WO2024119572A1 - 一种用于rPET挤出发泡的双组分扩链剂母粒及其制备方法 - Google Patents

一种用于rPET挤出发泡的双组分扩链剂母粒及其制备方法 Download PDF

Info

Publication number
WO2024119572A1
WO2024119572A1 PCT/CN2022/144093 CN2022144093W WO2024119572A1 WO 2024119572 A1 WO2024119572 A1 WO 2024119572A1 CN 2022144093 W CN2022144093 W CN 2022144093W WO 2024119572 A1 WO2024119572 A1 WO 2024119572A1
Authority
WO
WIPO (PCT)
Prior art keywords
chain extender
component
rpet
masterbatch
pet
Prior art date
Application number
PCT/CN2022/144093
Other languages
English (en)
French (fr)
Inventor
陈志强
夏天
常峻峰
Original Assignee
江苏越升科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏越升科技股份有限公司 filed Critical 江苏越升科技股份有限公司
Publication of WO2024119572A1 publication Critical patent/WO2024119572A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1535Five-membered rings
    • C08K5/1539Cyclic anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present application relates to the field of rPET extrusion foaming, and in particular to a two-component chain extender masterbatch for rPET extrusion foaming and a preparation method thereof.
  • PET foam materials have attracted widespread attention due to their excellent mechanical strength and temperature resistance, and the fact that uncross-linked PET can be 100% recycled. They are widely used to replace PVC foam and Balsa wood as the core material of sandwich composite materials.
  • foamed PET can replace solid sheet materials to save materials and reduce costs.
  • Foamed PET can also be used in automotive interiors, such as car roofs, coat racks, etc.
  • PET raw materials usually have a linear molecular chain structure and a low molecular weight, with low melt strength and melt elasticity. During the foaming process, pores are prone to rupture and merging. Therefore, it is necessary to increase the molecular weight of PET by reacting with a chain extender and introduce a long-chain branched structure to improve the melt strength and foaming performance of PET.
  • rPET Compared with vPET, rPET usually has a complex source, which is a mixture of different types of bottle-grade PET, such as water bottles, oil bottles, and carbonated beverage bottles, as well as different grades of PET, such as bottle-grade and fiber-grade.
  • the types and contents of impurities contained in PET recycled by different routes are also different.
  • the rPET raw materials on the market are complex in form, which can be bottle flakes that have been washed, crushed, and dried, or particles that have been extruded and granulated, or particles that have undergone solid phase polycondensation. This leads to complex physical properties of rPET raw materials, such as large differences in molecular weight, end group concentration, comonomer, etc., which poses great challenges to the PET extrusion foaming process and the stability of material properties.
  • patent EP 2343330 invented a chain extender masterbatch for PET extrusion foaming with polyolefins (such as LDPE) and polyester powders as polymer carriers and pyromellitic dianhydride (PMDA) as a chain extender.
  • polyolefins such as LDPE
  • PMDA pyromellitic dianhydride
  • the present application provides a two-component chain extender masterbatch for rPET extrusion foaming and a preparation method thereof, wherein the two-component chain extender is used to respectively perform chain extension and branching reactions with the terminal hydroxyl group and terminal carboxyl group of rPET to improve the melt strength and foaming performance of rPET, and effectively solve the problems of low intrinsic viscosity and high terminal carboxyl group concentration of rPET raw materials; the present application provides a method for preparing the chain extender masterbatch, which has a simple process and the prepared chain extender masterbatch has uniform and stable properties.
  • the present application provides a two-component chain extender masterbatch for rPET extrusion foaming, which adopts the following technical solution:
  • a two-component chain extender masterbatch for rPET extrusion foaming comprising component A and component B;
  • the component A is prepared by melt extrusion granulation of a multifunctional anhydride chain extender and a low melting point PET copolymer; wherein the concentration of the multifunctional anhydride chain extender in component A is 10-30wt%; the melting point of the multifunctional anhydride chain extender is lower than or close to the processing temperature of PET; the melting point of the low melting point PET copolymer is 100-180°C and the intrinsic viscosity is 0.6-0.85dL/g;
  • the component B is prepared by melt extrusion granulation of a multifunctional epoxide chain extender and a PET toughening agent resin; wherein the concentration of the multifunctional epoxide chain extender in the component B is 20 to 50 wt%.
  • the present application adopts a two-component chain extender - an anhydride chain extender and an epoxide chain extender, to prepare component A and component B respectively.
  • the two chain extender masterbatches respectively carry out chain extension and branching reactions with the terminal hydroxyl group and terminal carboxyl group of rPET to improve the melt strength and foaming performance of rPET, and effectively solve the problems of low intrinsic viscosity and high terminal carboxyl group concentration of rPET raw materials; when the intrinsic viscosity or terminal group concentration of rPET raw materials changes, the stability of the foaming process and the foamed product can be maintained by flexibly adjusting the dosage of component A and component B during the extrusion foaming process.
  • the concentration of the multifunctional anhydride chain extender is between 10 and 30 wt%.
  • concentration of the chain extender is less than 10 wt%, the amount of masterbatch added during the foaming process is too high, and it is necessary to simultaneously increase the content of the carrier resin in the foamed rPET product and reduce the mechanical properties of the foamed rPET product; when the concentration of the chain extender is greater than 30 wt%, the amount of masterbatch added to the foamed rPET is too low, which is not conducive to the stable feeding of the chain extender masterbatch and its dispersion in the rPET matrix.
  • the concentration of the multifunctional epoxide chain extender is 20-50wt%, preferably 25-35wt%.
  • concentration of the chain extender is less than 20wt%, the amount of component B added during the foaming process is too high, resulting in increased material costs; when the concentration of the chain extender is greater than 50wt%, the amount of component B added during the foaming process is too low, which is not conducive to the feeding of the component B chain extender and its dispersion in the extruder on the one hand, and also leads to a low content of the PET toughening agent resin on the other hand, reducing the toughening effect.
  • the carrier resin of component A of the present application is selected from a low-melting-point PET copolymer, with a melting point between 100 and 180°C and a characteristic viscosity between 0.6 and 0.85 dL/g; it can not only protect the reactivity of the chain extender during the preparation of the chain extender masterbatch, but also reduce the extrusion temperature, reduce or even avoid the sublimation of the anhydride chain extender, and increase the effective concentration of the chain extender in the masterbatch; it can also ensure the uniformity of the dispersion of the chain extender in the carrier resin during the preparation of the masterbatch, improve the quality of the foamed rPET product and the stability of the subsequent extrusion foaming process.
  • the carrier resin of component B is selected from a PET toughening agent resin, which can not only maintain stable physical properties under the process conditions of rPET extrusion foaming, but also improve the toughness of the foamed rPET product and improve the performance of the foamed rPET product.
  • the multifunctional anhydride chain extender is selected from one of pyromellitic dianhydride and 3,3',4,4'-benzophenonetetracarboxylic dianhydride or a combination of the two.
  • the low melting point PET copolymer is selected from one of polyethylene terephthalate-isophthalate copolymer, polyethylene terephthalate-orthophthalate copolymer, polyethylene terephthalate-1,4-cyclohexanedimethanol copolymer, polyethylene terephthalate-2,2-dimethyl-1,3-propylene glycol copolymer, or any combination thereof.
  • the melting point of the prepared copolymer is between 100 and 180°C and the characteristic viscosity is between 0.6 and 0.85 dL/g, which helps to reduce the reaction between the carrier resin and the chain extender, thereby ensuring that the chain extender has a high reactivity.
  • the multifunctional epoxide chain extender is selected from one of triglycidyl isocyanurate and styrene-acrylate-glycidyl methacrylate copolymer or a combination of the two.
  • the multifunctional epoxide chain extender mainly reacts rapidly with the terminal carboxyl group of rPET to generate a chain extension and branched structure.
  • This application selects triglycidyl isocyanurate (TGIC for short, melting point of 95-98°C, relative molecular weight of 297, functionality of 3) and styrene-acrylate-methacrylate glycidyl ester copolymer (glass transition temperature of 54°C, number average molecular weight of 2600, average functionality of 9) as epoxide chain extenders.
  • TGIC triglycidyl isocyanurate
  • styrene-acrylate-methacrylate glycidyl ester copolymer glass transition temperature of 54°C, number average molecular weight of 2600, average functionality of 9
  • Both have high reactivity under PET processing temperature conditions, can react with the terminal carboxyl group of rPET raw materials, improve the melt elasticity and strength of the
  • triglycidyl isocyanurate and styrene-acrylate-glycidyl methacrylate copolymer are both powders that are easy to add and have low cost; compared with the two, styrene-acrylate-glycidyl methacrylate copolymer has a higher functionality of 9 and has a better branching effect; moreover, styrene-acrylate-glycidyl methacrylate copolymer is also more friendly to the human body and the environment.
  • the PET toughening agent resin is selected from one of ethylene-acrylate-glycidyl methacrylate copolymer and polyolefin elastomer grafted glycidyl methacrylate or a combination of the two.
  • ethylene-acrylate-methacrylate glycidyl copolymer and polyolefin elastomer grafted methacrylate glycidyl as carrier resin not only have good compatibility with PET, but also have excellent temperature resistance, and still maintain stable properties under PET processing temperature conditions, and a low addition amount can play a good toughening role on PET foaming materials.
  • the PET toughening agent resin does not react with the epoxide chain extender, and can protect the chain extension reaction activity of the epoxide during the preparation of the masterbatch.
  • the melting point of the PET toughening agent resin is low, which can promote the dispersion of the component B chain extender masterbatch in the foaming extruder, thereby improving the stability of the foaming process and the product.
  • the melt index of the PET toughening agent resin is 6 to 20 g/10 min.
