WO2016072472A1 - Reflective film - Google Patents

Reflective film Download PDF

Info

Publication number
WO2016072472A1
WO2016072472A1 PCT/JP2015/081219 JP2015081219W WO2016072472A1 WO 2016072472 A1 WO2016072472 A1 WO 2016072472A1 JP 2015081219 W JP2015081219 W JP 2015081219W WO 2016072472 A1 WO2016072472 A1 WO 2016072472A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
base material
reflective film
white base
reflectance
Prior art date
Application number
PCT/JP2015/081219
Other languages
French (fr)
Japanese (ja)
Inventor
康平 細井
金井 慎一郎
博信 多田
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Priority to CN201580056297.6A priority Critical patent/CN107076889A/en
Priority to JP2016557811A priority patent/JPWO2016072472A1/en
Priority to KR1020177011282A priority patent/KR102452766B1/en
Publication of WO2016072472A1 publication Critical patent/WO2016072472A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Definitions

  • the present invention relates to a reflective film. More specifically, the present invention relates to a reflection film used for a reflection plate of an electronic device display device such as a liquid crystal display.
  • diffused light reflection represented by a white film obtained by dispersing inorganic particles or organic particles in a plastic film.
  • a specular reflection type light reflection film typified by a mirror film obtained by forming a film or a metal reflection layer made of a metal thin film such as aluminum or silver is known.
  • liquid crystal display applications there is a wide range from large ones exceeding 50 inches such as liquid crystal televisions to small ones that are 5 inches or less for mobile applications such as mobile phones.
  • screen display devices Thinning of the light reflecting film is required to reduce the size and weight of the device itself, and a highly efficient light reflecting film contributing to power saving of the backlight aimed at extending the life of the battery is eagerly desired. .
  • mobile applications include mobile phones and in-vehicle displays. These are assumed to be used outdoors, and are also affected by radiant heat from the LED light source. Is required to have high durability even in a high temperature environment. That is, in the above light reflecting film, it is necessary to suppress a reduction in reflectance under high temperature conditions.
  • Patent Document 1 In order to satisfy these demands, for example, in Patent Document 1, two types of transparent polyester layers having different refractive indexes are adjusted in thickness strictly and alternately laminated to form a multi-layer, thereby extending over a wide wavelength range. Thus, it has been proposed to realize efficient light reflection and further impart durability with an additive or the like. However, an advanced super multi-layer thinning technique is required, resulting in an extremely expensive article.
  • a fine powder filler such as titanium oxide is dispersed in a resin matrix such as polycyclic and aliphatic polyesters and polyolefins, and / or
  • a suitable base material such as a white film (Patent Documents 2 to 4) in which a resin / air / fine powder filler having a different refractive index is formed in a film by stretching, and a plastic or metal plate
  • a metal thin film specular reflection film Patent Document 5 or 6 obtained by forming a metal thin film having a high reflectance such as silver or aluminum by vapor deposition or sputtering is generally known.
  • the white film is excellent in durability and mechanical strength, but the reflectance is not sufficient.
  • the metal thin film mirror surface film can be expected to have high reflection characteristics even if the film is thinned, it is inferior in durability from the viewpoint that the metal surface is easily deteriorated and from the characteristics of the metal that uniformly reflects all wavelengths. There is a relatively yellowish problem.
  • Patent Document 7 or 8 a reflection film in which this white film and a specular reflection film are appropriately combined has also been proposed.
  • the reflectance is far from realizing high luminance as required in recent years.
  • an object of the present invention is to provide a reflective film that has high reflectivity, high brightness, and high durability, and that has a good chromaticity of reflected light (which can suppress the yellowness of the reflected light). There is to provide to.
  • the present inventors have made a basic study on a silver thin film that is generally expected to have a high reflectivity, and have made extensive studies and have obtained the following knowledge.
  • the silver thin film gradually undergoes oxidation and sulfidation in the air, causing a significant decrease in reflectance. Therefore, it is necessary to provide a protective layer on the surface of the silver thin film.
  • a protective layer is provided on the surface of the silver thin film, the brightness of reflected light is reduced.
  • the inventors have studied more vigorously, and as described above, after appropriately combining a highly durable white substrate, a metal thin film layer, and a protective layer, the white substrate side It was found that all the above problems can be overcome by making the reflection surface side and the difference ( ⁇ b) in reflectance between two types of light of a predetermined wavelength within a certain range.
  • the present invention is a reflective film having a white base material layer, a metal thin film layer, and a protective layer in this order, and the white base material layer is disposed on the reflective use surface side.
  • ⁇ b represented below is 1.0% or more and less than 4.0%
  • ⁇ a difference between the reflectance of light with a wavelength of 450 nm and the reflectance of light with a wavelength of 750 nm of the white base layer
  • ⁇ b difference between the reflectance of light with a wavelength of 450 nm and the reflectance of light with a wavelength of 750 nm of the reflective film
  • the present invention it is possible to provide a light reflecting film having high reflectivity, high luminance and high durability suitable as a reflecting member of a liquid crystal display, and having good chromaticity at low cost.
  • FIG. 1A shows a laminated body in which a white base material layer 1, a metal thin film layer 3, and a protective layer 4 are formed in this order.
  • FIG. 1B shows a laminate formed in the order of the white base material layer 1, the intermediate layer 2, the metal thin film layer 3, and the protective layer 4.
  • It is explanatory drawing showing the relationship between the reflectance in 550 nm, and a brightness
  • film refers to a thin flat product that is extremely small compared to its length and width and whose maximum thickness is arbitrarily limited, and is usually supplied in the form of a roll (Japan) Industrial standard JISK6900), and in general, “sheet” refers to a product that is thin by definition in JIS and generally has a thickness that is small instead of length and width.
  • sheet refers to a product that is thin by definition in JIS and generally has a thickness that is small instead of length and width.
  • the reflective film of the present invention (hereinafter sometimes referred to as the present reflective film) comprises a white base material layer 1, a metal thin film layer 3, and a protective layer 4.
  • the white base material layer 1 is a reflective film disposed on the reflective use surface side, and when the light is irradiated from the white base material layer 1 side to the reflective film, it is expressed below.
  • ⁇ b is 1.0% or more and less than 4.0%
  • the reflectance improvement degree ( ⁇ a / ⁇ b) represented by the ratio of ⁇ a and ⁇ b expressed below is 1.3 or more, It is 3.0 or less.
  • ⁇ a difference between the reflectance of light with a wavelength of 450 nm and the reflectance of light with a wavelength of 750 nm of the white base layer
  • ⁇ b difference between the reflectance of light with a wavelength of 450 nm and the reflectance of light with a wavelength of 750 nm of the reflective film
  • the white base material layer is characterized by containing a thermoplastic resin and a filler.
  • the thermoplastic resin and the filler are not particularly limited.
  • the white base material layer preferably has a reflectance of 95% or more with respect to light having a wavelength of 550 nm. More preferably, it is 96% or more, More preferably, it is 97% or more. When the reflectance at 550 nm is smaller than 95%, the reflectance of the reflective film having a laminated structure does not become a sufficiently high value, and the luminance may be lowered accordingly.
  • thermoplastic resin constituting the white base layer is not particularly limited as long as it can maintain reflectivity and excellent durability.
  • Polyester resins such as polyethylene terephthalate and polyethylene naphthalate, acrylic resins, polyimide resins
  • thermoplastic resins such as fluorine resins, olefin resins such as polyethylene and polypropylene, and cycloolefin resins can be used.
  • the thermoplastic resins may be used alone or in combination of two or more.
  • the polyolefin resin layer examples include polypropylene resins such as polypropylene and propylene-ethylene copolymers, polyethylene resins such as polyethylene, high density polyethylene and low density polyethylene, and cycloolefin resins such as ethylene-cyclic olefin copolymers. And at least one polyolefin resin selected from olefin-based elastomers such as ethylene-propylene rubber (EPR) and ethylene-propylene-diene terpolymer (EPDM).
  • EPR ethylene-propylene rubber
  • EPDM ethylene-propylene-diene terpolymer
  • polypropylene resin (PP), polyethylene resin (PE), and cycloolefin resin are preferable from the viewpoint of mechanical properties, flexibility, etc. Among them, particularly excellent in heat resistance and mechanical properties such as elastic modulus. From the viewpoint of high, polypropylene resin (PP) and cycloolefin resin (COC, COP) are preferable. On the other hand, when importance is attached to the rigidity and heat resistance of the film, it is preferable to select a film made of polyester.
  • aromatic polyester is preferably selected when importance is attached to heat resistance and hydrolysis resistance, and selected from polyethylene terephthalate, polyethylene-2,6-naphthalene dicarboxylate, polypropylene terephthalate, polybutylene terephthalate, and the like. And at least one kind of polyester resin.
  • Examples of the filler include inorganic fine powder and organic fine powder.
  • Examples of the inorganic fine powder include calcium carbonate, magnesium carbonate, barium carbonate, magnesium sulfate, barium sulfate, calcium sulfate, zinc oxide, magnesium oxide, calcium oxide, titanium oxide, zinc oxide, alumina, aluminum hydroxide, hydroxyapatite, silica , Mica, talc, kaolin, clay, glass powder, asbestos powder, zeolite, silicate clay and the like. Any of these may be used alone or in admixture of two or more.
  • the refractive index is 1.6 or more, calcium carbonate, barium sulfate, titanium oxide or oxidized It is particularly preferable to use zinc.
  • the white base material layer may be increased in thickness in consideration of only the reflectance with respect to the above-described light having a wavelength of 550 nm and the brightness of the reflected light.
  • the above-described ⁇ b needs to satisfy a predetermined value as the whole reflective film.
