WO2024122202A1 - 光出射装置、及び測距装置 - Google Patents

光出射装置、及び測距装置 Download PDF

Info

Publication number
WO2024122202A1
WO2024122202A1 PCT/JP2023/037932 JP2023037932W WO2024122202A1 WO 2024122202 A1 WO2024122202 A1 WO 2024122202A1 JP 2023037932 W JP2023037932 W JP 2023037932W WO 2024122202 A1 WO2024122202 A1 WO 2024122202A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser light
light
light emitting
emitting device
substrate
Prior art date
Application number
PCT/JP2023/037932
Other languages
English (en)
French (fr)
Inventor
浩 吉田
祐太 佐野
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022197072A external-priority patent/JP2024082884A/ja
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2024122202A1 publication Critical patent/WO2024122202A1/ja

Links

Images

Definitions

  • This disclosure relates to a light emitting device and a distance measuring device.
  • LiDAR Light Detection and Ranging
  • LiDAR a mechanical optical scanning method has been put to practical use, in which a mirror driven by an actuator is used to switch the optical path.
  • non-mechanical optical scanning methods are being considered, in which the emission angle of light is swept using photonic crystals, electro-optical crystals, or slow-light waveguides.
  • Patent Document 1 discloses an optical deflection device that deflects the direction of light emission by diffracting light using a slow light waveguide.
  • a light emitting device comprising: a laser light generating unit that resonates laser light in a resonance region of a first surface and a second surface that face each other and emits the laser light from the first surface; a substrate provided on the first surface of the laser light generating unit that transmits the laser light while absorbing a portion of the emitted laser light; and a plurality of control electrodes provided on the second surface of the laser light generating unit that face each other across the resonance region.
  • a distance measuring device having a light projection section configured by arranging a plurality of light emitting devices in an array, each of the plurality of light emitting devices having a laser light generating section that resonates laser light in a resonance region of a first surface and a second surface facing each other and emits the laser light from the first surface, a substrate provided on the first surface of the laser light generating section that transmits the laser light while absorbing a portion of the emitted laser light, and a plurality of control electrodes provided on the second surface of the laser light generating section that face each other across the resonance region.
  • the present disclosure also provides a distance measuring device that is configured by arranging a plurality of light emitting devices in an array, and includes a light projecting section that projects projection light onto an object, and a light receiving section that receives the projection light reflected by the object, and each of the plurality of light emitting devices has a laser light generating section that resonates laser light in a resonance region of a first surface and a second surface that face each other, and emits the laser light from the first surface, a substrate that is provided on the first surface of the laser light generating section and transmits the laser light while absorbing a portion of the emitted laser light, and a plurality of control electrodes that are provided on the second surface of the laser light generating section and face each other across the resonance region.
  • FIGS. 1A and 1B are explanatory diagrams illustrating a top view and a cross-sectional configuration of a light output device according to a first embodiment of the present disclosure.
  • 5 is an explanatory diagram showing the relationship between a voltage applied to a control electrode and a light profile of a laser light emitted from a laser light generating unit.
  • FIG. 4 is an explanatory diagram showing the correspondence relationship between the optical profile of laser light and the propagation direction of the laser light.
  • FIG. 1 is a block diagram showing a circuit configuration of a light emitting device according to a first embodiment.
  • FIG. 4 is an explanatory diagram showing a cross-sectional configuration of a first modified example of the light output device according to the first embodiment.
  • FIG. 4 is an explanatory diagram showing a planar configuration of a detection electrode provided on a substrate; FIG. FIG. 4 is a circuit diagram showing a second modified example of the light emitting device according to the first embodiment.
  • FIG. 11 is an explanatory diagram illustrating a distance measuring device according to a first configuration example of a second embodiment of the present disclosure.
  • 11A and 11B are explanatory diagrams showing a top view and a cross-sectional view of a light output device according to a first configuration example of a second embodiment.
  • FIG. 13 is an explanatory diagram showing a distance measuring device according to a second configuration example of the second embodiment;
  • FIG. 13 is a block diagram showing a functional configuration of a distance measuring device according to a second configuration example of the second embodiment.
  • FIG. 4 is an explanatory diagram showing the relationship between reflected light of a laser beam emitted from a light emitting device and a light receiving element.
  • FIG. 13 is an explanatory diagram showing deflection control of a laser beam emitted from the light emitting device in FIG. 12. 13 is an explanatory diagram showing a cross-sectional configuration of a modified example of the light output device according to the second embodiment.
  • Fig. 1 is an explanatory diagram showing the top view and cross-sectional configuration of a light output device 100 according to this embodiment.
  • the light emitting device 100 includes a laser light generating unit 110, a substrate 120, a plurality of control electrodes 132a, 132b, and a plurality of ground electrodes 133a, 133b.
  • the laser light generating unit 110 is a so-called vertical cavity surface emitting laser (VCSEL) element.
  • the laser light generating unit 110 is configured by sequentially stacking a buffer layer 111, a first mirror layer 112, a first spacer layer 113, an active layer 114, a second spacer layer 116, and a second mirror layer 117 from the first surface S1 side on which the substrate 120 is provided.
  • the laser light generating unit 110 is an element that emits laser light L with a wavelength of 940 nm from the first surface S1, for example.
  • the first surface S1 side will be referred to as the lower side
  • the second surface S2 side opposite the first surface S1 side will be referred to as the upper side.
  • the buffer layer 111 is a layer that electrically insulates the substrate 120 and the laser light generating unit 110, and is provided on the substrate 120.
  • the buffer layer 111 may be made of a material that has an electrical resistance sufficient to maintain insulation between the substrate 120 and the laser light generating unit 110 and that can be epitaxially grown from the substrate 120.
  • the buffer layer 111 may be made of lightly doped GaAs (e.g., a doping concentration of 10 15 cm ⁇ 3 or less).
  • the buffer layer 111 may be formed by injecting oxygen into an AlGaAs layer or by oxidizing an AlGaAs layer.
  • the first mirror layer 112 is a distributed Bragg reflector (DBR) made of a semiconductor multilayer film of a first conductivity type (e.g., n-type), and is provided on the buffer layer 111.
  • the first mirror layer 112 is a multilayer reflector made by alternately stacking high-refractive index layers and low-refractive index layers with an optical thickness of 1 ⁇ 4 of the oscillation wavelength.
  • the first mirror layer 112 is made by alternately stacking AlGaAs layers with different Al compositions (e.g., a low-refractive index layer made of n-Al 0.9 Ga 0.1 As and a high-refractive index layer made of n-Al 0.3 Ga 0.7 As).
  • the first mirror layer 112 may contain silicon (Si) or the like as a first conductivity type (e.g., n-type) impurity.
  • the first spacer layer 113 is a semiconductor layer of a first conductivity type (e.g., n-type) and is provided on the first mirror layer 112.
  • the first spacer layer 113 may be composed of, for example, n-GaAs.
  • the first spacer layer 113 may contain silicon (Si) or the like as a first conductivity type (e.g., n-type) impurity.
  • the active layer 114 has a quantum well structure and is provided on the first spacer layer 113. Specifically, the active layer 114 has a quantum well structure formed by alternately stacking a plurality of quantum well layers having a small band gap and barrier layers having a large band gap.
  • the quantum well layers may be made of, for example, undoped In0.05Ga0.95As
  • the barrier layers may be made of undoped Al0.1Ga0.9As .
  • a current confinement layer 115 is provided inside the active layer 114 to constrict a resonance region ra through which a current flows in the active layer 114.
  • the current confinement layer 115 is a layer having a higher electrical resistance than the active layer 114 and having an opening corresponding to the resonance region ra.
  • the current confinement layer 115 may be made of an insulating material such as SiO2 or Al2O3 , and may be made by increasing the electrical resistance of the current confinement layer 115 by oxidation compared to other regions of the active layer 114.
  • the current confinement layer 115 can further increase the density of the current flowing through the active layer 114 by confining the current flowing through the active layer 114 to the resonance region ra corresponding to the opening of the current confinement layer 115.
  • the second spacer layer 116 is a semiconductor layer of a second conductivity type (e.g., p-type) and is provided on the active layer 114.
  • the second spacer layer 116 may be composed of, for example, p-GaAs.
  • the second spacer layer 116 may contain zinc (Zn), carbon (C), magnesium (Mg), beryllium (Be), or the like as a second conductivity type (e.g., p-type) impurity.
  • the second mirror layer 117 is a distributed Bragg reflector (DBR) made of a semiconductor multilayer film of a second conductivity type (e.g., p-type), and is provided on the second spacer layer 116.
  • the second mirror layer 117 is a multilayer reflector made by alternately stacking high-refractive index layers and low-refractive index layers with an optical thickness of 1 ⁇ 4 of the oscillation wavelength.
  • the second mirror layer 117 is made by alternately stacking AlGaAs layers with different Al compositions (e.g., a low-refractive index layer made of p-Al 0.9 Ga 0.1 As and a high-refractive index layer made of p-Al 0.3 Ga 0.7 As).
  • the second mirror layer 117 may contain zinc (Zn), carbon (C), magnesium (Mg), beryllium (Be), or the like as a second conductivity type (e.g., p-type) impurity.
  • a current is injected into the active layer 114 having a quantum well structure, and spontaneous emission light is generated from the active layer 114.
  • the spontaneous emission light generated in the active layer 114 travels in the stacking direction of the laser light generating unit 110 and is reflected between the first mirror layer 112 and the second mirror layer 117. Since the first mirror layer 112 and the second mirror layer 117 selectively reflect light of the oscillation wavelength, the light of the oscillation wavelength component of the spontaneous emission light forms a standing wave between the first mirror layer 112 and the second mirror layer 117 and is amplified in the active layer 114.
  • the current injected into the active layer 114 exceeds a threshold value, the light forming the standing wave undergoes laser oscillation and is emitted as laser light L toward the substrate 120 side.
  • the substrate 120 is a support for the laser light generating unit 110 and is provided on the first surface S1 side of the laser light generating unit 110.
  • the substrate 120 is made of a material that transmits the laser light while absorbing a portion of the laser light emitted from the laser light generating unit 110, and can deflect the emission direction of the laser light L emitted from the laser light generating unit 110.
  • the substrate 120 may be, for example, a GaAs substrate of a first conductivity type (e.g., n-type). The mechanism by which the substrate 120 deflects the emission direction of the laser light L will be described later with reference to Figures 2 and 3.
  • the laser light absorption rate of the substrate 120 is controlled, for example, by the doping concentration of the first conductivity type impurity in the substrate 120.
  • the control electrodes 132a, 132b are provided on the second surface S2 opposite the first surface S1 of the laser light generating unit 110, so as to face each other across the resonance region ra.
  • the control electrodes 132a, 132b are power supply side electrodes of the light emitting device 100, and are made of a conductive material.
  • the control electrodes 132a, 132b may be made, for example, by sequentially stacking titanium/gold (Ti/Au) from the second surface S2 side.
