地表示CR或N;W2各自独立地表示CR0或N;W4各自独立地表示CR1或N。
在本发明的一些实施方案中,W1各自独立地表示CR或N;其中R各自独立地表示氢、卤素、氰基、-Ra或-ORa;优选地,R各自独立地表示氢、卤素或者-Ra;更优选地,R各自独立地表示氢、C1-C6烷基。
在本发明的一些实施方案中,W2各自独立地表示CR0或N;其中R0各自独立地表示氢、卤素、氰基、-Ra或-ORa;优选地,R0各自独立地表示氢、卤素、氰基或者-Ra;更优选地,R各自独立地表示氢、氰基、C1-C6烷基。
在本发明的一些实施方案中,W4各自独立地表示CR1或N;其中R1各自独立地表示氢、卤素、氰基、C1-C6烷基、C3-C8环烷基、-ORa、-SRa、-NRaRb、-C(O)Ra、-C(O)ORa、-C(O)NRaRb、-NRaC(O)Rb、-S(O)2Ra、-S(O)Ra,其中,所述C1-C6烷基可各自独立地被0、1、2、3个选自卤素、-ORa、-SRa、-NRaRb、-NRaC(O)Rb、-C(O)Ra、-C(O)ORa、-C(O)NRaRb、-S(O)2Ra、-S(O)Ra的取代基取代;其中,所述-NRaC(O)Rb中的Rb任选地可被0个、1个或者2个选自-(C0-C3亚烷基)ORa、-(C0-C3亚烷基)SRa、-(C0-C3亚烷基)NRaRb的取代基取代;优选地,所述-NRaC(O)Rb中的Rb任选地可被0个、1个或者2个选自-(C0-C3亚烷基)OH、-(C0-C3亚烷基)SH、-(C0-C3亚烷基)NH2的取代基取代;更优选地,所述-NRaC(O)Rb中的Rb任选地可被0个、1个或者2个选自-CH2OH、-CH2SH、-CH2NH2的取代基取代。
在本发明的一些优选实施方案中,W4各自独立地表示CR1或N;其中R1各自独立地表示氢、卤素、氰基、C1-C6烷基、C3-C8环烷基、-ORa、-SRa、-NRaRb、-C(O)Ra、-C(O)NRaRb、-NRaC(O)Rb、-S(O)2Ra,所述C1-C6烷基可各自任选地被0、1、2、3个选自卤素、ORa、SRa、NRaRb、NRaC(O)Rb的取代基取代,其中,所述-NRaC(O)Rb中的Rb任选地可被0个、1个或者2个选自-(C0-C3亚烷基)ORa、-(C0-C3亚烷基)SRa、-(C0-C3亚烷基)NRaRb的取代基取代;优选地,所述-NRaC(O)Rb中的Rb任选地可被0个、1个或者2个选自-(C0-C3亚烷基)OH、-(C0-C3亚烷基)SH、-(C0-C3亚烷基)NH2的取代基取代;更优选地,所述-NRaC(O)Rb中的Rb任选地可被0个、1个或者2个选自-CH2OH、-CH2SH、-CH2NH2的取代。
在本发明的一些更优选实施方案中,W4各自独立地表示CR1或N;其中R1各自独立地表示氢、卤素、氰基、C1-C6烷基、C3-C8环烷基、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRb、-(C0-C6亚烷基)NRaC(O)Rb
在本发明的一些实施方案中,RL和RL’各自独立地表示氢或氟;优选地,RL和RL’均为氢。
在本发明的一些实施方案中,R2表示卤素、-Ra、-ORa、-SRa、硝基、氰基、-NRaRb、-NRaC(O)Rb;优选地,R2表示卤素或-Ra;更优选地,R2为-CF3
在本发明的一些实施方案中,R3表示C1-C6烷基、C3-C10环烷基、3-10元杂环烷基,所述烷基、环烷基、杂环烷基各自独立的可被0、1、2、3个选自以下的取代基取代:氧代、卤素、氰基、-Ra、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRb、-(C0-C6亚烷基)NRaC(O)Rb、-(C0-C6亚烷基)C(O)Ra、-(C0-C6亚烷基)C(O)ORa、-(C0-C6亚烷基)C(O)NRaRb、-(C0-C6亚烷基)S(O)2Ra、-(C0-C6亚烷基)S(O)Ra、-(C0-C6亚烷基)S(O)2NRaRb、-(C0-C6亚烷基)P(O)RaRb
在本发明的一些实施方案中,R3表示C6-C10芳基或5-10元杂芳基,所述芳基和杂芳基各自独立的可被0、1、2、3个选自以下的取代基取代:卤素、氰基、-Ra、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRb、-(C0-C6亚烷基)NRaC(O)Rb、-(C0-C6亚烷基)C(O)Ra、-(C0-C6亚烷基)C(O)ORa、-(C0-C6亚烷基)C(O)NRaRb、-(C0-C6亚烷基)S(O)2Ra、-(C0-C6亚烷基)S(O)Ra、-(C0-C6亚烷基)S(O)2NRaRb、-(C0-C6亚烷基)P(O)RaRb
在本发明的一些实施方案中,R3表示-NRMRN、-NHRM、-ORM、-SRM,RM和RN各自独立地表示C1-C6烷基、-(C0-C6亚烷基)(C3-C10环烷基)、-(C0-C6亚烷基)(3-10元杂环烷基)、-(C0-C6亚烷基)(C6-C10芳基)、-(C0-C6亚烷基)(5-10元杂芳基);RM和RN各自任选的可被0、1、2、3个选自以下的取代基取代:氧代、硝基、卤素、氰基、-Ra、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRb、-(C0-C6亚烷基)NRaC(O)Rb、-(C0-C6亚烷基)C(O)Ra、-(C0-C6亚烷基)C(O)ORa、-(C0-C6亚烷基)C(O)NRaRb、-(C0-C6亚烷基)S(O)2Ra、-(C0-C6亚烷基)S(O)Ra、-(C0-C6亚烷基)S(O)2NRaRb、-(C0-C6亚烷基)P(O)RaRb;其中,当RM或者RN表示含有N原子的-(C0-C6亚烷基)(3-10元杂环烷基)且取代基位于所述N原子上时,所述取代基上位于所述N原子邻位的C原子可以进一步被氧代取代。
在本发明的一些实施方案中,R3表示-NRMRN、-NHRM、-ORM、-SRM,RM和RN各自独立地表示C1-C6烷基、-(C0-C6亚烷基)(C3-C10环烷基)、-(C0-C6亚烷基)(3-10元杂环烷基)、-(C0-C6亚烷基)(C6-C10芳基)、-(C0-C6亚烷基)(5-10元杂芳基);RM和RN各自任选的可被0、1、2、3个选自以下的取代基取代:氧代、硝基、卤素、氰基、-Ra、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRb、-(C0-C6亚烷基)NRaC(O)Rb、-(C0-C6亚烷基)C(O)Ra、-(C0-C6亚烷基)C(O)ORa、-(C0-C6亚烷基)C(O)NRaRb、-(C0-C6亚烷基)S(O)2Ra、-(C0-C6亚烷基)S(O)Ra、-(C0-C6亚烷基)S(O)2NRaRb、-(C0-C6亚烷基)P(O)RaRb
在本发明的一些实施方案中,R3表示-NRMRN、-NHRM、-ORM、-SRM,其中RM和RN各自独立地表示氢或者C1-C6烷基、-(C0-C6亚烷基)(C3-C10环烷基)、-(C0-C6亚烷基)(3-10元杂环烷基)、-(C0-C6亚烷基)(C6-C10芳基)、-(C0-C6亚烷基)(5-10元杂芳基);所述RM和RN各自独立的可被0、1、2、3个选自以下的取代基取代:氧代、硝基、卤素、氰基、-Ra、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRb、-(C0-C6亚烷基)NRaC(O)Rb、-(C0-C6亚烷基)C(O)Ra、-(C0-C6亚烷基)C(O)ORa、-(C0-C6亚烷基)C(O)NRaRb、-(C0-C6亚烷基)S(O)2Ra、-(C0-C6亚烷基)S(O)Ra、-(C0-C6亚烷基)S(O)2NRaRb、-(C0-C6亚烷基)P(O)RaRb
在本发明的一些优选的实施方案中,R3表示-NHRM、-ORM、-SRM,其中RM各自独立地表示C1-C6烷基、-(C0-C6亚烷基)(C3-C10环烷基)、-(C0-C6亚烷基)(3-10元杂环烷基);RM各自独立的可被0、1、2、3个选自以下的取代基取代:氧代、卤素、氰基、-Ra、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRb、-(C0-C6亚烷基)NRaC(O)Rb、-(C0-C6亚烷基)C(O)Ra、-(C0-C6亚烷基)C(O)NRaRb、-(C0-C6亚烷基)S(O)2Ra、-(C0-C6亚烷基)S(O)Ra、-(C0-C6亚烷基)S(O)2NRaRb、-(C0-C6亚烷基)P(O)RaRb
在本发明的一些优选的实施方案中,R3表示-NHRM、-ORM、-SRM,其中RM各自独立地表示C1-C6烷基、-(C0-C6亚烷基)(C3-C10环烷基)、-(C0-C6亚烷基)(3-10元杂环烷基),所述RM任选的可被0、1、2、3个选自以下的取代基取代:氧代、卤素、氰基、-Ra、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRb、-NRaC(O)Rb、-C(O)Ra、-C(O)NRaRb、-S(O)2Ra、-S(O)Ra、-S(O)2NRaRb、-P(O)RaRb; 更优选地,RM各自独立的可被0、1、2、3个选自以下的取代基取代:Ra、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRb、-C(O)NRaRb
在本发明的一些优选的实施方案中,R3表示-NHRM、-ORM、-SRM,其中RM各自独立地表示C1-C6烷基、-(C0-C6亚烷基)(C3-C10环烷基)、-(C0-C6亚烷基)(3-10元杂环烷基),所述RM任选的可被0、1、2、3个选自以下的取代基取代:氧代、卤素、氰基、-Ra、-ORa、-SRa、-NRaRb、-NRaC(O)Rb、-C(O)Ra、-C(O)NRaRb、-S(O)2Ra、-S(O)Ra、-S(O)2NRaRb、-P(O)RaRb;更优选地,RM各自独立的可被0、1、2、3个选自以下的取代基取代:-Ra、-ORa、-SRa、-NRaRb、-C(O)NRaRb
在本发明的一些更优选的实施方案中,R3表示-NHRM、-ORM、-SRM,其中RM各自独立地表示C1-C6烷基、-(C0-C6亚烷基)(C3-C10环烷基)、-(C0-C6亚烷基)(3-10元杂环烷基),所述RM任选的可被0、1、2、3个选自以下的取代基取代:氧代、卤素、氰基、-ORa、-SRa、-NRaRb、-NRaC(O)Rb、-C(O)Ra、-C(O)NRaRb、-S(O)2Ra、-S(O)Ra、-S(O)2NRaRb、-P(O)RaRb;更优选地,RM各自独立的可被0、1、2、3个选自以下的取代基取代:-ORa、-SRa、-NRaRb、-C(O)NRaRb
在本发明的一些实施方案中,R3表示-NRMRN、-NHRM、-ORM、-SRM,优选地R3表示-NHRM、-ORM、-SRM,,其中,RM和RN各自独立地表示可被0、1、2、3个选自以下的取代基取代的含有N原子的-(C0-C6亚烷基)(3-10元杂环烷基):氧代、硝基、卤素、氰基、-Ra、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRb、-(C0-C6亚烷基)NRaC(O)Rb、-(C0-C6亚烷基)C(O)Ra、-(C0-C6亚烷基)C(O)ORa、-(C0-C6亚烷基)C(O)NRaRb、-(C0-C6亚烷基)S(O)2Ra、-(C0-C6亚烷基)S(O)Ra、-(C0-C6亚烷基)S(O)2NRaRb、-(C0-C6亚烷基)P(O)RaRb,其中,所述取代基位于所述N原子上,所述取代基上位于所述N原子邻位的C原子可以进一步被氧代取代。
在本发明的一些实施方案中,Ra和Rb各自独立地表示氢、C1-C3烷基或C3-C6环烷基,所述烷基和环烷基任选地可被0、1、2、3个卤素原子取代。
在本发明的一些优选实施方案中,Ra和Rb各自独立地表示氢或C1-C3烷基,所述烷基任选地可被0、1、2、3个卤素原子取代。
本发明涵盖以上实施方案的任意组合。
更优选的,在本发明的一些实施方案中,所述的如式(I)所示的化合物为如下任一所示化合物:








