WO2024124860A1 - 一种掺氢管道连接件和密封件泄漏率检测实验装置及方法 - Google Patents

一种掺氢管道连接件和密封件泄漏率检测实验装置及方法 Download PDF

Info

Publication number
WO2024124860A1
WO2024124860A1 PCT/CN2023/103296 CN2023103296W WO2024124860A1 WO 2024124860 A1 WO2024124860 A1 WO 2024124860A1 CN 2023103296 W CN2023103296 W CN 2023103296W WO 2024124860 A1 WO2024124860 A1 WO 2024124860A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
hydrogen
valve
detection
doped
Prior art date
Application number
PCT/CN2023/103296
Other languages
English (en)
French (fr)
Inventor
刘翠伟
张捷
宁元星
李玉星
朱建鲁
王财林
韩辉
刘明亮
张慧敏
丁锐
Original Assignee
中国石油大学(华东)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(华东) filed Critical 中国石油大学(华东)
Publication of WO2024124860A1 publication Critical patent/WO2024124860A1/zh

Links

Definitions

  • the invention belongs to the technical field of pipeline connector and seal detection, and in particular relates to a leakage rate detection experimental device and method for hydrogen-doped pipeline connector and seal.
  • flanges In long-distance pipeline transportation, flanges can be used to connect pipe sections. Sealing rings or gaskets can be clamped in flanges to further improve the sealing and safety of flanges. Welding processes can also be used to connect pipe sections, and common pipeline valves (ball valves and stop valves) can achieve both flow regulation and pipe section connection.
  • leakage will occur at the flange seals, pipeline welds, and valves mentioned above.
  • the hydrogen permeability coefficient of elastomeric materials such as rubber used as seals is much higher than that of non-metallic materials used as pipes, which reduces the safety of gas transportation. Therefore, optimizing the sealing of pipeline connectors and seals and reducing their leakage rate are of great significance for the safe transportation of hydrogen-blended natural gas pipelines.
  • the bubble detection method can determine whether the workpiece is leaking and the location of the leak. This detection method is simple to operate and low in cost, but the efficiency is low. At the same time, after the test, the workpiece must be dried and rust-proofed; the flow detection method can quantitatively detect the leakage of the workpiece. For workpieces with small leakage, the flow detection method will take a long time, so this detection method is suitable for workpieces with large leakage; the helium detection method can quantitatively calculate the leakage of the workpiece, but this detection method is costly, and the volume of the closed container determines that it is difficult to detect large workpieces. In addition, helium leakage into the atmosphere will cause damage to the environment.
  • the present invention is based on micro-leakage airtightness detection and high-precision requirements, combined with the actual operating conditions of hydrogen-doped/pure hydrogen pipelines, and proposes an experimental device and method for leakage rate detection of hydrogen-doped pipeline connectors and seals.
  • the device can realize airtightness detection at flange seals, pipeline welds and valves.
  • the present invention adopts the following technical solutions:
  • the pressure relief unit includes a manual pressure relief valve and an automatic pressure relief valve connected in parallel, and the manual pressure relief valve and the automatic pressure relief valve are connected to the stainless steel gas cylinder through a pressure relief pipeline.
  • valve pneumatic energy supply unit which includes a pre-intensification inlet, an air duplex, a pressure reducing valve, an air pressure gauge and a solenoid valve connected in sequence.
  • the solenoid valve is connected to a manual pressure relief valve.
  • the valve pneumatic energy supply unit provides air power for the manual pressure relief valve and the vacuum pneumatic generator.
  • the detection unit includes a drainage method detection unit and a pressure difference method detection unit.
  • the differential pressure detection unit includes a leak detection tube, a negative pressure sensor, a vacuum valve and a pneumatic vacuum generator.
  • the pneumatic vacuum generator reduces the pressure in the leak detection tube to a vacuum, and the leaking gas increases the pressure in the leak detection tube.
  • the pressure changes in the leak detection tube are collected in real time through the negative pressure sensor to obtain leakage detection data.
  • the pneumatic vacuum generator is also connected to a valve pneumatic energy supply unit, and the valve pneumatic energy supply unit is used to provide energy drive for the pneumatic vacuum generator.
  • the air intake pipe and the part to be detected are threadedly matched.
  • the leakage tube and the part to be detected are matched with each other through threads.
  • the present invention provides a working method of a hydrogen-doped pipeline connector and a seal leakage rate detection experimental device, comprising:
  • the hydrogen-doped gas pressurized by the high-pressure pump flows through the pipeline check valve, pressure gauge and pressure sensor to fill the test piece, which is placed in a high and low temperature box;
  • the water displacement detection unit and the pressure difference detection unit are used for detection, and the detection data are transmitted to the processor in real time to draw the volume-time curve and pressure-time curve;
  • the hydrogen-blended gas in the pipeline can be released using a manual pressure relief valve and an automatic pressure relief valve, and the released gas can be returned to the hydrogen-blended gas bottle.
  • the present invention has the following beneficial effects:
  • the sealing module in the present invention comprises a hydrogen-doped gas cylinder, a high-pressure pump and a high-temperature and low-temperature box which are connected in sequence.
  • the test piece is installed in the high-temperature and low-temperature box.
  • One end of the high-temperature and low-temperature box is connected to a detection unit.
  • the leakage detection data can be obtained by using the detection unit.
  • a set of processes has multiple functions. First, leakage rate detection experiments can be performed on multiple components (flange seals, pipes with welds and valves); second, leakage detection experiments can be performed under multi-factor coupling.
  • the sealing performance of the sealing components can be improved by studying the data obtained, which can solve the problem of safe transportation of hydrogen-doped/pure hydrogen.
  • the present invention can compare the accuracy of leak detection by using the water displacement method and the pressure difference method, and then compare the accuracy of the two detection methods, providing a high-precision detection method for micro-leak detection.
  • the present invention can explore the influence of multiple factors on hydrogen-doped/pure hydrogen pipeline connectors and seals; for flange seals, the quantitative influence of hydrogen doping ratio, working pressure, ambient temperature, bolt preload, flange seal size, flange sealing surface form (flat and raised surface) and sealing ring/gasket material type (nitrile rubber, polytetrafluoroethylene rubber, metal spiral wound gasket) on the leakage rate can be explored; for pipelines with welds, the quantitative influence of hydrogen doping ratio, working pressure, ambient temperature, pipeline size, weld size and welding process on the leakage rate can be explored; for valves, the quantitative influence of hydrogen doping ratio, working pressure, ambient temperature, valve size and type, valve gasket size and material type on the leakage rate can be explored.