  • the ground electrodes 133a, 133b correspond to the control electrodes 132a, 132b, and are provided on the second surface S2 of the laser light generating unit 110 via insulating layers 131a, 131b, respectively.
  • the ground electrodes 133a, 133b may be provided on the opposite side to the side where the resonance region ra is provided with respect to the corresponding control electrodes 132a, 132b (i.e., on the outer side with respect to the corresponding control electrodes 132a, 132b) via insulating layers 131a, 131b, respectively.
  • the ground electrodes 133a and 133b extend in the thickness direction of the laser light generating unit 110 from the second surface S2 toward the first surface S1, and are electrically connected to a layer closer to the first surface S1 than the active layer 114.
  • the ground electrodes 133a and 133b may be electrically connected to, for example, either the first spacer layer 113 or the first mirror layer 112.
  • the ground electrodes 133a and 133b are ground-side electrodes of the light emitting device 100 and are made of a conductive material.
  • the ground electrodes 133a and 133b may be made of tungsten (W), titanium (Ti), tantalum (Ta), copper (Cu), gold (Au), or the like, and the insulating layers 131a and 131b may be made of an insulating material such as SiO 2 , SiN, or SiON.
  • the current injected from the control electrode 132a into the laser light generating unit 110 passes through the control electrode 132a side of the resonance region ra and is collected by the ground electrode 133a.
  • the current injected from the control electrode 132b into the laser light generating unit 110 passes through the control electrode 132b side of the resonance region ra and is collected by the ground electrode 133b.
  • the light emitting device 100 can bias the density of the current flowing through the resonance region ra in the direction of the arrangement of the control electrodes 132a, 132b.
  • Fig. 2 is an explanatory diagram showing the relationship between the voltage V bias applied to the control electrodes 132a and 132b and the optical profile of the laser light L emitted from the laser light generating unit 110.
  • Fig. 3 is an explanatory diagram showing the correspondence relationship between the optical profile of the laser light L and the propagation direction of the laser light L.
  • a case will be considered in which sine wave voltages with a phase difference of ⁇ are applied to the control electrodes 132a and 132b.
  • the voltage V bias applied to the control electrode 132a is represented by a dashed line
  • the voltage V bias applied to the control electrode 132b is represented by a solid line.
  • a periodic difference occurs in the voltages applied to the control electrodes 132a and 132b over time.
  • a difference occurs in the current density in the arrangement direction of the control electrodes 132a and 132b, and therefore a difference occurs in the light distribution of the generated laser light.
  • the light distribution of the laser light emitted from the laser light generating unit 110 is symmetrical in the arrangement direction of control electrodes 132a and 132b.
  • a higher voltage is applied to control electrode 132b than to control electrode 132a, so the light distribution of the laser light emitted from the laser light generating unit 110 is biased toward control electrode 132b.
  • a higher voltage is applied to control electrode 132a than to control electrode 132b, so the light distribution of the laser light emitted from the laser light generating unit 110 is biased toward control electrode 132a.
  • the substrate 120 when the laser light emitted from the laser light generating unit 110 reaches the substrate 120, which absorbs the laser light, the substrate 120 changes its refractive index by absorbing the laser light. Specifically, when the substrate 120 absorbs the laser light, carriers are generated in the substrate 120 by optical excitation, and the carrier density of the substrate 120 is biased in the arrangement direction of the control electrodes 132a, 132b. Since the refractive index of the substrate 120 decreases as the carrier density increases, as shown in FIG. 3, when laser light with a light distribution biased toward the control electrode 132b enters the substrate 120, the refractive index on the control electrode 132b side becomes lower than the refractive index on the control electrode 132a side.
  • the laser light passing through the substrate 120 propagates with a delay in phase on the control electrode 132b side compared to the control electrode 132a side. Therefore, the phase plane of the laser light traveling through the substrate 120 is tilted in a direction in which the control electrode 132a side is advanced and the control electrode 132b side is delayed. Since the traveling direction of the laser light is perpendicular to the phase plane, the traveling direction of the laser light that has passed through the substrate 120 is deflected toward the control electrode 132b side.
  • the laser light emitted from the laser light generating unit 110 passes through the substrate 120, which absorbs laser light, and is deflected toward the electrode side of the control electrodes 132a, 132b with a higher applied voltage, and is emitted from the substrate 120.
  • the difference in voltages applied to the control electrodes 132a, 132b changes periodically, and the emission direction of the laser light emitted from the substrate 120 also changes periodically.
  • the light emitting device 100 can periodically deflect the emission direction of the emitted laser light in the arrangement direction of the control electrodes 132a, 132b.
  • FIG. 4 is a block diagram showing the circuit configuration of the light emitting device 100.
  • the light emitting device 100 further includes a DC (Direct Current) power supply 151, an AC/DC (Alternating Current/Direct Current) conversion unit 152, and a phase delay unit 153.
  • DC Direct Current
  • AC/DC Alternating Current/Direct Current
  • the DC power supply 151 is a power source that supplies a DC voltage, such as a secondary battery.
  • the AC/DC conversion unit 152 is a converter that converts the DC voltage supplied from the DC power supply 151 into an AC voltage.
  • One of the AC voltages converted by the AC/DC conversion unit 152 is applied to the control electrode 132a, for example.
  • the other AC voltage is delayed in phase by the phase delay unit 153 and then applied to the control electrode 132b.
  • the phase delay unit 153 may be, for example, an all-pass filter that changes only the phase while keeping the amplitude constant.
  • the light emitting device 100 having the above configuration can periodically deflect the emission direction of the laser light emitted from the substrate 120. Therefore, the light emitting device 100 can make the emitted laser light into a parallel beam scanned perpendicular to the optical axis of the collimator lens by making the emitted laser light incident from the focal point on a collimator lens whose optical axis direction is the normal direction of the substrate 120.
  • the scanning amount of the parallel light beam emitted from the collimator lens can be set appropriately depending on the application and purpose of the light emitting device 100.
  • the scanning amount of the parallel light beam emitted from the collimator lens can be controlled by the difference in voltage applied to the control electrodes 132a and 132b, the thickness of the substrate 120, the absorptivity of the substrate 120 for the laser light, and the focal length of the collimator lens.
  • Fig. 5 is an explanatory diagram showing a cross-sectional configuration of the first modified example of the light emitting device 100.
  • Fig. 6 is an explanatory diagram showing a planar configuration of detection electrodes 141a and 141b provided on a substrate 120.
  • detection electrodes 141a and 141b are further provided on the surface of the substrate 120 opposite the surface on which the laser light generating unit 110 is provided.
  • the detection electrodes 141a and 141b are electrodes that extract carriers generated in the substrate 120 by the absorption of laser light as a current to an external circuit of the substrate 120.
  • the light emitting device 100 can estimate the amount of laser light absorbed in the substrate 120 by detecting the amount of current extracted by the detection electrodes 141a and 141b, and can therefore estimate the intensity of the laser light emitted from the laser light generating unit 110.
  • the detection electrodes 141a and 141b may be constructed by sequentially stacking titanium/gold (Ti/Au) from the substrate 120 side.
  • the detection electrodes 141a and 141b can extract a current from the substrate 120 by forming a Schottky structure or a MIS (Metal-Insulator-Semiconductor) structure between the detection electrodes 141a and 141b and the substrate 120.
  • a Schottky structure or a MIS (Metal-Insulator-Semiconductor) structure between the detection electrodes 141a and 141b and the substrate 120.
  • one of the detection electrodes 141a and 141b may be connected to ground.
  • the other of the detection electrodes 141a and 141b may be connected to the impedance element 156 after applying a DC bias 155.
  • the DC bias 155 may be a direct current voltage of, for example, about -5V. In this way, the light emitting device 100 can estimate the amount of current extracted from the substrate 120 from the voltage applied to the impedance element 156, and therefore can estimate the intensity of the laser light emitted from the laser light generating unit 110.
  • the detection electrodes 141a and 141b may be provided to open a region corresponding to the resonance region ra of the laser light generating unit 110, as shown in FIG. 6. Specifically, the detection electrodes 141a and 141b may be provided to face each other across the resonance region ra and to open a region smaller than the resonance region ra. The detection electrodes 141a and 141b may also be provided to block the laser light emitted from the substrate 120 at any deflection timing. By providing the detection electrodes 141a and 141b to block the laser light, a depletion layer formed between the detection electrodes 141a and 141b and the substrate 120 allows current to be extracted from carriers generated by absorption of the laser light.
  • the intensity of the laser light emitted from the substrate 120 can be detected more easily, so that the light emission control of the light emitting device 100 can be performed with higher accuracy.
  • Fig. 7 is a circuit diagram showing the second modified example of the light emitting device 100.
  • a plurality of light-emitting devices 100 are arranged in a matrix to form a light-emitting array 100A.
  • the control electrodes 132a, 132b of the light-emitting devices 100 arranged in the column direction (vertical direction when facing FIG. 7) are connected to the same power source 160.
  • the ground electrodes 133a, 133b of the light-emitting devices 100 arranged in the row direction (horizontal direction when facing FIG. 7) are connected to the same ground wiring 162.
  • the light emitting array 100A can emit laser light from the multiple light emitting devices 100 connected to the power source 160 by turning on the switches 161 of the power source 160 for each column. Therefore, the light emitting array 100A can emit laser light onto a two-dimensional plane by turning on the switches 161 of the power source 160 for each column in sequence.
  • the light emitting array 100A is able to irradiate laser light in more detail on a two-dimensional plane by providing each of the light emitting devices 100 with a laser light deflection function.
  • Fig. 8 is an explanatory diagram showing a distance measuring device 1 according to the first configuration example.
  • Fig. 9 is an explanatory diagram showing a top view configuration and a cross-sectional configuration of a light output device 101 according to the first configuration example.
  • the distance measuring device 1 includes a light projecting unit 10.
  • the light projecting unit 10 includes, for example, a light emitting array 101A, a microlens array 170, and a light projecting lens 180.
  • the distance measuring device 1 is a distance measuring device that measures the distance to a measurement object by irradiating the measurement object with laser light from the light projecting unit 10 and detecting the laser light reflected by the measurement object.
  • the light emitting array 101A is constructed by arranging a plurality of light emitting devices 101 in a matrix. As shown in FIG. 9, the light emitting device 101 has a similar configuration to the light emitting device 100 according to the first embodiment, except that the number of control electrodes 132a, 132b, 132c, and 132d is increased to four.
  • the control electrodes 132a, 132b, 132c, and 132d are arranged in a square lattice pattern (i.e., at positions corresponding to the vertices of a rectangle) on the second surface S2 of the laser light generating unit 110.
  • the light emitting device 101 can deflect the laser light emitted from the light emitting device 101 in two-dimensional directions by controlling the voltage applied to the control electrodes 132a, 132b, 132c, and 132d.
  • the current injected from the control electrode 132a into the laser light generating unit 110 passes through the control electrode 132a side of the resonance region ra and is collected at the ground electrode 133a.
