WO2024121910A1 - 半導体製造装置用部材 - Google Patents

半導体製造装置用部材 Download PDF

Info

Publication number
WO2024121910A1
WO2024121910A1 PCT/JP2022/044764 JP2022044764W WO2024121910A1 WO 2024121910 A1 WO2024121910 A1 WO 2024121910A1 JP 2022044764 W JP2022044764 W JP 2022044764W WO 2024121910 A1 WO2024121910 A1 WO 2024121910A1
Authority
WO
WIPO (PCT)
Prior art keywords
plug
hole
semiconductor manufacturing
ceramic plate
manufacturing equipment
Prior art date
Application number
PCT/JP2022/044764
Other languages
English (en)
French (fr)
Inventor
夏樹 平田
信也 吉田
達也 久野
靖也 井上
太朗 宇佐美
憲司 米本
碧惟 齋藤
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to PCT/JP2022/044764 priority Critical patent/WO2024121910A1/ja
Priority to US18/346,951 priority patent/US20240186170A1/en
Publication of WO2024121910A1 publication Critical patent/WO2024121910A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks

Definitions

  • the present invention relates to components for semiconductor manufacturing equipment.
  • the electrostatic chuck in Patent Document 1 is constructed by inserting a truncated cone-shaped porous plug into a bottomed recess in a truncated cone space provided on the underside of a ceramic plate and fixing it with an adhesive, and bonding the underside of the ceramic plate to a metal base plate.
  • the electrostatic chuck in Patent Document 2 is constructed by sintering a cylindrical porous plug into a through hole in a cylindrical space formed in the ceramic plate, and bonding the underside of the ceramic plate to a metal base plate.
  • the present invention was made to solve these problems, and its main objective is to make it easier to replace plugs that allow gas to flow in both vertical directions, while also making it less likely for discharge to occur around the plug.
  • the semiconductor manufacturing equipment member of the present invention comprises: a ceramic plate having a wafer mounting surface on an upper surface thereof; a plug arrangement hole that passes through the ceramic plate in the vertical direction and has a truncated cone space whose upper opening has an area larger than that of a lower opening; a plug having a truncated cone shape, the plug being disposed in the plug disposition hole, allowing gas to flow in the vertical direction, and having an upper surface area larger than a lower surface area; an adhesive layer provided between an inner circumferential surface of the plug placement hole and an outer circumferential surface of the plug; a conductive base plate bonded to a lower surface of the ceramic plate via a bonding layer; a gas supply path provided in the base plate and the bonding layer for supplying a gas to the plug; It is equipped with the following:
  • the adhesive layer can be cut, melted or softened to pull the plug upward out of the plug placement hole in the ceramic plate.
  • a new plug can be inserted from above the plug placement hole and glued to the plug placement hole. This makes it easy to replace the plug.
  • the adhesive is less likely to run off because these surfaces are tapered. Therefore, air bubbles (air bubbles large enough to cause discharge when processing a wafer with plasma) are less likely to occur in the adhesive layer compared to when these surfaces are vertical. Therefore, discharge is less likely to occur around the plug (adhesive layer) when processing a wafer with plasma.
  • up/down, left/right, front/back are merely relative positional relationships. Therefore, when the orientation of a semiconductor manufacturing equipment component is changed, up/down may become left/right and left/right may become up/down, but such cases are also within the technical scope of this invention.
  • a space that allows the plug to enter may be provided at a position of the gas supply path that faces the plug. In this way, even if there is a manufacturing error in the plug placement hole or the plug when placing the plug in the plug placement hole, the manufacturing error can be absorbed by the space that allows the plug to enter.
  • the elevation angle of the inner peripheral surface of the plug placement hole and the elevation angle of the outer peripheral surface of the plug are preferably 65° or more and 85° or less. In this way, when an adhesive layer is provided between the inner peripheral surface of the plug placement hole and the outer peripheral surface of the plug, the adhesive tends to spread evenly, so that no or almost no air bubbles are generated in the adhesive layer. This enhances the effect of preventing discharge around the plug (adhesive layer).
  • the adhesive layer does not have bubbles whose maximum vertical length exceeds 0.2 mm. If the maximum vertical length of the bubbles exceeds 0.2 mm, there is a risk of discharge occurring inside the bubbles when the wafer is treated with plasma, but if the maximum vertical length of the bubbles does not exceed 0.2 mm, there is almost no risk of discharge occurring inside the bubbles.
  • the adhesive layer does not have any air bubbles. This further enhances the effect of preventing discharge around the plug (adhesive layer).
  • FIG. 2 is a longitudinal sectional view of a semiconductor manufacturing equipment member 10.
  • FIG. 2 is a partially enlarged view of FIG. 3A to 3C are diagrams showing the manufacturing process of the semiconductor manufacturing equipment member 10.
  • FIG. 2 is a longitudinal sectional view of a semiconductor manufacturing equipment member 110.
  • FIG. 1 is a vertical cross-sectional view of a semiconductor manufacturing equipment component 10
  • FIG. 2 is a plan view of a ceramic plate 20
  • FIG. 3 is an enlarged view of a portion of FIG. 1.
  • the semiconductor manufacturing equipment component 10 comprises a ceramic plate 20, a plug placement hole 24, a base plate 30, a metal bonding layer 40, and a porous plug 50.
  • the ceramic plate 20 is a ceramic circular plate (e.g., 300 mm in diameter, 5 mm in thickness) made of alumina sintered body or aluminum nitride sintered body.
  • the upper surface of the ceramic plate 20 is the wafer mounting surface 21.
  • the ceramic plate 20 has an electrode 22 built in.
  • the wafer mounting surface 21 of the ceramic plate 20 has a seal band 21a formed along the outer edge, and a plurality of circular small protrusions 21b formed on the entire surface.
  • the seal band 21a and the circular small protrusions 21b have the same height, for example, several ⁇ m to several tens of ⁇ m.
  • the electrode 22 is a flat mesh electrode used as an electrostatic electrode, and a DC voltage can be applied to it.
  • the wafer W When a DC voltage is applied to the electrode 22, the wafer W is attracted and fixed to the wafer mounting surface 21 (specifically, the upper surface of the seal band 21a and the upper surface of the circular small protrusions 21b) by electrostatic attraction force, and when the application of the DC voltage is released, the wafer W is released from the wafer mounting surface 21.
  • the portion of the wafer mounting surface 21 on which the seal band 21a and small circular protrusions 21b are not provided is referred to as the reference surface 21c.
  • the plug arrangement hole 24 is a through hole that penetrates the ceramic plate 20 in the vertical direction and faces the gas hole 34 of the base plate 30.
  • the plug arrangement hole 24 penetrates the electrode 22 in the vertical direction, but the electrode 22 is not exposed on the inner surface of the plug arrangement hole 24.
  • the plug arrangement hole 24 is a tapered hole having a truncated cone space with an upper opening area larger than the lower opening area.
  • the elevation angle ⁇ ( Figure 3) of the inner surface of the plug arrangement hole 24 is preferably 55° to 85°, and more preferably 65° to 85°.
  • the plug arrangement holes 24 are provided at multiple locations on the ceramic plate 20 (e.g., multiple locations equally spaced along the circumferential direction).
  • the base plate 30 is a disk with good thermal conductivity (a disk with the same diameter as or larger than the ceramic plate 20).
  • a refrigerant flow path 32 in which a refrigerant (e.g., an electrically insulating liquid such as a fluorine-based inert liquid) circulates and a gas hole 34 for supplying gas to the porous plug 50 are formed.
  • the gas hole 34 is provided to penetrate the base plate 30 in the vertical direction and has a large diameter portion 34a at the top.