  • the content of glycidyl methacrylate GMA in the PET toughening agent resin is 1 to 10 wt %.
  • the present application provides a method for preparing a two-component chain extender masterbatch for rPET extrusion foaming, using the following technical scheme:
  • a method for preparing a two-component chain extender masterbatch for rPET extrusion foaming comprises the following steps:
  • the multifunctional anhydride chain extender and the low melting point PET copolymer in component A are melt blended and then extruded and granulated; wherein the blending temperature is 10-50°C higher than the melting point of the low melting point PET copolymer and 50-150°C lower than the melting point of the multifunctional anhydride chain extender; the screw speed is 100-200rpm, and air-cooled granulation or hot die surface granulation is performed;
  • the multifunctional epoxide chain extender and PET toughening agent resin in component B are prepared by melt blending and extrusion granulation, wherein the blending temperature is 50-150°C; the screw speed is 200-300rpm, and underwater granulation is used for granulation, and the temperature of process water for underwater granulation is 2-20°C.
  • the extrusion temperature in the masterbatch preparation process is close to the sublimation temperature of the anhydride chain extender, resulting in the loss of the chain extender through sublimation after the extrudate exits the die head, which on the one hand reduces the actual concentration of the chain extender in the masterbatch, and on the other hand also reduces the surrounding air quality;
  • the blending temperature is too low, the viscosity of the low-melting-point PET copolymer increases during the extrusion process, which will cause the chain extender to be unevenly dispersed in the carrier resin during the masterbatch preparation process, reducing the quality of the chain extender masterbatch and the stability of the subsequent extrusion foaming process.
  • the present application adopts a two-component chain extender - an anhydride chain extender and an epoxide chain extender, to prepare component A and component B respectively.
  • the two chain extender masterbatches respectively carry out chain extension and branching reactions with the terminal hydroxyl group and terminal carboxyl group of rPET to improve the melt strength and foaming performance of rPET, and effectively solve the problems of low intrinsic viscosity and high terminal carboxyl group concentration of rPET raw materials; when the intrinsic viscosity or terminal group concentration of rPET raw materials changes, the stability of the foaming process and the foamed product can be maintained by flexibly adjusting the dosage of component A and component B during the extrusion foaming process.
  • Figure 1 is a schematic diagram of the reaction mechanism of PET with epoxy chain extender (Epoxy CE) and anhydride chain extender (Anhydride CE).
  • FIG2 is a schematic diagram showing the change of the elastic modulus G′ of the raw material rPET and the foamed rPET sheet of Application Example 1 with the angular frequency ⁇ .
  • FIG. 3 is a SEM image of the pore morphology of the foamed rPET sheet of Application Example 1.
  • the present application adopts a two-component chain extender - an anhydride chain extender and an epoxide chain extender to prepare component A and component B respectively.
  • the two chain extender masterbatches respectively carry out chain extension and branching reactions with the terminal hydroxyl group and terminal carboxyl group of rPET to improve the melt strength and foaming performance of rPET, and effectively solve the problems of low intrinsic viscosity and high terminal carboxyl group concentration of rPET raw materials (the reaction mechanism is shown in Figure 1); when the intrinsic viscosity or terminal group concentration of rPET raw materials changes, the stability of the foaming process and the foamed product can be maintained by flexibly adjusting the dosage of component A and component B during the extrusion foaming process.
  • the multifunctional anhydride chain extender involved in the embodiment of the present application adopts one of pyromellitic dianhydride and 3,3',4,4'-benzophenonetetracarboxylic dianhydride or a combination of the two, preferably pyromellitic dianhydride.
  • the low melting point PET copolymer involved in the embodiment of the present application adopts one of polyethylene terephthalate-isophthalate copolymer, polyethylene terephthalate-orthophthalate copolymer, polyethylene terephthalate-1,4-cyclohexanedimethanol copolymer, polyethylene terephthalate-2,2-dimethyl-1,3-propylene glycol copolymer or any combination thereof, preferably polyethylene terephthalate-isophthalate copolymer.
  • the melting point of the low melting point PET copolymer is 100-180°C, preferably 100-140°C; the intrinsic viscosity is 0.6-0.85dL/g, preferably 0.65-0.75dL/g.
  • the components A are melt blended by a twin-screw extruder and directly extruded to prepare master batches.
  • the blending temperature is usually 10-50°C higher than the melting point of the PET copolymer, preferably 20-30°C higher than the melting point of the PET copolymer, and 50-150°C lower than the melting point of the anhydride chain extender, preferably 120-150°C lower than the melting point of the chain extender.
  • the extrusion temperature of component A involved in the implementation mode of the present application is generally 100-200°C, preferably 100-150°C during the preparation process; all components are fed from the main feeding port of the twin-screw extruder, and after melt plasticization, distribution and dispersed mixing, they are extruded through a porous die head.
  • the aspect ratio of the twin-screw extruder is 30-48, preferably 30-36.
  • the screw speed of the extruder is 100-200rpm, preferably 150-200rpm.
  • the extrudate melt is conveyed into a pelletizer by air cooling, or pelletized by hot die face.
  • the concentration of the multifunctional anhydride chain extender is 10-30wt%, preferably 15-20wt%.
  • the multifunctional epoxide chain extender involved in the embodiment of the present application adopts one of triglycidyl isocyanurate and styrene-acrylate-glycidyl methacrylate copolymer or a combination of the two; preferably, styrene-acrylate-glycidyl methacrylate copolymer is adopted.
  • the PET toughening agent resin involved in the embodiment of the present application adopts one of ethylene-acrylate-glycidyl methacrylate copolymer and polyolefin elastomer grafted glycidyl methacrylate or a combination of the two.
  • the melt index of the PET toughening agent resin is 6 to 20 g/10min (190°C/2.16kg); preferably 6 to 12 g/10min (190°C/2.16kg).
  • the content of glycidyl methacrylate GMA in the PET toughening agent resin is 1 to 10wt%; preferably 2 to 6wt%.
  • the component B involved in the embodiment of the present application adopts a twin-screw extruder to melt and mix the ingredients, and directly extrude to prepare the chain extender masterbatch, and the blending temperature is 50-150°C, preferably 60-120°C.
  • all components are fed from the main feeding port of the twin-screw extruder, and are subjected to processes such as melt plasticization, distribution and dispersed mixing, and then extruded through a porous die.
  • the twin-screw extruder is the same as that for preparing component A, with an aspect ratio of 30-48, preferably 30-36; the screw speed of the extruder is 200-400rpm, preferably 200-300rpm.
  • Component B is produced by a continuous underwater pelletizing process, and the temperature of the process water for underwater pelletizing is 2-20°C, preferably 5-10°C.
  • the concentration of the epoxide chain extender in the masterbatch is 20-50wt%, preferably 25-35wt%.
  • processing aids may also be added to the chain extender masterbatch involved in the embodiments of the present application, such as heat stabilizers, nucleating agents, flame retardants, etc.
  • flame retardants for polyester include halogens, phosphorus, and inorganic compounds, etc.
  • Typical foaming nucleating agents include calcium powder, talc, nanoclay, SiO2 , etc.
  • the total end group concentration increases.
  • the terminal carboxyl concentration is usually 20-55mol/t (test standard GB/T14190, potassium hydroxide-ethanol as solvent, bromophenol blue as indicator, measured by solution titration).
  • the intrinsic viscosity and end group concentration of rPET are related to the properties of the virgin PET material, as well as the thermal and mechanical history of the primary processing and recycling process.
  • the rPET raw material can be recycled bottle flakes or rPET particles, which are used for extrusion foaming after crystallization and drying.
  • the addition amount of component A and component B prepared in the present application during the rPET extrusion foaming process is 1 to 6 wt%, preferably 1.5 to 3 wt%.
  • supercritical fluids such as N 2 , CO 2 , alkanes such as butane, pentane, etc., and a mixture of two or more of the above-mentioned foaming agents can be used as physical foaming agents.
  • the rPET extrusion foaming process involved in this application can adopt all forms of extrusion foaming units, such as single-screw extruders, twin-screw extruders, and extrusion units in series (the upper stage is a twin-screw extruder/the lower stage is a single-screw extruder, and the upper and lower stages are single-screw extruders), etc.
  • extrusion foaming rPET products can be sheets, plates, beads, profiles, etc.
  • the chain extender masterbatch involved in this application can also be used in the extrusion foaming process of other PET raw materials, such as vPET, PET flame retardant chips, PET copolymers, such as PETG, and mixtures of different PET raw materials, and can also be used for other high melting point polyesters (melting point ⁇ 220°C), such as polybutylene terephthalate PBT, etc.
  • other PET raw materials such as vPET, PET flame retardant chips, PET copolymers, such as PETG, and mixtures of different PET raw materials
  • high melting point polyesters melting point ⁇ 220°C
  • polybutylene terephthalate PBT polybutylene terephthalate
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a two-component chain extender masterbatch for rPET extrusion foaming comprises component A and component B, wherein the preparation method of component A is as follows: PMDA is selected as a chain extender, and the concentration in the masterbatch is 20wt%; polyethylene terephthalate-isophthalate copolymer chips of Shanghai Petrochemical are used as carrier resin, and the melting point is 120°C, the intrinsic viscosity is 0.675dL/g, and the concentration in the masterbatch is 80wt%.
  • component B is as follows: BASF Joncryl ADR-4368, a copolymer of styrene-methyl methacrylate-glycidyl methacrylate, is selected as a chain extender, with an average functionality of 9 and a concentration of 30wt% in the masterbatch; thermoplastic polyolefin elastomer grafted with glycidyl methacrylate is selected as a carrier resin, with a glycidyl methacrylate content of 2-3wt% and a melt index of 6g/10min (190°C/2.16kg).