  • the air inlet pipe and the test piece, as well as the test piece and the leak detection pipe of the present invention are connected by threads, which are convenient for disassembly, have a high safety factor, a long service life and are easy for maintenance.
  • FIG1 is a schematic structural diagram of a hydrogen-doped pipeline connector and a sealing component leakage rate detection experimental device according to Example 1;
  • FIG2 is a schematic diagram of the leakage rate detection principle of a flange-rubber O-ring-bolt with a groove in Example 1;
  • FIG3 is a schematic diagram of the leakage rate detection principle of the raised face flange-metal spiral wound gasket-bolt according to the first embodiment
  • FIG4 is a schematic diagram of the principle of leak rate detection at a pipeline weld according to the first embodiment
  • FIG5 is a schematic diagram of the ball valve leakage rate detection principle of Example 1;
  • FIG. 6 is a schematic diagram of the leakage rate detection principle of the stop valve in the first embodiment.
  • 1-1-vacuum pneumatic generator 1-2-measuring cup, 1-3-intake pipe, 1-4-leak detection pipe, 1-5-high and low temperature box, 1-6-flange upper cover, 1-7-flange lower cover, 1-8-O-ring;
  • 2-1-vacuum pneumatic generator 2-2-measuring cup, 2-3-air inlet pipe, 2-4-leak detection pipe, 2-5-high and low temperature box, 2-6-flange upper cover, 2-7-flange lower cover, 2-8-metal spiral wound gasket;
  • 3-1-vacuum pneumatic generator 3-2-measuring cup, 3-intake pipe, 3-4-leak detection pipe, 3-5-high and low temperature box, 3-6-sealing box, 3-7-welding seam;
  • 4-1-vacuum pneumatic generator 4-2-measuring cup, 4-3-air inlet pipe, 4-4-leak detection pipe, 4-5-high and low temperature box, 4-6-sealing box, 4-7-flow channel;
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the high and low temperature chamber is mainly used to simulate the temperature of the environment in which the test piece is located, so that the experimental device is closer to the actual working conditions.
  • the above-mentioned pressure relief unit is composed of a manual pressure relief valve and an automatic pressure relief valve.
  • the hydrogen-doped gas in the pipeline can be released using a manual pressure relief valve or an automatic pressure relief valve, and the released gas can be returned to the hydrogen-doped gas bottle for recycling.
  • the sealing module further comprises a valve pneumatic energy supply unit, which comprises a pre-increase air inlet, an air doublet, a pressure reducing valve, an air pressure gauge and a solenoid valve arranged in sequence.
  • the solenoid valve is connected to the manual pressure relief valve, and the valve pneumatic energy supply unit provides air power for the manual pressure relief valve and the vacuum pneumatic generator.
  • the detection unit includes a drainage method detection unit and a pressure difference method detection unit, and the components of the instrument are described below.
  • the drainage method detection unit includes a leak detection tube, a measuring cup and a water tank. If the drainage method is used for detection, the gas leaked from the test piece flows through the through hole through the leak detection tube into the measuring cup, and the change in the water level in the measuring cup is recorded. The volume of the liquid level rise is the volume of the leaked gas, and a volume-time curve is drawn;
  • the above-mentioned differential pressure detection unit includes a negative pressure sensor, a vacuum valve and a pneumatic vacuum generator.
  • the pneumatic vacuum generator is used to reduce the pressure in the leak detection tube to a vacuum, and the leaking gas increases the pressure in the leak detection tube.
  • the negative pressure sensor is used to collect the pressure change in the leak detection tube in real time to obtain leakage detection data, and a pressure-time curve is drawn.
  • the pneumatic vacuum generator is also connected to the valve pneumatic energy supply unit of the sealing module, and the valve pneumatic energy supply unit is used to provide energy drive for the pneumatic vacuum generator.
  • the present invention can compare the leakage detection accuracy by setting up two different detection units, adopting the two detection technologies of water displacement method and pressure difference method, and then comparing the accuracy of the two detection means, thereby providing a high-precision detection method for micro-leakage detection.
  • valve pneumatic energy supply unit is composed of an air duplex, a pressure reducing valve, an air pressure gauge and a solenoid valve; the experimental device is in a hydrogen blending condition.
  • the valve through which the hydrogen flows is powered by an air source to achieve switching.
  • Valve pneumatic energy supply process air enters from the prefabricated gas inlet for compression. In order to increase the service life of the equipment, the compressed air is filtered through the air duplex to purify the air by filtering other impurities. The purified compressed air is reduced in pressure through the pressure reducing valve. The air pressure is displayed in real time through the pressure gauge. The air pressure gauge is connected to the solenoid valve and the pneumatic vacuum generator. The air flowing through the solenoid valve enters the manual pressure relief valve to provide power for the manual pressure relief valve and the pneumatic vacuum generator to switch on and off.
  • FIG. 3 it is a schematic diagram of the leakage rate detection principle of the raised face flange-metal wrapped gasket-bolt; wherein the detected part includes a flange end cover and a flange base, two metal wrapped gaskets and an auxiliary sealing gasket are arranged between the flange base and the flange end cover, and two through holes are arranged on the flange end cover, namely through hole one (air inlet hole) and through hole two (air leakage hole); wherein through hole one is connected to the gap formed by the metal wrapped gasket, the flange end cover and the flange base, and through hole two is connected to the gap formed by the auxiliary sealing gasket, the metal wrapped gasket, the flange end cover and the flange base; through hole one is connected to the air inlet pipe, and through hole two is connected to the leak detection pipe; then, the leakage rate detection is performed.
  • the detected part includes a flange end cover and a flange base, two metal wrapped gaskets and an auxiliary sealing
  • a vacuum pneumatic generator is used to reduce the pressure in the leak detection tube to a vacuum.
  • the leaking gas increases the pressure in the leak detection tube, and the negative pressure sensor is used to increase the pressure in the leak detection tube.
  • the pressure changes in the medium are collected in real time to obtain leakage detection data, and the pressure-time curve is drawn; if the drainage method is used for detection, the gas leaked from the test piece flows through the through hole through the detection tube into the measuring cup, and the change in the water level in the measuring cup is recorded.
  • the volume of the rising liquid level is the volume of the leaked gas, and the volume-time curve is drawn.