  • the thickness of the white base material layer is preferably 40 ⁇ m or more and 200 ⁇ m or less.
  • the lower limit is more preferably 50 ⁇ m or more, further preferably 60 ⁇ m or more, particularly preferably 70 ⁇ m or more, and the upper limit is more preferably 160 ⁇ m or less, still more preferably 140 ⁇ m or less, and particularly preferably 120 ⁇ m or less.
  • the thickness of a white base material layer is 60 micrometers or more, it can be set as the reflective film provided with still higher reflectance.
  • the thickness of the white base material layer is 140 ⁇ m or less, ⁇ a / ⁇ b has a better value, and a reflective film having excellent performance despite being thin can be obtained.
  • the white base material layer may have voids inside.
  • the proportion of voids (void ratio) in the white base material layer is preferably 5% or more, more preferably 10% or more, and particularly preferably 20% or more.
  • the porosity is 5% or more, the area of the interface where the filler having a relatively high refractive index in the resin and the air layer having a low refractive index are in direct contact with each other is improved, thereby further improving the reflectance of the white base material layer. Can be improved.
  • the porosity is preferably 50% or less. A method for forming voids in the white base material layer is known.
  • the base material layer (base material film) is stretched in at least one axial direction.
  • the void ratio inside the white base material layer is preferably stretched 5 times or more in area magnification, and more preferably 7 times or more.
  • the reflective film of the present invention has a high brightness even when the thickness of the entire reflective film is thin by providing a white base layer and a metal thin film layer on the side opposite to the reflective surface of the white base layer. Can be obtained. From this point of view, when the thickness ratio of the white base material layer is 70% or more with respect to the total thickness of the present reflective film, sufficient brightness and reflectance can be obtained due to a synergistic effect with the metal thin film layer. From such a viewpoint, the thickness ratio of the white base material layer is more preferably 80% or more, further preferably 90% or more, and more preferably 92.4% or more with respect to the total thickness of the reflective film. Particularly preferred is 93.5% or more. The upper limit is preferably 99.5% or less, more preferably 99% or less, still more preferably 98% or less, particularly preferably 97.4% or less, and most preferably 97.2% or less.
  • the reflective film of the present invention has a white base material layer and a metal thin film layer provided on the side of the white base material layer opposite to the reflective use surface, thereby transmitting light at 550 nm of the white base material layer. Even when the rate is somewhat high, high luminance can be obtained. If the transmittance of light at 550 nm of the white base material layer is 1.0% or more, sufficient luminance and reflectance can be obtained by a synergistic effect with the metal thin film layer. From such a viewpoint, the transmittance of light at 550 nm of the white base material layer is more preferably 1.0% or more, and further preferably 1.1% or more. The upper limit is preferably 4.0% or less, more preferably 3.8% or less, still more preferably 3.5% or less, and particularly preferably 3.1% or less.
  • the reflective film of this invention has a metal thin film layer in the back surface side of a white base material layer, ie, the surface on the opposite side to the reflective use surface of a white base material layer.
  • the metal thin film layer can be formed by vapor-depositing a metal, and can be formed by, for example, a vacuum vapor deposition method, an ionization vapor deposition method, a sputtering method, an ion plating method, or the like.
  • the vapor-deposited metal material can be used without particular limitation as long as it has a high reflectivity, but generally silver, aluminum and the like are preferable, and among these, silver is particularly preferable. Alternatively, it is also preferable to use a silver alloy from the viewpoint of corrosion resistance.
  • the metal thin film layer may be a metal single layer product or a laminate product, or a metal oxide single layer product or a laminate product, in which two or more layers of a metal single layer product and a metal oxide single product are laminated. It may be the body.
  • the thickness of the metal thin film layer varies depending on the material forming the layer, the layer forming method, and the like, but is preferably in the range of 10 nm to 300 nm, more preferably in the range of 20 nm to 200 nm, and 40 nm to 150 nm. Is more preferable, and it is particularly preferable to be in the range of 60 nm to 120 nm. If the thickness of the metal thin film layer is 10 nm or more, sufficient reflectance can be obtained. On the other hand, when the thickness of the metal thin film layer exceeds 300 nm, the reflectance is not further improved, and the production efficiency is lowered.
  • the thickness ratio (X / Y) is 5.0 ⁇ 10 ⁇ 5 or more. It is preferably 7.5 ⁇ 10 ⁇ 3 or less.
  • the lower limit is more preferably 1.0 ⁇ 10 ⁇ 4 or more, further preferably 5.0 ⁇ 10 ⁇ 4 or more, particularly preferably 8.6 ⁇ 10 ⁇ 4 or more, and the upper limit is more preferably 5.0 ⁇ 10 4. ⁇ 3 or less, more preferably 3.0 ⁇ 10 ⁇ 3 or less, and particularly preferably 2.0 ⁇ 10 ⁇ 3 or less.
  • the metal thin film layer described above is provided on the back side of the white base material layer.
  • Various methods are mentioned as a method of providing the metal thin film layer on the back surface side of the white base material layer.
  • the metal thin film layer 3 is preferably provided on the back side of the white base material layer 1 with the intermediate layer 2 interposed therebetween.
  • a metal thin film layer is formed on the back side of the white base layer by depositing metal on the surface of the smooth coat layer by sputtering or the like.
  • the white base material layer of the present invention may have a smooth coat layer on the surface on which the metal thin film layer is provided.
  • the smooth coat layer plays a role of reducing the surface roughness on the side where the metal thin film layer is provided, and further providing an effect of improving the reflectance.
  • the surface roughness (Ra) on the side on which the metal thin film layer is provided when the smooth coating layer is provided on the white base material layer is preferably 1.0 ⁇ m or less, and is 0.7 ⁇ m or less. Is more preferably 0.4 ⁇ m or less.
  • the smooth coat layer can be a layer mainly composed of various curable resins or a layer mainly composed of an inorganic oxide (such as glass or ceramic). Or it is good also as a layer which consists of a silicon wafer.
  • various smooth coat layers are provided from the viewpoint that they are easily provided on the surface of the white base material layer and give a certain degree of flexibility to improve the adhesion to the metal thin film layer, and are excellent in handleability.
  • a layer mainly composed of a curable resin is preferable, and a layer mainly composed of at least one of acrylic resin, polyester resin, melamine resin, and urethane resin is particularly preferable.
  • the smooth coat layer preferably has a total light transmittance of 80% or more, more preferably 90% or more. “Mainly” means that 50% by mass or more, preferably 80% by mass or more, and more preferably 90% by mass or more of the constituent components of the layer.
  • the smooth coat layer may contain various known additives as long as the effects of the present invention are not impaired in addition to the various cured resins and metal oxides described above.
  • the thickness of the smooth coat layer is preferably 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the lower limit of the thickness of the smooth coat layer is more preferably 1 ⁇ m or more, and particularly preferably 2 ⁇ m or more.
  • the thickness of the smooth coat layer is too small, the surface of the white base material layer may not be sufficiently smoothed.
  • the thickness of the smooth coat layer is too large, smoothness may be deteriorated due to coating unevenness and formation unevenness.
  • Adhesive layer or pressure-sensitive adhesive layer Or a metal thin film layer may be provided on the back side of a white base material layer by laminating a film formed with a metal thin film layer and a white base material layer via an adhesive layer or an adhesive layer. it can.
  • an adhesive layer or an adhesive layer having a total light transmittance of 80% or more.
  • the total light transmittance of the adhesive layer or the pressure-sensitive adhesive layer is 80% or more, the reflectance and luminance of the reflective film are not impaired. From this viewpoint, the total light transmittance is more preferably 85% or more, and further preferably 90% or more.
  • the adhesive layer or the adhesive layer in the present invention is a layer provided to ensure adhesion between the white base material layer and the metal thin film layer, and includes any meaning as long as this is satisfied.
  • the adhesive layer or the adhesive layer include a urethane-based, acrylic-based, rubber-based, silicone-based, polyester-based, polyamide-based, epoxy-based, polyvinyl acetate-based, vinyl alkyl ether-based, and fluorine-based adhesive layer or adhesive layer. Can be mentioned. Especially, what satisfy
  • the method of providing the metal thin film layer on the back surface side of the white base material layer is not limited to the form in which the smooth coat layer is provided or the form in which the adhesive layer or the adhesive layer is provided.
  • an air layer may be provided between the white base material layer and the metal thin film layer.
  • the thickness of the air layer is preferably 0.1 ⁇ m or more and 100 ⁇ m or less, more preferably 0.2 ⁇ m or more and 50 ⁇ m or less, and particularly preferably 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the air layer is provided by simply overlapping the metal thin film layer and the white base material layer, or the metal vapor deposition layer and the white base material layer are in the range of 0.1% to 50% of the actual use area of the reflective film. It can be provided by bonding inside. The range is more preferably from 0.1% to 30%, further preferably from 0.1% to 10%. The presence of an air layer between the white base material layer and the metal thin film layer can further improve the luminance and reflectance.
  • a metal thin film layer may be provided directly on the surface of the white base material layer without using the intermediate layer as described above.
  • the intermediate layer as described above is provided, the desired reflectance and ⁇ b can be more easily satisfied.
  • the reflective film of this invention has a protective layer on the back surface side of a metal thin film layer, ie, the opposite side to the reflective use surface of a film.
  • the material forming the protective layer can be used without particular limitation as long as it can prevent corrosion of the metal thin film layer and has good adhesion to the metal thin film layer.
  • a paint made of any one of a plastic resin, a thermosetting resin, an electron beam curable resin, an ultraviolet curable resin, and the like can be used.