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a two-component chain extender masterbatch for rPET extrusion foaming which differs from Example 1 in that the concentration of the chain extender in component A is 10wt%, the concentration of the carrier resin in the masterbatch is 90wt%, and component B remains consistent with Example 1.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • a two-component chain extender masterbatch for rPET extrusion foaming which differs from Example 1 in that the concentration of the chain extender in component A is 30wt%, the concentration of the carrier resin in the masterbatch is 70wt%, and component B remains consistent with Example 1.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • a two-component chain extender masterbatch for rPET extrusion foaming which differs from Example 1 in that the concentration of the chain extender in component B is 20wt%, the concentration of the carrier resin in the masterbatch is 80wt%, and component A remains consistent with Example 1.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • a two-component chain extender masterbatch for rPET extrusion foaming which differs from Example 1 in that the concentration of the chain extender in component B is 50wt%, the concentration of the carrier resin in the masterbatch is 50wt%, and component A remains consistent with Example 1.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • a two-component chain extender masterbatch for rPET extrusion foaming which differs from Example 1 in that component B is different, and the preparation method is as follows: triglycidyl isocyanurate TGIC is selected as the chain extender, with a functionality of 3 and a concentration of 20wt% in the masterbatch; styrene-methyl methacrylate-glycidyl methacrylate copolymer is selected as the carrier resin, with a glycidyl methacrylate content of 6wt% and a melt index of 12g/10min (190°C/2.16kg).
  • triglycidyl isocyanurate TGIC is selected as the chain extender, with a functionality of 3 and a concentration of 20wt% in the masterbatch
  • styrene-methyl methacrylate-glycidyl methacrylate copolymer is selected as the carrier resin, with a glycidyl methacrylate content of 6w
  • Component A is consistent with Example 1.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • a two-component chain extender masterbatch for rPET extrusion foaming which differs from Example 1 in that component A is different, and the preparation method is as follows: BTDA is selected as a chain extender, and the concentration in the masterbatch is 25wt%; polyethylene terephthalate-1,4-cyclohexanedimethanol copolymer chips of Yizheng Chemical Fiber are used as carrier resins, and the melting point is 115°C, the intrinsic viscosity is 0.734dL/g, and the concentration in the masterbatch is 75wt%.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • a two-component chain extender masterbatch for rPET extrusion foaming which differs from Example 7 in that component B is different, and the preparation method is as follows: triglycidyl isocyanurate TGIC is selected as the chain extender, with a functionality of 3 and a concentration of 20wt% in the masterbatch; styrene-methyl methacrylate-glycidyl methacrylate copolymer is selected as the carrier resin, with a glycidyl methacrylate content of 6wt% and a melt index of 12g/10min (190°C/2.16kg).
  • triglycidyl isocyanurate TGIC is selected as the chain extender, with a functionality of 3 and a concentration of 20wt% in the masterbatch
  • styrene-methyl methacrylate-glycidyl methacrylate copolymer is selected as the carrier resin, with a glycidyl methacrylate content of 6w
  • a foamed rPET sheet the preparation method is as follows:
  • a twin-screw extruder is used for PET extrusion foaming.
  • a static mixer and a porous foaming die are installed downstream of the extruder.
  • the porous die is 620mm wide and 26mm thick. After the extrudate exits the die, it enters a flattening machine to obtain a foamed PET sheet with a rectangular cross section.
  • the rPET used has an intrinsic viscosity IV of 0.78 dL/g, a terminal carboxyl concentration of 20 mol/t, and a terminal hydroxyl concentration of 60 mol/t.
  • the two-component chain extender masterbatch prepared in Example 1 is used for extrusion foaming, wherein the rPET needs to be dehumidified and dried at 160°C for 6 hours.
  • the feeding rate of PET is 100 kg/hr
  • the feeding rate of component A is 1.6 kg/hr (1.6 wt%)
  • the feeding rate of component B is 2.0 kg/hr (2.0 wt%)
  • the two are fed separately through a loss-in-weight feeder.
  • This embodiment uses isopentane as a foaming agent, and the foaming agent is injected into the extruder at a rate of 2.1 g/hr through an injection pump.
  • the temperature setting of the extrusion process is shown in the following table:
  • a foamed rPET sheet which differs from Application Example 1 in that the two-component chain extender masterbatch adopts the masterbatch prepared in Example 2, the feeding rate of component A is 3.3 kg/hr (3.3 wt%), and the feeding rate of component B is 2.0 kg/hr (2.0 wt%).
  • a foamed rPET sheet which differs from Application Example 1 in that the two-component chain extender masterbatch adopts the masterbatch prepared in Example 3, the feeding rate of component A is 1.1 kg/hr (1.1 wt%), and the feeding rate of component B is 2.0 kg/hr (2.0 wt%).
  • a foamed rPET sheet which differs from Application Example 1 in that the two-component chain extender masterbatch adopts the masterbatch prepared in Example 4, the feeding rate of component A is 1.6 kg/hr (1.6 wt%), and the feeding rate of component B is 3.0 kg/hr (3.0 wt%).
  • a foamed rPET sheet which differs from Application Example 1 in that the two-component chain extender masterbatch adopts the masterbatch prepared in Example 5, the feeding rate of component A is 1.6 kg/hr (1.6 wt%), and the feeding rate of component B is 1.2 kg/hr (1.2 wt%).
  • a foamed rPET sheet which differs from Application Example 1 in that the two-component chain extender masterbatch adopts the masterbatch prepared in Example 6, the feeding rate of component A is 1.6 kg/hr (1.6 wt%), and the feeding rate of component B is 1.5 kg/hr (1.5 wt%).
  • a foamed rPET sheet which differs from Application Example 1 in that the two-component chain extender masterbatch adopts the masterbatch prepared in Example 7, the feeding rate of component A is 1.9 kg/hr (1.9 wt%), and the feeding rate of component B is 2.0 kg/hr (2.0 wt%).
  • a foamed rPET sheet which differs from Application Example 1 in that the two-component chain extender masterbatch adopts the masterbatch prepared in Example 8, the feeding rate of component A is 1.9 kg/hr (1.9 wt%), and the feeding rate of component B is 2.2 kg/hr (2.2 wt%).
  • a foamed rPET sheet which differs from Application Example 1 in that: the characteristic viscosity of rPET is 0.65 dL/g, the terminal carboxyl concentration is 40 mol/t, the terminal hydroxyl concentration is 64 mol/t, the feeding rate of component A is 1.7 kg/hr (1.7 wt%), and the feeding rate of component B is 4.0 kg/hr (4.0 wt%).
  • a foamed rPET sheet which differs from Application Example 1 in that: the characteristic viscosity of rPET is 0.70 dL/g, the terminal carboxyl concentration is 35 mol/t, the terminal hydroxyl concentration is 58 mol/t, the feeding rate of component A is 1.6 kg/hr (1.6 wt%), and the feeding rate of component B is 3.5 kg/hr (3.5 wt%).
  • a foamed rPET sheet which differs from Application Example 1 in that: the characteristic viscosity of rPET is 0.85 dL/g, the terminal carboxyl concentration is 20 mol/t, the terminal hydroxyl concentration is 50 mol/t, the feeding rate of component A is 1.4 kg/hr (1.4 wt%), and the feeding rate of component B is 2.0 kg/hr (2.0 wt%).
  • a foamed rPET sheet the preparation method is as follows:
  • a series of extruders are used for PET extrusion foaming.
  • a static mixer and a porous foaming die are installed downstream of the extruder.
  • the porous die is 1200mm wide and 60mm thick. After the extrudate exits the die, it enters a flattening machine to obtain a foamed PET sheet with a rectangular cross section.
  • the rPET used has an intrinsic viscosity IV of 0.82 dL/g, a terminal carboxyl concentration of 20 mol/t, and a terminal hydroxyl concentration of 54 mol/t.
  • the two-component chain extender masterbatch prepared in Example 8 is selected for extrusion foaming, wherein the rPET needs to be dehumidified and dried at 160°C for 6 hours.
  • the feeding rate of PET is 500 kg/hr
  • the feeding rate of component A is 8.7 kg/hr (1.74 wt%)
  • the feeding rate of component B is 5 kg/hr (1 wt%), and the two are fed separately by a loss-in-weight feeder.
  • This example uses supercritical CO 2 as a foaming agent, which is injected into the extruder at a rate of 3.5 kg/hr via an injection pump.
  • the temperature setting during the extrusion process is shown in the following table:
  • a foamed rPET sheet which differs from Application Example 12 in that: the characteristic viscosity of rPET is 0.73 dL/g, the terminal carboxyl concentration is 40 mol/t, the terminal hydroxyl concentration is 48 mol/t, the feeding rate of component A is 7.75 kg/hr (1.55 wt%), and the feeding rate of component B is 9.9 kg/hr (1.98 wt%).
  • a foamed rPET sheet which is different from Application Example 12 in that the characteristic viscosity of rPET is 0.68 dL/g, the terminal carboxyl concentration is 45 mol/t, the terminal hydroxyl concentration is 52 mol/t, the feeding rate of component A is 8.4 kg/hr (1.68 wt%), and the feeding rate of component B is 11 kg/hr (2.2 wt%).
  • the recycled rPET raw material used is the same as that in Application Example 1, and the addition amount of the two-component chain extender masterbatch is 3.6wt
  • a foamed rPET sheet which differs from Application Example 1 in that the concentration of the chain extender in the two-component chain extender masterbatch is different, the concentration of the component A chain extender in component A is 5wt%, and the concentration of the component B chain extender in component B is 10wt%; the recycled rPET raw material is the same as that in Application Example 1, and the addition amount of the two-component chain extender masterbatch is 3.6wt%.
  • a foamed rPET sheet which differs from Application Example 1 in that the concentration of the chain extender in the two-component chain extender masterbatch is different, the concentration of the component A chain extender in component A is 40wt%, and the concentration of the component B chain extender in component B is 60wt%; the recycled rPET raw material is the same as that in Application Example 1, and the addition amount of the two-component chain extender masterbatch is 3.6wt%.
  • the present application uses a two-component chain extender masterbatch, component A uses an anhydride chain extender, and component B uses an epoxide chain extender.
  • the two chain extenders are respectively subjected to chain extension and branching reactions with the terminal hydroxyl group and the terminal carboxyl group of rPET, which helps to improve the melt strength and foaming performance of rPET, thereby realizing the preparation of foamed rPET sheets with excellent mechanical properties.
  • the two-component chain extender masterbatch of Comparative Examples 1 to 2 is a mixture of two chain extenders in a fixed ratio.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