  • the large diameter portion 34a includes the lower opening of the plug arrangement hole 24 in a plan view.
  • the refrigerant flow path 32 is formed in a single stroke from the inlet to the outlet over the entire surface of the base plate 30 in a plan view.
  • Examples of materials for the base plate 30 include composite materials and metals.
  • Examples of composite materials include composite materials of metal and ceramic.
  • Examples of composite materials of metal and ceramic include metal matrix composite materials (metal matrix composites (MMC)) and ceramic matrix composite materials (ceramic matrix composites (CMC)).
  • MMC metal matrix composites
  • CMC ceramic matrix composites
  • Specific examples of such composite materials include materials containing Si, SiC, and Ti, and materials in which a porous SiC body is impregnated with Al and/or Si.
  • a material containing Si, SiC, and Ti is called SiSiCTi
  • AlSiC a material in which a porous SiC body is impregnated with Al
  • SiSiC a material in which a porous SiC body is impregnated with Si
  • Examples of metals include Mo.
  • the base plate 30 is also used as an RF electrode. Specifically, an upper electrode (not shown) is disposed above the wafer mounting surface 21, and when high-frequency power is applied between the parallel plate electrodes consisting of the upper electrode and the base plate 30, plasma is generated.
  • the metal bonding layer 40 bonds the lower surface of the ceramic plate 20 and the upper surface of the base plate 30.
  • the metal bonding layer 40 is formed, for example, by TCB (thermal compression bonding).
  • TCB refers to a known method in which a metal bonding material is sandwiched between two members to be bonded, and the two members are pressurized and bonded while being heated to a temperature below the solidus temperature of the metal bonding material.
  • the metal bonding layer 40 may be a layer formed of solder or metal brazing material.
  • the metal bonding layer 40 has a through hole 42. The through hole 42 is provided at a position facing the large diameter portion 34a of the gas hole 34.
  • the through hole 42 is provided coaxially with the large diameter portion 34a, and the diameter of the through hole 42 is the same as the diameter of the large diameter portion 34a.
  • “matching” includes not only a case of perfect matching, but also a case of substantial matching (for example, a case within the range of tolerance) (the same applies below).
  • the gas hole 34 and the through hole 42 correspond to the gas supply path of the present invention.
  • the porous plug 50 is fixed in the plug placement hole 24.
  • the porous plug 50 is an electrically insulating member that allows gas to flow in the vertical direction.
  • the porosity of the porous plug 50 is preferably 30% or more, and the average pore diameter is preferably 20 ⁇ m or more.
  • the porous plug 50 is a truncated cone-shaped member whose upper surface area is larger than the lower surface area.
  • the elevation angle ⁇ of the outer peripheral surface of the porous plug 50 is the same as the elevation angle ⁇ of the inner peripheral surface of the plug placement hole 24.
  • An adhesive layer 60 is provided between the outer peripheral surface of the porous plug 50 and the inner peripheral surface of the plug placement hole 24.
  • the adhesive layer 60 does not have bubbles of a size that would cause discharge when processing the wafer W with plasma (e.g., bubbles with a vertical height of 2 mm or more).
  • materials for the adhesive layer 60 include acrylic resin, silicone resin, and epoxy resin.
  • materials for the porous plug 50 include ceramics, and specifically, a porous body of the same material as the ceramic plate 20 can be used.
  • the upper surface 50a of the porous plug 50 is exposed to the upper opening of the plug placement hole 24 and is flush with the reference surface 21c. In this specification, “same” includes cases where they are completely identical, as well as cases where they are substantially identical (for example, within the tolerance range) (the same applies below).
  • the lower surface 50b of the porous plug 50 is exposed to the lower opening of the plug placement hole 24.
  • the semiconductor manufacturing equipment member 10 is installed in a chamber (not shown), and the wafer W is placed on the wafer placement surface 21. Then, the chamber is depressurized by a vacuum pump to adjust the chamber to a predetermined degree of vacuum, and a direct current voltage is applied to the electrode 22 of the ceramic plate 20 to generate an electrostatic adsorption force, and the wafer W is adsorbed and fixed to the wafer placement surface 21 (specifically, the upper surface of the seal band 21a or the upper surface of the circular small protrusion 21b).
  • the chamber is made into a reaction gas atmosphere of a predetermined pressure (for example, several tens to several hundreds of Pa), and in this state, a high-frequency voltage is applied between an upper electrode (not shown) provided on the ceiling part of the chamber and the base plate 30 of the semiconductor manufacturing equipment member 10 to generate plasma.
  • a coolant is circulated through the coolant flow path 32 of the base plate 30.
  • a backside gas is introduced into the gas hole 34 from a gas cylinder (not shown).
  • a thermally conductive gas for example, helium, etc.
  • the backside gas is supplied and sealed in the space between the back surface of the wafer W and the reference surface 21c of the wafer mounting surface 21 through the gas holes 34, the through holes 42, and the porous plug 50.
  • This backside gas ensures efficient thermal conduction between the wafer W and the ceramic plate 20.
  • FIG. 4 is a manufacturing process diagram of the semiconductor manufacturing equipment component 10.
  • the ceramic plate 20 incorporates an electrode 22 and has a plug placement hole 24.
  • the base plate 30 has a coolant flow path 32 and a gas hole 34.
  • the gas hole 34 has a large diameter portion 34a at the top.
  • the metal bonding material 90 has a through hole 92 at a position opposite the large diameter portion 34a of the gas hole 34.
  • a metal bonding material 90 is sandwiched between the lower surface of the ceramic plate 20 and the upper surface of the base plate 30 to form a laminate.
  • the plug placement hole 24 of the ceramic plate 20, the through hole 92 of the metal bonding material 90, and the gas hole 34 of the base plate 30 are stacked so that they are coaxial.
  • the laminate is pressed and bonded at a temperature below the solidus temperature of the metal bonding material 90 (for example, a temperature equal to or higher than the solidus temperature minus 20°C and lower than the solidus temperature), and then returned to room temperature (TCB).
  • the metal bonding material 90 and the through hole 92 become the metal bonding layer 40 and the through hole 42, respectively, and a bonded body 94 in which the ceramic plate 20 and the base plate 30 are bonded by the metal bonding layer 40 is obtained ( Figure 4B).
  • an Al-Mg-based bonding material or an Al-Si-Mg-based bonding material can be used as the metal bonding material 90. It is preferable to use a metal bonding material 90 with a thickness of about 100 ⁇ m.
  • a porous plug 50 having a truncated cone shape is prepared ( Figure 4B).
  • the height of the porous plug 50 is the same as the depth of the plug placement hole 24, which is a truncated cone space (i.e., the height of the ceramic plate 20).
  • An adhesive 70 is applied to the outer peripheral surface of the porous plug 50 along the circumferential direction for at least one revolution.
  • the adhesive 70 may be an organic adhesive or an inorganic adhesive.
  • the porous plug 50 to which the adhesive 70 has been applied is inserted into the plug placement hole 24. At this time, the porous plug 50 is rotated or moved up and down so that the adhesive 70 spreads along the outer peripheral surface of the porous plug 50 and the inner peripheral surface of the plug placement hole 24. This allows the adhesive 70 to be uniformly spread in the gap between the outer peripheral surface of the porous plug 50 and the inner peripheral surface of the plug placement hole 24 without trapping air bubbles.