  • amino resins amino alkyd resins, acrylic resins, styrene resins, acrylic-styrene copolymers, urea-melamine resins, epoxy resins, fluorine resins, polycarbonates, nitrocellulose, cellulose acetate
  • resin coatings composed of alkyd resins, rosin-modified maleic acid resins, polyamide resins, or the like, or a mixture thereof can be used.
  • a paint can be formed by dispersing the resin in a solvent such as water or a solvent.
  • a plasticizer, a stabilizer, and an ultraviolet absorber can be added as necessary.
  • a solvent the thing similar to the solvent normally used for a coating material can be used.
  • the protective layer is obtained by appropriately diluting the above-mentioned paint with a solvent or the like as necessary, for example, by applying a general coating method such as a gravure coating method, a roll coating method, a dip coating method on the entire surface of the metal thin film layer, and drying. It is formed by curing (in the case of a curable resin).
  • a general coating method such as a gravure coating method, a roll coating method, a dip coating method on the entire surface of the metal thin film layer, and drying. It is formed by curing (in the case of a curable resin).
  • a protective layer can also be formed other than paint coating.
  • the protective layer forming means for that purpose include film bonding, vapor deposition of other materials, and sputtering. As described above, when the white thin film layer is laminated after forming the metal thin film layer on the surface of the film, the film itself serves as a protective layer.
  • the thickness of the protective layer is not particularly limited, but is preferably in the range of 0.1 ⁇ m to 200 ⁇ m. When the thickness of the protective layer is 0.1 ⁇ m or more, the surface of the metal thin film layer can be uniformly coated, and the effect of forming the protective layer is sufficiently exhibited. When the film itself serves as a protective layer, the overall thickness of the reflective film can be adjusted according to the application and purpose by adjusting the thickness of the protective layer within such a range.
  • the protective layer can be colored by adding inorganic or organic fine particles. By coloring the protective layer, slight light leakage from the metal thin film layer can be prevented. Further, it is possible to prevent a mistake that the metal thin film layer is mistakenly used as a reflection use surface, and to suppress glare of the metal thin film layer. Furthermore, this protective layer can be used as a printing layer. From this point of view, the protective layer resin material includes, for example, barium sulfate, barium carbonate, calcium carbonate, gypsum, titanium oxide, silicon oxide, alumina, silica, talc, calcium silicate, magnesium carbonate, carbon black, graphite, copper oxide, and carbon dioxide.
  • Inorganic pigments such as manganese, aniline black, perylene black, titanium black, cyanine black, activated carbon, ferrite, magnetite, chromium oxide, iron oxide, molybdenum disulfide, chromium complex, complex oxide black pigment, acrylic, polystyrene Organic resin particles such as polyurethane, amide, polycarbonate, silicone, urea-formalin and melamine, metal powders such as aluminum powder, brass powder and copper powder, ink compositions such as pigments and dyes, etc. Use premixed and dispersed materials. Can.
  • the amount of the inorganic or organic fine particles added is preferably 5 to 50% by mass, more preferably 10 to 40% by mass, based on the solid content of the protective layer.
  • the back side of the protective layer that is, the side opposite to the reflective use surface of the film is constituted by a hard coat layer.
  • the hard coat layer can more appropriately prevent peeling of the metal thin film layer, physical damage to the film, and corrosion of the metal thin film layer.
  • Specific examples of the hard coat layer are preferably acrylic resins, urethane resins, melamine resins, epoxy resins, organic silicate compounds, silicone resins, and the like. What is necessary is just to determine the thickness of a hard-coat layer suitably in consideration of the thickness of the whole protective layer.
  • Layer structure Examples of the layer structure of the reflective film of the present invention include white base layer / smooth coat layer / metal thin film layer / protective layer, white base layer / adhesive layer or adhesive layer / metal thin film layer / protective layer, white group Examples thereof include a material layer / air layer / metal thin film layer / protective layer, or a white base layer / smooth coat layer / air layer / metal thin film layer / protective layer.
  • the white base material layer is disposed on the side irradiated with light.
  • the reflective film of the present invention may further have other layers between these layers, and the white base material layer, the metal thin film layer, the protective layer, and the like are each independently composed of a plurality of layers. May be.
  • the thickness of the reflective film of the present invention is preferably at least 45 ⁇ m, more preferably 50 ⁇ m or more, and even more preferably 60 ⁇ m or more in order to obtain a desired reflectance.
  • a thinner one is preferable, and the upper limit is preferably 250 ⁇ m or less, more preferably 200 ⁇ m or less, and further preferably 150 ⁇ m or less.
  • an antioxidant In the present invention, an antioxidant, a light stabilizer, a heat stabilizer, a hydrolysis inhibitor, a lubricant, a dispersant, an ultraviolet absorber, and a white pigment are optionally added to each layer as long as the effects of the present invention are not impaired.
  • Fluorescent brighteners, and other additives can be blended.
  • the reflectance of light having a wavelength of 550 nm when irradiated with light from the white base layer side is preferably 98% or more, more preferably 98.5% or more, More preferably, it is 99% or more.
  • the reflectance at 550 nm has a correlation with the luminance value of the screen display device when used in a backlight which is a member of a liquid crystal display, for example, and the reflectance at 550 nm is 98% or more.
  • the luminance value of the screen display device is also increased, and sufficient brightness can be imparted to the liquid crystal display.
  • the diffuse reflection film and the regular reflection film have different sensitivities in the integrating sphere in the spectroscopic device, and therefore the absolute value of the reflectance between the two cannot be simply compared.
  • Reflectance difference ( ⁇ b) In the reflective film of the present invention, the difference between the reflectance of light having a wavelength of 450 nm and the reflectance of light having a wavelength of 750 nm is defined as ⁇ b. At this time, ⁇ b needs to be 1.0% or more and less than 4.0%. As shown in FIG. 3, the present inventors have found that the difference ( ⁇ b) between the reflectance at 450 nm and the reflectance at 750 nm is correlated with the y value of the chromaticity obtained when the luminance is measured. It was. Here, if the difference between the reflectance at 450 nm and the reflectance at 750 nm is less than 1.0%, the yellowish color becomes too strong from a practical viewpoint.
  • the difference in reflectance is more preferably 1.3% or more, and further preferably 1.5% or more.
  • the upper limit is 4.0% or more, the effect of improving the luminance is hardly recognized.
  • ⁇ b is 4.0% or more, in the present invention in which the white base material layer and the metal thin film layer are essential, the characteristics of the metal thin film layer are hardly exhibited. That is, there is a possibility that a high reflectance or the like cannot be obtained as a reflective film. From this viewpoint, it is more preferably less than 3.5%, and further preferably less than 3.0%.
  • the y value here is a luminance measurement method to be described later, that is, x and chromaticity coordinates in the CIE color system measured simultaneously with the luminance value when the present reflective film is used for a display backlight. It means y out of y, and in a certain region (x, y: 0.28 to 0.35) of this xy chromaticity coordinate, it means that the larger the value of x and y, the more yellowish it becomes For convenience, the y value is large and small, and it is used for the evaluation of yellowness.
  • Reflectivity improvement degree ( ⁇ a / ⁇ b) Furthermore, in the reflective film of the present invention, the difference between the reflectance of light having a wavelength of 450 nm and the reflectance of light having a wavelength of 750 nm of the white base material layer is defined as ⁇ a.
  • the degree of improvement in reflectance ( ⁇ a / ⁇ b) represented by the ratio of ⁇ a and ⁇ b is 1.3 or more and 3.0 or less.
  • the synergistic effect of the white base material layer and the metal thin film layer can be maximized. That is, when the ( ⁇ a / ⁇ b) is 1.3 or more, a brightness improvement effect by laminating the white base material layer and the metal thin film layer can be sufficiently obtained.
  • the upper limit is 3.0 or less, yellowness is suppressed, and a reflective film with good chromaticity can be obtained. From this viewpoint, it is more preferably 2.8 or less, and further preferably 2.6 or less.
  • the transmittance of light having a wavelength of 550 nm of the reflective film is preferably less than 1.0%.
  • the total light transmittance is more preferably less than 0.5%, further preferably less than 0.3%, and particularly preferably less than 0.1%.
  • the durability of the present reflective film is determined by calculating the difference in reflectance with respect to light having a wavelength of 550 nm before and after a high temperature treatment held at 80 ° C. for 240 hours in a constant temperature bath.
  • the difference in reflectance is preferably 0.5% or less, more preferably 0.4% or less, and further preferably 0.3% or less. When the difference in reflectance is 0.5% or less, for example, it can be used without a decrease in luminance even under conditions exposed to use in a backlight of a liquid crystal display.
  • a filler is blended with the thermoplastic resin constituting the white base material layer, and other additives are blended as necessary to prepare a resin composition.
  • a filler or the like is added to a thermoplastic resin and mixed with a ribbon blender, tumbler, Henschel mixer, etc., and then kneaded at a temperature equal to or higher than the melting point of the resin using a single screw or twin screw extruder.
  • a resin composition for each layer can be obtained.
  • a so-called master batch in which a filler or the like is blended with a thermoplastic resin at a high concentration in advance is prepared, and the master batch and the resin are mixed to obtain a resin composition having a desired concentration.
  • the resin composition for a substrate thus obtained is melted and formed on a film.
  • an inflation molding method or an extrusion molding method using a T die is preferably used as a method of forming on a film.
  • it is supplied to an extruder and heated to a temperature equal to or higher than the melting point of the resin to melt.
  • the melted resin composition for a base layer is extruded from a slit-shaped discharge port of a T die, and is solidified on a cooling roll to form a cast sheet.
