WO2024117068A1 - Reflective film - Google Patents
Reflective film Download PDFInfo
- Publication number
- WO2024117068A1 WO2024117068A1 PCT/JP2023/042319 JP2023042319W WO2024117068A1 WO 2024117068 A1 WO2024117068 A1 WO 2024117068A1 JP 2023042319 W JP2023042319 W JP 2023042319W WO 2024117068 A1 WO2024117068 A1 WO 2024117068A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- film
- reflective
- metal
- less
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 90
- 239000002184 metal Substances 0.000 claims abstract description 90
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 18
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 18
- 229920005989 resin Polymers 0.000 claims description 50
- 239000011347 resin Substances 0.000 claims description 50
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 239000000758 substrate Substances 0.000 abstract description 15
- 239000010408 film Substances 0.000 description 175
- 238000004544 sputter deposition Methods 0.000 description 32
- 239000002245 particle Substances 0.000 description 29
- 238000000151 deposition Methods 0.000 description 21
- 230000008021 deposition Effects 0.000 description 21
- 238000000034 method Methods 0.000 description 21
- 230000015572 biosynthetic process Effects 0.000 description 17
- 239000010949 copper Substances 0.000 description 15
- 238000002834 transmittance Methods 0.000 description 13
- 238000000576 coating method Methods 0.000 description 12
- 239000011342 resin composition Substances 0.000 description 11
- 229910052802 copper Inorganic materials 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 238000005259 measurement Methods 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 7
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 7
- 238000004804 winding Methods 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910052738 indium Inorganic materials 0.000 description 6
- -1 polyethylene terephthalate Polymers 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 229910003437 indium oxide Inorganic materials 0.000 description 5
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000001579 optical reflectometry Methods 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 5
- 239000013077 target material Substances 0.000 description 5
- DVNYTAVYBRSTGK-UHFFFAOYSA-N 5-aminoimidazole-4-carboxamide Chemical compound NC(=O)C=1N=CNC=1N DVNYTAVYBRSTGK-UHFFFAOYSA-N 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 4
- 239000004925 Acrylic resin Substances 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 210000005097 arteria cerebelosa anteroinferior Anatomy 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 229920001225 polyester resin Polymers 0.000 description 4
- 239000004645 polyester resin Substances 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- 229920000877 Melamine resin Polymers 0.000 description 3
- RLWNPPOLRLYUAH-UHFFFAOYSA-N [O-2].[In+3].[Cu+2] Chemical compound [O-2].[In+3].[Cu+2] RLWNPPOLRLYUAH-UHFFFAOYSA-N 0.000 description 3
- 239000002390 adhesive tape Substances 0.000 description 3
- 229910052809 inorganic oxide Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 238000009832 plasma treatment Methods 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 229920002799 BoPET Polymers 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004640 Melamine resin Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000011146 organic particle Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- CXKCTMHTOKXKQT-UHFFFAOYSA-N cadmium oxide Inorganic materials [Cd]=O CXKCTMHTOKXKQT-UHFFFAOYSA-N 0.000 description 1
- CFEAAQFZALKQPA-UHFFFAOYSA-N cadmium(2+);oxygen(2-) Chemical compound [O-2].[Cd+2] CFEAAQFZALKQPA-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
Definitions
- the present invention relates to a reflective film.
- a liquid crystal display device comprises a liquid crystal panel having an image display surface, a backlight that emits light toward the rear surface of the panel, and a housing that houses these.
- the housing has a bezel portion as a frame around the image display surface.
- a reflective film is disposed on the inner wall surface of the bezel portion. This reflective film is used to prevent light from the backlight from leaking out from the bezel portion (preventing light leakage). Such a reflective film is described, for example, in Patent Document 1 listed below.
- Patent Document 1 describes a reflective film that includes a white resin film, a metal thin film layer, and a black ink layer in that order in the thickness direction.
- the black ink layer is formed by printing black ink on the surface of the metal thin film layer on the white resin film.
- the black ink contains a resin binder and a black pigment.
- the preferred thickness of the black ink layer is 0.5 to 3 ⁇ m. From the viewpoint of preventing pinholes from being formed in the black ink layer, it is preferable that multiple black ink layers are laminated. In such a reflective film with a black ink layer, the above-mentioned light leakage is prevented by the light reflection by the metal thin film layer and the light blocking by the black ink layer.
- Black ink layers containing a resin binder are prone to compressive residual stress after the layer is formed.
- the compressive residual stress on the exposed side is greater than the compressive residual stress on the side of the black ink layer that is fixed to the metal thin film layer.
- the thicker the black ink layer the greater the difference in compressive residual stress on both sides.
- the greater the difference in compressive residual stress on both sides of the black ink layer the poorer the adhesion of the black ink layer to the metal thin film layer.
- Black ink layers with insufficient adhesion are prone to peeling. Peeling of the black ink layer impairs the reflective film's ability to prevent light leakage.
- the present invention provides a reflective film suitable for ensuring adhesion of a blackening layer to a metal reflective layer.
- the present invention [1] includes a reflective film having a base film, a metal reflective layer, and a blackening layer in this order in the thickness direction, the blackening layer being an inorganic blackening layer containing a metal oxide and having a thickness of 400 nm or less.
- the present invention [2] includes the reflective film described in [1] above, in which the metal reflective layer is an aluminum layer.
- the present invention [3] includes the reflective film described in [1] or [2] above, in which the thickness of the metal reflective layer is 30 nm or more.
- the present invention [4] includes the reflective film according to any one of [1] to [3] above, in which the thickness of the metal reflective layer is 500 nm or less.
- the present invention [5] includes the reflective film described in any one of [1] to [4] above, in which the thickness of the blackening layer is 5 nm or more.
- the present invention [6] includes the reflective film described in any one of [1] to [5] above, which has a cured resin layer on the side of the blackening layer opposite the metal reflective layer.
- the present invention [7] includes a reflective film according to any one of [1] to [6] above, in which the blackened layer does not peel off in a peel test conforming to JIS K 5400.
- the reflective film of the present invention comprises a base film, a metal reflective layer, and a blackening layer in this order in the thickness direction, and the blackening layer is an inorganic blackening layer containing metal oxide and having a thickness of 400 nm or less.
- the blackening layer being a thin inorganic blackening layer of 400 nm or less is suitable for reducing the difference in compressive residual stress that occurs on both sides of the blackening layer in the thickness direction after film formation. Reducing the difference in compressive residual stress is suitable for ensuring the adhesion of the blackening layer to the metal reflective layer.
- FIG. 1 is a schematic cross-sectional view of one embodiment of a reflective film of the present invention.
- FIG. 2 shows a method for manufacturing the reflective film shown in FIG. 1.
- FIG. 2A shows a step of preparing a substrate film
- FIG. 2B shows a step of forming a metal reflective layer on the substrate film
- FIG. 2C shows a step of forming a blackened layer on the metal reflective layer
- FIG. 2D shows a step of forming a cured resin layer on the blackened layer.
- 1 is a schematic cross-sectional view of a modified example of the reflective film of the present invention, which does not have a cured resin layer on a blackening layer.
- Reflective film X according to one embodiment of the present invention comprises a base film 10, a metal reflective layer 20, a blackening layer 30, and a cured resin layer 40, in this order in the thickness direction H, as shown in FIG. 1.
- Reflective film X extends in a direction (plane direction) perpendicular to the thickness direction H.
- Reflective film X is, for example, a reflective film that prevents light from a backlight of a liquid crystal display device from leaking out of the housing.
- the base film 10 is a base material that ensures the strength of the reflective film X.
- the base film 10 has a first surface 11 and a second surface 12 opposite to the first surface 11.
- the base film 10 is, for example, a transparent resin film having flexibility.
- the material of the base film 10 include polyester resin, polyolefin resin, acrylic resin, polycarbonate resin, polyethersulfone resin, polyarylate resin, melamine resin, polyamide resin, polyimide resin, cellulose resin, and polystyrene resin.
- the polyester resin include polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate.
- the polyolefin resin examples include polyethylene, polypropylene, and cycloolefin polymer.
- examples of the acrylic resin include polymethacrylate.
- the material of the base film 10 is preferably polyester resin, and more preferably PET.
- the base film 10 is preferably a white film from the viewpoint of ensuring significant light reflectivity of the base film 10.
- the white film can be obtained, for example, by incorporating particles such as inorganic fillers that cause light scattering into the resin film described above. Examples of such particles include titanium oxide, calcium carbonate, barium sulfate, silica, and talc, and preferably titanium oxide and/or silica are used. These particles may be used alone or in combination of two or more types.
- the average particle size of the particles is, for example, 0.05 ⁇ m or more, preferably 0.1 ⁇ m or more, and, for example, 2 ⁇ m or less, preferably 1 ⁇ m or less.
- the content ratio of the particles in the base film 10 as a white film is, for example, 5 mass% or more, preferably 10 mass% or more, and, for example, 50 mass% or less, preferably 40 mass% or less.
- the thickness of the base film 10 is preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more, and even more preferably 35 ⁇ m or more. From the viewpoint of ensuring the handleability of the base film 10 in the roll-to-roll method, the thickness of the base film 10 is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, and even more preferably 150 ⁇ m or less.
- the first surface 11 of the substrate film 10 may be subjected to a surface modification treatment in order to ensure adhesion of the metal reflective layer 20 to the substrate film 10.
- surface modification treatments include corona treatment, plasma treatment, ozone treatment, primer treatment, glow treatment, and coupling agent treatment.
- the metal reflective layer 20 is disposed on the first surface 11 of the base film 10. That is, in this embodiment, the metal reflective layer 20 is in contact with the first surface 11.
- the metal reflective layer 20 is formed from a metal having light reflectivity.
- metal materials that form the metal reflective layer 20 include aluminum (Al), silver (Ag), titanium (Ti), and alloys thereof. From the viewpoint of ensuring good light reflectivity of the metal reflective layer 20 for visible light, the material of the metal reflective layer 20 is preferably aluminum or silver.
- the thickness of the metal reflective layer 20 is preferably 30 nm or more, more preferably 50 nm or more, even more preferably 70 nm or more, even more preferably 90 nm or more, and particularly preferably 100 nm or more, from the viewpoint of ensuring the light reflectivity of the metal reflective layer 20 and the reflective film X.
- the thickness of the metal reflective layer 20 is preferably 500 nm or less, more preferably 300 nm or less, even more preferably 200 nm or less, even more preferably 150 nm or less, and even more preferably 120 nm or less, from the viewpoint of ensuring the adhesion of the metal reflective layer 20 to the substrate film 10.
- the luminous reflectance (Y value) of the metal reflective layer 20 at wavelengths of 380 nm to 780 nm in the CIE-XYZ color system is preferably 70% or more, more preferably 75% or more, and even more preferably 80% or more, from the viewpoint of ensuring the light reflectivity of the metal reflective layer 20 and the reflective film X.
- the luminous reflectance is, for example, 90% or less, 95% or less, or 100% or less.
- the luminous reflectance can be measured, for example, by a spectrophotometer (product name "U-4100", manufactured by Hitachi High-Tech Science Corporation). The method for measuring the luminous reflectance is specifically described below in relation to the examples.
- the blackening layer 30 is disposed on the metal reflective layer 20. That is, in this embodiment, the blackening layer 30 is in contact with the metal reflective layer 20.
- the blackening layer 30 contains a metal oxide having high light absorption.
- the metal (first metal) forming the metal oxide include copper (Cu), indium (In), molybdenum (Mo) and iron (Fe).
- the metal oxide preferably contains at least one selected from the group consisting of Cu, In, Mo and Fe.
- an oxide containing Cu and In is preferable from the viewpoint of ensuring adhesion of the cured resin layer 40 to the blackening layer 30 and from the viewpoint of ensuring stability during sputtering film formation when a sputtering method is adopted as a film formation method for the blackening layer 30. That is, as the metal oxide, copper indium oxide is preferable.
- the proportion of Cu in the total amount of Cu and In is preferably 10 atomic % or more, more preferably 20 atomic % or more, and even more preferably 30 atomic % or more, from the viewpoint of ensuring adhesion of the cured resin layer 40 to the blackening layer 30.
- the proportion of Cu is preferably 90 atomic % or less, more preferably 80 atomic % or less, and even more preferably 70 atomic % or less.
- the blackening layer 30 may contain an elemental metal in addition to the metal oxide.
- the elemental metal include In, Cu, Mo, and Fe.
- the elemental metal is preferably at least one selected from the group consisting of In, Cu, Mo, and Fe.
- the blackening layer 30 contains multiple elemental metals, it is preferable that the multiple elemental metals include a metal different from the first metal in the above-mentioned metal oxide. More preferably, the elemental metal is a metal other than the first metal.
- the proportion of the first metal in the blackening layer 30 is preferably 10 atomic % or more, more preferably 20 atomic % or more, and is preferably 90 atomic % or less, more preferably 80 atomic % or less, from the viewpoint of realizing high light blocking properties in the blackening layer 30.
- the proportion of the second metal in the blackening layer 30 is preferably 10 atomic % or more, more preferably 20 atomic % or more, and is preferably 90 atomic % or less, more preferably 80 atomic % or less, from the viewpoint of realizing high light blocking properties in the blackening layer 30.