用于rPET挤出发泡的双组分扩链剂母粒及其制备方法和应用,该母粒包括组分A扩链剂母粒和组分B扩链剂母粒;组分A扩链剂母粒包括采用多官能团的酸酐类扩链剂和低熔点PET共聚物经熔融挤出造粒制得;其中多官能团的酸酐类扩链剂在组分A扩链剂母粒中的浓度为10~30wt%;组分B扩链剂母粒包括采用多官能团的环氧化物扩链剂和PET增韧剂树脂经熔融挤出造粒制得;其中多官能团的环氧化物扩链剂在组分B扩链剂母粒中的浓度为20~50wt%;利用组分A扩链剂母粒和组分B扩链剂母粒分别与rPET的端羟基和端羧基进行扩链、支化反应,以提高rPET的熔体强度和发泡性能,有效解决rPET原料特性黏度低、端羧基浓度高的问题。

Description

一种用于rPET挤出发泡的双组分扩链剂母粒及其制备方法 技术领域
本申请涉及rPET挤出发泡的领域,尤其是涉及一种用于rPET挤出发泡的双组分扩链剂母粒及其制备方法。
背景技术
PET发泡材料因其机械强度、耐温性能优异且未交联PET可100%回收利用而受到广泛关注,大量用于替代PVC泡沫和Balsa木作为夹层结构复合材料的芯材。此外,在家装领域,发泡PET可替代实体片板材料,以节约材料、降低成本。发泡PET还可用于汽车内饰,如汽车顶棚、衣帽架等。PET原料通常为线性分子链结构且分子量低,具有低的熔体强度和熔体弹性。在发泡过程中,易发生泡孔的破裂、合并。因此,需通过与扩链剂反应提高PET分子量、引入长链支化结构,以提高PET的熔体强度和发泡性能。
此外,近年来为缓解温室效应、改善生态环境,碳排放治理成为国际社会关心的重要问题。据美国塑料回收协会报道,1kg原生PET树脂(virgin PET,简称vPET)的生产过程中CO 2排放量为2.23kg,而生产1kg回收PET树脂(recycled PET,简称rPET)只需排放0.91kg CO 2。因此,使用rPET作为挤出发泡原料具有重要的环境意义,可对我国的“碳达峰”“碳中和”目标作出贡献。
较之vPET,rPET通常来源复杂,为不同种类瓶级PET,如水瓶、油瓶、碳酸饮料瓶,以及不同级别PET,如瓶级、纤维级的混合物。不同途径回收的PET所含杂质的种类和含量也不尽相同。此外,市面上的rPET原料形式复杂,可为经过清洗、破碎、干燥的瓶片,也可为经过挤出造粒的颗粒,或者经过固相缩聚后的颗粒。这就导致rPET原料物性复杂,如分 子量、端基浓度、共聚单体等差异较大,这对PET挤出发泡过程和材料性能的稳定性带来很大挑战。
现有的关于PET挤出发泡用扩链剂母粒技术主要基于vPET原料开发,再推广至rPET,未能对rPET的原料及其挤出发泡的技术特点作出针对性设计。例如专利EP 2343330发明了一种以聚烯烃(如LDPE)和聚酯粉末作为聚合物载体、均苯四甲酸二酐(PMDA)作为扩链剂的PET挤出发泡用扩链剂母粒。但将其推广用于rPET的挤出发泡过程时,因rPET具有特性黏度和端基浓度等性质不均匀、端羧基浓度高的特点,PMDA作为羟基加成型扩链剂不能与rPET的端羧基进行扩链反应,且亦不能在原料rPET性质波动时很好的调整发泡工艺。且母粒制备涉及聚酯的磨粉,过程复杂;此外,聚烯烃LDPE在PET挤出加工温度下会发生明显的热降解,且与PET不相容,影响发泡过程的稳定性和最终产品的性能。
发明内容
基于上述缺点,本申请提供一种用于rPET挤出发泡的双组分扩链剂母粒及其制备方法,利用双组分扩链剂分别与rPET的端羟基和端羧基进行扩链、支化反应,以提高rPET的熔体强度和发泡性能,有效解决rPET原料特性黏度低、端羧基浓度高的问题;本申请提供了扩链剂母粒的制备方法,工艺简单且制得的扩链剂母粒性质均匀、稳定。
第一方面,本申请提供一种用于rPET挤出发泡的双组分扩链剂母粒,采用如下技术方案:
一种用于rPET挤出发泡的双组分扩链剂母粒,所述母粒包括组分A和组分B;
所述组分A通过将多官能团的酸酐类扩链剂和低熔点PET共聚物熔融挤出造粒制得;其中多官能团的酸酐类扩链剂在组分A中的浓度为 10~30wt%;多官能团的酸酐类扩链剂的熔点低于或者接近PET的加工温度;低熔点PET共聚物的熔点为100~180℃、特性黏度为0.6~0.85dL/g;
所述组分B通过将多官能团的环氧化物扩链剂和PET增韧剂树脂熔融挤出造粒制得;其中多官能团的环氧化物扩链剂在组分B中的浓度为20~50wt%。
本申请采用双组分扩链剂—酸酐类扩链剂和环氧化物类扩链剂,分别制备组分A和组分B,两种扩链剂母粒分别与rPET的端羟基和端羧基进行扩链、支化反应,以提高rPET的熔体强度和发泡性能,有效解决rPET原料特性黏度低、端羧基浓度高的问题;在rPET原料特性黏度或者端基浓度发生变化时,可通过灵活调节挤出发泡过程中组分A和组分B的用量,维持发泡过程和发泡产品的稳定性。
在组分A中,多官能团的酸酐类扩链剂的浓度在10~30wt%之间,当扩链剂的浓度小于10wt%时,发泡过程中母粒的添加量过高,需要同时提高载体树脂在发泡rPET产品中的含量,降低发泡rPET产品的力学性能;当扩链剂的浓度大于30wt%时,发泡rPET中母粒的添加量过低,不利于扩链剂母粒的稳定喂料及其在rPET基体中的分散。
在组分B中,多官能团的环氧化物扩链剂的浓度为20~50wt%,优选为25~35wt%,当扩链剂的浓度小于20wt%时,发泡过程中组分B的添加量过高,导致材料的成本升高;当扩链剂的浓度大于50wt%时,发泡过程中组分B的添加量过低,一方面不利于组分B扩链剂的喂料及其在挤出机中的分散,另一方面也导致PET增韧剂树脂的含量低,降低增韧效果。
本申请组分A的载体树脂选择低熔点PET共聚物,熔点为100~180℃之间,特性黏度在0.6~0.85dL/g之间;既可在扩链剂母粒制备过程中保护扩链剂的反应活性,亦可降低挤出温度,减少甚至避免酸酐类扩链剂的升 华,提高母粒中扩链剂的有效浓度;又可以保证在母粒制备过程中,扩链剂在载体树脂中的分散均匀性,提高发泡rPET产品的质量以及后续挤出发泡过程的稳定性。组分B的载体树脂选择PET增韧剂树脂,既可在rPET挤出发泡的工艺条件下维持稳定的物性,又可提高发泡rPET产品的韧性,提高发泡rPET产品性能。
优选的,所述多官能团的酸酐类扩链剂选用均苯四甲酸二酐和3,3',4,4'-二苯甲酮四甲酸二酐中的一种或者二者的组合物。
优选的,所述低熔点PET共聚物选用聚对苯二甲酸-间苯二甲酸乙二醇酯共聚物、聚对苯二甲酸-邻苯二甲酸乙二醇酯共聚物、聚对苯二甲酸乙二醇酯-1,4环己烷二甲醇酯共聚物、聚对苯二甲酸乙二醇酯-2,2-二甲基-1,3-丙二醇酯共聚物中的一种或者任意的组合物。
通过采用上述技术方案,当载体树脂中作为第三单体的二元酸选用间苯二甲酸或者邻苯二甲酸,二元醇选用1,4环己烷二甲醇、2,2-二甲基-1,3-丙二醇时,制备的共聚物的熔点在100~180℃之间、特性黏度在0.6~0.85dL/g之间,有助于减少载体树脂与扩链剂发生反应,从而保证扩链剂具有较高的反应活性。
优选的,所述多官能团的环氧化物扩链剂选用异氰尿酸三缩水甘油酯和苯乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯共聚物中的一种或者二者的组合物。
通过采用上述技术方案,多官能团的环氧化物扩链剂主要与rPET的端羧基发生快速反应,生成扩链、支化结构,本申请选用异氰尿酸三缩水甘油酯(简称TGIC,熔点为95~98℃,相对分子量为297,官能度为3)、苯乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯共聚物(玻璃化转变温度为54℃,数均分子量2600,平均官能度为9)作为环氧化物扩链剂,二者在PET加 工温度条件下都具有很高的反应活性,可与rPET原料的端羧基反应,提高发泡rPET产品的熔体弹性和强度,增强发泡rPET产品的性能。