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

一种掺氢管道连接件和密封件泄漏率检测实验装置及方法,该实验装置包括:密封模块和检测单元;密封模块包括依次连接的掺氢气瓶、高压泵和高低温箱,高低温箱内安装待测件,高低温箱的一端连接检测单元;检测单元包括排水法检测单元和压差法检测单元,利用检测单元获得泄漏检测数据,进而不断优化泄漏率数据,提高管道连接件和密封件密封性。

Description

一种掺氢管道连接件和密封件泄漏率检测实验装置及方法
本发明要求于2022年12月14日提交中国专利局、申请号为202211606892.0、发明名称为“一种掺氢管道连接件和密封件泄漏率检测实验装置及方法”的中国专利申请的优先权,其全部内容通过引用结合在本发明中。
技术领域
本发明属于管道连接件和密封件检测技术领域,具体涉及掺氢管道连接件和密封件泄漏率检测实验装置及方法。
背景技术
目前氢气输送方式可为管道输送、高压气瓶输送和液氢槽罐车输送等,但是长距离管道输送更容易实现氢气的长距离、大规模运输,故而将氢气掺入天然气管道中输送是目前最佳方式。目前国内外掺氢天然气管道输送产业的发展尚处于初级阶段,虽有众多相关研究及项目开展,但依旧面临很多待解决完善的问题。
在长距离管道输送中,采用法兰可实现管段之间的连接,在法兰中夹装密封圈或密封垫可进一步提高法兰的密封性和安全性,通过焊接工艺也可实现管段之间的连接,以及管道常用阀门(球阀和截止阀)既可以实现流量调节功能,又可实现管段连接功能。在输送纯氢/掺氢天然气过程中,上述提到的法兰密封处、管道焊接处以及阀门处都会出现泄漏现象,并且对比发现,用作密封件的橡胶等弹性体材料的渗氢系数比用作管材的非金属材料的渗氢系数高得多,降低了气体输送的安全性。因此优化管道连接件和密封件的密封性,降低其泄漏率对于掺氢天然气管道的安全输送具有重要意义。
现有气密性检测方式呈现多样化,比如气泡检测法、流量检测法以及氦气检测法等。气泡检测法可判断工件是否泄漏及泄漏位置,该检测方法操作简单,造价低,但此方式效率较低,同时检测结束后,须对被测工件进行烘干和防锈处理;流量检测法可以定量的检测出被测工件的泄漏量,对于泄漏小的工件,流量检测法将耗时很长,所以这种检测方法适用于存在大泄漏工件;氦气检测法可定量计算出工件的泄漏量,但该检测方法成本高,且密闭容器的容积决定大工件不易实现检测,另外氦气泄漏至大气会对环境造成破坏。
纯氢/掺氢天然气管道输送正处于起步阶段,有些技术发展并不完善,法兰密封组件处、管道焊接处以及阀门处的气体泄漏量较少,针对于微泄漏的气密性检测存在如下问题:微泄漏检测手段较少,以及无法保证检测精度和效率,同时检测周期较长,耗费较多的物力和人力。对于法兰密封件,掺氢比、工作压力、环境温度、螺栓预紧力、法兰密封件尺寸、法兰密封面形式及密封圈/密封垫材料种类如何影响泄漏率大小;对于带有焊缝的管道,掺氢比、工作压力、环境温度、管道尺寸、焊缝尺寸以及焊接工艺如何影响泄漏率;对于阀门,掺氢比、工作压力、环境温度、阀门尺寸和种类、阀门垫片尺寸和材料种类如何影响泄漏率,上述三大问题缺少定量研究结论,是管道安全输送急需要解决的难题。
发明内容
本发明为了解决上述问题,基于微泄漏气密性检测且高精度要求,结合掺氢/纯氢管道实际运行工况,本发明提出了一种掺氢管道连接件和密封件泄漏率检测实验装置及方法,通过该装置可以实现法兰密封处、管道焊缝处以及阀门处的气密性检测。
根据一些实施例,本发明采用如下技术方案:
第一方面,本发明提供了一种掺氢管道连接件和密封件泄漏率检测实验装置,包括高低温箱、控制单元、泄压单元和检测单元;所述的高低温箱内部用于放置待检测件,供气单元向待检测件内充气,其包括进气管、不锈钢气瓶、压力表和自动截止阀,不锈钢气瓶用于存储掺氢气体,进气管与不锈钢气瓶相连,在进气管上设置压力表和自动截止阀;控制单元包括依次安装在进气管上的高压泵、管路单向阀、压力传感器;泄压单元也设置在进气管上;所述的检测单元通过泄露管与待检测件相连,用于检测气体的泄漏率。