- the blackening layer 30 preferably contains a metal oxide and a single metal other than the first metal, and more preferably contains indium oxide as the metal oxide and copper as the single metal.
- the proportion of In in the blackening layer 30 is preferably 40 atomic % or more, more preferably 50 atomic % or more, and is preferably 90 atomic % or less, more preferably 80 atomic % or less, from the viewpoint of realizing high light-shielding properties in the blackening layer 30.
- the proportion of Cu in the blackening layer 30 is preferably 5 atomic % or more, more preferably 10 atomic % or more, and is preferably 50 atomic % or less, more preferably 40 atomic % or less, from the viewpoint of realizing high light-shielding properties in the blackening layer 30.
- the thickness of the blackening layer 30 is 400 nm or less, preferably 200 nm or less, more preferably 150 nm or less, and even more preferably 110 nm or less, from the viewpoint of ensuring adhesion of the blackening layer 30 to the base (metal reflective layer 20 in this embodiment).
- the thickness of the blackening layer 30 is preferably 5 nm or more, more preferably 10 nm or more, even more preferably 20 nm or more, even more preferably 30 nm or more, and particularly preferably 50 nm or more, from the viewpoint of ensuring the light-shielding properties of the blackening layer 30 and the reflective film X.
- the luminous transmittance (Y value) of the blackening layer 30 at wavelengths of 380 nm to 780 nm in the CIE-XYZ color system is preferably 0.1% or less, more preferably 0.05% or less, and even more preferably 0.03% or less, from the viewpoint of ensuring the light-shielding properties of the blackening layer 30 and the reflective film X.
- the luminous transmittance is, for example, 0.001% or more, 0.005% or more, or 0.01% or more.
- the luminous transmittance can be measured, for example, by a spectrophotometer (product name "U-4100", manufactured by Hitachi High-Tech Science Corporation). The method for measuring the luminous transmittance is specifically described below in the examples.
- the blackening layer 30 is preferably a dry coating film from the viewpoint of ensuring adhesion of the blackening layer 30 to the undercoat.
- dry coating films include a sputtered film formed by a sputtering method and a vapor deposition film formed by a vapor deposition method, with a sputtered film being preferred.
- the cured resin layer 40 is disposed on the blackening layer 30. That is, in this embodiment, the cured resin layer 40 is in contact with the blackening layer 30.
- the cured resin layer 40 is a hard coat layer that makes it difficult for scratches to form on the reflective film X.
- the cured resin layer 40 is a cured product of a curable resin composition.
- the curable resin composition contains a curable resin.
- the curable resin include polyester resin, acrylic urethane resin, acrylic resin (excluding acrylic urethane resin), urethane resin (excluding acrylic urethane resin), amide resin, silicone resin, epoxy resin, and melamine resin. These curable resins may be used alone or in combination of two or more types. From the viewpoint of ensuring high hardness of the cured resin layer 40, at least one selected from the group consisting of acrylic urethane resin and acrylic resin is preferably used as the curable resin.
- examples of the curable resin include ultraviolet-curable resin and thermosetting resin.
- ultraviolet-curable resin is preferred from the viewpoint of improving the manufacturing efficiency of the reflective film X.
- the curable resin composition may contain particles.
- the particles include inorganic oxide particles and organic particles.
- the inorganic oxide particle material include silica, alumina, titania, zirconia, calcium oxide, tin oxide, indium oxide, cadmium oxide, and antimony oxide.
- the organic particle material include polymethyl methacrylate, polystyrene, polyurethane, acrylic-styrene copolymer, benzoguanamine, melamine, and polycarbonate.
- the particles may be used alone or in combination of two or more kinds.
- the particles are preferably inorganic oxide particles, and more preferably at least one selected from silica particles and zirconia particles.
- the average particle diameter (D50) of the particles is preferably 20 nm or more, more preferably 25 nm or more, and even more preferably 30 nm or more, from the viewpoint of ensuring the hardness of the cured resin layer 40.
- the average particle diameter (D50) of the particles is preferably 300 nm or less, and particularly preferably 100 nm or less, from the viewpoint of uniform dispersion of the particles in the cured resin layer 40.
- the average particle diameter (D50) of the particles is the median diameter in the volume-based particle size distribution (the particle diameter at which the volume cumulative frequency reaches 50% from the small diameter side), and is determined, for example, based on the particle size distribution obtained by a laser diffraction/scattering method.
- the proportion of particles in the cured resin layer 40 is preferably 5% by mass or more, more preferably 8% by mass or more, and even more preferably 10% by mass or more, from the viewpoint of ensuring the hardness of the cured resin layer 40.
- the proportion of particles in the cured resin layer 40 is preferably 30% by mass or less, more preferably 20% by mass or less, and even more preferably 15% by mass or less, from the viewpoint of uniform dispersion of the particles in the cured resin layer 40.
- the thickness of the cured resin layer 40 is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and even more preferably 0.7 ⁇ m or more, from the viewpoint of providing sufficient abrasion resistance in the cured resin layer 40.
- the thickness of the cured resin layer 40 is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, even more preferably 2 ⁇ m or less, and even more preferably 1.5 ⁇ m or less, from the viewpoint of ensuring adhesion of the cured resin layer 40 to the blackening layer 30.
- the luminous reflectance (Y value) of the reflective film X at wavelengths of 380 nm to 780 nm in the CIE-XYZ color system is preferably 80% or more, more preferably 82% or more, and even more preferably 85% or more, from the viewpoint of ensuring the light leakage prevention properties of the reflective film X described below.
- the luminous reflectance is, for example, 90% or less, 95% or less, or 100% or less.
- the luminous reflectance (Y value) of the reflective film X is the reflectance of light irradiated onto the reflective film X from the substrate film 10 side.
- the luminous transmittance (Y value) of the reflective film X at wavelengths of 380 nm to 780 nm in the CIE-XYZ color system is preferably 0.10% or less, more preferably 0.09% or less, and even more preferably 0.07% or less, from the viewpoint of ensuring the light leakage prevention properties of the reflective film X described below.
- the luminous transmittance is, for example, 0.001% or more, 0.005% or more, or 0.01% or more.
- the luminous transmittance (Y value) of the reflective film X is the transmittance of light irradiated onto the reflective film X from the substrate film 10 side.
- the reflective film X preferably does not peel off the blackened layer 30 in a peel test conforming to JIS K 5400.
- the peel test conforming to JIS K 5400 is a checkerboard peel test. The specific method for carrying out the peel test is as described below in relation to the examples.
- Reflective film X is manufactured using a roll-to-roll method, for example, as follows.
- a base film 10 is prepared (base film preparation process).
- the first surface 11 of the base film 10 is subjected to a surface modification treatment as necessary.
- a plasma treatment is used as the surface modification treatment
- argon gas for example, is used as an inert gas.
- the discharge power in the plasma treatment is, for example, 10 W or more and, for example, 5000 W or less.
- a metal reflective layer 20 is formed on the base film 10 (metal reflective layer formation process). Specifically, a metal material is deposited on the first surface 11 of the base film 10 by a dry coating method to form the metal reflective layer 20. Examples of dry coating methods include a sputtering method and a vapor deposition method, with the sputtering method being preferred.
- a sputtering deposition apparatus capable of performing a film formation process using a roll-to-roll method is used.
- a sputtering gas in the sputtering method, a sputtering gas (inert gas) is introduced under vacuum conditions into a deposition chamber equipped with the sputtering deposition apparatus, while a negative voltage is applied to a target placed on a cathode in the deposition chamber. This generates a glow discharge to ionize gas atoms, and the gas ions collide with the target surface at high speed, ejecting the target material from the target surface, and the ejected target material is deposited on the substrate film 10.
- in the sputtering method a sputtering gas (inert gas) is introduced under vacuum conditions into a deposition chamber equipped with the sputtering deposition apparatus, while a negative voltage is applied to a target placed on a cathode in the deposition chamber. This generates a glow discharge to ionize gas
- the target material placed on the cathode in the film formation chamber is a sintered body of the metal material described above for the metal reflective layer 20, and preferably a sintered body of Al or an Al alloy.
- the air pressure in the film formation chamber during film formation by sputtering is, for example, 0.02 Pa or more and, for example, 1 Pa or less.
- Examples of power sources for applying voltage to the target include DC power sources, AC power sources, MF power sources, and RF power sources (the same applies to the sputter film formation described below for the blackened layer 30).
- the absolute value of the discharge voltage during sputter film formation is, for example, 50 V or more and, for example, 500 V or less (the same applies to the sputter film formation described below for the blackened layer 30).
- a blackening layer 30 is formed on the metal reflective layer 20 (blackening layer formation process).
- a metal oxide-containing material is deposited on the metal reflective layer 20 by a dry coating method to form a blackening layer 30 having a thickness of 400 nm or less.
- dry coating methods include a sputtering method and a vapor deposition method, with the sputtering method being preferred.
- the target material placed on the cathode in the deposition chamber may be, for example, a sintered body of the metal oxide described above, preferably a sintered body of copper indium oxide.
- the target material is preferably a sintered body containing the metal oxide and elemental metal described above for the blackening layer 30.
- the air pressure in the deposition chamber during sputter deposition of the blackening layer 30 is, for example, 0.02 Pa or more, and, for example, 1 Pa or less.
- the blackening layer 30 formed from an inorganic material containing metal oxide is less susceptible to compressive residual stress than the above-mentioned black ink layer formed with a resin component.
- the blackening layer 30 is thin, with a thickness of 400 nm or less.
- the difference between the compressive residual stress on the side fixed to the metal reflective layer 20 and the compressive residual stress on the side opposite the metal reflective layer 20 is small (the thinner the blackening layer 30, the smaller the difference in compressive residual stress on both sides).
- the small difference in compressive residual stress on both sides of the thickness direction H of the blackening layer 30 helps ensure adhesion of the blackening layer 30 to the metal reflective layer 20.
- the entire process from the metal reflective layer formation process to the blackened layer formation process is carried out on one pass line while the work film is transported using the roll-to-roll method. During the process on one pass line, the work film is never exposed to the atmosphere. Forming the blackened layer 30 on the metal reflective layer 20 without exposing the work film to the atmosphere after the formation of the metal reflective layer 20 helps to ensure the adhesion of the blackened layer 30 to the metal reflective layer 20.
- a cured resin layer 40 is formed on the blackened layer 30 (cured resin layer forming step).
- the cured resin layer 40 can be formed by applying the above-mentioned curable resin composition on the blackened layer 30 to form a coating film, and then curing the coating film. If the curable resin composition contains an ultraviolet-curable resin, the coating film is cured by ultraviolet irradiation. If the curable resin composition contains a thermosetting resin, the coating film is cured by heating.
- reflective film X can be manufactured.
- the reflective film X may not have a cured resin layer 40, as shown in FIG. 3.
- Such a reflective film X can be manufactured by not carrying out the above-mentioned cured resin layer forming process (FIG. 2D).
- FOG. 2D cured resin layer forming process
- the reflective film X has a cured resin layer 40.
- the reflective film X comprises a base film 10, a metal reflective layer 20, and a blackening layer 30 in this order in the thickness direction H, and the blackening layer 30 is an inorganic blackening layer containing metal oxide and has a thickness of 400 nm or less.
- the above-mentioned light leakage can be prevented by the light reflection at the metal reflective layer 20 and the light blocking by the blackening layer 30.
- the blackening layer 30 is a thin inorganic blackening layer of 400 nm or less, which is suitable for reducing the difference in compressive residual stress that occurs on both sides of the thickness direction H of the blackening layer 30 after film formation. Reducing the difference in compressive residual stress helps ensure the adhesion of the blackening layer 30 to the metal reflective layer 20. Therefore, the reflective film X is suitable for ensuring the adhesion of the blackening layer 30 to the metal reflective layer 20. And the higher the adhesion of the blackening layer 30 to the metal reflective layer 20, the more the peeling of the blackening layer 30 is suppressed, and the reflective film X can exhibit good light leakage prevention function.
- Example 1 First, a white polyethylene terephthalate (PET) film (product name: “Lumirror E20", thickness: 38 ⁇ m, manufactured by Toray Industries, Inc.) was prepared as a substrate film.
- PET polyethylene terephthalate
- a metal reflective layer and a blackening layer were formed in that order on one side (first side) of the PET film by sputtering (sputter deposition process).
- sputter deposition process a roll-to-roll sputter deposition device (DC magnetron sputter deposition device) was used.
- the device is equipped with a pay-out chamber, a first deposition chamber, a second deposition chamber, and a winding chamber.
- the pay-out chamber is equipped with a pay-out roller.
- a roll of the above-mentioned base film was set on the pay-out roller as the work film.
- the winding chamber is equipped with a winding roller that can wind up the work film.
- the deposition process can be carried out while the work film is running from the pay-out chamber to the winding chamber by the roll-to-roll method.
- the first sputter deposition in the first deposition chamber and the second sputter deposition in the second deposition chamber were carried out in sequence, after which the work film (substrate film/metal reflective layer/blackened layer) was wound around the winding roller in the winding chamber.
- the work film substrate film/metal reflective layer/blackened layer
- a 75 nm thick aluminum (Al) layer was formed as a metal reflective layer on the first surface of the PET film.