本发明的另一方面涉及一种药物组合物,该组合物包含如本发明所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,及任选地药学上可接受的载体、稀释剂或赋形剂。
本发明的另一方面涉及一种前述本发明式(I)所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,或者本发明所述的药物组合物在制备用于预防或治疗与Cyclin K蛋白相关的疾病或病症的药物中的应用。特别地,所述疾病或病症选自肿瘤、癌症、病毒感染、炎症相关疾病和自身免疫性疾病。
本发明的另一方面涉及一种治疗与Cyclin K蛋白相关的疾病或病症的方法,其包括向有此需要的哺乳动物施用本发明所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,或者本发明所述的药物组合物。
附图说明
图1为化合物12,17,18在不同浓度处理HEK293细胞6h后诱导Cyclin K的降解。
具体实施方式
发明详述
特别注意的是,在本文中,当提及具有特定结构式的“化合物”时,一般地还涵盖其立体异构体、非对映异构体、对映异构体、外消旋混合物和同位素衍生物。
本领域技术人员公知,一种化合物的盐、溶剂合物、水合物是化合物的替代性存在形式,它们都可以在一定条件下转化为所述化合物,因此,特别注意的是在本文中当提到一种化合物时,一般地还包括它的可药用盐,进而还包括其溶剂合物和水合物。
相似地,在本文中当提到一种化合物时,一般地还包括其前药、代谢产物和氮氧化物。
本发明式(I)化合物的“立体异构体”是指当式(I)化合物存在不对称碳原子时,会产生对映异构体;当化合物存在碳碳双键或环状结构时,会产生顺反异构体;当化合物存在酮或肟等时,会产生互变异构体,所有式(I)化合物的对映异构体、非对映异构体、消旋异构体、顺反异构体、互变异构体、几何异构体、差向异构体、旋转异构体及其混合物,均包括在本发明范围中。
本发明所述的“药学上可接受的盐”是指可药用的酸和碱的加成盐或其溶剂化物。这样的可药用盐包括以下酸的盐:盐酸、磷酸、氢溴酸、硫酸、亚硫酸、甲酸、甲苯磺酸、甲磺酸、硝酸、苯甲酸、柠檬酸、酒石酸、马来酸、氢碘酸、链烷酸(诸如乙酸、HOOC‐(CH2)n‐COOH(其中n是0~4))等。碱的盐:钠盐、钾盐、钙盐、铵盐等。本领域技术人员知晓的多种无毒的可药用加成盐。
本发明的可药用盐可通过常规方法制备,例如通过将本发明的化合物溶解于与水可混溶的有机溶剂(例如丙酮、甲醇、乙醇和乙腈),向其中添加过量的有机酸或无机酸水溶液,以使得盐从所得混合物中沉淀,从中除去溶剂和剩余的游离酸,然后分离所沉淀的盐。
本发明所述的前体或代谢物可以本领域公知的前体或代谢物,只要所述的前体或代谢物通过体内代谢转化形成化合物即可。例如“前药”是指本发明化合物的那些前药,在合理的医学判断范围内,其适用于接触人和更低等动物的组织,而没有不适当的毒性、刺激性、过敏反应等,称得上合理的受益/风险比并且对其预期用途有效。术语“前药”是指在体内迅速经转化产生上述式的母体化合物的化合物,例如通过在体内代谢。
定义
如果无另外说明,用于本发明申请(包括说明书和权利要求书)中的术语定义如下。必须注意,在说明书和所附的权利要求书中,如果文中无另外清楚指示,单数形式“一个”包括复数意义。如果无另外说明,使用质谱、核磁、HPLC、蛋白化学、生物化学、重组DNA技术和药理的常规方法。在本申请中,如果无另外说明,使用“或”或“和”指“和/或”。
在说明书和权利要求书中,给定化学式或名称应涵盖所有立体和光学异构体及其中存在上述异构体的外消旋物。除非另外指明,否则所有手性(对映异构体和非对映异构体)和外消旋形式均在本发明范围内。所述化合物中还可存在C=C双键、C=N双键、环系统等的许多几何异构体,且所有上述稳定异构体均涵盖于本发明内。本发明描述了本发明化合物的顺式-和反式-(或E-和Z-)几何异构体,且其可分离成异构体的混合物或分开的异构体形式。本发明化合物可以光学活性或外消旋形式加以分离。用于制备本发明化合物和其中制备的中间体的所有方法均视为本发明的部分。在制备对映异构体或非对映异构体产物时,其可通过 常规方法(例如通过色谱或分段结晶)进行分离。取决于方法条件,以游离(中性)或盐形式获得本发明的终产物。这些终产物的游离形式和盐均在本发明的范围内。如果需要的话,则可将化合物的一种形式转化成另一种形式。可将游离碱或酸转化成盐;可将盐转化成游离化合物或另一种盐;可将本发明异构体化合物的混合物分离成单独的异构体。本发明化合物、其游离形式和盐可以多种互变异构体形式存在,其中氢原子转置到分子的其它部分上且由此分子的原子之间的化学键发生重排。应当理解的是,可存在的所有互变异构体形式均包括在本发明内。
本发明中当所列连接基团没有指明其连接方向时,其连接方向是任意的,例如中的L为-C(O)NH-,此时-C(O)NH-既可以按照以从左到右的读取顺序连接苯基和环己基构成也可以按照以从左到右相反的读取顺序连接苯基和环己基构成所述连接基团和被连接集团的组合只有在这样的会产生稳定化合物的情况下才是被允许的。
除非另有定义,本发明的取代基的定义是各自独立而非互相关联的,例如对于取代基中Ra(或者Rb)而言,其在不同的取代基的定义中是各自独立的。具体而言,对于Ra(或者Rb)在一种取代基中选择一种定义时,并不意味着该Ra(或者Rb)在其他取代基中都具有该相同的定义。更具体而言,例如(仅列举非穷举)对于NRaRb中,当Ra(或者Rb)的定义选自氢时,其并不意味着在-C(O)-NRaRb中,Ra(或者Rb)必然为氢。在另一个方面,当某一个取代基中存在多于一个Ra(或者Rb)时,这些Ra(或者Rb)也是各自独立的。例如,在取代基-(CRaRb)m-O-(CRaRb)n-中,在m+n大于等于2的情况下,其中的m+n个Ra(或者Rb)是各自独立的,它们可以具有相同或者不同的含义。
除非另有定义,否则当取代基被标注为“任选取代的”时,所述取代基选自例如以下取代基,诸如烷基、环烷基、芳基、杂环基、卤素、羟基、烷氧基、氧代、烷酰基、芳基氧基、烷酰基氧基、氨基、烷基氨基、芳基氨基、芳基烷基氨基、二取代的胺基团(其中两个氨基取代基选自烷基、芳基或芳基烷基)、烷酰基氨基、芳酰基氨基、芳烷酰基氨基、取代的烷酰基氨基、取代的芳基氨基、取代的芳烷酰基氨基、硫基、烷基硫基、芳基硫基、芳基烷基硫基、芳基硫羰基、芳基烷基 硫羰基、烷基磺酰基、芳基磺酰基、芳基烷基磺酰基、磺酰氨基例如-SO2NH2、取代的磺酰氨基、硝基、氰基、羧基、氨基甲酰基例如-CONH2、取代的氨基甲酰基例如-CONH烷基、-CONH芳基、-CONH芳基烷基或在氮上具有两个选自烷基、芳基或芳基烷基的取代基的情况、烷氧基羰基、芳基、取代的芳基、胍基、杂环基,例如吲哚基、咪唑基、呋喃基、噻吩基、噻唑基、吡咯烷基、吡啶基、嘧啶基、吡咯烷基、哌啶基、吗啉基、哌嗪基、高哌嗪基等和取代的杂环基。
本发明中,术语“烷基”意欲包括具有指定碳原子数的支链和直链饱和脂肪族烃基。例如,“C1-C6烷基”表示具有1个至6个碳原子的烷基。烷基的实例包括但不限于甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、新戊基等。本发明优选的烷基包括C1-C6烷基或C1-C4烷基。烷基可以是非取代的或取代的,当被取代时,其可以在任何可使用的连接点被取代,所述取代基优选自氘、卤素、羟基、氨基、氰基、烷基、烷氧基、卤代烷基、环烷基、杂环烷基、芳基和杂芳基中的一个或多个。
本发明中,术语“亚烷基”意欲包括具有指定碳原子数的支链和直链饱和脂肪族烃基,其为从母体烷的相同碳原子或两个不同的碳原子上除去两个氢原子所衍生的残基。例如,“C0-C6亚烷基”表示具有0个至6个碳原子的亚烷基,C0亚烷基表示亚烷基不存在(为一个键)。亚烷基的实例包括但不限于亚甲基(-CH2-)、1,1-亚乙基(-CH(CH3)-)、1,2-亚乙基(-CH2CH2-)、1,1-亚丙基(-CH(CH2CH3)-)、1,2-亚丙基(-CH2CH(CH3)-)、1,3-亚丙基(-CH2CH2CH2-)、1,4-亚丁基(-CH2CH2CH2CH2-)等。本发明优选的亚烷基包括C0-C6亚烷基。
本发明中,术语“烯基”表示含一个或更多个双键且通常长度为2至20个碳原子的直链或支链的烃基。例如,“C2-C6烯基”含有两个至六个碳原子。烯基包括但不限于例如乙烯基、丙烯基、丁烯基、1-甲基-2-丁烯-1-基等。本发明优选的烯基包括C2-C6烯基。
本发明中,术语“炔基”表示含一个或更多个三键且通常长度为2至20个碳原子的直链或支链的烃基。例如,“C2-C6炔基”含有两个至六个碳原子。代表性炔基包括但不限于例如乙炔基、1-丙炔基、1-丁炔基等。本发明优选的炔基包括C2-C6炔基。
本发明中,术语“烷氧基”或“烷基氧基”是指-O-烷基。“C1-C6烷氧基”(或烷基氧基)意欲包括C1、C2、C3、C4、C5、C6烷氧基。烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(例如正丙氧基和异丙氧基)和叔丁氧基。类似地,“烷基硫基”或“硫代烷氧基”表示具有指定数量碳原子的经硫桥连接的如上文所定义的烷基;例如甲基-S-和乙基-S-。本发明优选的烷氧基包括C1-C6烷氧基或C1-C4烷氧基。
本发明中,术语“羰基”是指由碳和氧两种原子通过双键连接而成的有机官能团(C=O)。
本发明中,术语“芳基”单独或作为较大部分诸如“芳烷基”、“芳烷氧基”或“芳基氧基烷基”的部分,是指具有总计5至12个环成员的单环、二环或三环的环系统,其中所述系统中的至少一个环为芳族的且其中所述系统中的每个环含有3至7个环成员。在本发明的某些实施方案中,“芳基”是指芳族环系统,其包括但不限于苯基、联苯基、茚满基、1-萘基、2-萘基和四氢萘基。术语“芳烷基”或“芳基烷基”是指连接至芳基环的烷基残基。非限制性实例包括苄基、苯乙基等。稠合的芳基可在环烷基环或芳族环的合适位置上连接至另一基团。例从环系统中画出的虚线表明键可连接至任意合适的环原子。芳基可以是非取代的或取代的,当被取代时,其可以在任何可使用的连接点被取代,所述取代基优选自氘、卤素、羟基、氨基、氰基、烷基、烷氧基、卤代烷基、环烷基、杂环烷基、芳基和杂芳基中的一个或多个。
本发明中,术语“卤代”或“卤素”包括氟、氯、溴和碘。“卤代烷基”意欲包括具有指定碳原子数且取代有1个或多个卤素的支链和直链饱和脂族烃基团。卤代烷基的实例包括但不限于氟甲基、二氟甲基、三氟甲基、三氯甲基、五氟乙基、五氯乙基、2,2,2-三氟乙基、七氟丙基和七氯丙基。卤代烷基的实例还包括意欲包括具有指定碳原子数且取代有1个或多个氟原子的支链和直链饱和脂族烃基团的“氟烷基”。
本发明中,术语“卤代烷氧基”或“卤代烷基氧基”表示具有指定数量碳原子的经氧桥连接的如上文所定义的卤代烷基。例如,“C1-C6卤代烷氧基”意欲包括C1、C2、C3、C4、C5、C6卤代烷氧基。卤代烷氧基的实例包括但不限于三氟甲氧基、2,2,2-三氟乙氧基和五氟乙氧基。类似地,“卤代烷基硫基”或“硫代卤代烷氧基”表 示具有指定数量碳原子的经硫桥连接的如上文所定义的卤代烷基;例如三氟甲基-S-和五氟乙基-S-。
本发明中,当提到一些取代基团时使用Cx1-Cx2的表述,这表示所述取代基团中的碳原子数可以是x1x2个。例如,C0-C8表示所述基团含有0、1、2、3、4、5、6、7或8个碳原子,C1-C8表示所述基团含有1、2、3、4、5、6、7或8个碳原子,C2-C8表示所述基团含有2、3、4、5、6、7或8个碳原子,C3-C8表示所述基团含有3、4、5、6、7或8个碳原子,C4-C8表示所述基团含有4、5、6、7或8个碳原子,C0-C6表示所述基团含有0、1、2、3、4、5或6个碳原子,C1-C6表示所述基团含有1、2、3、4、5或6个碳原子,C2-C6表示所述基团含有2、3、4、5或6个碳原子,C3-C6表示所述基团含有3、4、5或6个碳原子。
本发明中,当提到环状基团(例如芳基、杂芳基、环烷基和杂环烷基)时使用“x1-x2元环”的表述,这表示该基团的环原子数可以是x1至x2个。例如,所述3-12元环状基团可以是3、4、5、6、7、8、9、10、11或12元环,其环原子数可以是3、4、5、6、7、8、9、10、11或12个;3-6元环表示该环状基团可以是3、4、5或6元环,其环原子数可以是3、4、5或6个;3-8元环表示该环状基团可以是3、4、5、6、7或8元环,其环原子数可以是3、4、5、6、7或8个;3-9元环表示该环状基团可以是3、4、5、6、7、8或9元环,其环原子数可以是3、4、5、6、7、8或9个;4-7元环表示该环状基团可以是4、5、6或7元环,其环原子数可以是4、5、6或7个;5-8元环表示该环状基团可以是5、6、7或8元环,其环原子数可以是5、6、7或8个;5-12元环表示该环状基团可以是5、6、7、8、9、10、11或12元环,其环原子数可以是5、6、7、8、9、10、11或12个;6-12元环表示该环状基团可以是6、7、8、9、10、11或12元环,其环原子数可以是6、7、8、9、10、11或12个。所述环原子可以是碳原子或杂原子,例如选自N、O和S的杂原子。当所述环是杂环时,所述杂环可以含有1、2、3或4个环杂原子,例如任选自N、O和S的杂原子。
本发明中,一个或更多个卤素可以各自独立地选自氟、氯、溴和碘。
本发明中,术语“杂芳基”指含有一个或多个相同或不同杂原子的单环或多环芳族基团,包括单环的杂芳基和含有至少一个杂芳环(至少含有一个杂原子的芳族环系)的双环或多环环系,其可以具有5、6、7、8、9、10、11、12、13或14 个环原子,例如5、6、7、8、9或10个环原子。所述杂原子可以是氧、氮或硫。所述杂芳基上的碳原子和杂原子任选地被氧代基团取代(例如形成C=O、S(=O)或S(=O)2)。杂芳基可以是非取代的或取代的,当被取代时,其可以在任何可使用的连接点被取代,所述取代基优选自氘、卤素、羟基、氨基、氰基、烷基、烷氧基、卤代烷基、环烷基、杂环烷基、芳基和杂芳基中的一个或多个。
本发明中,术语“杂环烷基”或“杂环基”指的是饱和或部分不饱和的单环或多环杂环烷基体系,其1、2、3或4个环原子为独立选自N、O和S的杂原子,其余为碳原子,其中N原子可任选地被季铵化,N和S原子可任选地被氧化(即NO、SO和SO2)。其包括单环杂环、双环杂环和三环杂环体系,其中双环杂环和三环杂环体系包括螺环杂环、并环杂环和桥环杂环。杂环烷基可以是非取代的或取代的,当被取代时,其可以在任何可使用的连接点被取代,所述取代基优选自氘、卤素、羟基、氨基、氰基、烷基、烷氧基、卤代烷基、环烷基、杂环烷基、芳基和杂芳基中的一个或多个。
本发明中,术语“3-10元杂环烷基”或“3-10元杂环基”指的是由3至10个环原子组成的饱和或部分不饱和的单环或多环杂环烷基体系,其1、2、3或4个环原子为独立选自N、O和S的杂原子,其余为碳原子,其中N原子可任选地被季铵化,N和S原子可任选地被氧化(即NO、SO和SO2)。当杂环中S和O原子的总数超过1时,则这些杂原子彼此不相邻。其包括单环杂环、双环杂环和三环杂环体系,其中双环杂环和三环杂环体系包括螺环杂环、并环杂环和桥环杂环。所述“3-10元杂环基”可以是3、4、5、6、7、8、9或10元杂环基。3-10元杂环基的具体实例包括但不限于氮杂环丁基、氧杂环丁烷基、吡咯烷基(包括2-吡咯烷基和3-吡咯烷基)、哌啶基(包括2-哌啶基、3-哌啶基和4-哌啶基等)、哌嗪基、六氢哒嗪基、吗啉基、二噁烷基、六氢哒嗪基、氮杂环庚烷、1,4-二氮杂环庚烷、环戊基并吡咯烷基、吡咯烷基并吡咯烷基、环丙基螺哌嗪基、环丁基螺氮杂环丁基、氮杂环丁基螺氮杂环丁基、环丁基螺氮杂环戊基、氮杂环丁基螺环戊基、氮杂环丁基螺氮杂环戊基、环丁基螺氮杂环己基、氮杂环丁基螺环己基、氮杂环丁基螺氮杂环己基、环戊基螺氮杂环戊基、氮杂环戊基螺氮杂环戊基、3,6-二氮杂双环[3.1.1]庚烷基、3,8-二氮杂双环[3.2.1]辛烷基或8-氮杂双环[3.2.1]辛烷基等。
本发明中,术语“环烷基”指的是饱和或部分不饱和的单环或多环烷基体系,其环原子均为碳原子。其包括单环烷基、并环烷基、螺环烷基和桥环烷基。环烷基可以是非取代的或取代的,当被取代时,其可以在任何可使用的连接点被取代,所述取代基优选自氘、卤素、羟基、氨基、氰基、烷基、烷氧基、卤代烷基、环烷基、杂环烷基、芳基和杂芳基中的一个或多个。
本发明中,术语“C3-C10环烷基”指的是由3至10个环原子组成的饱和或部分不饱和的单环或多环烷基体系,其环原子均为碳原子。其包括单环烷基、并环烷基、螺环烷基和桥环烷基。所述“3-12元环烷基”可以是3、4、5、6、7、8、9、10、11或12元环烷基。3-12元杂环基的具体实例包括但不限于环丙基、环丁基、环戊基、环己基、环庚基、环戊基并环戊基、环丁基螺环丁基或双环[1.1.1]戊烷基等。
本发明中,术语“并环”或“稠环”指的是由两个或两个以上环状结构彼此共用两个相邻的原子所形成的多环基团。
本发明中,术语“芳香稠环”指的是具有芳香性的稠环,其中,稠环的芳香性可以根据本领域内常用的方法判断,例如Huckel规则,当稠环的共轭π电子数为4n+2时,判定其具有芳香性。
本发明中,术语“桥环”指的是系统中两个环共用两个以上环原子的多环基团。
本发明中,术语“螺环”指的是单环之间共用一个碳原子(称螺原子)的多环基团。
本发明中,术语“取代”意指至少一个氢原子被非氢基团替代,条件是维持正常化合价且所述取代得到稳定的化合物。本文所用的环双键为在两个相邻环原子之间形成的双键(例如C=C、C=N或N=N)。
在本发明化合物上存在氮原子(例如胺)的情形下,可通过使用氧化剂(例如mCPBA和/或过氧化氢)进行处理来将这些氮原子转化成N-氧化物以获得本发明的其它化合物。因此,所显示和要求保护的氮原子视为均涵盖所显示氮及其N-氧化物以获得本发明衍生物。
当任何变量在化合物的任何组成或式中出现一次以上时,其每次出现时的定义均独立于其在其它每种情况下出现时的定义。因此,例如如果显示基团取代有0-3个R,则所述基团可任选地取代有至多三个R基团,且在每次出现时R独立 地选自R的定义。此外,取代基和/或变量的组合仅在上述组合可产生稳定的化合物时才容许存在。
本发明中,术语“患者”是指通过本发明的方法进行治疗的有机体。这类有机体优选包括但不限于哺乳动物(例如鼠类、猿/猴、马、牛、猪、犬、猫等)且最优选是指人类。
本发明中,术语“有效量”意指将会引起例如研究人员或临床医师所寻求的组织、系统、动物或人的生物学或医学响应的药物或药剂(即本发明化合物)的量。此外,术语“治疗有效量”意指这样的量:与未接受上述量的相应受试者相比,所述量导致改善的治疗、治愈、预防或减轻疾病、病症或副作用,或降低在疾病或病症的进展速度。有效量可以一个或更多个给药、施用或剂量给予且不意欲被特定的制剂或给药途径限制。该术语还包括在其范围内的增强正常生理机能的有效量。
本发明中,术语“治疗”包括其广义上的含义,涵盖对对象的治疗性处理和/或预防性处理。具体而言,所述“治疗”包括导致病症、疾病、障碍等的缓和、抑制、消除和改善和/或预防的任何处理,例如减轻、减少、调节、改善、消除、预防、防止或改善其症状。所述治疗性处理包括缓和、抑制或改善疾病的症状或状况;抑制并发症的产生;改善潜在代谢综合征;抑制疾病或症状的产生,如控制疾病或情况的发展;减轻疾病或症状;使疾病或症状减退;减轻由疾病或症状引起的并发症,或治疗由疾病或症状引起的征兆。所述预防性处理包括事先处理以防止、阻断或延迟、减缓疾病或病症的发生或发展或者减弱疾病或病症的严重程度。
同样,“治疗剂”也包括对对象具有治疗性处理和/或预防性处理的药剂或试剂。
本发明中,术语“药用”或“药学上可接受的”在本文中用于指如下那些化合物、物质、组合物和/或剂型:在合理医学判断的范围内,其适于与人类和动物的组织接触使用而无过高毒性、刺激性、过敏反应和/或其它问题或并发症,并与合理的益处/风险比相称。
本发明中,术语“药用载体”意指药用物质、组合物或媒介物,诸如液体或固体填充剂、稀释剂、赋形剂、制造助剂(例如润滑剂、滑石、硬脂酸镁、硬脂酸钙或硬脂酸锌或硬脂酸)或溶剂包囊物质,其涉及将主题化合物从一个器官或身体 的部分携带或运送至另一个器官或身体的部分。每种载体在与制剂的其它成分相容和对患者无害的意义上必须是“可接受的”。
本发明中,术语“药物组合物”意指包含本发明化合物与至少一种其它药用载体的组合物。“药用载体”是指本领域中通常接受用于将生物活性剂递送至动物(具体为哺乳动物)的介质,包括(即)佐剂、赋形剂或媒介物,诸如稀释剂、防腐剂、填充剂、流动调控剂、崩解剂、润湿剂、乳化剂、悬浮剂、增甜剂、矫味剂、芳香剂、抗细菌剂、抗真菌剂、润滑剂和分散剂,这取决于给药模式和剂型的性质。
特定药学及医学术语
本发明中,术语“可接受的”,如本文所用,指一个处方组分或活性成分对一般治疗目标的健康没有过分的有害影响。
本发明中,术语“癌症”,如本文所用,指一种不能控制的细胞的异常生长,并且在某种条件下能够转移(传播)。这种类型的癌症包括但不限于,实体肿瘤(如膀胱、肠、脑、胸、子宫、心脏、肾、肺、淋巴组织(淋巴瘤)、卵巢、胰腺或其它内分泌器官(如甲状腺)、前列腺、皮肤(黑色素瘤)或血液瘤(如非白血性白血病)。
本发明中,术语“联合给药”或其类似术语,如本文所用,指将几种所选的治疗药物给一个病人用药,以相同或不同的给药方式在相同或不同的时间给药。
本发明中,术语“增强”或“能增强”,如本文所用,指预期的结果能够在效价或是持续时间方面都有增加或延长。因此,在增强药物的治疗效果方面,术语“能增强”指药物在系统中有提高或延长效价或持续时间的能力。本文所用的“增效值”,指在理想的系统中,能够最大限度地的增强另外一个治疗药物的能力。
本发明中,术语“免疫性疾病”指对内源性或外源性抗原产生的不良或有害反应的疾病或症状。结果通常会造成细胞的功能障碍、或因此而破坏并造成机能障碍、或破坏可能产生免疫症状的器官或组织。
本发明中,术语“试剂盒”与“产品包装”是同义词。
本发明中,术语“对象”、“受试者”或“病人”包括哺乳动物和非哺乳动物。哺乳动物包括但不限于,哺乳类:人、非人灵长类如猩猩、猿及猴类;农业动物如牛、马、山羊、绵羊、猪;家畜如兔、狗;实验动物包括啮齿类,如大鼠、小鼠 及豚鼠等。非哺乳类动物包括但不限于,鸟、鱼等。在一优选例中,所选哺乳动物是人。
如本文所用,某一化合物或药物组合物,给药后,可以使某一疾病、症状或情况得到改善,尤指其严重度得到改善,延迟发病,减缓病情进展,或减少病情持续时间。无论固定给药或临时给药、持续给药或断续给药,可以归因于或与给药有关的情况。
具体实施例
本发明可以参考下列具体实施例得到更好的理解,所述实施例只是用于说明而非限定本发明。
本发明中当未提及制备途径时,相关原料和中间体都采购于商业化试剂(例如购自毕得、药石等)。
本发明中的缩写具有以下含义:

在以下实施例中,如无特殊说明,反应温度为室温(10-30℃)。
本发明的化合物通过制备TLC、硅胶柱层析、Prep-HPLC和/或硅胶快速柱层析(Flash柱层析)来分离纯化,其结构通过1H NMR和/或MS来确证。反应监测采用TLC或LC-MS进行。
1H-NMR谱在Bruker仪器上于500MHz记录。化学位移值以百万分率表示,即δ值。以下简写用于NMR信号的多重性:s=单峰,brs=宽峰,d=二重峰,t=三重峰,m=多重峰。耦合常数以J值列出,以Hz测量。LC-MS实验条件为:仪器:Thermo U3000,ALLtech ELSD,MSQ,UV检测器结合ELSD和MSD(流出比为4:1)。柱:Waters X-Bridge C-18,3.5μm,4.6x50mm;柱温:30℃。梯度[时间(min)/溶剂B在A中(%)]:0.00/5.0,1.40/95,2.80/95,2.82/5,3.00/5。(溶剂A=0.01%三氟乙酸在水中;溶剂B=0.01%三氟乙酸在乙腈中)。UV检测:214/254/280/300nm;DAD检测:210-350nm;流速:2mL/min;MS:ESI,100-1500m/z。
制备型HPLC通常使用碱性方法或酸性方法(碱性方法流动相:乙腈/0.05%碳酸氢铵水溶液,酸性方法流动相:乙腈/0.05%甲酸水溶液);仪器为Thermo U3000AFC-3000;柱:Globalsil C-18 12nm,250x20mm,10μm,或相当;流速:20mL/min,进行梯度洗脱分离。
实施例1:
将3-氧杂环丁醇(1.26g,17.0mmol)和2,4-二氯-5-三氟甲基嘧啶(3.50g,16.1mmol)溶于四氢呋喃(50mL),0℃下缓慢滴加双(三甲基硅基)氨基锂(1M in THF,17.7mL)。混合物在0℃下搅拌3小时后,向反应体系中加入50mL氯化铵溶液,用100mL乙酸乙酯萃取两次。合并后的有机相用水洗三次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物通过柱层析色谱纯化得到化合物1-a(1.10g,收率26.9%)。
将3-溴咔唑(1g,4.06mmol)溶于N-甲基吡咯烷酮(5mL),加入氰化亚铜(761mg,8.13mmol)。混合物在170℃微波条件下搅拌5小时。将反应液冷却至室温后,加入50mL乙酸乙酯,经硅藻土过滤,滤液用水洗三次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物通过柱层析色谱纯化得到化合物1-b(500mg,收率64.0%)。ESI-MS(m/z):193.4[M+H]+.
将化合物1-b(500mg,2.60mmol)溶于甲醇(10mL),加入雷尼镍(100mg)。混合物在氢气气氛下室温搅拌12小时。反应液经硅藻土过滤,浓缩。残留物用快速柱层析色谱纯化得到1-c(180mg,收率35.3%)。ESI-MS(m/z):197.5[M+H]+.
将化合物1-c(30mg,152μmol)和化合物1-a(38.9mg,152μmol)溶于N,N-二甲基甲酰胺(2mL),加入N,N-二异丙基乙胺(59mg,458μmol)。混合物在80℃下搅拌2小时。将反应液冷却至室温后,通过制备液相色谱纯化得到化合物1(20mg,收率31.5%)。ESI-MS(m/z):415.4[M+H]+1H NMR(400MHz,DMSO-d6)δ11.20(s,1H),8.81–8.33(m,2H),8.18–7.95(m,2H),7.45(d,J=8.1Hz,1H),7.40–7.31(m,2H),7.19–7.05(m,2H),5.73–5.46(m,1H),4.95–4.41(m,6H).
实施例2:
将2-氯-3-硝基吡啶(500mg,3.15mmol)和(4-(4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)苄基)氨基甲酸叔丁酯(1.05g,3.15mmol)加入到1,4-二氧六环(5mL)与水(0.5mL)中,加入1,1'-二(二苯基膦)二茂铁二氯化钯(II)(231mg,315μmol)和碳酸钾(872mg,6.31mmol)。混合物在100℃下搅拌16小时。将反应液冷却至室温,加入30mL乙酸乙酯,用水洗三次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物通过柱层析色谱纯化得到化合物2-a(600mg,收率57.8%)。ESI-MS(m/z):330.4[M+H]+.
在烧瓶中加入2-a(600mg,1.82mmol)和1,2-双(二苯基膦)乙烷(2.18g,5.47mmol)。混合物在180℃反应0.5小时。将混合物冷却至室温,通过柱层析色谱纯化得到化合物2-b(150mg,收率27.6%)。ESI-MS(m/z):298.3[M+H]+.
将化合物2-b(150mg,504μmol)溶于二氯甲烷(10mL),加入盐酸二氧六环溶液(4M,2mL)。混合物在室温搅拌2小时。浓缩反应液得到2-c(118mg,收率100%)。ESI-MS(m/z):198.4[M+H]+.
将化合物2-c(30mg,128μmol)和化合物1-a(32.7mg,128μmol)溶于N,N-二甲基甲酰胺(2mL),加入N,N-二异丙基乙胺(49.8mg,385μmol)。混合物在80℃下搅拌2小时。将反应液冷却至室温后,通过制备液相色谱纯化得到化合物2(15mg,收率28.1%)。ESI-MS(m/z):416.4[M+H]+1H NMR(500MHz,DMSO-d6)δ11.47–11.30(m,1H),8.83–8.39(m,3H),8.21–8.09(m,1H),7.94–7.81(m,1H),7.47–7.19(m,3H),5.73–5.51(m,1H),4.94–4.43(m,6H).
实施例3:
将化合物2(20mg,48μmol)溶于N,N-二甲基甲酰胺(2mL),加入碳酸铯(31.4mg,96.3μmol)和碘甲烷(8.9mg,63μmol)。混合物在50℃下搅拌2小时。将反应液冷却至室温后,通过制备液相色谱纯化得到化合物3(5mg,收率24.2%)。ESI-MS(m/z):430.4[M+H]+1H NMR(500MHz,DMSO-d6)δ8.78–8.35(m,3H),8.22–8.10(m,1H),8.01(d,J=8.3Hz,1H),7.60(s,1H),7.50–7.37(m,1H),7.35–7.22(m,1H),5.71–5.56(m,1H),4.97–4.43(m,6H),3.96–3.85(m,3H).
实施例4:
将2,4-二氯-5-三氟甲基嘧啶(20g,92mmol)和氯化锌(16.3g,112mmol)溶于四氢呋喃(200mL),冰浴下滴加20%的甲硫醇钠水溶液(48.5g,138mmol)。混合物在45℃下搅拌16小时。将反应液冷却至室温,加入300mL乙酸乙酯,用水洗三次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物通过柱层析色谱纯化得到化合物4-a(7.0g,收率33.2%)。
将化合物4-a(900mg,3.94mmol)和(R)-2-氨基丁酰胺盐酸盐(813mg,7.97mmol)溶于N,N-二甲基甲酰胺(10mL),加入N,N-二异丙基乙胺(1.53g,11.8mmol)。 混合物在70℃下搅拌2小时。将反应液冷却至室温,加入50mL乙酸乙酯,用水洗三次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物通过柱层析色谱纯化得到化合物4-b(1.0g,收率86.3%)。ESI-MS(m/z):295.5[M+H]+.
将化合物4-b(277mg,0.94mmol)溶于二氯甲烷(10mL),加入间氯过氧苯甲酸(325mg,1.88mmol)。混合物在室温下搅拌2小时。浓缩反应液,残留物通过柱层析色谱纯化得到化合物4-c(150mg,收率48.9%)。ESI-MS(m/z):327.3[M+H]+.
将化合物2-c(30mg,128μmol)和化合物4-c(42mg,128μmol)溶于N,N-二甲基甲酰胺(2mL),加入N,N-二异丙基乙胺(50mg,385μmol)。混合物在80℃下搅拌2小时。将反应液冷却至室温后,通过制备液相色谱纯化得到化合物4(20mg,收率35.1%)。ESI-MS(m/z):444.5[M+H]+1H NMR(500MHz,DMSO-d6)δ8.80–8.40(m,4H),8.30–8.11(m,1H),7.84(s,1H),7.75–7.60(m,2H),7.48–7.31(m,2H),4.83–4.72(m,2H),4.60(d,J=6.5Hz,1H),2.04–1.97(m,1H),1.86–1.69(m,2H),0.89–0.62(m,4H).
实施例5:
用(2R,3R)-2-氨基丁-1,3-二醇代替(R)-2-氨基丁酰胺盐酸盐,参照化合物4-c的合成得到化合物5-a。用化合物5-a代替化合物4-c,参照化合物4的合成得到化合物5。ESI-MS(m/z):447.3[M+H]+1H NMR(500MHz,DMSO-d6)δ12.74–12.32(m,1H),8.86–8.68(m,2H),8.60–8.45(m,2H),8.34–8.11(m,1H),7.93–7.83(m,1H),7.78–7.01(m,3H),4.82–4.74(m,2H),4.12–3.97(m,2H),0.95–0.81(m,3H).
实施例6:
用2-氯-4-甲基-3-硝基吡啶代替2-氯-3-硝基吡啶,参照化合物2-c的合成得到化合物6-a。用化合物6-a代替化合物2-c,参照化合物2的合成得到化合物6。ESI-MS(m/z):430.3[M+H]+;1H NMR(500MHz,DMSO-d6)δ11.36(s,1H),8.82–8.41(m,2H),8.39–8.29(m,1H),8.16–8.07(m,1H),7.51–7.41(m,1H),7.23–7.17(m,2H),5.70–5.53(m,1H),5.35–4.89(m,1H),4.78–4.57(m,4H),4.45–4.41(m,1H),2.57(s,3H).
实施例7:
用(2-氯-3-硝基吡啶-4-基)甲醇代替2-氯-3-硝基吡啶,参照化合物2-c的合成得到化合物7-a。用化合物7-a代替化合物2-c,参照化合物2的合成得到化合物7。ESI-MS(m/z):446.2[M+H]+1H NMR(500MHz,DMSO-d6)δ11.24(s,1H),8.80–8.37(m,3H),8.16–8.01(m,1H),7.51–7.15(m,3H),5.68–5.47(m,2H),4.92–4.67(m,5H),4.65–4.40(m,3H).
实施例8:
用2-氯-6-甲基-3-硝基吡啶代替2-氯-3-硝基吡啶,参照化合物2的合成得到化合物8。ESI-MS(m/z):430.3[M+H]+1H NMR(500MHz,DMSO-d6)δ11.20(s,1H),8.81–8.32(m,2H),8.14–7.12(m,5H),5.72–5.43(m,1H),4.94–4.34(m,6H),2.61(s,3H).
实施例9:
用苯并呋喃[3,2-b]吡啶-7-甲胺代替化合物1-c,参照化合物1的合成得到化合物9。ESI-MS(m/z):417.5[M+H]+1H NMR(500MHz,DMSO-d6)δ8.81–8.49(m,2H),8.48–8.39(m,1H),8.22–8.09(m,2H),7.70(s,1H),7.59–7.51(m,1H),7.51–7.43(m,1H),5.70–5.52(m,1H),4.95–4.35(m,6H).
实施例10:
用((5-(4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)吡啶-2-基)甲基)氨基甲酸叔丁酯代替(4-(4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)苄基)氨基甲酸叔丁酯,参照化合物2的合成得到化合物10。ESI-MS(m/z):417.2[M+H]+1H NMR(500MHz,DMSO-d6)δ11.97(s,1H),8.78–8.40(m,4H),7.95–7.86(m,1H),7.49–7.42(m,1H),7.27–7.21(m,1H),5.76–5.36(m,1H),5.35–4.65(m,3H),4.64–4.53(m,2H),4.32–4.29(m,1H).
实施例11:
将化合物4-a(1g,4.37mmol)和(2R,3R)-2,3-丁二醇(473mg,5.25mmol)溶于四氢呋喃(10mL),加入叔丁醇钾(589mg,5.25mmol)。混合物在70℃下搅拌2小时。将反应液冷却至室温,加入50mL乙酸乙酯,用水洗三次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物通过柱层析色谱纯化得到化合物11-a(400mg,收率32.4%)。ESI-MS(m/z):283.1[M+H]+.
将化合物11-a(400mg,1.42mmol)溶于二氯甲烷(10mL),加入间氯过氧苯甲酸(318mg,1.84mmol)。混合物在室温下搅拌2小时。浓缩反应液,残留物通过柱层析色谱纯化得到化合物11-b(250mg,收率56.1%)。ESI-MS(m/z):315.3[M+H]+.
用化合物11-b代替化合物4-c,参照化合物4的合成得到化合物11。ESI-MS(m/z):432.3[M+H]+1H NMR(500MHz,DMSO-d6)δ11.49–11.29(m,1H),8.67–8.38(m,2H),8.38–8.28(m,1H),8.16–8.08(m,1H),7.90–7.82(m,1H),7.52–7.43(m,1H),7.41–7.33(m,1H),7.28–7.18(m,1H),5.32–5.13(m,1H),4.87–4.57(m,3H),3.85–3.72(m,1H),1.24–0.97(m,6H);
实施例12:
用化合物7-a代替化合物2-c,用化合物11-b代替化合物4-c,参照化合物4的合成得到化合物12。ESI-MS(m/z):462.2[M+H]+1H NMR(500MHz,DMSO- d6)δ11.24(s,1H),8.74–7.02(m,7H),5.57–5.45(m,1H),5.30–5.12(m,1H),4.91–4.57(m,5H),3.85–3.69(m,1H),1.24–1.20(m,1H),1.12–0.94(m,5H).
实施例13:
用化合物7-a代替化合物2-c,用化合物5-a代替化合物4-c,参照化合物4的合成得到化合物13。ESI-MS(m/z):477.0[M+H]+1H NMR(500MHz,DMSO-d6)δ11.24(s,1H),8.45–7.08(m,7H),5.72–5.41(m,2H),5.07–4.58(m,6H),4.13–3.97(m,2H),3.49–3.43(m,2H),1.08–0.87(m,3H).
实施例14:
用(4H-噻唑[4,5-b]吲哚-6-基)甲胺代替化合物1-c,参照化合物1的合成得到化合物14。ESI-MS(m/z):422.2[M+H]+1H NMR(500MHz,DMSO-d6)δ12.08–11.97(m,1H),9.07(s,1H),8.74–8.38(m,2H),7.79–7.71(m,1H),7.46–7.39(m,1H),7.16–7.09(m,1H),5.66–5.55(m,1H),4.90–4.73(m,2H),4.71–4.54(m,3H),4.46–4.43(m,1H).
实施例15:
用(3-氰基-4-(4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)苄基)氨基甲酸叔丁酯代替(4-(4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)苄基)氨基甲酸叔丁酯,参照化合物2 的合成得到化合物15。ESI-MS(m/z):441.2[M+H]+1H NMR(500MHz,DMSO-d6)δ8.83–8.57(m,2H),8.47–8.42(m,1H),8.04–7.98(m,1H),7.83–7.79(m,1H),7.77–7.68(m,1H),7.55–7.49(m,1H),5.68–5.55(m,1H),5.00–4.87(m,1H),4.78–4.40(m,6H).
实施例16:
用(2-甲基-4-(4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)苄基)氨基甲酸叔丁酯代替(4-(4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)苄基)氨基甲酸叔丁酯,参照化合物2的合成得到化合物16。ESI-MS(m/z):430.2[M+H]+1H NMR(500MHz,DMSO-d6)δ11.49–11.06(m,1H),8.83–6.98(m,7H),5.78–5.36(m,1H),5.04–4.17(m,6H),2.58–2.54(m,3H).
实施例17:
用化合物7-a代替化合物2-c,参照化合物4的合成得到化合物17。ESI-MS(m/z):474.2[M+H]+1H NMR(500MHz,DMSO-d6)δ11.33(s,1H),8.52–8.41(m,1H),8.31–8.12(m,3H),7.75–7.24(m,5H),6.44–6.27(m,1H),5.73–5.53(m,1H),5.01–4.92(m,2H),4.84–4.63(m,3H),2.01–1.67(m,2H),0.91–0.71(m,3H).
实施例18:
用(2R,3R)-3-氨基丁-2-醇代替(R)-2-氨基丁酰胺盐酸盐,参照化合物4-c的合成得到化合物18-a。用化合物18-a代替化合物4-c,用化合物7-a代替化合物2-c,参照化合物4的合成得到化合物18。ESI-MS(m/z):461.5[M+H]+1H NMR(500MHz,DMSO-d6)δ11.25(s,1H),8.39(d,J=4.7Hz,1H),8.17–7.89(m,3H),7.51–7.44(m,1H),7.40–7.32(m,1H),7.24–7.13(m,1H),5.80–5.63(m,1H),5.62–5.46(m,1H),5.11–4.94(m,1H),4.94–4.84(m,2H),4.74–4.55(m,2H),4.17–3.99(m,1H),3.83–3.57(m,1H),1.21–0.86(m,6H).
实施例19:
用(2-氯-3-硝基吡啶-4-基)甲醇代替2-氯-3-硝基吡啶,参照化合物2-b的合成得到化合物19-a。
将化合物19-a(1.08g,3.29mmol)溶于四氢呋喃(20mL),加入1,8-二氮杂二环[5.4.0]十一碳-7-烯(601mg,3.95mmol)和叠氮磷酸二苯酯(1.09g,3.95mmol)。混合物在室温下搅拌5小时。加入50mL乙酸乙酯,用水洗一次,5%稀盐酸洗一次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物通过柱层析色 谱纯化得到化合物19-b(1.1g,收率94.9%)。ESI-MS(m/z):353.4[M+H]+.将化合物19-b(280mg,795μmol)溶于二氯甲烷(5mL),加入盐酸二氧六环溶液(4M,2mL)。混合物在室温下搅拌5小时,浓缩得到化合物19-c(229mg,收率99.9%)。ESI-MS(m/z):253.7[M+H]+.
将化合物19-c(50mg,173μmol)和化合物1-a(44.1mg,173μmol)溶于N,N-二甲基甲酰胺(5mL),加入N,N-二异丙基乙胺(112mg,865mmol)。混合物在室温下搅拌2小时。反应液加入水(10mL),用乙酸乙酯(20mL)萃取三次,合并有机相,用水洗一次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物通过快速柱层析色谱纯化得到化合物19-d(50mg,收率61.4%)。ESI-MS(m/z):471.3[M+H]+.
将化合物19-d(50mg,106μmol)溶于四氢呋喃(20mL),加入三苯基膦(83.6mg,319μmol)和水(0.1mL)。混合物在室温下搅拌16小时。浓缩反应液,残留物通过制备液相色谱纯化得到化合物19(10mg,收率21.1%)。ESI-MS(m/z):445.4[M+H]+1H NMR(500MHz,DMSO-d6)δ8.87–8.34(m,4H),8.15–8.05(m,1H),7.49–7.38(m,2H),7.26–7.16(m,1H),5.68–5.53(m,1H),4.94–4.39(m,7H),4.16(s,2H).
实施例20:
用(4H-噻吩并[2',3':4,5]吡咯并[3,2-b]吡啶-2-基)甲胺代替化合物1-c,参照化合物1的合成得到化合物20。ESI-MS(m/z):422.2[M+H]+1H NMR(500MHz,DMSO-d6)δ11.56–11.47(m,1H),8.79–8.52(m,1H),8.52–8.41(m,1H),8.37–8.28(m,1H),7.94–7.76(m,1H),7.22–7.15(m,2H),5.76–5.60(m,1H),4.95–4.79(m,3H),4.76–4.73(m,1H),4.60–4.52(m,2H).
实施例21:
用(3-甲基-4-(4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)苄基)氨基甲酸叔丁酯代替(4-(4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)苄基)氨基甲酸叔丁酯,参照化合物2的合成得到化合物21。ESI-MS(m/z):430.2[M+H]+1H NMR(500MHz,DMSO-d6)δ11.40–11.30(m,1H),8.76–8.39(m,3H),7.88–7.80(m,1H),7.37–7.31(m,1H),7.30–7.24(m,1H),7.04–6.95(m,1H),5.69–5.55(m,1H),4.92–4.71(m,2H),4.69–4.42(m,4H),2.98–2.91(m,3H).
实施例22:
用(4H-噻唑[4,5-b]吲哚-6-基)甲胺代替化合物2-c,用化合物11-b代替化合物4-c,参照化合物4的合成得到化合物22。1H NMR(500MHz,DMSO-d6)δ12.08–11.98(m,1H),9.07(s,1H),8.61–8.37(m,1H),8.36–8.27(m,1H),7.80–7.71(m,1H),7.51–7.41(m,1H),7.18–7.10(m,1H),5.28–5.16(m,1H),4.83–4.74(m,1H),4.72–4.54(m,2H),3.82–3.73(m,1H),1.22–0.98(m,6H);ESI-MS(m/z):438.3[M+H]+.
实施例23:
用(2R,3R)-3-氨基戊-2-醇代替(R)-2-氨基丁酰胺盐酸盐,参照化合物4-c的合成得到化合物23-a。用化合物23-a代替化合物4-c,用化合物7-a代替化合物2-c,参照化合物4的合成得到化合物23。ESI-MS(m/z):475.3[M+H]+1H NMR(500MHz,DMSO-d6)δ11.33–11.19(m,1H),8.45–8.36(m,1H),8.17–7.73(m,3H),7.50–7.43(m,1H),7.42–7.33(m,1H),7.25–7.15(m,1H),5.69–5.57(m,1H),5.57–5.49(m,1H),5.05–4.84(m,3H),4.75–4.53(m,2H),4.06–3.90(m,1H),3.89–3.69(m,1H),2.03–1.39(m,3H),0.85–0.80(m,2H),0.69–0.62(m,3H).
实施例24:
将6-氯吡啶-2-甲腈(1g,7.22mmol)和(3-硝基-4-(4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)苄基)氨基甲酸叔丁酯(3.00g,7.94mmol)溶于1,4-二氧六环(5mL)与水(0.5mL)的混合物,加入1,1'-二(二苯基膦)二茂铁二氯化钯(II)(528mg,722μmol)和碳酸钾(2.99g,21.7mmol)。混合物在100℃下搅拌16小时。将反应液冷却至室温,加入80mL乙酸乙酯,用水洗三次,饱和食盐水洗一次,无水硫酸钠干 燥,过滤,浓缩。残留物通过柱层析色谱纯化得到化合物24-a(2g,收率78.2%)。ESI-MS(m/z):355.3[M+H]+.
在烧瓶中加入化合物24-a(2g,5.64mmol)和1,2-双(二苯基膦)乙烷(6.75g,16.9mmol)。混合物在180℃反应0.5小时。将混合物冷却至室温,通过柱层析色谱纯化得到化合物24-b(200mg,收率11.0%)。ESI-MS(m/z):323.3[M+H]+.
将化合物24-b(200mg,620μmol)溶于二氯甲烷(10mL),加入盐酸二氧六环溶液(4M,2mL)。混合物在室温搅拌2小时。浓缩反应液得到24-c(160mg,收率100%)。ESI-MS(m/z):223.3[M+H]+.
将化合物24-c(30.5mg,118μmol)和化合物1-a(30mg,118μmol)溶于N,N-二甲基甲酰胺(2mL),加入N,N-二异丙基乙胺(45.7mg,353μmol)。混合物在80℃下搅拌2小时。将反应液冷却至室温后,通过制备液相色谱纯化得到化合物24(12mg,收率23.1%)。ESI-MS(m/z):441.3[M+H]+1H NMR(500MHz,DMSO-d6)δ8.85–8.51(m,2H),8.45–8.11(m,3H),7.83–7.24(m,3H),5.71–5.45(m,1H),4.93–4.65(m,4H),4.63–4.35(m,2H).
实施例25:
用2-氯异烟腈代替6-氯吡啶甲腈,参照化合物24的合成得到化合物25。ESI-MS(m/z):441.3[M+H]+1H NMR(500MHz,DMSO-d6)δ9.27–9.09(m,2H),8.86–8.24(m,3H),7.84–7.29(m,3H),5.77–5.41(m,1H),4.92–4.65(m,4H),4.61–4.36(m,2H).
实施例26:
用6-氯吡啶-2-甲醇代替6-氯吡啶甲腈,参照化合物24的合成得到化合物26。ESI-MS(m/z):446.1[M+H]+1H NMR(500MHz,DMSO-d6)δ8.80–8.48(m,1H),8.44–8.34(m,2H),8.29–8.20(m,1H),7.66–7.41(m,3H),7.23–7.15(m,1H),5.90–5.80(m,1H),5.68–5.48(m,1H),5.13–5.03(m,2H),4.92–4.63(m,4H),4.61–4.33(m,2H).
实施例27:
用化合物11-b代替化合物1-a,参照化合物19的合成得到化合物27。ESI-MS(m/z):461.3[M+H]+1H NMR(500MHz,DMSO-d6)δ12.13–11.57(m,1H),8.74–8.04(m,4H),7.56–7.16(m,3H),5.36–5.16(m,1H),4.80–4.38(m,4H),3.85–3.68(m,2H),1.23–0.95(m,6H).
实施例28:
将化合物24(10mg,23μmol)溶于甲醇(2mL),加入雷尼镍(10mg)。混合物在氢气气氛下搅拌16小时。反应液经硅藻土过滤,浓缩。残留物通过制备液相色谱纯化得到化合物28(3mg,收率30%)。ESI-MS(m/z):445.3(M+H)+1H NMR(500MHz,DMSO-d6)δ8.82–8.14(m,6H),7.72–7.45(m,3H),7.25–7.16(m,1H),5.71–5.50(m,1H),4.94–4.84(m,1H),4.76–4.58(m,4H),4.41–4.32(m,3H).
实施例29:
用(4H-噻唑[5,4-b]吲哚-6-基)甲胺代替化合物1-c,参照化合物1的合成得到化合物29。ESI-MS(m/z):422.2[M+H]+1H NMR(500MHz,DMSO-d6)δ11.67(s,1H),8.87–8.32(m,3H),7.87–7.76(m,1H),7.50–7.38(m,1H),7.19–7.09(m,1H),5.69–5.54(m,1H),4.93–4.71(m,2H),4.70–4.42(m,4H).
实施例30:
用(苯并[4,5]噻吩并[3,2-b]吡啶-7-基)甲胺代替化合物1-c,参照化合物1的合成得到化合物30。ESI-MS(m/z):433.5[M+H]+1H NMR(500MHz,DMSO-d6)δ8.81–8.70(m,2H),8.54–8.49(m,1H),8.47–8.41(m,1H),8.40–8.34(m,1H),8.06–7.98(m,1H),7.57–7.49(m,2H),5.71–5.53(m,1H),4.92–4.37(m,6H).
实施例31:
用(苯并[h]喹啉-8-基)甲胺代替化合物1-c,参照化合物1的合成得到化合物31。ESI-MS(m/z):427.5[M+H]+1H NMR(500MHz,DMSO-d6)δ9.20–9.11(m,1H),9.03–8.98(m,1H),8.82–8.53(m,1H),8.47–8.39(m,2H),7.98–7.85(m,3H),7.75–7.70(m,1H),7.70–7.65(m,1H),5.74–5.50(m,1H),4.90–4.31(m,6H).
实施例32:
用(噻吩并[3,2-H]喹啉-2-基)甲胺代替化合物1-c,参照化合物1的合成得到化合物32。ESI-MS(m/z):433.4[M+H]+1H NMR(500MHz,DMSO-d6)δ8.92–8.42(m,4H),7.99–7.92(m,1H),7.88–7.81(m,1H),7.62–7.55(m,1H),7.55–7.48(m,1H),5.73–5.61(m,1H),4.92–4.79(m,4H),4.62–4.47(m,2H).
实施例33:
用化合物4-c代替化合物1-a,参照化合物19的合成得到化合物33。ESI-MS(m/z):473.7[M+H]+1H NMR(400MHz,DMSO-d6)δ8.39(d,J=4.8Hz,1H),8.30(s,1H),8.18–8.11(m,1H),8.11–8.06(m,1H),7.68–7.62(m,2H),7.52–7.43(m,1H),7.40(d,J=4.8Hz,1H),7.36–7.28(m,1H),7.26–7.15(m,1H),6.26(d,J=6.9Hz,1H),4.78–4.55(m,3H),4.16(s,2H),2.06–1.61(m,2H),0.84–0.62(m,3H).
实施例34:
用化合物18-a代替化合物1-a,参照化合物19的合成得到化合物34。ESI-MS(m/z):460.6[M+H]+1H NMR(400MHz,DMSO-d6)δ8.36(d,J=4.7Hz,1H),8.10(br.s,1H),8.08–8.02(m,2H),7.45(d,J=5.2Hz,1H),7.38(d,J=4.8Hz,1H),7.23–7.11(m,1H),5.75–5.65(m,1H),5.04(br.s,1H),4.73–4.52(m,2H),4.15–3.96(m,3H),3.78–3.57(m,1H),1.48–0.78(m,6H).
实施例35:
用2-氯-4-甲氧基-3-硝基吡啶代替2-氯-3-硝基吡啶,参照化合物2-c的合成得到化合物35-a。用化合物35-a代替化合物2-c,参照化合物2的合成得到化合物35。ESI-MS(m/z):446.5[M+H]+1H NMR(500MHz,DMSO-d6)δ11.54–11.39(m,1H),8.80–8.47(m,1H),8.45–8.38(m,1H),8.31(d,J=5.3Hz,1H),8.09–8.03(m,1H),7.43(s,1H),7.18(dd,J=8.5,4.6Hz,1H),7.04(d,J=5.4Hz,1H),5.68–5.54(m,1H),4.93–4.40(m,6H),4.04(s,3H).
实施例36:
用2-氯嘧啶代替6-氯吡啶甲腈,参照化合物24的合成得到化合物36。ESI-MS(m/z):417.6[M+H]+1H NMR(500MHz,DMSO-d6)δ9.48–9.38(m,1H),8.83–8.46(m,2H),8.46–8.15(m,2H),7.66(s,1H),7.53–7.40(m,1H),7.35–7.21(m,1H),5.71–5.50(m,1H),4.92–4.33(m,6H).
实施例37:
将6-溴-1H-吲唑-3-胺(2g,9.43mmol)和4-[叔丁基(二甲基)]硅烷基]氧丁-2-炔醛(6.2g,31.3mmol)溶于乙腈(6mL),加入冰乙酸(566mg,9.43mmol)和三氟乙酸银(625mg,2.83mmol)。混合物在室温下搅拌16小时。加入80mL乙酸乙酯和50mL水,经硅藻土过滤,分液,有机相用水洗一次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物通过柱层析色谱纯化得到化合物37-a(700mg,收率18.9%)和化合物37-b(700mg,收率18.9%)。ESI-MS(m/z):392.4[M+H]+.
将化合物37-a(700mg,1.78mmol)和[(叔丁氧羰基氨基)甲基]三氟硼酸钾(383mg,1.62mmol)溶于1,4-二氧六环(6mL)和水(1mL)的混合物,加入S-phos(73.2mg,178μmol),碳酸钾(740mg,5.35mmol)和醋酸钯(40mg,178μmol)。混合物在氮气保护下90℃搅拌16小时。将反应液冷却至室温,加入50mL乙酸乙酯和30mL水,经硅藻土过滤,分液,有机相用水洗一次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物通过柱层析色谱纯化得到化合物37-c(400mg,收率18.9%)。ESI-MS(m/z):443.4[M+H]+.
将化合物37-c(90mg,203μmol)溶于甲醇(1mL)和二氯甲烷(5mL)的混合物,加入盐酸二氧六环溶液(4M,1mL)。混合物在室温下搅拌16小时。浓缩反应液得到化合物37-d(53mg,收率98.5%)。ESI-MS(m/z):229.4(M+H)+.
将化合物37-d(10mg,38μmol)和化合物1-a(9.62mg,38μmol)溶于N,N-二甲基甲酰胺(2mL),加入N,N-二异丙基乙胺(24.4mg,189μmol)。混合物在80℃下搅拌2小时。将反应液冷却至室温后,通过制备液相色谱纯化得到化合物37(3.5mg,收率20.8%)。ESI-MS(m/z):447.5[M+H]+1H NMR(500MHz,DMSO-d6)δ9.46–9.30(m,1H),8.81–8.47(m,1H),8.47–8.41(m,1H),8.23–8.07(m,1H),7.62(s,1H),7.58–7.51(m,1H),7.28–7.16(m,1H),5.89–5.71(m,1H),5.72–5.51(m,1H),4.93–4.32(m,8H).
实施例38:
用化合物37-d代替化合物2-c,参照化合物4的合成得到化合物38。ESI-MS(m/z):475.7[M+H]+1H NMR(500MHz,DMSO-d6)δ9.42–9.30(m,1H),8.20–7.86(m,3H),7.73–7.56(m,2H),7.56–7.47(m,1H),7.41–7.18(m,2H),6.34–6.17(m,1H),5.86–5.74(m,1H),4.85–4.54(m,5H),1.86–1.60(m,2H),0.85–0.58(m,3H).
实施例39:
用化合物37-b代替化合物37-a,参照化合物37-d的合成得到化合物39-a,参照化合物37的合成得到化合物39。ESI-MS(m/z):447.6[M+H]+1H NMR(500 MHz,DMSO-d6)δ8.95–8.10(m,4H),7.66(s,1H),7.61–7.54(m,1H),7.36–7.22(m,1H),6.14–6.04(m,1H),5.70–5.44(m,1H),5.23–4.28(m,8H).
实施例40:
用化合物39-a代替化合物2-c,参照化合物4的合成得到化合物40。ESI-MS(m/z):475.6[M+H]+1H NMR(500MHz,DMSO-d6)δ8.82–8.52(m,1H),8.26–7.88(m,3H),7.77–7.52(m,3H),7.40–7.23(m,2H),6.33–6.20(m,1H),5.17–5.07(m,2H),4.81–4.53(m,3H),1.79–1.63(m,2H),0.79–0.64(m,3H).
实施例41:
将化合物33(5mg,11μmol)溶于甲醇(2mL),加入甲醛水溶液(34%,0.05mL)。混合物在室温下搅拌1小时。加入氰基硼氢化钠(1.33mg,21.17μmol)。混合物在室温下搅拌过夜。反应液用水(0.5mL)淬灭,浓缩,残留物通过制备液相色谱纯化得到化合物41(1mg,收率18.3%)。ESI-MS(m/z):501.5[M+H]+1H NMR(500MHz,DMSO-d6)δ11.14(s,1H),8.36(d,J=4.7Hz,1H),8.17–8.04(m,3H),7.68–7.46(m,2H),7.37–7.12(m,3H),6.32–6.21(m,1H),4.77–4.49(m,3H),3.74(s,2H),2.23(s,6H)1.85–1.60(m,2H),0.95–0.57(m,3H).
实施例42:
将(R)-2-((叔丁氧羰基)氨基)-2-环丙基乙酸(200mg,929μmol),N,N-二异丙基乙胺(480mg,3.72mmol)和氯化铵(149mg,2.79mmol)溶于N,N-二甲基甲酰胺(5.0mL),加入HATU(530mg,1.39mmol)。混合物在室温下搅拌2小时。向反应液中加入水(10mL),用乙酸乙酯(20mL)萃取三次,合并有机相,用水洗一次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物通过快速柱层析色谱纯化得到化合物42-a(160mg,收率80.4%)。
将化合物42-a(160mg,746μmol)溶于二氯甲烷(2mL),加入盐酸二氧六环溶液(4M,1mL)。反应液在室温下搅拌1小时。浓缩反应液得到化合物42-b(112mg,收率99.6%)。
将化合物42-b(100mg,664μmol)和化合物4-a(152mg,664μmol)溶于N,N-二甲基甲酰胺(5mL),加入N,N-二异丙基乙胺(257mg,1.99mmol)。混合物在70℃下搅拌2小时。将反应液冷却至室温,加入水(10mL),用乙酸乙酯(20mL)萃取三次,合并有机相,用水洗一次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物通过快速柱层析色谱纯化得到化合物42-c(154mg,收率75.7%)。ESI-MS(m/z):307.3[M+H]+.
将化合物42-c(154mg,503μmol)溶于二氯甲烷(10mL),加入间氯过氧苯甲酸(174mg,1.01mmol)。混合物在室温下搅拌2小时。浓缩反应液,残留物通过 柱层析色谱纯化得到化合物42-d(140mg,收率82.3%)。ESI-MS(m/z):339.3[M+H]+.
将化合物42-d(96.1mg,284μmol)和化合物19-c(71.7mg,284μmol)溶于N,N-二甲基甲酰胺(5mL),加入N,N-二异丙基乙胺(110mg,852mmol)。混合物在室温下搅拌2小时。反应液加入水(10mL),用乙酸乙酯(20mL)萃取三次,合并有机相,用水洗一次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物通过快速柱层析色谱纯化得到化合物42-e(45mg,收率31.0%)。ESI-MS(m/z):511.5[M+H]+.
将化合物42-e(45mg,88μmol)溶于四氢呋喃(5mL),加入三苯基膦(69.4mg,264μmol)和水(0.1mL)。混合物在室温下搅拌16小时。浓缩反应液,残留物通过制备液相色谱纯化得到化合物42(15mg,收率35.1%)。ESI-MS(m/z):485.7[M+H]+1H NMR(500MHz,DMSO-d6)δ8.39(d,J=4.7Hz,1H),8.16–7.81(m,3H),7.63–7.42(m,2H),7.40(d,J=4.8Hz,1H),7.33–7.13(m,2H),6.27–6.13(m,1H),4.82–4.51(m,2H),4.32–4.10(m,3H),1.31–0.91(m,1H),0.64–0.09(m,4H).
实施例43:
用3-氯-4-硝基吡啶代替2-氯-3-硝基吡啶,参照化合物2的合成得到化合物43。ESI-MS(m/z):416.6[M+H]+1H NMR(500MHz,DMSO-d6)δ11.65(s,1H),9.28(s,1H),8.79–8.45(m,1H),8.41–8.36(m,1H),8.24–8.11(m,2H),7.49–7.41(m,2H),7.28–7.18(m,1H),5.67–5.51(m,1H),4.93–4.84(m,1H),4.75–4.68(m,2H),4.66–4.56(m,2H),4.44–4.41(m,1H).
实施例44:
用4-氯-3-硝基吡啶代替2-氯-3-硝基吡啶,参照化合物2的合成得到化合物44。ESI-MS(m/z):416.6[M+H]+1H NMR(500MHz,DMSO-d6)δ11.61–11.48(m,1H),8.93–8.81(m,1H),8.82–8.48(m,1H),8.47–8.38(m,1H),8.36–8.28(m,1H),8.20–8.11(m,1H),8.09–8.02(m,1H),7.51–7.46(m,1H),7.25–7.16(m,1H),5.69–5.51(m,1H),4.93–4.83(m,1H),4.76–4.68(m,2H),4.66–4.56(m,2H),4.43–4.40(m,1H).
实施例45:
用3-氯-2-硝基吡啶代替2-氯-3-硝基吡啶,参照化合物2的合成得到化合物45。ESI-MS(m/z):416.6[M+H]+1H NMR(500MHz,DMSO-d6)δ11.76–11.67(m,1H),8.81–8.48(m,1H),8.14–8.06(m,1H),7.78–7.73(m,1H),7.60–7.46(m,2H),7.44–7.37(m,1H),7.25–7.14(m,2H),5.71–5.50(m,1H),4.93–4.84(m,1H),4.76–4.67(m,2H),4.65–4.55(m,2H),4.46–4.39(m,1H).
实施例46:
用(R)-2-氨基丙酰胺盐酸盐代替(R)-2-氨基丁酰胺盐酸盐,参照化合物4-c的合成得到化合物46-a。用化合物46-a代替化合物4-c,用化合物7-a代替化合物2-c,参照化合物4的合成得到化合物46。ESI-MS(m/z):460.7[M+H]+1H NMR(500MHz,DMSO-d6)δ11.23(s,1H),8.48–8.30(m,1H),8.23–7.80(m,3H),7.68–7.44(m,2H),7.39–7.14(m,3H),6.44–6.31(m,1H),5.59–5.45(m,1H),4.92–4.82(m,2H),4.79–4.50(m,3H),1.30–1.21(m,3H).
实施例47:
将化合物33(5mg,11μmol)溶于二氯甲烷(2mL),加入乙酸酐(1.1mg,11μmol)和N,N-二异丙基乙胺(2mg,16μmol)。混合物在室温下搅拌过夜。浓缩反应液,残留物通过制备液相色谱纯化得到化合物47(3mg,收率55.1%)。ESI-MS(m/z):515.5[M+H]+1H NMR(500MHz,DMSO-d6)δ11.38(s,1H),8.63–8.51(m,1H),8.37(d,J=4.8Hz,1H),8.19–7.86(m,3H),7.66(s,1H),7.53–7.41(m,1H),7.37–7.12(m,3H),6.38–6.16(m,1H),4.87–4.36(m,5H),1.94(s,3H),1.91–1.59(m,2H),0.90–0.55(m,3H).
实施例48:
用(R)-2-氨基-3-甲基丁酰胺盐酸盐代替(R)-2-氨基丁酰胺盐酸盐,参照化合物4-c的合成得到化合物48-a,用化合物48-a代替化合物1-a,参照化合物19的合成得到化合物48。ESI-MS(m/z):487.7[M+H]+1H NMR(500MHz,DMSO-d6)δ8.37(d,J=4.7Hz,1H),8.17–7.79(m,3H),7.65–7.41(m,2H),7.38(d,J=4.8Hz, 1H),7.33–7.12(m,2H),6.20–5.81(m,1H),4.83–4.43(m,3H),4.06(s,2H),2.10–1.95(m,1H),0.96–0.58(m,6H).
实施例49:
用2-溴吡嗪代替6-氯吡啶甲腈,参照化合物24的合成得到化合物49。ESI-MS(m/z):417.7[M+H]+1H NMR(500MHz,DMSO-d6)δ9.80(s,1H),9.11–9.01(m,1H),8.83–8.49(m,1H),8.44–8.36(m,2H),8.32(d,J=4.6Hz,1H),7.79(s,1H),7.49–7.33(m,1H),5.70–5.48(m,1H),4.95–4.66(m,4H),4.62–4.36(m,2H).
实施例50:
用化合物39-a代替化合物2-c,用化合物48-a代替4-c,参照化合物4的合成得到化合物50。ESI-MS(m/z):489.6[M+H]+1H NMR(500MHz,DMSO-d6)δ8.77(d,J=4.4Hz,1H),8.24–7.82(m,3H),7.77–7.50(m,3H),7.37–7.21(m,2H),6.12–5.85(m,2H),5.13(d,J=5.8Hz,2H),4.84–4.50(m,3H),2.06–1.94(m,1H),0.98–0.63(m,6H).
实施例51:
将3-哒嗪酮(500mg,5.20mmol)和4-溴-1-氟-2-硝基苯(1.14g,5.20mmol)溶于N,N-二甲基甲酰胺(10mL),加入碳酸钾(2.16g,15.6mmol)。反应液在90℃下搅拌16小时。将反应液冷却室温,加入水(25mL)用乙酸乙酯(20mL)萃取三次。合并有机相,用水洗一次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物通过快速柱层析色谱纯化得到化合物51-a(390mg,收率25.3%)。ESI-MS(m/z):296.1[M+H]+.
将化合物51-a(390mg,1.32mmol)溶于四氢呋喃(5mL),加入10%钯碳(14.0mg,132μmol)。混合物在氢气气氛室温下反应6小时。反应液经硅藻土过滤,浓缩得到化合物51-b(110mg,收率31.4%)。ESI-MS(m/z):266.0[M+H]+.
将化合物51-b(110mg,413μmol)溶于多聚磷酸(1g)。混合物在150℃下反应6小时。将反应液冷却至室温,加入至水中,用2N氢氧化钠水溶液调至pH>7。混合物用乙酸乙酯(10mL)萃取三次。合并有机相,用水洗一次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物通过快速柱层析色谱纯化得到化合物51-c(56mg,收率54.6%)。ESI-MS(m/z):248.0[M+H]+.
将化合物51-c(56mg,225μmol)和[(叔丁氧羰基氨基)甲基]三氟硼酸钾(69.6mg,293μmol)溶于1,4-二氧六环(2mL)和水(0.2mL)的混合物,加入醋酸钯(3.8mg,22.6μmol),Ruphos(21mg,45μmol)和碳酸铯(221mg,677μmol)。混合物在90℃下氮气保护下反应16小时。将反应液冷却至室温,加入水(10mL),用乙酸乙酯(10mL)萃取三次。合并有机相,用水洗一次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物通过快速柱层析色谱纯化得到化合物51-d(55mg,收率82.6%)。ESI-MS(m/z):299.2[M+H]+.
将化合物51-d(55mg,184μmol)溶于二氯甲烷(2mL),加入盐酸二氧六环溶液(4M,0.5mL)。反应液在室温下搅拌2小时。浓缩反应液得到化合物51-f(43mg,收率99.4%)。ESI-MS(m/z):199.2[M+H]+.
用化合物51-f代替化合物1-c,参照化合物1的合成得到化合物51。ESI-MS(m/z):417.4[M+H]+1H NMR(500MHz,DMSO-d6)δ8.80–8.49(m,2H),8.45–8.38(m,1H),8.26–8.20(m,1H),8.17–8.10(m,1H),7.81(s,1H),7.54–7.49(m,1H),7.49–7.45(m,1H),5.70–5.53(m,1H),5.39–4.80(m,1H),4.78–4.71(m,2H),4.70–4.66(m,1H),4.61–4.38(m,2H).
实施例52:
用(R)-2-((叔丁氧羰基)氨基)-2-环戊基乙酸代替(R)-2-((叔丁氧羰基)氨基)-2-环丙基乙酸,参照化合物42的合成得到化合物52。ESI-MS(m/z):513.7[M+H]+1H NMR(500MHz,DMSO-d6)δ8.44–8.32(m,1H),8.18–7.99(m,3H),7.59–7.42(m,2H),7.38(d,J=4.8Hz,1H),7.25–7.12(m,2H),6.27–5.84(m,1H),4.99–4.39(m,4H),4.07(s,2H),1.72–0.87(m,9H).
实施例53:
用(R)-2-((叔丁氧羰基)氨基)-3-环丙基丙酸代替(R)-2-((叔丁氧羰基)氨基)-2-环丙基乙酸,参照化合物42的合成得到化合物53。ESI-MS(m/z):499.7[M+H]+1H NMR(500MHz,DMSO-d6)δ8.46–8.28(m,1H),8.21–7.86(m,3H),7.58(s,1H),7.46(s,1H),7.38(d,J=4.8Hz,1H),7.32–7.13(m,2H),6.38–6.20(m,1H), 4.83–4.46(m,3H),4.09(s,2H),1.86–1.45(m,2H),0.71–0.05(m,4H),-0.18–-0.29(m,1H).