作为进一步的技术方案,所述的泄压单元包括并联的手动泄压阀和自动泄压阀,手动泄压阀和自动泄压阀通过泄压管路与不锈钢气瓶相连。
作为进一步的技术方案,还包括阀门气动能量供应单元,阀门气动能量供应单元包括依次相连的预增气入口、空气二联体、减压阀、空气压力表和电磁阀,所述的电磁阀连接手动泄压阀,阀门气动能量供应单元为手动泄压阀以及真空气动发生器提供空气动力。
作为进一步的技术方案,所述的检测单元包括排水法检测单元和压差法检测单元。
作为进一步的技术方案,所述的排水法检测单元包括检漏管、量杯和水箱,量杯放置在水箱内,从待测件泄漏的气体通过通孔流经检漏管进入量杯中,记录量杯中水位的变化量,液位上升的体积即为泄漏气体的体积。
作为进一步的技术方案,所述的压差法检测单元包括检漏管、负压传感器、真空阀和气动真空发生器,所述的气动真空发生器将检漏管中的压力降低至真空,泄漏气体使得检漏管中压力增大,通过负压传感器将检漏管中压力变化实时采集获得泄漏检测数据。
作为进一步的技术方案,所述气动真空发生器还连接至阀门气动能量供应单元上,利用阀门气动能量供应单元对气动真空发生器提供能量驱动。
作为进一步的技术方案,所述的进气管与待检测件之间通过螺纹配合。
作为进一步的技术方案,所述的泄漏管与待检测件之间通过螺纹配合。
第二方面,本发明提供了一种掺氢管道连接件和密封件泄漏率检测实验装置的工作方法,包括:
根据实验需求选择合适掺氢比例,掺氢气瓶中的气体经压力表实时显示压力,然后通过高压泵升压到指定的压力;
经过高压泵升压的掺氢气体流经管路单向阀、压力表以及压力传感器充斥到待测件,待测件放置在高低温箱中;
针对于氢气,采用排水法检测单元和压差法检测单元进行检测,并将检测的数据实时传输到处理器,绘制体积-时间曲线和压力-时间曲线;
实验结束时将管道中的掺氢气体可以采用手动泄压阀和自动泄压阀泄放,泄放的气体可以返回到掺氢气瓶中。
与现有技术相比,本发明的有益效果为:
1、本发明中密封模块包括依次连接的掺氢气瓶、高压泵和高低温箱,高低温箱内安装待测件,高低温箱的一端连接检测单元,利用检测单元可获得泄漏检测数据;一套流程有多功能,一是可以对多组件(法兰密封件、带有焊缝的管道和阀门)进行泄漏率检测实验;二是可以进行多因素耦合下泄漏检测实验,通过研究所得数据提高密封组件密封性,可为掺氢/纯氢安全输送解决难题。
2、本发明可进行泄漏检测精度对比,采用排水法和压差法,进而对比两种检测手段精度,为微泄漏检测提供高精度检测方式。
3、本发明可探究多因素对掺氢/纯氢管道连接件和密封件的影响规律;对于法兰密封件,可探究掺氢比、工作压力、环境温度、螺栓预紧力、法兰密封件尺寸、法兰密封面形式(平面和突面)及密封圈/密封垫材料种类(丁腈橡胶、聚四氟乙烯橡胶、金属缠绕垫片)对泄漏率的定量影响汇率;对于带有焊缝的管道,可探究掺氢比、工作压力、环境温度、管道尺寸、焊缝尺寸以及焊接工艺对泄漏率的定量影响规律;对于阀门,可探究掺氢比、工作压力、环境温度、阀门尺寸和种类、阀门垫片尺寸和材料种类对泄漏率的定量影响规律。
4、本发明的进气管与待测件之间以及待测件与检漏管之间采用螺纹连接,方便拆卸,安全系数高,寿命长、便于维护。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为实施例一的掺氢管道连接件和密封件泄漏率检测实验装置的结构示意图;
图2为实施例一的开设凹槽的法兰-橡胶O形圈-螺栓泄漏率检测原理示意图;
图3为实施例一的突面法兰-金属缠绕垫片-螺栓泄漏率检测原理示意图;
图4为实施例一的管道焊缝处泄漏率检测原理示意图;
图5为实施例一的球阀泄漏率检测原理示意图;
图6为实施例一的截止阀泄漏率检测原理示意图。
图中:1-1-真空气动发生器,1-2-量杯,1-3-进气管,1-4-检漏管,1-5-高低温箱,1-6-法兰上盖,1-7-法兰下盖,1-8-O形圈;
2-1-真空气动发生器,2-2-量杯,2-3-进气管,2-4-检漏管,2-5-高低温箱,2-6-法兰上盖,2-7-法兰下盖,2-8-金属缠绕式垫片;