- a 30 nm thick blackened layer was formed on the Al layer.
- the conditions for each sputter deposition were as follows:
- the sputter deposition equipment (the payout chamber, the first and second deposition chambers, and the winding chamber) was evacuated to a vacuum, and then argon (Ar) was introduced into the first deposition chamber as a sputtering gas, and the air pressure in the first deposition chamber was set to 0.3 to 0.4 Pa.
- An Al target was used as the target.
- a DC power supply was used as the power supply for applying voltage to the target.
- the deposition temperature (the temperature of the substrate film on which the Al layer is laminated) was set to 40°C.
- the second sputtering deposition after the above-mentioned evacuation of the sputtering deposition apparatus, Ar was introduced as a sputtering gas into the second deposition chamber, and the pressure in the second deposition chamber was set to 0.3 to 0.4 Pa.
- a black inorganic target product name "DIABLA12", a mixed target of indium oxide (In 2 O 3 ) and copper (Cu), In ratio of 67.3 ( ⁇ 3) mass%, manufactured by Mitsubishi Materials Corporation
- a DC power supply was used as the power source for applying voltage to the target.
- the deposition temperature (the temperature of the workpiece film on which the blackened layer is formed) was set to 40°C.
- the first curable resin composition contains an ultraviolet-curable acrylic urethane resin (product name: AICA ITRON Z844, manufactured by AICA Corporation) and methyl ethyl ketone as a solvent.
- the coating was dried and then cured by exposure to ultraviolet light to form a 1 ⁇ m-thick hard coat (HC) layer.
- the reflective film of Example 1 has a laminated structure of a substrate film (thickness 38 ⁇ m), a metal reflective layer (Al layer, thickness 75 nm), a blackened layer (thickness 30 nm), and an HC layer (thickness 1 ⁇ m).
- the metal reflective layer, the blackened layer, and the HC layer on the substrate film form a multilayer film (the same applies to Example 2 described below).
- Example 2 The reflective film of Example 2 was produced in the same manner as the reflective film of Example 1, except for the following.
- the second curable resin composition was used instead of the first curable resin composition.
- the second curable resin composition contains 100 parts by mass of an ultraviolet-curable acrylic urethane resin (product name "AICA ITRON Z844", manufactured by AICA Corporation), 1 part by mass of crosslinked polymethyl methacrylate particles having an average particle size (D50) of 2.5 ⁇ m (product name "MBX-2H", manufactured by Sekisui Chemical Industry Co., Ltd.), and methyl ethyl ketone as a solvent.
- an ultraviolet-curable acrylic urethane resin product name "AICA ITRON Z844", manufactured by AICA Corporation
- D50 average particle size
- MBX-2H manufactured by Sekisui Chemical Industry Co., Ltd.
- methyl ethyl ketone methyl ethyl ketone
- Example 3 Except for not forming an HC layer on the blackened layer, the reflective film of Example 3 was produced in the same manner as the reflective film of Example 1. In Example 3, the metal reflective layer and the blackened layer on the substrate film form a multilayer film (the same applies to Example 4 described below).
- Example 4 The reflective film of Example 4 was produced in the same manner as the reflective film of Example 1, except for the following: The thickness of the blackened layer formed by the second sputtering deposition in the sputtering deposition process was set to 350 nm. No HC layer was formed on the blackened layer.
- ⁇ Thickness of metal reflective layer, thickness of blackened layer> The thicknesses of the metal reflective layer and the blackening layer in each of the reflective films of Examples 1 to 4 were measured by observation with a field emission transmission electron microscope (FE-TEM). Specifically, first, samples for cross-sectional observation of the metal reflective layer and the blackening layer in Examples 1 to 4 were prepared by the FIB microsampling method. In the FIB microsampling method, an FIB device (product name "FB2200", manufactured by Hitachi) was used, and the acceleration voltage was set to 10 kV.
- FIB microsampling method an FIB device (product name "FB2200", manufactured by Hitachi) was used, and the acceleration voltage was set to 10 kV.
- ⁇ Visual transmittance> The luminous transmittance of each of the reflective films of Examples 1 to 4 was measured. Specifically, the measurements were as follows.
- first film piece a piece of film for measurement (first film piece) was cut out from the reflective film.
- the luminous transmittance of the first film piece was measured using a spectrophotometer (product name "U-4100", manufactured by Hitachi High-Tech Science Corporation). This transmittance is the luminous transmittance (Y value) in the CIE-XYZ color system of light with wavelengths of 380 nm to 780 nm transmitted through the first film piece.
- the first film piece was placed in the spectrophotometer so that light was incident on the base film side. The measurement results are shown in Table 1.
- ⁇ Visual reflectance> The luminous reflectance of each of the reflective films of Examples 1 to 4 was measured. Specifically, the measurements were as follows.
- the side of the reflective film opposite the base film was attached to a black acrylic plate via a specified adhesive. This resulted in a laminated film.
- a film piece for measurement (second film piece) was cut out from the laminated film.
- the luminous reflectance of the second film piece was then measured using a spectrophotometer (product name "U-4100", manufactured by Hitachi High-Tech Science Corporation). This reflectance is the luminous reflectance (Y value) in the CIE-XYZ color system of light with a wavelength of 380 nm to 780 nm irradiated onto the second film piece.
- the second film piece was placed in the spectrophotometer so that light was irradiated from the base film side onto the second film piece.
- Table 1 The measurement results are shown in Table 1.
- a sample film was prepared for each reflective film.
- a film piece 50 mm x 50 mm
- 11 parallel first incisions (1 mm apart) extending linearly in a first direction and 11 parallel second incisions (1 mm apart) extending linearly in a second direction perpendicular to the first direction were made in the multilayer film on the base film in the film piece, and 100 grids were formed by the first and second incisions. In this way, a sample film was obtained. Each incision reached from the exposed surface of the multilayer film to the base film in the thickness direction.
- a peel test (checkerboard peel test) was conducted for each sample film in accordance with JIS K 5400. Specifically, a specified single-sided adhesive tape was first applied to the multilayer surface of the sample film so as to cover all 100 squares. Next, the adhesive tape was peeled off in a first direction. The squares were then observed after the adhesive tape was peeled off to check whether or not they had peeled off. In each of the reflective films of Examples 1 to 4, the number of squares that had at least partially peeled off was 0 (no peeling had occurred in any of the squares).
- the reflective film of the present invention can be used, for example, as a reflective film placed inside the bezel of the housing of a liquid crystal display device.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Laminated Bodies (AREA)
Abstract
A reflective film (X) according to the present invention comprises, in order in the thickness direction, a substrate film (10), a metal reflective layer (20), and a blackened layer (30). The blackened layer (30) is an inorganic blackened layer that includes a metal oxide and has a thickness of 400 nm or less.
Description
本発明は、反射フィルムに関する。
The present invention relates to a reflective film.
液晶表示装置は、画像表示面を有する液晶パネルと、当該パネルの背面に向けて光を出射するバックライトと、これらを収容する筐体とを備える。筐体は、画像表示面まわりの枠としてのベゼル部を有する。ベゼル部内の内壁面には、反射フィルムが配置される。この反射フィルムは、バックライトからの光がベゼル部から漏れ出るのを防止するために用いられる(漏光の防止)。このような反射フィルムは、例えば、下記の特許文献1に記載されている。
A liquid crystal display device comprises a liquid crystal panel having an image display surface, a backlight that emits light toward the rear surface of the panel, and a housing that houses these. The housing has a bezel portion as a frame around the image display surface. A reflective film is disposed on the inner wall surface of the bezel portion. This reflective film is used to prevent light from the backlight from leaking out from the bezel portion (preventing light leakage). Such a reflective film is described, for example, in Patent Document 1 listed below.
特許文献1には、白色樹脂フィルムと、金属薄膜層と、黒インキ層とを厚さ方向にこの順で備える反射フィルムが記載されている。特許文献1によると、黒インキ層は、白色樹脂フィルム上の金属薄膜層の表面に対する黒インキの印刷により、形成される。黒インキは、樹脂バインダと、黒色顔料とを含有する。黒インキ層の好ましい厚さは、0.5~3μmである。黒インキ層においてピンホールが形成されるのを防止する観点から、複数の黒インキ層が積層されるのが好ましい。このような黒インキ層付きの反射フィルムにおいては、金属薄膜層による光反射と、黒インキ層による遮光とにより、上述の漏光が防止される。
Patent Document 1 describes a reflective film that includes a white resin film, a metal thin film layer, and a black ink layer in that order in the thickness direction. According to Patent Document 1, the black ink layer is formed by printing black ink on the surface of the metal thin film layer on the white resin film. The black ink contains a resin binder and a black pigment. The preferred thickness of the black ink layer is 0.5 to 3 μm. From the viewpoint of preventing pinholes from being formed in the black ink layer, it is preferable that multiple black ink layers are laminated. In such a reflective film with a black ink layer, the above-mentioned light leakage is prevented by the light reflection by the metal thin film layer and the light blocking by the black ink layer.
しかしながら、特許文献1の反射フィルムにおいては、金属薄膜層に対する黒インキ層の密着性が不十分である。
However, in the reflective film of Patent Document 1, the adhesion of the black ink layer to the thin metal layer is insufficient.
樹脂バインダを含有する黒インキ層には、同層の形成後に圧縮残留応力が生じやすい。黒インキ層において金属薄膜層に固定される側の圧縮残留応力よりも、露出面側(金属薄膜層とは反対側)の圧縮残留応力は大きい。また、黒インキ層が厚いほど、両側の圧縮残留応力の差は大きい。そして、黒インキ層の両側の圧縮残留応力の差が大きいほど、金属薄膜層に対する黒インキ層の密着性は低い。密着性が不十分な黒インキ層には、剥がれが生じやすい。黒インキ層に剥がれが生じることにより、反射フィルムの漏光防止機能が損なわれる。
Black ink layers containing a resin binder are prone to compressive residual stress after the layer is formed. The compressive residual stress on the exposed side (the side opposite the metal thin film layer) is greater than the compressive residual stress on the side of the black ink layer that is fixed to the metal thin film layer. The thicker the black ink layer, the greater the difference in compressive residual stress on both sides. And the greater the difference in compressive residual stress on both sides of the black ink layer, the poorer the adhesion of the black ink layer to the metal thin film layer. Black ink layers with insufficient adhesion are prone to peeling. Peeling of the black ink layer impairs the reflective film's ability to prevent light leakage.
本発明は、金属反射層に対する黒化層の密着性を確保するのに適した反射フィルムを提供する。
The present invention provides a reflective film suitable for ensuring adhesion of a blackening layer to a metal reflective layer.
本発明[1]は、基材フィルムと、金属反射層と、黒化層とを厚さ方向にこの順で備える反射フィルムであって、前記黒化層が、厚さ400nm以下の、金属酸化物を含む無機黒化層である、反射フィルムを含む。
The present invention [1] includes a reflective film having a base film, a metal reflective layer, and a blackening layer in this order in the thickness direction, the blackening layer being an inorganic blackening layer containing a metal oxide and having a thickness of 400 nm or less.
本発明[2]は、前記金属反射層がアルミニウム層である、上記[1]に記載の反射フィルムを含む。
The present invention [2] includes the reflective film described in [1] above, in which the metal reflective layer is an aluminum layer.
本発明[3]は、前記金属反射層の厚さが30nm以上である、上記[1]または[2]に記載の反射フィルムを含む。
The present invention [3] includes the reflective film described in [1] or [2] above, in which the thickness of the metal reflective layer is 30 nm or more.
本発明[4]は、前記金属反射層の厚さが500nm以下である、上記[1]から[3]のいずれか一つに記載の反射フィルムを含む。
The present invention [4] includes the reflective film according to any one of [1] to [3] above, in which the thickness of the metal reflective layer is 500 nm or less.
本発明[5]は、前記黒化層の厚さが5nm以上である、上記[1]から[4]のいずれか一つに記載の反射フィルムを含む。
The present invention [5] includes the reflective film described in any one of [1] to [4] above, in which the thickness of the blackening layer is 5 nm or more.
本発明[6]は、前記黒化層における前記金属反射層とは反対側に硬化樹脂層を備える、上記[1]から[5]のいずれか一つに記載の反射フィルムを含む。
The present invention [6] includes the reflective film described in any one of [1] to [5] above, which has a cured resin layer on the side of the blackening layer opposite the metal reflective layer.
本発明[7]は、JIS K 5400に準拠した剥離試験において前記黒化層に剥がれが生じない、上記[1]から[6]のいずれか一つに記載の反射フィルムを含む。
The present invention [7] includes a reflective film according to any one of [1] to [6] above, in which the blackened layer does not peel off in a peel test conforming to JIS K 5400.
本発明の反射フィルムは、上記のように、基材フィルムと、金属反射層と、黒化層とを厚さ方向にこの順で備え、黒化層が、厚さ400nm以下の金属酸化物含有の無機黒化層である。黒化層が、400nm以下の薄い無機黒化層であることは、成膜後の黒化層における厚さ方向両側に生ずる圧縮残留応力の差を低減するのに適する。圧縮残留応力の差の低減は、金属反射層に対する黒化層の密着性を確保するのに適する。
As described above, the reflective film of the present invention comprises a base film, a metal reflective layer, and a blackening layer in this order in the thickness direction, and the blackening layer is an inorganic blackening layer containing metal oxide and having a thickness of 400 nm or less. The blackening layer being a thin inorganic blackening layer of 400 nm or less is suitable for reducing the difference in compressive residual stress that occurs on both sides of the blackening layer in the thickness direction after film formation. Reducing the difference in compressive residual stress is suitable for ensuring the adhesion of the blackening layer to the metal reflective layer.
