JP4343986B2 - 赤色面発光レーザ素子、画像形成装置、及び画像表示装置 - Google Patents

赤色面発光レーザ素子、画像形成装置、及び画像表示装置 Download PDF

Info

Publication number
JP4343986B2
JP4343986B2 JP2008024485A JP2008024485A JP4343986B2 JP 4343986 B2 JP4343986 B2 JP 4343986B2 JP 2008024485 A JP2008024485 A JP 2008024485A JP 2008024485 A JP2008024485 A JP 2008024485A JP 4343986 B2 JP4343986 B2 JP 4343986B2
Authority
JP
Japan
Prior art keywords
layer
type semiconductor
surface emitting
laser element
emitting laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008024485A
Other languages
English (en)
Other versions
JP2008227469A (ja
Inventor
二三夫 小山
智之 宮本
哲也 竹内
護 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008024485A priority Critical patent/JP4343986B2/ja
Priority to US12/028,562 priority patent/US7809040B2/en
Priority to EP08002642A priority patent/EP1959529B1/en
Priority to KR1020080013251A priority patent/KR100970324B1/ko
Priority to CN2008100056552A priority patent/CN101247026B/zh
Publication of JP2008227469A publication Critical patent/JP2008227469A/ja
Priority to US12/487,619 priority patent/US8116344B2/en
Application granted granted Critical
Publication of JP4343986B2 publication Critical patent/JP4343986B2/ja
Priority to US12/873,071 priority patent/US20100322669A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18397Plurality of active layers vertically stacked in a cavity for multi-wavelength emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/107Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using electro-optic devices, e.g. exhibiting Pockels or Kerr effect
    • H01S3/1075Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using electro-optic devices, e.g. exhibiting Pockels or Kerr effect for optical deflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は、赤色面発光レーザ素子、該赤色面発光レーザ素子を用いた画像形成装置、及び画像表示装置に関する。
A.赤色面発光レーザ素子の有用性
面発光レーザ素子(特に垂直共振器型の面発光レーザを、VCSELという。)は、半導体基板の表面に垂直な方向に光を取り出すことができると共に、二次元アレイ化が比較的実現し易いと言われている。
二次元アレイ化した場合、出射されるマルチビームにより並列処理が可能となるため、高密度化及び高速化を意図して、様々な産業上の応用が期待されている。
例えば、電子写真プリンタの露光光源として面発光レーザアレイを用いると、マルチビームによる印字工程の並列処理により、印刷速度の高速化が可能となる。
現在実用化されている面発光レーザは、主に赤外領域(波長λ=0.75μmから1μm)のレーザ光を出力する素子である。発振波長の短波長化が進めば、ビーム径をより小さく絞ることができるため、更なる高解像度の画像を得ることができる。
赤色面発光レーザは、赤外領域よりも短い波長(約0.6μmから約0.73μm)の光を出力し、且つその波長は、電子写真プリンタの感光ドラムに適用され得るアモルファスSiの感度が非常に高い波長でもある。
従って、アモルファスSiを利用した感光ドラムなどに採用し、高速且つ高解像度の画像印刷を可能とするために、赤色面発光レーザの実用化が求められている。
また、このような短波長化による高解像度化と、マルチビーム化による並列処理の組み合せの効果は大きく、電子写真プリンタへの応用に限らず、レーザディスプレイなどの画像表示装置をはじめ、様々な分野への貢献が期待される。
B.赤色面発光レーザの基本構成
赤色領域の波長をもつ光を発生させる為には、通常、AlGaInPという半導体材料が用いられている。この材料は、成長基板を構成する材料のGaAsに格子整合するとともに、AlとGaの組成比を変えることでバンドギャップの大きさを制御することができる。
レーザ発振を起こすためには、レーザ素子に閾値電流以上の電流を注入する必要があり、電流注入により電子や正孔などのキャリアが活性層に注入され、発光再結合(radiative recombination)することで光に変換される。
C.具体的な先行技術
赤色面発光レーザは、AlGaInP活性層を含み構成される共振器領域を、異なる半導体材料であるAlGaAsを用いた多層膜反射鏡で挟むことによって形成される。基板としては、前記活性層と多層膜反射鏡とがそれぞれ格子整合するGaAs基板が用いられている。
サンディア国立研究所のCrawfordらは、1995年に1波長共振器構造の素子構成を発表している(非特許文献1)。
この1波長共振器構造は、赤外波長のレーザを出力する面発光レーザにおいて、最も一般的に用いられている共振器長であり、赤色面発光レーザの場合には、1波長共振器長とは、層厚にして約200nm(波長680nmの場合)となる。
具体的には、40nmから50nmの多重量子井戸構造からなる活性層を1波長共振器長の中央領域に配置する。そして、その両側に、スペーサ層となるp型AlGaInP層とn型AlGaInP層が、それぞれ80nm以下で配置される。
なお、前記活性層と、ドーピングされた層であるp型(あるいはn型)スペーサ層との間に、更にアンドープのスペーサ層を使用することもあり、斯かる場合には、当該p型(あるいはn型)AlGaInPスペーサ層の層厚は50nm程度となる。
実際に前記非特許文献1においても、p型AlGaInP層やn型AlGaInP層の層厚は50nm程度となっていることが読みとれる。
そして、同文献では、波長675nmのモードでの最大発光強度が2.8mW(20℃)を、15μmφの酸化狭窄径の素子により、実現していることが読みとれる。
M.H.Crawford et al.、IEEE PHOTONICS TECHNOLOGY LETTERS、Vol.7、No.7(1995)724 R.P.Schneider et al.、IEEE PHOTONICS TECHNOLOGY LETTERS、Vol.6、No.3(1994)313 D.Bour et al.、Journal of Quantum Electronics、Vol.29、No.5(1993)1337
ところで、赤色面発光レーザ素子を電子写真用の光源として利用する場合などには、高温での優れた動作特性が求められる。
しかしながら、非特許文献1に記載の素子構造の場合、例えば20℃から40℃に環境温度が上昇すると、最大発光強度が著しく低下してしまうことが記載されている。具体的には、波長675nmのモードでは、その最大発光強度は約1.0mWまで低下してしまうこと(出力が40%にまで低下する)ことが記載されている。
また、本発明者らの知見によれば、環境温度が20℃であっても、高出力動作を目的として電流注入量を増加すると、その電流注入量増加に伴って素子の内部温度は20℃以上の高温になる。斯かる場合、電流注入量の増加に対して発光強度が増加しなかったり、さらには低下してしまうことになり、利用できる最大発光強度が制限されることになる。
このような発光強度の低下は、発光に寄与しないリーク電流が温度上昇に伴い大幅に増加することが原因であると考えられる。
そこで、本発明は、リーク電流を低減することができる新規な赤色面発光レーザ素子、及びそれを用いた画像形成装置や画像表示装置を提供することを目的とする。
第1の本発明に係る、積層膜を含み構成される赤色面発光レーザ素子は、
第1の反射鏡、
p型半導体多層膜を含み構成される第2の反射鏡、
前記第1の反射鏡と前記第2の反射鏡との間に介在する活性層、及び
前記活性層と前記第2の反射鏡との間に介在し、且つ積層方向の厚さが100nm以上350nm以下であるp型半導体スペーサ層、
を有することを特徴とする。
第2の本発明に係る、積層膜を含み構成される赤色面発光レーザ素子は、
第1の反射鏡、
p型AlGaAs半導体多層膜を含み構成される第2の反射鏡、
前記第1の反射鏡と前記第2の反射鏡との間に介在する活性層、及び
前記活性層と前記第2の反射鏡との間に介在し、且つ積層方向の厚さが100nm以上350nm以下であるp型AlInP半導体スペーサ層またはp型AlGaInP半導体スペーサ層、
を有することを特徴とする。
第3の本発明に係る、積層膜を含み構成される赤色面発光レーザ素子は、
第1の反射鏡と、
p型半導体多層膜を含み構成される第2の反射鏡と、
前記第1の反射鏡と前記第2の反射鏡との間に介在する活性層と、
前記活性層と前記第2の反射鏡との間に介在するp型半導体スペーサ層とを備え、
前記p型半導体多層膜のX点における伝導帯バンド端は、前記p型半導体スペーサ層よりも低く、且つ前記p型半導体スペーサ層の積層方向の厚さは、100nm以上350nm以下であることを特徴とする。
また、別の本発明に係る画像形成装置や画像表示装置は、前記第1から第3の本発明に係る赤色面発光レーザ素子と、該レーザ素子から出力されるレーザ光を反射して走査するための光偏向器とを有することを特徴とする。
本発明によれば、リーク電流を低減することができる新規な赤色面発光レーザ素子、及びそれを用いた画像形成装置や画像表示装置が提供される。
A.本発明を成すに至った経緯