3-1-真空气动发生器,3-2-量杯,3-进气管,3-4-检漏管,3-5-高低温箱,3-6-密封箱,3-7-焊缝;
4-1-真空气动发生器,4-2-量杯,4-3-进气管,4-4-检漏管,4-5-高低温箱,4-6-密封箱,4-7-流道;
5-1-真空气动发生器,5-2-量杯,5-3-进气管,5-4-检漏管,5-5-高低温箱,5-6-密封,5-7-流道。
具体实施方式
下面结合附图与实施例对本发明作进一步说明。
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
实施例一:
如图1所示,本实施例提供了掺氢管道连接件和密封件泄漏率检测实验装置,包括密封模块和检测单元;
所述的密封模块由供气单元、控制单元、泄压单元、阀门气动能量供应单元以及待测件五部分组成,具体的,包括依次连接的不锈钢气瓶、压力表、自动截止阀、高压泵、管路单向阀、压力表、压力传感器和高低温箱,高低温箱内安装待测件,高低温箱的一端还连接检测单元;管路单向阀与压力传感器之间的管路还连接手动泄压阀输入端和自动泄压阀的输入端,手动泄压阀的输出端和自动泄压阀的输出端连接至不锈钢气瓶的输入口。
上述的高低温箱主要用于模拟待测件所处环境中的温度,使得实验装置更贴近实际工况。
在本实施例中,上述的供气单元由不锈钢气瓶、压力表和自动截止阀组成,根据实验需求选择合适掺氢比例,掺氢气瓶中的气体通过压力表实时显示压力,然后通过高压泵升压到指定的压力;进而可以探究不同掺氢比、工作压力下的被测件的泄露情况。
在本实施例中,上述的控制单元由高压泵、管路单向阀、压力传感器和高低温箱组成,经过高压泵升压的掺氢气体流经管路单向阀、压力表以及压力传感器充斥到法兰密封待测件,为了改变环境温度,待测件放置在高低温箱中;控制单元可以控制高低温箱的温度,进气管的压力等;进而可以探究不同掺氢比、工作压力下的被测件的泄露情况。
在本实施例中,上述的泄压单元由手动泄压阀和自动泄压阀组成,实验结束时将管道中的掺氢气体可以采用手动泄压阀或自动泄压阀泄放,泄放的气体可以返回到掺氢气瓶中,实现循环利用。
进一步的,所述的密封模块还包括阀门气动能量供应单元,阀门气动能量供应单元包括依次布设的预增气入口、空气二联体、减压阀、空气压力表和电磁阀, 所述的电磁阀连接手动泄压阀,阀门气动能量供应单元为手动泄压阀以及真空气动发生器提供空气动力。
进一步的,所述的检测单元包含排水法检测单元和压差法检测单元,下面对各部分组成仪器进行说明。
进一步的,所述的排水法检测单元包括检漏管、量杯和水箱,若采用排水法进行检测时,从待测件泄漏的气体通过通孔流经检漏管进入量杯中,记录量杯中水位的变化量,液位上升的体积即为泄漏气体的体积,绘制体积-时间曲线;
进一步的,上述的压差法检测单元包括负压传感器、真空阀和气动真空发生器,采用气动真空发生器将检漏管中的压力降低至真空,泄漏气体使得检漏管中压力增大,通过负压传感器将检漏管中压力变化实时采集获得泄漏检测数据,绘制压力-时间曲线。所述气动真空发生器还连接至密封模块的阀门气动能量供应单元上,利用阀门气动能量供应单元对气动真空发生器也提供能量驱动。
本发明通过设置两种不同的检测单元,可进行泄漏检测精度对比,采用排水法和压差法两种检测技术,进而对比两种检测手段的精度,为微泄漏检测提供高精度检测方式。
进一步的,阀门气动能量供应单元由空气二联体、减压阀、空气压力表和电磁阀组成;实验装置处于掺氢工况,为确保安全,氢气流经的阀门是以空气源作为动力实现开关。阀门气动能量供应流程:空气从预制气入口进入进行压缩,为了提高设备的使用寿命,压缩的空气经过空气二联体过滤其他杂质净化空气,净化的压缩空气经过减压阀降低压力,通过压力表实时显示空气压力,空气压力表连接电磁阀以及气动真空发生器,流经电磁阀的空气进入手动泄压阀,为手动泄压阀以及气动真空发生器的开关提供动力。
进一步的,如图2所示,为开设凹槽的法兰-橡胶O形圈-螺栓泄漏率检测示意图;其中被检测件包括法兰端盖和法兰底座,在法兰底座上设置有两圈密封槽,其中一个密封圈内安装橡胶O形圈和辅助密封圈,且在法兰端盖和法兰底座上设置螺栓孔;通过进气管向法兰端盖和法兰底座配合面通入气体;在法兰端盖上设置通孔,通孔与法兰端盖和法兰底座配合面连通,通孔与检漏管连接;然后,进行泄漏率检测。
