WO2022014569A1 - Optical film with anti-fouling layer - Google Patents

Optical film with anti-fouling layer Download PDF

Info

Publication number
WO2022014569A1
WO2022014569A1 PCT/JP2021/026247 JP2021026247W WO2022014569A1 WO 2022014569 A1 WO2022014569 A1 WO 2022014569A1 JP 2021026247 W JP2021026247 W JP 2021026247W WO 2022014569 A1 WO2022014569 A1 WO 2022014569A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
antifouling
refractive index
antifouling layer
optical film
Prior art date
Application number
PCT/JP2021/026247
Other languages
French (fr)
Japanese (ja)
Inventor
幸大 宮本
智剛 梨木
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=79555566&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2022014569(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020227045068A priority Critical patent/KR102518012B1/en
Priority to JP2022536373A priority patent/JP7185101B2/en
Priority to CN202180049616.6A priority patent/CN115812035B/en
Publication of WO2022014569A1 publication Critical patent/WO2022014569A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1687Use of special additives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films

Definitions

  • the present invention relates to an optical film with an antifouling layer.
  • Patent Document 1 an antireflection film having a transparent film, an antireflection layer, and an antifouling layer in order toward one side in the thickness direction has been proposed (see, for example, Patent Document 1).
  • the antifouling layer is required to have durability against wiping (sliding).
  • the present invention is to provide an optical film with an antifouling layer that can suppress a decrease in the durability of the antifouling layer against sliding even when the antifouling layer is irradiated with ultraviolet rays.
  • a base material layer, an optical functional layer composed of an inorganic layer, and an antifouling layer are provided in order toward one side in the thickness direction, and the surface roughness Ra of the antifouling layer is 2 nm or more and 15 nm.
  • the following is an optical film with an antifouling layer.
  • the present invention [2] includes the optical film with an antifouling layer according to the above [1], wherein the optical functional layer is an antireflection layer.
  • the present invention [3] is described in the above [2], wherein the antireflection layer alternately has a high refractive index layer having a relatively large refractive index and a low refractive index layer having a relatively small refractive index. Includes an optical film with an antifouling layer.
  • the antifouling layer according to any one of the above [1] to [3], wherein the base material layer comprises a base material and a hard coat layer in order toward one side in the thickness direction. Includes optical film with.
  • the present invention [5] includes the optical film with an antifouling layer according to the above [4], wherein the hard coat layer contains metal oxide fine particles.
  • the present invention [6] includes the optical film with an antifouling layer according to the above [5], wherein the metal oxide fine particles are nanosilica particles.
  • the present invention [7] is the antifouling according to any one of the above [4] to [6], wherein the surface roughness Ra of one surface of the hard coat layer in the thickness direction is 0.5 nm or more and 20 nm or less. Includes layered optical film.
  • the surface roughness Ra of the antifouling layer is 2 nm or more and 15 nm or less. Therefore, even if the antifouling layer is irradiated with ultraviolet rays, it is possible to suppress a decrease in the durability of the antifouling layer against sliding.
  • FIG. 1 shows an embodiment of an optical film with an antifouling layer of the present invention.
  • 2A to 2D show an embodiment of the method for manufacturing an optical film with an antifouling layer of the present invention.
  • FIG. 2A shows a step of preparing a base material in the first step.
  • FIG. 2B shows the first step of arranging the hard coat layer on the base material in the first step.
  • FIG. 2C shows a second step of sequentially arranging the adhesion layer and the optical functional layer on the base material layer.
  • FIG. 2D shows a third step of arranging the antifouling layer on the optical functional layer.
  • the vertical direction of the paper surface is the vertical direction (thickness direction).
  • the upper side of the paper surface is the upper side (one side in the thickness direction).
  • the lower side of the paper surface is the lower side (the other side in the thickness direction).
  • the left-right direction and the depth direction of the paper surface are plane directions orthogonal to the vertical direction. Specifically, it conforms to the direction arrows in each figure.
  • the optical film 1 with an antifouling layer has a film shape (including a sheet shape) having a predetermined thickness.
  • the optical film 1 with an antifouling layer extends in a plane direction orthogonal to the thickness direction.
  • the optical film 1 with an antifouling layer has a flat upper surface and a flat lower surface.
  • the optical film 1 with an antifouling layer includes a base material layer 2, an adhesion layer 3, an optical functional layer 4, and an antifouling layer 5 in order toward one side in the thickness direction. More specifically, the optical film 1 with an antifouling layer includes a base material layer 2, an adhesion layer 3 directly arranged on the upper surface of the base material layer 2 (one surface in the thickness direction), and an upper surface (thickness) of the adhesion layer 3. It includes an optical functional layer 4 directly arranged on one side in the direction) and an antifouling layer 5 directly arranged on the upper surface (one side in the thickness direction) of the optical functional layer 4.
  • the thickness of the optical film 1 with an antifouling layer is, for example, 300 ⁇ m or less, preferably 200 ⁇ m or less, and for example, 1 ⁇ m or more, preferably 5 ⁇ m or more.
  • the base material layer 2 is a treated body to which antifouling property is imparted by the antifouling layer 5.
  • the total light transmittance (JIS K 7375-2008) of the base material layer 2 is, for example, 80% or more, preferably 85% or more.
  • the base material layer 2 includes the base material 10 and the hard coat layer 11 in order toward one side in the thickness direction.
  • the base material 10 has a film shape.
  • the base material 10 has flexibility.
  • the base material 10 is arranged on the entire lower surface of the hard coat layer 11 so as to come into contact with the lower surface of the hard coat layer 11.
  • Examples of the base material 10 include a polymer film.
  • Examples of the material of the polymer film include polyester resin, (meth) acrylic resin, olefin resin, polycarbonate resin, polyether sulfone resin, polyarylate resin, melamine resin, polyamide resin, polyimide resin, cellulose resin, and polystyrene resin.
  • Examples of the polyester resin include polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate.
  • Examples of the (meth) acrylic resin include polymethylmethacrylate.
  • Examples of the olefin resin include polyethylene, polypropylene, and cycloolefin polymers.
  • Examples of the cellulose resin include triacetyl cellulose.
  • Examples of the material of the polymer film include cellulose resin, and more preferably triacetyl cellulose.
  • the thickness of the base material 10 is, for example, 1 ⁇ m or more, preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and for example, 200 ⁇ m or less, preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the thickness of the base material 10 can be measured using a dial gauge ("DG-205" manufactured by PEACOCK).
  • the hard coat layer 11 is a protective layer for suppressing the occurrence of scratches on the base material 10. Further, the hard coat layer 11 is a layer capable of imparting antiglare property to the base material 10 according to the purpose and use.
  • the hard coat layer 11 is formed from, for example, a hard coat composition.
  • the hardcourt composition contains resin and particles. That is, the hardcourt layer 11 contains resin and particles.
  • thermoplastic resin examples include polyolefin resins.
  • the curable resin examples include an active energy ray-curable resin that is cured by irradiation with active energy rays (for example, ultraviolet rays and electron beams) and a thermosetting resin that is cured by heating.
  • active energy rays for example, ultraviolet rays and electron beams
  • thermosetting resin that is cured by heating.
  • the curable resin is preferably an active energy ray curable resin.
  • the active energy ray-curable resin examples include (meth) acrylic ultraviolet curable resin, urethane resin, melamine resin, alkyd resin, siloxane-based polymer, and organic silane condensate.
  • the active energy ray-curable resin is preferably a (meth) acrylic ultraviolet curable resin.
  • the resin can contain, for example, the reactive diluent described in JP-A-2008-88309. Specifically, the resin can include polyfunctional (meth) acrylates.
  • Examples of the particles include metal oxide fine particles and organic fine particles.
  • Examples of the material of the metal oxide fine particles include silica, alumina, titania, zirconia, calcium oxide, tin oxide, indium oxide, cadmium oxide, and antimony oxide.
  • silica is preferable. That is, examples of the metal oxide fine particles include silica particles, and more preferably nanosilica particles from the viewpoint of adjusting the surface roughness Ra of the antifouling layer 5 described later to a predetermined range described later.
  • Examples of the material of the organic fine particles include polymethylmethacrylate, silicone, polystyrene, polyurethane, acrylic-styrene copolymer, benzoguanamine, melamine, and polycarbonate.
  • Preferred materials for the organic fine particles include silicone and polymethylmethacrylate.
  • Particles can be used alone or in combination of two or more.
  • the surface roughness Ra of the antifouling layer 5 described later can be adjusted to a predetermined range described later.
  • the mixing ratio of the particles is, for example, 1 part by mass or more, preferably 3 parts by mass or more, and for example, 30 parts by mass or more, or, for example, 20 parts by mass with respect to 100 parts by mass of the resin. It is as follows.
  • the surface roughness Ra of the antifouling layer 5 described later can be adjusted to a predetermined range described later.
  • the average particle size of the particles is, for example, 10 ⁇ m or less, preferably 8 ⁇ m or less, and for example, 1 nm or more.
  • the average particle size of the particles is, for example, 100 nm or less, preferably 70 nm or less, and for example, 1 nm or more.
  • the average particle size of the particles is determined as a D50 value (cumulative 50% median diameter) based on, for example, the particle size distribution obtained by the particle size distribution measurement method in the laser scattering method.
  • the surface roughness Ra of the antifouling layer 5 described later can be adjusted to a predetermined range described later.
  • the hard coat composition may contain, if necessary, a thixotropy-imparting agent, a photopolymerization initiator, a filler (for example, organic clay), and a leveling agent in an appropriate ratio. Further, the hard coat composition can be diluted with a known solvent.
  • a diluted solution of the hard coat composition is applied to one surface of the base material 10 in the thickness direction and dried, which will be described in detail later. After drying, the hardcourt composition is cured, for example, by irradiation with active energy rays.
  • the surface roughness Ra of the hard coat layer 11 (specifically, the surface roughness Ra of one surface of the hard coat layer 11 in the thickness direction) is, for example, 0.5 nm or more, and for example, 20 nm or less.
  • the surface roughness Ra of the hard coat layer 11 is within the above range, the surface roughness Ra of the antifouling layer 5 described later can be adjusted to a predetermined range described later.
  • the surface roughness Ra can be obtained from, for example, an observation image of 1 ⁇ m square by an AFM (atomic force microscope) (the same applies hereinafter).
  • the thickness of the hard coat layer 11 is, for example, 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, more preferably 3 ⁇ m or more, and for example, 50 ⁇ m or less.
  • the thickness of the hard coat layer 11 can be measured by cross-sectional observation using, for example, a transmission electron microscope.
  • the adhesion layer 3 is a layer for ensuring an adhesion between the base material layer 2 and the optical functional layer 4.
  • the adhesion layer 3 has a film shape.
  • the adhesion layer 3 is arranged on the entire upper surface of the base material layer 2 (hard coat layer 11) so as to be in contact with the upper surface of the base material layer 2 (hard coat layer 11).
  • Examples of the material of the adhesion layer 3 include metal.
  • Examples of the metal include silicon, indium, nickel, chromium, aluminum, tin, gold, silver, platinum, zinc, titanium, tungsten, zirconium, and palladium. Further, examples of the material of the adhesion layer 3 include two or more kinds of alloys of the above metals and oxides of the above metals.
  • Examples of the material of the adhesion layer 3 include silicon oxide (SiOx) and indium tin oxide (ITO) from the viewpoint of adhesion and transparency.
  • SiOx silicon oxide
  • ITO indium tin oxide
  • SiOx having a smaller oxygen content than the stoichiometric composition is preferably used, and more preferably SiOx having x of 1.2 or more and 1.9 or less is used. ..
  • the thickness of the adhesion layer 3 is, for example, 1 nm or more, and for example, 10 nm from the viewpoint of ensuring the adhesion between the base material layer 2 and the optical functional layer 4 and achieving both the transparency of the adhesion layer 3. It is as follows.
  • the optical functional layer 4 is an antireflection layer for suppressing the reflection intensity of external light. That is, the optical film 1 with an antifouling layer is an antireflection film with an antifouling layer.
  • the optical functional layer 4 is made of an inorganic layer, and has a high refractive index layer having a relatively large refractive index and a low refractive index layer having a relatively small refractive index alternately in the thickness direction.
  • the net reflected light intensity is attenuated by the interference action between the reflected light at the plurality of interfaces in the plurality of thin layers (high refractive index layer, low refractive index layer) contained therein.
  • an interference effect for attenuating the reflected light intensity can be exhibited by adjusting the optical film thickness (product of the refractive index and the thickness) of each thin layer.
  • the optical functional layer 4 as such an antireflection layer includes a first high refractive index layer 21, a first low refractive index layer 22, and a second high refractive index layer 23.
  • the second low refractive index layer 24 is provided in order toward one side in the thickness direction.
  • the first high-refractive index layer 21 and the second high-refractive index layer 23 are each made of a high-refractive index material having a refractive index of preferably 1.9 or more at a wavelength of 550 nm.
  • the high refractive index material include niobium oxide (Nb 2 O 5 ), titanium oxide, zirconium oxide, tin-doped indium oxide (ITO), and tin-doped indium oxide (ITO).
  • Antimonated tin oxide (ATO) is mentioned, preferably niobium oxide. That is, preferably, the material of the first low refractive index layer 22 and the material of the second low refractive index layer 24 are both niobium oxide.
  • the optical film thickness (product of refractive index and thickness) of the first high refractive index layer 21 is, for example, 20 nm or more, and for example, 55 nm or less.
  • the optical film thickness of the second high-refractive index layer 23 is, for example, 60 nm or more, and for example, 330 nm or less.
  • the first low refractive index layer 22 and the second low refractive index layer 24 are each made of a low refractive index material having a refractive index of preferably 1.6 or less at a wavelength of 550 nm.
  • examples of the low refractive index material include silicon dioxide (SiO 2 ) and magnesium fluoride, preferably silicon dioxide. That is, preferably, the material of the first low refractive index layer 22 and the material of the second low refractive index layer 24 are both silicon dioxide.
  • the adhesion between the second low refractive index layer 24 and the antifouling layer 5 is excellent.
  • the optical film thickness of the first low refractive index layer 22 is, for example, 15 nm or more, and for example, 70 nm or less.
  • the optical film thickness of the second low refractive index layer 24 is, for example, 100 nm or more, and for example, 160 nm or less.
  • the thickness of the first high refractive index layer 21 is, for example, 1 nm or more, preferably 5 nm or more, and for example, 30 nm or less, preferably 20 nm or less.
  • the thickness of the first low refractive index layer 22 is, for example, 10 nm or more, preferably 20 nm or more, and for example, 50 nm or less, preferably 30 nm or less.
  • the thickness of the second high refractive index layer 23 is, for example, 50 nm or more, preferably 80 nm or more, and for example, 200 nm or less, preferably 150 nm or less.
  • the thickness of the second low refractive index layer 24 is, for example, 60 nm or more, preferably 80 nm or more, and for example, 150 nm or less, preferably 100 nm or less.
  • the antifouling layer 5 is a layer for preventing adhesion of dirt (for example, dirt and fingerprints) to one side of the base material layer 2 in the thickness direction.
  • the antifouling layer 5 has a film shape.
  • the antifouling layer 5 is arranged on the entire upper surface of the optical functional layer 4 so as to be in contact with the upper surface of the optical functional layer 4.
  • the material forming the antifouling layer 5 examples include an alkoxysilane compound having a perfluoropolyether group.
  • the antifouling layer 5 contains an alkoxysilane compound having a perfluoropolyether group.
  • the antifouling layer 5 is preferably made of an alkoxysilane compound having a perfluoropolyether group.
  • the antifouling layer 5 contains an alkoxysilane compound having a perfluoropolyether group, the antifouling property of the antifouling layer 5 is improved.
  • Examples of the alkoxysilane compound having a perfluoropolyether group include compounds represented by the following general formula (1).
  • R 1- R 2 -X- (CH 2 ) l- Si (OR 3 ) 3 (1)
  • R 1 represents an alkyl fluoride group in which one or more hydrogen atoms are substituted with a fluorine atom.
  • R 2 is a structure containing at least one repeating structure of a perfluoropolyether group.
  • R 3 indicates an alkyl group having 1 or more and 4 or less carbon atoms.
  • R 1 represents a linear or branched alkyl fluoride group (1 or more and 20 or less carbon atoms) in which one or more hydrogens are substituted with a fluorine atom.
  • R 1 preferably represents a perfluoroalkyl group in which all hydrogen atoms of the alkyl group are replaced with fluorine atoms.
  • R 2 is a repeating structure of the perfluoropolyether group exhibits at least one containing structure.
  • R 2 preferably shows a structure containing two repeating structures of perfluoropolyether groups.
  • Examples of the repeating structure of the perfluoropolyether group include a repeating structure of a linear perfluoropolyether group and a repeating structure of a branched perfluoropolyether group.
  • As the repeating structure of the linear perfluoropolyether group for example,-(OC n F 2n ) m- (m indicates an integer of 1 or more and 50 or less, and n indicates an integer of 1 or more and 20 or less. The same shall apply hereinafter.
  • Examples of the repeating structure of the branched perfluoropolyether group include-(OC (CF 3 ) 2 ) m- and-(OCF 2 CF (CF 3 ) CF 2 ) m- .
  • the repeating structure of the perfluoropolyether group is preferably a repeating structure of a linear perfluoropolyether group, more preferably-(OCF 2 ) m- , and-(OC 2 F 4 ) m-. Can be mentioned.
  • R 3 represents an alkyl group having 1 or more and 4 or less carbon atoms.
  • R 3 preferably represents a methyl group.
  • X represents an ether group, a carbonyl group, an amino group, or an amide group, and preferably represents an ether group.
  • L represents an integer of 1 or more, 20 or less, preferably 10 or less, and more preferably 5 or less. l more preferably indicates 3.
  • a compound represented by the following general formula (2) is preferable.
  • P indicates an integer of 1 or more and 50 or less.
  • Q indicates an integer of 1 or more and 50 or less.
  • alkoxysilane compound having a perfluoropolyether group a commercially available product can also be used. Specific examples of commercially available products include KY-1901 (alkoxysilane compound containing a perfluoropolyether group, manufactured by Shin-Etsu Chemical Co., Ltd.) and Optool UD120 (alkoxysilane compound containing a perfluoropolyether group).
  • the surface roughness Ra of the antifouling layer 5 described later can be adjusted to a predetermined range described later.