まず、本発明を成すに至ったその経緯について説明する。
a)非特許文献1に記載の赤色面発光レーザの構成では、高温下での動作特性が著しく低下してしまうことは既述の通りである。
この原因として、本発明者らは、熱の影響によりリーク電流が急激に増大し、発光効率が大幅に低下するためではないかと考えた。
これを確認すべく、本発明者らは、まず、一般的に考えられているバンドダイアグラムを踏まえて検討することにした。
b)前述の非特許文献1と同じサンディア国立研究所から報告されている赤色VCSELに関する論文(非特許文献2)に記載のバンドダイアグラムを引用して、本願図面の図6に記載している。
具体的には、活性層、AlInPスペーサ層(なお、スペーサ層はクラッド層と表現される場合もある。)、反射鏡を構成する半導体多層膜からなるDBR領域(AlAsとAl0.5Ga0.5As多層膜)のバンドダイアグラムが記されている。なお、DBRとは、共振器を構成するために用いられる反射鏡のことであり、Distributed Bragg Reflectorの略称である。
伝導帯のバンド端(図6のCB側)に関して、DBR領域の構成要素が、スペーサ層を構成するAlInPより高く描かれていることが分かる。
すなわち、このバンドダイアグラムでは、活性層に対してAlInPスペーサ層が形成するヘテロ障壁を乗り越えた電子が、AlInP層の層厚以上には拡散しにくいポテンシャルとして示されている。
前記非特許文献1における素子構造は、活性層にp型Al0.25Ga0.25In0.5Pスペーサ層を介して多層膜反射鏡が隣接する構造である。具体的には当該多層膜反射鏡は、約50nmのp型AlAs層と約50nmのp型Al0.5Ga0.5As層を34ペア繰り返した多層膜反射鏡である。
斯かる場合、p型層の厚さである、p型AlInPスペーサ層とp型DBR層の合計は、3μm以上となる。
このように、p型スペーサ層よりも伝導帯のバンド端が高いp型DBR領域が十分に厚ければ、n型半導体層より、活性層に注入されるキャリア電子が、該活性層に隣接するp型スペーサ層を超えてリーク電流として漏れてしまう確率は極めて低くなる。
換言すれば、AlInPスペーサ層を乗り越えた電子の当該スペーサ層内での濃度勾配は、p型DBR領域が存在しない場合に比べて、より緩やかになることを意味する。
リークに関連する拡散電流の大きさは、電子の濃度勾配によってその大小が決まるため、図6に記載のバンドダイアグラムを前提にすると、スペーサ層を乗り越えた電子によるリーク電流の拡散電流成分は非常に少ないということになる。
c)しかしながら、既述の如く、赤色面発光レーザ素子は、温度特性が悪いことを踏まえ、本発明者らは、更に検討を進めている。
赤色面発光レーザにおいては、上下の多層膜反射鏡で挟まれる共振器領域は、一般にAlGaInPを含み構成され、一方、多層膜反射鏡はAlGaAsを含み構成される。即ち、共振器領域と多層膜反射鏡領域とが、それぞれ異なる材料で構成されている。
p型層としても、p型半導体スペーサ層(例えばp型AlGaInPスペーサ層)と、p型DBR領域(例えばAlGaAs層)との両方が存在し、このような構造は、赤外面発光レーザ(全ての層がAlGaAs系で構成される。)にはない特徴的な構造である。
すなわち、導電型は互いに共通していても、このように異なる材料を積層した場合におけるリーク電流に対する影響を詳細に検討するには、電子が感じるポテンシャルである伝導帯のバンド端位置を詳細に検討する必要がある。
具体的には、赤色面発光レーザ素子を構成するp型スペーサ層とp型DBR領域の構成層とについて、
(1)p型ドーピングが施されているため、各層のフェルミ準位は、ほとんど価電子帯のバンド端に位置していること、
(2)p型半導体スペーサ層として使用されるAlGa1−xIn0.5P(0.25≦x≦0.55、特に0.35≦x≦0.5の領域)や、DBR領域を構成するAlGa1−yAs(0.4≦y≦1)は、直接遷移型の半導体ではなく間接遷移型の半導体であり、その伝導帯におけるバンド端はΓ点ではなくX点であること、
この両方を同時に考慮して電子のポテンシャルを検討すべきである。なお、Γ点とは、直接遷移型半導体において、伝導帯におけるバンド端の底があるとされている領域である。
上記(1)及び(2)の二点を考慮に入れた結果、電子のポテンシャル、すなわち伝導帯におけるX点のバンド端ラインナップは、図1の実線1010のようになることが判明した。図1の横軸は、素子の層厚を示しており、縦軸は、GaAsを基準にしたバンドオフセット量を示しており、プラス側領域が伝導帯側、マイナス側領域が価電子帯側を示している。
同図において、1050はp型半導体スペーサ層を示しており、1060はp型DBR領域の1ペア分のみを示している(実際には、このペアが繰り返されている)。なお、図1では、p型半導体スペーサ層1050の例として、p型Al0.35Ga0.15In0.5Pを、p型DBR領域1060の例として、p型Al0.9Ga0.1Asとp型Al0.5Ga0.5Asのペアについてのバンド構造を描いている。
なお、比較のために、図1には、Γ点における伝導帯のバンド端(破線1020)と、価電子帯のバンド端のラインナップ1090、及び擬フェルミ準位(1092、1093)も示している。また、簡単のために、図1ではバンド端エネルギーの不連続に起因するスパイクやノッチ等は示していない。p型層における検討であるため、pドーピングされた層では価電子帯近傍に存在するフェルミ準位が一致するようにバンドラインナップが決定される。
また、p型半導体多層膜領域であるp型DBR領域1060を構成するAl0.9Ga0.1Asにおいては、X点(図1の1010)の方が、Γ点(図1の1020)に比べて大幅に低いバンド端を持つことが分かる。具体的には、p型AlGaInPスペーサ層に隣接するp型Al0.9Ga0.1As層では、導電帯のバンド端ポテンシャルが200meV程度も落ち込むことが分かる。
すなわち、非特許文献2が示しているバンドダイアグラム(図6)とは異なるバンドダイアグラム(図1)が構築されている。
d)図1に示されているバンドダイアグラムに基づいて、再度リーク電流に関して検討する。
活性層1070とp型半導体スペーサ層1050とのバンド端の差であるヘテロ障壁を乗り越えて、このp型半導体スペーサ層1050に存在する電子について考える。当該電子は、実際には、隣接するp型DBR領域1060の構成要素であるAl0.9Ga0.1Asの導電帯バンド端のポテンシャルの落ち込みを感じることになる。なお、図1において、1075は必要に応じて設けられるアンドープバリア層である。
そのため、p型半導体スペーサ層1050とp型Al0.9Ga0.1As1061の界面付近では、電子はほとんど当該p型Al0.9Ga0.1As層側に落ち込み、p型半導体スペーサ層内と等しいエネルギーをもつ電子はほとんど存在しないと考えられる。
そのため、p型半導体スペーサ層1050における電子濃度勾配は非常に大きなものになり、その拡散電流成分は非常に大きな値となりうる。
つまり、p型半導体スペーサ層1050を超えて漏れ出したキャリア電子に対して、p型DBR領域1060が、実際には、バリアとして十分機能できていないということになる。
e)換言すれば、p型半導体スペーサ層を超えてしまうリーク電流を抑制するのに寄与する実効的なp型層の層厚は、p型DBR領域における厚さも含めた厚さではなく、p型半導体スペーサ層の厚さでしかないということになる。
この新たな知見に基づき、リーク電流に関する検討を行うべく、下記(式1)からリーク電流を計算した。
なお、リーク電流密度(Jleak)は、活性層からp型半導体スペーサ層に漏れた電子の拡散成分とドリフト成分により形成され、次式で与えられる(非特許文献3)。
Figure 0004343986
ここで、qは電荷量、Dは電子の拡散定数、mは電子の有効質量、kはボルツマン定数、hはプランク定数、Tは温度、△Eはヘテロ障壁である。また、Lは電子の拡散長、Zは実効電界長、σはp型スペーサ層の導電率、Jtotalは全注入電流密度、xはp型クラッド層厚である。
図2(a)には、上記(式1)を利用して、p型半導体スペーサ層の層厚を横軸にとり、左側の縦軸に規格化したリーク電流(実線2091)を示す。なお、スペーサ層の組成としては、AlGaInP(例えば、Al0.5In0.5PやAl0.35Ga0.25In0.5P)を前提にしている。
同図から明らかなように、p型半導体スペーサ層の層厚が、約80nm以下の領域では、リーク電流(特に、拡散電流成分)が急激に増加し、発光効率の低下に繋がり、そして高温動作特性の低下や高出力動作を得ることが困難になると推察される。
上述した知見に基づき、前記非特許文献1から読みとれるスペーサ層の厚さである約50nmのp型半導体スペーサ層の層厚を検討すると、極めてリーク電流に対して弱い構成であることが分かる。
現在、赤色面発光レーザとして標準的に使用されているp型AlGaInPスペーサ層の層厚は約50nmであるが、より優れた高温動作特性のためには、このp型スペーサ層の層厚を厚くする必要があるということが分かったのである。
B.第1の実施形態(赤色面発光レーザ素子)
本実施形態に係る、積層膜を含み構成される赤色面発光レーザ素子について、図3を用いて説明する。
同図におけるレーザ素子3000は、第1の反射鏡302、p型半導体多層膜を含み構成される第2の反射鏡308、前記第1の反射鏡302と前記第2の反射鏡308との間に介在する活性層305を有する。更に、前記活性層305と前記第2の反射鏡308との間に介在し、且つ厚さが100nm以上350nm以下であるp型半導体スペーサ層307を含み構成される。ここで、p型半導体スペーサ層の層厚を100nm以上350nm以下にする意義について説明する。なお、層厚は、積層方向の厚さのことである。
図2(a)の点線2095は、p型半導体スペーサ層の厚さの変化に対して、規格化リーク電流が著しく増大してしまう領域に関して、その変化の度合い(傾き)を見出すために引いている点線である。
p型半導体スペーサ層307の層厚としては、非常に傾きが大きい領域2591に該当する層厚は避けるべきであり、スペーサ層を構成する材料の組成比により多少変動することも鑑みて、100nm以上の層厚にした方がよいことが分かる。
一方、点線2096は、p型半導体スペーサ層307の厚さの変化に対して、規格化リーク電流の変化が非常に緩やかな領域2592に関して、その変化の度合い(傾き)を見出すために引いている点線である。この点線2096からも明らかなように、p型スペーサ層の層厚が350nmを超える領域では、スペーサ層の厚さの変化はリーク電流に殆ど影響しなくなることが分かる。
また、図2(b)の実線2091は、p型スペーサ層の層厚に対して、共振器内部での損失がどのように変化するかを示したものである。ここではミラーによる損失は考慮せず、p型スペーサ層およびp型DBR層で自由キャリア吸収によって失われる損失のみを考慮し、それを共振器長全体に割り振ったものである。同図から明らかなようにp型スペーサ層の厚さが厚くなればなるほど、共振器内部での損失が大きくなるので、その観点からはなるべく薄いスペーサ層厚を選択する必要がある。p型半導体スペーサ層の厚さが350nmにしたとしても、共振器内部での損失の増大は20%以下であることが分かる(350nmにおける共振器内損失を12.5cm−1、50nmにおける共振器内損失を10.5cm−1として算出した)。