实施例54:
用(R)-2-氨基戊酰胺盐酸盐代替化合物42-b,参照化合物42的合成得到化合物54。ESI-MS(m/z):487.6[M+H]+1H NMR(500MHz,DMSO-d6)δ8.45–8.28(m,1H),8.24–7.80(m,3H),7.64–7.43(m,2H),7.38(d,J=4.7Hz,1H),7.32–7.07(m,2H),6.33–6.16(m,1H),4.88–4.40(m,3H),4.09(s,2H),1.99–0.77(m,7H).
实施例55:
用(R)-2-氨基-3,3-二甲基丁酰胺盐酸盐代替化合物42-b,参照化合物42的合成得到化合物55。ESI-MS(m/z):501.4[M+H]+1H NMR(500MHz,DMSO-d6)δ8.37(d,J=4.8Hz,1H),8.20–7.55(m,4H),7.51–7.41(m,1H),7.38(d,J=4.7Hz,1H),7.32–7.08(m,2H),5.98–5.64(m,1H),5.00–4.42(m,3H),4.07(s,2H),1.06–0.70(m,9H).
实施例56:
用(R)-2-((叔丁氧羰基)氨基)-2-环丁基乙酸代替(R)-2-((叔丁氧羰基)氨基)-2-环丙基乙酸,参照化合物42的合成得到化合物56。ESI-MS(m/z):499.3[M+H]+1H NMR(500MHz,DMSO-d6)δ8.42–8.26(m,1H),8.19–7.79(m,3H),7.65–7.34(m,3H),7.30–7.08(m,2H),6.21–5.95(m,1H),4.90–3.86(m,5H),2.80–2.54(m,1H),2.03–1.39(m,6H).
实施例57:
用(2R,3S)-2-((叔丁氧羰基)氨基)-3-甲氧基丁酸代替(R)-2-((叔丁氧羰基)氨基)-2-环丙基乙酸,参照化合物42-d的合成得到化合物57-a。用化合物57-a代替化合物42-d,参照化合物42的合成得到化合物57。ESI-MS(m/z):503.3[M+H]+1H NMR(500MHz,DMSO-d6)δ8.41–8.37(m,1H),8.21–7.91(m,3H),7.48–7.30(m,4H),7.24–7.11(m,1H),6.04–5.93(m,1H),4.77–4.60(m,3H),4.18–4.11(m,2H),3.82–3.77(m,1H),3.17–3.13(m,3H),1.10–0.91(m,3H).
实施例58:
用(R)-2-((叔丁氧羰基)氨基)-3-羟基-3-甲基丁酸代替(R)-2-((叔丁氧羰基)氨基)-2-环丙基乙酸,参照化合物42的合成得到化合物58。ESI-MS(m/z):503.3[M+H]+1H NMR(500MHz,DMSO-d6)δ8.44–8.20(m,1H),8.18–7.91(m,3H),7.85–6.73(m,6H),6.17–5.95(m,1H),5.18–3.80(m,6H),1.33–0.97(m,6H).
实施例59:
将化合物33(10mg,21μmol)溶于二氯甲烷(2mL),加入乙酰氧基乙酸(3mg,25μmol),N,N-二异丙基乙胺(8.2mg,64μmol)和HATU(12mg,32μmol)。混合物在室温下搅拌过夜。在反应液中加入水(5mL),用乙酸乙酯(10mL)萃取三次。合并有机相,用水洗一次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩得到粗产品化合物59-a(12mg)。ESI-MS(m/z):573.4[M+H]+.
将粗产品化合物59-a(12mg)溶于甲醇(2mL),加入碳酸钾(8.7mg,63μmol)。混合物在室温下搅拌4小时。浓缩反应液,残留物通过制备液相色谱纯化得到化合物59(3mg,收率27.0%)。ESI-MS(m/z):531.0[M+H]+1H NMR(500MHz,DMSO-d6)δ11.33(s,1H),8.59–8.49(m,1H),8.36(d,J=4.8Hz,1H),8.18–7.86(m,3H),7.68–7.56(m,1H),7.52–7.41(m,1H),7.36–7.13(m,3H),6.36–6.07(m,1H),5.62(t,J=5.8Hz,1H),4.81–4.45(m,5H),3.91(d,J=5.6Hz,2H),1.97–1.56(m,2H),0.88–0.58(m,3H).
实施例60:
用化合物39-a代替化合物2-c,用化合物18-a代替化合物4-c,参照化合物4的合成得到化合物60。ESI-MS(m/z):462.5[M+H]+1H NMR(500MHz,DMSO-d6)δ8.79–8.75(m,1H),8.22–8.18(m,1H),8.16–7.93(m,2H),7.71–7.62(m,1H),7.56–7.53(m,1H),7.33–7.25(m,1H),6.14–6.05(m,1H),5.78–5.65(m, 1H),5.16–5.10(m,2H),5.07–4.94(m,1H),4.73–4.57(m,2H),4.16–3.99(m,1H),3.77–3.60(m,1H),1.08–0.88(m,6H).
实施例62:
用化合物37-b代替化合物37-a,参照37-c的合成得到化合物62-a。
将化合物62-a(500mg,1.13mmol)溶于四氢呋喃(5mL),冰浴下加入四丁基氟化铵四氢呋喃溶液(1M,2.26mL)。混合物在冰浴下反应10分钟。向反应液中加水(10mL),用乙酸乙酯(20mL)萃取三次。合并有机相,用水洗三次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物通过快速柱层析色谱得到化合物62-b(325mg,收率87.6%)。ESI-MS(m/z):329.5[M+H]+.
将化合物62-b(100mg,304μmol),邻苯二甲酰亚胺(49.3mg,335μmol)和三苯基膦(160mg,609μmol)溶于四氢呋喃(10mL),冰浴下加入偶氮二甲酸二异丙酯(123mg,609μmol)。混合物在60℃下搅拌6小时。向反应液中加水(10mL),用乙酸乙酯(20mL)萃取三次。合并有机相,用水洗三次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物通过快速柱层析色谱得到化合物62-c(113mg,收率81.1%)。ESI-MS(m/z):458.3[M+H]+.
将化合物62-c(60mg,131μmol)溶于二氯甲烷(2mL),加入盐酸二氧六环溶液(4M,0.5mL)。混合物在室温下搅拌1小时。浓缩反应液得到化合物62-d(45mg,收率85%)。ESI-MS(m/z):358.4[M+H]+.
将化合物62-d(45mg,111μmol)和化合物4-c(43mg,140μmol)溶于N,N-二甲基甲酰胺(2mL),加入N,N-二异丙基乙胺(59mg,458μmol)。混合物在室温下搅拌过夜。向反应液中加水(10mL),用乙酸乙酯(20mL)萃取三次。合并有机相,用水洗三次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物通过快速柱层析色谱得到化合物62-f(60mg,收率89%)。ESI-MS(m/z):604.2[M+H]+.
将化合物62-f(60mg,99μmol)溶于95%乙醇(5mL),加入80%水合肼(0.5mL)。混合物在80℃下搅拌6小时。将反应液冷却至室温,过滤,浓缩滤液。残留物通过制备液相色谱纯化得到化合物62(2mg,收率4.2%)。ESI-MS(m/z):474.5[M+H]+1H NMR(500MHz,DMSO-d6)δ8.95–8.71(m,1H),8.26–7.71(m,4H),7.71–7.55(m,2H),7.41–7.22(m,2H),6.34–6.16(m,1H),4.81–4.55(m,3H),4.42–4.27(m,2H),2.00–1.60(m,2H),0.83–0.63(m,3H).
实施例63:
用化合物18-a代替化合物4-c,参照化合物62的合成得到化合物63。ESI-MS(m/z):461.3[M+H]+1H NMR(500MHz,DMSO-d6)δ8.75(d,J=4.4Hz,1H),8.18(d,J=8.4Hz,1H),8.15–8.07(m,1H),8.07–7.91(m,1H),7.73–7.63(m,1H),7.60(d,J=4.4Hz,1H),7.32–7.22(m,1H),5.76–5.63(m,1H),5.10–4.90(m,1H),4.78–4.55(m,2H),4.33(s,2H),4.17–3.96(m,1H),3.79–3.58(m,1H),1.46–0.71(m,6H).
实施例67:
将化合物19-a(1g,3.05mmol)溶于二氯甲烷(30mL),冰浴下加入DMP(1.43g,3.36mmol)。混合物缓慢升至室温,在室温下搅拌过夜。在反应液中加入饱和碳酸氢钠(20mL),减压除去二氯甲烷,残留物用乙酸乙酯(30mL)萃取三次。合并有机相,用水洗一次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩得到粗产品化合物67-a(1g)。ESI-MS(m/z):326.8[M+H]+.
将粗产品化合物67-a(1g)溶于95%乙醇(20mL),加入乙酸钠(756mg,9.22mmol)和盐酸羟胺(320mg,4.61mmol)。混合物在室温下搅拌4小时。浓缩反应液,残留物加入水(30mL),用乙酸乙酯(30mL)萃取三次。合并有机相,用水洗一次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩得到粗产品化合物67-b(1.05g)。ESI-MS(m/z):341.7[M+H]+.
将粗产品化合物67-b(1.05g)溶于吡啶(10mL),冰浴下缓慢加入三氟乙酸酐(2.57g,12.22mmol)。混合物缓慢升至室温,在室温下搅拌4小时。在反应液中加入甲醇(5mL),室温下搅拌1小时。浓缩反应液,残留物加入水(30mL),用乙酸乙酯(30mL)萃取三次。合并有机相,用饱和柠檬酸溶液洗一次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物通过快速柱层析色谱纯化得到化合物67-c(400mg,收率40.6%)。ESI-MS(m/z):323.7[M+H]+.
将化合物67-c(250mg,775μmol)溶于二氯甲烷(5mL),加入盐酸二氧六环溶液(4M,1mL)。混合物在室温下搅拌2小时。浓缩反应液得到化合物67-d(229mg,收率100%)。ESI-MS(m/z):223.5[M+H]+.
用化合物67-d代替化合物2-c,用化合物57-a代替化合物4-c,参照化合物4的合成得到化合物67。ESI-MS(m/z):499.4[M+H]+1H NMR(500MHz,DMSO-d6)δ12.49–12.28(m,1H),8.67–8.46(m,1H),8.28–7.96(m,3H),7.83–7.77(m,1H),7.58–7.50(m,1H),7.45–7.28(m,3H),6.05–5.94(m,1H),4.80–4.59(m,3H),3.95–3.73(m,1H),3.31–3.12(m,3H),1.13–0.88(m,3H).
实施例68:
用化合物6-a代替化合物2-c,用化合物18-a代替化合物4-c,参照化合物4的合成得到化合物68。ESI-MS(m/z):445.5[M+H]+1H NMR(500MHz,DMSO-d6)δ11.34(s,1H),8.31–8.27(m,1H),8.14–7.90(m,3H),7.47–7.40(m,1H),7.22–7.14(m,2H),5.83–5.66(m,1H),5.12–4.93(m,1H),4.75–4.50(m,2H),4.15–3.97(m,1H),3.81–3.59(m,1H),2.56–2.55(m,3H),1.17–0.86(m,6H).
实施例69:
将化合物17(20mg,42μmol)溶于N,N-二甲基甲酰胺(2mL),加入DMP(20mg,46μmol)。混合物在室温下搅拌过夜。在反应液中加入水(5mL),用乙酸乙酯(10mL)萃取三次。合并有机相,用水洗一次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩得到粗产品化合物69-a(20mg)。ESI-MS(m/z):472.7[M+H]+.
将粗产品化合物69-a(8mg)溶于N,N-二甲基甲酰胺(2mL),加入甲胺四氢呋喃溶液(2M,34μL),冰乙酸(1mg,17μmol)。混合物在室温下搅拌1小时,加入三乙酰氧基硼氢化钠(18mg,85μmol),室温下继续反应过夜。反应液加入水(0.1mL)淬灭,混合物通过制备液相色谱纯化得到化合物69(1.5mg,收率18.2%)。ESI-MS(m/z):487.5[M+H]+1H NMR(500MHz,DMSO-d6)δ11.55–11.16(m,1H),8.41–8.36(m,1H),8.19–7.88(m,4H),7.69–7.60(m,1H),7.53–7.45(m,1H),7.40–7.29(m,2H),7.25–7.14(m,1H),6.32–6.22(m,1H),4.76–4.55(m,3H),4.14–4.02(m,2H),2.40–2.38(m,3H),0.83–0.76(m,2H),0.69–0.62(m,3H).
实施例70:
用化合物6-a代替化合物2-c,参照化合物4的合成得到化合物70。ESI-MS(m/z):458.5[M+H]+1H NMR(500MHz,DMSO-d6)δ11.36(s,1H),8.30(d,J=4.7Hz,1H),8.20–7.84(m,3H),7.73–7.58(m,1H),7.49–7.42(m,1H),7.40–7.30(m,1H),7.26–7.14(m,2H),6.37–6.18(m,1H),4.83–4.54(m,3H),2.56(s,3H),1.91–1.61(m,2H),0.85–0.56(m,3H).
实施例71:
用(2R,3S)-2-((叔丁氧羰基)氨基)-3-甲氧基丁酸代替(R)-2-((叔丁氧羰基)氨基)-2-环丙基乙酸,参照化合物42-c的合成得到化合物71-a。
将化合物71-a(100mg,308μmol)溶于二氯甲烷(2mL),冰浴下加入三氟乙酸酐(194mg,925μmol)和吡啶(244mg,3.08mmol)。混合物缓慢升至室温,搅拌2小时。反应液中加入水(5mL),用乙酸乙酯(10mL)萃取三次。合并有机相,用水洗一次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩得到粗产品化合物71-b(94mg)。ESI-MS(m/z):307.4[M+H]+.
将粗产品化合物71-b(94mg)溶于二氯甲烷(5mL),冰浴下加入间氯过氧苯甲酸(80mg,462μmol)。混合物在室温下搅拌2小时。反应液中加入饱和碳酸氢钠(5mL),用二氯甲烷(10mL)萃取三次。合并有机相,用水洗一次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩得到粗产品化合物71-c(99mg)。ESI-MS(m/z):323.5[M+H]+.
将化合物7-a(35.3mg,134μmol)和粗产品化合物1-a(50mg)溶于N,N-二甲基甲酰胺(2mL),加入N,N-二异丙基乙胺(200mg,1.55mmol)。混合物在50℃下搅拌2小时。将反应液冷却至室温后,通过制备液相色谱纯化得到化合物71(12mg,收率24.7%)。ESI-MS(m/z):486.5[M+H]+1H NMR(500MHz,DMSO-d6)δ11.24(s,1H),8.46–8.22(m,2H),8.22–8.17(m,1H),8.11–8.06(m,1H),7.49–7.43(m,1H),7.38–7.32(m,1H),7.25–7.14(m,2H),5.56–5.50(m,1H),5.39–4.93(m,1H),4.91–4.83(m,2H),4.79–4.64(m,2H),3.95–3.50(m,1H),3.25–2.89(m,3H),1.24–0.94(m,3H).
实施例72:
将2,4-二氯-5-氰基嘧啶(500mg,2.87mmol)溶于N,N-二甲基甲酰胺(5mL),加入(R)-2-氨基丁酰胺盐酸盐(440mg,4.31mmol)和N,N-二异丙基乙胺(1.11g,8.62mmol)。混合物在室温下搅拌2小时。反应液中加入水(20mL),用乙酸乙酯(20mL)萃取三次。合并有机相,用水洗一次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物通过柱层析色谱纯化得到化合物72-a(151mg,收率21.9%)。ESI-MS(m/z):240.4[M+H]+.
将化合物7-a(30mg,132μmol)和化合物72-a(31.64mg,132μmol)溶于N,N-二甲基甲酰胺(2mL),加入N,N-二异丙基乙胺(200mg,1.55mmol)。混合物在50℃下搅拌2小时。将反应液冷却至室温后,通过制备液相色谱纯化得到化合物72(10mg,收率17.6%)。ESI-MS(m/z):431.5[M+H]+1H NMR(500MHz,DMSO-d6)δ11.25(s,1H),8.39(d,J=5.0Hz,1H),8.37–8.12(m,2H),8.11–8.05(m,1H),7.56–7.41(m,2H),7.36(d,J=4.7Hz,1H),7.25–7.13(m,2H),6.97–6.79(m,1H),5.56(s,1H),4.88(s,2H),4.74–4.56(m,2H),4.51–4.42(m,1H),1.87–1.60(m,2H),0.90–0.66(m,3H).
实施例73:
用化合物67-d代替化合物2-c,用化合物5-a代替化合物4-c,参照化合物4的合成得到化合物73。ESI-MS(m/z):472.4[M+H]+1H NMR(500MHz,DMSO-d6)δ12.62–12.17(m,1H),8.60–8.53(m,1H),8.20–7.95(m,3H),7.82–7.47(m,2H),7.35–7.27(m,1H),5.79–5.65(m,2H),5.12–4.93(m,2H),4.82–4.74(m,2H),4.12–3.97(m,3H),0.95–0.81(m,3H).
实施例74:
用(2R,3S)-2-((叔丁氧羰基)氨基)-3-甲氧基丁酸代替(R)-2-((叔丁氧羰基)氨基)-2-环丙基乙酸,参照化合物42-b的合成得到化合物74-a。用化合物74-a代替(R)-2-氨基丁酰胺盐酸盐,参照化合物72的合成得到化合物74。ESI-MS(m/z):461.5[M+H]+1H NMR(500MHz,DMSO-d6)δ11.32–11.20(m,1H),8.49–8.21(m,3H),8.10–8.05(m,1H),7.57–7.42(m,2H),7.38–7.34(m,1H),7.31–7.27(m,1H),7.22–7.13(m,1H),6.36–6.20(m,1H),5.69–5.48(m,1H),4.96–4.83(m,2H),4.75–4.51(m,3H),3.98–3.75(m,1H),3.23–3.11(m,3H),1.12–0.95(m,3H).
实施例75:
将化合物4-a(105mg,459μmol)溶于N,N-二甲基甲酰胺(3mL),加入(3R,4S)-3-氨基-4-羟基哌啶-1-甲酸叔丁酯(99mg,459μmol)和N,N-二异丙基乙胺(178mg,1.38mmol)。混合物在50℃下搅拌过夜。反应液中加入水(10mL),用乙酸乙酯(10mL)萃取三次。合并有机相,用水洗一次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物通过柱层析色谱纯化得到化合物75-a(180mg,收率95.9%)。ESI-MS(m/z):409.3[M+H]+.
将化合物75-a(154mg,503μmol)溶于二氯甲烷(5mL),加入间氯过氧苯甲酸((152mg,881μmol))。混合物在室温下搅拌2小时。反应液中加入饱和碳酸氢钠(10mL),用乙酸乙酯(10mL)萃取三次。合并有机相,用水洗一次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩得到粗产品化合物75-b(190mg)。ESI-MS(m/z):441.5[M+H]+.
将化合物7-a(50mg,220μmol)和粗产品化合物75-b(97mg)溶于N,N-二甲基甲酰胺(3mL),加入N,N-二异丙基乙胺(85.3mg,660μmol)。混合物在室温下搅拌过夜。将反应液通过柱层析色谱纯化得到化合物75-c(95mg,收率73.5%)。ESI-MS(m/z):588.4[M+H]+.
将化合物75-c(95mg,161μmol)溶于二氯甲烷(2mL),加入三氟乙酸(2mL)。混合物在室温下搅拌1小时。浓缩反应液,残留物通过制备液相色谱纯化得到化合物75(35mg,收率44.4%)。ESI-MS(m/z):488.7[M+H]+1H NMR(500MHz,DMSO-d6)δ11.25(s,1H),8.42–8.35(m,1H),8.19–7.95(m,3H),7.53–7.42(m,1H),7.39–7.32(m,1H),7.25–7.15(m,1H),5.81–5.67(m,1H),5.59–5.48(m,1H),5.13–4.81(m,3H),4.71–4.56(m,2H),4.19–4.00(m,1H),3.89–3.73(m,1H),2.86–2.66(m,2H),2.58–2.51(m,2H),1.64–1.51(m,2H).
实施例76:
将化合物4-a(855mg,3.74mmol)和3-(1-氨基-2-甲氧基-2-氧乙基)氮杂环丁烷-1-甲酸叔丁酯(914mg,3.74mmol)溶于N,N-二甲基甲酰胺(3mL),加入N,N-二异丙基乙胺(1.45g,11.2mmol)。混合物在80℃下搅拌4小时。反应液冷却至室温,加入水(20mL),用乙酸乙酯(20mL)萃取三次。合并有机相,用水洗一次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物通过柱层析色谱纯化得到化合物76-a(330mg,收率20.2%)。ESI-MS(m/z):437.0[M+H]+.
将化合物76-a(330mg,756μmol)溶于氨甲醇溶液(7M,5mL)。混合物在60℃搅拌过夜。浓缩反应液,残留物通过反相柱层析色谱纯化得到化合物76-b(240mg,收率75.3%)。ESI-MS(m/z):422.0[M+H]+.
用化合物76-b代替化合物75-a,参照化合物75的合成得到化合物76。ESI-MS(m/z):501.5[M+H]+1H NMR(500MHz,DMSO-d6)δ11.78–11.18(m,1H),8.43–8.34(m,1H),8.27–8.14(m,1H),8.14–7.94(m,2H),7.67–7.44(m,2H),7.42–7.21(m,3H),6.83–6.31(m,1H),5.88–5.33(m,1H),4.91–4.85(m,2H),4.82–4.64(m,2H),4.66–4.48(m,1H),3.82–3.47(m,4H),3.19–2.92(m,1H),1.51–1.28(m,1H).
实施例77:
用(3S,4R)-4-氨基-3-羟基哌啶-1-甲酸叔丁酯代替(3R,4S)-3-氨基-4-羟基哌啶-1-甲酸叔丁酯,参照化合物75的合成得到化合物77。ESI-MS(m/z):488.5[M+H]+1H NMR(500MHz,DMSO-d6)δ11.25(s,1H),8.45–8.32(m,1H),8.30–7.90(m,3H),7.45(s,1H),7.42–7.31(m,1H),7.28–7.11(m,1H),5.74–5.48(m,2H),5.12–4.93(m,1H),4.87(s,2H),4.72–4.52(m,2H),4.19–3.88(m,1H),3.88–3.40(m,2H),2.93–2.53(m,4H),1.76–1.23(m,2H).
实施例78:
用(3R,4S)-3-氨基-4-羟基吡咯烷-1-甲酸叔丁酯代替(3R,4S)-3-氨基-4-羟基哌啶-1-甲酸叔丁酯,参照化合物75的合成得到化合物77。ESI-MS(m/z):474.4[M+H]+1H NMR(500MHz,DMSO-d6)δ11.71–11.21(m,1H),8.41–8.36(m,1H),8.24–7.93(m,3H),7.56–7.45(m,1H),7.37–7.31(m,1H),7.23–7.15(m,1H),6.18–5.95(m,1H),5.87–5.45(m,2H),4.90–4.85(m,2H),4.72–4.56(m,2H),4.23–3.80(m,2H),3.57–3.44(m,1H),3.24–3.01(m,2H),2.71–2.55(m,1H),2.49–2.28(m,1H).
实施例79:
用化合物39-a代替化合物2-c,用化合物57-a代替化合物4-c,参照化合物4的合成得到化合物79。ESI-MS(m/z):505.5[M+H]+1H NMR(500MHz,DMSO-d6)δ8.81–8.75(m,1H),8.25–7.96(m,3H),7.75–7.62(m,1H),7.58–7.53(m,1H),7.45–7.26(m,3H),6.19–5.91(m,2H),5.19–5.07(m,2H),4.82–4.60(m,3H),3.96–3.75(m,1H),3.20–3.10(m,3H),1.11–0.91(m,3H).
实施例80:
用化合物39-a代替化合物7-a,参照化合物75的合成得到化合物80。ESI-MS(m/z):489.2[M+H]+1H NMR(500MHz,DMSO-d6)δ8.77(d,J=4.4Hz,1H),8.22–7.96(m,3H),7.76–7.61(m,1H),7.56–7.53(m,1H),7.34–7.24(m,1H),6.08(s,1H),5.80–5.67(m,1H),5.15–4.99(m,3H),4.73–4.55(m,2H),4.20–3.98(m,1H),3.89–3.71(m,1H),2.85–2.50(m,4H),1.63–1.50(m,2H).
实施例81:
用化合物67-d代替化合物7-a,参照化合物75的合成得到化合物81。ESI-MS(m/z):483.7[M+H]+1H NMR(500MHz,DMSO-d6)δ12.37(s,1H),8.56(d,J=5.0Hz,1H),8.25–7.95(m,3H),7.79(d,J=5.0Hz,1H),7.63–7.46(m,1H),7.40–7.26(m,1H),5.82–5.68(m,1H),5.15–4.90(m,1H),4.75–4.56(m,2H),4.23–3.93(m,1H),3.86–3.72(m,1H),2.88–2.52(m,4H),1.65–1.49(m,2H).
实施例82:
用化合物7-a代替化合物2-c,用化合物57-a代替化合物4-c,参照化合物4的合成得到化合物82。ESI-MS(m/z):504.2[M+H]+1H NMR(500MHz,DMSO-d6)δ11.23(s,1H),8.39(d,J=4.8Hz,1H),8.25–7.89(m,3H),7.51–7.30(m,4H),7.25–7.12(m,1H),6.05–5.88(m,1H),5.54(t,J=5.5Hz,1H),4.88(d,J=5.4Hz,2H),4.76–4.48(m,3H),3.95–3.66(m,1H),3.33–3.14(m,3H),1.10–0.84(m,3H).
实施例83:
用化合物6-a代替化合物7-a,参照化合物75的合成得到化合物83。ESI-MS(m/z):472.4[M+H]+1H NMR(500MHz,DMSO-d6)δ11.48–11.28(m,1H),8.30(d,J=4.7Hz,1H),8.25–7.92(m,3H),7.53–7.42(m,1H),7.28–7.15(m,2H),5.86–5.75(m,1H),5.32–5.14(m,1H),4.75–4.60(m,2H),4.24–4.15(m,1H),3.91–3.80(m,1H),2.93–2.66(m,4H),2.60–2.55(m,3H),1.75–1.58(m,2H).
实施例84:
将化合物4-a(500mg,2.19mmol)和三乙胺(332mg,3.28mmol)溶于N-甲基吡咯烷酮,冰浴下加入(R)-2-羟基丁酸甲酯(310mg,2.62mmol)的四氢呋喃(2mL)溶液和叔丁醇钠(315mg,3.28mmol)的二甲基亚砜(2mL)溶液。混合物在室温下反应过夜。向反应液中加水(20mL),用乙酸乙酯(20mL)萃取三次。合并有机相,用水洗三次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物通过快速柱层析色谱得到化合物84-a(434mg,收率64.0%)。ESI-MS(m/z):311.3[M+H]+.
将化合物84-a(360mg,1.16mmol)溶于四氢呋喃(3mL)和水(3mL),加入氢氧化锂一水合物(97mg,2.32mmol)。混合物在室温下搅拌5小时。用稀盐酸将反应液pH调至4,减压除去四氢呋喃,用乙酸乙酯(10mL)萃取三次。合并有机相,用水洗三次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩得到化合物84-b(343mg,收率99.8%)。ESI-MS(m/z):297.1[M+H]+.
将化合物84-b(50mg,168μmol)溶于N,N-二甲基甲酰胺(3mL),加入氯化铵(18mg,337μmol),HATU(96mg,253μmol)和N,N-二异丙基乙胺(65mg,506μmol)。混合物在室温下搅拌过夜。向反应液中加水(5mL),用乙酸乙酯(5mL)萃取三次。合并有机相,用水洗三次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩得到化合物84-c(49mg,收率98.3%)。ESI-MS(m/z):296.6[M+H]+.
用化合物84-c代替化合物42-c,参考化合物42的合成得到化合物84。ESI-MS(m/z):474.3[M+H]+1H NMR(500MHz,DMSO-d6)δ8.57–8.26(m,3H),8.04–7.98(m,1H),7.47–7.37(m,1H),7.35–7.19(m,2H),7.17–7.02(m,2H),5.17–5.00(m,1H),4.74–4.51(m,2H),4.05–3.96(m,2H),1.85–1.69(m,2H),0.89–0.81(m,3H).
实施例85:
用化合物67-d代替化合物7-a,用(3R,4R)-3-氨基-4-羟基哌啶-1-甲酸叔丁酯代替(3R,4S)-3-氨基-4-羟基哌啶-1-甲酸叔丁酯,参照化合物75的合成得到化合物85。ESI-MS(m/z):483.7[M+H]+1H NMR(500MHz,DMSO-d6)δ12.40(s,1H),8.59–8.52(m,1H),8.20–8.08(m,2H),8.06–7.93(m,1H),7.81–7.77(m,1H),7.61–7.52(m,1H),7.40–7.29(m,1H),6.06–5.95(m,1H),4.82–4.58(m,3H),3.99–3.73(m,1H),3.64–3.55(m,1H),3.23–3.00(m,1H),2.85(s,1H),2.48–2.31(m,1H),2.28–1.68(m,2H),1.52–1.26(m,2H).
实施例86:
用化合物67-d代替化合物7-a,用(3R,4S)-3-氨基-4-羟基吡咯烷-1-甲酸叔丁酯代替(3R,4S)-3-氨基-4-羟基哌啶-1-甲酸叔丁酯,参照化合物75的合成得到化合物86。ESI-MS(m/z):469.1[M+H]+1H NMR(500MHz,DMSO-d6)δ12.45(s,1H),8.61–8.53(m,1H),8.19–8.06(m,2H),7.80(d,J=5.0Hz,1H),7.59–7.52(m,1H),7.36–7.19(m,2H),6.22–5.96(m,1H),5.79–5.43(m,1H),4.76–4.64(m,2H),4.28–3.99(m,2H),3.14–2.99(m,3H),2.70–2.57(m,1H),2.40–2.28(m,1H).
实施例87:
将N-(叔丁氧羰基)甘氨酸(3.6mg,21μmol)和N-羟基丁二酰亚胺(2.9mg,25μmol)溶于二氯甲烷(2mL),加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(6mg,31μmol)。混合物在室温下搅拌0.5小时,加入化合物83(10mg,21μmol)和N,N-二异丙基乙胺(2.7mg,21mmol)。反应液中加入水(5mL),二氯甲烷(10mL)萃取三次,合并有机相,浓缩。将残留物溶于二氯甲烷(2mL),加入盐酸二氧六环溶液(4M,1mL),混合物在室温下搅拌1小时。浓缩反应液,残留物通过制备液相色谱纯化得到化合物87(3mg,收率22.6%)。ESI-MS(m/z):540.4[M+H]+1H NMR(500MHz,DMSO-d6)δ8.53–8.45(m,1H),8.25–7.98(m,3H),7.75–7.68(m,1H),7.53–7.43(m,1H),7.29–7.20(m,1H),5.72–5.57(m,1H),5.45–5.27(m,1H),4.82–4.04(m,3H),3.96–3.37(m,5H),3.12–2.69(m,2H),1.63–1.44(m,2H).
实施例88:
将化合物83(450mg,867μmol)溶于二氯甲烷(10mL)和甲醇(3mL),加入甲醛水溶液(34%,213μL)和冰乙酸(52mg,867μmol)。混合物在室温下搅拌10分钟,加入三乙酰氧基硼氢化钠(919mg,4.34mmol),之后在室温下搅拌过夜。反应液中加入饱和碳酸氢钠(10mL),乙酸乙酯(30mL)萃取三次,合并有机相,浓缩。残留物通过制备液相色谱纯化得到化合物88(200mg,收率46.5%)。ESI-MS(m/z):497.5[M+H]+1H NMR(500MHz,DMSO-d6)δ12.40(s,1H),8.63–8.54(m,1H),8.27–8.07(m,3H),7.85–7.77(m,1H),7.55(s,1H),7.39–7.27(m,1H),5.81–5.67(m,1H),5.16–4.55(m,3H),4.32–4.07(m,1H),3.84–3.63(m,1H),3.29–3.18(m,2H),2.36–1.87(m,5H),1.74–1.41(m,2H).
实施例89:
用化合物67-d代替化合物7-a,用(3S,4R)-4-氨基-3-羟基哌啶-1-甲酸叔丁酯代替(3R,4S)-3-氨基-4-羟基哌啶-1-甲酸叔丁酯,参照化合物75的合成得到化合物89。ESI-MS(m/z):483.5[M+H]+1H NMR(500MHz,DMSO-d6)δ12.40(s,1H),8.58(d,J=5.0Hz,1H),8.32–8.00(m,3H),7.81(d,J=4.9Hz,1H),7.54(s,1H),7.37–7.29(m,1H),5.77–5.62(m,1H),5.36–5.10(m,1H),4.76–4.55(m,2H),4.20–3.89(m,1H),3.78–3.48(m,1H),2.97–2.55(m,3H),2.51–2.37(m,2H),1.71–1.29(m,2H).
实施例90:
将(2R,3R)-3-氨基丁-2-醇盐酸盐(1.27g,10.1mmol)和邻苯二甲酸酐(1g,6.8mmol)加入玻璃瓶中,将混合物加热至150℃,反应5小时。将混合物冷却至室温,加入二氯甲烷(30mL),用水洗两次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物通过柱层析色谱纯化得到化合物90-a(126mg,收率8.5%)。
将化合物90-a(70mg,319μmol)溶于四氢呋喃(2mL),冰浴下加入氢化钠(60%in oil,15mg,639μmol),混合物在冰浴下搅拌15分钟,加入化合物4-a(88mg,383μmol)。将反应液升至50℃,继续反应5小时。将反应液冷却至室温,加入饱和氯化铵溶液(10mL),用乙酸乙酯(10mL)萃取三次。合并有机相,用水洗一 次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物通过制备液相色谱纯化得到化合物90-b(30mg,收率21.9%)。ESI-MS(m/z):430.6[M+H]+.
将化合物90-b(30mg,70μmol)溶于乙酸乙酯(2mL),加入间氯过氧苯甲酸(24mg,139μmol)。混合物在室温下搅拌2小时。向反应液中加乙酸乙酯(5mL)入过滤,残留物用乙酸乙酯(5mL)洗两遍。合并有机相,浓缩得到粗产品化合物90-c(30mg)。ESI-MS(m/z):462.3[M+H]+.
将化合物90-c(30mg,65μmol)和化合物4-a(17mg,65μmol)溶于N,N-二甲基甲酰胺(2mL),加入N,N-二异丙基乙胺(25mg,195μmol)。混合物在室温下搅拌过夜。浓缩反应液得到粗产品化合物90-d(32mg)。ESI-MS(m/z):609.8[M+H]+.
将粗产品化合物90-d(32mg)溶于乙醇(5mL),加入80%水合肼(0.1mL)。混合物在80℃下反应2小时。将反应液冷却至室温,过滤,浓缩滤液。残留物通过制备液相色谱纯化得到化合物90(3mg,收率13%)。ESI-MS(m/z):461.5[M+H]+1H NMR(500MHz,DMSO-d6)δ11.29–11.10(m,1H),8.34–8.30(m,1H),8.06–7.81(m,3H),7.49–7.44(m,1H),7.31–7.27(m,1H),7.17–7.12(m,1H),5.55–5.39(m,1H),4.86–4.74(m,2H),4.68–4.35(m,2H),4.09–3.52(m,1H),2.06–1.84(m,1H),1.23–0.73(m,6H).
实施例91:
用顺式-3,4-二羟基吡咯烷-1-甲酸叔丁基酯代替(2R,3R)-2,3-丁二醇,参照化合物11-b的合成得到化合物91-a。用化合物67-d代替化合物7-a,用化合物91-a代替化合物75-b,参照化合物75的合成得到化合物91。ESI-MS(m/z):470.3[M+H]+1H NMR(500MHz,DMSO-d6)δ12.40(s,1H),8.77–8.40(m,2H),8.38– 8.29(m,1H),8.22–8.16(m,1H),7.84–7.78(m,1H),7.61–7.54(m,1H),7.39–7.29(m,1H),5.36–5.09(m,1H),4.85–4.54(m,3H),4.28–4.01(m,1H),3.24–3.19(m,1H),3.11–2.80(m,2H),2.71–2.55(m,2H).
实施例92:
将化合物83(20mg,41μmol)和2-羟基乙酸(3mg,41μmol)溶于N,N-二甲基甲酰胺(2mL),加入HATU(17mg,45μmol)和三乙胺(8.4mg,82μmol)。混合物在室温下搅拌2小时。反应液加入水(0.1mL),直接通过制备液相色谱纯化得到化合物92(6.5mg,收率29%)。ESI-MS(m/z):541.3[M+H]+1H NMR(500MHz,DMSO-d6)δ12.46–12.31(m,1H),8.61–8.55(m,1H),8.33–8.07(m,3H),7.83–7.79(m,1H),7.60–7.53(m,1H),7.37–7.29(m,1H),5.80–5.40(m,2H),4.89–4.44(m,3H),4.40–3.38(m,6H),3.27–2.80(m,2H),1.68–1.44(m,2H).
实施例93:
用化合物67-d代替化合物7-a,参照化合物75-c的合成得到化合物93-a。
将化合物93-a(20mg,34μmol)溶于溶于N,N-二甲基甲酰胺(2mL),加入碘甲烷(7mg,51μmol)和碳酸铯(26mg,80μmol)。混合物在室温下搅拌2小时。反应液加入水(5mL),用乙酸乙酯(5mL)萃取三次。合并有机相,用水洗一次,饱 和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物通过制备薄层色谱纯化得到化合物93-b(12mg,收率59%)。ESI-MS(m/z):597.3[M+H]+.
将化合物93-b(12mg,20μmol)溶于二氯甲烷(2mL),加入三氟乙酸(1mL)。混合物在室温下搅拌2小时。浓缩反应液,残留物通过制备液相色谱纯化得到化合物93(5.5mg,收率55.1%)。ESI-MS(m/z):497.5[M+H]+1H NMR(500MHz,DMSO-d6)δ8.60–8.54(m,1H),8.26–8.09(m,2H),8.08–7.95(m,1H),7.86–7.80(m,1H),7.78–7.69(m,1H),7.45–7.34(m,1H),5.85–5.69(m,1H),5.14–4.95(m,1H),4.81–4.59(m,2H),4.19–4.02(m,4H),3.87–3.75(m,1H),2.86–2.52(m,4H),2.05–1.44(m,3H).
实施例94:
将化合物83(20mg,41μmol)和2-(叔丁基二甲基硅氧基)乙醛(7.2mg,41μmol)溶于二氯甲烷(1mL)和甲醇(1mL),加入冰乙酸(2.4mg,41μmol)。混合物在室温下搅拌30分钟,加入氰基硼氢化钠(5.2mg,82μmol),在室温下搅拌过夜。反应液加入水(5mL),用乙酸乙酯(5mL)萃取三次。合并有机相,用水洗一次,饱和食盐水洗一次,无水硫酸钠干燥,过滤,浓缩。残留物通过制备薄层色谱纯化得到化合物94-a(20mg,收率75.3%)。ESI-MS(m/z):641.3[M+H]+.
将化合物94-a(20mg,31μmol)溶于四氢呋喃(2mL),加入1N四丁基氟化铵四氢呋喃溶液(0.1mL)。混合物在室温下搅拌2小时。浓缩反应液,残留物通过制备液相色谱纯化得到化合物94(5mg,收率30.4%)。ESI-MS(m/z):527.3[M+H]+1H NMR(500MHz,DMSO-d6)δ8.53–8.00(m,4H),7.72–7.42(m,2H),7.25–7.14(m,1H),5.82–5.71(m,1H),5.22–4.98(m,1H),4.81–4.45(m,2H), 4.33–4.09(m,1H),3.85–3.66(m,1H),3.59–3.44(m,3H),2.82–2.67(m,1H),2.60–2.53(m,1H),2.47–2.36(m,2H),2.33–1.95(m,3H),1.76–1.61(m,2H).
实施例95:
用(2S,3R)-2-氨基-3-羟基丁酰胺盐酸盐代替(R)-2-氨基丁酰胺盐酸盐,参照化合物4-c的合成得到化合物95-a。用化合物67-d代替化合物2-c,用化合物95-a代替化合物4-c,参照化合物4的合成得到化合物95。ESI-MS(m/z):485.3[M+H]+1H NMR(500MHz,DMSO-d6)δ12.31(s,1H),8.49(d,J=5.0Hz,1H),8.16–7.84(m,3H),7.72(d,J=4.9Hz,1H),7.54–7.43(m,1H),7.35–7.20(m,2H),7.12(s,1H),6.01(d,J=7.6Hz,1H),5.27–5.05(m,1H),4.74–4.52(m,2H),4.46–4.35(m,1H),4.21–4.03(m,1H),1.08–0.84(m,3H).
实施例96:
用化合物62-b代替化合物19-a,参照化合物67-d的合成得到化合物96-a。用化合物96-a代替化合物7-a,参照化合物75的合成得到化合物96。ESI-MS(m/z):484.5[M+H]+1H NMR(500MHz,DMSO-d6)δ8.77(d,J=4.4Hz,1H),8.24–8.20(m,1H),8.18(d,J=4.4Hz,1H),8.15–7.94(m,2H),7.82–7.68(m,1H),7.43 –7.33(m,1H),5.76–5.61(m,1H),5.04–4.90(m,1H),4.71–4.56(m,2H),4.16–3.89(m,1H),3.84–3.60(m,1H),2.76–2.44(m,5H),1.60–1.45(m,2H).
实施例97:
化合物35-a代替化合物2-c,用化合物57-a代替化合物4-c,参照化合物4的合成得到化合物97。ESI-MS(m/z):504.4[M+H]+1H NMR(500MHz,DMSO-d6)δ11.46(s,1H),8.34–8.29(m,1H),8.21–7.90(m,3H),7.46–7.35(m,3H),7.23–7.14(m,1H),7.08–7.02(m,1H),6.04–5.93(m,1H),4.76–4.54(m,3H),4.04(s,3H),3.92–3.76(m,1H),3.17(s,3H),1.07–0.92(m,3H).
实施例98:
用化合物67-d代替化合物2-c,用化合物18-a代替化合物4-c,参照化合物4的合成得到化合物98。ESI-MS(m/z):456.5[M+H]+1H NMR(500MHz,DMSO-d6)δ12.62–12.17(m,1H),8.60–8.53(m,1H),8.20–7.95(m,3H),7.82–7.47(m,2H),7.35–7.27(m,1H),5.79–5.65(m,1H),5.12–4.93(m,1H),4.80–4.55(m,2H),4.19–3.92(m,1H),3.83–3.57(m,1H),1.16–0.85(m,6H).
实施例99:
用(R)-2-((叔丁氧羰基)氨基)丁酸代替(R)-2-((叔丁氧羰基)氨基)-2-环丙基乙酸,用甲胺盐酸盐代替氯化铵,参照化合物42-d的合成得到化合物99-a。用化合物99-a代替化合物4-c,用化合物7-a代替化合物2-c,参照化合物4的合成得到化合物99。ESI-MS(m/z):488.7[M+H]+1H NMR(500MHz,DMSO-d6)δ11.24(s,1H),8.45–8.34(m,1H),8.19–7.86(m,4H),7.52–7.42(m,1H),7.38–7.33(m,1H),7.24–7.14(m,1H),6.32–6.21(m,1H),5.54(t,J=5.5Hz,1H),4.87(d,J=5.3Hz,2H),4.72–4.52(m,3H),2.67–2.52(m,3H),1.94–1.56(m,2H),0.83–0.63(m,3H).
实施例100:
用(R)-2-((叔丁氧羰基)氨基)丁酸代替(R)-2-((叔丁氧羰基)氨基)-2-环丙基乙酸,用二甲胺盐酸盐代替氯化铵,参照化合物42-d的合成得到化合物100-a。用化合物100-a代替化合物4-c,用化合物7-a代替化合物2-c,参照化合物4的合成得到化合物100。ESI-MS(m/z):502.1[M+H]+1H NMR(500MHz,DMSO-d6)δ11.24(s,1H),8.41–8.37(m,1H),8.22–7.92(m,3H),7.46(s,1H),7.37–7.32(m,1H), 7.21–7.16(m,1H),6.33–6.24(m,1H),5.53(t,J=5.6Hz,1H),5.16–4.85(m,3H),4.73–4.59(m,2H),3.12–2.65(m,6H),1.75–1.44(m,2H),0.87–0.61(m,3H).
实施例101:
将化合物75(15mg,30μmol)溶于二氯甲烷(2mL)和甲醇(0.5mL),加入甲醛水溶液(34%,15μL)和冰乙酸(2mg,43μmol)。混合物在室温下搅拌10分钟,加入三乙酰氧基硼氢化钠(33mg,154μmol),之后在室温下搅拌过夜。反应液中加入饱和碳酸氢钠水溶液(5mL),乙酸乙酯(15mL)萃取三次,合并有机相,浓缩。残留物通过制备液相色谱纯化得到化合物101(5.2mg,收率34.1%)。ESI-MS(m/z):502.5[M+H]+1H NMR(500MHz,DMSO-d6)δ11.21(s,1H),8.38(d,J=4.8Hz,1H),8.24–7.98(m,3H),7.48–7.42(m,1H),7.35(d,J=4.7Hz,1H),7.21–7.14(m,1H),5.92–5.68(m,1H),5.56–5.48(m,1H),5.32–4.97(m,3H),4.93–4.80(m,2H),4.78–4.50(m,2H),4.40–4.01(m,1H),3.84–3.58(m,1H),2.33–2.09(m,3H),2.04–1.80(m,2H),1.77–1.49(m,2H).
测试实施例
HGC27(人胃癌细胞)细胞生长抑制的生物活性检测
本检测方法用于本发明所述化合物的细胞水平生物学活性评价。
收获HGC27细胞(购买自中科院),用完全培养基重悬并调整细胞密度为每毫升0.2x106个细胞。按照100μL每孔,将细胞悬液加入96孔板中,于37℃、5%CO2培养箱培养过夜。准备待测化合物,加入细胞孔板中,使得化合物的最高浓度为10μM。按照3倍稀释设置8个浓度点。同时设置100%抑制对照孔,即不加入细胞,只有等体积完全培养基的孔;以及0%抑制的对照孔,即加入0.1%DMSO的细胞孔。将上述细胞板于37℃、5%CO2培养24小时。取出细胞培养板,每孔加入25μlLuminescent Cell Viability试剂(promega cat#G7573),避光孵育10分钟后转移100μL到白板中使用Molecular Devices  SpectraMax i3检测化学发光。数据处理采用如下公式计算抑制率:化合物抑制率=(0%抑制对照孔信号-化合物处理孔信号)/(0%抑制对照孔信号-100%抑制对照孔信号)*100%。计算得到的数据利用graphpad prism软件进行四参数拟合并计算其对应的IC50