  • the alkoxysilane compound having a perfluoropolyether group can be used alone or in combination of two or more.
  • the antifouling layer 5 is formed by the method described later.
  • the thickness of the antifouling layer 5 is, for example, 1 nm or more, preferably 5 nm or more, and for example, 30 nm or less, preferably 20 nm or less, more preferably 15 nm or less.
  • the thickness of the antifouling layer 5 is at least the above lower limit, the antifouling property of the antifouling layer 5 can be improved.
  • the thickness of the antifouling layer 5 is not more than the above upper limit, unevenness can be suppressed when the antifouling layer 5 is manufactured. As a result, the design of the antifouling layer 5 is improved.
  • the thickness of the antifouling layer 5 can be measured by fluorescent X-rays (ZXS PrimusII manufactured by Rigaku).
  • the water contact angle of the antifouling layer 5 is, for example, 100 ° or more, preferably 110 ° or more, more preferably 114 ° or more, and for example, 130 ° or less.
  • the antifouling property of the antifouling layer 5 can be improved.
  • the surface roughness Ra is within a predetermined range.
  • the surface roughness Ra of the antifouling layer 5 is 2 nm or more, preferably 3 nm or more, more preferably 5 nm or more, and 15 nm or less, preferably 10 nm or less, more preferably 7 nm or less. be.
  • the surface roughness Ra of the antifouling layer 5 is equal to or higher than the above lower limit, it is possible to suppress a decrease in the durability of the antifouling layer 5 against sliding even if it is irradiated with ultraviolet rays.
  • the surface roughness Ra of the antifouling layer 5 is less than the above lower limit, the anchor effect becomes insufficient and the antifouling layer 5 is peeled off from the optical functional layer 4, so that the antifouling layer 5 is against sliding. The decrease in durability cannot be suppressed.
  • the surface roughness Ra of the antifouling layer 5 is not more than the above upper limit, it is possible to suppress a decrease in the durability of the antifouling layer 5 against sliding even if it is irradiated with ultraviolet rays.
  • the surface roughness Ra of the antifouling layer 5 exceeds the above upper limit, the amount of ultraviolet rays irradiated to the antifouling layer 5 increases, so that the deterioration of the antifouling layer 5's durability against sliding cannot be suppressed.
  • the type of particles and / or the blending ratio of the particles and / or the particles Adjust the average particle size of the hard coat layer 11 to a predetermined ratio and / or prepare the surface roughness Ra of the hard coat layer 11 and / or change the material forming the antifouling layer 5 to a predetermined material. And / or, the method of arranging the antifouling layer 5 on the optical functional layer 4 is changed to a predetermined method.
  • the manufacturing method of the optical film 1 with an antifouling layer includes a first step of preparing the base material layer 2, a second step of arranging the base material layer 2, the adhesion layer 3 and the optical functional layer 4 in order, and optical.
  • the functional layer 4 is provided with a third step of arranging the antifouling layer 5.
  • the base material 10 is prepared.
  • the hard coat layer 11 is arranged on the base material 10. Specifically, the hard coat layer 11 is arranged on one surface of the base material 10 in the thickness direction.
  • a diluted solution of the hard coat composition is applied to one surface of the base material 10 in the thickness direction and dried. After drying, the hardcourt composition is cured by irradiation with ultraviolet rays. As a result, the hard coat layer 11 is formed on one surface of the base material 10 in the thickness direction.
  • the adhesion layer 3 and the optical functional layer 4 are sequentially arranged on the base material layer 2 (hard coat layer 11).
  • the adhesion layer 3 is arranged on one surface of the base material layer 2 (hard coat layer 11) in the thickness direction, and then arranged on the optical functional layer 4 on one surface of the adhesion layer 3 in the thickness direction. More specifically, the adhesion layer 3 is arranged on one surface in the thickness direction of the base material layer 2 (hard coat layer 11), and the first high refractive index layer 21 is arranged on one surface in the thickness direction of the adhesion layer 3.
  • the first low refractive index layer 22 is arranged on one surface in the thickness direction of the first high refractive index layer 21, and the second high refractive index layer 23 is arranged on one surface in the thickness direction of the first low refractive index layer 22.
  • the second low refractive index layer 24 is arranged on one surface in the thickness direction of the second high refractive index layer 23.
  • the adhesion layer 3 and the optical functional layer 4 on the substrate layer 2 in order, first, from the viewpoint of improving the adhesion between the substrate layer 2 and the adhesion layer 3, the surface of the substrate layer 2 is surfaced. Apply processing.
  • Examples of the surface treatment include corona treatment, plasma treatment, frame treatment, ozone treatment, primer treatment, glow treatment, and saponification treatment.
  • the surface treatment preferably includes plasma treatment.
  • a vacuum vapor deposition method for example, a vacuum vapor deposition method, a sputtering method, a laminating method, a plating method, and an ion plating method can be mentioned.
  • a sputtering method is preferable.
  • the target (each layer (adhesion layer 3, first high refractive index layer 21, first low refractive index layer 22, second high refractive index layer 23, and second low refractive index layer 24) is placed in the vacuum chamber. Material) and the base material layer 2 are arranged so as to face each other. Next, the gas ions are accelerated by supplying gas and applying a voltage from the power source to irradiate the target, and the target material is ejected from the target surface. Then, each layer is sequentially deposited on the surface of the base material layer 2 with the target material.
  • the gas examples include an inert gas.
  • the inert gas examples include argon gas.
  • a reactive gas for example, oxygen gas
  • the flow rate ratio (sccm) of the reactive gas is not particularly limited. Specifically, the flow rate ratio of the reactive gas is, for example, 0.1 flow rate% or more and 100 flow rate% or less with respect to the total flow rate ratio of the sputter gas and the reactive gas.
  • the atmospheric pressure during sputtering is, for example, 0.1 Pa or more, and for example, 1.0 Pa or less, preferably 0.7 Pa or less.
  • the power supply may be, for example, any of a DC power supply, an AC power supply, an MF power supply, and an RF power supply. Further, these combinations may be used.
  • the adhesion layer 3 and the optical functional layer 4 are sequentially arranged on one surface of the base material layer 2 in the thickness direction.
  • the antifouling layer 5 is arranged on the optical functional layer 4. Specifically, the antifouling layer 5 is arranged on one side of the optical functional layer 4 in the thickness direction.
  • a dry coating method As a method of arranging the antifouling layer 5 on the optical functional layer 4, for example, a dry coating method can be mentioned.
  • the dry coating method include a vacuum vapor deposition method, a sputtering method, and a CVD method, preferably a vacuum vapor deposition method from the viewpoint of adjusting the surface roughness Ra of the antifouling layer 5 to the above-mentioned predetermined range.
  • the antifouling layer 5 is arranged on the optical functional layer 4. Then, an optical film 1 with an antifouling layer is manufactured, which comprises the base material layer 2, the adhesion layer 3, the optical functional layer 4, and the antifouling layer 5 in order toward one side in the thickness direction.
  • the surface roughness Ra of the antifouling layer 5 is within a predetermined range. Therefore, even if it is irradiated with ultraviolet rays, it is possible to suppress a decrease in the durability of the antifouling layer 5 against sliding.
  • the base material layer 2 includes the base material 10 and the hard coat layer 11 in order toward one side in the thickness direction.
  • the base material layer 2 does not include the hard coat layer 11 and may be made of the base material 10.
  • the optical film 1 with an antifouling layer includes an adhesion layer 3.
  • the optical film 1 with an antifouling layer does not have to include the adhesion layer 3.
  • the optical film 1 with an antifouling layer includes a base material layer 2, an optical functional layer 4, and an antifouling layer 5 in order toward one side in the thickness direction.
  • the optical functional layer 4 includes two high refractive index layers having a relatively high refractive index and two low refractive index layers having a relatively low refractive index.
  • the number of high refractive index layers and low refractive index layers is not particularly limited.
  • the optical functional layer 4 is an antireflection layer, but is not limited thereto.
  • the optical functional layer 4 include a transparent electrode film (ITO film) and an electromagnetic wave shielding layer (a metal thin film having an electromagnetic wave reflecting ability).
  • Examples and comparative examples are shown below, and the present invention will be described in more detail.
  • the present invention is not limited to Examples and Comparative Examples.
  • specific numerical values such as the compounding ratio (content ratio), physical property values, parameters, etc. used in the following description are described in the above-mentioned "form for carrying out the invention", and the compounding ratios corresponding to them ( Can be replaced with the upper limit value (value defined as “less than or equal to” or “less than”) or the lower limit value (value defined as "greater than or equal to” or “excess”) such as content ratio), physical property value, parameter, etc. ..
  • Example 1 A hardcourt layer was formed on one side of a triacetyl cellulose (TAC) film (thickness 80 ⁇ m) as a transparent resin film.
  • TAC triacetyl cellulose
  • an organosilica sol (trade name "MEK-ST-L") containing 100 parts by mass of an ultraviolet curable acrylic monomer (trade name "GRANDIC PC-1070", manufactured by DIC) and nanosilica particles as particles is contained.
  • the average primary particle size of the nanosilica particles is 50 nm, the solid content concentration is 30% by mass, manufactured by Nissan Chemical Co., Ltd.)
  • a synthetic smectite manufactured by Corp Chemical, Inc., 1.5 parts by mass, a photopolymerization initiator (trade name "OMNIRAD907", manufactured by BASF), and a leveling agent (trade name "LE303", manufactured by Kyoeisha Chemical Co., Ltd.).
  • a composition (crocodile) having a solid content concentration of 55% by mass was prepared by mixing with 0.15 parts by mass. An ultrasonic disperser was used for mixing. Next, the composition was applied to one side of the TAC film to form a coating film.
  • this coating film was cured by irradiation with ultraviolet rays and then dried by heating.
  • a high-pressure mercury lamp was used as a light source, ultraviolet rays having a wavelength of 365 nm were used, and the integrated irradiation light amount was set to 200 mJ / cm 2 .
  • the heating time was 80 ° C., and the heating temperature was 3 minutes.
  • a hard coat layer (second HC layer) having a thickness of 6 ⁇ m was formed on the TAC film.
  • a base material layer TAC film with an HC layer
  • an adhesion layer and an antireflection layer were sequentially formed on the HC layer of the TAC film with the HC layer after the plasma treatment.
  • a roll-to-roll sputter film forming apparatus is used to form an indium tin oxide (ITO) layer having a thickness of 1.5 nm as an adhesion layer on the HC layer of the TAC film with an HC layer after plasma treatment.
  • ITO indium tin oxide
  • Nb 2 O 5 layer with a thickness of 12 nm as the first high refractive index layer SiO 2 layer with a thickness of 28 nm as the first low refractive index layer
  • Nb with a thickness of 100 nm as the second high refractive index layer.
  • a SiO2 layer having a thickness of 85nm as a second low-refractive index layer are sequentially formed.
  • an ITO target is used, an argon gas as an inert gas and 10 parts by volume of oxygen gas as a reactive gas with respect to 100 parts by volume of the argon gas are used, and the discharge voltage is set to 400 V.
  • the pressure in the film chamber (deposition pressure) was 0.2 Pa, and the ITO layer was formed by MFAC sputtering.
  • the conditions for forming the first high refractive index layer, the first low refractive index layer, the second high refractive index layer, and the second low refractive index layer in Example 2 are the first high refractive index layer and the first in Comparative Example 1.
  • the conditions for forming the low refractive index layer, the second high refractive index layer, and the second low refractive index layer are the same as described above.
  • an antifouling layer was formed on the formed antireflection layer. Specifically, it is the same as the third step in Comparative Example 1 (as a vapor deposition source, a solid obtained by drying "Optur UD120" (alkoxysilane compound containing a perfluoropolyether group) manufactured by Daikin Industries, Ltd.). Minutes were used). As a result, an optical film with an antifouling layer was manufactured.
  • Example 2 An optical film with an antifouling layer was produced in the same manner as in Example 1.
  • Example 3 An optical film with an antifouling layer was produced in the same manner as in Example 1.
  • Acrylic monomer composition containing nanosilica particles (trade name "NC035", average primary particle diameter of nanosilica particles is 40 nm, solid content concentration is 50%, ratio of nanosilica particles in solid content is 60% by mass, manufactured by Arakawa Chemical Industry Co., Ltd.) 67 parts by mass, UV curable polyfunctional acrylate (trade name "Binder A”, solid content concentration 100%, manufactured by Arakawa Chemical Industry Co., Ltd.) 33 parts by mass, and polymethylmethacrylate particles as particles (trade name “Techpolymer”) , Average particle diameter 3 ⁇ m, refractive index 1.525, manufactured by Sekisui Kasei Kogyo Co., Ltd.) and silicone particles as particles (trade name “Tospearl 130”, average particle diameter 3 ⁇ m, refractive index 1.42, momentum -Performance Materials Japan Co., Ltd.) 1.5 parts by mass, thixotropy-imparting agent (trade name "Lucentite SAN", organic clay synthetic smectite,
  • % Composition (Wanis) was prepared. An ultrasonic disperser was used for mixing. Next, the composition was applied to one side of the TAC film to form a coating film. Next, this coating film was cured by irradiation with ultraviolet rays and then dried by heating. In the ultraviolet irradiation, a high-pressure mercury lamp was used as a light source, ultraviolet rays having a wavelength of 365 nm were used, and the integrated irradiation light amount was set to 200 mJ / cm 2 . The heating time was 60 ° C., and the heating temperature was 60 seconds. As a result, an antiglare hard coat layer (third HC layer) having a thickness of 7 ⁇ m was formed on the TAC film. As a result, a base material layer (TAC film with an HC layer) was obtained.
  • TAC film with an HC layer was obtained.
  • Comparative Example 1 An antiglare hard coat layer was formed on one side of a triacetyl cellulose (TAC) film (thickness 80 ⁇ m) as a transparent resin film.
  • TAC triacetyl cellulose
  • this step first, 50 parts by mass of an ultraviolet curable urethane acrylate (trade name "UV1700TL”, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) and an ultraviolet curable polyfunctional acrylate (trade name "Viscoat # 300", the main components are Pentaeristol triacrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd.
  • 0.15 parts by mass of the agent (trade name "LE303", manufactured by Kyoeisha Chemical Co., Ltd.) and a mixed solvent of toluene / ethyl acetate / cyclopentanone (mass ratio 35:41:24) are mixed to have a solid content concentration of 55% by mass.
  • the composition (crocodile) of was prepared. An ultrasonic disperser was used for mixing. Next, the composition was applied to one side of the TAC film to form a coating film. Next, this coating film was cured by irradiation with ultraviolet rays and then dried by heating.
  • a high-pressure mercury lamp was used as a light source, ultraviolet rays having a wavelength of 365 nm were used, and the integrated irradiation light amount was set to 300 mJ / cm 2 .
  • the heating temperature was 80 ° C., and the heating time was 60 seconds.
  • an antiglare hard coat layer (first HC layer) having a thickness of 8 ⁇ m was formed on the TAC film.
  • a base material layer TAC film with an HC layer
  • an adhesion layer and an antireflection layer were sequentially formed on the HC layer of the TAC film with the HC layer after the plasma treatment.
  • a roll-to-roll sputter film forming apparatus is used to add a 3.5 nm-thick SiOx layer (x ⁇ 2) as an adhesion layer on the HC layer of the TAC film with an HC layer after plasma treatment.
  • Nb 2 O 5 layer with a thickness of 12 nm as the first high refractive index layer SiO 2 layer with a thickness of 28 nm as the first low refractive index layer, and Nb 2 with a thickness of 100 nm as the second high refractive index layer.
  • a SiO2 layer having a thickness of 85nm as a second low-refractive index layer are sequentially formed.
  • a Si target is used, an argon gas as an inert gas and 3 parts by volume of oxygen gas as a reactive gas with respect to 100 parts by volume of the argon gas are used, and the discharge voltage is set to 520 V.
  • the pressure in the film chamber (deposition pressure) was 0.27 Pa, and the SiOx layer (x ⁇ 2) was formed by MFAC sputtering.
  • an Nb target is used, 100 parts by volume of argon gas and 5 parts by volume of oxygen gas are used, the discharge voltage is 415 V, the film formation pressure is 0.42 Pa, and Nb is formed by MFAC sputtering. the 2 O 5 layer was formed.
  • a Si target is used, 100 parts by volume of argon gas and 30 parts by volume of oxygen gas are used, the discharge voltage is 350 V, the film formation pressure is 0.3 Pa, and SiO is used by MFAC sputtering. Two layers were formed.
  • an Nb target is used, 100 parts by volume of argon gas and 13 parts by volume of oxygen gas are used, the discharge voltage is 460 V, the film formation pressure is 0.5 Pa, and Nb is Nb by MFAC sputtering. the 2 O 5 layer was formed.
  • a Si target is used, 100 parts by volume of argon gas and 30 parts by volume of oxygen gas are used, the discharge voltage is 340 V, the film formation pressure is 0.25 Pa, and SiO is used by MFAC sputtering. Two layers were formed.
  • the antireflection layer (first high refractive index layer, first low refractive index layer, second high refractive index layer, second low) is placed on the HC layer of the TAC film with the HC layer via the adhesion layer.
  • the refractive index layer was laminated and formed.
  • an antifouling layer was formed on the formed antireflection layer.
  • an antifouling layer having a thickness of 7 nm was formed on the antireflection layer by a vacuum vapor deposition method using an alkoxysilane compound containing a perfluoropolyether group as a vapor deposition source.
  • the vapor deposition source is a solid content obtained by drying "Optur UD509" manufactured by Daikin Industries, Ltd. (perfluoropolyether group-containing alkoxysilane compound represented by the above general formula (2), solid content concentration 20% by mass). be.
  • the heating temperature of the vapor deposition source in the vacuum vapor deposition method was 260 ° C.
  • Comparative Example 2 An optical film with an antifouling layer was produced in the same manner as in Example 1.
  • the third step was changed as follows.
  • “Optur UD509” manufactured by Daikin Industries, Ltd.
  • a diluting solvent trade name "Fluorinert”, manufactured by 3M
  • a coating liquid was applied by gravure coating on the antireflection layer formed in the second step to form a coating film.
  • the coating was then dried by heating at 60 ° C. for 2 minutes. As a result, an antifouling layer having a thickness of 7 nm was formed on the antireflection layer.
  • the surface roughness Ra of the antifouling layer was examined for the antifouling layer and the hard coat layer of the optical film with the antifouling layer of each Example and each comparative example. Specifically, the surface of the antifouling layer of each optical film with an antifouling layer is observed with an atomic force microscope (trade name "SPI3800", manufactured by Seiko Instruments, Inc.), and the surface roughness Ra is observed in a 1 ⁇ m square observation image. (Arithmetic mean roughness) was calculated. The results are shown in Table 1.
  • the optical film with an antifouling layer of the present invention is suitably used, for example, in an antireflection film with an antifouling layer, a transparent conductive film with an antifouling layer, and an electromagnetic wave shielding film with an antifouling layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Paints Or Removers (AREA)