  • the current injected from the control electrode 132b into the laser light generating unit 110 passes through the control electrode 132b side of the resonance region ra and is collected at the ground electrode 133b.
  • the current injected from the control electrode 132c into the laser light generating unit 110 passes through the control electrode 132c side of the resonance region ra and is collected at the ground electrode 133a.
  • the current injected from the control electrode 132d into the laser light generating unit 110 passes through the control electrode 132d side of the resonance region ra and is collected at the ground electrode 133b.
  • the light emitting device 101 can bias the density of the current flowing in the resonance region ra in a two-dimensional direction by generating a difference in the voltages applied to each of the control electrodes 132a, 132b, 132c, and 132d. Therefore, the light emitting device 101 can deflect the emission direction of the laser light in any two-dimensional direction by applying a higher voltage to any two adjacent electrodes among the control electrodes 132a, 132b, 132c, and 132d.
  • the microlens array 170 is constructed by arranging microlenses 171 in a matrix. Each microlens 171 corresponds one-to-one with each light emitting device 101 included in the light emitting array 101A, and is arranged so that its optical axis coincides with that of each light emitting device 101.
  • the microlens array 170 is arranged so that the light emitting device 101 is located at the focus of the microlens 171, thereby being able to convert the laser light deflected and emitted from the light emitting device 101 into a parallel beam.
  • the laser light converted into a parallel beam by the microlens array 170 is projected onto the object to be measured by the light projector lens 180.
  • the distance measuring device 1 according to the first configuration example can scan a small area by temporally changing the voltage applied to the control electrodes 132a, 132b, 132c, and 132d provided on the light emitting device 101 and temporally changing the emission direction of the laser light. This allows the distance measuring device 1 according to the first configuration example to expand the area onto which the laser light can be irradiated from each of the light emitting devices 101. Therefore, the distance measuring device 1 according to the first configuration example can obtain distance measuring information with a higher resolution than the arrangement pitch of the light emitting devices 101 even when the arrangement pitch of the light emitting devices 101 is large.
  • Fig. 10 is an explanatory diagram showing a distance measuring device 2 according to the second configuration example of this embodiment.
  • Fig. 11 is a block diagram showing a functional configuration of the distance measuring device 2 according to the second configuration example.
  • the distance measuring device 2 includes a light projecting unit 10 and a light receiving unit 20.
  • the distance measuring device 2 is a distance measuring device that measures the distance to the measurement object 3 by irradiating the measurement object 3 with laser light from the light projecting unit 10 and detecting the laser light reflected by the measurement object 3 with the light receiving unit 20.
  • the light-projecting unit 10 includes a light-emitting array 101A, a microlens array 170, and a light-projecting lens 180, as described in the distance measuring device 1 according to the first configuration example.
  • the light-projecting unit 10 is substantially similar to that of the distance measuring device 1 according to the first configuration example, and therefore a description thereof will be omitted here.
  • the light receiving unit 20 includes a light receiving array 210 and a light receiving lens 220.
  • the light receiving array 210 is configured by arranging a plurality of light receiving elements 211 in a matrix.
  • the light receiving elements 211 may be, for example, a SPAD (Single-Photon Avalanche Diode) capable of detecting the laser light reflected by the measurement object 3 in photon units.
  • SPAD Single-Photon Avalanche Diode
  • the light projecting unit 10 and the light receiving unit 20 are controlled by the control unit 30. Furthermore, the detection result of the laser light by the light receiving unit 20 is processed by the data processing unit 40 and converted into distance measurement information indicating the distance to the measurement object 3.
  • the control unit 30 may control the emission direction of the laser light emitted from the light-projecting unit 10, and may also control the light-receiving element 211 of the light-receiving unit 20 that detects reflected light from the measurement object 3 based on information regarding the emission direction of the laser light. For example, the control unit 30 may control to the on state only the light-receiving element 211 that is estimated to receive reflected light based on the emission direction of the laser light relative to the measurement object 3. This allows the distance measuring device 2 to reduce power consumption of the light-receiving unit 20.
  • the data processing unit 40 may derive the distance to the measurement object 3 based on the timing of the emission of the laser light from the light projecting unit 10 and the timing of the reception of the laser light reflected by the measurement object 3 at the light receiving unit 20. Furthermore, the data processing unit 40 can also generate a depth image that reflects the derived distance to the measurement object 3 in a two-dimensional image.
  • Fig. 12 is an explanatory diagram showing the relationship between the reflected light Sp of the laser light emitted from the light emitting device 101 and the light receiving element 211.
  • Fig. 13 is an explanatory diagram showing the deflection control of the laser light emitted from the light emitting device 101 in Fig. 12.
  • the reflected light Sp of the laser light emitted from one of the light emitting devices 101 is received by 4 ⁇ 4 light receiving elements 211 (one channel Ch).
  • the reflected light Sp of the laser light emitted from one of the light emitting devices 101 has a spread angle corresponding to 2 ⁇ 2 light receiving elements 211.
  • the distance measuring device 2 can control the emission direction of the laser light emitted from the light emitting device 101 to receive the reflected light Sp at each of the four 2 ⁇ 2 light receiving elements 211 in the channel Ch. This allows the distance measuring device 2 to improve the resolution of distance measurement compared to when distance measurement of the channel Ch corresponding to the 4 ⁇ 4 light receiving elements 211 is performed using the reflected light Sp of one laser light.
  • the distance measuring device 2 can also reduce power consumption by estimating the light receiving element 211 that receives the reflected light Sp based on the emission direction of the laser light emitted from the light emitting device 101 and turning on only the estimated light receiving element 211.
  • the distance measuring device 2 may measure the distance of the channel Ch corresponding to the 4x4 light receiving elements 211 using only the reflected light Sp of one laser beam.
  • Fig. 14 is an explanatory diagram showing a cross-sectional configuration of the modified example of the light emitting device 101.
  • a microlens 171 is further attached to the surface of the substrate 120 opposite the surface on which the laser light generating unit 110 is provided.
  • the microlens 171 is arranged so that its optical axis coincides with that of the light emitting device 101.
  • the laser light L emitted from the substrate 120 is converted into a parallel beam by the microlens 171 and projected onto the measurement object 3 by the downstream light projector lens 180.
  • the light-emitting array 101A and the microlens array 170 can be integrated, making it possible to further reduce the size of the light-projecting unit 10.
  • it is no longer necessary to align the light-emitting array 101A and the microlens array 170 so that the optical axes of each of the light-emitting devices 101 and each of the microlenses 171 coincide with each other it is possible to further simplify the manufacturing process.
  • the light emitting device is capable of deflecting the emission direction of the laser light without using a mechanical mechanism or a microfabricated optical element. Furthermore, according to the technology disclosed herein, the distance measuring device is capable of scanning the emission direction of the laser light irradiated onto the object to be measured, making it possible to evenly irradiate the object to be measured with the laser light while reducing the spread angle of the laser light and improving the brightness. Therefore, the distance measuring device using the technology disclosed herein is capable of improving both the resolution and the distance measurement.
  • a laser light generating unit that resonates laser light in a resonance region of a first surface and a second surface opposed to each other and emits the laser light from the first surface; a substrate provided on the first surface of the laser light generating unit, the substrate absorbing a portion of the emitted laser light while transmitting the laser light; a plurality of control electrodes provided on the second surface of the laser light generating portion and facing each other across the resonance region;
  • a light emitting device comprising: (2) The light emitting device described in (1), wherein the laser light generating unit includes an active layer that generates the laser light, and a pair of mirror layers provided on either side of the active layer in an opposing direction of the first surface and the second surface, and the pair of mirror layers resonates the laser light.
  • the laser light generating portion further includes a current confinement layer inside the active layer, the current confinement layer having a higher electrical resistance than the active layer,
  • the light emitting device according to (2) wherein the resonance region is a region in which the active layer is confined by the current confinement layer.
  • the light emitting device according to (2) or (3) further comprising a ground electrode extending in a thickness direction of the laser light generation portion and electrically connected to a layer of the laser light generation portion closer to the first surface than the active layer.
  • the ground electrodes are provided corresponding to the plurality of control electrodes, and are provided on an opposite side of the resonance region with respect to the corresponding control electrode.
  • a light projection unit is provided that is configured by arranging a plurality of light emitting devices in an array,
  • Each of the plurality of light emitting devices includes: a laser light generating unit that resonates laser light in a resonance region of a first surface and a second surface opposed to each other and emits the laser light from the first surface; a substrate provided on the first surface of the laser light generating unit, the substrate absorbing a portion of the emitted laser light while transmitting the laser light; a plurality of control electrodes provided on the second surface of the laser light generating portion and facing each other across the resonance region;
  • a distance measuring device having the above features.
  • Each of the plurality of light emitting devices has four of the control electrodes, The distance measuring device according to (9), wherein each of the plurality of light emitting devices tilts the emission direction of the laser light in an arbitrary direction in response to voltages applied to the four control electrodes.
  • a light projection unit configured by arranging a plurality of light emitting devices in an array and projecting projection light onto an object; a light receiving unit that receives the projected light reflected by the object; Equipped with Each of the plurality of light output devices includes: a laser light generating unit that resonates laser light in a resonance region of a first surface and a second surface opposed to each other and emits the laser light from the first surface; a substrate provided on the first surface of the laser light generating unit, the substrate absorbing a portion of the emitted laser light while transmitting the laser light; a plurality of control electrodes provided on the second surface of the laser light generating portion and facing each other across the resonance region; A distance measuring device having the above features.
  • Light projecting section 20 Light receiving section 100, 101 Light emitting device 100A, 101A Light emitting array 110 Laser light generating section 111 Buffer layer 112 First mirror layer 113 First spacer layer 114 Active layer 115 Current confinement layer 116 Second spacer layer 117 Second mirror layer 120 Substrate 132a, 132b, 132c, 132d Control electrode 133a, 133b Ground electrode 141a, 141b Detection electrode 170 Microlens array 171 Microlens 180 Light projecting lens 210 Light receiving array 211 Light receiving element 220 Light receiving lens