由上述结果可见,本发明的化合物对HGC27肿瘤细胞具有良好的生长抑制活性。
NCI-N87(人胃癌细胞)细胞生长抑制的生物活性检测
本检测方法用于本发明所述化合物的细胞水平生物学活性评价。
收获NCI-N87细胞(购买自中科院),用完全培养基重悬并调整细胞密度为每毫升0.1x106个细胞。按照100μL每孔,将细胞悬液加入96孔板中,于37℃、5%CO2培养箱培养过夜。准备待测化合物,加入细胞孔板中,使得化合物的最高浓度为10μM。按照3倍稀释设置8个浓度点。同时设置100%抑制对照孔,即不加入细胞,只有等体积完全培养基的孔;以及0%抑制的对照孔,即加入0.1%DMSO的细胞孔。将上述细胞板于37℃、5%CO2培养72小时。取出细胞培养板,每孔加入25μl CellTiter-Glo Luminescent Cell Viability试剂(promega cat#G7573),避光孵育10分钟后转移100μL到白板中使用Molecular Devices SpectraMax i3检测化学发光。数据处理采用如下公式计算抑制率:化合物抑制率=(0%抑制对照孔信号-化合物处理孔信号)/(0%抑制对照孔信号-100%抑制对照孔信号)*100%。计算得到的数据利用graphpad prism软件进行四参数拟合并计算其对应的IC50。