Abstract

An optical film with an anti-fouling layer according to the present invention comprises a substrate layer, an optical function layer comprising an inorganic layer, and an anti-fouling layer arranged in this order towards one side of the film in the thickness direction. The surface roughness Ra of the anti-fouling layer is 2-15 nm inclusive.

Description

防汚層付き光学フィルムOptical film with antifouling layer
 本発明は、防汚層付き光学フィルムに関する。 The present invention relates to an optical film with an antifouling layer.
 従来、フィルム基材の表面、および、光学部品の表面に、汚れ(手垢および指紋)の付着を防止する観点から、防汚層を形成することが知られている。 Conventionally, it has been known to form an antifouling layer on the surface of a film base material and the surface of an optical component from the viewpoint of preventing the adhesion of stains (hand stains and fingerprints).
 具体的には、透明フィルムと、反射防止層と、防汚層とを厚み方向一方側に向かって順に備える反射防止フィルムが提案されている(例えば、特許文献1参照。)。 Specifically, an antireflection film having a transparent film, an antireflection layer, and an antifouling layer in order toward one side in the thickness direction has been proposed (see, for example, Patent Document 1).
特開2017-227898号公報Japanese Unexamined Patent Publication No. 2017-227898
 防汚層に汚れが付着した場合には、その汚れを拭き取って除去する場合がある。そのため、防汚層には、拭き取り(摺動)に対する耐久性が要求される。 If dirt adheres to the antifouling layer, the dirt may be wiped off. Therefore, the antifouling layer is required to have durability against wiping (sliding).
 一方、防汚層に、紫外線が照射されると、防汚層の、摺動に対する耐久性が低下するという不具合がある。 On the other hand, when the antifouling layer is irradiated with ultraviolet rays, there is a problem that the durability of the antifouling layer against sliding is lowered.
 本発明は、防汚層に、紫外線が照射されても、防汚層の、摺動に対する耐久性の低下を抑制できる防汚層付き光学フィルムを提供することにある。 The present invention is to provide an optical film with an antifouling layer that can suppress a decrease in the durability of the antifouling layer against sliding even when the antifouling layer is irradiated with ultraviolet rays.
 本発明[1]は、基材層と、無機層からなる光学機能層と、防汚層とを厚み方向一方側に向かって順に備え、前記防汚層の表面粗さRaが、2nm以上15nm以下である、防汚層付き光学フィルムである。 In the present invention [1], a base material layer, an optical functional layer composed of an inorganic layer, and an antifouling layer are provided in order toward one side in the thickness direction, and the surface roughness Ra of the antifouling layer is 2 nm or more and 15 nm. The following is an optical film with an antifouling layer.
 本発明[2]は、前記光学機能層が反射防止層である、上記[1]に記載の防汚層付き光学フィルムを含んでいる。 The present invention [2] includes the optical film with an antifouling layer according to the above [1], wherein the optical functional layer is an antireflection layer.
 本発明[3]は、前記反射防止層が、相対的に屈折率が大きな高屈折率層と、相対的に屈折率が小さな低屈折率層とを交互に有する、上記[2]に記載の防汚層付き光学フィルムを含んでいる。 The present invention [3] is described in the above [2], wherein the antireflection layer alternately has a high refractive index layer having a relatively large refractive index and a low refractive index layer having a relatively small refractive index. Includes an optical film with an antifouling layer.
 本発明[4]は、基材層が、基材と、ハードコート層とを厚み方向一方側に向かって順に備える、上記[1]~[3]のいずれか一つに記載の防汚層付き光学フィルムを含んでいる。 In the present invention [4], the antifouling layer according to any one of the above [1] to [3], wherein the base material layer comprises a base material and a hard coat layer in order toward one side in the thickness direction. Includes optical film with.
 本発明[5]は、前記ハードコート層が、金属酸化物微粒子を含む、上記[4]に記載の防汚層付き光学フィルムを含んでいる。 The present invention [5] includes the optical film with an antifouling layer according to the above [4], wherein the hard coat layer contains metal oxide fine particles.
 本発明[6]は、前記金属酸化物微粒子が、ナノシリカ粒子である、上記[5]に記載の防汚層付き光学フィルムを含んでいる。 The present invention [6] includes the optical film with an antifouling layer according to the above [5], wherein the metal oxide fine particles are nanosilica particles.
 本発明[7]は、前記ハードコート層の厚み方向一方面の表面粗さRaが、0.5nm以上20nm以下である、上記[4]~[6]のいずれか一つに記載の防汚層付き光学フィルムを含んでいる。 The present invention [7] is the antifouling according to any one of the above [4] to [6], wherein the surface roughness Ra of one surface of the hard coat layer in the thickness direction is 0.5 nm or more and 20 nm or less. Includes layered optical film.
 本発明の防汚層付き光学フィルムにおいて、防汚層の表面粗さRaが、2nm以上15nm以下である。そのため、防汚層に、紫外線が照射されても、防汚層の、摺動に対する耐久性の低下を抑制できる。 In the optical film with an antifouling layer of the present invention, the surface roughness Ra of the antifouling layer is 2 nm or more and 15 nm or less. Therefore, even if the antifouling layer is irradiated with ultraviolet rays, it is possible to suppress a decrease in the durability of the antifouling layer against sliding.
図1は、本発明の防汚層付き光学フィルムの一実施形態を示す。FIG. 1 shows an embodiment of an optical film with an antifouling layer of the present invention. 図2A~図2Dは、本発明の防汚層付き光学フィルムの製造方法の一実施形態を示す。図2Aは、第1工程において、基材を準備する工程を示す。図2Bは、第1工程において、基材に、ハードコート層を配置する第1工程を示す。図2Cは、基材層に、密着層および光学機能層を順に配置する第2工程を示す。図2Dは、光学機能層に、防汚層を配置する第3工程を示す。2A to 2D show an embodiment of the method for manufacturing an optical film with an antifouling layer of the present invention. FIG. 2A shows a step of preparing a base material in the first step. FIG. 2B shows the first step of arranging the hard coat layer on the base material in the first step. FIG. 2C shows a second step of sequentially arranging the adhesion layer and the optical functional layer on the base material layer. FIG. 2D shows a third step of arranging the antifouling layer on the optical functional layer.
 図1を参照して、本発明の防汚層付き光学フィルムの一実施形態を説明する。 An embodiment of the optical film with an antifouling layer of the present invention will be described with reference to FIG.
 図1において、紙面上下方向は、上下方向(厚み方向)である。また、紙面上側が、上側(厚み方向一方側)である。また、紙面下側が、下側(厚み方向他方側)である。また、紙面左右方向および奥行き方向は、上下方向に直交する面方向である。具体的には、各図の方向矢印に準拠する。 In FIG. 1, the vertical direction of the paper surface is the vertical direction (thickness direction). Further, the upper side of the paper surface is the upper side (one side in the thickness direction). Further, the lower side of the paper surface is the lower side (the other side in the thickness direction). Further, the left-right direction and the depth direction of the paper surface are plane directions orthogonal to the vertical direction. Specifically, it conforms to the direction arrows in each figure.
 <防汚層付き光学フィルム>
 防汚層付き光学フィルム1は、所定の厚みを有するフィルム形状(シート形状を含む。)を有する。防汚層付き光学フィルム1は、厚み方向と直交する面方向に延びる。防汚層付き光学フィルム1は、平坦な上面および平坦な下面を有する。
<Optical film with antifouling layer>
The optical film 1 with an antifouling layer has a film shape (including a sheet shape) having a predetermined thickness. The optical film 1 with an antifouling layer extends in a plane direction orthogonal to the thickness direction. The optical film 1 with an antifouling layer has a flat upper surface and a flat lower surface.
 図1に示すように、防汚層付き光学フィルム1は、基材層2と、密着層3と、光学機能層4と、防汚層5とを厚み方向一方側に向かって順に備える。防汚層付き光学フィルム1は、より具体的には、基材層2と、基材層2の上面(厚み方向一方面)に直接配置される密着層3と、密着層3の上面(厚み方向一方面)に直接配置される光学機能層4と、光学機能層4の上面(厚み方向一方面)に直接配置される防汚層5とを備える。 As shown in FIG. 1, the optical film 1 with an antifouling layer includes a base material layer 2, an adhesion layer 3, an optical functional layer 4, and an antifouling layer 5 in order toward one side in the thickness direction. More specifically, the optical film 1 with an antifouling layer includes a base material layer 2, an adhesion layer 3 directly arranged on the upper surface of the base material layer 2 (one surface in the thickness direction), and an upper surface (thickness) of the adhesion layer 3. It includes an optical functional layer 4 directly arranged on one side in the direction) and an antifouling layer 5 directly arranged on the upper surface (one side in the thickness direction) of the optical functional layer 4.
 防汚層付き光学フィルム1の厚みは、例えば、300μm以下、好ましくは、200μm以下、また、例えば、1μm以上、好ましくは、5μm以上である。 The thickness of the optical film 1 with an antifouling layer is, for example, 300 μm or less, preferably 200 μm or less, and for example, 1 μm or more, preferably 5 μm or more.
<基材層>
 基材層2は、防汚層5によって、防汚性を付与される被処理体である。
<Base layer>
The base material layer 2 is a treated body to which antifouling property is imparted by the antifouling layer 5.
 基材層2の全光線透過率(JIS K 7375-2008)は、例えば、80%以上、好ましくは、85%以上である。 The total light transmittance (JIS K 7375-2008) of the base material layer 2 is, for example, 80% or more, preferably 85% or more.
 基材層2は、基材10と、ハードコート層11とを厚み方向一方側に向かって順に備える。 The base material layer 2 includes the base material 10 and the hard coat layer 11 in order toward one side in the thickness direction.
<基材>
 基材10は、フィルム形状を有する。基材10は、可撓性を有する。基材10は、ハードコート層11の下面に接触するように、ハードコート層11の下面全面に、配置されている。
<Base material>
The base material 10 has a film shape. The base material 10 has flexibility. The base material 10 is arranged on the entire lower surface of the hard coat layer 11 so as to come into contact with the lower surface of the hard coat layer 11.
 基材10としては、例えば、高分子フィルムが挙げられる。 Examples of the base material 10 include a polymer film.
 高分子フィルムの材料としては、例えば、ポリエステル樹脂、(メタ)アクリル樹脂、オレフィン樹脂、ポリカーボネート樹脂、ポリエーテルスルフォン樹脂、ポリアリレート樹脂、メラミン樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース樹脂、および、ポリスチレン樹脂が挙げられる。ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、および、ポリエチレンナフタレートが挙げられる。(メタ)アクリル樹脂としては、例えば、ポリメチルメタクリレートが挙げられる。オレフィン樹脂としては、例えば、ポリエチレン、ポリプロピレン、および、シクロオレフィンポリマーが挙げられる。セルロース樹脂としては、例えば、トリアセチルセルロースが挙げられる。 Examples of the material of the polymer film include polyester resin, (meth) acrylic resin, olefin resin, polycarbonate resin, polyether sulfone resin, polyarylate resin, melamine resin, polyamide resin, polyimide resin, cellulose resin, and polystyrene resin. Can be mentioned. Examples of the polyester resin include polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate. Examples of the (meth) acrylic resin include polymethylmethacrylate. Examples of the olefin resin include polyethylene, polypropylene, and cycloolefin polymers. Examples of the cellulose resin include triacetyl cellulose.
 高分子フィルムの材料としては、好ましくは、セルロース樹脂、より好ましくは、トリアセチルセルロースが挙げられる。 Examples of the material of the polymer film include cellulose resin, and more preferably triacetyl cellulose.
 基材10の厚みは、例えば、1μm以上、好ましくは、5μm以上、より好ましくは、10μm以上、また、例えば、200μm以下、好ましくは、150μm以下、より好ましくは、100μm以下である。 The thickness of the base material 10 is, for example, 1 μm or more, preferably 5 μm or more, more preferably 10 μm or more, and for example, 200 μm or less, preferably 150 μm or less, more preferably 100 μm or less.
 基材10の厚みは、ダイヤルゲージ(PEACOCK社製、「DG-205」)を用いて測定できる。 The thickness of the base material 10 can be measured using a dial gauge ("DG-205" manufactured by PEACOCK).
<ハードコート層>
 ハードコート層11は、基材10に傷が発生することを抑制するための保護層である。また、ハードコート層11は、目的および用途に応じて、基材10に防眩性を付与するできる層である。
<Hard coat layer>
The hard coat layer 11 is a protective layer for suppressing the occurrence of scratches on the base material 10. Further, the hard coat layer 11 is a layer capable of imparting antiglare property to the base material 10 according to the purpose and use.
 ハードコート層11は、例えば、ハードコート組成物から形成される。 The hard coat layer 11 is formed from, for example, a hard coat composition.
 ハードコート組成物は、樹脂および粒子を含む。つまり、ハードコート層11は、樹脂および粒子を含む。 The hardcourt composition contains resin and particles. That is, the hardcourt layer 11 contains resin and particles.
 樹脂としては、例えば、熱可塑性樹脂、および、硬化性樹脂が挙げられる。熱可塑性樹脂としては、例えば、ポリオレフィン樹脂が挙げられる。 Examples of the resin include a thermoplastic resin and a curable resin. Examples of the thermoplastic resin include polyolefin resins.
 硬化性樹脂としては、例えば、活性エネルギー線(例えば、紫外線、および、電子線)の照射により硬化する活性エネルギー線硬化性樹脂、および、加熱により硬化する熱硬化性樹脂が挙げられる。硬化性樹脂としては、好ましくは、活性エネルギー線硬化性樹脂が挙げられる。 Examples of the curable resin include an active energy ray-curable resin that is cured by irradiation with active energy rays (for example, ultraviolet rays and electron beams) and a thermosetting resin that is cured by heating. The curable resin is preferably an active energy ray curable resin.
 活性エネルギー線硬化性樹脂としては、例えば、(メタ)アクリル系紫外線硬化性樹脂、ウレタン樹脂、メラミン樹脂、アルキド樹脂、シロキサン系ポリマー、および、有機シラン縮合物が挙げられる。活性エネルギー線硬化性樹脂としては、好ましくは、(メタ)アクリル系紫外線硬化性樹脂が挙げられる。 Examples of the active energy ray-curable resin include (meth) acrylic ultraviolet curable resin, urethane resin, melamine resin, alkyd resin, siloxane-based polymer, and organic silane condensate. The active energy ray-curable resin is preferably a (meth) acrylic ultraviolet curable resin.
 また、樹脂は、例えば、特開2008-88309号公報に記載の反応性希釈剤を含むことができる。具体的には、樹脂は、多官能(メタ)アクリレートを含むことができる。 Further, the resin can contain, for example, the reactive diluent described in JP-A-2008-88309. Specifically, the resin can include polyfunctional (meth) acrylates.
 粒子としては、例えば、金属酸化物微粒子および有機系微粒子が挙げられる。金属酸化物微粒子の材料としては、例えば、シリカ、アルミナ、チタニア、ジルコニア、酸化カルシウム、酸化錫、酸化インジウム、酸化カドミウム、および、酸化アンチモンが挙げられる。金属酸化物微粒子の材料として、好ましくは、シリカが挙げられる。つまり、金属酸化物微粒子として、好ましくは、シリカ粒子、より好ましくは、後述する防汚層5の表面粗さRaを、後述する所定の範囲に調整する観点から、ナノシリカ粒子が挙げられる。有機系微粒子の材料としては、ポリメチルメタクリレート、シリコーン、ポリスチレン、ポリウレタン、アクリル-スチレン共重合体、ベンゾグアナミン、メラミン、および、ポリカーボネートが挙げられる。有機系微粒子の材料としては、好ましくは、シリコーン、および、ポリメチルメタクリレートが挙げられる。 Examples of the particles include metal oxide fine particles and organic fine particles. Examples of the material of the metal oxide fine particles include silica, alumina, titania, zirconia, calcium oxide, tin oxide, indium oxide, cadmium oxide, and antimony oxide. As the material of the metal oxide fine particles, silica is preferable. That is, examples of the metal oxide fine particles include silica particles, and more preferably nanosilica particles from the viewpoint of adjusting the surface roughness Ra of the antifouling layer 5 described later to a predetermined range described later. Examples of the material of the organic fine particles include polymethylmethacrylate, silicone, polystyrene, polyurethane, acrylic-styrene copolymer, benzoguanamine, melamine, and polycarbonate. Preferred materials for the organic fine particles include silicone and polymethylmethacrylate.
 粒子は、単独使用または2種以上併用できる。 Particles can be used alone or in combination of two or more.
 そして、粒子の配合割合および/または粒子の平均粒子径を所定の割合に調整することによって、後述する防汚層5の表面粗さRaを、後述する所定の範囲に調整できる。 Then, by adjusting the mixing ratio of the particles and / or the average particle diameter of the particles to a predetermined ratio, the surface roughness Ra of the antifouling layer 5 described later can be adjusted to a predetermined range described later.
 具体的には、粒子の配合割合は、樹脂100質量部に対して、例えば、1質量部以上、好ましくは、3質量部以上、また、例えば、30質量部以上、また、例えば、20質量部以下である。 Specifically, the mixing ratio of the particles is, for example, 1 part by mass or more, preferably 3 parts by mass or more, and for example, 30 parts by mass or more, or, for example, 20 parts by mass with respect to 100 parts by mass of the resin. It is as follows.
 粒子の配合割合が、上記上限以下であれば、後述する防汚層5の表面粗さRaを、後述する所定の範囲に調整できる。 If the mixing ratio of the particles is not more than the above upper limit, the surface roughness Ra of the antifouling layer 5 described later can be adjusted to a predetermined range described later.
 粒子の平均粒子径は、例えば、10μm以下、好ましくは、8μm以下、また、例えば、1nm以上である。粒子としてナノ粒子を用いる場合、粒子の平均粒子径は、例えば、100nm以下、好ましくは、70nm以下、また、例えば、1nm以上である。粒子の平均粒子径は、例えば、レーザー散乱法における粒度分布測定法によって求められた粒度分布に基づいて、D50値(累積50%メジアン径)として求められる。 The average particle size of the particles is, for example, 10 μm or less, preferably 8 μm or less, and for example, 1 nm or more. When nanoparticles are used as the particles, the average particle size of the particles is, for example, 100 nm or less, preferably 70 nm or less, and for example, 1 nm or more. The average particle size of the particles is determined as a D50 value (cumulative 50% median diameter) based on, for example, the particle size distribution obtained by the particle size distribution measurement method in the laser scattering method.
 粒子の平均粒子径が、上記範囲内であれば、後述する防汚層5の表面粗さRaを、後述する所定の範囲に調整できる。 If the average particle size of the particles is within the above range, the surface roughness Ra of the antifouling layer 5 described later can be adjusted to a predetermined range described later.
 また、ハードコート組成物には、必要により、チキソトロピー付与剤、光重合開始剤、充填剤(例えば、有機粘土)、および、レベリング剤を適宜の割合で配合することができる。また、ハードコート組成物は、公知の溶剤で希釈することができる。 Further, the hard coat composition may contain, if necessary, a thixotropy-imparting agent, a photopolymerization initiator, a filler (for example, organic clay), and a leveling agent in an appropriate ratio. Further, the hard coat composition can be diluted with a known solvent.
 また、ハードコート層11を形成するには、詳しくは後述するが、ハードコート組成物の希釈液を基材10の厚み方向一方面に塗布し、乾燥させる。乾燥後、例えば、活性エネルギー線照射により、ハードコート組成物を硬化させる。 Further, in order to form the hard coat layer 11, a diluted solution of the hard coat composition is applied to one surface of the base material 10 in the thickness direction and dried, which will be described in detail later. After drying, the hardcourt composition is cured, for example, by irradiation with active energy rays.
 これにより、ハードコート層11を形成する。 This forms the hard coat layer 11.
 ハードコート層11の表面粗さRa(詳しくは、ハードコート層11の厚み方向一方面の表面粗さRa)は、例えば、0.5nm以上、また、例えば、20nm以下である。 The surface roughness Ra of the hard coat layer 11 (specifically, the surface roughness Ra of one surface of the hard coat layer 11 in the thickness direction) is, for example, 0.5 nm or more, and for example, 20 nm or less.
 ハードコート層11の表面粗さRaが、上記した範囲内であれば、後述する防汚層5の表面粗さRaを、後述する所定の範囲に調整できる。 If the surface roughness Ra of the hard coat layer 11 is within the above range, the surface roughness Ra of the antifouling layer 5 described later can be adjusted to a predetermined range described later.