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

【課題】より簡易な構造にてレーザ光の出射方向を制御する。 【解決手段】互いに対向する第1面及び第2面の共振領域にてレーザ光を共振させ、前記第1面から前記レーザ光を出射するレーザ光生成部と、前記レーザ光生成部の前記第1面に設けられ、出射された前記レーザ光の一部を吸収しつつ、前記レーザ光を透過させる基板と、前記レーザ光生成部の前記第2面に設けられ、前記共振領域を挟んで対向する複数の制御電極と、を備える、光出射装置。

Description

光出射装置、及び測距装置
 本開示は、光出射装置、及び測距装置に関する。
 近年、自動車又はドローンなどの移動体では、周囲に存在する測定対象物までの距離を測距装置によって測定することが行われている。このような測距装置に用いられるLiDAR(Light Detection and Ranging)では、測定対象物に照射される光を走査することが求められる。
 例えば、LiDARでは、アクチュエータにて駆動されるミラーを用いて光路を切り替える機械式の光走査方法が実用化されている。また、フォトニック結晶、電気光学結晶、又はスローライト導波路などを用いて光の出射角を掃引する非機械式の光走査方法が検討されている。
 例えば、下記の特許文献1には、スローライト導波路を用いて光を回折させることで、光の出射方向を偏向させる光偏向デバイスが開示されている。
特開2022-82100号公報
 しかし、上記の特許文献1に開示された技術では、光の出射方向を偏向させるために、出射される光の波長よりも微細な加工を施したスローライト導波路が用いられる。そのため、光偏向デバイスの製造工程の複雑性、及び製造コストが高くなってしまう。
 そこで、より簡易な構造にてレーザ光の出射方向を制御することが可能な光出射装置が求められる。
 本開示によれば、互いに対向する第1面及び第2面の共振領域にてレーザ光を共振させ、前記第1面から前記レーザ光を出射するレーザ光生成部と、前記レーザ光生成部の前記第1面に設けられ、出射された前記レーザ光の一部を吸収しつつ、前記レーザ光を透過させる基板と、前記レーザ光生成部の前記第2面に設けられ、前記共振領域を挟んで対向する複数の制御電極と、を備える、光出射装置が提供される。
 また、本開示によれば、複数の光出射装置をアレイ状に配列することで構成された投光部を備え、前記複数の光出射装置の各々は、互いに対向する第1面及び第2面の共振領域にてレーザ光を共振させ、前記第1面から前記レーザ光を出射するレーザ光生成部と、前記レーザ光生成部の前記第1面に設けられ、出射された前記レーザ光の一部を吸収しつつ、前記レーザ光を透過させる基板と、前記レーザ光生成部の前記第2面に設けられ、前記共振領域を挟んで対向する複数の制御電極と、を有する、測距装置が提供される。
 また、本開示によれば、複数の光出射装置をアレイ状に配列することで構成され、対象物に投射光を投射する投光部と、前記対象物にて反射された前記投射光を受光する受光部と、を備え、前記複数の光出射装置の各々は、互いに対向する第1面及び第2面の共振領域にてレーザ光を共振させ、前記第1面から前記レーザ光を出射するレーザ光生成部と、前記レーザ光生成部の前記第1面に設けられ、出射された前記レーザ光の一部を吸収しつつ、前記レーザ光を透過させる基板と、前記レーザ光生成部の前記第2面に設けられ、前記共振領域を挟んで対向する複数の制御電極と、を有する、測距装置が提供される。
本開示の第1の実施形態に係る光出射装置の上面構成及び断面構成を示す説明図である。 制御電極に印加される電圧と、レーザ光生成部から出射されるレーザ光の光プロファイルとの関係を示す説明図である。 レーザ光の光プロファイルと、レーザ光の伝搬方向との対応関係を示す説明図である。 第1の実施形態に係る光出射装置の回路構成を示すブロック図である。 第1の実施形態に係る光出射装置の第1の変形例の断面構成を示す説明図である。 基板に設けられた検出電極の平面構成を示す説明図である。 第1の実施形態に係る光出射装置の第2の変形例を示す回路図である。 本開示の第2の実施形態の第1の構成例に係る測距装置を示す説明図である。 第2の実施形態の第1の構成例に係る光出射装置の上面構成及び断面構成を示す説明図である。 第2の実施形態の第2の構成例に係る測距装置を示す説明図である。 第2の実施形態の第2の構成例に係る測距装置の機能構成を示すブロック図である。 光出射装置から出射されたレーザ光の反射光と、受光素子との関係を示す説明図である。 図12における光出射装置から出射されたレーザ光の偏向制御を示す説明図である。 第2の実施形態に係る光出射装置の変形例の断面構成を示す説明図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.第1の実施形態
  1.1.光出射装置の構成
  1.2.変形例
 2.第2の実施形態
  2.1.測距装置の構成
  2.2.変形例
 <1.第1の実施形態>
 (1.1.光射出装置の構成)
 図1を参照して、本開示の第1の実施形態に係る光出射装置の構成について説明する。図1は、本実施形態に係る光出射装置100の上面構成及び断面構成を示す説明図である。
 図1に示すように、光出射装置100は、レーザ光生成部110と、基板120と、複数の制御電極132a,132bと、複数のグランド電極133a,133bとを備える。
 レーザ光生成部110は、いわゆる面発光型半導体レーザ(Vertical Cavity Surface Emitting Laser: VCSEL)素子である。レーザ光生成部110は、基板120が設けられた第1面S1側からバッファ層111、第1ミラー層112、第1スペーサ層113、活性層114、第2スペーサ層116、及び第2ミラー層117を順次積層することで構成される。レーザ光生成部110は、例えば、第1面S1から波長940nmのレーザ光Lを出射する素子である。以下では、第1面S1側を下側、第1面S1側と反対の第2面S2側を上側と表現する。
 バッファ層111は、基板120とレーザ光生成部110とを電気的に絶縁する層であり、基板120の上に設けられる。具体的には、バッファ層111は、基板120とレーザ光生成部110との間の絶縁を維持可能な程度の電気抵抗を有し、基板120からエピタキシャル成長可能な材料で構成されてもよい。一例として、バッファ層111は、低ドープ(例えば、ドーピング濃度が1015cm-3以下)のGaAsで構成されてもよい。他の例として、バッファ層111は、AlGaAs層への酸素注入、又はAlGaAs層の酸化によって形成されてもよい。
 第1ミラー層112は、第1導電型(例えば、n型)の半導体多層膜で構成された分布型反射鏡(Distributed Bragg Reflector: DBR)であり、バッファ層111の上に設けられる。具体的には、第1ミラー層112は、発振波長の1/4の光学厚みで高屈折率層と低屈折率層とを交互に積層することで構成された多層反射鏡である。例えば、第1ミラー層112は、Al組成の異なるAlGaAs層(例えば、n-Al0.9Ga0.1Asで構成された低屈折率層、及びn-Al0.3Ga0.7Asで構成された高屈折率層)を交互に積層することで構成される。第1ミラー層112は、第1導電型(例えば、n型)不純物として、シリコン(Si)などを含んでもよい。
 第1スペーサ層113は、第1導電型(例えば、n型)の半導体層であり、第1ミラー層112の上に設けられる。第1スペーサ層113は、例えば、n-GaAsで構成されてもよい。第1スペーサ層113は、第1導電型(例えば、n型)不純物として、シリコン(Si)などを含んでもよい。
 活性層114は、量子井戸構造を有し、第1スペーサ層113の上に設けられる。具体的には、活性層114は、バンドギャップが小さい量子井戸層と、バンドギャップが大きい障壁層を交互に複数積層することで形成された量子井戸構造を有する。量子井戸層は、例えば、アンドープのIn0.05Ga0.95Asで構成されてもよく、障壁層は、アンドープのAl0.1Ga0.9Asで構成されてもよい。
 また、活性層114の内部には、活性層114にて電流が流れる共振領域raを狭窄する電流狭窄層115が設けられる。電流狭窄層115は、活性層114よりも電気抵抗が高く、共振領域raに対応する開口を有する層である。電流狭窄層115は、例えば、SiO又はAlなどの絶縁性材料で構成されてもよく、酸化によって活性層114の他の領域よりも電気抵抗を高めることで構成されてもよい。電流狭窄層115は、活性層114に流れる電流を電流狭窄層115の開口に対応する共振領域raに狭窄することで、活性層114に流れる電流の密度をより高めることができる。
 第2スペーサ層116は、第2導電型(例えば、p型)の半導体層であり、活性層114の上に設けられる。第2スペーサ層116は、例えば、p-GaAsで構成されてもよい。第2スペーサ層116は、第2導電型(例えば、p型)不純物として、亜鉛(Zn)、炭素(C)、マグネシウム(Mg)、又はベリリウム(Be)などを含んでもよい。