本発明の一実施形態の反射フィルムXは、図1に示すように、基材フィルム10と、金属反射層20と、黒化層30と、硬化樹脂層40とを、厚さ方向Hにこの順で備える。反射フィルムXは、厚さ方向Hと直交する方向(面方向)に広がる。反射フィルムXは、例えば、液晶表示装置のバックライトからの光が筐体から漏れ出るのを防止する反射フィルムである。
Reflective film X according to one embodiment of the present invention comprises a base film 10, a metal reflective layer 20, a blackening layer 30, and a cured resin layer 40, in this order in the thickness direction H, as shown in FIG. 1. Reflective film X extends in a direction (plane direction) perpendicular to the thickness direction H. Reflective film X is, for example, a reflective film that prevents light from a backlight of a liquid crystal display device from leaking out of the housing.
基材フィルム10は、反射フィルムXの強度を確保する基材である。基材フィルム10は、第1面11と、当該第1面11とは反対側の第2面12とを有する。また、基材フィルム10は、例えば、可撓性を有する透明な樹脂フィルムである。基材フィルム10の材料としては、例えば、ポリエステル樹脂、ポリオレフィン樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリエーテルスルフォン樹脂、ポリアリレート樹脂、メラミン樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース樹脂、およびポリスチレン樹脂が挙げられる。ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、およびポリエチレンナフタレートが挙げられる。ポリオレフィン樹脂としては、例えば、ポリエチレン、ポリプロピレン、およびシクロオレフィンポリマーが挙げられる。アクリル樹脂としては、例えばポリメタクリレートが挙げられる。基材フィルム10の材料は、透明性および強度の観点から、好ましくはポリエステル樹脂であり、より好ましくはPETである。
The base film 10 is a base material that ensures the strength of the reflective film X. The base film 10 has a first surface 11 and a second surface 12 opposite to the first surface 11. The base film 10 is, for example, a transparent resin film having flexibility. Examples of the material of the base film 10 include polyester resin, polyolefin resin, acrylic resin, polycarbonate resin, polyethersulfone resin, polyarylate resin, melamine resin, polyamide resin, polyimide resin, cellulose resin, and polystyrene resin. Examples of the polyester resin include polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate. Examples of the polyolefin resin include polyethylene, polypropylene, and cycloolefin polymer. Examples of the acrylic resin include polymethacrylate. From the viewpoints of transparency and strength, the material of the base film 10 is preferably polyester resin, and more preferably PET.
基材フィルム10は、基材フィルム10の有意な光反射性を確保する観点から、白色フィルムであるのが好ましい。白色フィルムは、例えば、光散乱を生じさせる無機フィラーなどの粒子を上述の樹脂フィルムに含有させることにより、得られる。そのような粒子としては、例えば、酸化チタン、炭酸カルシウム、硫酸バリウム、シリカ、およびタルクが挙げられ、好ましくは、酸化チタンおよび/またはシリカが用いられる。これら粒子は、単独で用いられてもよいし、二種類以上が用いられてもよい。当該粒子の平均粒子径は、例えば0.05μm以上、好ましくは0.1μm以上であり、また、例えば2μm以下、好ましくは1μm以下である。白色フィルムとしての基材フィルム10における同粒子の含有割合は、例えば5質量%以上、好ましくは10質量%以上であり、また、例えば50質量%以下、好ましくは40質量%以下である。
The base film 10 is preferably a white film from the viewpoint of ensuring significant light reflectivity of the base film 10. The white film can be obtained, for example, by incorporating particles such as inorganic fillers that cause light scattering into the resin film described above. Examples of such particles include titanium oxide, calcium carbonate, barium sulfate, silica, and talc, and preferably titanium oxide and/or silica are used. These particles may be used alone or in combination of two or more types. The average particle size of the particles is, for example, 0.05 μm or more, preferably 0.1 μm or more, and, for example, 2 μm or less, preferably 1 μm or less. The content ratio of the particles in the base film 10 as a white film is, for example, 5 mass% or more, preferably 10 mass% or more, and, for example, 50 mass% or less, preferably 40 mass% or less.
基材フィルム10の厚さは、反射フィルムXの強度の観点から、好ましくは20μm以上、より好ましくは30μm以上、更に好ましくは35μm以上である。基材フィルム10の厚さは、ロールトゥロール方式における基材フィルム10の取り扱い性を確保する観点から、好ましくは300μm以下、より好ましくは200μm以下、更に好ましくは150μm以下である。
From the viewpoint of the strength of the reflective film X, the thickness of the base film 10 is preferably 20 μm or more, more preferably 30 μm or more, and even more preferably 35 μm or more. From the viewpoint of ensuring the handleability of the base film 10 in the roll-to-roll method, the thickness of the base film 10 is preferably 300 μm or less, more preferably 200 μm or less, and even more preferably 150 μm or less.
基材フィルム10の第1面11は、基材フィルム10に対する金属反射層20の密着性を確保する観点から、表面改質処理されていてもよい。表面改質処理としては、例えば、コロナ処理、プラズマ処理、オゾン処理、プライマー処理、グロー処理、およびカップリング剤処理が挙げられる。
The first surface 11 of the substrate film 10 may be subjected to a surface modification treatment in order to ensure adhesion of the metal reflective layer 20 to the substrate film 10. Examples of surface modification treatments include corona treatment, plasma treatment, ozone treatment, primer treatment, glow treatment, and coupling agent treatment.
金属反射層20は、本実施形態では、基材フィルム10の第1面11上に配置されている。すなわち、金属反射層20は、本実施形態では第1面11に接する。
In this embodiment, the metal reflective layer 20 is disposed on the first surface 11 of the base film 10. That is, in this embodiment, the metal reflective layer 20 is in contact with the first surface 11.
金属反射層20は、光反射性を有する金属から形成されている。金属反射層20を形成する金属材料としては、例えば、アルミニウム(Al)、銀(Ag)、チタン(Ti)、および、これらの合金が挙げられる。可視光に対する金属反射層20の良好な光反射性を確保する観点から、金属反射層20の材料としては、アルミニウムまたは銀が好ましい。
The metal reflective layer 20 is formed from a metal having light reflectivity. Examples of metal materials that form the metal reflective layer 20 include aluminum (Al), silver (Ag), titanium (Ti), and alloys thereof. From the viewpoint of ensuring good light reflectivity of the metal reflective layer 20 for visible light, the material of the metal reflective layer 20 is preferably aluminum or silver.
金属反射層20の厚さは、金属反射層20および反射フィルムXの光反射性を確保する観点から、好ましくは30nm以上、より好ましくは50nm以上、更に好ましくは70nm以上、一層好ましくは90nm以上、特に好ましくは100nm以上である。金属反射層20の厚さは、基材フィルム10に対する金属反射層20の密着性を確保する観点から、好ましくは500nm以下、より好ましくは300nm以下、更に好ましくは200nm以下、一層好ましくは150nm以下、より一層好ましくは120nm以下である。
The thickness of the metal reflective layer 20 is preferably 30 nm or more, more preferably 50 nm or more, even more preferably 70 nm or more, even more preferably 90 nm or more, and particularly preferably 100 nm or more, from the viewpoint of ensuring the light reflectivity of the metal reflective layer 20 and the reflective film X. The thickness of the metal reflective layer 20 is preferably 500 nm or less, more preferably 300 nm or less, even more preferably 200 nm or less, even more preferably 150 nm or less, and even more preferably 120 nm or less, from the viewpoint of ensuring the adhesion of the metal reflective layer 20 to the substrate film 10.
金属反射層20の、CIE-XYZ表色系での波長380nm~780nmの視感反射率(Y値)は、金属反射層20および反射フィルムXの光反射性を確保する観点から、好ましくは70%以上、より好ましくは75%以上、更に好ましくは80%以上である。同視感反射率は、例えば、90%以下、95%以下または100%以下である。視感反射率は、例えば、分光光度計(品名「U-4100」,日立ハイテクサイエンス社製)によって測定できる。視感反射率の測定方法は、具体的には、実施例に関して後述するとおりである。
The luminous reflectance (Y value) of the metal reflective layer 20 at wavelengths of 380 nm to 780 nm in the CIE-XYZ color system is preferably 70% or more, more preferably 75% or more, and even more preferably 80% or more, from the viewpoint of ensuring the light reflectivity of the metal reflective layer 20 and the reflective film X. The luminous reflectance is, for example, 90% or less, 95% or less, or 100% or less. The luminous reflectance can be measured, for example, by a spectrophotometer (product name "U-4100", manufactured by Hitachi High-Tech Science Corporation). The method for measuring the luminous reflectance is specifically described below in relation to the examples.
黒化層30は、本実施形態では、金属反射層20上に配置されている。すなわち、黒化層30は、本実施形態では金属反射層20に接する。
In this embodiment, the blackening layer 30 is disposed on the metal reflective layer 20. That is, in this embodiment, the blackening layer 30 is in contact with the metal reflective layer 20.
黒化層30は、光吸収性が高い金属酸化物を含有する。当該金属酸化物を形成する金属(第1金属)としては、例えば、銅(Cu)、インジウム(In)、モリブデン(Mo)および鉄(Fe)が挙げられる。金属酸化物は、好ましくは、Cu、In、MoおよびFeからなる群から選択される少なくとも一つを含む。金属酸化物としては、黒化層30に対する硬化樹脂層40の密着性を確保する観点、および、黒化層30の成膜方法としてスパッタリング法を採用する場合の当該スパッタ成膜時の安定性を確保する観点から、CuおよびInを含む酸化物が好ましい。すなわち、金属酸化物としては、銅インジウム酸化物が好ましい。当該銅インジウム酸化物における、CuおよびInの合計量におけるCuの割合は、黒化層30に対する硬化樹脂層40の密着性を確保する観点から、好ましくは10原子%以上、より好ましくは20原子%以上、更に好ましくは30原子%以上である。Cuの同割合は、好ましくは90原子%以下、より好ましくは80原子%以下、更に好ましくは70原子%以下である。
The blackening layer 30 contains a metal oxide having high light absorption. Examples of the metal (first metal) forming the metal oxide include copper (Cu), indium (In), molybdenum (Mo) and iron (Fe). The metal oxide preferably contains at least one selected from the group consisting of Cu, In, Mo and Fe. As the metal oxide, an oxide containing Cu and In is preferable from the viewpoint of ensuring adhesion of the cured resin layer 40 to the blackening layer 30 and from the viewpoint of ensuring stability during sputtering film formation when a sputtering method is adopted as a film formation method for the blackening layer 30. That is, as the metal oxide, copper indium oxide is preferable. In the copper indium oxide, the proportion of Cu in the total amount of Cu and In is preferably 10 atomic % or more, more preferably 20 atomic % or more, and even more preferably 30 atomic % or more, from the viewpoint of ensuring adhesion of the cured resin layer 40 to the blackening layer 30. The proportion of Cu is preferably 90 atomic % or less, more preferably 80 atomic % or less, and even more preferably 70 atomic % or less.
黒化層30は、金属酸化物に加えて単体金属を含有してもよい。単体金属(第2金属)としては、In、Cu、MoおよびFeが挙げられる。単体金属は、好ましくは、In、Cu、MoおよびFeからなる群から選択される少なくとも一つである。黒化層30が複数の単体金属を含む場合、当該複数の単体金属は、上述の金属酸化物における第1金属とは異なる金属を含むのが好ましい。より好ましくは、単体金属は、第1金属以外の金属である。
The blackening layer 30 may contain an elemental metal in addition to the metal oxide. Examples of the elemental metal (second metal) include In, Cu, Mo, and Fe. The elemental metal is preferably at least one selected from the group consisting of In, Cu, Mo, and Fe. When the blackening layer 30 contains multiple elemental metals, it is preferable that the multiple elemental metals include a metal different from the first metal in the above-mentioned metal oxide. More preferably, the elemental metal is a metal other than the first metal.
黒化層30における第1金属の割合は、黒化層30において高い遮光性を実現する観点から、好ましくは10原子%以上、より好ましくは20原子%以上であり、また、好ましくは90原子%以下、より好ましくは80原子%以下である。黒化層30における第2金属の割合は、黒化層30において高い遮光性を実現する観点から、好ましくは10原子%以上、より好ましくは20原子%以上であり、また、好ましくは90原子%以下、より好ましくは80原子%以下である。
The proportion of the first metal in the blackening layer 30 is preferably 10 atomic % or more, more preferably 20 atomic % or more, and is preferably 90 atomic % or less, more preferably 80 atomic % or less, from the viewpoint of realizing high light blocking properties in the blackening layer 30. The proportion of the second metal in the blackening layer 30 is preferably 10 atomic % or more, more preferably 20 atomic % or more, and is preferably 90 atomic % or less, more preferably 80 atomic % or less, from the viewpoint of realizing high light blocking properties in the blackening layer 30.