 なお、表面粗さRaは、例えば、AFM(原子間力顕微鏡)による1μm四方の観察像から求められる(以下同様。)。 The surface roughness Ra can be obtained from, for example, an observation image of 1 μm square by an AFM (atomic force microscope) (the same applies hereinafter).
 ハードコート層11の厚みは、耐擦傷性の観点から、例えば、0.1μm以上、好ましくは、0.5μm以上、より好ましくは、3μm以上、また、例えば、50μm以下である。ハードコート層11の厚みは、例えば、透過型電子顕微鏡を用いて、断面観察により測定できる。 From the viewpoint of scratch resistance, the thickness of the hard coat layer 11 is, for example, 0.1 μm or more, preferably 0.5 μm or more, more preferably 3 μm or more, and for example, 50 μm or less. The thickness of the hard coat layer 11 can be measured by cross-sectional observation using, for example, a transmission electron microscope.
 <密着層>
 密着層3は、基材層2と、光学機能層4との間の密着力を確保するための層である。
<Adhesion layer>
The adhesion layer 3 is a layer for ensuring an adhesion between the base material layer 2 and the optical functional layer 4.
 密着層3は、フィルム形状を有する。密着層3は、基材層2(ハードコート層11)の上面全面に、基材層2(ハードコート層11)の上面に接触するように、配置されている。 The adhesion layer 3 has a film shape. The adhesion layer 3 is arranged on the entire upper surface of the base material layer 2 (hard coat layer 11) so as to be in contact with the upper surface of the base material layer 2 (hard coat layer 11).
 密着層3の材料としては、例えば、金属が挙げられる。金属としては、例えば、シリコン、インジウム、ニッケル、クロム、アルミニウム、錫、金、銀、白金、亜鉛、チタン、タングステン、ジルコニウム、および、パラジウムが挙げられる。また、密着層3の材料としては、上記金属の2種類以上の合金、および、上記金属の酸化物も挙げられる。 Examples of the material of the adhesion layer 3 include metal. Examples of the metal include silicon, indium, nickel, chromium, aluminum, tin, gold, silver, platinum, zinc, titanium, tungsten, zirconium, and palladium. Further, examples of the material of the adhesion layer 3 include two or more kinds of alloys of the above metals and oxides of the above metals.
 密着層3の材料として、密着性および透明性の観点から、好ましくは、酸化シリコン(SiOx)、および、インジウムスズ酸化物(ITO)が挙げられる。密着層3の材料として酸化シリコンが用いられる場合、好ましくは、化学量論組成よりも酸素量の少ないSiOxが用いられ、より好ましくは、xが1.2以上1.9以下のSiOxが用いられる。 Examples of the material of the adhesion layer 3 include silicon oxide (SiOx) and indium tin oxide (ITO) from the viewpoint of adhesion and transparency. When silicon oxide is used as the material of the adhesion layer 3, SiOx having a smaller oxygen content than the stoichiometric composition is preferably used, and more preferably SiOx having x of 1.2 or more and 1.9 or less is used. ..
 密着層3の厚みは、基材層2と、光学機能層4との間の密着力の確保、および、密着層3の透明性の両立の観点から、例えば、1nm以上、また、例えば、10nm以下である。 The thickness of the adhesion layer 3 is, for example, 1 nm or more, and for example, 10 nm from the viewpoint of ensuring the adhesion between the base material layer 2 and the optical functional layer 4 and achieving both the transparency of the adhesion layer 3. It is as follows.
<光学機能層>
 一実施形態では、光学機能層4は、外光の反射強度を抑制するための反射防止層である。すなわち、防汚層付き光学フィルム1は、防汚層付き反射防止フィルムである。
<Optical functional layer>
In one embodiment, the optical functional layer 4 is an antireflection layer for suppressing the reflection intensity of external light. That is, the optical film 1 with an antifouling layer is an antireflection film with an antifouling layer.
 光学機能層4(反射防止層)は、無機層からなり、相対的に屈折率が大きな高屈折率層と、相対的に屈折率が小さな低屈折率層とを、厚み方向に交互に有する。反射防止層では、それに含まれる複数の薄層(高屈折率層、低屈折率層)における複数の界面での反射光間の干渉作用により、正味の反射光強度が減衰される。また、反射防止層では、各薄層の光学膜厚(屈折率と厚みとの積)の調整により、反射光強度を減衰させる干渉作用を発現させることができる。このような反射防止層としての光学機能層4は、本実施形態において具体的には、第1高屈折率層21と、第1低屈折率層22と、第2高屈折率層23と、第2低屈折率層24とを、厚み方向一方側に向かって順に備える。 The optical functional layer 4 (antireflection layer) is made of an inorganic layer, and has a high refractive index layer having a relatively large refractive index and a low refractive index layer having a relatively small refractive index alternately in the thickness direction. In the antireflection layer, the net reflected light intensity is attenuated by the interference action between the reflected light at the plurality of interfaces in the plurality of thin layers (high refractive index layer, low refractive index layer) contained therein. Further, in the antireflection layer, an interference effect for attenuating the reflected light intensity can be exhibited by adjusting the optical film thickness (product of the refractive index and the thickness) of each thin layer. Specifically, in the present embodiment, the optical functional layer 4 as such an antireflection layer includes a first high refractive index layer 21, a first low refractive index layer 22, and a second high refractive index layer 23. The second low refractive index layer 24 is provided in order toward one side in the thickness direction.
 第1高屈折率層21および第2高屈折率層23は、それぞれ、波長550nmにおける屈折率が好ましくは1.9以上の高屈折率材料からなる。高屈折率と可視光の低吸収性との両立の観点から、高屈折率材料としては、例えば、酸化ニオブ(Nb)、酸化チタン、酸化ジルコニウム、スズドープ酸化インジウム(ITO)、および、アンチモンドープ酸化スズ(ATO)が挙げられ、好ましくは、酸化ニオブが挙げられる。つまり、好ましくは、第1低屈折率層22の材料および第2低屈折率層24の材料が、ともに酸化ニオブである。 The first high-refractive index layer 21 and the second high-refractive index layer 23 are each made of a high-refractive index material having a refractive index of preferably 1.9 or more at a wavelength of 550 nm. From the viewpoint of achieving both high refractive index and low absorption of visible light, examples of the high refractive index material include niobium oxide (Nb 2 O 5 ), titanium oxide, zirconium oxide, tin-doped indium oxide (ITO), and tin-doped indium oxide (ITO). Antimonated tin oxide (ATO) is mentioned, preferably niobium oxide. That is, preferably, the material of the first low refractive index layer 22 and the material of the second low refractive index layer 24 are both niobium oxide.
 第1高屈折率層21の光学膜厚(屈折率と厚みとの積)は、例えば、20nm以上、また、例えば、55nm以下である。第2高屈折率層23の光学膜厚は、例えば、60nm以上、また、例えば、330nm以下である。 The optical film thickness (product of refractive index and thickness) of the first high refractive index layer 21 is, for example, 20 nm or more, and for example, 55 nm or less. The optical film thickness of the second high-refractive index layer 23 is, for example, 60 nm or more, and for example, 330 nm or less.
 第1低屈折率層22および第2低屈折率層24は、それぞれ、波長550nmにおける屈折率が好ましくは1.6以下の低屈折率材料からなる。低屈折率と可視光の低吸収性との両立の観点から、低屈折率材料としては、例えば、二酸化ケイ素(SiO)、および、フッ化マグネシウム、好ましくは、二酸化ケイ素が挙げられる。つまり、好ましくは、第1低屈折率層22の材料および第2低屈折率層24の材料が、ともに二酸化ケイ素である。 The first low refractive index layer 22 and the second low refractive index layer 24 are each made of a low refractive index material having a refractive index of preferably 1.6 or less at a wavelength of 550 nm. From the viewpoint of achieving both low refractive index and low absorption of visible light, examples of the low refractive index material include silicon dioxide (SiO 2 ) and magnesium fluoride, preferably silicon dioxide. That is, preferably, the material of the first low refractive index layer 22 and the material of the second low refractive index layer 24 are both silicon dioxide.
 とりわけ、第2低屈折率層24の材料が、二酸化ケイ素であれば、第2低屈折率層24と、防汚層5との間の密着性に優れる。 In particular, if the material of the second low refractive index layer 24 is silicon dioxide, the adhesion between the second low refractive index layer 24 and the antifouling layer 5 is excellent.
 第1低屈折率層22の光学膜厚は、例えば、15nm以上、また、例えば、70nm以下である。第2低屈折率層24の光学膜厚は、例えば、100nm以上、また、例えば、160nm以下である。 The optical film thickness of the first low refractive index layer 22 is, for example, 15 nm or more, and for example, 70 nm or less. The optical film thickness of the second low refractive index layer 24 is, for example, 100 nm or more, and for example, 160 nm or less.
 また、光学機能層4において、第1高屈折率層21の厚みは、例えば、1nm以上、好ましくは、5nm以上、また、例えば、30nm以下、好ましくは、20nm以下である。第1低屈折率層22の厚みは、例えば、10nm以上、好ましくは20nm以上、また、例えば、50nm以下、好ましくは、30nm以下である。第2高屈折率層23の厚みは、例えば、50nm以上、好ましくは、80nm以上、また、例えば、200nm以下、好ましくは、150nm以下である。第2低屈折率層24の厚みは、例えば、60nm以上、好ましくは、80nm以上、また、例えば、150nm以下、好ましくは、100nm以下である。 Further, in the optical functional layer 4, the thickness of the first high refractive index layer 21 is, for example, 1 nm or more, preferably 5 nm or more, and for example, 30 nm or less, preferably 20 nm or less. The thickness of the first low refractive index layer 22 is, for example, 10 nm or more, preferably 20 nm or more, and for example, 50 nm or less, preferably 30 nm or less. The thickness of the second high refractive index layer 23 is, for example, 50 nm or more, preferably 80 nm or more, and for example, 200 nm or less, preferably 150 nm or less. The thickness of the second low refractive index layer 24 is, for example, 60 nm or more, preferably 80 nm or more, and for example, 150 nm or less, preferably 100 nm or less.
<防汚層>
 防汚層5は、基材層2の厚み方向一方側に対して、汚れ(例えば、垢および指紋)の付着を防止するための層である。
<Anti-fouling layer>
The antifouling layer 5 is a layer for preventing adhesion of dirt (for example, dirt and fingerprints) to one side of the base material layer 2 in the thickness direction.
 防汚層5は、フィルム形状を有する。防汚層5は光学機能層4の上面全面に、光学機能層4の上面に接触するように、配置されている。 The antifouling layer 5 has a film shape. The antifouling layer 5 is arranged on the entire upper surface of the optical functional layer 4 so as to be in contact with the upper surface of the optical functional layer 4.
 防汚層5を形成する材料としては、パーフルオロポリエーテル基を有するアルコキシシラン化合物が挙げられる。換言すれば、防汚層5は、パーフルオロポリエーテル基を有するアルコキシシラン化合物を含む。防汚層5は、好ましくは、パーフルオロポリエーテル基を有するアルコキシシラン化合物からなる。 Examples of the material forming the antifouling layer 5 include an alkoxysilane compound having a perfluoropolyether group. In other words, the antifouling layer 5 contains an alkoxysilane compound having a perfluoropolyether group. The antifouling layer 5 is preferably made of an alkoxysilane compound having a perfluoropolyether group.
 防汚層5がパーフルオロポリエーテル基を有するアルコキシシラン化合物を含むと、防汚層5の防汚性が向上する。 When the antifouling layer 5 contains an alkoxysilane compound having a perfluoropolyether group, the antifouling property of the antifouling layer 5 is improved.
 パーフルオロポリエーテル基を有するアルコキシシラン化合物としては、例えば、下記一般式(1)に示される化合物が挙げられる。
-R-X-(CH-Si(OR  (1)
 (上記式(1)において、Rは、1つ以上の水素原子がフッ素原子によって置換されたフッ化アルキル基を示す。Rは、パーフルオロポリエーテル基の繰り返し構造を少なくとも1つ含む構造を示す。Rは、炭素数1以上4以下アルキル基を示す。lは、1以上の整数を示す。)
 Rは、1つ以上の水素がフッ素原子によって置換された、直鎖状又は分岐状のフッ化アルキル基(炭素数1以上20以下)を示す。Rは、好ましくは、アルキル基の水素原子のすべてをフッ素原子に置換したパーフルオロアルキル基を示す。
Examples of the alkoxysilane compound having a perfluoropolyether group include compounds represented by the following general formula (1).
R 1- R 2 -X- (CH 2 ) l- Si (OR 3 ) 3 (1)
(In the above formula (1), R 1 represents an alkyl fluoride group in which one or more hydrogen atoms are substituted with a fluorine atom. R 2 is a structure containing at least one repeating structure of a perfluoropolyether group. R 3 indicates an alkyl group having 1 or more and 4 or less carbon atoms. L indicates an integer of 1 or more.)
R 1 represents a linear or branched alkyl fluoride group (1 or more and 20 or less carbon atoms) in which one or more hydrogens are substituted with a fluorine atom. R 1 preferably represents a perfluoroalkyl group in which all hydrogen atoms of the alkyl group are replaced with fluorine atoms.
 Rは、パーフルオロポリエーテル基の繰り返し構造を少なくとも1つ含む構造を示す。Rは、好ましくは、パーフルオロポリエーテル基の繰り返し構造を2つ含む構造を示す。 R 2 is a repeating structure of the perfluoropolyether group exhibits at least one containing structure. R 2 preferably shows a structure containing two repeating structures of perfluoropolyether groups.
 パーフルオロポリエーテル基の繰り返し構造としては、例えば、直鎖状のパーフルオロポリエーテル基の繰り返し構造、および、分岐状のパーフルオロポリエーテル基の繰り返し構造が挙げられる。直鎖状のパーフルオロポリエーテル基の繰り返し構造としては、例えば、-(OC2n-(mは1以上50以下の整数を示す。nは、1以上20以下の整数を示す。以下同様。)が挙げられる。分岐状のパーフルオロポリエーテル基の繰り返し構造としては、例えば、-(OC(CF-、および、-(OCFCF(CF)CF)-が挙げられる。 Examples of the repeating structure of the perfluoropolyether group include a repeating structure of a linear perfluoropolyether group and a repeating structure of a branched perfluoropolyether group. As the repeating structure of the linear perfluoropolyether group, for example,-(OC n F 2n ) m- (m indicates an integer of 1 or more and 50 or less, and n indicates an integer of 1 or more and 20 or less. The same shall apply hereinafter.) Examples of the repeating structure of the branched perfluoropolyether group include-(OC (CF 3 ) 2 ) m- and-(OCF 2 CF (CF 3 ) CF 2 ) m- .
 パーフルオロポリエーテル基の繰り返し構造としては、好ましくは、直鎖状のパーフルオロポリエーテル基の繰り返し構造、より好ましくは、-(OCF-、および、-(OC-が挙げられる。 The repeating structure of the perfluoropolyether group is preferably a repeating structure of a linear perfluoropolyether group, more preferably-(OCF 2 ) m- , and-(OC 2 F 4 ) m-. Can be mentioned.
 Rは、炭素数1以上4以下アルキル基を示す。Rは、好ましくは、メチル基を示す。 R 3 represents an alkyl group having 1 or more and 4 or less carbon atoms. R 3 preferably represents a methyl group.
 Xは、エーテル基、カルボニル基、アミノ基、またはアミド基を表し、好ましくはエーテル基を表す。 X represents an ether group, a carbonyl group, an amino group, or an amide group, and preferably represents an ether group.
 lは、1以上、また、20以下、好ましくは、10以下、より好ましくは、5以下の整数を示す。lは、さらに好ましくは、3を示す。 L represents an integer of 1 or more, 20 or less, preferably 10 or less, and more preferably 5 or less. l more preferably indicates 3.
 このようなパーフルオロポリエーテル基を有するアルコキシシラン化合物のうち、好ましくは、下記一般式(2)に示される化合物が挙げられる。
CF-(OCF-(OC-O-(CH-Si(OCH (2)
 (上記式(2)において、Pは、1以上50以下の整数を示す。Qは、1以上50以下の整数を示す。)
Among such alkoxysilane compounds having a perfluoropolyether group, a compound represented by the following general formula (2) is preferable.
CF 3- (OCF 2 ) P- (OC 2 F 4 ) Q- O- (CH 2 ) 3- Si (OCH 3 ) 3 (2)
(In the above equation (2), P indicates an integer of 1 or more and 50 or less. Q indicates an integer of 1 or more and 50 or less.)
 パーフルオロポリエーテル基を有するアルコキシシラン化合物は、市販品を用いることもできる。市販品として、具体的には、KY-1901(パーフルオロポリエーテル基含有のアルコキシシラン化合物、信越化学工業社製)、オプツールUD120(パーフルオロポリエーテル基含有のアルコキシシラン化合物)が挙げられる。 As the alkoxysilane compound having a perfluoropolyether group, a commercially available product can also be used. Specific examples of commercially available products include KY-1901 (alkoxysilane compound containing a perfluoropolyether group, manufactured by Shin-Etsu Chemical Co., Ltd.) and Optool UD120 (alkoxysilane compound containing a perfluoropolyether group).
 また、防汚層5を形成する材料を変更することによって、後述する防汚層5の表面粗さRaを、後述する所定の範囲に調整できる。 Further, by changing the material forming the antifouling layer 5, the surface roughness Ra of the antifouling layer 5 described later can be adjusted to a predetermined range described later.
 パーフルオロポリエーテル基を有するアルコキシシラン化合物は、単独使用または2種以上併用できる。 The alkoxysilane compound having a perfluoropolyether group can be used alone or in combination of two or more.
 防汚層5は、後述する方法により形成される。 The antifouling layer 5 is formed by the method described later.
 防汚層5の厚みは、例えば、1nm以上、好ましくは、5nm以上、また、例えば、30nm以下、好ましくは、20nm以下、より好ましくは、15nm以下である。 The thickness of the antifouling layer 5 is, for example, 1 nm or more, preferably 5 nm or more, and for example, 30 nm or less, preferably 20 nm or less, more preferably 15 nm or less.
 防汚層5の厚みが、上記下限以上であれば、防汚層5の防汚性を向上できる。 If the thickness of the antifouling layer 5 is at least the above lower limit, the antifouling property of the antifouling layer 5 can be improved.
 防汚層5の厚みが、上記上限以下であれば、防汚層5を製造する際に、ムラを抑制できる。その結果、防汚層5の意匠性が向上する。 If the thickness of the antifouling layer 5 is not more than the above upper limit, unevenness can be suppressed when the antifouling layer 5 is manufactured. As a result, the design of the antifouling layer 5 is improved.
 なお、防汚層5の厚みは、蛍光X線(リガク製 ZXS PrimusII)で測定できる。 The thickness of the antifouling layer 5 can be measured by fluorescent X-rays (ZXS PrimusII manufactured by Rigaku).
 また、防汚層5の水接触角は、例えば、100°以上、好ましくは、110°以上、より好ましくは、114°以上、また、例えば、130°以下である。 The water contact angle of the antifouling layer 5 is, for example, 100 ° or more, preferably 110 ° or more, more preferably 114 ° or more, and for example, 130 ° or less.
 防汚層5の水接触角が、上記下限以上であれば、防汚層5の防汚性を向上できる。 If the water contact angle of the antifouling layer 5 is equal to or greater than the above lower limit, the antifouling property of the antifouling layer 5 can be improved.
 なお、防汚層5の水接触角の測定方法については、後述する実施例で詳述する。 The method for measuring the water contact angle of the antifouling layer 5 will be described in detail in Examples described later.
 そして、このような防汚層5において、表面粗さRaが所定の範囲である。 Then, in such an antifouling layer 5, the surface roughness Ra is within a predetermined range.
 具体的には、防汚層5の表面粗さRaは、2nm以上、好ましくは、3nm以上、より好ましくは、5nm以上、また、15nm以下、好ましくは、10nm以下、より好ましくは、7nm以下である。 Specifically, the surface roughness Ra of the antifouling layer 5 is 2 nm or more, preferably 3 nm or more, more preferably 5 nm or more, and 15 nm or less, preferably 10 nm or less, more preferably 7 nm or less. be.
 防汚層5の表面粗さRaが、上記下限以上であれば、紫外線が照射されても、防汚層5の、摺動に対する耐久性の低下を抑制できる。 If the surface roughness Ra of the antifouling layer 5 is equal to or higher than the above lower limit, it is possible to suppress a decrease in the durability of the antifouling layer 5 against sliding even if it is irradiated with ultraviolet rays.
 一方、防汚層5の表面粗さRaが、上記下限未満であれば、アンカー効果が不十分となり、防汚層5が光学機能層4から剥がれることにより、防汚層5の、摺動に対する耐久性の低下を抑制できない。 On the other hand, if the surface roughness Ra of the antifouling layer 5 is less than the above lower limit, the anchor effect becomes insufficient and the antifouling layer 5 is peeled off from the optical functional layer 4, so that the antifouling layer 5 is against sliding. The decrease in durability cannot be suppressed.
 また、防汚層5の表面粗さRaが、上記上限以下であれば、紫外線が照射されても、防汚層5の、摺動に対する耐久性の低下を抑制できる。 Further, if the surface roughness Ra of the antifouling layer 5 is not more than the above upper limit, it is possible to suppress a decrease in the durability of the antifouling layer 5 against sliding even if it is irradiated with ultraviolet rays.