 第1スペーサ層113及び第2スペーサ層116は、第1ミラー層112と第2ミラー層117との間の共振器長を調整するために設けられる。第1スペーサ層113、活性層114、及び第2スペーサ層116は、光学厚みの合計が発振波長(例えば、940nm)と等しくなるように構成されることで、レーザ光生成部110に最適な共振動作を行わせることができる。
 第2ミラー層117は、第2導電型(例えば、p型)の半導体多層膜で構成された分布型反射鏡(Distributed Bragg Reflector: DBR)であり、第2スペーサ層116の上に設けられる。第2ミラー層117は、発振波長の1/4の光学厚みで高屈折率層と低屈折率層とを交互に積層することで構成された多層反射鏡である。例えば、第2ミラー層117は、Al組成の異なるAlGaAs層(例えば、p-Al0.9Ga0.1Asで構成された低屈折率層、及びp-Al0.3Ga0.7Asで構成された高屈折率層)を交互に積層することで構成される。第2ミラー層117には、第2導電型(例えば、p型)不純物として、亜鉛(Zn)、炭素(C)、マグネシウム(Mg)、又はベリリウム(Be)などが含まれてもよい。
 このようなレーザ光生成部110では、量子井戸構造を有する活性層114に電流が注入されることで活性層114から自然放出光が生じる。活性層114で生じた自然放出光は、レーザ光生成部110の積層方向に進行することで、第1ミラー層112及び第2ミラー層117の間で反射する。第1ミラー層112及び第2ミラー層117は、発振波長の光を選択的に反射するため、自然放出光のうち発振波長の成分の光は、第1ミラー層112及び第2ミラー層117の間で定在波を形成し、活性層114で増幅される。これにより、活性層114への注入電流が閾値を超えることで、定在波を形成する光がレーザ発振し、基板120側へレーザ光Lとして出射される。
 基板120は、レーザ光生成部110の支持体であり、レーザ光生成部110の第1面S1側に設けられる。基板120は、レーザ光生成部110から出射されたレーザ光の一部を吸収しつつ、レーザ光を透過させる材料で構成されることで、レーザ光生成部110から出射されたレーザ光Lの出射方向を偏向させることができる。基板120は、例えば、第1導電型(例えば、n型)のGaAs基板であってもよい。基板120がレーザ光Lの出射方向を偏向する作用機序については、図2及び図3を参照して後述する。なお、基板120のレーザ光の吸収率は、例えば、基板120における第1導電型不純物のドーピング濃度にて制御される。
 制御電極132a,132bは、レーザ光生成部110の第1面S1と反対側の第2面S2の上に、共振領域raを挟んで対向するようにそれぞれ設けられる。制御電極132a,132bは、光出射装置100の電源側電極であり、導電性材料で構成される。制御電極132a,132bは、例えば、第2面S2側からチタン/金(Ti/Au)を順次積層することで構成されてもよい。
 グランド電極133a,133bは、制御電極132a,132bの各々と対応して、レーザ光生成部110の第2面S2の上に絶縁層131a,131bを介してそれぞれ設けられる。具体的には、グランド電極133a,133bは、対応する制御電極132a,132bに対して、共振領域raが設けられた側と反対側(すなわち、対応する制御電極132a,132bに対して外側)に絶縁層131a,131bを介してそれぞれ設けられてもよい。
 グランド電極133a,133bは、第2面S2から第1面S1に向かってレーザ光生成部110の厚み方向に延在することで、活性層114よりも第1面S1側の層と電気的に接続される。グランド電極133a,133bは、例えば、第1スペーサ層113、又は第1ミラー層112のいずれかと電気的に接続されてもよい。グランド電極133a,133bは、光出射装置100のグランド側電極であり、導電性材料で構成される。グランド電極133a,133bは、タングステン(W)、チタン(Ti)、タンタル(Ta)、銅(Cu)、又は金(Au)などで構成されてもよく、絶縁層131a,131bは、SiO、SiN、又はSiONなどの絶縁性材料で構成されてもよい。
 上記の制御電極132a,132b、及びグランド電極133a,133bの配置によれば、制御電極132aからレーザ光生成部110に注入された電流は、共振領域raの制御電極132a側を通ってグランド電極133aにて回収される。一方、制御電極132bからレーザ光生成部110に注入された電流は、共振領域raの制御電極132b側を通ってグランド電極133bにて回収される。したがって、光出射装置100は、制御電極132a,132bの各々に印加される電圧に差を生じさせることで、共振領域raに流れる電流の密度を制御電極132a,132bの配列方向に偏らせることができる。
 (レーザ光の偏向制御)
 続いて、図2及び図3を参照して、光出射装置100からのレーザ光の出射方向の偏向について説明する。図2は、制御電極132a,132bに印加される電圧Vbiasと、レーザ光生成部110から出射されるレーザ光Lの光プロファイルとの関係を示す説明図である。図3は、レーザ光Lの光プロファイルと、レーザ光Lの伝搬方向との対応関係を示す説明図である。
 図2に示すように、制御電極132a,132bに互いに位相がπずれた正弦波電圧が印加された場合について検討する。なお、図2では、制御電極132aに印加される電圧Vbiasを破線で表し、制御電極132bに印加される電圧Vbiasを実線で表す。このとき、制御電極132a,132bに印加された電圧には、時間経過に応じて周期的な差が生じる。これにより、レーザ光生成部110の共振領域raでは、制御電極132a,132bの配列方向に電流密度に差が生じるため、生成されるレーザ光の光分布に差が生じる。
 例えば、制御電極132a,132bに等しい電圧が印加されている時刻T2では、レーザ光生成部110から出射されるレーザ光の光分布は、制御電極132a,132bの配列方向に対称となる。一方で、時刻T1では、制御電極132aよりも高い電圧が制御電極132bに印加されるため、レーザ光生成部110から出射されるレーザ光の光分布は、制御電極132b側に偏ることになる。また、時刻T3では、制御電極132bよりも高い電圧が制御電極132aに印加されるため、レーザ光生成部110から出射されるレーザ光の光分布は、制御電極132a側に偏ることになる。
 ここで、レーザ光生成部110から出射されたレーザ光が該レーザ光を吸収する基板120に到達した場合、基板120は、レーザ光を吸収することで屈折率を変化させる。具体的には、基板120がレーザ光を吸収した場合、光励起によって基板120にキャリアが生成されるため、基板120のキャリア密度は、制御電極132a,132bの配列方向で偏る。基板120の屈折率は、キャリア密度が高いほど低くなるため、図3に示すように、制御電極132b側に光分布が偏ったレーザ光が基板120に進入した場合、制御電極132b側の屈折率が制御電極132a側の屈折率よりも低くなる。
 この結果、基板120を通過するレーザ光は、制御電極132b側の方が制御電極132a側よりも遅れて位相が伝搬する。そのため、基板120を進むレーザ光の位相面は、制御電極132a側が進み、制御電極132b側が遅れる向きに傾く。レーザ光の進行方向は、位相面に対して垂直であるため、基板120を通過したレーザ光の進行方向は、制御電極132b側に偏向することになる。したがって、レーザ光生成部110から出射されたレーザ光は、レーザ光を吸収する基板120を通過することで、制御電極132a,132bのうち印加電圧がより高い電極側に偏向して基板120から出射される。これによれば、光出射装置100は、出射されるレーザ光の出射方向をより簡易な構造にて制御することが可能である。
 以上にて説明したように、制御電極132a,132bに互いに位相がπずれた正弦波電圧が印加された場合、制御電極132a,132bに印加される電圧の差は、周期的に変化し、基板120から出射されるレーザ光の出射方向も周期的に変化する。すなわち、光出射装置100は、制御電極132a,132bに位相の異なる交流電圧を印加することで、出射されるレーザ光の出射方向を制御電極132a,132bの配列方向に周期的に偏向させることができる。
 このような互いに位相がずれた交流電圧を制御電極132a,132bに印加するための回路構成を図4に示す。図4は、光出射装置100の回路構成を示すブロック図である。図4に示すように、光出射装置100は、DC(Direct Current)電源151と、AC/DC(Alternating Current/Direct Current)変換部152と、位相遅延部153とをさらに備える。
 DC電源151は、例えば、二次電池などの直流電圧を供給する電力源である。AC/DC変換部152は、DC電源151から供給された直流電圧を交流電圧に変換するコンバータである。AC/DC変換部152にて変換された交流電圧の一方は、例えば、制御電極132aに印加される。また、交流電圧の他方は、位相遅延部153にて位相を遅延された後、制御電極132bに印加される。位相遅延部153は、例えば、振幅一定で位相だけを変化させるオールパスフィルタなどであってもよい。
 上記構成を備える光出射装置100は、基板120から出射されるレーザ光の出射方向を周期的に偏向させることができる。したがって、光出射装置100は、基板120の法線方向を光軸方向とするコリメートレンズに対して、出射されたレーザ光を焦点から入射させることで、出射されたレーザ光をコリメータレンズの光軸に垂直方向に走査された平行光線とすることができる。