  • the outer peripheral surface of the porous plug 50 and the inner peripheral surface of the plug placement hole 24 are joined via the adhesive 70.
  • the upper surface of the porous plug 50 coincides with the upper surface (reference surface 21c) of the ceramic plate 20.
  • a plurality of porous plugs 50 with different heights are prepared. Therefore, according to the actual height of the ceramic plate 20 (which varies from one to another due to manufacturing errors), one is selected from the plurality of porous plugs 50 with different heights that will coincide with the upper surface (reference surface 21c) of the ceramic plate 20 when the porous plug 50 is inserted into the plug placement hole 24.
  • the adhesive 70 hardens to become an adhesive layer 60, and the semiconductor manufacturing equipment member 10 is obtained (FIG. 4C).
  • the adhesive layer 60 can be cut, melted or softened to pull the porous plug 50 upward from the plug arrangement hole 24. Also, a new porous plug 50 can be inserted from above the plug arrangement hole 24 and adhered to the plug arrangement hole 24. Therefore, the porous plug 50 can be easily replaced.
  • a space (through hole 42 and large diameter portion 34a) is provided that allows the porous plug 50 to enter. Therefore, even if there is a manufacturing error in the plug placement hole 24 or the porous plug 50 when placing the porous plug 50 in the plug placement hole 24, the manufacturing error can be absorbed by the space that allows the porous plug 50 to enter. In contrast, if the plug placement hole 24 has a bottom surface, the porous plug 50 will hit the bottom surface and the manufacturing error cannot be absorbed.
  • the elevation angle ⁇ of the inner peripheral surface of the plug placement hole 24 and the elevation angle ⁇ of the outer peripheral surface of the porous plug 50 are the same, and are preferably 55° or more and 85° or less.
  • the adhesive 70 tends to spread evenly.
  • no or almost no bubbles bubbles of a size that would cause discharge when processing the wafer W with plasma
  • the adhesive layer 60 preferably does not have any bubbles, but if it does have bubbles, the bubbles preferably have a maximum vertical length of 0.2 mm or less (i.e., it is preferable that there are no bubbles whose maximum vertical length exceeds 0.2 mm). This enhances the effect of preventing discharge around the porous plug 50 (adhesive layer 60).
  • the gas flowing through the gas supply path is helium
  • electrons generated as the helium is ionized during plasma generation accelerate and collide with other helium, causing a discharge (glow discharge).
  • the maximum vertical length of the bubbles is 0.2 mm or less, the electrons cannot be sufficiently accelerated within the bubbles, and discharge can be suppressed.
  • a porous plug 50 is exemplified as a plug that allows gas to flow in the vertical direction, but this is not particularly limited.
  • a dense plug having a flow path (e.g., a spiral flow path) inside that allows gas to flow in the vertical direction may be used as such a plug.
  • the height of the lower surface 50b of the porous plug 50 may be the same as the height of the lower surface of the ceramic plate 20 (the lower opening of the plug placement hole 24), but it may also be higher or lower than the height of the lower surface of the ceramic plate 20. In either case, it is preferable that the height of the upper surface 50a of the porous plug 50 be the same as the height of the upper surface of the ceramic plate 20 (reference surface 21c).
  • the large diameter portion 34a is provided above the gas hole 34, but this is not particularly limited.
  • the gas hole 34 may be a straight hole whose hole diameter is larger than the diameter of the lower opening of the plug placement hole 24. Even in this case, the through hole 42 of the metal bonding layer 40 and the upper part of the gas hole 34 become spaces that allow the porous plug 50 to enter.
  • the base plate 30 is provided with gas holes 34 that form a gas supply path, but the present invention is not limited to this.
  • the base plate 30 may be provided with a ring portion 64a that is concentric with the base plate 30 in a plan view, an inlet portion 64b that introduces gas from the back surface of the base plate 30 to the ring portion 64a, and a distributor portion 64c that distributes gas from the ring portion 64a to each porous plug 50.
  • the number of inlet portions 64b may be less than the number of distributor portions 64c, and may be, for example, one. In this way, the number of gas pipes connected to the base plate 30 can be less than the number of porous plugs 50.
  • an electrostatic electrode is exemplified as the electrode 22 built into the ceramic plate 20, but this is not particularly limited.
  • a heater electrode resistive heating element
  • an RF electrode may be built into the ceramic plate 20.
  • the ceramic plate 20 and the base plate 30 are joined by a metal joining layer 40, but a resin adhesive layer may be used instead of the metal joining layer 40.
  • Example 1 A visualization sample simulating the above-mentioned semiconductor manufacturing device member 10 was produced. Specifically, the ceramic plate 20 and the base plate 30 were produced from a transparent acrylic resin, and the two plates 20, 30 were bonded together. A porous alumina body with a porosity of 30% was used as the porous plug 50. The elevation angles ⁇ and ⁇ of the inner peripheral surface of the plug arrangement hole 24 and the outer peripheral surface of the porous plug 50 were set to 75°. A silicone adhesive with a viscosity of 40,000 cP was used as the adhesive 70. The adhesive 70 was applied to the outer peripheral surface of the porous plug 50 for at least one revolution along the circumferential direction, and then the porous plug 50 was inserted into the plug arrangement hole 24.
  • the porous plug 50 was rotated or moved up and down so that the adhesive 70 spread along the outer peripheral surface of the porous plug 50 and the inner peripheral surface of the plug arrangement hole 24.
  • the adhesive 70 was then cured to obtain a visualization sample.
  • the adhesive layer 60 of this visualization sample was visually observed, no air bubbles were found.
  • a high frequency voltage was applied to this visualization sample, no discharge occurred around the porous plug 50 (adhesive layer 60).
  • Example 2 A visualization sample was prepared in the same manner as in Experimental Example 1, except that the elevation angle of the outer peripheral surface of the porous plug 50 and the inner peripheral surface of the plug placement hole 24 was set to 85°. When the adhesive layer 60 of this visualization sample was visually observed, no air bubbles were found. When a high-frequency voltage was applied to this visualization sample, no discharge occurred around the porous plug 50 (adhesive layer 60).
  • Example 3 A visualization sample was prepared in the same manner as in Experimental Example 1, except that the elevation angle of the outer peripheral surface of the porous plug 50 and the inner peripheral surface of the plug placement hole 24 was set to 65°. When the adhesive layer 60 of this visualization sample was visually observed, no air bubbles were found. When a high-frequency voltage was applied to this visualization sample, no discharge occurred around the porous plug 50 (adhesive layer 60).
  • Example 4 A visualization sample was prepared in the same manner as in Experimental Example 1, except that the elevation angle of the outer peripheral surface of the porous plug 50 and the inner peripheral surface of the plug placement hole 24 was set to 55°.
  • the adhesive layer 60 of this visualization sample was visually observed, several bubbles were present. When these bubbles were examined in detail, no bubbles were found whose maximum length in the vertical direction exceeded 0.2 mm.
  • a high-frequency voltage was applied to this visualization sample, no discharge occurred around the porous plug 50 (adhesive layer 60). Therefore, it was determined that the bubbles were not large enough to cause discharge when processing the wafer W with plasma.
  • the present invention can be used for components used in semiconductor manufacturing equipment, such as ceramic heaters, electrostatic chuck heaters, and electrostatic chucks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