 一方、防汚層5の表面粗さRaが、上記上限を超過すると、防汚層5に対する紫外線の照射量が増えるため、防汚層5の、摺動に対する耐久性の低下を抑制できない。 On the other hand, if the surface roughness Ra of the antifouling layer 5 exceeds the above upper limit, the amount of ultraviolet rays irradiated to the antifouling layer 5 increases, so that the deterioration of the antifouling layer 5's durability against sliding cannot be suppressed.
 防汚層5の表面粗さRaを、上記の所定の範囲に調整するには、例えば、ハードコート層11(ハードコート組成物)における、粒子の種類および/または粒子の配合割合および/または粒子の平均粒子径を所定の割合に調整するか、および/または、ハードコート層11の表面粗さRaを調製するか、および/または、防汚層5を形成する材料を所定の材料に変更するか、および/または、光学機能層4に防汚層5を配置する方法を、所定の方法に変更する。 To adjust the surface roughness Ra of the antifouling layer 5 to the above-mentioned predetermined range, for example, in the hard coat layer 11 (hard coat composition), the type of particles and / or the blending ratio of the particles and / or the particles. Adjust the average particle size of the hard coat layer 11 to a predetermined ratio and / or prepare the surface roughness Ra of the hard coat layer 11 and / or change the material forming the antifouling layer 5 to a predetermined material. And / or, the method of arranging the antifouling layer 5 on the optical functional layer 4 is changed to a predetermined method.
<防汚層付き光学フィルムの製造方法>
 図2A~図2Dを参照して、防汚層付き光学フィルム1の製造方法を説明する。
<Manufacturing method of optical film with antifouling layer>
A method for manufacturing the optical film 1 with an antifouling layer will be described with reference to FIGS. 2A to 2D.
 防汚層付き光学フィルム1の製造方法の製造方法は、基材層2を準備する第1工程と、基材層2、密着層3および光学機能層4を順に配置する第2工程と、光学機能層4に防汚層5を配置する第3工程とを備える。 The manufacturing method of the optical film 1 with an antifouling layer includes a first step of preparing the base material layer 2, a second step of arranging the base material layer 2, the adhesion layer 3 and the optical functional layer 4 in order, and optical. The functional layer 4 is provided with a third step of arranging the antifouling layer 5.
 (第1工程)
 第1工程では、基材層2を準備する。
(First step)
In the first step, the base material layer 2 is prepared.
 基材層2を準備するには、まず、図2Aに示すように、基材10を準備する。 To prepare the base material layer 2, first, as shown in FIG. 2A, the base material 10 is prepared.
 次いで、図2Bに示すように、基材10に、ハードコート層11を配置する。具体的には、基材10の厚み方向一方面に、ハードコート層11を配置する。 Next, as shown in FIG. 2B, the hard coat layer 11 is arranged on the base material 10. Specifically, the hard coat layer 11 is arranged on one surface of the base material 10 in the thickness direction.
 具体的には、基材10の厚み方向一方面に、ハードコート組成物の希釈液を塗布し、乾燥させる。乾燥後、紫外線照射により、ハードコート組成物を硬化させる。これにより、基材10の厚み方向一方面に、ハードコート層11を形成する。 Specifically, a diluted solution of the hard coat composition is applied to one surface of the base material 10 in the thickness direction and dried. After drying, the hardcourt composition is cured by irradiation with ultraviolet rays. As a result, the hard coat layer 11 is formed on one surface of the base material 10 in the thickness direction.
 (第2工程)
 第2工程では、図2Cに示すように、基材層2(ハードコート層11)に、密着層3および光学機能層4を順に配置する。具体的には、基材層2(ハードコート層11)の厚み方向一方面に、密着層3を配置し、次いで、密着層3の厚み方向一方面に、光学機能層4に配置する。より具体的には、基材層2(ハードコート層11)の厚み方向一方面に、密着層3を配置し、密着層3の厚み方向一方面に、第1高屈折率層21を配置し、第1高屈折率層21の厚み方向一方面に、第1低屈折率層22を配置し、第1低屈折率層22の厚み方向一方面に、第2高屈折率層23を配置し、第2高屈折率層23の厚み方向一方面に、第2低屈折率層24を配置する。
(Second step)
In the second step, as shown in FIG. 2C, the adhesion layer 3 and the optical functional layer 4 are sequentially arranged on the base material layer 2 (hard coat layer 11). Specifically, the adhesion layer 3 is arranged on one surface of the base material layer 2 (hard coat layer 11) in the thickness direction, and then arranged on the optical functional layer 4 on one surface of the adhesion layer 3 in the thickness direction. More specifically, the adhesion layer 3 is arranged on one surface in the thickness direction of the base material layer 2 (hard coat layer 11), and the first high refractive index layer 21 is arranged on one surface in the thickness direction of the adhesion layer 3. The first low refractive index layer 22 is arranged on one surface in the thickness direction of the first high refractive index layer 21, and the second high refractive index layer 23 is arranged on one surface in the thickness direction of the first low refractive index layer 22. , The second low refractive index layer 24 is arranged on one surface in the thickness direction of the second high refractive index layer 23.
 基材層2に密着層3および光学機能層4を順に配置するには、基材層2および密着層3の間の密着性の向上の観点から、まず、基材層2の表面に、表面処理を施す。 In order to arrange the adhesion layer 3 and the optical functional layer 4 on the substrate layer 2 in order, first, from the viewpoint of improving the adhesion between the substrate layer 2 and the adhesion layer 3, the surface of the substrate layer 2 is surfaced. Apply processing.
 表面処理としては、例えば、コロナ処理、プラズマ処理、フレーム処理、オゾン処理、プライマー処理、グロー処理、および、ケン化処理が挙げられる。表面処理としては、好ましくは、プラズマ処理が挙げられる。 Examples of the surface treatment include corona treatment, plasma treatment, frame treatment, ozone treatment, primer treatment, glow treatment, and saponification treatment. The surface treatment preferably includes plasma treatment.
 そして、基材層2に密着層3および光学機能層4を順に配置する方法としては、例えば、真空蒸着法、スパッタリング法、ラミネート法、めっき法、および、イオンプレーティング法が挙げられる。各層を順に配置する方法として、好ましくは、スパッタリング法が挙げられる。 Then, as a method of arranging the adhesion layer 3 and the optical functional layer 4 in order on the base material layer 2, for example, a vacuum vapor deposition method, a sputtering method, a laminating method, a plating method, and an ion plating method can be mentioned. As a method of arranging each layer in order, a sputtering method is preferable.
 スパッタリング法では、真空チャンバー内にターゲット(各層(密着層3、第1高屈折率層21、第1低屈折率層22、第2高屈折率層23、および、第2低屈折率層24)の材料)および基材層2を対向配置する。次いで、ガスを供給するとともに電源から電圧を印加することによりガスイオンを加速しターゲットに照射させて、ターゲット表面からターゲット材料をはじき出す。そして、そのターゲット材料を基材層2の表面に各層を順に堆積させる。 In the sputtering method, the target (each layer (adhesion layer 3, first high refractive index layer 21, first low refractive index layer 22, second high refractive index layer 23, and second low refractive index layer 24) is placed in the vacuum chamber. Material) and the base material layer 2 are arranged so as to face each other. Next, the gas ions are accelerated by supplying gas and applying a voltage from the power source to irradiate the target, and the target material is ejected from the target surface. Then, each layer is sequentially deposited on the surface of the base material layer 2 with the target material.
 ガスとしては、例えば、不活性ガスが挙げられる。不活性ガスとしては、例えば、アルゴンガスが挙げられる。また、必要に応じて、例えば、反応性ガス(例えば、酸素ガス)を併用できる。反応性ガスを併用する場合において、反応性ガスの流量比(sccm)は特に限定しない。具体的には、反応性ガスの流量比は、スパッタガスおよび反応性ガスの合計流量比に対して、例えば、0.1流量%以上100流量%以下である。 Examples of the gas include an inert gas. Examples of the inert gas include argon gas. Further, for example, a reactive gas (for example, oxygen gas) can be used in combination, if necessary. When the reactive gas is used in combination, the flow rate ratio (sccm) of the reactive gas is not particularly limited. Specifically, the flow rate ratio of the reactive gas is, for example, 0.1 flow rate% or more and 100 flow rate% or less with respect to the total flow rate ratio of the sputter gas and the reactive gas.
 スパッタリング時の気圧は、例えば、0.1Pa以上、また、例えば、1.0Pa以下、好ましくは、0.7Pa以下である。 The atmospheric pressure during sputtering is, for example, 0.1 Pa or more, and for example, 1.0 Pa or less, preferably 0.7 Pa or less.
 電源は、例えば、DC電源、AC電源、MF電源、および、RF電源のいずれであってもよい。また、これらの組み合わせであってもよい。 The power supply may be, for example, any of a DC power supply, an AC power supply, an MF power supply, and an RF power supply. Further, these combinations may be used.
 これにより、基材層2の厚み方向一方面に、密着層3および光学機能層4を順に配置する。 As a result, the adhesion layer 3 and the optical functional layer 4 are sequentially arranged on one surface of the base material layer 2 in the thickness direction.
(第3工程)
 第3工程では、図2Dに示すように、光学機能層4に防汚層5を配置する。具体的には、光学機能層4の厚み方向一方面に、防汚層5を配置する。
(Third step)
In the third step, as shown in FIG. 2D, the antifouling layer 5 is arranged on the optical functional layer 4. Specifically, the antifouling layer 5 is arranged on one side of the optical functional layer 4 in the thickness direction.
 光学機能層4に防汚層5を配置する方法としては、例えば、ドライコーティング法が挙げられる。ドライコーティング法としては、例えば、真空蒸着法、スパッタリング法、およびCVD、好ましくは、防汚層5の表面粗さRaを、上記の所定の範囲に調整する観点から、真空蒸着法が挙げられる。 As a method of arranging the antifouling layer 5 on the optical functional layer 4, for example, a dry coating method can be mentioned. Examples of the dry coating method include a vacuum vapor deposition method, a sputtering method, and a CVD method, preferably a vacuum vapor deposition method from the viewpoint of adjusting the surface roughness Ra of the antifouling layer 5 to the above-mentioned predetermined range.
 これにより、光学機能層4に防汚層5を配置する。そして、基材層2と、密着層3と、光学機能層4と、防汚層5とを厚み方向一方側に向かって順に備える防汚層付き光学フィルム1が製造される。 As a result, the antifouling layer 5 is arranged on the optical functional layer 4. Then, an optical film 1 with an antifouling layer is manufactured, which comprises the base material layer 2, the adhesion layer 3, the optical functional layer 4, and the antifouling layer 5 in order toward one side in the thickness direction.
 そして、この防汚層付き光学フィルム1において防汚層5の表面粗さRaが所定の範囲である。そのため、紫外線が照射されても、防汚層5の、摺動に対する耐久性の低下を抑制できる。 Then, in the optical film 1 with the antifouling layer, the surface roughness Ra of the antifouling layer 5 is within a predetermined range. Therefore, even if it is irradiated with ultraviolet rays, it is possible to suppress a decrease in the durability of the antifouling layer 5 against sliding.
<変形例>
 変形例において、一実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、変形例は、特記する以外、第一実施形態と同様の作用効果を奏することができる。さらに、一実施形態およびその変形例を適宜組み合わせることができる。
<Modification example>
In the modified example, the same members and processes as in one embodiment are designated by the same reference numerals, and detailed description thereof will be omitted. Further, the modified example can exhibit the same effect as that of the first embodiment, except for special mention. Further, one embodiment and a modification thereof can be appropriately combined.
 一実施形態では、基材層2は、基材10と、ハードコート層11とを厚み方向一方側に向かって順に備える。しかし、基材層2は、ハードコート層11を備えず、基材10からなることもできる。 In one embodiment, the base material layer 2 includes the base material 10 and the hard coat layer 11 in order toward one side in the thickness direction. However, the base material layer 2 does not include the hard coat layer 11 and may be made of the base material 10.
 一実施形態では、防汚層付き光学フィルム1は、密着層3を備える。しかし、防汚層付き光学フィルム1は、密着層3を備えなくてもよい。このような場合には、防汚層付き光学フィルム1は、基材層2と、光学機能層4と、防汚層5とを厚み方向一方側に向かって順に備える。 In one embodiment, the optical film 1 with an antifouling layer includes an adhesion layer 3. However, the optical film 1 with an antifouling layer does not have to include the adhesion layer 3. In such a case, the optical film 1 with an antifouling layer includes a base material layer 2, an optical functional layer 4, and an antifouling layer 5 in order toward one side in the thickness direction.
 一実施形態では、光学機能層4は、相対的に屈折率の高い高屈折率層を2層備えるとともに、相対的に屈折率の低い低屈折率層を2層備える。しかし、高屈折率層および低屈折率層の数は、特に限定されない。 In one embodiment, the optical functional layer 4 includes two high refractive index layers having a relatively high refractive index and two low refractive index layers having a relatively low refractive index. However, the number of high refractive index layers and low refractive index layers is not particularly limited.
 一実施形態では、光学機能層4は、反射防止層であるが、これに限定されない。光学機能層4として、例えば、透明電極膜(ITO膜)、電磁波遮蔽層(電磁波反射能を有する金属薄膜)が挙げられる。 In one embodiment, the optical functional layer 4 is an antireflection layer, but is not limited thereto. Examples of the optical functional layer 4 include a transparent electrode film (ITO film) and an electromagnetic wave shielding layer (a metal thin film having an electromagnetic wave reflecting ability).
 以下に実施例および比較例を示し、本発明をさらに具体的に説明する。なお、本発明は、何ら実施例および比較例に限定されない。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替できる。 Examples and comparative examples are shown below, and the present invention will be described in more detail. The present invention is not limited to Examples and Comparative Examples. In addition, specific numerical values such as the compounding ratio (content ratio), physical property values, parameters, etc. used in the following description are described in the above-mentioned "form for carrying out the invention", and the compounding ratios corresponding to them ( Can be replaced with the upper limit value (value defined as "less than or equal to" or "less than") or the lower limit value (value defined as "greater than or equal to" or "excess") such as content ratio), physical property value, parameter, etc. ..
1.防汚層付き光学フィルムの製造
  実施例1
(第1工程)
 透明な樹脂フィルムとしてのトリアセチルセルロース(TAC)フィルム(厚さ80μm)の片面に、ハードコート層を形成した。本工程では、まず、紫外線硬化型のアクリルモノマー(商品名「GRANDIC PC-1070」、DIC社製)100質量部と、粒子としてのナノシリカ粒子を含有するオルガノシリカゾル(商品名「MEK-ST-L」、ナノシリカ粒子の平均一次粒子径は50nm、固形分濃度30質量%、日産化学社製)25質量部(ナノシリカ粒子換算量)と、チキソトロピー付与剤(商品名「ルーセンタイトSAN」、有機粘土である合成スメクタイト、コープケミカル社製)1.5質量部と、光重合開始剤(商品名「OMNIRAD907」、BASF社製)3質量部と、レベリング剤(商品名「LE303」、共栄社化学社製)0.15質量部とを混合して、固形分濃度55質量%の組成物(ワニス)を調製した。混合には、超音波分散機を使用した。次に、上記TACフィルムの片面に組成物を塗布して塗膜を形成した。次に、この塗膜を、紫外線照射により硬化させた後、加熱により乾燥させた。紫外線照射では、光源として高圧水銀ランプを使用し、波長365nmの紫外線を用い、積算照射光量を200mJ/cmとした。また、加熱の時間は80℃とし、加熱の温度は3分間とした。これにより、TACフィルム上に厚さ6μmのハードコート層(第2のHC層)を形成した。これにより、基材層(HC層付きTACフィルム)を得た。
1. 1. Production of Optical Film with Antifouling Layer Example 1
(First step)
A hardcourt layer was formed on one side of a triacetyl cellulose (TAC) film (thickness 80 μm) as a transparent resin film. In this step, first, an organosilica sol (trade name "MEK-ST-L") containing 100 parts by mass of an ultraviolet curable acrylic monomer (trade name "GRANDIC PC-1070", manufactured by DIC) and nanosilica particles as particles is contained. , The average primary particle size of the nanosilica particles is 50 nm, the solid content concentration is 30% by mass, manufactured by Nissan Chemical Co., Ltd.) A synthetic smectite, manufactured by Corp Chemical, Inc., 1.5 parts by mass, a photopolymerization initiator (trade name "OMNIRAD907", manufactured by BASF), and a leveling agent (trade name "LE303", manufactured by Kyoeisha Chemical Co., Ltd.). A composition (crocodile) having a solid content concentration of 55% by mass was prepared by mixing with 0.15 parts by mass. An ultrasonic disperser was used for mixing. Next, the composition was applied to one side of the TAC film to form a coating film. Next, this coating film was cured by irradiation with ultraviolet rays and then dried by heating. In the ultraviolet irradiation, a high-pressure mercury lamp was used as a light source, ultraviolet rays having a wavelength of 365 nm were used, and the integrated irradiation light amount was set to 200 mJ / cm 2 . The heating time was 80 ° C., and the heating temperature was 3 minutes. As a result, a hard coat layer (second HC layer) having a thickness of 6 μm was formed on the TAC film. As a result, a base material layer (TAC film with an HC layer) was obtained.
(第2工程)
 次に、ロールトゥロール方式のプラズマ処理装置により、HC層付きTACフィルムのHC層表面を、1.0Paの真空雰囲気下でプラズマ処理した。このプラズマ処理では、不活性ガスとしてアルゴンガスを用い、放電電力を150Wとした。
(Second step)
Next, the surface of the HC layer of the TAC film with the HC layer was plasma-treated in a vacuum atmosphere of 1.0 Pa by a roll-to-roll type plasma processing apparatus. In this plasma treatment, argon gas was used as the inert gas, and the discharge power was set to 150 W.
 次に、プラズマ処理後のHC層付きTACフィルムのHC層上に、密着層と反射防止層とを順次に形成した。具体的には、ロールトゥロール方式のスパッタ成膜装置により、プラズマ処理後のHC層付きTACフィルムのHC層上に、密着層としての厚さ1.5nmのインジウムスズ酸化物(ITO)層と、第1高屈折率層としての厚さ12nmのNb層と、第1低屈折率層としての厚さ28nmのSiO層と、第2高屈折率層としての厚さ100nmのNb層と、第2低屈折率層としての厚さ85nmのSiO2層とを、順次に形成した。密着層の形成では、ITOターゲットを用い、不活性ガスとしてのアルゴンガスと、アルゴンガス100体積部に対して10体積部の反応性ガスとしての酸素ガスとを用い、放電電圧を400Vとし、成膜室内の気圧(成膜気圧)を0.2Paとし、MFACスパッタリングによってITO層を成膜した。実施例2における第1高屈折率層、第1低屈折率層、第2高屈折率層、および第2低屈折率層の形成条件は、比較例1における第1高屈折率層、第1低屈折率層、第2高屈折率層、および第2低屈折率層の上記の形成条件と同じである。 Next, an adhesion layer and an antireflection layer were sequentially formed on the HC layer of the TAC film with the HC layer after the plasma treatment. Specifically, a roll-to-roll sputter film forming apparatus is used to form an indium tin oxide (ITO) layer having a thickness of 1.5 nm as an adhesion layer on the HC layer of the TAC film with an HC layer after plasma treatment. , Nb 2 O 5 layer with a thickness of 12 nm as the first high refractive index layer , SiO 2 layer with a thickness of 28 nm as the first low refractive index layer, and Nb with a thickness of 100 nm as the second high refractive index layer. and 2 O 5 layer, a SiO2 layer having a thickness of 85nm as a second low-refractive index layer, are sequentially formed. In the formation of the adhesion layer, an ITO target is used, an argon gas as an inert gas and 10 parts by volume of oxygen gas as a reactive gas with respect to 100 parts by volume of the argon gas are used, and the discharge voltage is set to 400 V. The pressure in the film chamber (deposition pressure) was 0.2 Pa, and the ITO layer was formed by MFAC sputtering. The conditions for forming the first high refractive index layer, the first low refractive index layer, the second high refractive index layer, and the second low refractive index layer in Example 2 are the first high refractive index layer and the first in Comparative Example 1. The conditions for forming the low refractive index layer, the second high refractive index layer, and the second low refractive index layer are the same as described above.