由上述结果可见,本发明的化合物对NCI-N87肿瘤细胞具有良好的生长抑制活性。
Western blot检测Cyclin K(CCNK)的降解
收获HEK293细胞(ATCC,cat#CRL-1573),调整细胞密度为每毫升1x106个细胞。以每孔1ml细胞悬液铺入6孔板中,过夜贴壁培养。取化合物贮存液,用DMSO将其稀释至合适的浓度。用培养基以1:1000的比例将稀释好的化合物加入细胞孔中,保证每孔DMSO浓度为0.1%。同时设置阴性对照孔,即含有0.1%DMSO的完全培养基。化合物按照图中所示的浓度处理固定以及不同的时间后,用加入PMSF的RIPA细胞裂解液(Beyotime,cat#P0013B)提取细胞总蛋白。使用BCA蛋白定量试剂盒(Thermo Fisher,cat#A53225)进行蛋白定量后,每个样品按照40μg的上样量进行后续的SDS-PAGE以及western blot实验。具体条件为,120V恒压跑胶90分钟后,按照320mA恒流转膜60min。按照抗体推荐的稀释 比例以及孵育时间进行抗体孵育。实验中所用抗体信息如下:Anti-GAPDH抗体(abcam,cat#ab9485),Anti-Cyclin K抗体(abcam,cat#ab85854),Goat anti-Rabbit IgG(H+L)Cross-Adsorbed Secondary Antibody,HRP(invitrogen,cat#G-21234)。使用ECL发光液(Thermo Fisher,cat#32209)显色发光。使用凝胶成像系统分析最终结果。
根据上述检测方法,对本发明所述部分化合物进行了评价。
图1显示,化合物12,17,18在不同浓度处理HEK293细胞6h后相较于对照均能够显著诱导Cyclin K的降解。
由上述结果可见,本发明的化合物可有效降解Cyclin K。