黒化層30において高い遮光性を実現する観点から、黒化層30は、好ましくは、金属酸化物を含み且つ第1金属以外の単体金属を含み、より好ましくは、金属酸化物として酸化インジウムを含み且つ単体金属として銅を含む。黒化層30が酸化インジウムと銅とを含む場合、黒化層30におけるInの割合は、黒化層30において高い遮光性を実現する観点から、好ましくは40原子%以上、より好ましくは50原子%以上であり、また、好ましくは90原子%以下、より好ましくは80原子%以下である。黒化層30が酸化インジウムと銅とを含む場合、黒化層30におけるCuの割合は、黒化層30において高い遮光性を実現する観点から、好ましくは5原子%以上、より好ましくは10原子%以上であり、また、好ましくは50原子%以下、より好ましくは40原子%以下である。
From the viewpoint of realizing high light-shielding properties in the blackening layer 30, the blackening layer 30 preferably contains a metal oxide and a single metal other than the first metal, and more preferably contains indium oxide as the metal oxide and copper as the single metal. When the blackening layer 30 contains indium oxide and copper, the proportion of In in the blackening layer 30 is preferably 40 atomic % or more, more preferably 50 atomic % or more, and is preferably 90 atomic % or less, more preferably 80 atomic % or less, from the viewpoint of realizing high light-shielding properties in the blackening layer 30. When the blackening layer 30 contains indium oxide and copper, the proportion of Cu in the blackening layer 30 is preferably 5 atomic % or more, more preferably 10 atomic % or more, and is preferably 50 atomic % or less, more preferably 40 atomic % or less, from the viewpoint of realizing high light-shielding properties in the blackening layer 30.
黒化層30の厚さは、下地(本実施形態では金属反射層20)に対する黒化層30の密着性を確保する観点から、400nm以下、好ましくは200nm以下、より好ましくは150nm以下、更に好ましくは110nm以下である。黒化層30の厚さは、黒化層30および反射フィルムXの遮光性を確保する観点から、好ましくは5nm以上、より好ましくは10nm以上、更に好ましくは20nm以上、一層好ましくは30nm以上、特に好ましくは50nm以上である。
The thickness of the blackening layer 30 is 400 nm or less, preferably 200 nm or less, more preferably 150 nm or less, and even more preferably 110 nm or less, from the viewpoint of ensuring adhesion of the blackening layer 30 to the base (metal reflective layer 20 in this embodiment). The thickness of the blackening layer 30 is preferably 5 nm or more, more preferably 10 nm or more, even more preferably 20 nm or more, even more preferably 30 nm or more, and particularly preferably 50 nm or more, from the viewpoint of ensuring the light-shielding properties of the blackening layer 30 and the reflective film X.
黒化層30の、CIE-XYZ表色系での波長380nm~780nmの視感透過率(Y値)は、黒化層30および反射フィルムXの遮光性を確保する観点から、好ましくは0.1%以下、より好ましくは0.05%以下、更に好ましくは0.03%以下である。同視感透過率は、例えば、0.001%以上、0.005%以上または0.01%以上である。視感透過率は、例えば、分光光度計(品名「U-4100」,日立ハイテクサイエンス社製)によって測定できる。視感透過率の測定方法は、具体的には、実施例に関して後述するとおりである。
The luminous transmittance (Y value) of the blackening layer 30 at wavelengths of 380 nm to 780 nm in the CIE-XYZ color system is preferably 0.1% or less, more preferably 0.05% or less, and even more preferably 0.03% or less, from the viewpoint of ensuring the light-shielding properties of the blackening layer 30 and the reflective film X. The luminous transmittance is, for example, 0.001% or more, 0.005% or more, or 0.01% or more. The luminous transmittance can be measured, for example, by a spectrophotometer (product name "U-4100", manufactured by Hitachi High-Tech Science Corporation). The method for measuring the luminous transmittance is specifically described below in the examples.
黒化層30は、下地に対する黒化層30の密着性を確保する観点から、好ましくは、ドライコーティング膜である。ドライコーティング膜としては、例えば、スパッタリング法で形成されたスパッタ膜、および、蒸着法で形成された蒸着膜が挙げられ、スパッタ膜が好ましい。
The blackening layer 30 is preferably a dry coating film from the viewpoint of ensuring adhesion of the blackening layer 30 to the undercoat. Examples of dry coating films include a sputtered film formed by a sputtering method and a vapor deposition film formed by a vapor deposition method, with a sputtered film being preferred.
硬化樹脂層40は、本実施形態では、黒化層30上に配置されている。すなわち、硬化樹脂層40は、本実施形態では黒化層30に接する。硬化樹脂層40は、反射フィルムXに擦り傷が形成されにくくするためのハードコート層である。
In this embodiment, the cured resin layer 40 is disposed on the blackening layer 30. That is, in this embodiment, the cured resin layer 40 is in contact with the blackening layer 30. The cured resin layer 40 is a hard coat layer that makes it difficult for scratches to form on the reflective film X.
硬化樹脂層40は、硬化性樹脂組成物の硬化物である。硬化性樹脂組成物は、硬化性樹脂を含有する。硬化性樹脂としては、例えば、ポリエステル樹脂、アクリルウレタン樹脂、アクリル樹脂(アクリルウレタン樹脂を除く)、ウレタン樹脂(アクリルウレタン樹脂を除く)、アミド樹脂、シリコーン樹脂、エポキシ樹脂、およびメラミン樹脂が挙げられる。これら硬化性樹脂は、単独で用いられてもよいし、二種類以上が併用されてもよい。硬化樹脂層40の高硬度の確保の観点から、硬化性樹脂としては、好ましくは、アクリルウレタン樹脂およびアクリル樹脂からなる群より選択される少なくとも一つが用いられる。
The cured resin layer 40 is a cured product of a curable resin composition. The curable resin composition contains a curable resin. Examples of the curable resin include polyester resin, acrylic urethane resin, acrylic resin (excluding acrylic urethane resin), urethane resin (excluding acrylic urethane resin), amide resin, silicone resin, epoxy resin, and melamine resin. These curable resins may be used alone or in combination of two or more types. From the viewpoint of ensuring high hardness of the cured resin layer 40, at least one selected from the group consisting of acrylic urethane resin and acrylic resin is preferably used as the curable resin.
また、硬化性樹脂としては、例えば、紫外線硬化型樹脂および熱硬化型樹脂が挙げられる。高温加熱せずに硬化可能であるために反射フィルムXの製造効率向上に役立つ観点から、硬化性樹脂としては、紫外線硬化型樹脂が好ましい。
In addition, examples of the curable resin include ultraviolet-curable resin and thermosetting resin. As the curable resin can be cured without high temperature heating, ultraviolet-curable resin is preferred from the viewpoint of improving the manufacturing efficiency of the reflective film X.
硬化性樹脂組成物は、粒子を含有してもよい。粒子としては、例えば、無機酸化物粒子および有機粒子が挙げられる。無機酸化物粒子の材料としては、例えば、シリカ、アルミナ、チタニア、ジルコニア、酸化カルシウム、酸化スズ、酸化インジウム、酸化カドミウム、および酸化アンチモンが挙げられる。有機粒子の材料としては、例えば、ポリメチルメタクリレート、ポリスチレン、ポリウレタン、アクリル・スチレン共重合体、ベンゾグアナミン、メラミン、およびポリカーボネートが挙げられる。粒子は、単独で用いられてもよいし、二種類以上が併用されてもよい。粒子としては、好ましくは無機酸化物粒子が用いられ、より好ましくは、シリカ粒子およびジルコニア粒子から選択される少なくとも一つが用いられる。
The curable resin composition may contain particles. Examples of the particles include inorganic oxide particles and organic particles. Examples of the inorganic oxide particle material include silica, alumina, titania, zirconia, calcium oxide, tin oxide, indium oxide, cadmium oxide, and antimony oxide. Examples of the organic particle material include polymethyl methacrylate, polystyrene, polyurethane, acrylic-styrene copolymer, benzoguanamine, melamine, and polycarbonate. The particles may be used alone or in combination of two or more kinds. The particles are preferably inorganic oxide particles, and more preferably at least one selected from silica particles and zirconia particles.
粒子の平均粒子径(D50)は、硬化樹脂層40の硬さを確保する観点から、好ましくは20nm以上、より好ましくは25nm以上、更に好ましくは30nm以上である。粒子の平均粒子径(D50)は、硬化樹脂層40内での粒子の均一分散化の観点から、好ましくは300nm以下、特に好ましくは100nm以下である。粒子の平均粒子径(D50)は、体積基準の粒度分布におけるメジアン径(小径側から体積累積頻度が50%に達する粒径)であり、例えば、レーザー回析・散乱法によって得られる粒度分布に基づいて求められる。
The average particle diameter (D50) of the particles is preferably 20 nm or more, more preferably 25 nm or more, and even more preferably 30 nm or more, from the viewpoint of ensuring the hardness of the cured resin layer 40. The average particle diameter (D50) of the particles is preferably 300 nm or less, and particularly preferably 100 nm or less, from the viewpoint of uniform dispersion of the particles in the cured resin layer 40. The average particle diameter (D50) of the particles is the median diameter in the volume-based particle size distribution (the particle diameter at which the volume cumulative frequency reaches 50% from the small diameter side), and is determined, for example, based on the particle size distribution obtained by a laser diffraction/scattering method.
硬化樹脂層40における粒子の割合は、硬化樹脂層40の硬さを確保する観点から、好ましくは5質量%以上、より好ましくは8質量%以上、更に好ましくは10質量%以上である。硬化樹脂層40における粒子の割合は、硬化樹脂層40内での粒子の均一分散化の観点から、好ましくは30質量%以下、より好ましくは20質量%以下、更に好ましくは15質量%以下である。
The proportion of particles in the cured resin layer 40 is preferably 5% by mass or more, more preferably 8% by mass or more, and even more preferably 10% by mass or more, from the viewpoint of ensuring the hardness of the cured resin layer 40. The proportion of particles in the cured resin layer 40 is preferably 30% by mass or less, more preferably 20% by mass or less, and even more preferably 15% by mass or less, from the viewpoint of uniform dispersion of the particles in the cured resin layer 40.
硬化樹脂層40の厚さは、硬化樹脂層40において充分な耐擦過性を発現させる観点から、好ましくは0.1μm以上、より好ましくは0.5μm以上、更に好ましくは0.7μm以上である。硬化樹脂層40の厚さは、黒化層30に対する硬化樹脂層40の密着性を確保する観点から、好ましくは5μm以下、より好ましくは3μm以下、更に好ましくは2μm以下、一層好ましくは1.5μm以下である。
The thickness of the cured resin layer 40 is preferably 0.1 μm or more, more preferably 0.5 μm or more, and even more preferably 0.7 μm or more, from the viewpoint of providing sufficient abrasion resistance in the cured resin layer 40. The thickness of the cured resin layer 40 is preferably 5 μm or less, more preferably 3 μm or less, even more preferably 2 μm or less, and even more preferably 1.5 μm or less, from the viewpoint of ensuring adhesion of the cured resin layer 40 to the blackening layer 30.
反射フィルムXの、CIE-XYZ表色系での波長380nm~780nmの視感反射率(Y値)は、反射フィルムXに関する後述の漏光防止性を確保する観点から、好ましくは80%以上、より好ましくは82%以上、更に好ましくは85%以上である。同視感反射率は、例えば、90%以下、95%以下または100%以下である。反射フィルムXの視感反射率(Y値)とは、反射フィルムXに対して基材フィルム10側から照射される光の反射率とする。
The luminous reflectance (Y value) of the reflective film X at wavelengths of 380 nm to 780 nm in the CIE-XYZ color system is preferably 80% or more, more preferably 82% or more, and even more preferably 85% or more, from the viewpoint of ensuring the light leakage prevention properties of the reflective film X described below. The luminous reflectance is, for example, 90% or less, 95% or less, or 100% or less. The luminous reflectance (Y value) of the reflective film X is the reflectance of light irradiated onto the reflective film X from the substrate film 10 side.
反射フィルムXの、CIE-XYZ表色系での波長380nm~780nmの視感透過率(Y値)は、反射フィルムXに関する後述の漏光防止性を確保する観点から、好ましくは0.10%以下、より好ましくは0.09%以下、更に好ましくは0.07%以下である。同視感透過率は、例えば、0.001%以上、0.005%以上または0.01%以上である。反射フィルムXの視感透過率(Y値)とは、反射フィルムXに対して基材フィルム10側から照射される光の透過率とする。
The luminous transmittance (Y value) of the reflective film X at wavelengths of 380 nm to 780 nm in the CIE-XYZ color system is preferably 0.10% or less, more preferably 0.09% or less, and even more preferably 0.07% or less, from the viewpoint of ensuring the light leakage prevention properties of the reflective film X described below. The luminous transmittance is, for example, 0.001% or more, 0.005% or more, or 0.01% or more. The luminous transmittance (Y value) of the reflective film X is the transmittance of light irradiated onto the reflective film X from the substrate film 10 side.