  • the white base material layer is preferably stretched at least in a uniaxial direction, and more preferably stretched in a biaxial direction. Stretching can be performed with a roll, a tenter, air inflation, a tubular, a mandrel, or the like. For example, after stretching in the MD direction by a roll, it may be stretched in the TD direction by a tenter, or biaxially stretched by a tubular. Next, a white reflective film can be obtained by performing heat setting as necessary.
  • a resin coating for a smooth coat layer is applied on the white base layer and dried or cured.
  • a metal thin film layer is formed on the smooth coat layer.
  • a reflective film (white base material layer / smooth coat layer / metal thin film layer / protective layer) is obtained by forming a protective layer on the metal thin film layer.
  • a metal thin film layer is separately formed on the protective layer.
  • a white base material layer and a metal thin film layer are laminated
  • the metal thin film layer and the white base material layer are simply overlapped, or the metal vapor deposition layer and the white base material layer are bonded within the range of 0.1% to 10% of the actual use area of the reflective film.
  • the reflectance of the reflective film is based on the reflectance (100%) calibrated with a standard component plate made of alumina using a spectrophotometer “UV-4000” (trade name) manufactured by Hitachi High-Technologies Corporation. The measurement was performed in the wavelength range of 300 nm to 800 nm (in units of 0.5 nm) under such conditions.
  • the reflectivity at 450 nm and 750 nm is read by the above reflectivity measurement, ⁇ a is the difference between the reflectivity at 450 nm and the reflectivity at 750 nm of the white base material alone, and ⁇ b is 450 nm of the present reflective film.
  • the reflectance improvement degree ( ⁇ a / ⁇ b) of the reflective film was calculated as the difference between the reflectance at 750 nm and the reflectance at 750 nm.
  • Transmittance “Light transmittance of the white base material layer alone” and “Light transmittance of the reflective film as a whole” were measured. Specifically, a spectrophotometer “UV-4000” (trade name) manufactured by Hitachi High-Technologies Corporation is used, and the transmittance calibrated with an alumina standard component plate is used as a reference (100%), and a film is formed in the optical path. By inserting the sample, the transmittance of the film sample in the wavelength range of 300 nm to 800 nm (0.5 nm unit) was measured.
  • Luminance / y value This reflective film sample was used as a reflective film for the backlight unit of a liquid crystal display (Century Co., Ltd. “Plus One” 8 inch, model number: LCD8000V). The y value was measured with a luminance meter (Konica Minolta, Inc., model: CA-2000).
  • Example 1 White base material layer
  • a polyolefin white base material (trade name “Lumirex II R20” manufactured by Mitsubishi Plastics, Inc.) having a thickness of 100 ⁇ m was used.
  • Example 2 An electron beam curable acrylic resin, a photoinitiator, and a diluent solvent MIBK are mixed at a mass ratio of 1: 0.03: 1 with respect to the same white base material layer as in Example 1 to obtain a resin solid content ratio of 50.
  • a resin solution (ink) adjusted to mass% was coated with a bar coater, dried and cured to form a smooth coat layer having a thickness of 2 ⁇ m.
  • a silver thin film layer having a thickness of 120 nm is formed as a metal thin film layer on the surface of the smooth coat layer by a sputtering method, and a layer similar to the above smooth coat layer is formed as a protective layer on the surface of the silver thin film layer.
  • a reflective film was prepared. Each evaluation shown above was performed about the obtained reflective film. The results are shown in Table 1.
  • Example 3 A reflective film was produced in the same manner as in Example 1 except that the white base material layer and the silver thin film were simply overlapped to obtain a reflective film having a thickness of 130.12 ⁇ m. Among these, the air layer was 3 ⁇ m. Each evaluation shown above was performed about the obtained reflective film. The results are shown in Table 1.
  • Example 4 Example 3 except that the white base material layer was changed to a polyolefin white base material having a thickness of 70 ⁇ m (trade name “Lumirex II R20” manufactured by Mitsubishi Plastics Co., Ltd.), and a reflective film having a thickness of 100.12 ⁇ m was obtained. A reflective film was produced in the same manner as described above. Among these, the air layer was 3 ⁇ m. Each evaluation shown above was performed about the obtained reflective film. The results are shown in Table 1.
  • Example 5 Example 2 except that the white base material layer was changed to a polyolefin white base material having a thickness of 80 ⁇ m (trade name “Lumirex II R20” manufactured by Mitsubishi Plastics Co., Ltd.) to obtain a reflective film having a thickness of 111.12 ⁇ m.
  • a reflective film was produced in the same manner as described above. Each evaluation shown above was performed about the obtained reflective film. The results are shown in Table 1.
  • Example 6 In Example 5, each evaluation shown above was performed about the reflective film obtained by processing similarly except not depositing a smooth coat layer but direct silver vapor deposition. The results are shown in Table 1.
  • Example 7 A reflective film was produced in the same manner as in Example 5 except that the metal thin film layer was a silver thin film layer having a thickness of 60 nm. Each evaluation shown above was performed about the obtained reflective film. The results are shown in Table 1.
  • Example 8 In Example 2, an electron beam curable acrylic resin, titanium oxide, a photoinitiator, and a diluent solvent MIBK were further mixed on the protective layer at a mass ratio of 1: 0.3: 0.02: 3 to obtain a resin solid content.
  • the resin solution (ink) whose ratio was adjusted to 50% by mass was coated with a bar coater, dried and cured to provide a hard coat layer having a thickness of 2.0 ⁇ m.
  • Each evaluation shown above was performed about the obtained reflective film. The results are shown in Table 1.
  • Example 9 A reflective film was produced in the same manner as in Example 3 except that the white base material layer was a polyester white film (trade name “Lumirror E80E” manufactured by Toray Industries, Inc.). Each evaluation shown above was performed about the obtained reflective film. The results are shown in Table 1.
  • Example 10 A reflective film was produced in the same manner as in Example 3 except that the metal thin film layer was an aluminum thin film layer having a thickness of 120 nm. Each evaluation shown above was performed about the obtained reflective film. The results are shown in Table 1.
  • Example 5 A reflective film was produced in the same manner as in Example 2 except that the protective layer was not provided on the silver thin film surface. About the obtained reflective film, each evaluation shown above was performed by making a silver thin film surface into a reflective use surface. The results are shown in Table 2.
  • Example 6 Example 2 except that the white base material layer was changed to a polyolefin white base material having a thickness of 225 ⁇ m (trade name “Lumirex II R20” manufactured by Mitsubishi Plastics Co., Ltd.), and a reflective film having a thickness of 229.12 ⁇ m was obtained.
  • a reflective film was produced in the same manner as described above. Each evaluation shown above was performed about the obtained reflective film. The results are shown in Table 2.
  • FIG. 2 shows the relationship between the reflectance at 550 nm and the luminance
  • FIG. 3 shows the relationship between ⁇ b and the y value.
  • the values of ⁇ a, ⁇ b, and ⁇ a / ⁇ b of the reflective film of the present invention are suitably changed by appropriately changing the thickness of the white base material layer with respect to the thickness of the specific metal thin film layer. It was found that the reflectance, luminance, and chromaticity (reduction of yellowing) can be improved as a result.
  • a reflective film having high reflectivity, high brightness, and high durability, and having reflected light having good chromaticity (which can suppress yellowness of reflected light) is provided at a lower cost.
  • the reflective film according to the present invention can be suitably used as a reflective member of a display device for an electronic device such as a liquid crystal display, for example, as an alternative to a conventional expensive super multilayer reflective film. In this case, good light reflection characteristics can be ensured without redesigning the LED light source and the optical film.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a reflective film having a white base material layer, a metal thin film layer, and a protective layer, in that order, the white base material layer being arranged on the side of the surface to be used for reflection, wherein the reflective film is characterized in that when the reflective film is illuminated with light from the white base material layer side, Δb, represented in the following, is at least 1.0% but less than 4.0%, and the reflectance improvement (Δa/Δb) represented by the ratio of Δa, represented in the following, and the aforementioned Δb is 1.3-3.0, whereby the light-reflective film is provided with high levels of reflectance and durability suitable for a reflective member of a liquid crystal display, and has good chromaticity and low cost. Δa: difference of reflectance of light of 450 nm wavelength and light of 750 nm wavelength by white base material layer; Δb: difference of reflectance of light of 450 nm wavelength and light of 750 nm wavelength by reflective film

Description

反射フィルムReflective film
 本発明は、反射フィルムに関するものである。さらに詳しくは、液晶ディスプレイ等の電子デバイス用表示装置の反射板等に使用される反射フィルムに関する。 The present invention relates to a reflective film. More specifically, the present invention relates to a reflection film used for a reflection plate of an electronic device display device such as a liquid crystal display.
 従来から、光学部材や液晶ディスプレイ、照明器具、太陽電池などに使用される光反射体としては、無機粒子や有機粒子をプラスチックフィルムに分散することで得られる白色フィルムに代表される拡散型光反射フィルムや、アルミニウムや銀等の金属の薄膜からなる金属反射層を形成することで得られる鏡面フィルムに代表される正反射型光反射フィルムなどが知られている。 Conventionally, as a light reflector used in optical members, liquid crystal displays, lighting fixtures, solar cells, etc., diffused light reflection represented by a white film obtained by dispersing inorganic particles or organic particles in a plastic film. A specular reflection type light reflection film typified by a mirror film obtained by forming a film or a metal reflection layer made of a metal thin film such as aluminum or silver is known.