半導体製造装置用部材10は、セラミックプレート20と、プラグ配置穴24と、多孔質プラグ50と、接着層60とを備える。セラミックプレート20は、上面にウエハ載置面21を有する。プラグ配置穴24は、セラミックプレート20を上下方向に貫通し、上部開口の面積が下部開口の面積よりも大きい円錐台空間を有する。多孔質プラグ50は、プラグ配置穴24に配置され、上面の面積が下面の面積よりも大きい円錐台形状の部材である。接着層60は、プラグ配置穴24の内周面と多孔質プラグ50の外周面との間に設けられている。

Description

半導体製造装置用部材
 本発明は、半導体製造装置用部材に関する。
 従来、半導体製造装置用部材としては、上面にウエハ載置面を有する静電チャックを備えたものが知られている。例えば、特許文献1の静電チャックは、セラミックプレートの下面に設けられた円錐台空間の有底凹部に、円錐台形状の多孔質プラグを挿入して接着剤で固定し、セラミックプレートの下面と金属製のベースプレートとを接合したものである。特許文献2の静電チャックは、セラミックプレートに形成された円柱空間の貫通孔に、円柱形状の多孔質プラグを焼結により一体化し、セラミックプレートの下面と金属製のベースプレートとを接合したものである。
特開2018-101773号公報 特開2019-29384号公報
 しかしながら、特許文献1の静電チャックでは、多孔質プラグを収納する有底凹部がセラミックプレートの下面に設けられているため、多孔質プラグを交換する必要が生じた場合に簡単に交換できないという問題があった。また、特許文献2の静電チャックでは、多孔質プラグが貫通孔に焼結により一体化されているため、多孔質プラグを交換する必要が生じた場合にはやはり簡単に交換できないという問題があった。ここで、特許文献2の静電チャックにおいて、円柱形状の多孔質プラグを円柱空間の貫通孔に焼結で固定するのではなく接着剤で固定することも考えられるが、接着時に接着剤が流れ落ちやすいため、接着剤の内部に上下方向に長く延びる気泡が生じやすい。このような気泡が生じると、ウエハをプラズマで処理する際にその気泡内で放電が起こり、ウエハの裏面を焦がすおそれがある。
 本発明はこのような課題を解決するためになされたものであり、上下方向のガスの流れを許容するプラグを容易に交換でき、しかもプラグの周辺で放電が起きにくくすることを主目的とする。
[1]本発明の半導体製造装置用部材は、
 上面にウエハ載置面を有するセラミックプレートと、
 前記セラミックプレートを上下方向に貫通し、上部開口の面積が下部開口の面積よりも大きい円錐台空間を有するプラグ配置穴と、
 前記プラグ配置穴に配置され、上下方向のガスの流れを許容し、上面の面積が下面の面積よりも大きい円錐台形状のプラグと、
 前記プラグ配置穴の内周面と前記プラグの外周面との間に設けられた接着層と、
 前記セラミックプレートの下面に接合層を介して接合された導電性のベースプレートと、
 前記ベースプレート及び前記接合層に設けられ、前記プラグにガスを供給するガス供給路と、
 を備えたものである。
 この半導体製造装置用部材では、プラグを交換する必要が生じた場合、接着層を切断、溶融又は軟化させてプラグをセラミックプレートのプラグ配置穴から上方へ引き抜くことができる。また、新たなプラグをプラグ配置穴の上方から挿入してプラグ配置穴に接着することができる。そのため、プラグを容易に交換することができる。また、プラグ配置穴の内周面とプラグの外周面との間に接着層を設ける際、これらの面はテーパ面となっているため接着剤が流れ落ちにくい。そのため、これらの面が鉛直面の場合に比べて接着層に気泡(ウエハをプラズマで処理する際に放電が発生する大きさの気泡)が生じにくい。したがって、ウエハをプラズマで処理する際にプラグの周辺(接着層)で放電が起きにくい。
 なお、本明細書では、上下、左右、前後などを用いて本発明を説明することがあるが、上下、左右、前後は、相対的な位置関係に過ぎない。そのため、半導体製造装置用部材の向きを変えた場合には上下が左右になったり左右が上下になったりすることがあるが、そうした場合も本発明の技術的範囲に含まれる。
[2]上述した半導体製造装置用部材(前記[1]に記載の半導体製造装置用部材)において、前記ガス供給路のうち前記プラグに対向する位置には、前記プラグの進入を許容する空間が設けられていてもよい。こうすれば、プラグ配置穴にプラグを配置する際、プラグ配置穴やプラグに製造誤差があったとしても、プラグの進入を許容する空間によってそうした製造誤差を吸収することができる。
[3]上述した半導体製造装置用部材(前記[1]又は[2]に記載の半導体製造装置用部材)において、前記プラグ配置穴の内周面の仰角及び前記プラグの外周面の仰角は、65°以上85°以下であることが好ましい。こうすれば、プラグ配置穴の内周面とプラグの外周面との間に接着層を設ける際、接着剤が均一に広がりやすいため、接着層に気泡が生じないかほとんど生じない。そのため、プラグの周辺(接着層)での放電を防止する効果が高まる。
[4]上述した半導体製造装置用部材(前記[1]~[3]のいずれかに記載の半導体製造装置用部材)において、前記接着層は、上下方向の最大長さが0.2mmを超える気泡を有さないことが好ましい。気泡の上下方向の最大長さが0.2mmを超えると、ウエハをプラズマで処理する際にその気泡の内部で放電が生じるおそれがあるが、気泡の上下方向の最大長さが0.2mmを超えなければその気泡の内部で放電が生じるおそれはほとんどない。
[5]上述した半導体製造装置用部材(前記[1]~[4]のいずれかに記載の半導体製造装置用部材)において、前記接着層は、気泡を有さないことが好ましい。こうすれば、プラグの周辺(接着層)での放電を防止する効果が一段と高まる。
半導体製造装置用部材10の縦断面図。 セラミックプレート20の平面図。 図1の部分拡大図。 半導体製造装置用部材10の製造工程図。 半導体製造装置用部材110の縦断面図。
 次に、本発明の好適な実施形態について、図面を用いて説明する。図1は半導体製造装置用部材10の縦断面図、図2はセラミックプレート20の平面図、図3は図1の部分拡大図である。