以上の観点より、p型半導体スペーサ層の層厚は、100nm以上350nmであることが望ましいことが分かる。
上述の説明では、p型半導体スペーサ層に関して、その具体的な組成比の説明は適宜省略して記載している。
なお、図2(a)において、規格化リーク電流は、前記(式1)中の下記の部分に着目し、それ以外の部分は同じと仮定して規格化リーク電流として計算している。
Figure 0004343986
ここで、p型層の厚さを、p型AlGaInPスペーサ層の厚さ(x=40〜700nm)として計算している。計算に用いた値は、pドーピング量として1×1018cm−3を、電子の拡散長Lとして1μmを、また全注入電流密度Jtotalとして3kA/cmを用いて計算している。また、スペーサ層に対して規格化した値にするため、温度Tの値は計算では考慮していない。また、内部光吸収に関しては、p型DBR領域である多層膜反射鏡を含む素子全体での自由キャリア吸収を計算している。
以下に、p型半導体スペーサ層とp型半導体多層膜(p型DBR領域)に関して詳述する。
p型半導体スペーサ層307のX点における伝導体のバンド端が、p型DBR領域(図1の1060、図3の308)を構成する繰り返し単位となる2層の内、X点における伝導帯バンド端が高い方の層よりも高くなるように材料を選択する。即ち、前記p型DBR領域のX点における伝導帯バンド端は、前記p型半導体スペーサ層よりも低くなるように材料を選択する。
また、前記p型半導体スペーサ層307は、Al、In、及びPを含む組成からなる層で構成することができる。
p型半導体スペーサ層の組成をAlGaIn1−x−yPとしてた場合、x、yの範囲は以下のようにするのがよい。
まず、GaAs材料に格子整合するという観点から、上記組成式におけるInの占める割合(前述の関係式の“1−x−y”に該当する。)を0.45から0.55の範囲、好ましくは、0.48から0.50の範囲にした方がよい。
前者の範囲からは、0.45≦x+y≦0.55ということになり、後者の範囲からは、0.50≦x+y≦0.52ということになる。
さらに、活性層とp型半導体スペーサとのヘテロ障壁を確保するという観点から、一般に活性層内のバリア層にAl0.2Ga0.3In0.5Pが利用されることを考慮すると、前記xは以下の範囲がよい。具体的には、Alの組成に占める割合(x)を0.25以上、好ましくは0.30以上、さらに好ましくは0.35以上とするのがよい。なお、Alの組成に占める割合(x)の上限は、格子整合することを考慮して、0.55以下、好ましくは0.52以下である。
また、Gaの占める割合は0でもよいことを考慮して、好ましいp型半導体スペーサ層の組成としては、AlGaIn1−x−yPである。ここで、前記x及びyは、次の3つの関係式、即ち、0.45≦x+y≦0.55、且つ、0.25≦x≦0.55、且つ0≦y≦0.30を満足する値である。
より好ましくは、前記p型半導体スペーサ層は、AlGaIn1−x−yP(0.50≦x+y≦0.52、0.35≦x≦0.52、0≦y≦0.17)により構成するのがよいということになる。
勿論、本発明は、上記組成に対して、エピタキシャル成長ができる限り、その他の不純物等を含む場合を除外するものではない。
また、Inの割合を0.5にした場合、即ちp型AlGa1−zIn0.5Pスペーサ層の場合は、例えば、0.35≦z≦0.5の範囲から適宜zを定めることができる。このzの範囲では、結晶性が比較的高いものが形成されやすく、また活性層とのバンドオフセットをなるべく大きく確保することができる。
なお、p型半導体スペーサ層307は、いわゆる多重量子障壁構造(MQB:Multi Quantum Barrier)を用いてもよい。
また、p型DBR領域308を構成する、繰り返し単位となる2層の内、伝導体のバンド端が高い方の層(2層の両方ともAlGaAsを用いる場合には、Al組成が大きい方の層を意味する。)の組成は、AlGa1−xAs(0.70≦x≦1.0、好ましくは0.8≦x≦1.0)から適宜選択される。
前記第2の反射鏡を構成する前記p型半導体多層膜は、互いに屈折率が異なる第1の層と第2の層からなる組を複数回積層することにより構成される。前記第1及び第2の層の少なくとも一方は、上述したようにAl、Ga、及びAsを含む組成からなる層とすることができる。
また、前記繰り返し単位となる2層の内、伝導体のバンド端が低い方の層の組成は、AlGa1−xAs(0.40≦x≦0.70、好ましくは0.45≦x≦0.60)から適宜選択される。活性層からの発光波長にもよるが、当該波長が吸収されないように、xは0.4以上とし、且つDBRを構成する他方の層と充分な屈折率を確保するといことから適宜定められる。例えば、AlGa1−xAsにおいて、x=0.5とするのは好ましい形態である。
なお、図1では、p型半導体多層膜であるDBR領域308を構成する層の内、X点における伝導体のバンド端が高い方の層が、p型半導体スペーサ層1050に隣接するように描かれているが、必ずしも隣接している必要は無い。例えば、DBR領域を構成する層の内、X点における伝導体のバンド端が低い方の層がp型スペーサ層に隣接していてもよい。
(a)共振器構造
前述したp型半導体スペーサ層厚を確保するためには、一般的に用いられている1波長共振器より長い共振器長、例えば、1.5波長共振器長以上を採用することが好ましい。
なお、p型半導体スペーサ層(図1の1050、図3の307)の層厚としては、100nm以上350nm以下にするのがよく、好ましくは150nm以上300nm以下のp型AlGaInPスペーサ層にするのがよい。
好ましい共振器長として、1.5波長や2波長といった区切りの良い共振器が考えられる。これを実現するためには、0.5波長区切りで共振器長が長くなるように、p型半導体スペーサ層を厚くするのが好ましい。0.5波長は、およそ100nmに相当し、従来存在するp型AlGaInP層厚約60nmと組み合わせることにより160nm(0.5波長追加の場合)という値と、260nm(1波長追加の場合)という値が算出される。従って、p型半導体スペーサ層の層厚としては、上記0.5波長追加した場合と1波長追加した場合とを含むという観点から、150nm以上300nm以下とするのがより好ましい。
このように本実施形態に係る共振器構造としては、1.5波長共振器長以上が好ましく、その上限は、4波長共振器長以下、好ましくは3.5波長共振器長以下、更に好ましくは2.5波長共振器長以下である。なお、共振器長とは、第1及び第2の反射鏡の間の領域の積層方向の厚さである。
一方、図3において、活性層305の基板301側に位置するn型半導体スペーサ層303は必要に応じて設ければよい。
そして、n型半導体スペーサ層(例えば、AlGaInPにより構成される。)への正孔のリーク電流は十分小さいため、このn型スペーサ層303の厚さは、設ける場合にも40nmから80nm程度で十分である。
即ち、本実施形態に係る発明における共振器構造としては、前記活性層305と、前記p型半導体スペーサ層307と、前記n型半導体スペーサ層303とを含み共振器を構成することできる。そして、前記活性層305が、その共振器長方向の中央に位置していない非対称構造にすることができる。
特に、前記p型半導体スペーサ層307の厚さが、前記n型半導体スペーサ層303の厚さよりも厚くなる構成が好ましい。なお、前記非対称構造とは、p型半導体スペーサ層307が、n型半導体スペーサ層303より厚く、かつ活性層305が共振器の中央に存在しない構成を意味する。ただし、素子構成の設計に際しては、活性層の中心が素子内部に存在する内部光強度定在波の腹に存在する構造となるように設計するのがよい。
また、図3における活性層307に隣接する層304、306はそれぞれ、必要に応じて設けられるアンドープのスペーサ層(あるいは、p型、n型半導体スペーサ層307、303より不純物濃度が低いスペーサ層)である。これら2つの層304と306は、本発明に必須の層ではないが、活性層305へのp型半導体スペーサ層307やn型半導体スペーサ層303からの不純物拡散のバリア層として機能させるために必要に応じて設けることが好ましい。なお、これらの層304、306の厚さとしては、例えば10nm以上50nm以下、好ましくは20nm以上40nm以下の範囲である。
AlGaInP系の半導体レーザでは、例えば、活性層として、GaInP量子井戸構造を用いることにより赤色発光が得られる。p型半導体スペーサ層307としては、例えばAl0.35Ga0.15In0.5P層やAl0.5In0.5P層を用いることができる。
以下に、本発明に係る赤色面発光レーザの層構成について、具体的な材料を挙げて説明する。
例えば、約170nmのp型AlGa0.5−xIn0.5Pからなるスペーサ層307(0.2≦x≦0.5)を使用する。一方、有効質量の大きな正孔がn型AlGa0.5−xIn0.5P層303(0.2≦x≦0.5)を乗り越えてリーク電流に寄与する量はほとんどないため、このn型AlGaInP層の厚さは従来通り約50nm程度で十分である。
活性層305の厚さは、面発光レーザにおいて好適な多重量子井戸構造を用いて40nmから50nmとするため、共振器全体では最短であっても1.5波長共振器長として設計するのがよい。
活性層305は、内部電界強度分布の腹に配置されるため、この1.5波長共振器長の中央には位置しない。ゆえに、共振器構造に着目すると、この構造は通常の一波長共振器でよくみられるような対称構造ではなく、非対称構造となる。
一方で、対称構造の方が結晶成長の際に、共振波長を所望の値に調整しつつ、活性層位置を内部電界強度の腹に合わせ込みやすい場合もある。そのため、n型AlGaInPスペーサ層の厚さを、p型AlGaInP層と同じ厚さまで厚くする、例えば、約170nmにし、対称構造の共振器を形成することも可能である。この場合、上記の例に従えば共振器長は2波長共振器となる。n型スペーサ層での自由キャリア吸収はp層に比べ少ないため、n層を厚くすることによる光吸収の問題はp層ほど深刻ではない。
こうして、リーク電流低減することができ、且つスペーサ層の厚膜化による光吸収の大幅な増大も無い新規な赤色面発光レーザ素子を提供することが可能となる。
(b)その他の構成
なお、図3においては、基板301(例えばGaAs基板)が描かれているが、必要に応じて省略することもできる。例えば、GaAs等の基板上に積層膜を成長後に、当該基板を除去したり、あるいは別なSi基板やSOI基板やガラスなどの透明基板、Ge基板やプラスチック基板に移設することも可能である。放熱の観点からは、発光素子をSi基板やSOI基板へ移設するのがよい。移設に際しては、成長基板を除去する為に、研磨や研削を利用したり、エッチング犠牲層を成長基板上に形成後、前述の素子構成層を成長させる技術を利用できる。