 コリメータレンズから出射された平行光線の走査量は、光出射装置100の用途及び目的に応じて適宜設定され得る。例えば、コリメータレンズから出射された平行光線の走査量は、制御電極132a,132bに印加される電圧の差、基板120の厚み、基板120のレーザ光に対する吸収率、及びコリメータレンズの焦点距離によって制御することが可能である。
 (1.2.変形例)
 (第1の変形例)
 続いて、図5及び図6を参照して、本実施形態に係る光出射装置100の第1の変形例について説明する。図5は、光出射装置100の第1の変形例の断面構成を示す説明図である。図6は、基板120に設けられた検出電極141a,141bの平面構成を示す説明図である。
 図5に示すように、光出射装置100の第1の変形例では、レーザ光生成部110が設けられた面と反対側の基板120の面に検出電極141a,141bがさらに設けられる。
 検出電極141a,141bは、レーザ光の吸収によって基板120内で生成されたキャリアを基板120の外部回路に電流として取り出す電極である。光出射装置100は、検出電極141a,141bにて取り出された電流量を検出することで、基板120におけるレーザ光の吸収量を見積もることができるため、レーザ光生成部110から出射されたレーザ光の強度を推定することができる。例えば、検出電極141a,141bは、基板120側からチタン/金(Ti/Au)を順次積層することで構成されてもよい。検出電極141a,141bは、基板120との間でショットキー構造又はMIS(Metal-Insulator-Semiconductor)構造を形成することで、基板120から電流を取り出すことができる。
 例えば、検出電極141a,141bの一方(検出電極141a)は、グランドに接続されてもよい。また、検出電極141a,141bの他方(検出電極141b)は、DCバイアス155を印加した上で、インピーダンス素子156に接続されてもよい。DCバイアス155は、例えば、-5V程度の直流電圧を印加してもよい。これによれば、光出射装置100は、インピーダンス素子156に印加される電圧から基板120から取り出した電流量を推定することができるため、レーザ光生成部110から出射されたレーザ光の強度を推定することができる。
 検出電極141a,141bは、図6に示すように、レーザ光生成部110の共振領域raに対応する領域を開口させるように設けられてもよい。具体的には、検出電極141a,141bは、共振領域raを挟んで互いに対向すると共に、共振領域raよりも小さい領域を開口するように設けられてもよい。また、検出電極141a,141bは、基板120から出射されるレーザ光をいずれかの偏向タイミングで遮るように設けられてもよい。検出電極141a,141bは、レーザ光を遮るように設けられることで、基板120との間に形成された空乏層によって、レーザ光の吸収にて生成されたキャリアから電流を取り出すことができる。
 光出射装置100の第1の変形例によれば、基板120から出射されたレーザ光の強度をより簡易に検出することができるため、光出射装置100の発光制御をより高精度で行うことが可能である。
 (第2の変形例)
 次に、図7を参照して、本実施形態に係る光出射装置100の第2の変形例について説明する。図7は、光出射装置100の第2の変形例を示す回路図である。
 図7に示すように、光出射装置の第2の変形例では、光出射装置100は、行列状に複数配列されることで、光出射アレイ100Aとして構成される。具体的には、光出射アレイ100Aでは、列方向(図7に正対して縦方向)に配列された光出射装置100の各々の制御電極132a,132bが同一の電源160に接続される。また、光出射アレイ100Aでは、行方向に(図7に正対して横方向)に配列された光出射装置100の各々のグランド電極133a,133bは同一のグランド配線162に接続される。
 光出射アレイ100Aは、電源160のスイッチ161を列ごとにオン状態とすることで、オン状態となった電源160に接続された複数の光出射装置100からレーザ光を出射させることができる。したがって、光出射アレイ100Aは電源160のスイッチ161を、列ごとに順次オン状態とすることで、二次元平面に対してレーザ光を出射することができる。
 光出射装置100の第2の変形例によれば、光出射アレイ100Aは、光出射装置100の各々にレーザ光の偏向機能を持たせることにより、二次元平面に対してレーザ光をより詳細に照射することが可能である。
 <2.第2の実施形態>
 (2.1.測距装置の構成)
 (第1の構成例)
 まず、図8及び図9を参照して、本開示の第2の実施形態の第1の構成例に係る測距装置について説明する。図8は、第1の構成例に係る測距装置1を示す説明図である。図9は、第1の構成例に係る光出射装置101の上面構成及び断面構成を示す説明図である。
 図8に示すように、第1の構成例に係る測距装置1は、投光部10を備える。投光部10は、例えば、光出射アレイ101A、マイクロレンズアレイ170、及び投光レンズ180を含む。測距装置1は、投光部10から測定対象物にレーザ光を照射し、測定対象物で反射したレーザ光を検出することで、測定対象物までの距離を測定する測距装置である。
 光出射アレイ101Aは、複数の光出射装置101を行列状に配列することで構成される。光出射装置101は、図9に示すように、制御電極132a,132b,132c,132dが4つに増加した点を除いては、第1の実施形態に係る光出射装置100と同様の構成を有する。制御電極132a,132b,132c,132dは、レーザ光生成部110の第2面S2の上に四方格子状(すなわち、四角形の頂点に対応する位置)に配置される。
 光出射装置101は、制御電極132a,132b,132c,132dに印加される電圧を制御することで、光出射装置101から出射されるレーザ光を二次元方向に偏向させることができる。
 具体的には、制御電極132aからレーザ光生成部110に注入された電流は、共振領域raの制御電極132a側を通ってグランド電極133aにて回収される。制御電極132bからレーザ光生成部110に注入された電流は、共振領域raの制御電極132b側を通ってグランド電極133bにて回収される。制御電極132cからレーザ光生成部110に注入された電流は、共振領域raの制御電極132c側を通ってグランド電極133aにて回収される。制御電極132dからレーザ光生成部110に注入された電流は、共振領域raの制御電極132d側を通ってグランド電極133bにて回収される。したがって、光出射装置101は、制御電極132a,132b,132c,132dの各々に印加される電圧に差を生じさせることで、共振領域raに流れる電流の密度を二次元方向に偏らせることができる。したがって、光出射装置101は、制御電極132a,132b,132c,132dのうち隣接する任意の2つの電極に対してより高い電圧を印加することで、レーザ光の出射方向を任意の二次元方向に偏向させることが可能である。
 マイクロレンズアレイ170は、マイクロレンズ171を行列状に配列することで構成される。マイクロレンズ171の各々は、光出射アレイ101Aに含まれる光出射装置101の各々と1対1対応し、光出射装置101の各々と光軸が一致するように設けられる。マイクロレンズアレイ170は、マイクロレンズ171の焦点に光出射装置101が配置されるように設けられることで、光出射装置101から偏向して出射されたレーザ光を平行光線に変換することができる。マイクロレンズアレイ170にて平行光線に変換されたレーザ光は、投光レンズ180によって測定対象物に投射される。
 第1の構成例に係る測距装置1は、光出射装置101に設けられた制御電極132a,132b,132c,132dに印加される電圧を時間的に変化させ、レーザ光の出射方向を時間的に変化させることで、微小領域を走査することができる。これによれば、第1の構成例に係る測距装置1は、光出射装置101の各々からレーザ光を照射可能な領域を拡大することができる。したがって、第1の構成例に係る測距装置1は、光出射装置101の配列ピッチが大きい場合でも、光出射装置101の配列ピッチよりも高解像度の測距情報を取得することが可能である。
 (第2の構成例)
 続いて、図10及び図11を参照して、本開示の第2の実施形態の第2の構成例に係る測距装置について説明する。図10は、本実施形態の第2の構成例に係る測距装置2を示す説明図である。図11は、第2の構成例に係る測距装置2の機能構成を示すブロック図である。
 図10に示すように、第2の構成例に係る測距装置2は、投光部10と、受光部20とを備える。測距装置2は、投光部10から測定対象物3にレーザ光を照射し、測定対象物3で反射したレーザ光を受光部20にて検出することで、測定対象物3までの距離を測定する測距装置である。
 投光部10は、第1の構成例に係る測距装置1で説明したように、光出射アレイ101A、マイクロレンズアレイ170、及び投光レンズ180を含む。投光部10については、第1の構成例に係る測距装置1と実質的に同様であるため、ここでの説明は省略する。