 半導体製造装置用部材10は、セラミックプレート20と、プラグ配置穴24と、ベースプレート30と、金属接合層40と、多孔質プラグ50とを備えている。
 セラミックプレート20は、アルミナ焼結体や窒化アルミニウム焼結体などのセラミック製の円板(例えば直径300mm、厚さ5mm)である。セラミックプレート20の上面は、ウエハ載置面21となっている。セラミックプレート20は、電極22を内蔵している。セラミックプレート20のウエハ載置面21には、図2に示すように、外縁に沿ってシールバンド21aが形成され、全面に複数の円形小突起21bが形成されている。シールバンド21a及び円形小突起21bは同じ高さであり、その高さは例えば数μm~数10μmである。電極22は、静電電極として用いられる平面状のメッシュ電極であり、直流電圧を印加可能となっている。この電極22に直流電圧が印加されるとウエハWは静電吸着力によりウエハ載置面21(具体的にはシールバンド21aの上面及び円形小突起21bの上面)に吸着固定され、直流電圧の印加を解除するとウエハWのウエハ載置面21への吸着固定が解除される。なお、ウエハ載置面21のうちシールバンド21aや円形小突起21bの設けられていない部分を、基準面21cと称する。
 プラグ配置穴24は、セラミックプレート20を上下方向に貫通する貫通穴であり、ベースプレート30のガス穴34に対向している。プラグ配置穴24は、電極22を上下方向に貫通しているが、プラグ配置穴24の内周面には電極22は露出していない。プラグ配置穴24は、上部開口の面積が下部開口の面積よりも大きい円錐台空間を有するテーパ穴である。プラグ配置穴24の内周面の仰角α(図3)は、55°以上85°以下であることが好ましく、65°以上85°以下であることがより好ましい。プラグ配置穴24は、図2に示すように、セラミックプレート20の複数箇所(例えば周方向に沿って等間隔に設けられた複数箇所)に設けられている。
 ベースプレート30は、熱伝導率の良好な円板(セラミックプレート20と同じ直径かそれよりも大きな直径の円板)である。ベースプレート30の内部には、冷媒(例えばフッ素系不活性液体などの電気絶縁性の液体)が循環する冷媒流路32やガスを多孔質プラグ50へ供給するガス穴34が形成されている。ガス穴34は、ベースプレート30を上下方向に貫通するように設けられ、上方に大径部34aを有する。大径部34aは、平面視でプラグ配置穴24の下部開口を包含している。冷媒流路32は、平面視でベースプレート30の全面にわたって入口から出口まで一筆書きの要領で形成されている。ベースプレート30の材料としては、例えば、複合材料や金属などが挙げられる。複合材料としては、金属とセラミックとの複合材料などが挙げられる。金属とセラミックとの複合材料としては、金属マトリックス複合材料(メタル・マトリックス・コンポジット(MMC))やセラミックマトリックス複合材料(セラミック・マトリックス・コンポジット(CMC))などが挙げられる。こうした複合材料の具体例としては、Si,SiC及びTiを含む材料やSiC多孔質体にAl及び/又はSiを含浸させた材料などが挙げられる。Si,SiC及びTiを含む材料をSiSiCTiといい、SiC多孔質体にAlを含浸させた材料をAlSiCといい、SiC多孔質体にSiを含浸させた材料をSiSiCという。金属としては、Moなどが挙げられる。ベースプレート30の材料としては、セラミックプレート20の材料と熱膨張係数の近いものを選択するのが好ましい。ベースプレート30は、RF電極としても用いられる。具体的には、ウエハ載置面21の上方には上部電極(図示せず)が配置され、その上部電極とベースプレート30とからなる平行平板電極間に高周波電力を印加するとプラズマが発生する。
 金属接合層40は、セラミックプレート20の下面とベースプレート30の上面とを接合している。金属接合層40は、例えばTCB(Thermal compression bonding)により形成される。TCBとは、接合対象の2つの部材の間に金属接合材を挟み込み、金属接合材の固相線温度以下の温度に加熱した状態で2つの部材を加圧接合する公知の方法をいう。金属接合層40は、はんだや金属ろう材で形成された層であってもよい。金属接合層40は、貫通穴42を有している。貫通穴42は、ガス穴34の大径部34aと対向する位置に設けられている。貫通穴42は、大径部34aと同軸に設けられ、貫通穴42の直径は大径部34aの直径と一致している。本明細書で「一致」とは、完全に一致する場合のほか、実質的に一致する場合(例えば公差の範囲に入る場合など)も含む(以下同じ)。なお、ガス穴34及び貫通穴42が本発明のガス供給路に相当する。
 多孔質プラグ50は、プラグ配置穴24に固定されている。多孔質プラグ50は、ガスが上下方向に流通するのを許容する電気絶縁性の部材である。多孔質プラグ50の気孔率は30%以上が好ましく、平均気孔径は20μm以上が好ましい。多孔質プラグ50は、上面の面積が下面の面積よりも大きい円錐台形状の部材である。多孔質プラグ50の外周面の仰角βは、プラグ配置穴24の内周面の仰角αと一致している。多孔質プラグ50の外周面とプラグ配置穴24の内周面との間には、接着層60が設けられている。接着層60は、ウエハWをプラズマで処理する際に放電が発生する大きさの気泡(例えば上下方向の高さが2mm以上の気泡)を有していない。接着層60の材料としては、アクリル樹脂、シリコーン樹脂、エポキシ樹脂などが挙げられる。多孔質プラグ50の材料としては、例えばセラミックが挙げられ、具体的にはセラミックプレート20と同じ材料の多孔質体を用いることができる。多孔質プラグ50の上面50aは、プラグ配置穴24の上部開口に露出し、基準面21cと同一平面をなす。 本明細書で「同一」とは、完全に同一の場合のほか、実質的に同一の場合(例えば公差の範囲に入る場合など)も含む(以下同じ)。多孔質プラグ50の下面50bはプラグ配置穴24の下部開口に露出している。