前記第2の反射鏡を構成する前記p型半導体多層膜308は、Al及びAsを含む組成で構成することができる。また、前記p型半導体多層膜308は、互いに屈折率が異なる第1の層と第2の層からなる組を複数回積層することにより構成されており、前記第1及び第2の層の少なくとも一方は、Al、Ga、及びAsを含む組成からなる層であるとすることができる。
なお、前記第2の反射鏡の材料は、AlAsやAlGaAsからなる材料に限定されるものではなく、GaAsに格子整合する半導体材料で構成されていれば特に限定されるものではない。
第1の反射鏡302としては、n型の半導体多層膜から構成できる。また、該第1の反射鏡と前記活性層との間に、n型AlGaInPスペーサ層(図3の303)を有する構成にすることもできる。
また、第1の反射鏡302は、赤色面発光レーザ素子3000に電流注入できるのであれば、必ずしもn型のDBRである必要はない。また、貼り合わせ技術などを利用するのであれば、半導体多層膜からなる反射鏡ではなく、フォトニック結晶なども利用できる。
更にまた、図3では、活性層305とp型あるいはn型スペーサ層303、307の間に、別のスペーサ層304、306が設けられているが、これは、必要に応じて省略することができる。また、図3では、基板301側にn型DBR領域302、活性層上にp型DBR領域308を設ける構成にしているが、勿論、逆にすることもできる。例えば、p型のDBR領域やp型スペーサ層を活性層と基板との間に設ける構成である。
前記活性層305の構成例としては、GaInPからなる層とAlGaInPからなる層とを含み構成される量子井戸活性層が挙げられる。本発明においては赤色(波長0.6μmから0.73μmの範囲、より好ましくは波長0.63μmから0.72μmの範囲である。)を出力できる限り何ら限定されるものではない。例えば、活性層として、ダブルへテロ構造や量子ドット構造を採用することができ、その材料系もAlGaInPNなどを利用することができる。更に、図8や図10を用いて後述しているように、複数の活性層を用いることもできる。例えば、活性層の数としては、図8等のように2個にしたり、更に3個、あるいはそれ以上に適宜選択される。上述のように、前記活性層305と、前記p型半導体スペーサ層307と、前記n型半導体スペーサ層303とを含み共振器が構成されており、且つ前記活性層が、その共振器長方向の中央に配置されない非対称構造にすることもできる。
ここで、前記p型AlGaInPスペーサ層307の厚さは、前記n型AlGaInPスペーサ層303の厚さよりも厚くすることができる。
また、本発明においては、DBR領域の層厚構成は、垂直共振器型の面発光レーザを構成するように設計されることが望ましいが、面発光の出力が可能であれば、厳密に垂直である必要はない。
本発明は、高温での良好な動作特性が求められるようなレーザ素子に好適に用いられる。とりわけ、高い発光強度でかつ単一横モードで発光させるようなレーザ素子に効果的である。
C.第2の実施形態
第2の本実施形態に係る、積層膜を含み構成される赤色面発光レーザ素子は、以下の特徴を有する。前述の実施形態1と同様に図3を用いて説明する。
当該素子は、第1の反射鏡302と、p型AlGaAs半導体多層膜を含み構成される第2の反射鏡308と、前記第1の反射鏡と前記第2の反射鏡との間に介在する活性層305とを含み構成される。そして、前記活性層305と前記第2の反射鏡308との間に介在し、且つ積層方向の厚さが100nm以上350nm以下であるp型AlInP半導体スペーサ層またはp型AlGaInP半導体スペーサ層307を有する。
なお、p型半導体スペーサ層全体として、その厚さが上記範囲にあるのであれば、例えば、AlInP及びAlGaInPの両方を含む構成にすることもできる。
斯かる構成により、リーク電流を低減することができる新規な赤色面発光レーザ素子が提供される。
なお、AlGaAsやAlGaInPとの表記は、各層の構成成分として、前者はAl、Ga及びAsを、後者はAl、Ga、In、及びPを含むことを示している。そして、それぞれの組成比は、各層がエピタキシャル成長でき、赤色発光を実現できる限り、特に限定されるものではない。また、本実施形態におけるレーザ素子については、前述の実施形態1で説明した事項を矛盾の無い限り適用することができることは勿論である。
D.第3の実施形態
また、第3の実施形態に係る、積層膜を含み構成される赤色面発光レーザ素子は、以下の特徴を有する。上述の実施形態と同様に図3を用いて説明する。
第1の反射鏡302と、p型半導体多層膜を含み構成される第2の反射鏡308と、前記第1の反射鏡302と前記第2の反射鏡308との間に介在する活性層305と、前記活性層と前記第2の反射鏡との間に介在するp型半導体スペーサ層307を備える。
そして、図1を用いて既に説明したように、前記p型半導体多層膜のX点における伝導帯バンド端は、前記p型半導体スペーサ層307よりも低くなるようにする。そして、なお且つ前記p型半導体スペーサ層307の積層方向の厚さは、100nm以上350nm以下となるようにすることが特徴である。
p型半導体多層膜を含み構成される第2の反射鏡の存在では十分にリーク電流を低減できなくても、p型半導体スペーサ層307の厚さを100nm以上350nm以下にすることにより、リーク電流を低減することが可能となる(図2(a))。
なお、本実施形態におけるレーザ素子については、前述の実施形態1で説明した事項を矛盾の無い限り適用することができることは勿論である。
E.第4の実施形態(画像形成装置や画像表示装置)
上記第1から第3の実施形態において説明した赤色面発光レーザ素子は、例えば画像形成装置や画像表示装置に適用することができる。
画像形成装置に適用する場合には、図9に示すように、前述赤色面発光レーザ素子914と、該レーザ素子から出力されるレーザ光を反射して走査するための光偏向器910と含み構成される。光偏向器は、レーザ光を反射する機能と、反射方向を走査する機能を持っていれば、その構成は特に限定されるものではない。
このような光偏向器としては、例えば、例えば多面反射鏡やポリゴンミラーや、MEMS技術を利用して、Siなどからなる薄片体を揺動させることにより構成される反射鏡を用いることができる。
電子写真装置としては、前記光偏向器により偏向されたビームにより静電潜像を形成するための、例えばドラム状の感光体900と、帯電器902と、現像器904と、定着器908とを含み構成されるが、詳細は後述の実施例において説明する。
勿論、ディスプレイなどの画像表示装置に本発明に係る赤色面発光レーザ素子を用いる場合にも、前記偏向器などと組み合わせて構成することができる。
また、前述した赤色面発光レーザ素子をアレイ状に複数個配置して、マルチビームとして、前記画像形成装置などに適用することもできる。
(実施例1)
以下に、本発明の第1の実施例について説明する。
図3に、本発明に係る赤色面発光レーザの層構成の断面模式図を示す。
本実施例におけるVCSEL構造は、
n型GaAs基板301、
n型Al0.9Ga0.1As/Al0.5Ga0.5As多層膜反射鏡302、
n型Al0.35Ga0.15In0.5Pスペーサ層303、
アンドープAl0.25Ga0.25In0.5Pバリア層304、
Ga0.56In0.44P/Al0.25Ga0.25In0.5P量子井戸活性層305、
アンドープAl0.25Ga0.25In0.5Pバリア層306、p型Al0.5In0.5Pスペーサ層307、
p型Al0.9Ga0.1As/Al0.5Ga0.5As多層膜反射鏡308、
p型GaAsコンタクト層309で構成される。
ここでは680nmで発振する赤色面発光レーザを形成する。
まず、n型Al0.9Ga0.1As/Al0.5Ga0.5As多層膜反射鏡302と、p型Al0.9Ga0.1As/Al0.5Ga0.5As多層膜反射鏡308について説明する。それぞれAl0.9Ga0.1As層とAl0.5Ga0.5As層の厚さは、1/4波長の光学的厚さになるように形成される。
電気抵抗を下げるために、Al0.9Ga0.1As層とAl0.5Ga0.5As層の間に20nm程度の組成傾斜層を設けることもできる。
この場合、組成傾斜層を含めて1/4波長の光学的厚さになるように形成される。電流が流れるように、p型多層膜反射鏡308には、アクセプタとなる不純物、例えば、CやZnをドーピングする。n型多層膜反射鏡にはドナーとなる不純物、例えばSiやSeをドーピングする。そして、多層膜反射鏡内での光吸収を極力下げるために、多層膜反射鏡内に存在する内部電界強度分布の定在波の腹ではドーピング量を低く、節ではドーピング量を増やす変調ドーピングを行ってもよい。
本実施例では、エピタキシャル層から、すなわちp型層側から光を取り出す素子構造を採用しているため、p型多層膜反射鏡308は、繰り返しを36ペア程度にして、光取り出し効率の最適な反射鏡を形成する。一方、n側では光を取り出す必要がないため、60ペア程度繰り返して可能な限り反射率を高め、しきい値電流の低下を図る。
ところで、p側多層膜反射鏡308では途中に、例えば活性層側から数えて1から3ペアの間に約30nmのAl0.98Ga0.02As層を挿入して、この層を選択酸化させることによって電流狭窄構造を形成させることもできる。
続いて共振器の形成について説明する。
p型AlGaInP層307の厚さを100nm以上350nm以下にするため、本実施例では通常用いられる1波長共振器ではなく、図4に示すように1.5波長共振器長を採用する。
発光波長680nmでの1.5波長であるため、その光学的厚さは1020nmとなる。共振器内はすべてAlGaInP層で形成されるが、活性層、バリア層、スペーサ層など様々な組成のAlGaInPが使用されるため、その屈折率に応じて層厚を決定し、1.5波長共振器長にさせる必要がある。
また、光とキャリアの相互作用を最大にするためには、活性層を定在波の腹403に配置する必要がある。つまり、1020nm内の1/3の位置に活性層305を配置し、短い側(図4では左側)にn層を、長い側(図4では右側)にp層を配置する。
上記の条件を考慮しながら、実際の例について下記に示す。
活性層305は、4個の6nm GaInP量子井戸と3個の6nm Al0.25Ga0.25In0.5Pバリア層で形成され、実際の層厚は42nmとなる。
発光波長680nmでのGaInP層とAl0.25Ga0.25In0.5P層の屈折率はそれぞれ3.56、3.37であるため、この活性層での光学的厚さは146nmとなる。
この活性層領域の半分の長さである73nmとアンドープAl0.25Ga0.25In0.5Pバリア層304およびn型Al0.35Ga0.15In0.5P層303により光学的厚さが1020nmの1/3の340nmになればよい。
アンドープAl0.25Ga0.25In0.5Pバリア層304の層厚を20nm、n型Al0.35Ga0.15In0.5P層303の層厚を60.5nmとする。屈折率はそれぞれ3.37、3.30であるので、この二つの層の光学的厚さは267nmとなる。
すなわち、活性層305の半分である73nmとの合計は光学的厚さとして340nmになり、図4に示すように活性層305の中央が定在波の腹403に位置することになる。
p側は、活性層305の半分の光学的厚さである73nmとやはりアンドープAl0.25Ga0.25In0.5Pバリア層306およびp型Al0.5In0.5P層307により光学的厚さが残りの680nmになればよい。