 受光部20は、受光アレイ210、及び受光レンズ220を含む。受光アレイ210は、複数の受光素子211を行列状に配列することで構成される。受光素子211は、例えば、測定対象物3で反射したレーザ光をフォトン単位で検出することが可能なSPAD(Single-Photon Avalanche Diode)であってもよい。
 図11に示すように、測距装置2では、投光部10及び受光部20は、制御部30により制御される。また、受光部20によるレーザ光の検出結果は、データ処理部40にてデータ処理されることで、測定対象物3までの距離を示す測距情報に変換される。
 制御部30は、投光部10から出射されるレーザ光の出射方向を制御すると共に、レーザ光の出射方向に関する情報に基づいて、測定対象物3からの反射光を検出する受光部20の受光素子211を制御してもよい。例えば、制御部30は、測定対象物3に対するレーザ光の出射方向に基づいて反射光が入射すると推定される受光素子211のみをオン状態に制御してもよい。これによれば、測距装置2は、受光部20の消費電力を抑制することができる。
 データ処理部40は、投光部10から出射されたレーザ光の出射タイミングと、測定対象物3で反射されたレーザ光の受光部20での受光タイミングとに基づいて、測定対象物3までの距離を導出してもよい。さらに、データ処理部40は、導出された測定対象物3までの距離を二次元画像に反映したデプス画像を生成することも可能である。
 ここで、図12及び図13を参照して、投光部10及び受光部20の具体的な制御について説明する。図12は、光出射装置101から出射されたレーザ光の反射光Spと、受光素子211との関係を示す説明図である。図13は、図12における光出射装置101から出射されたレーザ光の偏向制御を示す説明図である。
 図12に示すように、測距装置2では、例えば、光出射装置101の1つから出射されたレーザ光の反射光Spを4×4の受光素子211(1つのチャネルCh)で受光しているとする。また、光出射装置101の1つから出射されたレーザ光の反射光Spは、2×2の受光素子211に対応する広がり角を有しているとする。
 このような場合、図13に示すように、測距装置2は、光出射装置101から出射されたレーザ光の出射方向を制御することで、チャネルCh内の4通りの2×2の受光素子211にてそれぞれ反射光Spを受光させることができる。これによれば、測距装置2は、4×4の受光素子211に対応するチャネルChの測距を1つのレーザ光の反射光Spで行う場合と比較して、測距の解像度をより高めることができる。また、測距装置2は、光出射装置101から出射されたレーザ光の出射方向に基づいて、反射光Spを受光する受光素子211を推定し、推定された受光素子211のみをオン状態とすることで、消費電力を抑制することも可能である。
 なお、測定対象物3との距離が近いことが判明している場合には、測距の解像度が低くても問題ないことがあり得る。このような場合、測距装置2は、4×4の受光素子211に対応するチャネルChの測距を1つのレーザ光の反射光Spのみで行ってもよい。
 (2.2.変形例)
 さらに、図14を参照して、本実施形態に係る測距装置1,2に含まれる光出射装置101の変形例について説明する。図14は、光出射装置101の変形例の断面構成を示す説明図である。
 図14に示すように、光出射装置101の変形例では、レーザ光生成部110が設けられた面と反対側の基板120の面にマイクロレンズ171がさらに貼り合わせられる。
 マイクロレンズ171は、光出射装置101と光軸が一致するように設けられる。基板120から出射されたレーザ光Lは、マイクロレンズ171によって平行光線に変換され、後段の投光レンズ180によって測定対象物3に投射される。
 光出射装置101の変形例によれば、光出射アレイ101Aと、マイクロレンズアレイ170とを一体化して構成することができるため、投光部10をより小型化することができる。また、光出射装置101の各々と、マイクロレンズ171の各々との光軸が一致するように、光出射アレイ101Aとマイクロレンズアレイ170とを位置合わせすることがなくなるため、製造工程をより簡略化することが可能である。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 本開示に係る技術によれば、光出射装置は、機械的機構、又は微細加工された光学素子を用いずにレーザ光の出射方向を偏向させることが可能である。また、本開示に係る技術によれば、測距装置は、測定対象物に照射するレーザ光の出射方向を走査することができるため、レーザ光の広がり角を小さくして輝度を向上させつつ、測定対象物にレーザ光を満遍なく照射することが可能である。したがって、本開示に係る技術を用い測距装置は、解像度と測距距離とを両立して向上させることが可能である。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 互いに対向する第1面及び第2面の共振領域にてレーザ光を共振させ、前記第1面から前記レーザ光を出射するレーザ光生成部と、
 前記レーザ光生成部の前記第1面に設けられ、出射された前記レーザ光の一部を吸収しつつ、前記レーザ光を透過させる基板と、
 前記レーザ光生成部の前記第2面に設けられ、前記共振領域を挟んで対向する複数の制御電極と、
を備える、光出射装置。
(2)
 前記レーザ光生成部は、前記レーザ光を発生させる活性層と、前記第1面及び前記第2面の対向方向に前記活性層を挟んで設けられた一対のミラー層とを含み、前記一対のミラー層で前記レーザ光を共振させる、前記(1)に記載の光出射装置。
(3)
 前記レーザ光生成部は、前記活性層の内部に前記活性層よりも電気抵抗が高い電流狭窄層をさらに含み、
 前記共振領域は、前記電流狭窄層で前記活性層が狭められた領域である、前記(2)に記載の光出射装置。
(4)
 前記レーザ光生成部の厚み方向に延在して設けられ、前記レーザ光生成部の前記活性層よりも前記第1面側の層に電気的に接続されたグランド電極をさらに備える、前記(2)又は(3)に記載の光出射装置。
(5)
 前記グランド電極は、前記複数の制御電極の各々と対応して設けられ、対応する前記制御電極に対して前記共振領域と反対側に設けられる、前記(4)に記載の光出射装置。
(6)
 前記レーザ光は、前記複数の制御電極の各々に印加された電圧の差に応じて、前記複数の制御電極の配列方向に傾いて前記基板から出射される、前記(1)~(5)のいずれか一項に記載の光出射装置。
(7)
 前記複数の制御電極には、互いに位相が異なる交流電圧がそれぞれ印加される、前記(6)に記載の光出射装置。
(8)
 前記基板の前記レーザ光生成部が設けられた面と反対側の面には、前記基板から電流を取り出す検出電極がさらに設けられる、前記(1)~(7)のいずれか一項に記載の光出射装置。
(9)
 複数の光出射装置をアレイ状に配列することで構成された投光部を備え、
 前記複数の光出射装置の各々は、
 互いに対向する第1面及び第2面の共振領域にてレーザ光を共振させ、前記第1面から前記レーザ光を出射するレーザ光生成部と、
 前記レーザ光生成部の前記第1面に設けられ、出射された前記レーザ光の一部を吸収しつつ、前記レーザ光を透過させる基板と、
 前記レーザ光生成部の前記第2面に設けられ、前記共振領域を挟んで対向する複数の制御電極と、
を有する、測距装置。
(10)
 前記複数の光出射装置の各々は、前記制御電極を4つ有し、
 前記複数の光出射装置の各々は、4つの前記制御電極に印加される電圧に応じて、前記レーザ光の出射方向を任意方向に傾かせる、前記(9)に記載の測距装置。
(11)
 前記複数の光出射装置の各々から出射された前記レーザ光を成形する光学系をさらに備える、前記(9)又は(10)に記載の測距装置。
(12)
 前記光学系に含まれるマイクロレンズアレイのレンズの各々は、前記複数の光出射装置の各々と光学的にアライメントされる、前記(11)に記載の測距装置。
(13)
 複数の光出射装置をアレイ状に配列することで構成され、対象物に投射光を投射する投光部と、
 前記対象物にて反射された前記投射光を受光する受光部と、
を備え、
 前記複数の光出射装置の各々は、
 互いに対向する第1面及び第2面の共振領域にてレーザ光を共振させ、前記第1面から前記レーザ光を出射するレーザ光生成部と、
 前記レーザ光生成部の前記第1面に設けられ、出射された前記レーザ光の一部を吸収しつつ、前記レーザ光を透過させる基板と、
 前記レーザ光生成部の前記第2面に設けられ、前記共振領域を挟んで対向する複数の制御電極と、
を有する、測距装置。
 1,2  測距装置
 3    測定対象物
 10   投光部
 20   受光部
 100,101  光出射装置
 100A,101A  光出射アレイ
 110  レーザ光生成部
 111  バッファ層
 112  第1ミラー層
 113  第1スペーサ層
 114  活性層
 115  電流狭窄層
 116  第2スペーサ層
 117  第2ミラー層
 120  基板
 132a,132b,132c,132d  制御電極
 133a,133b  グランド電極
 141a,141b  検出電極
 170  マイクロレンズアレイ
 171  マイクロレンズ
 180  投光レンズ
 210  受光アレイ
 211  受光素子
 220  受光レンズ