 液晶ディスプレイ用途においては、液晶テレビなどの50インチを超える大型なものから、携帯電話などのモバイル用途の5インチ以下となる小型のものまで多岐に渡るが、特に、小型ディスプレイにおいては、画面表示装置自体の小型化・軽量化のために光反射フィルムの薄型化が要求されるとともに、バッテリーの長寿命化を指向したバックライトの省電力化に寄与する高効率な光反射フィルムが切望されている。 In liquid crystal display applications, there is a wide range from large ones exceeding 50 inches such as liquid crystal televisions to small ones that are 5 inches or less for mobile applications such as mobile phones. Especially in small displays, screen display devices Thinning of the light reflecting film is required to reduce the size and weight of the device itself, and a highly efficient light reflecting film contributing to power saving of the backlight aimed at extending the life of the battery is eagerly desired. .
 更に、モバイル用途としては具体的には携帯電話や車載用ディスプレイなどがあるが、これらは屋外での使用を想定されるため、またそもそもLED光源からの輻射熱の影響もあることから、光反射フィルムには高温環境下に対しても高い耐久性が求められる。すなわち、上記の光反射フィルムにおいては、高温条件下における反射率の低減を抑える必要がある。 Furthermore, mobile applications include mobile phones and in-vehicle displays. These are assumed to be used outdoors, and are also affected by radiant heat from the LED light source. Is required to have high durability even in a high temperature environment. That is, in the above light reflecting film, it is necessary to suppress a reduction in reflectance under high temperature conditions.
特開2014-178697JP 2014-178697 A 特開平04-239540JP 04-239540 特開2005-031653JP 2005-031653 A 特開2012-35616JP2012-35616 特開平10-128908JP-A-10-128908 特開2006-126236JP 2006-126236 A 特開平10-193494JP-A-10-193494 WO2005-039872WO2005-039872
 これらの要望を満たすべく、例えば特許文献1においては、屈折率の異なる2種の透明ポリエステル層を厳密に膜厚を調整して交互に積層し超多層化することで、広範囲の波長域に渡って、効率的な光反射を実現し、更に添加剤等により耐久性を付与する提案がなされているが、高度な超多層薄膜化技術を要し、結果として極めて高価な物品となる。 In order to satisfy these demands, for example, in Patent Document 1, two types of transparent polyester layers having different refractive indexes are adjusted in thickness strictly and alternately laminated to form a multi-layer, thereby extending over a wide wavelength range. Thus, it has been proposed to realize efficient light reflection and further impart durability with an additive or the like. However, an advanced super multi-layer thinning technique is required, resulting in an extremely expensive article.
 より安価で、かつ一定の高反射率となるフィルムとしては、多環式および脂肪族のポリエステル、ポリオレフィンなどの樹脂マトリックス中に酸化チタンなどの微粉状充填剤を分散、および/または、該フィルムを延伸することで多孔化して屈折率の異なる樹脂/空気/微粉状充填剤をフィルム内に構成してなる白色フィルム(特許文献2~4)や、プラスチックや金属板等の適当な基材に、銀あるいはアルミなどの反射率の高い金属薄膜を蒸着やスパッタなどにより形成することで得られる金属薄膜鏡面反射フィルム(特許文献5または6)が一般に知られている。白色フィルムは、耐久性や機械強度に優れるものの反射率が十分ではなく、特に薄膜化した際には光抜けが顕著になり反射率が極端に低下する。一方、金属薄膜鏡面フィルムはフィルムを薄膜化しても高い反射特性が期待できるものの、その金属表面が劣化しやすいという観点から、耐久性に劣り、かつ、全波長を均一に反射する金属の特徴から相対的に黄色味がかる問題がある。 As a film that is cheaper and has a certain high reflectance, a fine powder filler such as titanium oxide is dispersed in a resin matrix such as polycyclic and aliphatic polyesters and polyolefins, and / or To a suitable base material such as a white film (Patent Documents 2 to 4) in which a resin / air / fine powder filler having a different refractive index is formed in a film by stretching, and a plastic or metal plate, A metal thin film specular reflection film (Patent Document 5 or 6) obtained by forming a metal thin film having a high reflectance such as silver or aluminum by vapor deposition or sputtering is generally known. The white film is excellent in durability and mechanical strength, but the reflectance is not sufficient. Especially when the film is thinned, light leakage becomes remarkable and the reflectance is extremely lowered. On the other hand, although the metal thin film mirror surface film can be expected to have high reflection characteristics even if the film is thinned, it is inferior in durability from the viewpoint that the metal surface is easily deteriorated and from the characteristics of the metal that uniformly reflects all wavelengths. There is a relatively yellowish problem.
 更には、この白色フィルムと鏡面反射フィルムを適当に組み合わせてなる反射フィルムも提案されている(特許文献7または8)。しかしながら、提案されたいずれの物品においても近年要求されるような高輝度を実現するには程遠い反射率であった。 Furthermore, a reflection film in which this white film and a specular reflection film are appropriately combined has also been proposed (Patent Document 7 or 8). However, in any of the proposed articles, the reflectance is far from realizing high luminance as required in recent years.
 そこで、本発明の目的は、高反射率、高輝度でかつ高耐久性であるとともに、反射光が良好な色度となる(反射光の黄色味を抑えることができる)反射フィルムを、より安価に提供することにある。 Accordingly, an object of the present invention is to provide a reflective film that has high reflectivity, high brightness, and high durability, and that has a good chromaticity of reflected light (which can suppress the yellowness of the reflected light). There is to provide to.
 本発明者らは、前記課題を解決するために、一般に高反射率が期待される銀薄膜フィルムを基本とし、鋭意検討を重ねたところ以下の知見を得た。
(1)銀薄膜フィルムが高反射率となるには、理想的には表面コートを施さない方が良い。
(2)しかしながら、銀薄膜は空気中で徐々に酸化や硫化が進行し、反射率の著しい低下を招く。そのため、銀薄膜の表面に保護層を設ける必要がある。
(3)一方で、銀薄膜の表面に保護層を設けた場合、反射光の輝度の低下を招く。
(4)さらに、銀薄膜の表面に保護層を設けたとしても、色度の黄色化を十分に抑えることができない。
In order to solve the above-mentioned problems, the present inventors have made a basic study on a silver thin film that is generally expected to have a high reflectivity, and have made extensive studies and have obtained the following knowledge.
(1) For the silver thin film to have a high reflectance, ideally, it is better not to apply a surface coat.
(2) However, the silver thin film gradually undergoes oxidation and sulfidation in the air, causing a significant decrease in reflectance. Therefore, it is necessary to provide a protective layer on the surface of the silver thin film.
(3) On the other hand, when a protective layer is provided on the surface of the silver thin film, the brightness of reflected light is reduced.
(4) Furthermore, even if a protective layer is provided on the surface of the silver thin film, yellowing of chromaticity cannot be sufficiently suppressed.
 上記の知見を踏まえて、発明者らは更に精力的に検討した結果、前記のように高耐久性の白色基材と金属薄膜層と保護層とを適切に組み合わせたうえで、白色基材側を反射面側とし、且つ、2種類の所定波長の光に対する反射率の差(Δb)が一定範囲内となるようにすることで、前記課題を全て克服できることがわかった。 Based on the above findings, the inventors have studied more vigorously, and as described above, after appropriately combining a highly durable white substrate, a metal thin film layer, and a protective layer, the white substrate side It was found that all the above problems can be overcome by making the reflection surface side and the difference (Δb) in reflectance between two types of light of a predetermined wavelength within a certain range.
 すなわち、本発明は、白色基材層と、金属薄膜層と、保護層とをこの順に有し、該白色基材層が反射使用面側に配置された反射フィルムであって、該反射フィルムに対して前記白色基材層側から光を照射した場合において、下記で表されるΔbが1.0%以上、4.0%未満であり、かつ、下記で表されるΔaと前記Δbとの比で表される反射率向上度(Δa/Δb)が1.3以上、3.0以下であることを特徴とする、反射フィルムである。
Δa:前記白色基材層の波長450nmの光の反射率と波長750nmの光の反射率との差
Δb:前記反射フィルムの波長450nmの光の反射率と波長750nmの光の反射率との差
That is, the present invention is a reflective film having a white base material layer, a metal thin film layer, and a protective layer in this order, and the white base material layer is disposed on the reflective use surface side. On the other hand, when light is irradiated from the white base material layer side, Δb represented below is 1.0% or more and less than 4.0%, and Δa represented by the following and Δb It is a reflective film characterized by having a reflectance improvement degree (Δa / Δb) represented by a ratio of 1.3 or more and 3.0 or less.
Δa: difference between the reflectance of light with a wavelength of 450 nm and the reflectance of light with a wavelength of 750 nm of the white base layer Δb: difference between the reflectance of light with a wavelength of 450 nm and the reflectance of light with a wavelength of 750 nm of the reflective film
 本発明によれば、液晶ディスプレイの反射部材として好適な高反射率、高輝度、高耐久性を備え、かつ、低コストで色度良好な光反射フィルムを提供することができる。 According to the present invention, it is possible to provide a light reflecting film having high reflectivity, high luminance and high durability suitable as a reflecting member of a liquid crystal display, and having good chromaticity at low cost.
本発明の反射フィルムの層構成を示す説明図である。図1(a)は、白色基材層1、金属薄膜層3、保護層4の順に形成された積層体を示している。図1(b)は、白色基材層1、中間層2、金属薄膜層3、保護層4の順に形成された積層体を示している。It is explanatory drawing which shows the layer structure of the reflective film of this invention. FIG. 1A shows a laminated body in which a white base material layer 1, a metal thin film layer 3, and a protective layer 4 are formed in this order. FIG. 1B shows a laminate formed in the order of the white base material layer 1, the intermediate layer 2, the metal thin film layer 3, and the protective layer 4. 550nmにおける反射率と輝度との関係を表す説明図である。It is explanatory drawing showing the relationship between the reflectance in 550 nm, and a brightness | luminance. 450nmと750nmの反射率の差(Δb)とy値との関係を表す説明図である。It is explanatory drawing showing the relationship between the difference ((DELTA) b) of the reflectance of 450 nm and 750 nm, and y value.