 次に、こうして構成された半導体製造装置用部材10の使用例について説明する。まず、図示しないチャンバー内に半導体製造装置用部材10を設置した状態で、ウエハWをウエハ載置面21に載置する。そして、チャンバー内を真空ポンプにより減圧して所定の真空度になるように調整し、セラミックプレート20の電極22に直流電圧をかけて静電吸着力を発生させ、ウエハWをウエハ載置面21(具体的にはシールバンド21aの上面や円形小突起21bの上面)に吸着固定する。次に、チャンバー内を所定圧力(例えば数10~数100Pa)の反応ガス雰囲気とし、この状態で、チャンバー内の天井部分に設けた図示しない上部電極と半導体製造装置用部材10のベースプレート30との間に高周波電圧を印加させてプラズマを発生させる。ウエハWの表面は、発生したプラズマによって処理される。ベースプレート30の冷媒流路32には、冷媒が循環される。ガス穴34には、図示しないガスボンベからバックサイドガスが導入される。バックサイドガスとしては、熱伝導ガス(例えばヘリウム等)を用いる。バックサイドガスは、ガス穴34、貫通穴42及び多孔質プラグ50を通って、ウエハWの裏面とウエハ載置面21の基準面21cとの間の空間に供給され封入される。このバックサイドガスの存在により、ウエハWとセラミックプレート20との熱伝導が効率よく行われる。
 次に、半導体製造装置用部材10の製造例について図4に基づいて説明する。図4は半導体製造装置用部材10の製造工程図である。まず、セラミックプレート20、ベースプレート30及び金属接合材90を準備する(図4A)。セラミックプレート20は、電極22を内蔵し、プラグ配置穴24を備えている。ベースプレート30は、冷媒流路32及びガス穴34を備えている。ガス穴34は、上方に大径部34aを有している。金属接合材90は、ガス穴34の大径部34aに対向する位置に貫通穴92を備えている。
 続いて、セラミックプレート20の下面とベースプレート30の上面との間に金属接合材90を挟み込むことにより、積層体とする。このとき、セラミックプレート20のプラグ配置穴24と金属接合材90の貫通穴92とベースプレート30のガス穴34とが同軸になるように積層する。そして、金属接合材90の固相線温度以下(例えば、固相線温度から20℃引いた温度以上固相線温度以下)の温度で積層体を加圧して接合し、その後室温に戻す(TCB)。これにより、金属接合材90及び貫通穴92はそれぞれ金属接合層40及び貫通穴42になり、セラミックプレート20とベースプレート30とが金属接合層40で接合された接合体94が得られる(図4B)。なお、金属接合材90としては、Al-Mg系接合材やAl-Si-Mg系接合材を使用することができる。金属接合材90は、厚みが100μm前後のものを用いるのが好ましい。
 続いて、円錐台形状の多孔質プラグ50を用意する(図4B)。多孔質プラグ50の高さは、円錐台空間であるプラグ配置穴24の深さ(つまりセラミックプレート20の高さ)と同じである。この多孔質プラグ50の外周面の周方向に沿って少なくとも1周、接着剤70を塗布する。接着剤70は、有機接着剤でもよいし、無機接着剤でもよい。接着剤70を塗布した多孔質プラグ50をプラグ配置穴24に挿入する。このとき、接着剤70が多孔質プラグ50の外周面及びプラグ配置穴24の内周面に沿って広がるように、多孔質プラグ50を回したり上下に動かしたりする。これにより、接着剤70は、多孔質プラグ50の外周面とプラグ配置穴24の内周面との隙間に気泡を抱き込むことなく均一に伸ばされる。
 多孔質プラグ50をプラグ配置穴24に挿入すると、多孔質プラグ50の外周面とプラグ配置穴24の内周面とが接着剤70を介して合わさる。この状態で、多孔質プラグ50の上面は、セラミックプレート20の上面(基準面21c)と一致する。多孔質プラグ50は、高さの異なるものが複数用意されている。そのため、セラミックプレート20の実際の高さ(製造誤差により個体差がある)に応じて、複数用意された高さの異なる多孔質プラグ50の中から、多孔質プラグ50をプラグ配置穴24に挿入し終えたときに多孔質プラグ50の上面がセラミックプレート20の上面(基準面21c)と一致するものを選択する。その後、接着剤70が硬化して接着層60になると、半導体製造装置用部材10が得られる(図4C)。
 以上詳述した半導体製造装置用部材10では、多孔質プラグ50を交換する必要が生じた場合、接着層60を切断、溶融又は軟化させて多孔質プラグ50をプラグ配置穴24から上方へ引き抜くことができる。また、新たな多孔質プラグ50をプラグ配置穴24の上方から挿入してプラグ配置穴24に接着することができる。そのため、多孔質プラグ50を容易に交換することができる。
 また、プラグ配置穴24の内周面と多孔質プラグ50の外周面との間に接着層60を設ける際、これらの面はテーパ面となっているため接着剤70が流れ落ちにくい。そのため、これらの面が鉛直面の場合に比べて接着層60に気泡(ウエハWをプラズマで処理する際に放電が発生する大きさの気泡)が生じにくい。したがって、ウエハWをプラズマで処理する際に多孔質プラグ50の周辺(接着層60)で放電が起きにくい。
 更に、ガス供給路を構成するガス穴34及び貫通穴42のうち多孔質プラグに対向する位置には、多孔質プラグ50の進入を許容する空間(貫通穴42及び大径部34a)が設けられている。そのため、プラグ配置穴24に多孔質プラグ50を配置する際、プラグ配置穴24や多孔質プラグ50に製造誤差があったとしても、多孔質プラグ50の進入を許容する空間によってそうした製造誤差を吸収することができる。これに対して、プラグ配置穴24が底面を有している場合には、多孔質プラグ50はその底面に突き当たってしまうため、製造誤差を吸収することができない。
 更にまた、プラグ配置穴24の内周面の仰角α及び多孔質プラグ50の外周面の仰角βは、一致していることが好ましく、55°以上85°以下であることが好ましい。こうすれば、プラグ配置穴24の内周面と多孔質プラグ50の外周面との間に接着層60を設ける際、接着剤70が均一に広がりやすい。そのため、接着層60に気泡(ウエハWをプラズマで処理する際に放電が発生する大きさの気泡)が生じないかほとんど生じない。したがって、多孔質プラグ50の周辺(接着層60)での放電を防止する効果が高まる。