另外,异氰尿酸三缩水甘油酯和苯乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯共聚物都是粉末易添加,成本低;二者相比,苯乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯共聚物的官能度更高达到9,具有更好的支化效果;而且,苯乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯共聚物对人体和环境也更加友好。
优选的,所述PET增韧剂树脂选用乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯共聚物和聚烯烃弹性体接枝甲基丙烯酸缩水甘油酯中的一种或者二者的组合物。
通过采用上述技术方案,乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯共聚物和聚烯烃弹性体接枝甲基丙烯酸缩水甘油酯作为载体树脂,不仅与PET具有良好的相容性,而且具有优异的耐温性,在PET加工温度条件下仍保持性质稳定,低的添加量即可对PET发泡材料起到良好的增韧作用。此外,PET增韧剂树脂不与环氧化物扩链剂发生反应,可以在母粒制备过程中保护环氧化物的扩链反应活性。而且,PET增韧剂树脂的熔点低,可以促进组份B扩链剂母粒在发泡挤出机中的分散,从而提高发泡过程和产品的稳定性。
优选的,所述PET增韧剂树脂的熔融指数为6~20g/10min。
优选的,所述PET增韧剂树脂中甲基丙烯酸缩水甘油酯GMA的含量为1~10wt%。
第二方面,本申请提供一种用于rPET挤出发泡的双组分扩链剂母粒的制备方法,采用如下技术方案:
一种用于rPET挤出发泡的双组分扩链剂母粒的制备方法,包括如下步骤:
所述组分A中的多官能团的酸酐类扩链剂和低熔点PET共聚物经熔融共混再挤出造粒制得;其中共混温度高于低熔点PET共聚物熔点的10~50℃、低于多官能团的酸酐类扩链剂熔点的50~150℃;螺杆转速为100~200rpm,风冷切粒或者热模面切粒;
所述组分B中的多官能团的环氧化物扩链剂和PET增韧剂树脂经熔融共混再挤出造粒制得,其中共混温度为50~150℃;螺杆转速为200~300rpm,采用水下切粒工艺造粒,水下切粒用工艺水水温为2~20℃。
通过采用上述技术方案,组分A制备过程中,为当共混温度过高时,则在母粒制备过程的挤出温度接近酸酐类扩链剂的升华温度,导致挤出物出机头后扩链剂通过升华造成损失,一方面降低了母粒中扩链剂的实际浓度,另一方面也会降低周围的空气质量;当共混温度过低时,挤出过程中低熔点PET共聚物的黏度升高,会导致母粒制备过程中扩链剂在载体树脂中分散不均,降低扩链剂母粒的质量以及后续的挤出发泡过程的稳定性。
综上所述,本申请至少具有以下技术效果:
本申请采用双组分扩链剂—酸酐类扩链剂和环氧化物类扩链剂,分别制备组分A和组分B,两种扩链剂母粒分别与rPET的端羟基和端羧基进行扩链、支化反应,以提高rPET的熔体强度和发泡性能,有效解决rPET原料特性黏度低、端羧基浓度高的问题;在rPET原料特性黏度或者端基浓度发生变化时,可通过灵活调节挤出发泡过程中组分A和组分B的用量,维持发泡过程和发泡产品的稳定性。
附图说明
图1为PET与环氧扩链剂(Epoxy CE)和酸酐扩链剂(Anhydride CE)的反应机理示意图。
图2为原料rPET和应用例1的发泡rPET板材的弹性模量G′随着角频 率ω的变化示意图。
图3为应用例1的发泡rPET板材的泡孔形貌SEM图。
具体实施方式
本申请采用双组分扩链剂—酸酐类扩链剂和环氧化物类扩链剂,分别制备组分A和组分B,两种扩链剂母粒分别与rPET的端羟基和端羧基进行扩链、支化反应,以提高rPET的熔体强度和发泡性能,有效解决rPET原料特性黏度低、端羧基浓度高的问题(反应机理如图1所示);在rPET原料特性黏度或者端基浓度发生变化时,可通过灵活调节挤出发泡过程中组分A和组分B的用量,维持发泡过程和发泡产品的稳定性。
本申请的实施方式涉及的多官能团的酸酐类扩链剂采用均苯四甲酸二酐和3,3',4,4'-二苯甲酮四甲酸二酐中的一种或者二者的组合物,优选均苯四甲酸二酐。
本申请的实施方式涉及的低熔点PET共聚物采用聚对苯二甲酸-间苯二甲酸乙二醇酯共聚物、聚对苯二甲酸-邻苯二甲酸乙二醇酯共聚物、聚对苯二甲酸乙二醇酯-1,4环己烷二甲醇酯共聚物、聚对苯二甲酸乙二醇酯-2,2-二甲基-1,3-丙二醇酯共聚物中的一种或者任意的组合物,优选为聚对苯二甲酸-间苯二甲酸乙二醇酯共聚物。低熔点PET共聚物的熔点为100~180℃,优选为100~140℃;特性黏度为0.6~0.85dL/g,优选为0.65~0.75dL/g。
本申请的实施方式涉及的组分A,各成分通过双螺杆挤出机熔融共混,直接挤出制备母粒。共混的温度通常高于PET共聚物熔点的10-50℃,优选高于PET共聚物熔点的20-30℃,而低于酸酐类扩链剂熔点的50-150℃,优选低于扩链剂熔点的120-150℃。
本申请的实施方式涉及的组分A,其制备过程的挤出温度一般为100~200℃,优选为100~150℃;所有组分从双螺杆挤出机的主喂料口喂入, 经熔融塑化、分布和分散混合等过程,再通过多孔机头挤出。双螺杆挤出机的长径比为30~48,优选为30~36。挤出机的螺杆转速为100~200rpm,优选为150~200rpm。挤出物熔体经风冷输送进入切粒机,或采用热模面切粒的方式。在组分A中,多官能团的酸酐类扩链剂的浓度为10~30wt%,优选为15~20wt%。
本申请的实施方式涉及的多官能团的环氧化物扩链剂采用异氰尿酸三缩水甘油酯和苯乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯共聚物中的一种或者二者的组合物;优选采用苯乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯共聚物。
本申请的实施方式涉及的PET增韧剂树脂采用乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯共聚物和聚烯烃弹性体接枝甲基丙烯酸缩水甘油酯中的一种或者二者的组合物。PET增韧剂树脂的熔融指数为6~20g/10min(190℃/2.16kg);优选为6~12g/10min(190℃/2.16kg)。PET增韧剂树脂中甲基丙烯酸缩水甘油酯GMA的含量为1~10wt%;优选为2~6wt%。
本申请的实施方式涉及的组分B,采用双螺杆挤出机将各成分熔融、混合,直接挤出制备扩链剂母粒,共混温度为50~150℃,优选为60~120℃。同样地,所有组分从双螺杆挤出机的主喂料口喂入,经熔融塑化、分布和分散混合等过程,再通过多孔机头挤出。双螺杆挤出机与制备组分A相同,长径比为30~48,优选30~36;挤出机的螺杆转速为200~400rpm,优选200~300rpm。采用连续水下切粒工艺生产组分B,且水下切粒用工艺水水温为2~20℃,优选5~10℃。在组分B中环氧化物扩链剂在母粒中的浓度为20~50wt%,优选25~35wt%。
本申请的实施方式涉及的扩链剂母粒中还可加入其他种类加工助剂,如热稳定剂、成核剂、阻燃剂等。常见的聚酯用阻燃剂包括卤素类、磷类以 及无机化合物类等。典型的发泡成核剂有钙粉、滑石粉、纳米黏土、SiO 2等。