进一步的,如图3所示,为突面法兰-金属缠绕垫片-螺栓泄漏率检测原理示意图;其中被检测件包括法兰端盖和法兰底座,在法兰底座和法兰端盖之间设置两个金属缠绕垫片和辅助密封垫,在法兰端盖上设置两个通孔,分别是通孔一(进气孔)和通孔二(漏气孔);其中通孔一与金属缠绕垫片、法兰端盖和法兰底座形成的间隙连通,另外通孔二与辅助密封垫、金属缠绕垫片、法兰端盖和法兰底座形成的间隙连通;通孔一与进气管相连通,通孔二与检漏管相连通;然后,进行泄漏率检测。
进一步的,如图4所示,为管道焊缝处泄漏率检测原理示意图;其中被检测件为带有焊缝的管道,管道的两端密封,其中进气一端开设一个通孔;该管道放置在密封箱内,进气管与管道开设通孔的一端相连,向管道内充气,检漏管与密封箱内部相连,然后,进行泄漏率检测。
进一步的,如图5所示,球阀泄漏率检测原理示意图,其中被检测件为球阀,两端密封,且球阀放置在密封箱内,进气管与球阀流道相连,向球阀内充气;检漏管与密封箱内部相连,然后,进行泄漏率检测。
进一步的,如图6所示,截止阀泄漏率检测原理示意图,其中被检测件为截止阀,两端密封,且截止阀放置在密封箱内,进气管与截止阀流道相连,向截止阀内充气;检漏管与密封箱内部相连,然后,进行泄漏率检测。
上述的进气管与待测件(法兰上端盖、管道焊缝处、球阀、截止阀)之间以及待测件(法兰上端盖、管道焊缝处、球阀、截止阀)与检漏管之间采用螺纹连接,方便拆卸,安全系数高,寿命长、便于维护。
本实施例中的装置可探究多因素对掺氢/纯氢管道连接件和密封件的影响规律;对于法兰密封件,可探究掺氢比、工作压力、环境温度、螺栓预紧力、法兰密封件尺寸、法兰密封面形式(平面和突面)及密封圈/密封垫材料种类(丁腈橡胶、聚四氟乙烯橡胶、金属缠绕垫片)对泄漏率的定量影响规律;对于带有焊缝的管道,可探究掺氢比、工作压力、环境温度、管道尺寸、焊缝尺寸以及焊接工艺对泄漏率的定量影响规律;对于阀门,可探究掺氢比、工作压力、环境温度、阀门尺寸和种类、阀门垫片尺寸和材料种类对泄漏率的定量影响规律。
实施例二:
本实施例提供了掺氢管道连接件和密封件泄漏率检测实验装置的工作方法,包括:
①根据实验需求选择合适掺氢比例,掺氢气瓶中的气体经压力表实时显示压力,然后通过高压泵升压到指定的压力。
②经过高压泵升压的掺氢气体流经管路单向阀、压力表以及压力传感器充斥到法兰密封待测件,为了改变环境温度,待测件放置在高低温箱中。
③针对于氢气,若采用压差法进行检测时,采用真空气动发生器将检漏管中的压力降低至真空,泄漏气体使得检漏管中压力增大,通过负压传感器将检漏管 中压力变化实时采集获得泄漏检测数据,绘制压力-时间曲线;若采用排水法进行检测时,从待测件泄漏的气体通过通孔流经检测管进入量杯中,记录量杯中水位的变化量,液位上升的体积即为泄漏气体的体积,绘制体积-时间曲线。
④实验装置处于掺氢工况,为确保安全,氢气流经的阀门是以空气源作为动力实现开关。阀门气动能量供应流程:空气从预制气入口进入进行压缩,为了提高设备的使用寿命,压缩的空气经过空气二联体过滤其他杂质净化空气,净化的压缩空气经过减压阀降低压力,通过压力表实时显示空气压力,空气压力表连接电磁阀以及气动真空发生器,流经电磁阀的空气进入手动泄压阀,为手动泄压阀以及气动真空发生器的开关提供动力。
⑤实验结束时将管道中的掺氢气体可以采用手动泄压阀或自动泄压阀泄放,泄放的气体可以返回到掺氢气瓶中。
本实施例中的高压泵、气动真空发生器以及数显表均采用自动控制,既便于操作,也便于记录数据。
综上,本发明提供了一套流程可以实现多功能实验。一是可以对多组件(法兰密封件、带有焊缝的管道和阀门)进行泄漏率检测实验;二是可以进行多因素耦合下泄漏检测实验,通过研究所得数据提高密封组件密封性,可为掺氢/纯氢安全输送解决难题。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