 以下、本発明の実施形態の一例としての反射フィルムについて説明する。但し、本発明が、この反射フィルムに限定されるものではない。 Hereinafter, a reflective film as an example of an embodiment of the present invention will be described. However, the present invention is not limited to this reflective film.
 なお、反射フィルムのとり得る形態としては、フィルム状、あるいはシート状であることが好ましい。一般的に「フィルム」とは、長さ及び幅に比べて厚みが極めて小さく、最大厚みが任意に限定されている薄い平らな製品で、通常、ロールの形で供給されるものをいい(日本工業規格JISK6900)、一般的に「シート」とは、JISにおける定義上、薄く、一般にその厚みが長さと幅のわりには小さく平らな製品をいう。しかし、シートとフィルムの境界は定かでなく、本発明において文言上両者を区別する必要がないので、本発明においては、「フィルム」と称する場合でも「シート」を含むものとし、「シート」と称する場合でも「フィルム」を含むものとする。 In addition, as a form which a reflective film can take, it is preferable that it is a film form or a sheet form. In general, "film" refers to a thin flat product that is extremely small compared to its length and width and whose maximum thickness is arbitrarily limited, and is usually supplied in the form of a roll (Japan) Industrial standard JISK6900), and in general, “sheet” refers to a product that is thin by definition in JIS and generally has a thickness that is small instead of length and width. However, since the boundary between the sheet and the film is not clear and it is not necessary to distinguish the two in terms of the present invention, in the present invention, even when the term “film” is used, the term “sheet” is included and the term “sheet” is used. In some cases, “film” is included.
1.反射フィルム
 図1(a)に示すように、本発明の反射フィルム(以下、本反射フィルムと表記することがある)は、白色基材層1と、金属薄膜層3と、保護層4とをこの順に有し、該白色基材層1が反射使用面側に配置された反射フィルムであって、該反射フィルムに対して白色基材層1側から光を照射した場合において、下記で表されるΔbが1.0%以上、4.0%未満であり、かつ、下記で表されるΔaと前記Δbとの比で表される反射率向上度(Δa/Δb)が1.3以上、3.0以下であることを特徴とする。
Δa:前記白色基材層の波長450nmの光の反射率と波長750nmの光の反射率との差
Δb:前記反射フィルムの波長450nmの光の反射率と波長750nmの光の反射率との差
1. Reflective Film As shown in FIG. 1A, the reflective film of the present invention (hereinafter sometimes referred to as the present reflective film) comprises a white base material layer 1, a metal thin film layer 3, and a protective layer 4. In this order, the white base material layer 1 is a reflective film disposed on the reflective use surface side, and when the light is irradiated from the white base material layer 1 side to the reflective film, it is expressed below. Δb is 1.0% or more and less than 4.0%, and the reflectance improvement degree (Δa / Δb) represented by the ratio of Δa and Δb expressed below is 1.3 or more, It is 3.0 or less.
Δa: difference between the reflectance of light with a wavelength of 450 nm and the reflectance of light with a wavelength of 750 nm of the white base layer Δb: difference between the reflectance of light with a wavelength of 450 nm and the reflectance of light with a wavelength of 750 nm of the reflective film
1.1.白色基材層
 白色基材層は、熱可塑性樹脂と充填剤とを含むことを特徴とする。熱可塑性樹脂および充填剤は特に限定されるものではない。白色基材層は、波長550nmの光に対する反射率が95%以上であることが好ましい。より好ましくは96%以上、更に好ましくは97%以上である。550nmにおける反射率が95%よりも小さい場合、積層構成とした反射フィルムの反射率が十分に高い値とならず、応じて輝度も低くなる場合がある。
1.1. White base material layer The white base material layer is characterized by containing a thermoplastic resin and a filler. The thermoplastic resin and the filler are not particularly limited. The white base material layer preferably has a reflectance of 95% or more with respect to light having a wavelength of 550 nm. More preferably, it is 96% or more, More preferably, it is 97% or more. When the reflectance at 550 nm is smaller than 95%, the reflectance of the reflective film having a laminated structure does not become a sufficiently high value, and the luminance may be lowered accordingly.
 白色基材層を構成する熱可塑性樹脂は、反射性及び優れた耐久性を保持できるものであれば特に制限はなく、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル系樹脂、アクリル系樹脂、ポリイミド系樹脂、フッ素系樹脂、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、シクロオレフィン系樹脂などの各種熱可塑性樹脂が使用できる。なお、熱可塑性樹脂はそれぞれ単体で用いてもよく、2種以上を混合して用いても良い。 The thermoplastic resin constituting the white base layer is not particularly limited as long as it can maintain reflectivity and excellent durability. Polyester resins such as polyethylene terephthalate and polyethylene naphthalate, acrylic resins, polyimide resins Various thermoplastic resins such as fluorine resins, olefin resins such as polyethylene and polypropylene, and cycloolefin resins can be used. The thermoplastic resins may be used alone or in combination of two or more.
 上記のうち、例えば反射特性、生産コスト、耐加水分解性等を重視する場合には、ポリオレフィンからなるフィルムを選択することが好ましい。ポリオレフィン系樹脂層としては、例えばポリプロピレン、プロピレン-エチレン共重合体等のポリプロピレン樹脂や、ポリエチレン、高密度ポリエチレン、低密度ポリエチレン等のポリエチレン樹脂や、エチレン-環状オレフィン共重合体等のシクロオレフィン系樹脂や、エチレン-プロピレンゴム(EPR)、エチレン-プロピレン-ジエンターポリマー(EPDM)等のオレフィン系エラストマーから選ばれた少なくとも一種のポリオレフィン樹脂を挙げることができる。これらの中でも、機械的性質、柔軟性などから、ポリプロピレン樹脂(PP)やポリエチレン樹脂(PE)、シクロオレフィン系樹脂が好ましく、その中でも特に、耐熱性に優れており、弾性率等の機械特性が高いという観点から、ポリプロピレン樹脂(PP)、シクロオレフィン系樹脂(COC, COP)が好ましい。
 一方、フィルムの剛性や耐熱性を重視する場合にはポリエステルからなるフィルムを選択することが好ましい。なかでも、耐熱性や耐加水分解性等を重視する場合には芳香族ポリエステルを選択することが好ましく、ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレンジカルボキシレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート等から選ばれた少なくとも一種のポリエステル樹脂を挙げることが出来る。
Among the above, for example, when importance is attached to reflection characteristics, production cost, hydrolysis resistance, etc., it is preferable to select a film made of polyolefin. Examples of the polyolefin resin layer include polypropylene resins such as polypropylene and propylene-ethylene copolymers, polyethylene resins such as polyethylene, high density polyethylene and low density polyethylene, and cycloolefin resins such as ethylene-cyclic olefin copolymers. And at least one polyolefin resin selected from olefin-based elastomers such as ethylene-propylene rubber (EPR) and ethylene-propylene-diene terpolymer (EPDM). Among these, polypropylene resin (PP), polyethylene resin (PE), and cycloolefin resin are preferable from the viewpoint of mechanical properties, flexibility, etc. Among them, particularly excellent in heat resistance and mechanical properties such as elastic modulus. From the viewpoint of high, polypropylene resin (PP) and cycloolefin resin (COC, COP) are preferable.
On the other hand, when importance is attached to the rigidity and heat resistance of the film, it is preferable to select a film made of polyester. Among them, aromatic polyester is preferably selected when importance is attached to heat resistance and hydrolysis resistance, and selected from polyethylene terephthalate, polyethylene-2,6-naphthalene dicarboxylate, polypropylene terephthalate, polybutylene terephthalate, and the like. And at least one kind of polyester resin.
 充填剤としては、無機質微粉体、有機質微粉体等を挙げることができる。無機質微粉体としては、例えば炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸マグネシウム、硫酸バリウム、硫酸カルシウム、酸化亜鉛、酸化マグネシウム、酸化カルシウム、酸化チタン、酸化亜鉛、アルミナ、水酸化アルミニウム、ヒドロキシアパタイト、シリカ、マイカ、タルク、カオリン、クレー、ガラス粉、アスベスト粉、ゼオライト、珪酸白土等を挙げることができる。これらは、いずれか1種または2種以上を混合して用いることができる。これらの中でも、本反射シートを構成する熱可塑性樹脂との屈折率差を考慮すると、屈折率の大きいものが好ましく、屈折率が1.6以上である、炭酸カルシウム、硫酸バリウム、酸化チタン又は酸化亜鉛を用いることが特に好ましい。 Examples of the filler include inorganic fine powder and organic fine powder. Examples of the inorganic fine powder include calcium carbonate, magnesium carbonate, barium carbonate, magnesium sulfate, barium sulfate, calcium sulfate, zinc oxide, magnesium oxide, calcium oxide, titanium oxide, zinc oxide, alumina, aluminum hydroxide, hydroxyapatite, silica , Mica, talc, kaolin, clay, glass powder, asbestos powder, zeolite, silicate clay and the like. Any of these may be used alone or in admixture of two or more. Among these, considering the difference in refractive index with the thermoplastic resin constituting the reflective sheet, those having a large refractive index are preferred, and the refractive index is 1.6 or more, calcium carbonate, barium sulfate, titanium oxide or oxidized It is particularly preferable to use zinc.