 そして、接着層60は、気泡を有さないことが好ましいが、気泡を有する場合にはその気泡は上下方向の最大長さが0.2mm以下であることが好ましい(つまり、上下方向の最大長さが0.2mmを超える気泡を有さないことが好ましい)。こうすれば、多孔質プラグ50の周辺(接着層60)での放電を防止する効果が高まる。例えばガス供給路に流すガスがヘリウムの場合、プラズマ発生時にヘリウムが電離するのに伴って生じた電子が加速して別のヘリウムに衝突することにより放電(グロー放電)が起きるが、気泡の上下方向の最大長さが0.2mm以下であれば、その気泡内では電子は十分加速することはできないため放電を抑制することができる。
 そしてまた、多孔質プラグ50の外周面とプラグ配置穴24の内周面とを接着剤70を介して合わせることで、セラミックプレート20の上面(基準面21c)の高さと多孔質プラグ50の上面の高さを比較的容易に一致させることができる。
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 上述した実施形態では、上下方向のガスの流れを許容するプラグとして、多孔質プラグ50を例示したが、特にこれに限定されない。例えば、こうしたプラグとして、緻密質プラグで内部に上下方向のガスの流れを許容する流路(例えば螺旋状の流路)を有するものを用いてもよい。
 上述した実施形態では、多孔質プラグ50の下面50bの高さは、セラミックプレート20の下面(プラグ配置穴24の下部開口)の高さと一致していてもよいが、セラミックプレート20の下面の高さと比べて高くてもよいし、低くてもよい。いずれの場合においても、多孔質プラグ50の上面50aの高さはセラミックプレート20の上面(基準面21c)の高さと一致していることが好ましい。
 上述した実施形態では、ガス穴34の上方に大径部34aを設けたが、特にこれに限定されない。例えば、ガス穴34はストレート形状の穴であって、その穴径がプラグ配置穴24の下部開口の径より大きくなるようにしてもよい。その場合でも、金属接合層40の貫通穴42及びガス穴34の上部は、多孔質プラグ50の進入を許容する空間となる。
 上述した実施形態では、ベースプレート30に、ガス供給路を構成するガス穴34を設けたが、特にこれに限定されない。例えば、図5に示す半導体製造装置用部材110のように、ベースプレート30に、平面視でベースプレート30と同心円のリング部64aと、ベースプレート30の裏面からリング部64aへガスを導入する導入部64bと、リング部64aから各多孔質プラグ50へガスを分配する分配部64cとを設けてもよい。図5では、上述した実施形態と同じ構成要素には同じ符号を付した。導入部64bの数は、分配部64cの数よりも少なく、例えば1本としてもよい。こうすれば、ベースプレート30に繋ぐガス配管の数を多孔質プラグ50の数よりも少なくすることができる。
 上述した実施形態において、セラミックプレート20に内蔵される電極22として、静電電極を例示したが、特にこれに限定されない。例えば、電極22に代えて又は加えて、セラミックプレート20にヒータ電極(抵抗発熱体)を内蔵してもよいし、RF電極を内蔵してもよい。
 上述した実施形態では、セラミックプレート20とベースプレート30とを金属接合層40で接合したが、金属接合層40の代わりに樹脂接着層を用いてもよい。
[実験例1]
 上述した半導体製造装置用部材10を模擬した可視化サンプルを作製した。具体的には、セラミックプレート20及びベースプレート30を透明なアクリル樹脂で作製し、両プレート20,30を接着した。多孔質プラグ50としては、気孔率が30%のアルミナ多孔質体を用いた。プラグ配置穴24の内周面及び多孔質プラグ50の外周面の仰角α、βは、75°とした。接着剤70としては、粘度が40,000cPのシリコーン接着剤を用いた。多孔質プラグ50の外周面の周方向に沿って少なくとも1周、接着剤70を塗布した後、その多孔質プラグ50をプラグ配置穴24に挿入した。このとき、接着剤70が多孔質プラグ50の外周面及びプラグ配置穴24の内周面に沿って広がるように、多孔質プラグ50を回したり上下に動かしたりした。その後、接着剤70を硬化させることにより、可視化サンプルを得た。この可視化サンプルの接着層60を目視で観察したところ、気泡はみつからなかった。この可視化サンプルに高周波電圧を印加させたところ、多孔質プラグ50の周辺(接着層60)での放電は生じなかった。
[実験例2]
 多孔質プラグ50の外周面及びプラグ配置穴24の内周面の仰角を85°とした以外は、実験例1と同様にして可視化サンプルを作製した。この可視化サンプルの接着層60を目視で観察したところ、気泡はみつからなかった。この可視化サンプルに高周波電圧を印加させたところ、多孔質プラグ50の周辺(接着層60)での放電は生じなかった。
[実験例3]
 多孔質プラグ50の外周面及びプラグ配置穴24の内周面の仰角を65°とした以外は、実験例1と同様にして可視化サンプルを作製した。この可視化サンプルの接着層60を目視で観察したところ、気泡はみつからなかった。この可視化サンプルに高周波電圧を印加させたところ、多孔質プラグ50の周辺(接着層60)での放電は生じなかった。
[実験例4]
 多孔質プラグ50の外周面及びプラグ配置穴24の内周面の仰角を55°とした以外は、実験例1と同様にして可視化サンプルを作製した。この可視化サンプルの接着層60を目視で観察したところ、いくつかの気泡が存在していた。これらの気泡を詳細に調べたところ、上下方向の最大長さが0.2mmを超える気泡はみつからなかった。この可視化サンプルに高周波電圧を印加させたところ、多孔質プラグ50の周辺(接着層60)での放電は生じなかった。そのため、ウエハWをプラズマで処理する際に放電が発生する大きさの気泡ではないと判断した。
 本発明は、半導体製造装置に用いられる部材、例えばセラミックヒータ、静電チャックヒータ、静電チャックなどに利用可能である。
10 半導体製造装置用部材、20 セラミックプレート、21 ウエハ載置面、21a シールバンド、21b 円形小突起、21c 基準面、22 電極、24 プラグ配置穴、30 ベースプレート、32 冷媒流路、34 ガス穴、34a 大径部、40 金属接合層、42 貫通穴、50 多孔質プラグ、50a 上面、50b 下面、60 接着層、70 接着剤、90 金属接合材、92 貫通穴、94 接合体。