Claims (28)

  1. 一种具有式(I)结构的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药:
    其中:
    Cy表示11-14元三环芳香稠环,Cy表示
    各自独立地表示单键或者双键;
    W1各自独立地表示CR、N或键;
    W2各自独立地表示CR0、N、NRa、S或O;
    W3各自独立地表示C或N,最多只能有2个W3同时为N;
    W4各自独立地表示CR1、N、NRa、S或O;
    R、R0和R1各自独立地表示氢、卤素、硝基、氰基、-Ra、-ORa、-SRa、-NRaRb、-C(O)Ra、-C(O)ORa、-C(O)NRaRb、-NRaC(O)Rb、-S(O)2Ra、-S(O)Ra、-S(O)2NRaRb、-P(O)RaRb、C1-C6烷基、(C2-C6)烯基、(C2-C6)炔基,所述烷基、烯基或炔基可各自任选地被0至3个选自-ORa、-SRa、-NRaRb、-NRaC(O)Rb、-C(O)Ra、-C(O)ORa、-C(O)NRaRb、-S(O)2Ra、-S(O)Ra、-S(O)2NRaRb、-P(O)RaRb的取代基取代;其中,所述-NRaC(O)Rb中的Rb任选地可被0个、1个或者2个选自-(C0-C3亚烷基)ORa、-(C0-C3亚烷基)SRa、-(C0-C3亚烷基)NRaRb的取代基取代;
    RL和RL’各自独立地表示氢、氟、C1-C6烷基或者C3-C6环烷基,RL和RL’可以和与之相连的碳原子一起形成3-6元环;
    R2表示卤素、-Ra、-ORa、-SRa、硝基、氰基、-NRaRb、-NRaC(O)Rb、-C(O)Ra、-C(O)ORa、-C(O)NRaRb、-S(O)2Ra、-S(O)Ra、-S(O)2NRaRb、-P(O)RaRb、(C2-C6)烯基、(C2-C6)炔基;
    R3表示C1-C6烷基、C1-C6烯基、C1-C6炔基、C3-C10环烷基、3-10元杂环烷基、C6-C10芳基、5-10元杂芳基、-NRMRN、-NHRM、-ORM、-SRM
    当R3表示C1-C6烷基、C1-C6烯基、C1-C6炔基、C3-C10环烷基、3-10元杂环烷基时,其任选的可被0、1、2、3个选自以下的取代基取代:氧代、硝基、卤素、氰基、-Ra、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRb、-(C0-C6亚烷基)NRaC(O)Rb、-(C0-C6亚烷基)C(O)Ra、-(C0-C6亚烷基)C(O)ORa、-(C0-C6亚烷基)C(O)NRaRb、-(C0-C6亚烷基)S(O)2Ra、-(C0-C6亚烷基)S(O)Ra、-(C0-C6亚烷基)S(O)2NRaRb、-(C0-C6亚烷基)P(O)RaRb
    当R3表示C6-C10芳基或者5-10元杂芳基时,其任选的可被0、1、2、3个选自以下的取代基取代:硝基、卤素、氰基、-Ra、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRb、-(C0-C6亚烷基)NRaC(O)Rb、-(C0-C6亚烷基)C(O)Ra、-(C0-C6亚烷基)C(O)ORa、-(C0-C6亚烷基)C(O)NRaRb、-(C0-C6亚烷基)S(O)2Ra、-(C0-C6亚烷基)S(O)Ra、-(C0-C6亚烷基)S(O)2NRaRb、-(C0-C6亚烷基)P(O)RaRb
    当R3表示-NRMRN、-NHRM、-ORM、-SRM时,RM和RN各自独立地表示C1-C6烷基、-(C0-C6亚烷基)(C3-C10环烷基)、-(C0-C6亚烷基)(3-10元杂环烷基)、-(C0-C6亚烷基)(C6-C10芳基)、-(C0-C6亚烷基)(5-10元杂芳基);RM和RN各自任选的可被0、1、2、3个选自以下的取代基取代:氧代、硝基、卤素、氰基、-Ra、-(4-8元杂环烷基)、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRb、-(C0-C6亚烷基)NRaC(O)Rb、-(C0-C6亚烷基)C(O)Ra、-(C0-C6亚烷基)C(O)ORa、-(C0-C6亚烷基)C(O)NRaRb、-(C0-C6亚烷基)S(O)2Ra、-(C0-C6亚烷基)S(O)Ra、-(C0-C6亚烷基)S(O)2NRaRb、-(C0-C6亚烷基)P(O)RaRb;其中,当RM或者RN表示含有N原子的-(C0-C6亚烷基)(3-10元杂环烷基)且取代基位于所述N原子上时,所述取代基上位于所述N原子邻位的C原子可以进一步被氧代取代;
    其中,Ra、Rb各自独立地表示氢、C1-C6烷基或者C3-C8环烷基,所述烷基或环烷基可各自任选地可被0、1、2、3个卤素原子取代。
  2. 如权利要求1所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,其特征在于,Cy表示
    其中W1各自独立地表示CR或N;W2、W3和W4如上文式(I)所定义。
  3. 如前述任一权利要求所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,其特征在于,Cy表示
    其中,X各自独立地表示NRa、O或S;W1各自独立地表示CR或N;W2各自独立地表示CR0或N;W4各自独立地表示CR1或N。
  4. 如前述任一权利要求所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,其特征在于,Cy表示
    其中,X各自独立地表示NRa、O或S;W1各自独立地表示CR或N;W2各自独立地表示CR0或N;W4各自独立地表示CR1或N。
  5. 如前述任一权利要求所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,其特征在于,W1各自独立地表示CR或N;其中R各自独立地表示氢、卤素、氰基、-Ra或-ORa;优选地,R各自独立地表示氢、卤素或者-Ra;更优选地,R各自独立地表示氢、C1-C6烷基。
  6. 如前述任一权利要求所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,其特征在于,W2各自独立地表示CR0或N;其中R0各自独立地表示氢、卤素、氰基、-Ra或-ORa;优选地,R0各自独立地表示氢、卤素、氰基或者-Ra;更优选地,R各自独立地表示氢、氰基、C1-C6烷基。
  7. 如前述任一权利要求所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,其特征在于,W4各自独立地表示CR1或N;其中R1各自独立地表示氢、卤素、氰基、C1-C6烷基、C3-C8环烷基、-ORa、-SRa、-NRaRb、-C(O)Ra、-C(O)ORa、-C(O)NRaRb、-NRaC(O)Rb、-S(O)2Ra、-S(O)Ra,其中,所述C1-C6烷基可各自独立地被0、1、2、3个选自卤素、-ORa、-SRa、-NRaRb、-NRaC(O)Rb、-C(O)Ra、-C(O)ORa、-C(O)NRaRb、-S(O)2Ra、-S(O)Ra的取代基取代;其中,所述-NRaC(O)Rb中的Rb任选地可被0个、1个或者2个选自-(C0-C3亚烷基)ORa、-(C0-C3亚烷基)SRa、-(C0-C3亚烷基)NRaRb的取代基取代;优选地,所述-NRaC(O)Rb中的Rb任选地可被0个、1个或者2个选自-(C0-C3亚烷基)OH、-(C0-C3亚烷基)SH、-(C0-C3亚烷基)NH2的取代基取代;更优选地,所述-NRaC(O)Rb中的Rb任选地可被0个、1个或者2个选自-CH2OH、-CH2SH、-CH2NH2的取代基取代。
  8. 如前述任一权利要求所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,其特征在于,W4各自独立地表示CR1或N;其中R1各自独立地表示氢、卤素、氰基、C1-C6烷基、C3-C8环烷基、-ORa、-SRa、-NRaRb、-C(O)Ra、-C(O)NRaRb、-NRaC(O)Rb、-S(O)2Ra,所述C1-C6烷基可各自任选地被0、1、2、3个选自卤素、ORa、SRa、NRaRb、NRaC(O)Rb的取代基取代,其中,所述-NRaC(O)Rb中的Rb任选地可被0个、1个或者2个选自-(C0-C3亚烷基)ORa、-(C0-C3亚烷基)SRa、-(C0-C3亚烷基)NRaRb的取代基取代;优选地,所述-NRaC(O)Rb中的Rb任选地可被0个、1个或者2个选自-(C0-C3亚烷基)OH、-(C0-C3亚烷基)SH、-(C0-C3亚烷基)NH2的取代基取代;更优选地,所述-NRaC(O)Rb中的Rb任选地可被0个、1个或者2个选自-CH2OH、-CH2SH、-CH2NH2的取代基取代。
  9. 如前述任一权利要求所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,其特征在于,W4各自独立地表示CR1或N;其中R1各自独立地表示氢、卤素、氰基、C1-C6烷基、C3-C8环烷基、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRb、-(C0-C6亚烷基)NRaC(O)Rb
  10. 如前述任一权利要求所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,其特征在于,RL和RL’各自独立地表示氢或氟;优选地,RL和RL’均为氢。
  11. 如前述任一权利要求所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,其特征在于,R2表示卤素、-Ra、-ORa、-SRa、硝基、氰基、-NRaRb、-NRaC(O)Rb;优选地,R2表示卤素或-Ra;更优选地,R2为-CF3
  12. 如前述任一权利要求所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,其特征在于,R3表示C1-C6烷基、C3-C10环烷基、3-10元杂环烷基,所述烷基、环烷基、杂环烷基各自独立的可被0、1、2、3个选自以下的取代基取代:氧代、卤素、氰基、-Ra、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRb、-(C0-C6亚烷基)NRaC(O)Rb、-(C0-C6亚烷基)C(O)Ra、-(C0-C6亚烷基)C(O)ORa、-(C0-C6亚烷基)C(O)NRaRb、-(C0-C6亚烷基)S(O)2Ra、-(C0-C6亚烷基)S(O)Ra、-(C0-C6亚烷基)S(O)2NRaRb、-(C0-C6亚烷基)P(O)RaRb
  13. 如前述任一权利要求所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,其特征在于,R3表示C6-C10芳基或5-10元杂芳基,所述芳基和杂芳基各自独立的可被0、1、2、3个选自以下的取代基取代:卤素、氰基、-Ra、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRb、-(C0-C6亚烷基)NRaC(O)Rb、-(C0-C6亚烷基)C(O)Ra、-(C0-C6亚烷基)C(O)ORa、-(C0-C6亚烷基)C(O)NRaRb、-(C0-C6亚烷基)S(O)2Ra、-(C0-C6亚烷基)S(O)Ra、-(C0-C6亚烷基)S(O)2NRaRb、-(C0-C6亚烷基)P(O)RaRb
  14. 如前述任一权利要求所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,其特征在于,R3表示-NRMRN、-NHRM、-ORM、-SRM,RM和RN各自独立地表示C1-C6烷基、-(C0-C6亚烷基)(C3-C10环烷基)、-(C0-C6亚烷基)(3-10元杂环烷基)、-(C0-C6亚烷基)(C6-C10芳基)、-(C0-C6亚烷基)(5-10元杂芳基);RM和RN各自任选的可被0、1、2、3个选自以下的取代基取代:氧代、硝基、卤素、氰基、-Ra、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRb、-(C0-C6亚烷基)NRaC(O)Rb、-(C0-C6亚烷基)C(O)Ra、-(C0-C6亚烷基)C(O)ORa、-(C0-C6亚烷基)C(O)NRaRb、-(C0-C6亚烷基)S(O)2Ra、-(C0-C6亚烷基)S(O)Ra、-(C0-C6亚烷基)S(O)2NRaRb、-(C0-C6亚烷基)P(O)RaRb;其中,当RM或者RN表示含有N原子的-(C0-C6亚烷基)(3-10元杂环烷基)且取代基位于所述N原子上时,所述取代基上位于所述N原子邻位的C原子可以进一步被氧代取代。
  15. 如前述任一权利要求所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,其特征在于,R3表示-NRMRN、-NHRM、-ORM、-SRM,RM和RN各自独立地表示C1-C6烷基、-(C0-C6亚烷基)(C3-C10环烷基)、-(C0-C6亚烷基)(3-10元杂环烷基)、-(C0-C6亚烷基)(C6-C10芳基)、-(C0-C6亚烷基)(5-10元杂芳基);RM和RN各自任选的可被0、1、2、3个选自以下的取代基取代:氧代、硝基、卤素、氰基、-Ra、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRb、-(C0-C6亚烷基)NRaC(O)Rb、-(C0-C6亚烷基)C(O)Ra、-(C0-C6亚烷基)C(O)ORa、-(C0-C6亚烷基)C(O)NRaRb、-(C0-C6亚烷基)S(O)2Ra、-(C0-C6亚烷基)S(O)Ra、-(C0-C6亚烷基)S(O)2NRaRb、-(C0-C6亚烷基)P(O)RaRb
  16. 如前述任一权利要求所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,其特征在于,R3表示-NRMRN、-NHRM、-ORM、-SRM,其中RM和RN各自独立地表示氢或者C1-C6烷基、-(C0-C6亚烷基)(C3-C10环烷基)、-(C0-C6亚烷基)(3-10元杂环烷基)、-(C0-C6亚烷基)(C6-C10芳基)、-(C0-C6亚烷基)(5-10元杂芳基);所述RM和RN各自独立的可被0、1、2、3个选自以下的取代基取代:氧代、硝基、卤素、氰基、-Ra、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRb、-(C0- C6亚烷基)NRaC(O)Rb、-(C0-C6亚烷基)C(O)Ra、-(C0-C6亚烷基)C(O)ORa、-(C0-C6亚烷基)C(O)NRaRb、-(C0-C6亚烷基)S(O)2Ra、-(C0-C6亚烷基)S(O)Ra、-(C0-C6亚烷基)S(O)2NRaRb、-(C0-C6亚烷基)P(O)RaRb
  17. 如前述任一权利要求所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,其特征在于,R3表示-NHRM、-ORM、-SRM,其中RM各自独立地表示C1-C6烷基、-(C0-C6亚烷基)(C3-C10环烷基)、-(C0-C6亚烷基)(3-10元杂环烷基);RM各自独立的可被0、1、2、3个选自以下的取代基取代:氧代、卤素、氰基、-Ra、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRb、-(C0-C6亚烷基)NRaC(O)Rb、-(C0-C6亚烷基)C(O)Ra、-(C0-C6亚烷基)C(O)NRaRb、-(C0-C6亚烷基)S(O)2Ra、-(C0-C6亚烷基)S(O)Ra、-(C0-C6亚烷基)S(O)2NRaRb、-(C0-C6亚烷基)P(O)RaRb
  18. 如前述任一权利要求所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,其特征在于,R3表示-NHRM、-ORM、-SRM,其中RM各自独立地表示C1-C6烷基、-(C0-C6亚烷基)(C3-C10环烷基)、-(C0-C6亚烷基)(3-10元杂环烷基),所述RM任选的可被0、1、2、3个选自以下的取代基取代:氧代、卤素、氰基、-Ra、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRb、-NRaC(O)Rb、-C(O)Ra、-C(O)NRaRb、-S(O)2Ra、-S(O)Ra、-S(O)2NRaRb、-P(O)RaRb;更优选地,RM各自独立的可被0、1、2、3个选自以下的取代基取代:Ra、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRb、-C(O)NRaRb
  19. 如前述任一权利要求所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,其特征在于,R3表示-NHRM、-ORM、-SRM,其中RM各自独立地表示C1-C6烷基、-(C0-C6亚烷基)(C3-C10环烷基)、-(C0-C6亚烷基)(3-10元杂环烷基),所述RM任选的可被0、1、2、3个选自以下的取代基取代:氧代、卤素、氰基、-Ra、-ORa、-SRa、-NRaRb、-NRaC(O)Rb、-C(O)Ra、-C(O)NRaRb、-S(O)2Ra、-S(O)Ra、-S(O)2NRaRb、-P(O)RaRb;更优选地,RM各自独立的可被0、1、2、3个选自以下的取代基取代:-Ra、-ORa、-SRa、-NRaRb、-C(O)NRaRb
  20. 如前述任一权利要求所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,其特征在于,R3表示-NHRM、-ORM、-SRM,其中RM各自独立地表示C1-C6烷基、-(C0-C6亚烷基)(C3-C10环烷基)、-(C0-C6亚烷基)(3-10元杂环烷基),所述RM任选的可被0、1、2、3个选自以下的取代基取代:氧代、卤素、氰基、-ORa、-SRa、-NRaRb、-NRaC(O)Rb、-C(O)Ra、-C(O)NRaRb、-S(O)2Ra、-S(O)Ra、-S(O)2NRaRb、-P(O)RaRb;更优选地,RM各自独立的可被0、1、2、3个选自以下的取代基取代:-ORa、-SRa、-NRaRb、-C(O)NRaRb
  21. 如前述任一权利要求所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,其特征在于,R3表示-NRMRN、-NHRM、-ORM、-SRM,优选地R3表示-NHRM、-ORM、-SRM,,其中,RM和RN各自独立地表示可被0、1、2、3个选自以下的取代基取代的含有N原子的-(C0-C6亚烷基)(3-10元杂环烷基):氧代、硝基、卤素、氰基、-Ra、-(C0-C6亚烷基)ORa、-(C0-C6亚烷基)SRa、-(C0-C6亚烷基)NRaRb、-(C0-C6亚烷基)NRaC(O)Rb、-(C0-C6亚烷基)C(O)Ra、-(C0-C6亚烷基)C(O)ORa、-(C0-C6亚烷基)C(O)NRaRb、-(C0-C6亚烷基)S(O)2Ra、-(C0-C6亚烷基)S(O)Ra、-(C0-C6亚烷基)S(O)2NRaRb、-(C0-C6亚烷基)P(O)RaRb,其中,所述取代基位于所述N原子上,所述取代基上位于所述N原子邻位的C原子可以进一步被氧代取代。
  22. 如前述任一权利要求所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,其特征在于,Ra和Rb各自独立地表示氢、C1-C3烷基或C3-C6环烷基,所述烷基和环烷基任选地可被0、1、2、3个卤素原子取代。
  23. 如前述任一权利要求所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,其特征在于,Ra和Rb各自独立地表示氢或C1-C3烷基,所述烷基任选地可被0、1、2、3个卤素原子取代。
  24. 如前述任一权利要求所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,其中所述化合物选自下表任一所示化合物:








  25. 药物组合物,包括如权利要求1-24任一项所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,以及药学上可接受的载体、稀释剂或赋形剂。
  26. 如权利要求1-24任一项所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,或权利要求25所述的药物组合物在制备用于预防或治疗与Cyclin K蛋白相关的疾病或病症的药物中的应用。
  27. 如权利要求26所述的应用,其中所述疾病或病症选自肿瘤、癌症、病毒感染、炎症相关疾病和自身免疫性疾病。
  28. 一种治疗与Cyclin K蛋白相关的疾病或病症的方法,其包括向有此需要的哺乳动物施用权利要求1-24任一项所述的化合物,或其立体异构体、互变异构体、溶剂合物、药学上可接受的盐、代谢产物、同位素衍生物、N-氧化物或前药,或权利要求25所述的药物组合物。
PCT/CN2023/138417 2022-12-16 2023-12-13 细胞周期蛋白k降解剂及其应用 WO2024125551A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211629648.6 2022-12-16
CN202211629648 2022-12-16
CN202311349401.3 2023-10-18
CN202311349401 2023-10-18

Publications (1)

Publication Number Publication Date
WO2024125551A1 true WO2024125551A1 (zh) 2024-06-20

Family

ID=91447802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/138417 WO2024125551A1 (zh) 2022-12-16 2023-12-13 细胞周期蛋白k降解剂及其应用

Country Status (2)

Country Link
CN (1) CN118206535A (zh)
WO (1) WO2024125551A1 (zh)

Also Published As

Publication number Publication date
CN118206535A (zh) 2024-06-18

Similar Documents

Publication Publication Date Title
CN109475531B (zh) Ptpn11的杂环抑制剂
TWI480282B (zh) 稠合雜環衍生物及其用途
KR101686685B1 (ko) 피라졸로피리미딘 jak 억제제 화합물 및 방법
TWI424999B (zh) 適合作為傑納斯激酶(janus kinase)抑制劑之氮雜吲哚
KR101828187B1 (ko) 신규 축합 피리미딘 화합물 또는 그 염
JP6830948B2 (ja) Midh1阻害剤としての縮合イミダゾール
WO2018157856A1 (zh) 酰胺类衍生物抑制剂及其制备方法和应用
CN114025756B (zh) 磷脂酰肌醇3-激酶抑制剂
CN112552295A (zh) Kras突变蛋白抑制剂
EP2681215A1 (en) Serine/threonine kinase inhibitors
TW201609692A (zh) 取代吡唑及其用途
KR20190031518A (ko) 치환된 디아자헤테로비시클릭 화합물 및 그의 용도
KR20160012195A (ko) Bet 억제제로서의 피라졸로-피롤리딘-4-온 유도체 및 질환의 치료에서의 그의 용도
WO2020042995A1 (zh) 一种高活性sting蛋白激动剂化合物
WO2018110669A1 (en) Activator of trek (twik related k+ channels) channels
JP2018522886A (ja) mIDH1阻害剤としての2−アリール−および2−アリールアルキル−ベンズイミダゾール
CN113164475A (zh) Dyrk1a的大环抑制剂
WO2019158070A1 (zh) A2a和/或a2b受体拮抗剂
WO2020038387A1 (zh) 高活性sting蛋白激动剂
CN113631557A (zh) Jak激酶抑制剂及其制备方法和在医药领域的应用
CA3178129A1 (en) Pyridopyrimidinone derivatives and their use as aryl hydrocarbon receptor modulators
CN103664734B (zh) 杂环羟肟酸类化合物及其药用组合物和应用
JP2023511302A (ja) 新規なピラゾール誘導体
WO2021018173A1 (zh) 腺苷受体拮抗剂
WO2024125551A1 (zh) 细胞周期蛋白k降解剂及其应用