在rPET挤出发泡技术中,rPET的特性黏度通常为0.6~0.85dL/g(测试标准GB/T14190,溶剂为苯酚:四氯乙烷=1:1w/w,测试温度为25℃±0.1℃)。随着rPET特性黏度的降低,总的端基浓度升高。其中端羧基浓度通常为20~55mol/t(测试标准GB/T14190,以氢氧化钾-乙醇作为溶剂,溴酚蓝作为指示剂,通过溶液滴定法测得)。rPET的特性黏度和端基浓度与PET原生料的性质,以及一次加工过程和回收过程中的热、机械历史等有关。
本申请涉及的rPET挤出发泡过程中,rPET原料可以为回收瓶片,也可为rPET颗粒,经结晶、干燥后用于挤出发泡。
本申请制备的组分A、组分B在rPET挤出发泡过程中的添加量为1~6wt%,优选1.5~3wt%。
本申请所涉及的rPET挤出发泡过程中可采用超临界流体如N 2、CO 2,烷烃如丁烷、戊烷等,以及上述发泡剂中的两种或两种以上的混合物作为物理发泡剂。
本申请所涉及的rPET挤出发泡过程可采用所有形式的挤出发泡机组,如单螺杆挤出机、双螺杆挤出机以及串联的挤出机组(上阶为双螺杆挤出机/下阶为单螺杆挤出机,以及上、下阶皆为单螺杆挤出机)等,通过改变发泡挤出机的机头以及发泡机组的下游辅机,挤出发泡rPET产品可为片材、板材、珠粒、异型材等。此外,本申请涉及的扩链剂母粒也可用于其他PET原料的挤出发泡过程,如vPET,PET阻燃切片,PET共聚物,如PETG,以及不同PET原料的混合物,还可用于其他高熔点聚酯(熔点≥220℃),如聚对苯二甲酸丁二醇酯PBT等。
以下结合实施例和附图对本申请作进一步详细说明。
实施例1:
一种用于rPET挤出发泡的双组分扩链剂母粒,包括组分A和组分B,其中组分A的制备方法如下:选用PMDA作为扩链剂,在母粒中的浓度为20wt%;上海石化的聚对苯二甲酸-间苯二甲酸乙二醇酯共聚物切片作为载体树脂,其熔点为120℃,特性黏度为0.675dL/g,在母粒中的浓度为80wt%。母粒制备用双螺杆挤出机长径比L/D=48,螺杆转速150rpm,共混温度120~165℃,挤出物熔体经风冷后用于切粒制得扩链剂母粒。
组分B的制备方法如下:选用苯乙烯-甲基丙烯酸甲酯-甲基丙烯酸缩水甘油酯共聚物BASF Joncryl ADR-4368作为扩链剂,其平均官能度为9,在母粒中的浓度为30wt%;选用热塑性聚烯烃弹性体接枝甲基丙烯酸缩水甘油酯作为载体树脂,甲基丙烯酸缩水甘油酯含量2~3wt%,熔融指数6g/10min(190℃/2.16kg)。母粒制备用双螺杆挤出机长径比L/D=48,螺杆转速为200rpm,共混温度50~100℃,挤出物熔体通过水下切粒制得扩链剂母粒,水下切粒用工艺水温度10℃。
实施例2:
一种用于rPET挤出发泡的双组分扩链剂母粒,与实施例1的区别之处在于,组分A中扩链剂的浓度为10wt%,载体树脂在母粒中的浓度为90wt%,组分B与实施例1保持一致。
实施例3:
一种用于rPET挤出发泡的双组分扩链剂母粒,与实施例1的区别之处在于,组分A中扩链剂的浓度为30wt%,载体树脂在母粒中的浓度为70wt%,组分B与实施例1保持一致。
实施例4:
一种用于rPET挤出发泡的双组分扩链剂母粒,与实施例1的区别之处在于,组分B中扩链剂的浓度为20wt%,载体树脂在母粒中的浓度为80wt%,组分A与实施例1保持一致。
实施例5:
一种用于rPET挤出发泡的双组分扩链剂母粒,与实施例1的区别之处在于,组分B中扩链剂的浓度为50wt%,载体树脂在母粒中的浓度为50wt%,组分A与实施例1保持一致。
实施例6:
一种用于rPET挤出发泡的双组分扩链剂母粒,与实施例1的区别之处在于组分B不同,制备方法如下:选用异氰尿酸三缩水甘油酯TGIC作为扩链剂,其官能度3,在母粒中的浓度为20wt%;选用苯乙烯-甲基丙烯酸甲酯-甲基丙烯酸缩水甘油酯共聚物作为载体树脂,甲基丙烯酸缩水甘油酯含量6wt%,熔融指数12g/10min(190℃/2.16kg)。母粒制备用双螺杆挤出机长径比L/D=48,螺杆转速为300rpm,共混温度50~150℃,挤出物熔体通过水下切粒制得扩链剂母粒,水下切粒用工艺水温度5℃。组分A与实施例1保持一致。
实施例7:
一种用于rPET挤出发泡的双组分扩链剂母粒,与实施例1的区别之处在于组分A不同,制备方法如下:选用BTDA作为扩链剂,在母粒中的浓度为25wt%;仪征化纤的聚对苯二甲酸乙二醇酯-1,4环己烷二甲醇酯共聚物切片作为载体树脂,其熔点为115℃,特性黏度为0.734dL/g,在母粒中的浓度为75wt%。母粒制备用双螺杆挤出机长径比L/D=44,螺杆转速为100rpm,共混温度100~155℃,挤出物熔体经风冷后用于切粒制得扩链剂母粒;组分B与实施例1保持一致。
实施例8:
一种用于rPET挤出发泡的双组分扩链剂母粒,与实施例7的区别之处在于组分B不同,制备方法如下:选用异氰尿酸三缩水甘油酯TGIC作为扩链剂,其官能度3,在母粒中的浓度为20wt%;选用苯乙烯-甲基丙烯酸甲酯-甲基丙烯酸缩水甘油酯共聚物作为载体树脂,甲基丙烯酸缩水甘油酯含量6wt%,熔融指数12g/10min(190℃/2.16kg)。母粒制备用双螺杆挤出机长径比L/D=48,螺杆转速为300rpm,共混温度50-150℃,挤出物熔体通过水下切粒制得扩链剂母粒,水下切粒用工艺水温度5℃。
应用例1:
一种发泡rPET板材,制备方法如下:
采用双螺杆挤出机进行PET挤出发泡,挤出机的螺杆直径D=75mm,长径比L/D=44,挤出机下游依次安装静态混合器和多孔发泡模具。多孔模具宽620mm,厚26mm。挤出物出模具后进入整平机即可得到横截面为矩形的发泡PET板材。
所用rPET特性黏度IV=0.78dL/g,端羧基浓度20mol/t,端羟基浓度为60mol/t,选用实施例1制得的双组分扩链剂母粒用于挤出发泡,其中rPET需在160℃条件下除湿干燥6hr。PET的喂料速率为100kg/hr,组分A的喂料速率为1.6kg/hr(1.6wt%),组分B的喂料速率为2.0kg/hr(2.0wt%),二者通过失重喂料机分别喂料。本实施例采用异戊烷作为发泡剂,发泡剂通过注射泵以2.1g/hr的速率注入挤出机中。挤出过程的温度设置如下表所示:
挤出段 温度(℃)
喂料段 60
熔融段 280~285
反应段 290~300
冷却段 250~260
静态混合器 255~260
模具 260~265
应用例2:
一种发泡rPET板材,与应用例1的区别之处在于双组分扩链剂母粒采用实施例2制得的母粒,组分A的喂料速率为3.3kg/hr(3.3wt%),组分B的喂料速率为2.0kg/hr(2.0wt%)。
应用例3:
一种发泡rPET板材,与应用例1的区别之处在于双组分扩链剂母粒采用实施例3制得的母粒,组分A的喂料速率为1.1kg/hr(1.1wt%),组分B的喂料速率为2.0kg/hr(2.0wt%)。
应用例4:
一种发泡rPET板材,与应用例1的区别之处在于双组分扩链剂母粒采用实施例4制得的母粒,组分A的喂料速率为1.6kg/hr(1.6wt%),组分B的喂料速率为3.0kg/hr(3.0wt%)。
应用例5:
一种发泡rPET板材,与应用例1的区别之处在于双组分扩链剂母粒采用实施例5制得的母粒,组分A的喂料速率为1.6kg/hr(1.6wt%),组分B的喂料速率为1.2kg/hr(1.2wt%)。
应用例6:
一种发泡rPET板材,与应用例1的区别之处在于双组分扩链剂母粒采用实施例6制得的母粒,组分A的喂料速率为1.6kg/hr(1.6wt%),组分B的喂料速率为1.5kg/hr(1.5wt%)。