  1. 一种掺氢管道连接件和密封件泄漏率检测实验装置,其特征在于,包括高低温箱、控制单元、泄压单元和检测单元;所述的高低温箱内部用于放置待检测件,供气单元向待检测件内充气,其包括进气管、不锈钢气瓶、压力表和自动截止阀,不锈钢气瓶用于存储掺氢气体,进气管与不锈钢气瓶相连,在进气管上设置压力表和自动截止阀;控制单元包括依次安装在进气管上的高压泵、管路单向阀、压力传感器;泄压单元也设置在进气管上;所述的检测单元通过泄漏管与待检测件相连,用于检测气体的泄漏率。
  2. 如权利要求1所述的一种掺氢管道连接件和密封件泄漏率检测实验装置,其特征在于,所述的泄压单元包括并联的手动泄压阀和自动泄压阀,手动泄压阀和自动泄压阀通过泄压管路与不锈钢气瓶相连。
  3. 如权利要求1所述的一种掺氢管道连接件和密封件泄漏率检测实验装置,其特征在于,还包括阀门气动能量供应单元,阀门气动能量供应单元包括依次相连的预增气入口、空气二联体、减压阀、空气压力表和电磁阀,所述的电磁阀连接手动泄压阀,阀门气动能量供应单元为手动泄压阀以及真空气动发生器提供空气动力。
  4. 如权利要求1所述的一种掺氢管道连接件和密封件泄漏率检测实验装置,其特征在于,所述的检测单元包括排水法检测单元和压差法检测单元。
  5. 如权利要求4所述的一种掺氢管道连接件和密封件泄漏率检测实验装置,其特征在于,所述的排水法检测单元包括检漏管、量杯和水箱,量杯放置在水箱内,从待测件泄漏的气体通过通孔流经检漏管进入量杯中,记录量杯中水位的变化量,液位上升的体积即为泄漏气体的体积。
  6. 如权利要求4所述的一种掺氢管道连接件和密封件泄漏率检测实验装置, 其特征在于,所述的压差法检测单元包括检漏管、负压传感器、真空阀和气动真空发生器,所述的气动真空发生器将检漏管中的压力降低至真空,泄漏气体使得检漏管中压力增大,通过负压传感器将检漏管中压力变化实时采集获得泄漏检测数据。
  7. 如权利要求6所述的一种掺氢管道连接件和密封件泄漏率检测实验装置,其特征在于,所述气动真空发生器还连接至阀门气动能量供应单元上,利用阀门气动能量供应单元对气动真空发生器提供能量驱动。
  8. 如权利要求6所述的一种掺氢管道连接件和密封件泄漏率检测实验装置,其特征在于,所述的进气管与待检测件之间通过螺纹配合。
  9. 如权利要求6所述的一种掺氢管道连接件和密封件泄漏率检测实验装置,其特征在于,所述的泄露管与待检测件之间通过螺纹配合。
  10. 如权利要求1-9任一所述的一种掺氢管道连接件和密封件泄漏率检测实验装置的工作方法,其特征在于,包括:
    根据实验需求选择合适掺氢比例,不锈钢气瓶中的气体经压力表实时显示压力,然后通过高压泵升压到指定的压力;
    经过高压泵升压的掺氢气体流经管路单向阀、压力表以及压力传感器充斥到待测件,待测件放置在高低温箱中;
    针对于氢气,采用排水法检测单元和压差法检测单元进行检测,并将检测的数据实时传输到处理器,绘制体积-时间曲线和压力-时间曲线;
    实验结束时将管道中的掺氢气体采用手动泄压阀和自动泄压阀泄放,泄放的气体返回到掺氢气瓶中。
PCT/CN2023/103296 2022-12-14 2023-06-28 一种掺氢管道连接件和密封件泄漏率检测实验装置及方法 WO2024124860A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211606892.0 2022-12-14
CN202211606892.0A CN115876397A (zh) 2022-12-14 2022-12-14 一种掺氢管道连接件和密封件泄漏率检测实验装置及方法