反射フィルムXは、好ましくは、JIS K 5400に準拠した剥離試験において黒化層30に剥がれが生じない。JIS K 5400に準拠した剥離試験とは、碁盤目剥離試験である。剥離試験の実施方法は、具体的には、実施例に関して後述するとおりである。
The reflective film X preferably does not peel off the blackened layer 30 in a peel test conforming to JIS K 5400. The peel test conforming to JIS K 5400 is a checkerboard peel test. The specific method for carrying out the peel test is as described below in relation to the examples.
反射フィルムXは、ロールトゥロール方式において、例えば以下のように製造される。
Reflective film X is manufactured using a roll-to-roll method, for example, as follows.
まず、図2Aに示すように、基材フィルム10を用意する(基材フィルム用意工程)。基材フィルム10の第1面11は、必要に応じて、表面改質処理される。表面改質処理としてプラズマ処理する場合、不活性ガスとして例えばアルゴンガスを用いる。また、プラズマ処理における放電電力は、例えば10W以上であり、また、例えば5000W以下である。
First, as shown in FIG. 2A, a base film 10 is prepared (base film preparation process). The first surface 11 of the base film 10 is subjected to a surface modification treatment as necessary. When a plasma treatment is used as the surface modification treatment, argon gas, for example, is used as an inert gas. The discharge power in the plasma treatment is, for example, 10 W or more and, for example, 5000 W or less.
次に、図2Bに示すように、基材フィルム10上に金属反射層20を形成する(金属反射層形成工程)。具体的には、ドライコーティング法により、基材フィルム10の第1面11上に金属材料を成膜して金属反射層20を形成する。ドライコーティング法としては、例えば、スパッタリング法、および蒸着法が挙げられ、スパッタリング法が好ましい。
Next, as shown in FIG. 2B, a metal reflective layer 20 is formed on the base film 10 (metal reflective layer formation process). Specifically, a metal material is deposited on the first surface 11 of the base film 10 by a dry coating method to form the metal reflective layer 20. Examples of dry coating methods include a sputtering method and a vapor deposition method, with the sputtering method being preferred.
スパッタリング法では、例えば、ロールトゥロール方式で成膜プロセスを実施できるスパッタ成膜装置を使用する。スパッタリング法では、具体的には、スパッタ成膜装置が備える成膜室内に真空条件下でスパッタリングガス(不活性ガス)を導入しつつ、成膜室内のカソード上に配置されたターゲットにマイナスの電圧を印加する。これにより、グロー放電を発生させてガス原子をイオン化し、当該ガスイオンを高速でターゲット表面に衝突させ、ターゲット表面からターゲット材料を弾き出し、弾き出されたターゲット材料を、基材フィルム10上に堆積させる。
In the sputtering method, for example, a sputtering deposition apparatus capable of performing a film formation process using a roll-to-roll method is used. Specifically, in the sputtering method, a sputtering gas (inert gas) is introduced under vacuum conditions into a deposition chamber equipped with the sputtering deposition apparatus, while a negative voltage is applied to a target placed on a cathode in the deposition chamber. This generates a glow discharge to ionize gas atoms, and the gas ions collide with the target surface at high speed, ejecting the target material from the target surface, and the ejected target material is deposited on the substrate film 10.
成膜室内のカソード上に配置されるターゲットの材料(即ち、金属反射層20の材料)としては、金属反射層20に関して上述した金属材料の焼結体が用いられ、好ましくは、AlまたはAl合金の焼結体が用いられる。スパッタリング法による成膜(スパッタ成膜)中の成膜室内の気圧は、例えば0.02Pa以上であり、また、例えば1Pa以下である。ターゲットに対する電圧印加のための電源としては、例えば、DC電源、AC電源、MF電源、およびRF電源が挙げられる(黒化層30に関する後記のスパッタ成膜においても同様である)。スパッタ成膜中の放電電圧の絶対値は、例えば50V以上であり、また、例えば500V以下である(黒化層30に関する後記のスパッタ成膜においても同様である)。
The target material placed on the cathode in the film formation chamber (i.e., the material of the metal reflective layer 20) is a sintered body of the metal material described above for the metal reflective layer 20, and preferably a sintered body of Al or an Al alloy. The air pressure in the film formation chamber during film formation by sputtering (sputter film formation) is, for example, 0.02 Pa or more and, for example, 1 Pa or less. Examples of power sources for applying voltage to the target include DC power sources, AC power sources, MF power sources, and RF power sources (the same applies to the sputter film formation described below for the blackened layer 30). The absolute value of the discharge voltage during sputter film formation is, for example, 50 V or more and, for example, 500 V or less (the same applies to the sputter film formation described below for the blackened layer 30).
次に、図2Cに示すように、金属反射層20上に黒化層30を形成する(黒化層形成工程)。具体的には、ドライコーティング法により、金属反射層20上に金属酸化物含有材料を成膜して、厚さ400nm以下の黒化層30を形成する。ドライコーティング法としては、例えば、スパッタリング法、および蒸着法が挙げられ、スパッタリング法が好ましい。
Next, as shown in FIG. 2C, a blackening layer 30 is formed on the metal reflective layer 20 (blackening layer formation process). Specifically, a metal oxide-containing material is deposited on the metal reflective layer 20 by a dry coating method to form a blackening layer 30 having a thickness of 400 nm or less. Examples of dry coating methods include a sputtering method and a vapor deposition method, with the sputtering method being preferred.
成膜室内のカソード上に配置されるターゲットの材料(即ち、黒化層30の材料)としては、例えば、上述の金属酸化物の焼結体が用いられ、好ましくは、銅インジウム酸化物の焼結体が用いられる。或いは、ターゲットの材料としては、黒化層30に関して上述した金属酸化物と単体金属とを含む焼結体が好ましい。黒化層30のスパッタ成膜中の成膜室内の気圧は、例えば0.02Pa以上であり、また、例えば1Pa以下である。
The target material placed on the cathode in the deposition chamber (i.e., the material of the blackening layer 30) may be, for example, a sintered body of the metal oxide described above, preferably a sintered body of copper indium oxide. Alternatively, the target material is preferably a sintered body containing the metal oxide and elemental metal described above for the blackening layer 30. The air pressure in the deposition chamber during sputter deposition of the blackening layer 30 is, for example, 0.02 Pa or more, and, for example, 1 Pa or less.
金属酸化物を含む無機材料から形成された黒化層30には、樹脂成分を含有して形成される上述の黒インキ層よりも、圧縮残留応力が生じにくい。加えて、黒化層30は、厚さが400nm以下であり、薄い。このような薄い黒化層30(無機黒化層)においては、金属反射層20に固定される側の圧縮残留応力と、金属反射層20とは反対側の圧縮残留応力との差が、小さい(黒化層30が薄いほど、両側の圧縮残留応力の差は小さい)。そして、黒化層30における厚さ方向Hの両側の圧縮残留応力の差が小さいことは、金属反射層20に対する黒化層30の密着性の確保に役立つ。
The blackening layer 30 formed from an inorganic material containing metal oxide is less susceptible to compressive residual stress than the above-mentioned black ink layer formed with a resin component. In addition, the blackening layer 30 is thin, with a thickness of 400 nm or less. In such a thin blackening layer 30 (inorganic blackening layer), the difference between the compressive residual stress on the side fixed to the metal reflective layer 20 and the compressive residual stress on the side opposite the metal reflective layer 20 is small (the thinner the blackening layer 30, the smaller the difference in compressive residual stress on both sides). Furthermore, the small difference in compressive residual stress on both sides of the thickness direction H of the blackening layer 30 helps ensure adhesion of the blackening layer 30 to the metal reflective layer 20.
金属反射層形成工程から黒化層形成工程までの一連のプロセスは、ロールトゥロール方式でワークフィルムを搬送しながら、一つのパスラインで実施する。一つのパスラインでのプロセス中、ワークフィルムは一度も大気中に出されない。金属反射層20の形成後にワークフィルムを大気中に出さずに当該金属反射層20上に黒化層30を形成することは、金属反射層20に対する黒化層30の密着性を確保するのに役立つ。
The entire process from the metal reflective layer formation process to the blackened layer formation process is carried out on one pass line while the work film is transported using the roll-to-roll method. During the process on one pass line, the work film is never exposed to the atmosphere. Forming the blackened layer 30 on the metal reflective layer 20 without exposing the work film to the atmosphere after the formation of the metal reflective layer 20 helps to ensure the adhesion of the blackened layer 30 to the metal reflective layer 20.
次に、図2Dに示すように、黒化層30上に硬化樹脂層40を形成する(硬化樹脂層形成工程)。硬化樹脂層40は、黒化層30上に上述の硬化性樹脂組成物を塗布して塗膜を形成した後、この塗膜を硬化させることによって形成できる。硬化性樹脂組成物が紫外線硬化型樹脂を含有する場合には、紫外線照射によって塗膜を硬化させる。硬化性樹脂組成物が熱硬化型樹脂を含有する場合には、加熱によって前記塗膜を硬化させる。
Next, as shown in FIG. 2D, a cured resin layer 40 is formed on the blackened layer 30 (cured resin layer forming step). The cured resin layer 40 can be formed by applying the above-mentioned curable resin composition on the blackened layer 30 to form a coating film, and then curing the coating film. If the curable resin composition contains an ultraviolet-curable resin, the coating film is cured by ultraviolet irradiation. If the curable resin composition contains a thermosetting resin, the coating film is cured by heating.
以上のようにして、反射フィルムXを製造できる。
In this manner, reflective film X can be manufactured.
反射フィルムXは、図3に示すように、硬化樹脂層40を備えなくてもよい。このような反射フィルムXは、上述の硬化樹脂層形成工程(図2D)を実施しないことによって製造できる。反射フィルムXにおける第2面12とは反対側の耐擦過性を確保するためには、反射フィルムXは、硬化樹脂層40を備えるのが好ましい。
The reflective film X may not have a cured resin layer 40, as shown in FIG. 3. Such a reflective film X can be manufactured by not carrying out the above-mentioned cured resin layer forming process (FIG. 2D). In order to ensure the abrasion resistance of the reflective film X on the side opposite to the second surface 12, it is preferable that the reflective film X has a cured resin layer 40.
反射フィルムXは、上述のように、基材フィルム10と、金属反射層20と、黒化層30とを厚さ方向Hにこの順で備え、黒化層30が、厚さ400nm以下の金属酸化物含有の無機黒化層である。このような反射フィルムXによると、金属反射層20での光反射と、黒化層30による遮光とにより、上述の漏光を防止できる。
As described above, the reflective film X comprises a base film 10, a metal reflective layer 20, and a blackening layer 30 in this order in the thickness direction H, and the blackening layer 30 is an inorganic blackening layer containing metal oxide and has a thickness of 400 nm or less. With such a reflective film X, the above-mentioned light leakage can be prevented by the light reflection at the metal reflective layer 20 and the light blocking by the blackening layer 30.
反射フィルムXにおいて、黒化層30が、400nm以下の薄い無機黒化層であることは、成膜後の黒化層30における厚さ方向Hの両側に生ずる圧縮残留応力の差を低減するのに適する。圧縮残留応力の差の低減は、金属反射層20に対する黒化層30の密着性を確保するのに役立つ。したがって、反射フィルムXは、金属反射層20に対する黒化層30の密着性を確保するのに適する。そして、金属反射層20に対する黒化層30の密着性が高いほど、黒化層30の剥がれが抑制され、反射フィルムXは良好な漏光防止機能を発揮できる。
In the reflective film X, the blackening layer 30 is a thin inorganic blackening layer of 400 nm or less, which is suitable for reducing the difference in compressive residual stress that occurs on both sides of the thickness direction H of the blackening layer 30 after film formation. Reducing the difference in compressive residual stress helps ensure the adhesion of the blackening layer 30 to the metal reflective layer 20. Therefore, the reflective film X is suitable for ensuring the adhesion of the blackening layer 30 to the metal reflective layer 20. And the higher the adhesion of the blackening layer 30 to the metal reflective layer 20, the more the peeling of the blackening layer 30 is suppressed, and the reflective film X can exhibit good light leakage prevention function.
本発明について、以下に実施例を示して具体的に説明する。ただし、本発明は、実施例に限定されない。また、以下に記載されている配合量(含有量)、物性値、パラメータなどの具体的数値は、上述の「発明を実施するための形態」において記載されている、それらに対応する配合量(含有量)、物性値、パラメータなどの上限(「以下」または「未満」として定義されている数値)または下限(「以上」または「超える」として定義されている数値)に代替できる。
The present invention will be specifically described below with reference to examples. However, the present invention is not limited to the examples. Furthermore, the specific numerical values of the compounding amounts (contents), physical properties, parameters, etc. described below can be replaced with the upper limits (numerical values defined as "equal to or less than") or lower limits (numerical values defined as "equal to or more than") of the corresponding compounding amounts (contents), physical properties, parameters, etc. described in the above-mentioned "Form for carrying out the invention."
〔実施例1〕
まず、基材フィルムとしての白色ポリエチレンテレフタレート(PET)フィルム(品名「ルミラー E20」,厚さ38μm,東レ製)を用意した。 Example 1
First, a white polyethylene terephthalate (PET) film (product name: "Lumirror E20", thickness: 38 μm, manufactured by Toray Industries, Inc.) was prepared as a substrate film.