n側ではAl0.35Ga0.15In0.5P層を用いたがp側ではできるだけヘテロ障壁を大きくするためにAl0.5In0.5P層を使用し、1×1018cm−3程度までドーピングを行う。ドーパントとしてはZnやMgが用いられる。
バリア層306として20nm、p型Al0.5In0.5P層307として167.6nmとする。屈折率はそれぞれ3.37、3.22であるので、この二つの層の光学的厚さは607nmとなり、活性層305の半分の光学的厚さである73nmとの合計は光学的厚さとして680nmになる。
以上、アンドープバリア層を含むn層、活性層、アンドープバリア層を含むp層の光学的厚さはそれぞれ267nm、146nm、607nm(合計1020nm)となり、1.5波長共振器の場合の光学的厚さに合致する。
また、p層の厚さ(光学的厚さではなく、実際の層厚)も167.6nmと、100nm以上350nm以下になる。
この共振器の両側に多層膜反射鏡を形成する。共振器と多層膜反射鏡の界面では定在波の腹になるように多層膜反射鏡はn側もp側も構成される。
具体的には、低屈折率材料、ここではAl0.9Ga0.1As層402が共振器に隣接し、さらにその隣に高屈折率材料、ここではAl0.5Ga0.5As層401が並ぶように形成して、それぞれ必要な数(p側36ペア、n側60ペア)を繰り返す。
実際の素子作製には、まず上記の層厚をもつようなウエハを結晶成長技術によって形成する。
例えば、有機金属化合物成長装置や分子線エピタキシー装置にて層構造を形成する。ウエハ構造形成後、通常の半導体プロセス技術により、図5に示すようなレーザ素子5000を完成させる。なお、図5において、図3において説明した層と同じ機能を有する層については、同一の番号を付している。
フォトリソグラフィーと半導体エッチングによりポストを形成し、選択酸化により電流狭窄層502を形成する。その後、絶縁体膜503を堆積し、p−GaAsコンタクト層309とコンタクトをとる領域のみ開口して、p側電極504を形成する。最後にウエハ裏面にn側電極501を形成して素子が完成する。
このように本発明に基づいて作製された素子は、高温動作や高出力動作が可能となり、赤色面発光レーザの応用先が大きく拡がり、その波及効果は非常に大きい。
以上は単一素子の作製方法である。
アレイ状に集積させた複数の素子を作製する場合は、例えば4×8の32個の素子を50umピッチ間隔でアレイ状に並べるには、所望の素子配置になるようなフォトマスクを最初から使用する。そして、上記と同じエピウエハを用いて、同じ素子形成工程を踏めば、アレイ状になった複数素子が同時に形成できる。つまり、必要なパターンを持ったマスクを使用することで赤色面発光レーザアレイが容易に得られる。
なお、ここではn型GaAs基板を使用して、p型層が上部に存在する素子構造としたが、p型GaAs基板を用いて、n型層が上部に存在する素子構造としても良い。
(実施例2)
以下に、本発明の第2の実施例について説明する。
図7に、本発明に係る赤色面発光レーザ素子7000の層構成の断面模式図を示す。
本実施例におけるVCSEL構造は、
n型GaAs基板301、
n型AlAs/Al0.5Ga0.5As多層膜反射鏡701、
n型Al0.35Ga0.15In0.5Pスペーサ層303、
アンドープAl0.25Ga0.25In0.5Pバリア層304、
第一Ga0.56In0.44P/Al0.25Ga0.25In0.5P量子井戸活性層702、
Al0.25Ga0.25In0.5P中間バリア層703、
第二Ga0.56In0.44P/Al0.25Ga0.25In0.5P量子井戸活性層704、
アンドープAl0.25Ga0.25In0.5Pバリア層306、
p型Al0.35Ga0.15In0.5Pスペーサ層705、
p型Al0.9Ga0.1As/Al0.5Ga0.5As多層膜反射鏡308、
p型GaAsコンタクト層309
で構成される。ここでは680nmで発振する赤色面発光レーザを形成する。
n型多層膜反射鏡701では、素子の熱抵抗を下げるために反射鏡を構成する層としてAl0.9Ga0.1Asの代わりに熱抵抗が小さい材料であるAlAsを用いる。
p型Al0.9Ga0.1As/Al0.5Ga0.5As多層膜反射鏡308は、第一の実施例(図3)と同一である。
図7に示すように本実施例では多重量子井戸構造を2つ用いる周期利得構造を用いている。これにより光閉じ込め率を大きくして、モード利得を大きくし、高い発光出力が得られやすくなる。
上記周期利得構造に加え、p型AlGaInP層の厚さを100nm以上350nm以下にするため、図8に示すように共振器長として2.5波長共振器を用いる。
以下、図8を用いて共振器の層構造について説明する。
共振波長680nmであるため、共振器長が2.5波長とすると、その光学的厚さは1700nmとなる。
共振器内はすべてAlGaInP層で形成されるが活性層、バリア層、スペーサ層など様々な組成のAlGaInPが使用されるため、その屈折率に応じて層厚を決定し、2.5波長共振器長にさせる必要がある。
また、光とキャリアの相互作用を最大にするために活性層702、704を内部光強度定在波の腹403に配置する必要がある。すなわち、1700nm内の1/5の位置と2/5の位置に活性層を配置し、短い側(図8では左側)にn層を、長い側(図8では右側)にp層を配置する。
上記の条件を考慮しながら、実際の例について下記に示す。
第一活性層702および第二活性層704は4個の6nm GaInP量子井戸と3個の6nm Al0.25Ga0.25In0.5Pバリア層で形成され、実際の層厚は42nmとなる。680nmでのGaInP層とAl0.25Ga0.25In0.5P層の屈折率はそれぞれ3.56、3.37であるため、この活性層での光路長はそれぞれ146nmとなる。
この活性層領域の半分の長さである73nmとアンドープAl0.25Ga0.25In0.5Pバリア層304およびn型Al0.35Ga0.15In0.5P層303により光路長が340nmになればよい。
アンドープAl0.25Ga0.25In0.5Pバリア層304の層厚を20nm、n型Al0.35Ga0.15In0.5P層303の層厚を60.5nmとする。屈折率はそれぞれ3.37、3.30であるので、この二つの層の光学的厚さは267nmとなり、第一活性層702の光学的厚さの半分である73nmとの合計で340nmになる。
すなわち、図8に示すように第一活性層702の中央が定在波の腹403に位置することになる。続いて第一活性層702の半分の光学的厚さ73nmとAl0.25Ga0.25In0.5P中間バリア層703の光学的厚さと第二活性層704の半分の光学的厚さ73nmでやはり340nmになればよい。
Al0.25Ga0.25In0.5P中間バリア層703の屈折率が3.37であることから、57.6nmの厚さにすれば、この中間バリア層の光学的厚さは194nmとなる。そして、第一、第二活性層702、703のそれぞれ半分の光学的厚さとの合計で340nmになる。ゆえに、第二活性層704も、図8に示すようにその中央が定在波の腹403に位置することになる。
ところで、このAlGaInP中間バリア層703の一部にMgやZnをドープしてp型にすることにより、第一活性層702への正孔の注入効率を高めてもよい。
p側は、活性層704の半分の光学的厚さである73nmとやはりアンドープAl0.25Ga0.25In0.5Pバリア層306およびp型Al0.5In0.5P層705により光学的厚さが残りの1020nmになればよい。
バリア層306として20nm、p型Al0.5In0.5P層705として273.2nmとする。屈折率はそれぞれ3.37、3.22であるので、この二つの層の光学的厚さは947nmとなり、第二活性層704の光学的厚さの半分である73nmとの合計は1020nmとなる。アンドープバリア層を含めたn層、中間バリア層を含めたふたつの活性層の合計、アンドープバリア層を含めたp層の光学的厚さはそれぞれ267nm、486nm、947nmとなり合計1700nmと2.5波長共振器の場合の光学的厚さに合致する。また、p型AlGaInP層の厚さも273.2nmと100nm以上300nm以下になる。
この共振器の両側に多層膜反射鏡を形成する。共振器と多層膜反射鏡の界面では定在波の腹になるように多層膜反射鏡はn側もp側も構成する。
具体的には、低屈折率材料、ここではn側にAlAs層801が、p側にAl0.9Ga0.1As層402が共振器に隣接し、さらにその隣に高屈折率材料、n側、p側ともにAl0.5Ga0.5As層401が並ぶように形成する。そして、それぞれ必要な数(p側36ペア、n側60ペア程度)を繰り返す。
以下、第1の実施例に示したように素子作製、あるいはアレイ化を行えばよい。
(実施例3)
第3の実施例において、本発明による赤色面発光レーザアレイを用いた応用例の一形態について説明する。
図9に、本発明による赤色面発光レーザアレイを実装した電子写真記録方式の画像形成装置の構造図を示す。図9(a)は画像形成装置の上面図であり、図9(b)は同装置の側面図である。
図9において、900は感光体、902は帯電器、904は現像器、906は転写帯電器、908は定着器、910は回転多面鏡、912はモータである。914は赤色面発光レーザアレイ、916は反射鏡、920はコリメータレンズ及び922はf−θレンズである。
図9において、モータ912は回転多面鏡910を回転駆動するものである。本実施例における回転多面鏡910は、6つの反射面を備えている。
914は記録用光源であるところの赤色面発光レーザアレイである。この赤色面発光レーザアレイ914は、レーザドライバ(図示せず)により画像信号に応じて点灯または消灯し、こうして変調されたレーザ光は、赤色面発光レーザアレイ914からコリメータレンズ920を介し回転多面鏡910に向けて照射される。
回転多面鏡910は矢印方向に回転していて、赤色面発光レーザアレイ914から出力されたレーザ光は、回転多面鏡910の回転に伴い、その反射面で連続的に出射角度を変える偏向ビームとして反射される。この反射光は、f−θレンズ922により歪曲収差の補正等を受け、反射鏡916を経て感光体900に照射され、感光体900上で主走査方向に走査される。このとき、回転多面鏡910の1面を介したビーム光の反射により、感光ドラム900の主走査方向に赤色面発光レーザアレイ914に対応した複数のライン分の画像が形成される。本実施例においては、4×8の赤色面発光レーザアレイ914を用いており、4ライン分の画像が同時に形成される。
感光ドラム900は、予め帯電器902により帯電されており、レーザ光の走査により順次露光され、静電潜像が形成される。また、感光体900は矢印方向に回転していて、形成された静電潜像は、現像器904により現像され、現像された可視像は転写帯電器906により、転写紙(図示せず)に転写される。可視像が転写された転写紙は、定着器908に搬送され、定着を行った後に機外に排出される。
なお、本実施例では、4×8赤色面発光レーザアレイを用いたが、これに限定されるものではなく、m×n赤色面発光レーザアレイ(m、n:自然数)であっても良い。