(第3工程)
 次に、形成された反射防止層上に防汚層を形成した。具体的には、比較例1における第3工程と同じである(蒸着源としては、ダイキン工業社製の「オプツール UD120」(パーフルオロポリエーテル基含有のアルコキシシラン化合物)を乾燥して得た固形分を用いた)。これにより、防汚層付き光学フィルムを製造した。
(Third step)
Next, an antifouling layer was formed on the formed antireflection layer. Specifically, it is the same as the third step in Comparative Example 1 (as a vapor deposition source, a solid obtained by drying "Optur UD120" (alkoxysilane compound containing a perfluoropolyether group) manufactured by Daikin Industries, Ltd.). Minutes were used). As a result, an optical film with an antifouling layer was manufactured.
  実施例2
 実施例1と同様にして、防汚層付き光学フィルムを製造した。
Example 2
An optical film with an antifouling layer was produced in the same manner as in Example 1.
 但し、第3工程を以下の通りに変更した。 However, the third process has been changed as follows.
 蒸着源として、信越化学工業社製の「KY-1901」(パーフルオロポリエーテル基含有のアルコキシシラン化合物)を乾燥して得た固形分を用いた。 As a vapor deposition source, a solid content obtained by drying "KY-1901" (alkoxysilane compound containing a perfluoropolyether group) manufactured by Shin-Etsu Chemical Co., Ltd. was used.
  実施例3
 実施例1と同様にして、防汚層付き光学フィルムを製造した。
Example 3
An optical film with an antifouling layer was produced in the same manner as in Example 1.
 但し、第1工程を以下の通りに変更した。 However, the first process was changed as follows.
(第1工程)
 ナノシリカ粒子含有のアクリルモノマー組成物(商品名「NC035」、ナノシリカ粒子の平均一次粒子径は40nm、固形分濃度50%、固形分中のナノシリカ粒子の割合は60質量%、荒川化学工業社製)67質量部と、紫外線硬化型の多官能アクリレート(商品名「バインダーA」、固形分濃度100%、荒川化学工業社製)33質量部と、粒子としてのポリメチルメタクリレート粒子(商品名「テクポリマー」、平均粒子径3μm、屈折率1.525、積水化成品工業社製)3質量部と、粒子としてのシリコーン粒子(商品名「トスパール130」、平均粒子径3μm、屈折率1.42、モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)1.5質量部と、チキソトロピー付与剤(商品名「ルーセンタイトSAN」、有機粘土である合成スメクタイト、コープケミカル社製)1.5質量部と、光重合開始剤(商品名「OMNIRAD907」、BASF社製)3質量部と、レベリング剤(商品名「LE303」、共栄社化学社製)0.15質量部と、トルエンとを混合し、固形分濃度45質量%の組成物(ワニス)を調製した。混合には、超音波分散機を使用した。次に、上記TACフィルムの片面に組成物を塗布して塗膜を形成した。次に、この塗膜を、紫外線照射により硬化させた後、加熱により乾燥させた。紫外線照射では、光源として高圧水銀ランプを使用し、波長365nmの紫外線を用い、積算照射光量を200mJ/cmとした。また、加熱の時間は60℃とし、加熱の温度は60秒間とした。これにより、TACフィルム上に厚さ7μmの防眩性のハードコート層(第3のHC層)を形成した。これにより、基材層(HC層付きTACフィルム)を得た。
(First step)
Acrylic monomer composition containing nanosilica particles (trade name "NC035", average primary particle diameter of nanosilica particles is 40 nm, solid content concentration is 50%, ratio of nanosilica particles in solid content is 60% by mass, manufactured by Arakawa Chemical Industry Co., Ltd.) 67 parts by mass, UV curable polyfunctional acrylate (trade name "Binder A", solid content concentration 100%, manufactured by Arakawa Chemical Industry Co., Ltd.) 33 parts by mass, and polymethylmethacrylate particles as particles (trade name "Techpolymer") , Average particle diameter 3 μm, refractive index 1.525, manufactured by Sekisui Kasei Kogyo Co., Ltd.) and silicone particles as particles (trade name “Tospearl 130”, average particle diameter 3 μm, refractive index 1.42, momentum -Performance Materials Japan Co., Ltd.) 1.5 parts by mass, thixotropy-imparting agent (trade name "Lucentite SAN", organic clay synthetic smectite, manufactured by Corp Chemical Co., Ltd.) 1.5 parts by mass, photopolymerization A mixture of 3 parts by mass of an initiator (trade name "OMNIRAD907", manufactured by BASF), 0.15 parts by mass of a leveling agent (trade name "LE303", manufactured by Kyoeisha Chemical Co., Ltd.) and toluene, and a solid content concentration of 45 mass. % Composition (Wanis) was prepared. An ultrasonic disperser was used for mixing. Next, the composition was applied to one side of the TAC film to form a coating film. Next, this coating film was cured by irradiation with ultraviolet rays and then dried by heating. In the ultraviolet irradiation, a high-pressure mercury lamp was used as a light source, ultraviolet rays having a wavelength of 365 nm were used, and the integrated irradiation light amount was set to 200 mJ / cm 2 . The heating time was 60 ° C., and the heating temperature was 60 seconds. As a result, an antiglare hard coat layer (third HC layer) having a thickness of 7 μm was formed on the TAC film. As a result, a base material layer (TAC film with an HC layer) was obtained.
  比較例1
(第1工程)
 透明な樹脂フィルムとしてのトリアセチルセルロース(TAC)フィルム(厚さ80μm)の片面に、防眩性のハードコート層を形成した。本工程では、まず、紫外線硬化型のウレタンアクリレート(商品名「UV1700TL」、日本合成化学工業社製)50質量部と、紫外線硬化型の多官能アクリレート(商品名「ビスコート#300」、主成分はペンタエリストールトリアクリレート、大阪有機化学工業社製)50質量部と、粒子としてのポリメチルメタクリレート粒子(商品名「テクポリマー」、平均粒子径3μm、屈折率1.525、積水化成品工業社製)3質量部と、粒子としてのシリコーン粒子(商品名「トスパール130」、平均粒子径3μm、屈折率1.42、モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)1.5質量部と、チキソトロピー付与剤(商品名「ルーセンタイトSAN」、有機粘土である合成スメクタイト、コープケミカル社製)1.5質量部と、光重合開始剤(商品名「OMNIRAD907」、BASF社製)3質量部と、レベリング剤(商品名「LE303」、共栄社化学社製)0.15質量部と、トルエン・酢酸エチル・シクロペンタノン混合溶媒(質量比35:41:24)とを混合し、固形分濃度55質量%の組成物(ワニス)を調製した。混合には、超音波分散機を使用した。
次に、上記TACフィルムの片面に組成物を塗布して塗膜を形成した。次に、この塗膜を、紫外線照射により硬化させた後、加熱により乾燥させた。紫外線照射では、光源として高圧水銀ランプを使用し、波長365nmの紫外線を用い、積算照射光量を300mJ/cmとした。また、加熱の温度は80℃とし、加熱の時間は60秒間とした。これにより、TACフィルム上に厚さ8μmの防眩性のハードコート層(第1のHC層)を形成した。これにより、基材層(HC層付きTACフィルム)を得た。
Comparative Example 1
(First step)
An antiglare hard coat layer was formed on one side of a triacetyl cellulose (TAC) film (thickness 80 μm) as a transparent resin film. In this step, first, 50 parts by mass of an ultraviolet curable urethane acrylate (trade name "UV1700TL", manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) and an ultraviolet curable polyfunctional acrylate (trade name "Viscoat # 300", the main components are Pentaeristol triacrylate, manufactured by Osaka Organic Chemical Industry Co., Ltd. 50 parts by mass and polymethylmethacrylate particles as particles (trade name "Techpolymer", average particle diameter 3 μm, refractive index 1.525, manufactured by Sekisui Kasei Kogyo Co., Ltd. ) 3 parts by mass, silicone particles as particles (trade name "Tospearl 130", average particle diameter 3 μm, refractive index 1.42, manufactured by Momentive Performance Materials Japan) 1.5 parts by mass, and thixotropy Leveling with 1.5 parts by mass of the agent (trade name "Lucentite SAN", synthetic smectite which is an organic clay, manufactured by Corp Chemical Co., Ltd.) and 3 parts by mass of the photopolymerization initiator (trade name "OMNIRAD907", manufactured by BASF). 0.15 parts by mass of the agent (trade name "LE303", manufactured by Kyoeisha Chemical Co., Ltd.) and a mixed solvent of toluene / ethyl acetate / cyclopentanone (mass ratio 35:41:24) are mixed to have a solid content concentration of 55% by mass. The composition (crocodile) of was prepared. An ultrasonic disperser was used for mixing.
Next, the composition was applied to one side of the TAC film to form a coating film. Next, this coating film was cured by irradiation with ultraviolet rays and then dried by heating. In the ultraviolet irradiation, a high-pressure mercury lamp was used as a light source, ultraviolet rays having a wavelength of 365 nm were used, and the integrated irradiation light amount was set to 300 mJ / cm 2 . The heating temperature was 80 ° C., and the heating time was 60 seconds. As a result, an antiglare hard coat layer (first HC layer) having a thickness of 8 μm was formed on the TAC film. As a result, a base material layer (TAC film with an HC layer) was obtained.
(第2工程)
 次に、ロールトゥロール方式のプラズマ処理装置により、HC層付きTACフィルムのHC層表面を、1.0Paの真空雰囲気下でプラズマ処理した。このプラズマ処理では、不活性ガスとしてアルゴンガスを用い、放電電力を2400Wとした。
(Second step)
Next, the surface of the HC layer of the TAC film with the HC layer was plasma-treated in a vacuum atmosphere of 1.0 Pa by a roll-to-roll type plasma processing apparatus. In this plasma treatment, argon gas was used as the inert gas, and the discharge power was set to 2400 W.
 次に、プラズマ処理後のHC層付きTACフィルムのHC層上に、密着層と反射防止層とを順次に形成した。具体的には、ロールトゥロール方式のスパッタ成膜装置により、プラズマ処理後のHC層付きTACフィルムのHC層上に、密着層としての厚さ3.5nmのSiOx層(x<2)と、第1高屈折率層としての厚さ12nmのNb層と、第1低屈折率層としての厚さ28nmのSiO層と、第2高屈折率層としての厚さ100nmのNb層と、第2低屈折率層としての厚さ85nmのSiO2層とを、順次に形成した。密着層の形成では、Siターゲットを用い、不活性ガスとしてのアルゴンガスと、アルゴンガス100体積部に対して3体積部の反応性ガスとしての酸素ガスとを用い、放電電圧を520Vとし、成膜室内の気圧(成膜気圧)を0.27Paとし、MFACスパッタリングによってSiOx層(x<2)を成膜した。第1高屈折率層の形成では、Nbターゲットを用い、100体積部のアルゴンガスおよび5体積部の酸素ガスを用い、放電電圧を415Vとし、成膜気圧を0.42Paとし、MFACスパッタリングによってNb層を成膜した。第1低屈折率層の形成では、Siターゲットを用い、100体積部のアルゴンガスおよび30体積部の酸素ガスを用い、放電電圧を350Vとし、成膜気圧を0.3Paとし、MFACスパッタリングによってSiO層を成膜した。第2高屈折率層の形成では、Nbターゲットを用い、100体積部のアルゴンガスおよび13体積部の酸素ガスを用い、放電電圧を460Vとし、成膜気圧を0.5Paとし、MFACスパッタリングによってNb層を成膜した。第2低屈折率層の形成では、Siターゲットを用い、100体積部のアルゴンガスおよび30体積部の酸素ガスを用い、放電電圧を340Vとし、成膜気圧を0.25Paとし、MFACスパッタリングによってSiO層を成膜した。以上のようにして、HC層付きTACフィルムのHC層上に、密着層を介して反射防止層(第1高屈折率層、第1低屈折率層、第2高屈折率層、第2低屈折率層)を積層形成した。 Next, an adhesion layer and an antireflection layer were sequentially formed on the HC layer of the TAC film with the HC layer after the plasma treatment. Specifically, a roll-to-roll sputter film forming apparatus is used to add a 3.5 nm-thick SiOx layer (x <2) as an adhesion layer on the HC layer of the TAC film with an HC layer after plasma treatment. Nb 2 O 5 layer with a thickness of 12 nm as the first high refractive index layer , SiO 2 layer with a thickness of 28 nm as the first low refractive index layer, and Nb 2 with a thickness of 100 nm as the second high refractive index layer. and O 5 layer, a SiO2 layer having a thickness of 85nm as a second low-refractive index layer, are sequentially formed. In the formation of the adhesion layer, a Si target is used, an argon gas as an inert gas and 3 parts by volume of oxygen gas as a reactive gas with respect to 100 parts by volume of the argon gas are used, and the discharge voltage is set to 520 V. The pressure in the film chamber (deposition pressure) was 0.27 Pa, and the SiOx layer (x <2) was formed by MFAC sputtering. In the formation of the first high refractive index layer, an Nb target is used, 100 parts by volume of argon gas and 5 parts by volume of oxygen gas are used, the discharge voltage is 415 V, the film formation pressure is 0.42 Pa, and Nb is formed by MFAC sputtering. the 2 O 5 layer was formed. In the formation of the first low refractive index layer, a Si target is used, 100 parts by volume of argon gas and 30 parts by volume of oxygen gas are used, the discharge voltage is 350 V, the film formation pressure is 0.3 Pa, and SiO is used by MFAC sputtering. Two layers were formed. In the formation of the second high refractive index layer, an Nb target is used, 100 parts by volume of argon gas and 13 parts by volume of oxygen gas are used, the discharge voltage is 460 V, the film formation pressure is 0.5 Pa, and Nb is Nb by MFAC sputtering. the 2 O 5 layer was formed. In the formation of the second low refractive index layer, a Si target is used, 100 parts by volume of argon gas and 30 parts by volume of oxygen gas are used, the discharge voltage is 340 V, the film formation pressure is 0.25 Pa, and SiO is used by MFAC sputtering. Two layers were formed. As described above, the antireflection layer (first high refractive index layer, first low refractive index layer, second high refractive index layer, second low) is placed on the HC layer of the TAC film with the HC layer via the adhesion layer. The refractive index layer) was laminated and formed.
(第3工程)
 次に、形成された反射防止層上に防汚層を形成した。具体的には、パーフルオロポリエーテル基含有のアルコキシシラン化合物を蒸着源として用いた真空蒸着法により、厚さ7nmの防汚層を反射防止層上に形成した。蒸着源は、ダイキン工業社製の「オプツール UD509」(上記一般式(2)で表されるパーフルオロポリエーテル基含有アルコキシシラン化合物、固形分濃度20質量%)を乾燥して得た固形分である。また、真空蒸着法における蒸着源の加熱温度は260℃とした。
(Third step)
Next, an antifouling layer was formed on the formed antireflection layer. Specifically, an antifouling layer having a thickness of 7 nm was formed on the antireflection layer by a vacuum vapor deposition method using an alkoxysilane compound containing a perfluoropolyether group as a vapor deposition source. The vapor deposition source is a solid content obtained by drying "Optur UD509" manufactured by Daikin Industries, Ltd. (perfluoropolyether group-containing alkoxysilane compound represented by the above general formula (2), solid content concentration 20% by mass). be. The heating temperature of the vapor deposition source in the vacuum vapor deposition method was 260 ° C.
 これにより、防汚層付き光学フィルムを製造した。 As a result, an optical film with an antifouling layer was manufactured.
  比較例2
 実施例1と同様にして、防汚層付き光学フィルムを製造した。
Comparative Example 2
An optical film with an antifouling layer was produced in the same manner as in Example 1.
 但し、第3工程を以下の通りに変更した。
(第3工程)
 コーティング剤としての「オプツール UD509」(ダイキン工業社製)を、希釈溶媒(商品名「フロリナート」、3M社製)で希釈して、固形分濃度0.1質量%のコーティング液を調製した。次に、第2工程で形成された反射防止層の上に、コーティング液をグラビアコーティングによって塗布して塗膜を形成した。次に、この塗膜を、60℃で2分間の加熱によって乾燥させた。これにより、反射防止層上に厚さ7nmの防汚層を形成した。
However, the third step was changed as follows.
(Third step)
"Optur UD509" (manufactured by Daikin Industries, Ltd.) as a coating agent was diluted with a diluting solvent (trade name "Fluorinert", manufactured by 3M) to prepare a coating liquid having a solid content concentration of 0.1% by mass. Next, a coating liquid was applied by gravure coating on the antireflection layer formed in the second step to form a coating film. The coating was then dried by heating at 60 ° C. for 2 minutes. As a result, an antifouling layer having a thickness of 7 nm was formed on the antireflection layer.
2.評価
(表面粗さRa)
 各実施例および各比較例の防汚層付き光学フィルムの防汚層およびハードコート層について、防汚層の表面粗さRaを調べた。具体的には、各防汚層付き光学フィルムの防汚層表面を、原子間力顕微鏡(商品名「SPI3800」、セイコーインスツルメンツ社製)によって観察し、1μm四方の観察像において、表面粗さRa(算術平均粗さ)を求めた。その結果を表1に示す。
2. 2. Evaluation (surface roughness Ra)
The surface roughness Ra of the antifouling layer was examined for the antifouling layer and the hard coat layer of the optical film with the antifouling layer of each Example and each comparative example. Specifically, the surface of the antifouling layer of each optical film with an antifouling layer is observed with an atomic force microscope (trade name "SPI3800", manufactured by Seiko Instruments, Inc.), and the surface roughness Ra is observed in a 1 μm square observation image. (Arithmetic mean roughness) was calculated. The results are shown in Table 1.
(水接触角)
 各実施例および各比較例の防汚層付き光学フィルムにおいて、防汚層について、協和界面科学社製DMo-501を用いて、以下の条件に基づき、防汚層の純水に対する水接触角(初期水接触角)を測定した。その結果を表1に示す。
(Water contact angle)
In the optical film with the antifouling layer of each example and each comparative example, the antifouling layer was used with DMo-501 manufactured by Kyowa Interface Science Co., Ltd., and the water contact angle of the antifouling layer with respect to pure water was determined based on the following conditions. Initial water contact angle) was measured. The results are shown in Table 1.
 <測定条件>
液滴量:2μl
温度:25℃
湿度:40%
(耐久性試験)
  [紫外線の照射]
 各実施例および各比較例の防汚層付き光学フィルムを、岩崎電気製アイスーパー(SUV-W161)に投入した。そして、下記の条件で、防汚層側から、紫外線照射を実施した。
<Measurement conditions>
Droplet volume: 2 μl
Temperature: 25 ° C
Humidity: 40%
(Durability test)
[Ultraviolet irradiation]
The optical film with an antifouling layer of each example and each comparative example was put into an eye supermarket (SUV-W161) manufactured by Iwasaki Electric Co., Ltd. Then, under the following conditions, ultraviolet irradiation was carried out from the antifouling layer side.
 <照射条件>
BPT温度:80℃
湿度:45℃
紫外線強度:150mW/cm
時間:32.5時間
<Irradiation conditions>
BPT temperature: 80 ° C
Humidity: 45 ° C
UV intensity: 150mW / cm 2
Time: 32.5 hours
  [紫外線の照射後の水接触角の測定]
 紫外線照射後、上記と同様の方法で、防汚層の純水に対する水接触角(紫外線の照射後水接触角)を測定した。その結果を表1に示す。
[Measurement of water contact angle after irradiation with ultraviolet rays]
After irradiation with ultraviolet rays, the water contact angle (water contact angle after irradiation with ultraviolet rays) of the antifouling layer with respect to pure water was measured by the same method as described above. The results are shown in Table 1.
  [耐久性の観察]
 紫外線照射後の試料の表面が乾燥しないように、イソプロピルアルコール2mLを連続的に滴下し、20mm×20mmのSUS製治具に固定したポリエステルワイパー(サンプラテック製「アンティコンゴールド」)を碁盤目上で摺動させた(荷重:1.5kg、1000往復)。その後、剥がれの有無を目視で確認した。その結果を表1に示す。
[Observation of durability]
To prevent the surface of the sample from drying after UV irradiation, 2 mL of isopropyl alcohol was continuously dropped, and a polyester wiper ("Anticon Gold" manufactured by Sampler Tech) fixed to a 20 mm x 20 mm SUS jig was placed on a grid. Sliding (load: 1.5 kg, 1000 reciprocations). After that, the presence or absence of peeling was visually confirmed. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示にすぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれるものである。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be construed in a limited manner. Modifications of the present invention that will be apparent to those skilled in the art are included in the claims below.
 本発明の防汚層付き光学フィルムは、例えば、例えば、防汚層付き反射防止フィルム、防汚層付き透明導電性フィルム、および、防汚層付き電磁波遮蔽フィルムにおいて、好適に用いられる。 The optical film with an antifouling layer of the present invention is suitably used, for example, in an antireflection film with an antifouling layer, a transparent conductive film with an antifouling layer, and an electromagnetic wave shielding film with an antifouling layer.
 1   防汚層付き光学フィルム
 2   基材層
 4   光学機能層
 5   防汚層
10   基材
11   ハードコート層
1 Optical film with antifouling layer 2 Base material layer 4 Optical functional layer 5 Antifouling layer 10 Base material 11 Hard coat layer