应用例7:
一种发泡rPET板材,与应用例1的区别之处在于双组分扩链剂母粒采用实施例7制得的母粒,组分A的喂料速率为1.9kg/hr(1.9wt%),组分B的喂料速率为2.0kg/hr(2.0wt%)。
应用例8:
一种发泡rPET板材,与应用例1的区别之处在于双组分扩链剂母粒采用实施例8制得的母粒,组分A的喂料速率为1.9kg/hr(1.9wt%),组分B的喂料速率为2.2kg/hr(2.2wt%)。
应用例9:
一种发泡rPET板材,与应用例1的区别之处在于:rPET的特性黏度为0.65dL/g,端羧基浓度为40mol/t,端羟基浓度为64mol/t,组分A的喂料速率为1.7kg/hr(1.7wt%),组分B的喂料速率为4.0kg/hr(4.0wt%)。
应用例10:
一种发泡rPET板材,与应用例1的区别之处在于:rPET的特性黏度为0.70dL/g,端羧基浓度为35mol/t,端羟基浓度为58mol/t,组分A的喂料速率为1.6kg/hr(1.6wt%),组分B的喂料速率为3.5kg/hr(3.5wt%)。
应用例11:
一种发泡rPET板材,与应用例1的区别之处在于:rPET的特性黏度为0.85dL/g,端羧基浓度为20mol/t,端羟基浓度为50mol/t,组分A的喂料速率为1.4kg/hr(1.4wt%),组分B的喂料速率为2.0kg/hr(2.0wt%)。
应用例12:
一种发泡rPET板材,制备方法如下:
采用串联挤出机组进行PET挤出发泡,上阶双螺杆挤出机的螺杆直径D=95mm,长径比L/D=40,下阶单螺杆挤出机的直径D=250mm,长径比 L/D=30。挤出机下游依次安装静态混合器和多孔发泡模具。多孔模具宽1200mm,厚60mm。挤出物出模具后进入整平机即可得到横截面为矩形的发泡PET板材。
所用rPET特性黏度IV=0.82dL/g,端羧基浓度20mol/t,端羟基浓度为54mol/t,选用实施例8制得的双组分扩链剂母粒用于挤出发泡,其中rPET需在160℃条件下除湿干燥6hr。PET的喂料速率为500kg/hr,组分A的喂料速率为8.7kg/hr(1.74wt%),组分B的喂料速率为5kg/hr(1wt%),二者通过失重喂料机分别喂料。
本实施例采用超临界CO 2作为发泡剂,发泡剂通过注射泵以3.5kg/hr的速率注入挤出机中。挤出过程的温度设置如下表所示:
Figure PCTCN2022144093-appb-000001
应用例13:
一种发泡rPET板材,与应用例12的区别之处在于:rPET的特性黏度为0.73dL/g,端羧基浓度为40mol/t,端羟基浓度为48mol/t,组分A的喂料速率为7.75kg/hr(1.55wt%),组分B的喂料速率为9.9kg/hr(1.98wt%)。
应用例14:
一种发泡rPET板材,与应用例12的区别之处在于rPET的特性黏度为 0.68dL/g,端羧基浓度为45mol/t,端羟基浓度为52mol/t,组分A的喂料速率为8.4kg/hr(1.68wt%),组分B的喂料速率为11kg/hr(2.2wt%)。
对比例1:
一种发泡rPET板材,与应用例1的区别在于双组分扩链剂母粒选用上海石化的聚对苯二甲酸-间苯二甲酸乙二醇酯共聚物切片作为载体树脂,熔点为120℃,特性黏度为0.675dL/g,两种扩链剂选用PMDA和苯乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯共聚物(BASF Joncryl ADR-4368),PMDA在母粒中的浓度为20%,苯乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯共聚物(BASF Joncryl ADR-4368)在母粒中的浓度为30%,载体树脂在母粒中的浓度为50%;母粒制备用双螺杆挤出机长径比L/D=48,螺杆转速150rpm,共混温度120~165℃,挤出物熔体经风冷后用于切粒制得扩链剂母粒。所用的回收rPET原料与应用例1相同,双组分扩链剂母粒的添加量为3.6wt%。
对比例2:
一种发泡rPET板材,与应用例1的区别在于双组分扩链剂母粒选用上海石化的聚对苯二甲酸-间苯二甲酸乙二醇酯共聚物切片作为载体树脂,熔点为120℃,特性黏度为0.675dL/g,两种扩链剂选用PMDA和BTDA,PMDA在母粒中的浓度为20%,BTDA在母粒中的浓度为30%,载体树脂在母粒中的浓度为50%;母粒制备用双螺杆挤出机长径比L/D=48,螺杆转速150rpm,共混温度120~165℃,挤出物熔体经风冷后用于切粒制得扩链剂母粒。所用的回收rPET原料与应用例1相同,双组分扩链剂母粒的添加量为3.6wt%。
对比例3:
一种发泡rPET板材,与应用例1的区别之处在于双组分扩链剂母粒中 扩链剂的浓度不同,组分A扩链剂在组分A中的浓度为5wt%,组分B扩链剂在组分B中的浓度为10wt%;回收rPET原料与应用例1相同,双组分扩链剂母粒的添加量为3.6wt%。
对比例4:
一种发泡rPET板材,与应用例1的区别之处在于双组分扩链剂母粒中扩链剂的浓度不同,组分A扩链剂在组分A中的浓度为40wt%,组分B扩链剂在组分B中的浓度为60wt%;回收rPET原料与应用例1相同,双组分扩链剂母粒的添加量为3.6wt%。
针对应用例和对比例制备的发泡rPET板材进行力学性能检测,检测标准以及检测结果如下表所示:
Figure PCTCN2022144093-appb-000002
Figure PCTCN2022144093-appb-000003
结合应用例1、应用例6~8、对比例1~2和上表的检测结果可知,本申请采用双组分扩链剂母粒,组分A采用酸酐类扩链剂,组分B采用环氧化物扩链剂,两种扩链剂分别与rPET的端羟基和端羧基进行扩链、支化反应,有助于提高rPET的熔体强度和发泡性能,从而实现制备力学性能优异的发泡rPET板材。而对比例1~2的双组分扩链剂母粒,则是两种扩链剂以固定比例混合,当回收rPET原料的特性黏度或者端基浓度发生变化时,回收rPET原料的端基存在反应不充分的情况,导致发泡过程不够充分以及发泡rPET板材的力学性能下降。另外,和对比例1~2相比,本申请的组分B中,载体树脂采用PET增韧剂树脂时,制得的发泡rPET板材的剪切断裂伸长率更高。
参照图2可知,发泡rPET经过与双组分扩链剂母粒的扩链、支化反应后,较之原料rPET弹性模量大幅度提高,表明扩链反应后rPET的分子量增加,且具有宽的分子量分布和长链支化结构。参照图3可知,应用例1制备的发泡rPET板材中,rPET泡孔形貌良好,尺寸均匀,闭孔率高。
结合应用例1~5和对比例3~4以及上表的检测结果可知,当两种扩链 剂在母粒中的浓度不同时,通过实时调整两种扩链剂母粒的添加量,使得制备的发泡rPET板材具有优异的力学性能;而对比例3中,两种扩链剂的浓度过低时,当添加与应用例1同等量的组分A时,使得发泡过程不够充分,则会影响发泡rPET板材的力学性能;对比例4中,两种扩链剂的母粒过高时,发泡过程中母粒的添加量过低,不利于扩链剂母粒在rPET基体中的分散,显著降低发泡rPET板材的力学性能。
结合应用例1、应用例9~14以及上表的检测结果可知,采用本申请的双组分扩链剂母粒,用于回收rPET挤出发泡时,当rPET原料特性黏度或者端基浓度发生变化时,结合扩链剂在母粒中的浓度,可通过灵活调节挤出发泡过程中组分A和组分B的用量,维持发泡过程和发泡产品的稳定性,制得综合力学性能优异的发泡rPET板材。