以上説明したように、本発明による赤色面発光レーザアレイを電子写真記録方式の画像形成装置に用いることにより、高速・高精細印刷を可能とする画像形成装置を得ることが可能となる。
さらに、電子写真用光源の応用など、単一横モードを達成しつつ、60℃までのレーザ動作が要求される場合がある。一般に、単一横モードを達成させるためには発光領域を狭く(4μm径以下)する必要があり、同じ電流注入量であっても、実際の電流密度はさらに高くなり、リーク電流がさらに増大する。
本発明によれば、温度特性の改善された新規な赤色面発光レーザ素子が提供されるので、極めて有用である。
なお、図11には、本発明に係る素子を利用してレーザーディスプレイを構成する場合の一例について説明する。図11において、1202は第1の偏向手段、1211は第2の偏向手段、1210は第1の偏向手段1202により第2の偏向手段の反射平面上での走査軌跡である。1212は第2の偏向手段211により偏向される光、1213はある平面、1214はある平面1213において偏向光により走査される範囲、1215はある平面1213での走査線の軌跡を模式的に表したものである。1201は本発明に係るレーザ素子である。なお、符号1203はレーザ素子1201からの出力光の進行方向を示したものである。符号1205と1206は第1の偏向手段1202により偏向されたレーザ光の進行方向を示している。
第1の偏向手段1202、第2の偏向手段1210はそれぞれが光を水平方向、垂直方向に偏向させる。こうして偏向光の広がる範囲が2次元領域になる。
(実施例4)
以下に、本発明の第4の実施例について説明する。
この実施例でも多重量子井戸構造をふたつ用いる周期利得構造を用いている。これにより光閉じ込め率を大きくして、モード利得を大きくし、高い発光出力が得られやすくなる。
さらに、上記周期利得構造に加え、p型AlGaInP層の厚さを100nm以上350nm以下にするため、図10に示すように共振器長として2波長共振器を用いる。
以下、この図10を用いて共振器の層構造について説明する。
共振波長680nmであるため、共振器長が2波長とすると、その光学的厚さは1360nmとなる。共振器内はすべてAlGaInP層で形成されるが活性層、バリア層、スペーサ層など様々な組成のAlGaInPが使用されるため、その屈折率に応じて層厚を決定し、2波長共振器長にさせる必要がある。また、光とキャリアの相互作用を最大にするために活性層702、704を内部光強度定在波の腹403に配置する必要がある。すなわち、1360nm内の1/4の位置と1/2の位置に活性層を配置し、短い側(図10では左側)にn層を、長い側(図10では右側)にp層を配置する。
上記の条件を考慮しながら、実際の例について下記に示す。
第一活性層702および第二活性層704は4個の6nm GaInP量子井戸と3個の6nm Al0.25Ga0.25In0.5Pバリア層で形成され、実際の層厚は42nmとなる。
波長680nmでのGaInP層とAl0.25Ga0.25In0.5P層の屈折率はそれぞれ3.56、3.37であるため、この活性層での光路長はそれぞれ146nmとなる。この活性層領域の半分の長さである73nmとアンドープAl0.25Ga0.25In0.5Pバリア層304およびn型Al0.35Ga0.15In0.5P層303により光路長が340nmになればよい。
アンドープAl0.25Ga0.25In0.5Pバリア層304の層厚を20nm、n型Al0.35Ga0.15In0.5P層303の層厚を60.5nmとする。屈折率はそれぞれ3.37、3.30であるので、この二つの層の光学的厚さは267nmとなり、第一活性層702の光学的厚さの半分である73nmとの合計で340nmになる。すなわち、図10に示すように第一活性層702の中央が定在波の腹403に位置することになる。続いて第一活性層702の半分の光学的厚さ73nmとAl0.25Ga0.25In0.5P中間バリア層703の光学的厚さと第二活性層704の半分の光学的厚さ73nmでやはり340nmになればよい。Al0.25Ga0.25In0.5P中間バリア層703の屈折率が3.37であることから、57.6nmの厚さにすれば、この中間バリア層の光学的厚さは194nmとなる。こうして、第一、第二活性層702、703のそれぞれ半分の光学的厚さとの合計で340nmになる。ゆえに、第二活性層704も、図10に示すようにその中央が定在波の腹403に位置することになる。ところで、このAlGaInP中間バリア層703の一部にMgやZnをドープしてp型にしてやり、第一活性層702への正孔の注入効率を高めてもよい。
p側は、活性層704の半分の光学的厚さである73nmとやはりアンドープAl0.25Ga0.25In0.5Pバリア層306およびp型Al0.5In0.5P層705により光学的厚さが残りの680nmになればよい。バリア層306として20nm、p型Al0.5In0.5P層705として167.6nmとすると、屈折率はそれぞれ3.37、3.22であることから、この二つの層の光学的厚さは607nmである。そして、この607nmに、第二活性層704の光学的厚さの半分である73nmとの合計は680nmとなる。アンドープバリア層を含めたn層、中間バリア層を含めたふたつの活性層の合計、アンドープバリア層を含めたp層の光学的厚さはそれぞれ267nm、486nm、607nmとなり合計1360nmと2波長共振器の場合の光学的厚さに合致する。また、p型AlGaInP層の厚さも167.6nmと100nm以上300nm以下になる。この共振器の両側に多層膜反射鏡を形成する。共振器と多層膜反射鏡の界面では定在波の腹になるように多層膜反射鏡はn側もp側も構成する。具体的には、低屈折率材料、ここではn側にAlAs層801が、p側にAl0.9Ga0.1As層402が共振器に隣接し、さらにその隣に高屈折率材料、n側、p側ともにAl0.5Ga0.5As層401が並ぶように形成する。そして、それぞれ必要な数(p側36ペア、n側60ペア程度)を繰り返す。
図12には、本実施例に記載の多層膜構成により作製した赤色面発光レーザに関する環境温度と最大出力の関係を実線により示している。具体的には図10及びその説明文で説明した構成であり、p型半導体スペーサ層705としては、p型Al0.5In0.5P層705(層厚167.6nm)としている。但し、図10における801層としては、AlAs層の替わりにAl0.9Ga0.1Asを用いている。なお、図12の点線で示した例は、従来のレーザとして、p型半導体スペーサ層の組成をp型Al0.35Ga0.15In0.5P層、その層厚を60.5nmとしたものである。尚、その他の層構成は、図12の実線で示される特性を示す素子と同じにした場合の素子の特性を示している。
上述したように、環境温度が高くなればリーク電流が増え、光出力は小さくなる傾向にある。従来の素子(図12の点線)では環境温度が75.2℃で発振に到らなくなるが、本実施例のレーザ素子では84.1℃まで発振に可能であることが分かった。また、60℃における両者の最大出力を比較すると、本発明の素子は従来のものより約40%光出力が大きいことが分かった。すなわち、従来よりもリーク電流が低減され、また高温動作可能な赤色面発光レーザが実現できたことが分かる。
なお、基板側に位置する下部DBRを構成する低屈折率層として、熱抵抗の低いAlAs層を採用することもできる。斯かる場合、レーザ素子内で発生した熱を逃げ易くできるので、素子内部における熱上昇を極力抑えた状況を実現できる。
本発明に適用できる様々なp型スペーサ層厚の例を表1に示す。表1は、p型スペーサ層の層厚を100nm以上350nm以下の範囲内の値で実現するための活性層、p側アンドープバリア層、n型スペーサ層、n側アンドープバリア層、共振器長に関して、16種類の例を示したものである。
ここでは、
p型スペーサ層としてAl0.5In0.5P層、
n型スペーサ層としてAl0.35Ga0.15In0.5P層、
アンドープバリア層としてp側、n側ともにAl0.25Ga0.25In0.5P層を用いている。
活性層として、四重Ga0.5In0.5P/Al0.25Ga0.25In0.5P量子井戸を用いた場合には42nmの層厚になる。一方、周期利得構造を用いると、二重周期利得構造では、中間アンドープバリア層も含めて141.6nmになり、三重周期利得構造ではふたつの中間アンドープバリア層も含めて241.2nmになる。
実施例1、2、4ではp型スペーサ層厚が167.6nmと273.2nmの二種類のみであった。この表1が示すように、共振器長、活性層厚、アンドープバリア層、n型スペーサ層厚を適宜調整することで、p型スペーサ層厚を所望の値の範囲(100nm以上350nm以下)にすることができる。
共振器長は、設計波長の半波長の整数倍であること、及び活性層の中心は光分布の腹(内部光強度定在波の腹)と一致するように配置すること、という2つの条件を付した場合には、p型スペーサ層厚は連続した値をとらない。表1で示すように、アンドープバリア層の層厚を調整することで、本発明で規定するp型スペーサ層厚に調整することが可能である。
Figure 0004343986
赤色面発光レーザ素子の活性層およびp型半導体スペーサ層およびp型半導体多層膜領域のバンド端のラインナップを示す図である。 p型半導体スペーサ層厚に対する規格化リーク電流(図2(a))および共振器内部での光損失(図2(b))の関係を示したものである。 本発明の第1の実施形態に係る赤色面発光レーザの層構成を示すための模式的断面図である。 実施例1における共振器構造を示す模式的断面図である。 実施例1におけるレーザ素子を示す模式的断面図である。 非特許文献2に記載のバンドダイアグラムを引用して記載したものである。 実施例2における赤色面発光レーザの層構成を示す模式的断面図である。 実施例2における共振器構造を示す模式的断面図である。 本発明に係る画像形成装置を説明するための模式図である。 実施例4における共振器構造を示す模式的断面図である。 本発明に係る画像表示装置を説明するための模式図である。 実施例4において得られるレーザの温度特性を示すグラフである。
符号の説明
301 基板
302 第1の反射鏡
305 活性層
307 p型半導体スペーサ層
308 第2の反射鏡
401 Al0.5Ga0.5As高屈折率層
402 Al0.9Ga0.1As低屈折率層
403 内部電界強度定在波の腹
501 n側電極
502 酸化狭窄層
503 誘電体膜
504 p側電極
701 n型AlAs/Al0.5Ga0.5As多層膜反射鏡
702 第一Ga0.56In0.44P/Al0.25Ga0.25In0.5P量子井戸活性層
703 Al0.25Ga0.25In0.5P中間バリア層
704 第二Ga0.56In0.44P/Al0.25Ga0.25In0.5P量子井戸活性層
705 p型Al0.5In0.5Pスペーサ層
801 AlAs低屈折率層
900 感光体
902 帯電器
904 現像器
906 転写帯電器
908 定着器
910 回転多面鏡
912 モータ
914 赤色面発光レーザアレイ
916 反射鏡
920 コリメータレンズ
922 f−θレンズ