 白色基材層は、上述した波長550nmの光に対する反射率や、反射光の輝度のみを考慮した場合、厚みを大きくすればよい。しかしながら、近年の薄膜化への要求に応えるためには、白色基材層はできるだけ薄くする必要がある。加えて、本発明においては、後述するように反射フィルム全体として上記のΔbが所定の値を満たす必要がある。以上のことを考慮した場合、白色基材層の厚みは40μm以上200μm以下であることが好ましい。下限がより好ましくは50μm以上、さらに好ましくは60μm以上、特に好ましくは70μm以上であり、上限がより好ましくは160μm以下、さらに好ましくは140μm以下、特に好ましくは120μm以下である。中でも、白色基材層の厚みが60μm以上である場合、一層高い反射率を備えた反射フィルムとすることができる。一方、白色基材層の厚みが140μm以下である場合、Δa/Δbがより良好な値となり、薄いにも関わらず優れた性能を備えた反射フィルムとすることができる。 The white base material layer may be increased in thickness in consideration of only the reflectance with respect to the above-described light having a wavelength of 550 nm and the brightness of the reflected light. However, in order to meet the recent demand for thinning, it is necessary to make the white base material layer as thin as possible. In addition, in the present invention, as described later, the above-described Δb needs to satisfy a predetermined value as the whole reflective film. In consideration of the above, the thickness of the white base material layer is preferably 40 μm or more and 200 μm or less. The lower limit is more preferably 50 μm or more, further preferably 60 μm or more, particularly preferably 70 μm or more, and the upper limit is more preferably 160 μm or less, still more preferably 140 μm or less, and particularly preferably 120 μm or less. Especially, when the thickness of a white base material layer is 60 micrometers or more, it can be set as the reflective film provided with still higher reflectance. On the other hand, when the thickness of the white base material layer is 140 μm or less, Δa / Δb has a better value, and a reflective film having excellent performance despite being thin can be obtained.
 白色基材層は、内部に空隙を有していてもよい。空隙を有する場合には、白色基材層中に占める空隙の割合(空隙率)は、5%以上であることが好ましく、さらに好ましくは10%以上であり、特に20%以上であることが好ましい。空隙率が5%以上であると、樹脂中における比較的屈折率の高い充填剤と屈折率の低い空気層が直接に接する界面の面積が向上することで、白色基材層の反射率をさらに向上させることができる。一方、白色基材層の機械的強度や耐久性の観点から、上記の空隙率は50%以下であることが好ましい。白色基材層の内部に空隙を形成させる方法は公知である。例えば、白色基材層を構成する熱可塑性樹脂に充填剤を添加し、基材層(基材フィルム)としたうえで、当該基材層(基材フィルム)を少なくとも1軸方向に延伸すればよい。白色基材層の内部の空隙率を所望の範囲とするためには、面積倍率において5倍以上に延伸することが好ましく、7倍以上に延伸することがより好ましい。また、2軸方向に延伸することが好ましい。 The white base material layer may have voids inside. In the case of having voids, the proportion of voids (void ratio) in the white base material layer is preferably 5% or more, more preferably 10% or more, and particularly preferably 20% or more. . When the porosity is 5% or more, the area of the interface where the filler having a relatively high refractive index in the resin and the air layer having a low refractive index are in direct contact with each other is improved, thereby further improving the reflectance of the white base material layer. Can be improved. On the other hand, from the viewpoint of mechanical strength and durability of the white base material layer, the porosity is preferably 50% or less. A method for forming voids in the white base material layer is known. For example, if a filler is added to the thermoplastic resin constituting the white base material layer to form a base material layer (base material film), the base material layer (base material film) is stretched in at least one axial direction. Good. In order to set the void ratio inside the white base material layer to a desired range, it is preferably stretched 5 times or more in area magnification, and more preferably 7 times or more. Moreover, it is preferable to extend in the biaxial direction.
 本発明の反射フィルムは、白色基材層と、該白色基材層の反射使用面とは反対側の面側に金属薄膜層を設けることにより、反射フィルム全体の厚みが薄い場合においても高輝度を得ることができる。かかる観点から、白色基材層の厚み比率が本反射フィルムの全層厚みに対して70%以上であれば、金属薄膜層との相乗効果により十分な輝度および反射率を得ることができる。かかる観点から、白色基材層の厚み比率は、本反射フィルムの全層厚みに対して80%以上であることがより好ましく、90%以上であることがさらに好ましく、92.4%以上であることが特に好ましく、93.5%以上であることが最も好ましい。上限は好ましくは99.5%以下、より好ましくは99%以下、さらに好ましくは98%以下、特に好ましくは97.4%以下、最も好ましくは97.2%以下である。 The reflective film of the present invention has a high brightness even when the thickness of the entire reflective film is thin by providing a white base layer and a metal thin film layer on the side opposite to the reflective surface of the white base layer. Can be obtained. From this point of view, when the thickness ratio of the white base material layer is 70% or more with respect to the total thickness of the present reflective film, sufficient brightness and reflectance can be obtained due to a synergistic effect with the metal thin film layer. From such a viewpoint, the thickness ratio of the white base material layer is more preferably 80% or more, further preferably 90% or more, and more preferably 92.4% or more with respect to the total thickness of the reflective film. Particularly preferred is 93.5% or more. The upper limit is preferably 99.5% or less, more preferably 99% or less, still more preferably 98% or less, particularly preferably 97.4% or less, and most preferably 97.2% or less.
 また、本発明の反射フィルムは、白色基材層と、該白色基材層の反射使用面とは反対側の面側に金属薄膜層を設けることにより、白色基材層の550nmの光の透過率がある程度高い場合においても、高輝度を得ることができる。白色基材層の550nmの光の透過率は1.0%以上であれば、金属薄膜層との相乗効果により十分な輝度および反射率を得ることができる。かかる観点から、白色基材層の550nmの光の透過率は1.0%以上であることがより好ましく、1.1%以上であることがさらに好ましい。上限は好ましくは4.0%以下、より好ましくは3.8%以下、さらに好ましくは3.5%以下、特に好ましくは3.1%以下である。 Further, the reflective film of the present invention has a white base material layer and a metal thin film layer provided on the side of the white base material layer opposite to the reflective use surface, thereby transmitting light at 550 nm of the white base material layer. Even when the rate is somewhat high, high luminance can be obtained. If the transmittance of light at 550 nm of the white base material layer is 1.0% or more, sufficient luminance and reflectance can be obtained by a synergistic effect with the metal thin film layer. From such a viewpoint, the transmittance of light at 550 nm of the white base material layer is more preferably 1.0% or more, and further preferably 1.1% or more. The upper limit is preferably 4.0% or less, more preferably 3.8% or less, still more preferably 3.5% or less, and particularly preferably 3.1% or less.
1.2.金属薄膜層
 本発明の反射フィルムは、白色基材層の裏面側に、すなわち、白色基材層の反射使用面とは反対側の面に、金属薄膜層を有する。金属薄膜層は、金属を蒸着することにより形成することができ、例えば、真空蒸着法、イオン化蒸着法、スパッタリング法、イオンプレーティング法等によって形成することができる。蒸着金属材料としては、反射率が高い材料であれば特に制限されることなく使用することができるが、一般的には、銀、アルミニウム等が好ましく、これらの中では銀が特に好ましい。或いは、耐腐食性の観点から、銀の合金を使用することも好ましい。例えば、銀とCu、Au、Ni、Pd、Pt、Ru、Rh、In、Al、Si、Mn、Zr、Sn、Bi、Ge、Ti、Cr、Mo、V、Nb、Ta、Hf、W、Co、Ge、の群から選択される1種類以上との合金が挙げられる。また、金属薄膜層は、金属の単層品や積層品、あるいは、金属酸化物の単層品や積層品でも、金属の単層品と金属酸化物の単層品との2層以上の積層体でもよい。金属薄膜層の厚みは、層を形成する材料や層形成法等によっても異なるが、10nm~300nmの範囲内であることが好ましく、20nm~200nmの範囲内であることがより好ましく、40nm~150nmの範囲内であることが更に好ましく、60nm~120nmの範囲内であることが特に好ましい。金属薄膜層の厚みが10nm以上であれば、十分な反射率が得られる。一方、金属薄膜層の厚みが300nmを超えた場合には、反射率の更なる向上は見られず、生産効率が低下するので好ましくない。
1.2. Metal thin film layer The reflective film of this invention has a metal thin film layer in the back surface side of a white base material layer, ie, the surface on the opposite side to the reflective use surface of a white base material layer. The metal thin film layer can be formed by vapor-depositing a metal, and can be formed by, for example, a vacuum vapor deposition method, an ionization vapor deposition method, a sputtering method, an ion plating method, or the like. The vapor-deposited metal material can be used without particular limitation as long as it has a high reflectivity, but generally silver, aluminum and the like are preferable, and among these, silver is particularly preferable. Alternatively, it is also preferable to use a silver alloy from the viewpoint of corrosion resistance. For example, silver and Cu, Au, Ni, Pd, Pt, Ru, Rh, In, Al, Si, Mn, Zr, Sn, Bi, Ge, Ti, Cr, Mo, V, Nb, Ta, Hf, W, An alloy with one or more kinds selected from the group of Co and Ge can be given. In addition, the metal thin film layer may be a metal single layer product or a laminate product, or a metal oxide single layer product or a laminate product, in which two or more layers of a metal single layer product and a metal oxide single product are laminated. It may be the body. The thickness of the metal thin film layer varies depending on the material forming the layer, the layer forming method, and the like, but is preferably in the range of 10 nm to 300 nm, more preferably in the range of 20 nm to 200 nm, and 40 nm to 150 nm. Is more preferable, and it is particularly preferable to be in the range of 60 nm to 120 nm. If the thickness of the metal thin film layer is 10 nm or more, sufficient reflectance can be obtained. On the other hand, when the thickness of the metal thin film layer exceeds 300 nm, the reflectance is not further improved, and the production efficiency is lowered.