Claims (8)

  1. 一种用于rPET挤出发泡的双组分扩链剂母粒,其特征在于:所述母粒包括组分A和组分B;
    所述组分A通过将多官能团的酸酐类扩链剂和低熔点PET共聚物熔融挤出造粒制得;其中多官能团的酸酐类扩链剂在组分A中的浓度为10~30wt%;多官能团的酸酐类扩链剂的熔点低于或者接近PET的加工温度;低熔点PET共聚物的熔点为100~180℃、特性黏度为0.6~0.85dL/g;
    所述组分B通过将多官能团的环氧化物扩链剂和PET增韧剂树脂熔融挤出造粒制得;其中多官能团的环氧化物扩链剂在组分B中的浓度为20~50wt%。
  2. 根据权利要求1所述的一种用于rPET挤出发泡的双组分扩链剂母粒,其特征在于:所述多官能团的酸酐类扩链剂选用均苯四甲酸二酐和3,3',4,4'-二苯甲酮四甲酸二酐中的一种或者二者的组合物。
  3. 根据权利要求2所述的一种用于rPET挤出发泡的双组分扩链剂母粒,其特征在于:所述低熔点PET共聚物选用聚对苯二甲酸-间苯二甲酸乙二醇酯共聚物、聚对苯二甲酸-邻苯二甲酸乙二醇酯共聚物、聚对苯二甲酸乙二醇酯-1,4环己烷二甲醇酯共聚物、聚对苯二甲酸乙二醇酯-2,2-二甲基-1,3-丙二醇酯共聚物中的一种或者任意的组合物。
  4. 根据权利要求1所述的一种用于rPET挤出发泡的双组分扩链剂母粒,其特征在于:所述多官能团的环氧化物扩链剂选用异氰尿酸三缩水甘油酯和苯乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯共聚物中的一种或者二者的组合物。
  5. 根据权利要求4所述的一种用于rPET挤出发泡的双组分扩链剂母 粒,其特征在于:所述PET增韧剂树脂选用乙烯-丙烯酸酯-甲基丙烯酸缩水甘油酯共聚物和聚烯烃弹性体接枝甲基丙烯酸缩水甘油酯中的一种或者二者的组合物。
  6. 根据权利要求5所述的一种用于rPET挤出发泡的双组分扩链剂母粒,其特征在于:所述PET增韧剂树脂的熔融指数为6~20g/10min。
  7. 根据权利要求5所述的一种用于rPET挤出发泡的双组分扩链剂母粒,其特征在于:所述PET增韧剂树脂中甲基丙烯酸缩水甘油酯GMA的含量为1~10wt%。
  8. 如权利要求1~7任意一项所述的一种用于rPET挤出发泡的双组分扩链剂母粒的制备方法,其特征在于,包括如下步骤:
    所述组分A中的多官能团的酸酐类扩链剂和低熔点PET共聚物经熔融共混挤出造粒制得;其中共混温度高于低熔点PET共聚物熔点的10~50℃、低于多官能团的酸酐类扩链剂熔点的50~150℃;螺杆转速为100~200rpm;所述组分B中的多官能团的环氧化物扩链剂和PET增韧剂树脂经熔融共混共混再挤出造粒制得,其中共混温度为50~150℃;螺杆转速为200~300rpm。
PCT/CN2022/144093 2022-12-07 2022-12-30 一种用于rPET挤出发泡的双组分扩链剂母粒及其制备方法 WO2024119572A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211565464.8A CN115806728B (zh) 2022-12-07 2022-12-07 一种用于rPET挤出发泡的双组分扩链剂母粒及其制备方法和应用
CN202211565464.8 2022-12-07

Publications (1)

Publication Number Publication Date
WO2024119572A1 true WO2024119572A1 (zh) 2024-06-13

Family

ID=85485337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/144093 WO2024119572A1 (zh) 2022-12-07 2022-12-30 一种用于rPET挤出发泡的双组分扩链剂母粒及其制备方法

Country Status (2)

Country Link
CN (1) CN115806728B (zh)
WO (1) WO2024119572A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1969003A (zh) * 2004-06-17 2007-05-23 西巴特殊化学品控股有限公司 用于聚酯改性的含聚苯乙烯的母料组合物
US20080093777A1 (en) * 2006-10-20 2008-04-24 Pepsico., Inc. Extrudable Polyethylene Terephthalate Blend
CN102056967A (zh) * 2008-06-12 2011-05-11 3A科技和管理有限公司 发泡的聚酯及其制备方法
CN105273368A (zh) * 2014-05-28 2016-01-27 华东理工大学 一种可发泡pet树脂及其制备方法和用途
CN111269539A (zh) * 2020-04-15 2020-06-12 南京越升挤出机械有限公司 一种用于pet挤出发泡的扩链剂母粒及其制备方法和应用
CN113121949A (zh) * 2021-03-18 2021-07-16 浙江恒澜科技有限公司 一种可用于聚酯挤出发泡的母粒及其应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2253659B1 (en) * 2009-05-18 2014-10-15 Armacell Enterprise GmbH & Co. KG Preparation and application of chain-extending concentrates for polyester foaming process
WO2012120148A1 (en) * 2011-03-10 2012-09-13 Nexam Chemical Ab Compositions for improving polyesters
WO2021207951A1 (zh) * 2020-04-15 2021-10-21 南京越升挤出机械有限公司 一种用于pet挤出发泡的扩链剂母粒及其制备方法和应用
CN112961474B (zh) * 2021-02-04 2022-07-22 衡阳市力达康医疗器械有限公司 一种聚乳酸/环氧植物油全生物基复合材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1969003A (zh) * 2004-06-17 2007-05-23 西巴特殊化学品控股有限公司 用于聚酯改性的含聚苯乙烯的母料组合物
US20080093777A1 (en) * 2006-10-20 2008-04-24 Pepsico., Inc. Extrudable Polyethylene Terephthalate Blend
CN102056967A (zh) * 2008-06-12 2011-05-11 3A科技和管理有限公司 发泡的聚酯及其制备方法
CN105273368A (zh) * 2014-05-28 2016-01-27 华东理工大学 一种可发泡pet树脂及其制备方法和用途
CN111269539A (zh) * 2020-04-15 2020-06-12 南京越升挤出机械有限公司 一种用于pet挤出发泡的扩链剂母粒及其制备方法和应用
CN113121949A (zh) * 2021-03-18 2021-07-16 浙江恒澜科技有限公司 一种可用于聚酯挤出发泡的母粒及其应用

Also Published As

Publication number Publication date
CN115806728B (zh) 2024-02-20
CN115806728A (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
CA2663336C (en) Polyester compositions and method for preparing articles by extrusion blow molding
CN111269539B (zh) 一种用于pet挤出发泡的扩链剂母粒及其制备方法和应用
TW201602211A (zh) 使用烯烴-順丁烯二酸酐共聚物修飾工程塑膠
US20220348763A1 (en) Chain extender masterbatch for pet extrusion foaming, preparation method therefor, and use thereof
CN102241862A (zh) 熔融挤出法制备耐水性聚乙烯醇生物降解薄膜
CN101796096A (zh) 聚对苯二甲酸乙二醇酯系接枝共聚树脂及其成型体的制造方法
CN107936486B (zh) 一种购物袋用生物降解聚酯组合物
CN106432814A (zh) 一种淀粉/聚乙烯醇复合材料及其制备方法
CN113121949B (zh) 一种可用于聚酯挤出发泡的母粒及其应用
CN113461930B (zh) 一种酸酐及环氧类高分子扩链增粘剂及其制备方法和应用
CN110922730A (zh) 改性聚乳酸及其制备方法
CN113788914A (zh) 一种sebs/at复合增韧剂及其制备方法、及高性能pet/pa6发泡材料
CN116444974B (zh) 耐高温二氧化碳基合金及其发泡材料和制备方法
WO2024119572A1 (zh) 一种用于rPET挤出发泡的双组分扩链剂母粒及其制备方法
CN110283436B (zh) 一种高强度芳香族聚酯微孔发泡材料及其制备方法
CN111100427B (zh) 结晶性能提高的脂肪族芳香族共聚酯共混物及其制备方法和应用
US8765879B2 (en) Modified recycled polyester resin and molded article using the same
JP2002037892A (ja) ポリアリーレンアミドマスターバッチを用いるポリエステル樹脂の製造
CN114716794A (zh) 一种pbat发泡珠粒及其制备方法
JP2003171539A (ja) ポリオレフィンーポリエステル・ブロック共重合体組成物およびその成形体の製造方法
CN115746517B (zh) 一种开口二氧化硅母粒及其制备方法和应用
WO2024183107A1 (zh) 一种可蒸汽模压成型的生物可降解聚合物发泡珠粒
JP3768004B2 (ja) 多官能化合物濃縮物及びそれを用いるポリエステル成形体の製造方法
CN114106303B (zh) 基于可降解聚酯的自增强弹性体及其制备方法和应用
US20090152761A1 (en) Process for preparation of modified poly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22967718

Country of ref document: EP

Kind code of ref document: A1