Claims (17)

  1. 積層膜を含み構成される赤色面発光レーザ素子であって、
    n型半導体多層膜を含み構成される第1の反射鏡、
    AlAsまたはAlGaAsからなる低屈折率層と、該低屈折率層よりも高い屈折率を有するAlGaAsからなる高屈折率層とが積層されたp型半導体多層膜を含み構成される第2の反射鏡、
    前記第1の反射鏡と前記第2の反射鏡との間に介在する活性層、
    前記活性層と前記第2の反射鏡との間に介在し、且つ厚さが100nm以上350nm以下のAl、In、Pを含むp型半導体スペーサ層、
    前記活性層と前記第1の反射鏡との間に介在しているn型半導体スペーサ層、を有し、
    前記活性層と、前記p型半導体スペーサ層と、前記n型半導体スペーサ層とを含み共振器が構成されており、前記活性層が、前記共振器の共振器長方向の中央に位置していない非対称構造であり、
    前記p型半導体スペーサ層の厚さが、前記n型半導体スペーサ層の厚さよりも厚いことを特徴とする赤色面発光レーザ素子。
  2. 前記p型半導体スペーサ層の厚さが150nm以上300nm以下であることを特徴とする請求項1に記載の赤色面発光レーザ素子。
  3. 前記p型半導体スペーサ層は、AlGaIn1−x−yP(0.45≦x+y≦0.55、0.25≦x≦0.55、0≦y≦0.30)を含み構成されていることを特徴とする請求項1または2に記載の赤色面発光レーザ素子。
  4. 前記p型半導体スペーサ層は、AlGaIn1−x−yP(0.50≦x+y≦0.52、0.35≦x≦0.52、0≦y≦0.17)を含み構成されていることを特徴とする請求項3に記載の赤色面発光レーザ素子。
  5. 前記第2の反射鏡は、GaAsに格子整合する半導体材料で構成されていることを特徴とする請求項1から4のいずれか1項に記載の赤色面発光レーザ素子。
  6. 前記活性層が、GaInPからなる層とAlGaInPからなる層とを含み構成される量子井戸活性層である請求項1から5のいずれか1項に記載の赤色面発光レーザ素子。
  7. 前記p型半導体スペーサ層と前記活性層との間に別のスペーサ層を有することを特徴とする請求項1からのいずれか1項に記載の赤色面発光レーザ素子。
  8. 前記第1の反射鏡と前記第2の反射鏡との間に介在する前記活性層の数が、複数であることを特徴とする請求項1からのいずれか1項に記載の赤色面発光レーザ素子。
  9. 前記活性層を含み構成される共振器の共振器長が、1.5波長共振器長以上、4波長共振器長以下であることを特徴とする請求項1からのいずれか1項に記載の赤色面発光レーザ素子。
  10. 請求項1からのいずれか1項に記載される前記赤色面発光レーザ素子と、該レーザ素子から出力されるレーザ光を反射して走査するための光偏向器とを有することを特徴とする画像形成装置。
  11. 前記光偏向器により偏向された光により静電潜像を形成するための感光体と、帯電器と、現像器と、定着器とを含み構成される請求項10に記載の画像形成装置。
  12. 積層膜を含み構成される赤色面発光レーザ素子であって、
    第1の反射鏡、
    AlAsまたはAlGaAsからなる低屈折率層と、該低屈折率層よりも高い屈折率を有するAlGaAsからなる高屈折率層とが積層されたp型半導体多層膜を含み構成される第2の反射鏡、
    前記第1の反射鏡と前記第2の反射鏡との間に介在する活性層、
    前記活性層と前記第2の反射鏡との間に介在し、且つ厚さが100nm以上350nm以下のAl、In、Pを含むp型半導体スペーサ層、を有し、
    前記p型半導体スペーサ層と前記活性層との間に別のスペーサ層を有することを特徴とする赤色面発光レーザ素子。
  13. 前記別のスペーサ層が、前記p型半導体スペーサ層よりも不純物濃度の低い半導体層であることを特徴とする請求項12に記載の赤色面発光レーザ素子。
  14. 前記別のスペーサ層が、不純物がドープされていない半導体層であることを特徴とする請求項12に記載の赤色面発光レーザ素子。
  15. 請求項12から14のいずれか1項に記載される前記赤色面発光レーザ素子と、該レーザ素子からの光により静電潜像を形成するための感光体を有することを特徴とする画像形成装置。
  16. 積層膜を含み構成される赤色面発光レーザ素子であって、
    n型半導体多層膜を含み構成される第1の反射鏡、
    AlAsまたはAlGaAsからなる低屈折率層と、該低屈折率層よりも高い屈折率を有するAlGaAsからなる高屈折率層とが積層されたp型半導体多層膜を含み構成される第2の反射鏡、
    前記第1の反射鏡と前記第2の反射鏡との間に介在する活性層、
    前記活性層と前記第2の反射鏡との間に介在し、且つ厚さが100nm以上350nm以下のAl、In、Pを含むp型半導体スペーサ層、
    前記活性層と前記第1の反射鏡との間に介在しているn型半導体スペーサ層、を有し、
    前記活性層と、前記p型半導体スペーサ層と、前記n型半導体スペーサ層とを含み共振器が構成されており、前記活性層が、前記共振器の共振器長方向の中央に位置していない非対称構造であることを特徴とする赤色面発光レーザ素子。
  17. 前記請求項16に記載される赤色面発光レーザ素子と、該レーザ素子からの光により静電潜像を形成するための感光体を有することを特徴とする画像形成装置。
JP2008024485A 2007-02-14 2008-02-04 赤色面発光レーザ素子、画像形成装置、及び画像表示装置 Active JP4343986B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2008024485A JP4343986B2 (ja) 2007-02-14 2008-02-04 赤色面発光レーザ素子、画像形成装置、及び画像表示装置
US12/028,562 US7809040B2 (en) 2007-02-14 2008-02-08 Red surface emitting laser element, image forming device, and image display apparatus
EP08002642A EP1959529B1 (en) 2007-02-14 2008-02-13 Red surface emitting laser element, image forming device, and image display apparatus
CN2008100056552A CN101247026B (zh) 2007-02-14 2008-02-14 红色表面发射激光器元件、图像形成装置和图像显示设备
KR1020080013251A KR100970324B1 (ko) 2007-02-14 2008-02-14 적색 면 발광 레이저 소자, 화상형성장치 및 화상표시장치
US12/487,619 US8116344B2 (en) 2007-02-14 2009-06-18 Red surface emitting laser element, image forming device, and image display apparatus
US12/873,071 US20100322669A1 (en) 2007-02-14 2010-08-31 Red surface emitting laser element, image forming device, and image display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007033788 2007-02-14
JP2008024485A JP4343986B2 (ja) 2007-02-14 2008-02-04 赤色面発光レーザ素子、画像形成装置、及び画像表示装置