Claims (13)

  1.  互いに対向する第1面及び第2面の共振領域にてレーザ光を共振させ、前記第1面から前記レーザ光を出射するレーザ光生成部と、
     前記レーザ光生成部の前記第1面に設けられ、出射された前記レーザ光の一部を吸収しつつ、前記レーザ光を透過させる基板と、
     前記レーザ光生成部の前記第2面に設けられ、前記共振領域を挟んで対向する複数の制御電極と、
    を備える、光出射装置。
  2.  前記レーザ光生成部は、前記レーザ光を発生させる活性層と、前記第1面及び前記第2面の対向方向に前記活性層を挟んで設けられた一対のミラー層とを含み、前記一対のミラー層で前記レーザ光を共振させる、請求項1に記載の光出射装置。
  3.  前記レーザ光生成部は、前記活性層の内部に前記活性層よりも電気抵抗が高い電流狭窄層をさらに含み、
     前記共振領域は、前記電流狭窄層で前記活性層が狭められた領域である、請求項2に記載の光出射装置。
  4.  前記レーザ光生成部の厚み方向に延在して設けられ、前記レーザ光生成部の前記活性層よりも前記第1面側の層に電気的に接続されたグランド電極をさらに備える、請求項2に記載の光出射装置。
  5.  前記グランド電極は、前記複数の制御電極の各々と対応して設けられ、対応する前記制御電極に対して前記共振領域と反対側に設けられる、請求項4に記載の光出射装置。
  6.  前記レーザ光は、前記複数の制御電極の各々に印加された電圧の差に応じて、前記複数の制御電極の配列方向に傾いて前記基板から出射される、請求項1に記載の光出射装置。
  7.  前記複数の制御電極には、互いに位相が異なる交流電圧がそれぞれ印加される、請求項6に記載の光出射装置。
  8.  前記基板の前記レーザ光生成部が設けられた面と反対側の面には、前記基板から電流を取り出す検出電極がさらに設けられる、請求項1に記載の光出射装置。
  9.  複数の光出射装置をアレイ状に配列することで構成された投光部を備え、
     前記複数の光出射装置の各々は、
     互いに対向する第1面及び第2面の共振領域にてレーザ光を共振させ、前記第1面から前記レーザ光を出射するレーザ光生成部と、
     前記レーザ光生成部の前記第1面に設けられ、出射された前記レーザ光の一部を吸収しつつ、前記レーザ光を透過させる基板と、
     前記レーザ光生成部の前記第2面に設けられ、前記共振領域を挟んで対向する複数の制御電極と、
    を有する、測距装置。
  10.  前記複数の光出射装置の各々は、前記制御電極を4つ有し、
     前記複数の光出射装置の各々は、4つの前記制御電極に印加される電圧に応じて、前記レーザ光の出射方向を任意方向に傾かせる、請求項9に記載の測距装置。
  11.  前記複数の光出射装置の各々から出射された前記レーザ光を成形する光学系をさらに備える、請求項9に記載の測距装置。
  12.  前記光学系に含まれるマイクロレンズアレイのレンズの各々は、前記複数の光出射装置の各々と光学的にアライメントされる、請求項11に記載の測距装置。
  13.  複数の光出射装置をアレイ状に配列することで構成され、対象物に投射光を投射する投光部と、
     前記対象物にて反射された前記投射光を受光する受光部と、
    を備え、
     前記複数の光出射装置の各々は、
     互いに対向する第1面及び第2面の共振領域にてレーザ光を共振させ、前記第1面から前記レーザ光を出射するレーザ光生成部と、
     前記レーザ光生成部の前記第1面に設けられ、出射された前記レーザ光の一部を吸収しつつ、前記レーザ光を透過させる基板と、
     前記レーザ光生成部の前記第2面に設けられ、前記共振領域を挟んで対向する複数の制御電極と、
    を有する、測距装置。
PCT/JP2023/037932 2022-12-09 2023-10-19 光出射装置、及び測距装置 WO2024122202A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-197072 2022-12-09
JP2022197072A JP2024082884A (ja) 2022-12-09 光出射装置、及び測距装置

Publications (1)

Publication Number Publication Date
WO2024122202A1 true WO2024122202A1 (ja) 2024-06-13

Family

ID=91378853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037932 WO2024122202A1 (ja) 2022-12-09 2023-10-19 光出射装置、及び測距装置

Country Status (1)

Country Link
WO (1) WO2024122202A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04199589A (ja) * 1990-11-28 1992-07-20 Mitsubishi Electric Corp 可視光面発光レーザ装置
JPH07321405A (ja) * 1994-05-30 1995-12-08 Gijutsu Kenkyu Kumiai Shinjiyouhou Shiyori Kaihatsu Kiko 面発光半導体レーザ及びその制御方法
JP2021028919A (ja) * 2017-11-27 2021-02-25 ローム株式会社 半導体レーザ装置
JP2021081234A (ja) * 2019-11-15 2021-05-27 株式会社リコー 光源装置、検出装置及び電子機器
JP2022176886A (ja) * 2021-05-17 2022-11-30 キヤノン株式会社 発光装置及び測距装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04199589A (ja) * 1990-11-28 1992-07-20 Mitsubishi Electric Corp 可視光面発光レーザ装置
JPH07321405A (ja) * 1994-05-30 1995-12-08 Gijutsu Kenkyu Kumiai Shinjiyouhou Shiyori Kaihatsu Kiko 面発光半導体レーザ及びその制御方法
JP2021028919A (ja) * 2017-11-27 2021-02-25 ローム株式会社 半導体レーザ装置
JP2021081234A (ja) * 2019-11-15 2021-05-27 株式会社リコー 光源装置、検出装置及び電子機器
JP2022176886A (ja) * 2021-05-17 2022-11-30 キヤノン株式会社 発光装置及び測距装置

Similar Documents

Publication Publication Date Title
KR101121114B1 (ko) 면 발광형 반도체 레이저, 면 발광형 반도체 레이저의 제조방법, 모듈, 광원 장치, 정보 처리 장치, 광 송신 장치,광 공간 전송 장치 및 광 공간 전송 시스템
US7839913B2 (en) Surface emitting laser, surface emitting laser array, and image forming apparatus including surface emitting laser
US5287376A (en) Independently addressable semiconductor diode lasers with integral lowloss passive waveguides
EP1562271B1 (en) Micro-lens built-in vertical cavity surface emitting laser
KR101086788B1 (ko) 면발광형 반도체 레이저, 면발광형 반도체 레이저의 제조방법, 광학 장치, 광조사 장치, 정보 처리 장치, 광송신장치, 광공간 전송 장치 및 광전송 시스템
JP4343986B2 (ja) 赤色面発光レーザ素子、画像形成装置、及び画像表示装置
EP1959529B1 (en) Red surface emitting laser element, image forming device, and image display apparatus
JP2877785B2 (ja) 光出力装置
EP0899835A1 (en) Semiconductor Laser Device
KR100922401B1 (ko) 면 발광 레이저 소자 및 이를 포함한 면 발광 레이저어레이
KR20120075182A (ko) 다중 패브리-페로 공진 모드를 이용한 광변조기 및 상기 광변조기를 포함하는 3차원 영상 획득 장치
US11705690B2 (en) Dual junction fiber-coupled laser diode and related methods
US10348059B2 (en) Light emitting element array and optical transmission device
JPH06196681A (ja) 受光発光集積素子
EP1195863B1 (en) Micro-lens built-in vertical cavity surface emitting laser
GB2448161A (en) Optoelectronic device combining VCSEL and photodetector
EP0899836A1 (en) Semiconductor laser device
WO2024122202A1 (ja) 光出射装置、及び測距装置
JP2024082884A (ja) 光出射装置、及び測距装置
JP2645755B2 (ja) 光偏向素子
KR100238309B1 (ko) 모니터용 광검출기 일체형 표면광 레이저장치
JPH0666513B2 (ja) 半導体レ−ザ
JPH0810308B2 (ja) 光ゲートアレイ
Suhara et al. Integrated photonic devices using semiconductor quantum-well structures
JP2003121896A (ja) 波長変換素子および波長変換装置