まず、基材フィルムとしての白色ポリエチレンテレフタレート(PET)フィルム(品名「ルミラー E20」,厚さ38μm,東レ製)を用意した。 Example 1
First, a white polyethylene terephthalate (PET) film (product name: "Lumirror E20", thickness: 38 μm, manufactured by Toray Industries, Inc.) was prepared as a substrate film.
次に、スパッタリング法により、PETフィルムの一方面(第1面)上に、金属反射層と、黒化層とを、この順で形成した(スパッタ成膜プロセス)。このスパッタ成膜プロセスでは、ロールトゥロール方式のスパッタ成膜装置(DCマグネトロンスパッタ成膜装置)を使用した。同装置は、繰出し室と、第1成膜室と、第2成膜室と、巻取り室とを備える。繰出し室は、繰出しローラを備える。繰出しローラには、ワークフィルムとして上述の基材フィルムのロールをセットした。巻取り室は、ワークフィルムを巻き取り可能な巻取りローラを備える。第1・第2成膜室では、繰出し室から巻取り室までロールトゥロール方式でワークフィルムを走行させつつ、成膜プロセスを実施可能である。
Next, a metal reflective layer and a blackening layer were formed in that order on one side (first side) of the PET film by sputtering (sputter deposition process). In this sputter deposition process, a roll-to-roll sputter deposition device (DC magnetron sputter deposition device) was used. The device is equipped with a pay-out chamber, a first deposition chamber, a second deposition chamber, and a winding chamber. The pay-out chamber is equipped with a pay-out roller. A roll of the above-mentioned base film was set on the pay-out roller as the work film. The winding chamber is equipped with a winding roller that can wind up the work film. In the first and second deposition chambers, the deposition process can be carried out while the work film is running from the pay-out chamber to the winding chamber by the roll-to-roll method.
スパッタ成膜プロセスでは、具体的には、第1成膜室での第1スパッタ成膜と、第2成膜室での第2スパッタ成膜とを順次に実施し、その後に、巻取り室の巻取りローラにワークフィルム(基材フィルム/金属反射層/黒化層)を巻き取った。第1スパッタ成膜では、PETフィルムの第1面上に、厚さ75nmのアルミニウム(Al)層を金属反射層として形成した。続く第2スパッタ成膜では、Al層上に、厚さ30nmの黒化層を形成した。各スパッタ成膜の条件は、次のとおりである。
In the sputter deposition process, specifically, the first sputter deposition in the first deposition chamber and the second sputter deposition in the second deposition chamber were carried out in sequence, after which the work film (substrate film/metal reflective layer/blackened layer) was wound around the winding roller in the winding chamber. In the first sputter deposition, a 75 nm thick aluminum (Al) layer was formed as a metal reflective layer on the first surface of the PET film. In the subsequent second sputter deposition, a 30 nm thick blackened layer was formed on the Al layer. The conditions for each sputter deposition were as follows:
第1スパッタ成膜においては、スパッタ成膜装置(繰出し室,第1・第2成膜室,巻取り室)内を真空排気した後、第1成膜室内に、スパッタリングガスとしてのアルゴン(Ar)を導入し、第1成膜室内の気圧を0.3~0.4Paとした。ターゲットとしては、Alターゲットを用いた。ターゲットに対する電圧印加のための電源としては、DC電源を用いた。成膜温度(Al層が積層される基材フィルムの温度)は40℃とした。
In the first sputter deposition, the sputter deposition equipment (the payout chamber, the first and second deposition chambers, and the winding chamber) was evacuated to a vacuum, and then argon (Ar) was introduced into the first deposition chamber as a sputtering gas, and the air pressure in the first deposition chamber was set to 0.3 to 0.4 Pa. An Al target was used as the target. A DC power supply was used as the power supply for applying voltage to the target. The deposition temperature (the temperature of the substrate film on which the Al layer is laminated) was set to 40°C.
第2スパッタ成膜においては、スパッタ成膜装置の上述の真空排気の後、第2成膜室内に、スパッタリングガスとしてのArを導入し、第2成膜室内の気圧を0.3~0.4Paとした。また、ターゲットとしては、黒色無機物ターゲット(品名「DIABLA12」,酸化インジウム(In2O3)と銅(Cu)との混合ターゲット,In割合は67.3(±3)質量%,三菱マテリアル社製)を用いた。ターゲットに対する電圧印加のための電源としては、DC電源を用いた。成膜温度(黒化層が形成されるワークフィルムの温度)は40℃とした。
In the second sputtering deposition, after the above-mentioned evacuation of the sputtering deposition apparatus, Ar was introduced as a sputtering gas into the second deposition chamber, and the pressure in the second deposition chamber was set to 0.3 to 0.4 Pa. In addition, a black inorganic target (product name "DIABLA12", a mixed target of indium oxide (In 2 O 3 ) and copper (Cu), In ratio of 67.3 (±3) mass%, manufactured by Mitsubishi Materials Corporation) was used as the target. A DC power supply was used as the power source for applying voltage to the target. The deposition temperature (the temperature of the workpiece film on which the blackened layer is formed) was set to 40°C.
次に、黒化層上に、第1の硬化型樹脂組成物を塗布して塗膜を形成した。第1の硬化型樹脂組成物は、紫外線硬化型アクリルウレタン樹脂(品名「アイカアイトロン Z844」,アイカ工業製)と、溶媒としてのメチルエチルケトンとを含有する。次に、塗膜を乾燥させた後、紫外線照射によって当該塗膜を硬化させて、厚さ1μmのハードコート(HC)層を形成した。
Next, a first curable resin composition was applied onto the blackened layer to form a coating. The first curable resin composition contains an ultraviolet-curable acrylic urethane resin (product name: AICA ITRON Z844, manufactured by AICA Corporation) and methyl ethyl ketone as a solvent. Next, the coating was dried and then cured by exposure to ultraviolet light to form a 1 μm-thick hard coat (HC) layer.
以上のようにして、実施例1の反射フィルムを作製した。実施例1の反射フィルムは、基材フィルム(厚さ38μm)と、金属反射層(Al層,厚さ75nm)と、黒化層(厚さ30nm)と、HC層(厚さ1μm)との積層構造を有する。実施例1では、基材フィルム上の金属反射層と黒化層とHC層とが、多層膜を形成する(後記の実施例2でも同様である)。
In this manner, the reflective film of Example 1 was produced. The reflective film of Example 1 has a laminated structure of a substrate film (thickness 38 μm), a metal reflective layer (Al layer, thickness 75 nm), a blackened layer (thickness 30 nm), and an HC layer (thickness 1 μm). In Example 1, the metal reflective layer, the blackened layer, and the HC layer on the substrate film form a multilayer film (the same applies to Example 2 described below).
〔実施例2〕
次のこと以外は実施例1の反射フィルムと同様にして、実施例2の反射フィルムを作製した。HC層の形成において、第1の硬化型樹脂組成物の代わりに第2の硬化型樹脂組成物を用いた。第2の硬化型樹脂組成物は、紫外線硬化型アクリルウレタン樹脂(品名「アイカアイトロン Z844」,アイカ工業製)100質量部と、平均粒子径(D50)2.5μmの架橋ポリメタクリル酸メチル粒子(品名「MBX-2H」,積水化成品工業製)1質量部と、溶媒としてのメチルエチルケトンとを含有する。 Example 2
The reflective film of Example 2 was produced in the same manner as the reflective film of Example 1, except for the following. In forming the HC layer, the second curable resin composition was used instead of the first curable resin composition. The second curable resin composition contains 100 parts by mass of an ultraviolet-curable acrylic urethane resin (product name "AICA ITRON Z844", manufactured by AICA Corporation), 1 part by mass of crosslinked polymethyl methacrylate particles having an average particle size (D50) of 2.5 μm (product name "MBX-2H", manufactured by Sekisui Chemical Industry Co., Ltd.), and methyl ethyl ketone as a solvent.
次のこと以外は実施例1の反射フィルムと同様にして、実施例2の反射フィルムを作製した。HC層の形成において、第1の硬化型樹脂組成物の代わりに第2の硬化型樹脂組成物を用いた。第2の硬化型樹脂組成物は、紫外線硬化型アクリルウレタン樹脂(品名「アイカアイトロン Z844」,アイカ工業製)100質量部と、平均粒子径(D50)2.5μmの架橋ポリメタクリル酸メチル粒子(品名「MBX-2H」,積水化成品工業製)1質量部と、溶媒としてのメチルエチルケトンとを含有する。 Example 2
The reflective film of Example 2 was produced in the same manner as the reflective film of Example 1, except for the following. In forming the HC layer, the second curable resin composition was used instead of the first curable resin composition. The second curable resin composition contains 100 parts by mass of an ultraviolet-curable acrylic urethane resin (product name "AICA ITRON Z844", manufactured by AICA Corporation), 1 part by mass of crosslinked polymethyl methacrylate particles having an average particle size (D50) of 2.5 μm (product name "MBX-2H", manufactured by Sekisui Chemical Industry Co., Ltd.), and methyl ethyl ketone as a solvent.
〔実施例3〕
黒化層上のHC層を形成しなかったこと以外は、実施例1の反射フィルムと同様にして、実施例3の反射フィルムを作製した。実施例3では、基材フィルム上の金属反射層と黒化層とが、多層膜を形成する(後記の実施例4でも同様である)。 Example 3
Except for not forming an HC layer on the blackened layer, the reflective film of Example 3 was produced in the same manner as the reflective film of Example 1. In Example 3, the metal reflective layer and the blackened layer on the substrate film form a multilayer film (the same applies to Example 4 described below).
黒化層上のHC層を形成しなかったこと以外は、実施例1の反射フィルムと同様にして、実施例3の反射フィルムを作製した。実施例3では、基材フィルム上の金属反射層と黒化層とが、多層膜を形成する(後記の実施例4でも同様である)。 Example 3
Except for not forming an HC layer on the blackened layer, the reflective film of Example 3 was produced in the same manner as the reflective film of Example 1. In Example 3, the metal reflective layer and the blackened layer on the substrate film form a multilayer film (the same applies to Example 4 described below).
〔実施例4〕
次のこと以外は実施例1の反射フィルムと同様にして、実施例4の反射フィルムを作製した。スパッタ成膜プロセスの第2スパッタ成膜で形成される黒化層の厚さを350nmとした。黒化層上にHC層を形成しなかった。 Example 4
The reflective film of Example 4 was produced in the same manner as the reflective film of Example 1, except for the following: The thickness of the blackened layer formed by the second sputtering deposition in the sputtering deposition process was set to 350 nm. No HC layer was formed on the blackened layer.
次のこと以外は実施例1の反射フィルムと同様にして、実施例4の反射フィルムを作製した。スパッタ成膜プロセスの第2スパッタ成膜で形成される黒化層の厚さを350nmとした。黒化層上にHC層を形成しなかった。 Example 4
The reflective film of Example 4 was produced in the same manner as the reflective film of Example 1, except for the following: The thickness of the blackened layer formed by the second sputtering deposition in the sputtering deposition process was set to 350 nm. No HC layer was formed on the blackened layer.
〈金属反射層の厚さ,黒化層の厚さ〉
実施例1~4の各反射フィルムにおける金属反射層および黒化層の厚さを、電界放射型透過電子顕微鏡(FE-TEM)での観察により測定した。具体的には、まず、FIBマイクロサンプリング法により、実施例1~4における金属反射層・黒化層の断面観察用サンプルを作製した。FIBマイクロサンプリング法では、FIB装置(品名「FB2200」,Hitachi製)を使用し、加速電圧を10kVとした。次に、断面観察用サンプルにおける金属反射層・黒化層の断面をFE-TEMによって観察し、当該観察画像において、金属反射層の厚さと黒化層の厚さとを測定した。同観察では、FE-TEM装置(品名「JEM-2800」,JEOL製)を使用し、加速電圧を200kVとした。測定結果を表1に示す。 <Thickness of metal reflective layer, thickness of blackened layer>
The thicknesses of the metal reflective layer and the blackening layer in each of the reflective films of Examples 1 to 4 were measured by observation with a field emission transmission electron microscope (FE-TEM). Specifically, first, samples for cross-sectional observation of the metal reflective layer and the blackening layer in Examples 1 to 4 were prepared by the FIB microsampling method. In the FIB microsampling method, an FIB device (product name "FB2200", manufactured by Hitachi) was used, and the acceleration voltage was set to 10 kV. Next, the cross-section of the metal reflective layer and the blackening layer in the cross-sectional observation sample was observed by FE-TEM, and the thickness of the metal reflective layer and the thickness of the blackening layer were measured in the observed image. In the observation, an FE-TEM device (product name "JEM-2800", manufactured by JEOL) was used, and the acceleration voltage was set to 200 kV. The measurement results are shown in Table 1.