Claims (7)

  1.  基材層と、無機層からなる光学機能層と、防汚層とを厚み方向一方側に向かって順に備え、
     前記防汚層の表面粗さRaが、2nm以上15nm以下である、防汚層付き光学フィルム。
    A base material layer, an optical functional layer composed of an inorganic layer, and an antifouling layer are provided in order toward one side in the thickness direction.
    An optical film with an antifouling layer having a surface roughness Ra of the antifouling layer of 2 nm or more and 15 nm or less.
  2.  前記光学機能層が反射防止層である、請求項1に記載の防汚層付き光学フィルム。 The optical film with an antifouling layer according to claim 1, wherein the optical functional layer is an antireflection layer.
  3.  前記反射防止層が、相対的に屈折率が大きな高屈折率層と、相対的に屈折率が小さな低屈折率層とを交互に有する、請求項2に記載の防汚層付き光学フィルム。 The optical film with an antifouling layer according to claim 2, wherein the antireflection layer alternately has a high refractive index layer having a relatively large refractive index and a low refractive index layer having a relatively small refractive index.
  4.  基材層が、基材と、ハードコート層とを厚み方向一方側に向かって順に備える、請求項1~3のいずれか一つに記載の防汚層付き光学フィルム。 The optical film with an antifouling layer according to any one of claims 1 to 3, wherein the base material layer comprises a base material and a hard coat layer in order toward one side in the thickness direction.
  5.  前記ハードコート層が、金属酸化物微粒子を含む、請求項4に記載の防汚層付き光学フィルム。 The optical film with an antifouling layer according to claim 4, wherein the hard coat layer contains metal oxide fine particles.
  6.  前記金属酸化物微粒子が、ナノシリカ粒子である、請求項5に記載の防汚層付き光学フィルム。 The optical film with an antifouling layer according to claim 5, wherein the metal oxide fine particles are nanosilica particles.
  7.  前記ハードコート層の厚み方向一方面の表面粗さRaが、0.5nm以上20nm以下である、請求項4~6のいずれか一つに記載の防汚層付き光学フィルム。 The optical film with an antifouling layer according to any one of claims 4 to 6, wherein the surface roughness Ra of one surface of the hard coat layer in the thickness direction is 0.5 nm or more and 20 nm or less.
PCT/JP2021/026247 2020-07-13 2021-07-13 Optical film with anti-fouling layer WO2022014569A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227045068A KR102518012B1 (en) 2020-07-13 2021-07-13 Optical film with antifouling layer
JP2022536373A JP7185101B2 (en) 2020-07-13 2021-07-13 Optical film with antifouling layer
CN202180049616.6A CN115812035B (en) 2020-07-13 2021-07-13 Optical film with antifouling layer