Publications (1)

Publication Number Publication Date
WO2024124860A1 true WO2024124860A1 (zh) 2024-06-20

Family

ID=85767491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103296 WO2024124860A1 (zh) 2022-12-14 2023-06-28 一种掺氢管道连接件和密封件泄漏率检测实验装置及方法

Country Status (2)

Country Link
CN (1) CN115876397A (zh)
WO (1) WO2024124860A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115876397A (zh) * 2022-12-14 2023-03-31 中国石油大学(华东) 一种掺氢管道连接件和密封件泄漏率检测实验装置及方法
CN116380367B (zh) * 2023-06-06 2023-08-01 中国空气动力研究与发展中心超高速空气动力研究所 高压氢气驱动器的激波管的氢气泄漏监测装置及监测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203908733U (zh) * 2014-04-25 2014-10-29 北京国彬信诚科技有限公司 一种阀门检漏系统
US20160167521A1 (en) * 2014-12-15 2016-06-16 Industrial Technology Research Institute Leak hydrogen absorbing device, hydrogen energy utilization system and leak hydrogen absorbing method
CN108896250A (zh) * 2018-05-08 2018-11-27 中国航发湖南动力机械研究所 气密性检测装置及气密性检测方法
CN112179587A (zh) * 2020-10-20 2021-01-05 上海神力科技有限公司 一种氢系统检测装置
CN114636523A (zh) * 2022-05-17 2022-06-17 浙江大学 一种用于氢气输送管道的载气仓测试装置
CN115655599A (zh) * 2022-10-31 2023-01-31 中国石油大学(华东) 掺氢连接密封件泄漏检测和疲劳一体化实验装置及方法
CN115876397A (zh) * 2022-12-14 2023-03-31 中国石油大学(华东) 一种掺氢管道连接件和密封件泄漏率检测实验装置及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203908733U (zh) * 2014-04-25 2014-10-29 北京国彬信诚科技有限公司 一种阀门检漏系统
US20160167521A1 (en) * 2014-12-15 2016-06-16 Industrial Technology Research Institute Leak hydrogen absorbing device, hydrogen energy utilization system and leak hydrogen absorbing method
CN108896250A (zh) * 2018-05-08 2018-11-27 中国航发湖南动力机械研究所 气密性检测装置及气密性检测方法
CN112179587A (zh) * 2020-10-20 2021-01-05 上海神力科技有限公司 一种氢系统检测装置
CN114636523A (zh) * 2022-05-17 2022-06-17 浙江大学 一种用于氢气输送管道的载气仓测试装置
CN115655599A (zh) * 2022-10-31 2023-01-31 中国石油大学(华东) 掺氢连接密封件泄漏检测和疲劳一体化实验装置及方法
CN115876397A (zh) * 2022-12-14 2023-03-31 中国石油大学(华东) 一种掺氢管道连接件和密封件泄漏率检测实验装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU-XING LI, PENG HONG-WEI, TANG JIAN-FENG, DENG LEI-YING, WANG FENG-BO: "Comparative Study on Leakage Detecting Techniques for Long-distance Natural Gas Pipelines", NATURAL GAS INDUSTRY, vol. 28, no. 9, 25 September 2008 (2008-09-25), pages 101 - 104, 144, XP093182096 *

Also Published As

Publication number Publication date
CN115876397A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
WO2024124860A1 (zh) 一种掺氢管道连接件和密封件泄漏率检测实验装置及方法
CN203908733U (zh) 一种阀门检漏系统
CN202471374U (zh) 一种多功能气密检测装置
CN204694421U (zh) 阀门检漏测试装置
CN103308254B (zh) 一种油冷器密封性干试试验方法及其装置
CN115655599A (zh) 掺氢连接密封件泄漏检测和疲劳一体化实验装置及方法
CN114636523B (zh) 一种用于氢气输送管道的载气仓测试装置
CN103913279A (zh) 利用氦气与空气混合测试油冷器密封性的方法及设备
CN103791238A (zh) 一种实现燃气管道介质泄漏特性测量的实验装置
CN203414248U (zh) 波纹管组件气密性以及静压检测装置
CN201331421Y (zh) 发动机缸盖气密性检测装置
CN210464833U (zh) 一种新型燃料电池保压实验台架
CN214621639U (zh) 一种通风管道密闭性系统漏风检测装置
CN204694429U (zh) 阀门检漏测试台
CN201716165U (zh) 一种气密性检测装置
CN203688152U (zh) 一种新型气体减压器检验装置
CN112146820A (zh) 一种氦气介质阀门密封性试验装置及其试验方法
CN209055285U (zh) 一种用于检验阀门高低压密封的试验装置
CN203798515U (zh) 利用氦气与空气混合测试油冷器密封性的设备
CN201828386U (zh) 波纹管密封圈双对峰封闭检漏装置
CN102494849B (zh) 气密性检测装置及其实现方法
CN212458815U (zh) 一种密封性检测装置
CN209961426U (zh) 消音器密封性快速测量装置
CN212300767U (zh) 一种微漏测压装置
CN208579154U (zh) 一种测量燃气管道泄漏特性的实验装置