実施例1~4の各反射フィルムにおける金属反射層および黒化層の厚さを、電界放射型透過電子顕微鏡(FE-TEM)での観察により測定した。具体的には、まず、FIBマイクロサンプリング法により、実施例1~4における金属反射層・黒化層の断面観察用サンプルを作製した。FIBマイクロサンプリング法では、FIB装置(品名「FB2200」,Hitachi製)を使用し、加速電圧を10kVとした。次に、断面観察用サンプルにおける金属反射層・黒化層の断面をFE-TEMによって観察し、当該観察画像において、金属反射層の厚さと黒化層の厚さとを測定した。同観察では、FE-TEM装置(品名「JEM-2800」,JEOL製)を使用し、加速電圧を200kVとした。測定結果を表1に示す。 <Thickness of metal reflective layer, thickness of blackened layer>
The thicknesses of the metal reflective layer and the blackening layer in each of the reflective films of Examples 1 to 4 were measured by observation with a field emission transmission electron microscope (FE-TEM). Specifically, first, samples for cross-sectional observation of the metal reflective layer and the blackening layer in Examples 1 to 4 were prepared by the FIB microsampling method. In the FIB microsampling method, an FIB device (product name "FB2200", manufactured by Hitachi) was used, and the acceleration voltage was set to 10 kV. Next, the cross-section of the metal reflective layer and the blackening layer in the cross-sectional observation sample was observed by FE-TEM, and the thickness of the metal reflective layer and the thickness of the blackening layer were measured in the observed image. In the observation, an FE-TEM device (product name "JEM-2800", manufactured by JEOL) was used, and the acceleration voltage was set to 200 kV. The measurement results are shown in Table 1.
〈視感透過率〉
実施例1~4の各反射フィルムの視感透過率を測定した。具体的には、次のとおりである。 <Visual transmittance>
The luminous transmittance of each of the reflective films of Examples 1 to 4 was measured. Specifically, the measurements were as follows.
実施例1~4の各反射フィルムの視感透過率を測定した。具体的には、次のとおりである。 <Visual transmittance>
The luminous transmittance of each of the reflective films of Examples 1 to 4 was measured. Specifically, the measurements were as follows.
まず、反射フィルムから、測定用のフィルム片(第1フィルム片)を切り出した。次に、第1フィルム片について、分光光度計(品名「U-4100」,日立ハイテクサイエンス社製)により、視感透過率を測定した。この透過率は、第1フィルム片に対する波長380nm~780nmの透過光の、CIE-XYZ表色系での視感透過率(Y値)である。本測定では、第1フィルム片に対してその基材フィルム側から光が当たるように、第1フィルム片を分光光度計内に設置した。測定結果を表1に示す。
First, a piece of film for measurement (first film piece) was cut out from the reflective film. Next, the luminous transmittance of the first film piece was measured using a spectrophotometer (product name "U-4100", manufactured by Hitachi High-Tech Science Corporation). This transmittance is the luminous transmittance (Y value) in the CIE-XYZ color system of light with wavelengths of 380 nm to 780 nm transmitted through the first film piece. In this measurement, the first film piece was placed in the spectrophotometer so that light was incident on the base film side. The measurement results are shown in Table 1.
〈視感反射率〉
実施例1~4の各反射フィルムの視感反射率を測定した。具体的には、次のとおりである。 <Visual reflectance>
The luminous reflectance of each of the reflective films of Examples 1 to 4 was measured. Specifically, the measurements were as follows.
実施例1~4の各反射フィルムの視感反射率を測定した。具体的には、次のとおりである。 <Visual reflectance>
The luminous reflectance of each of the reflective films of Examples 1 to 4 was measured. Specifically, the measurements were as follows.
まず、反射フィルムにおける基材フィルム側とは反対側を、所定の粘着剤を介して黒色アクリル板に対して貼り合わせた。これにより、積層フィルムを得た。次に、積層フィルムから、測定用のフィルム片(第2フィルム片)を切り出した。次に、第2フィルム片について、分光光度計(品名「U-4100」,日立ハイテクサイエンス社製)により、視感反射率を測定した。この反射率は、第2フィルム片に対する波長380nm~780nmの照射光の、CIE-XYZ表色系での視感反射率(Y値)である。本測定では、第2フィルム片に対してその基材フィルム側から光が当たるように、第2フィルム片を分光光度計内に設置した。測定結果を表1に示す。
First, the side of the reflective film opposite the base film was attached to a black acrylic plate via a specified adhesive. This resulted in a laminated film. Next, a film piece for measurement (second film piece) was cut out from the laminated film. The luminous reflectance of the second film piece was then measured using a spectrophotometer (product name "U-4100", manufactured by Hitachi High-Tech Science Corporation). This reflectance is the luminous reflectance (Y value) in the CIE-XYZ color system of light with a wavelength of 380 nm to 780 nm irradiated onto the second film piece. In this measurement, the second film piece was placed in the spectrophotometer so that light was irradiated from the base film side onto the second film piece. The measurement results are shown in Table 1.
〈剥離試験〉
実施例1~4の各反射フィルムについて、次のようにして黒化層の密着性を調べた。 Peel test
For each of the reflective films of Examples 1 to 4, the adhesion of the blackening layer was examined as follows.
実施例1~4の各反射フィルムについて、次のようにして黒化層の密着性を調べた。 Peel test
For each of the reflective films of Examples 1 to 4, the adhesion of the blackening layer was examined as follows.
まず、反射フィルムごとにサンプルフィルムを作製した。サンプルフィルムの作製においては、まず、反射フィルムからフィルム片(50mm×50mm)を切り出した。次に、フィルム片における基材フィルム上の多層膜に対し、第1方向に直線的に延びる11本の平行な第1の切り込み(1mm間隔)と、第1方向と直交する第2方向に直線的に延びる11本の平行な第2の切り込み(1mm間隔)とを形成し、第1および第2の切り込みによって100個のマス目を形成した。これにより、サンプルフィルムを得た。各切込みは、厚さ方向において、多層膜の露出面から基材フィルムにまで至っている。
First, a sample film was prepared for each reflective film. In preparing the sample films, a film piece (50 mm x 50 mm) was first cut out from the reflective film. Next, 11 parallel first incisions (1 mm apart) extending linearly in a first direction and 11 parallel second incisions (1 mm apart) extending linearly in a second direction perpendicular to the first direction were made in the multilayer film on the base film in the film piece, and 100 grids were formed by the first and second incisions. In this way, a sample film was obtained. Each incision reached from the exposed surface of the multilayer film to the base film in the thickness direction.
次に、サンプルフィルムごとに、JIS K 5400に準拠して剥離試験(碁盤目剥離試験)を実施した。具体的には、まず、サンプルフィルムの多層膜表面に対し、100個のマス目の全てを覆うように所定の片面粘着テープを貼り付けた。次に、第1方向に粘着テープを引きはがした。そして、粘着テープを引きはがした後のマス目を観察し、マス目の剥がれの有無を確認した。実施例1~4の各反射フィルムにおいては、少なくとも一部が剥がれているマス目の数が0であった(どのマス目にも剥がれが生じていない)。
Next, a peel test (checkerboard peel test) was conducted for each sample film in accordance with JIS K 5400. Specifically, a specified single-sided adhesive tape was first applied to the multilayer surface of the sample film so as to cover all 100 squares. Next, the adhesive tape was peeled off in a first direction. The squares were then observed after the adhesive tape was peeled off to check whether or not they had peeled off. In each of the reflective films of Examples 1 to 4, the number of squares that had at least partially peeled off was 0 (no peeling had occurred in any of the squares).
上述の実施形態は本発明の例示であり、当該実施形態によって本発明を限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記の請求の範囲に含まれる。
The above-described embodiments are merely examples of the present invention, and the present invention should not be interpreted as being limited by these embodiments. Modifications of the present invention that are obvious to those skilled in the art are included in the scope of the claims below.
本発明の反射フィルムは、例えば、液晶表示装置における筐体のベゼル部内に配置される反射フィルムとして、用いることができる。
The reflective film of the present invention can be used, for example, as a reflective film placed inside the bezel of the housing of a liquid crystal display device.
X 反射フィルム
H 厚さ方向
10 基材フィルム
11 第1面
12 第2面
20 金属反射層
30 黒化層
40 硬化樹脂層
X: Reflective film H: Thickness direction 10: Base film 11: First surface 12: Second surface 20: Metallic reflective layer 30: Blackened layer 40: Cured resin layer
H 厚さ方向
10 基材フィルム
11 第1面
12 第2面
20 金属反射層
30 黒化層
40 硬化樹脂層
X: Reflective film H: Thickness direction 10: Base film 11: First surface 12: Second surface 20: Metallic reflective layer 30: Blackened layer 40: Cured resin layer
Claims (7)
- 基材フィルムと、金属反射層と、黒化層とを厚さ方向にこの順で備える反射フィルムであって、
前記黒化層が、厚さ400nm以下の、金属酸化物を含む無機黒化層である、反射フィルム。 A reflective film comprising a base film, a metal reflective layer, and a blackened layer in this order in a thickness direction,
A reflective film, wherein the blackening layer is an inorganic blackening layer containing a metal oxide and having a thickness of 400 nm or less. - 前記金属反射層がアルミニウム層である、請求項1に記載の反射フィルム。 The reflective film of claim 1, wherein the metal reflective layer is an aluminum layer.
- 前記金属反射層の厚さが30nm以上である、請求項1に記載の反射フィルム。 The reflective film of claim 1, wherein the thickness of the metal reflective layer is 30 nm or more.
- 前記金属反射層の厚さが500nm以下である、請求項1に記載の反射フィルム。 The reflective film of claim 1, wherein the thickness of the metal reflective layer is 500 nm or less.
- 前記黒化層の厚さが5nm以上である、請求項1に記載の反射フィルム。 The reflective film of claim 1, wherein the thickness of the blackening layer is 5 nm or more.
- 前記黒化層における前記金属反射層とは反対側に硬化樹脂層を備える、請求項1に記載の反射フィルム。 The reflective film according to claim 1, further comprising a cured resin layer on the side of the blackening layer opposite the metal reflective layer.
- JIS K 5400に準拠した剥離試験において前記黒化層に剥がれが生じない、請求項1から6のいずれか一つに記載の反射フィルム。
The reflective film according to claim 1 , wherein the blackened layer does not peel off in a peel test in accordance with JIS K 5400.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-192387 | 2022-11-30 | ||
JP2022192387 | 2022-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024117068A1 true WO2024117068A1 (en) | 2024-06-06 |
Family
ID=91323985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/042319 WO2024117068A1 (en) | 2022-11-30 | 2023-11-27 | Reflective film |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024117068A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015194587A1 (en) * | 2014-06-18 | 2015-12-23 | ジオマテック株式会社 | Laminate, method for manufacturing same, and electronic device |
WO2016072472A1 (en) * | 2014-11-07 | 2016-05-12 | 三菱樹脂株式会社 | Reflective film |
CN112831285A (en) * | 2019-11-22 | 2021-05-25 | 上海永超新材料科技股份有限公司 | Shading film for mobile phone rear cover plate and preparation method and application thereof |
-
2023
- 2023-11-27 WO PCT/JP2023/042319 patent/WO2024117068A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015194587A1 (en) * | 2014-06-18 | 2015-12-23 | ジオマテック株式会社 | Laminate, method for manufacturing same, and electronic device |
WO2016072472A1 (en) * | 2014-11-07 | 2016-05-12 | 三菱樹脂株式会社 | Reflective film |
CN112831285A (en) * | 2019-11-22 | 2021-05-25 | 上海永超新材料科技股份有限公司 | Shading film for mobile phone rear cover plate and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6011337B2 (en) | Gas barrier film | |
KR100192673B1 (en) | Reflector and reflecting member making use of the same | |
TWI246460B (en) | Anti-reflection film | |
WO2006006527A1 (en) | Electromagnetic wave shielding filter | |
US20100206628A1 (en) | Transparent electromagnetic wave shield member and method for manufacturing the same | |
WO2005069713A1 (en) | Electromagnetic shielding sheet and method for producing same | |
TW201601906A (en) | Transfer material, method for manufacturing liquid crystal panel, and method for manufacturing liquid crystal display device | |
KR20050009677A (en) | Laminate and uses thereof | |
JP2008311565A (en) | Composite filter for display | |
JP2008227352A (en) | Electromagnetic wave shielding sheet, method for manufacturing the same, and filter for plasma display panel | |
WO2022209829A1 (en) | Optical multilayer body and image display device | |
WO2022014569A1 (en) | Optical film with anti-fouling layer | |
WO2007111092A1 (en) | Transparent barrier sheet and method for producing transparent barrier sheet | |
WO2024117068A1 (en) | Reflective film | |
JP2006339433A (en) | Electromagnetic wave shield filter, its manufacturing method, and display | |
JP2007136800A (en) | Gas-barrier laminated film and image display element using the same | |
WO2005072949A1 (en) | Base material for light reflector and light reflector | |
WO2024117069A1 (en) | Reflective film | |
JP4699123B2 (en) | Electromagnetic wave shielding filter, manufacturing method thereof, display including the electromagnetic wave shielding filter, and electromagnetic wave shielding structure | |
CN111218659A (en) | Film forming method and film forming apparatus | |
TW202436971A (en) | Reflective film | |
WO2006090820A1 (en) | Electro-magnetic wave shielding filter | |
JP2017134254A (en) | Protective film for wavelength conversion sheet | |
JP2022149218A (en) | Chemical-resistant and glossy shading film | |
JP2010080825A (en) | Electromagnetic wave shield sheet, and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23897716 Country of ref document: EP Kind code of ref document: A1 |