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020120131 2020-07-13
JP2020-120131 2020-07-13
JP2020-146144 2020-08-31
JP2020146144 2020-08-31
JP2020-166847 2020-10-01
JP2020166847 2020-10-01

Publications (1)

Publication Number Publication Date
WO2022014569A1 true WO2022014569A1 (en) 2022-01-20

Family

ID=79555566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026247 WO2022014569A1 (en) 2020-07-13 2021-07-13 Optical film with anti-fouling layer

Country Status (5)

Country Link
JP (1) JP7185101B2 (en)
KR (1) KR102518012B1 (en)
CN (1) CN115812035B (en)
TW (1) TWI817160B (en)
WO (1) WO2022014569A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210368A1 (en) * 2022-04-28 2023-11-02 日東電工株式会社 Antireflection film and image display device
WO2024080298A1 (en) * 2022-10-14 2024-04-18 デクセリアルズ株式会社 Optical multilayer body and article

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798414A (en) * 1993-04-15 1995-04-11 Seiko Epson Corp Polarizing plate and production of polarizing plate
JPH10311903A (en) * 1997-05-12 1998-11-24 Toppan Printing Co Ltd Reflection preventive material and optical member
JP2007183674A (en) * 2007-03-22 2007-07-19 Toppan Printing Co Ltd Antiglare antireflection film
JP2007194109A (en) * 2006-01-20 2007-08-02 Toppan Printing Co Ltd Conductive laminate, optical functional filter, and optical display device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100028682A1 (en) * 2006-09-29 2010-02-04 Seiji Shinohara Optical functional film
JP4113235B2 (en) * 2006-12-22 2008-07-09 富士通株式会社 Translation support device
US9284426B2 (en) * 2008-10-23 2016-03-15 Dai Nippon Printing Co., Ltd. Hard coat film and curable resin composition for hard coat layer
US10073195B2 (en) * 2010-09-30 2018-09-11 Dai Nippon Printing Co., Ltd. Optical layered body, polarizer and image display device
JP6774383B2 (en) 2016-06-17 2020-10-21 日東電工株式会社 Antireflection film and its manufacturing method, and polarizing plate with antireflection layer
JP6746410B2 (en) * 2016-07-13 2020-08-26 大日本印刷株式会社 Optical stack
JP6636069B2 (en) * 2017-09-08 2020-01-29 株式会社ダイセル Anti-reflection film
CN111183374B (en) * 2017-11-29 2022-05-03 日东电工株式会社 Hard coating film, optical laminate, and image display device
WO2020031967A1 (en) * 2018-08-08 2020-02-13 三菱瓦斯化学株式会社 Hard-coat composition, laminate film, and curable film
WO2020049895A1 (en) * 2018-09-03 2020-03-12 住友化学株式会社 Laminate and production method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798414A (en) * 1993-04-15 1995-04-11 Seiko Epson Corp Polarizing plate and production of polarizing plate
JPH10311903A (en) * 1997-05-12 1998-11-24 Toppan Printing Co Ltd Reflection preventive material and optical member
JP2007194109A (en) * 2006-01-20 2007-08-02 Toppan Printing Co Ltd Conductive laminate, optical functional filter, and optical display device
JP2007183674A (en) * 2007-03-22 2007-07-19 Toppan Printing Co Ltd Antiglare antireflection film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210368A1 (en) * 2022-04-28 2023-11-02 日東電工株式会社 Antireflection film and image display device
WO2024080298A1 (en) * 2022-10-14 2024-04-18 デクセリアルズ株式会社 Optical multilayer body and article

Also Published As

Publication number Publication date
JPWO2022014569A1 (en) 2022-01-20
KR20230005424A (en) 2023-01-09
TW202215074A (en) 2022-04-16
JP7185101B2 (en) 2022-12-06
TWI817160B (en) 2023-10-01
CN115812035A (en) 2023-03-17
CN115812035B (en) 2023-12-26
KR102518012B1 (en) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2022014569A1 (en) Optical film with anti-fouling layer
WO2022014568A1 (en) Optical film with anti-fouling layer
JP7186334B2 (en) laminate
WO2022014574A1 (en) Laminate
KR102666261B1 (en) Optical film with anti-fouling layer
TWI838633B (en) Optical film with anti-fouling layer
JP7219849B2 (en) Optical film with antifouling layer
JP7389259B2 (en) Optical film with antifouling layer
KR102520744B1 (en) laminate
WO2022014575A1 (en) Laminate
JP2022079332A (en) Optical film with antifouling layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536373

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227045068

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21842450

Country of ref document: EP

Kind code of ref document: A1