Publications (2)

Publication Number Publication Date
JP2008227469A JP2008227469A (ja) 2008-09-25
JP4343986B2 true JP4343986B2 (ja) 2009-10-14

Family

ID=39845666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008024485A Active JP4343986B2 (ja) 2007-02-14 2008-02-04 赤色面発光レーザ素子、画像形成装置、及び画像表示装置

Country Status (3)

Country Link
JP (1) JP4343986B2 (ja)
KR (1) KR100970324B1 (ja)
CN (2) CN101247026B (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5434201B2 (ja) * 2009-03-23 2014-03-05 ソニー株式会社 半導体レーザ
JP5590829B2 (ja) * 2009-07-03 2014-09-17 キヤノン株式会社 面発光レーザ、面発光レーザアレイ及び画像形成装置
JP5355276B2 (ja) * 2009-07-28 2013-11-27 キヤノン株式会社 面発光レーザ
JP2011135039A (ja) * 2009-11-24 2011-07-07 Murata Mfg Co Ltd 面発光素子
JP5531584B2 (ja) * 2009-11-27 2014-06-25 株式会社リコー 面発光型レーザーの製造方法、面発光型レーザー、面発光型レーザーアレイ素子、光走査装置及び画像形成装置
JP2011166108A (ja) * 2010-01-15 2011-08-25 Ricoh Co Ltd 面発光レーザ素子、面発光レーザアレイ、光走査装置及び画像形成装置
JP5765892B2 (ja) * 2010-05-27 2015-08-19 キヤノン株式会社 垂直共振器型面発光レーザ、それを用いた画像形成装置
JP5735765B2 (ja) * 2010-08-06 2015-06-17 キヤノン株式会社 面発光レーザ、面発光レーザアレイ、面発光レーザアレイを光源とする表示装置、プリンタヘッドおよびプリンタ
JP5824802B2 (ja) * 2010-12-10 2015-12-02 富士ゼロックス株式会社 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置
DE102011005422B4 (de) * 2011-03-11 2013-01-31 Ihp Gmbh - Innovations For High Performance Microelectronics / Leibniz-Institut Für Innovative Mikroelektronik Elektrooptischer Modulator
JP5787071B2 (ja) * 2011-07-04 2015-09-30 株式会社リコー 面発光レーザ素子、光走査装置及び画像形成装置
JP5932254B2 (ja) * 2011-07-13 2016-06-08 キヤノン株式会社 垂直共振器型面発光レーザ
JP5978669B2 (ja) * 2012-03-15 2016-08-24 富士ゼロックス株式会社 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置
CN102637715B (zh) * 2012-05-07 2015-07-22 中国科学院上海高等研究院 图像传感器
JP6039324B2 (ja) * 2012-09-10 2016-12-07 キヤノン株式会社 レーザ共振器および垂直共振器型面発光レーザ
JP2016111131A (ja) * 2014-12-04 2016-06-20 学校法人 名城大学 周期利得活性層を有する窒化物半導体発光素子
JP2019033152A (ja) * 2017-08-07 2019-02-28 住友電気工業株式会社 垂直共振型面発光レーザ、垂直共振型面発光レーザを作製する方法
JP6954562B2 (ja) * 2017-09-15 2021-10-27 セイコーエプソン株式会社 発光装置およびその製造方法、ならびにプロジェクター
JP2019079911A (ja) * 2017-10-24 2019-05-23 シャープ株式会社 半導体レーザ素子
CN114976862A (zh) * 2018-01-09 2022-08-30 苏州乐琻半导体有限公司 表面发射激光器器件和包括其的发光器件
KR102084067B1 (ko) * 2018-02-02 2020-03-04 엘지이노텍 주식회사 표면발광 레이저 소자 및 이를 포함하는 발광장치
WO2019187809A1 (ja) * 2018-03-28 2019-10-03 ソニー株式会社 垂直共振器型面発光レーザ素子及び電子機器
JP2023043084A (ja) * 2021-09-15 2023-03-28 スタンレー電気株式会社 垂直共振器型発光素子
JP2024131244A (ja) * 2023-03-15 2024-09-30 スタンレー電気株式会社 垂直共振器型発光素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04249368A (ja) * 1991-02-04 1992-09-04 Nippon Telegr & Teleph Corp <Ntt> 面型半導体光スイッチ
US5963568A (en) 1996-07-01 1999-10-05 Xerox Corporation Multiple wavelength, surface emitting laser with broad bandwidth distributed Bragg reflectors
JP2000299493A (ja) * 1999-04-15 2000-10-24 Daido Steel Co Ltd 半導体面発光素子
JP4168202B2 (ja) 1999-11-30 2008-10-22 株式会社リコー 垂直空洞半導体面発光レーザ素子および該レーザ素子を用いた光学システム

Also Published As

Publication number Publication date
KR20080076784A (ko) 2008-08-20
JP2008227469A (ja) 2008-09-25
KR100970324B1 (ko) 2010-07-15
CN101247026A (zh) 2008-08-20
CN101247026B (zh) 2011-01-26
CN101621180A (zh) 2010-01-06

Similar Documents

Publication Publication Date Title
JP4343986B2 (ja) 赤色面発光レーザ素子、画像形成装置、及び画像表示装置
US7809040B2 (en) Red surface emitting laser element, image forming device, and image display apparatus
US7796662B2 (en) Vertical cavity surface emitting laser and image forming apparatus using the vertical cavity surface emitting laser
US8265115B2 (en) Surface emitting laser, method for manufacturing surface emitting laser, and image forming apparatus
JP5510899B2 (ja) 面発光レーザ素子、面発光レーザアレイ、光走査装置、及び画像形成装置
US7839913B2 (en) Surface emitting laser, surface emitting laser array, and image forming apparatus including surface emitting laser
JP4300245B2 (ja) 多層膜反射鏡を備えた光学素子、面発光レーザ
JP4494501B2 (ja) 面発光レーザ、面発光レーザアレイ、面発光レーザを用いた画像形成装置
JP2011159943A (ja) 面発光レーザ素子、面発光レーザアレイ、光走査装置及び画像形成装置
JP5824802B2 (ja) 面発光型半導体レーザ、面発光型半導体レーザ装置、光伝送装置および情報処理装置
JP2011166108A (ja) 面発光レーザ素子、面発光レーザアレイ、光走査装置及び画像形成装置
JP2011035115A (ja) 面発光レーザ、面発光レーザアレイ、および光学機器
JP2016157910A (ja) 面発光型半導体レーザ、面発光型半導体レーザアレイ、面発光型半導体レーザ装置、光伝送装置および情報処理装置
JP2011114227A (ja) 面発光型レーザーの製造方法、面発光型レーザー、面発光型レーザーアレイ素子、光走査装置及び画像形成装置
JP2009206480A (ja) 面発光レーザ、面発光レーザアレイ、光走査装置、画像形成装置、光伝送モジュール及び光伝送システム
JP5765892B2 (ja) 垂直共振器型面発光レーザ、それを用いた画像形成装置
US8374205B2 (en) Vertical cavity surface emitting laser and image forming apparatus
JP4943052B2 (ja) 面発光レーザ素子、面発光レーザアレイ、光走査装置、画像形成装置及び光通信システム
JP2009283888A (ja) 面発光レーザ素子、面発光レーザアレイ、光走査装置、及び画像形成装置
JP2005251860A (ja) 面発光レーザ装置
JP5721051B2 (ja) 面発光レーザ素子、面発光レーザアレイ、光走査装置及び画像形成装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4343986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4