Claims (5)

  1.  上面にウエハ載置面を有するセラミックプレートと、
     前記セラミックプレートを上下方向に貫通し、上部開口の面積が下部開口の面積よりも大きい円錐台空間を有するプラグ配置穴と、
     前記プラグ配置穴に配置され、上下方向のガスの流れを許容し、上面の面積が下面の面積よりも大きい円錐台形状のプラグと、
     前記プラグ配置穴の内周面と前記プラグの外周面との間に設けられた接着層と、
     前記セラミックプレートの下面に接合層を介して接合された導電性のベースプレートと、
     前記ベースプレート及び前記接合層に設けられ、前記プラグにガスを供給するガス供給路と、
     を備えた半導体製造装置用部材。
  2.  前記ガス供給路のうち前記プラグに対向する位置には、前記プラグの進入を許容する空間が設けられている、
     請求項1に記載の半導体製造装置用部材。
  3.  前記プラグ配置穴の内周面の仰角及び前記プラグの外周面の仰角は、55°以上85°以下である、
     請求項1又は2に記載の半導体製造装置用部材。
  4.  前記接着層は、上下方向の最大長さが0.2mmを超える気泡を有さない、
     請求項1又は2に記載の半導体製造装置用部材。
  5.  前記接着層は、気泡を有さない、
     請求項1又は2に記載の半導体製造装置用部材。
PCT/JP2022/044764 2022-12-05 2022-12-05 半導体製造装置用部材 WO2024121910A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/044764 WO2024121910A1 (ja) 2022-12-05 2022-12-05 半導体製造装置用部材
US18/346,951 US20240186170A1 (en) 2022-12-05 2023-07-05 Member for semiconductor manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/044764 WO2024121910A1 (ja) 2022-12-05 2022-12-05 半導体製造装置用部材

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/346,951 Continuation US20240186170A1 (en) 2022-12-05 2023-07-05 Member for semiconductor manufacturing apparatus

Publications (1)

Publication Number Publication Date
WO2024121910A1 true WO2024121910A1 (ja) 2024-06-13

Family

ID=91280269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044764 WO2024121910A1 (ja) 2022-12-05 2022-12-05 半導体製造装置用部材

Country Status (2)

Country Link
US (1) US20240186170A1 (ja)
WO (1) WO2024121910A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050813A (ja) * 1996-04-26 1998-02-20 Applied Materials Inc 静電チャック面への熱伝達流体の流れのための導管
US20200411355A1 (en) * 2019-06-28 2020-12-31 Applied Materials, Inc. Apparatus for reduction or prevention of arcing in a substrate support
JP2021044307A (ja) * 2019-09-09 2021-03-18 日本特殊陶業株式会社 保持装置
JP2022106181A (ja) * 2021-01-06 2022-07-19 日本碍子株式会社 半導体製造装置用部材及びその製法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050813A (ja) * 1996-04-26 1998-02-20 Applied Materials Inc 静電チャック面への熱伝達流体の流れのための導管
US20200411355A1 (en) * 2019-06-28 2020-12-31 Applied Materials, Inc. Apparatus for reduction or prevention of arcing in a substrate support
JP2021044307A (ja) * 2019-09-09 2021-03-18 日本特殊陶業株式会社 保持装置
JP2022106181A (ja) * 2021-01-06 2022-07-19 日本碍子株式会社 半導体製造装置用部材及びその製法

Also Published As

Publication number Publication date
US20240186170A1 (en) 2024-06-06

Similar Documents

Publication Publication Date Title
WO2024121910A1 (ja) 半導体製造装置用部材
KR20240086599A (ko) 반도체 제조 장치용 부재
WO2024116412A1 (ja) 半導体製造装置用部材
JP7483121B2 (ja) 半導体製造装置用部材
TWI824849B (zh) 半導體製造裝置用構件
KR102665928B1 (ko) 반도체 제조 장치용 부재
TWI811011B (zh) 半導體製造裝置用構件
TWI836924B (zh) 晶圓載置台
WO2024047858A1 (ja) ウエハ載置台
JP2023096244A (ja) 半導体製造装置用部材
JP2023092822A (ja) 半導体製造装置用部材
WO2024047857A1 (ja) ウエハ載置台
WO2024034127A1 (ja) 半導体製造装置用部材
WO2024089762A1 (ja) ウエハ載置台
JP2023106929A (ja) 半導体製造装置用部材
TW202403822A (zh) 晶圓載置台
KR20230053499A (ko) 웨이퍼 배치대
KR20240003436A (ko) 웨이퍼 적재대
JP2023061196A (ja) ウエハ載置台