 本発明においては、後述するΔbを達成するために、金属薄膜層の厚みと白色基材層の厚みとの比率を調整することも好ましい。本発明の反射フィルムにおいて、金属薄膜層の厚みをX(μm)、白色基材層の厚みをY(μm)とした場合、厚み比(X/Y)は、5.0×10-5以上7.5×10-3以下であることが好ましい。下限がより好ましくは1.0×10-4以上、さらに好ましくは5.0×10-4以上、特に好ましくは8.6×10-4以上であり、上限がより好ましくは5.0×10-3以下、さらに好ましくは3.0×10-3以下、特に好ましくは2.0×10-3以下である。 In the present invention, in order to achieve Δb described later, it is also preferable to adjust the ratio of the thickness of the metal thin film layer to the thickness of the white substrate layer. In the reflective film of the present invention, when the thickness of the metal thin film layer is X (μm) and the thickness of the white base material layer is Y (μm), the thickness ratio (X / Y) is 5.0 × 10 −5 or more. It is preferably 7.5 × 10 −3 or less. The lower limit is more preferably 1.0 × 10 −4 or more, further preferably 5.0 × 10 −4 or more, particularly preferably 8.6 × 10 −4 or more, and the upper limit is more preferably 5.0 × 10 4. −3 or less, more preferably 3.0 × 10 −3 or less, and particularly preferably 2.0 × 10 −3 or less.
1.3.中間層
 本発明においては、上述した金属薄膜層が白色基材層の裏面側に設けられている。白色基材層の裏面側に金属薄膜層を設ける方法としては、種々の方法が挙げられる。特に、図1(b)に示すように、金属薄膜層3が、中間層2を介して白色基材層1の裏面側に設けられていることが好ましい。
1.3. Intermediate Layer In the present invention, the metal thin film layer described above is provided on the back side of the white base material layer. Various methods are mentioned as a method of providing the metal thin film layer on the back surface side of the white base material layer. In particular, as shown in FIG. 1B, the metal thin film layer 3 is preferably provided on the back side of the white base material layer 1 with the intermediate layer 2 interposed therebetween.
1.3.1.平滑コート層
 例えば、白色基材層の表面に平滑コート層を設けたうえで、当該平滑コート層の表面にスパッタリング法等で金属を蒸着させることにより、白色基材層の裏面側に金属薄膜層を設けることができる。すなわち、本発明の白色基材層は、金属薄膜層が設けられる側の面に平滑コート層を備えていても良い。このとき、平滑コート層は、金属薄膜層が設けられる側の表面粗さを低減し、より一層の反射率向上効果を付与する役割を担う。かかる観点から、白色基材層に該平滑コート層を設けた際の金属薄膜層が設けられる側の表面粗さ(Ra)は1.0μm以下であることが好ましく、0.7μm以下であることがより好ましく、0.4μm以下であることがさらに好ましい。
1.3.1. Smooth coat layer For example, after a smooth coat layer is provided on the surface of the white base layer, a metal thin film layer is formed on the back side of the white base layer by depositing metal on the surface of the smooth coat layer by sputtering or the like. Can be provided. That is, the white base material layer of the present invention may have a smooth coat layer on the surface on which the metal thin film layer is provided. At this time, the smooth coat layer plays a role of reducing the surface roughness on the side where the metal thin film layer is provided, and further providing an effect of improving the reflectance. From such a viewpoint, the surface roughness (Ra) on the side on which the metal thin film layer is provided when the smooth coating layer is provided on the white base material layer is preferably 1.0 μm or less, and is 0.7 μm or less. Is more preferably 0.4 μm or less.
 平滑コート層は、各種硬化樹脂を主体とする層や無機酸化物(ガラスやセラミック等)を主体とする層とすることができる。或いは、シリコンウェハーからなる層としてもよい。特に、白色基材層の表面に容易に設けられ、ある程度の柔軟性を付与することで金属薄膜層との密着性も向上し、さらには取り扱い性にも優れるという観点から、平滑コート層は各種硬化樹脂を主体とする層であることが好ましく、アクリル樹脂、ポリエステル樹脂、又はメラミン樹脂、ウレタン樹脂のいずれか1種以上を主体とする層であることが特に好ましい。本反射フィルムの反射率及び輝度を損ねないようにするためには、平滑コート層は全光線透過率が80%以上であることが好ましく、90%以上であることがより好ましい。
「主体とする」とは、層の構成成分のうち50質量%以上、好ましくは80質量%以上、より好ましくは90質量%以上を占めることを意味する。平滑コート層には、上記した各種硬化樹脂や金属酸化物の他、本発明の効果を損なわない範囲において、公知の各種添加剤が含まれていてもよい。
The smooth coat layer can be a layer mainly composed of various curable resins or a layer mainly composed of an inorganic oxide (such as glass or ceramic). Or it is good also as a layer which consists of a silicon wafer. In particular, various smooth coat layers are provided from the viewpoint that they are easily provided on the surface of the white base material layer and give a certain degree of flexibility to improve the adhesion to the metal thin film layer, and are excellent in handleability. A layer mainly composed of a curable resin is preferable, and a layer mainly composed of at least one of acrylic resin, polyester resin, melamine resin, and urethane resin is particularly preferable. In order not to impair the reflectance and brightness of the present reflective film, the smooth coat layer preferably has a total light transmittance of 80% or more, more preferably 90% or more.
“Mainly” means that 50% by mass or more, preferably 80% by mass or more, and more preferably 90% by mass or more of the constituent components of the layer. The smooth coat layer may contain various known additives as long as the effects of the present invention are not impaired in addition to the various cured resins and metal oxides described above.
 平滑コート層の厚みは0.5μm以上10μm以下とすることが好ましい。平滑コート層の厚みの下限は、より好ましくは1μm以上、特に好ましくは2μm以上である。平滑コート層の厚みが小さ過ぎる場合、白色基材層の表面を十分に平滑化できなくなる場合がある。平滑コート層の厚みが大き過ぎる場合、塗布ムラ・形成ムラにより却って平滑性が悪くなる場合がある。 The thickness of the smooth coat layer is preferably 0.5 μm or more and 10 μm or less. The lower limit of the thickness of the smooth coat layer is more preferably 1 μm or more, and particularly preferably 2 μm or more. When the thickness of the smooth coat layer is too small, the surface of the white base material layer may not be sufficiently smoothed. When the thickness of the smooth coat layer is too large, smoothness may be deteriorated due to coating unevenness and formation unevenness.
1.3.2.接着層または粘着層
 或いは、金属薄膜層を形成したフィルムと白色基材層とを、接着層または粘着層を介して積層することにより、白色基材層の裏面側に金属薄膜層を設けることもできる。
1.3.2. Adhesive layer or pressure-sensitive adhesive layer Or a metal thin film layer may be provided on the back side of a white base material layer by laminating a film formed with a metal thin film layer and a white base material layer via an adhesive layer or an adhesive layer. it can.
 白色基材層と金属薄膜層とを接着層または粘着層を介して積層する場合には、全光線透過率が80%以上の接着層または粘着層を設けることが好ましい。接着層または粘着層の全光線透過率が80%以上であれば、本反射フィルムの反射率及び輝度を損ねることがない。かかる観点から、全光線透過率は85%以上であることがより好ましく、90%以上であることがさらに好ましい。 When laminating a white base material layer and a metal thin film layer via an adhesive layer or an adhesive layer, it is preferable to provide an adhesive layer or an adhesive layer having a total light transmittance of 80% or more. When the total light transmittance of the adhesive layer or the pressure-sensitive adhesive layer is 80% or more, the reflectance and luminance of the reflective film are not impaired. From this viewpoint, the total light transmittance is more preferably 85% or more, and further preferably 90% or more.
 なお、本発明における接着層または粘着層とは、白色基材層と金属薄膜層との密着を確保するために設けられる層のことであり、これを満たすものであればいかなる意味のものも包含する。前記接着層または粘着層は、例えば、ウレタン系、アクリル系、ゴム系、シリコーン系、ポリエステル系、ポリアミド系、エポキシ系、ポリ酢酸ビニル系、ビニルアルキルエーテル系、フッ素系の接着層または粘着層が挙げられる。なかでも、上記の所望の全光線透過率を満たすものが好ましく、アクリル酸エステル系粘着剤を含む粘着層がより好ましい。 The adhesive layer or the adhesive layer in the present invention is a layer provided to ensure adhesion between the white base material layer and the metal thin film layer, and includes any meaning as long as this is satisfied. To do. Examples of the adhesive layer or the adhesive layer include a urethane-based, acrylic-based, rubber-based, silicone-based, polyester-based, polyamide-based, epoxy-based, polyvinyl acetate-based, vinyl alkyl ether-based, and fluorine-based adhesive layer or adhesive layer. Can be mentioned. Especially, what satisfy | fills said desired total light transmittance is preferable, and the adhesion layer containing an acrylic ester adhesive is more preferable.
1.3.3.空気層
 本発明において、白色基材層の裏面側に金属薄膜層を設ける方法としては、上記の平滑コート層を設ける形態や接着層または粘着層を設ける形態に限定されない。例えば、本発明においては、白色基材層と金属薄膜層との間に空気層を有していてもよい。空気層の厚みは0.1μm以上100μm以下とすることが好ましく、0.2μm以上50μm以下とすることがより好ましく、0.5μm以上10μm以下とすることが特に好ましい。該空気層は、金属薄膜層と白色基材層を単に重ねることにより設けるか、または、金属蒸着層と白色基材層を反射フィルムの実使用面積のうちの0.1%~50%の範囲内で接着することにより設けることができる。前記範囲は0.1%~30%がより好ましく、0.1%~10%がさらに好ましい。白色基材層と金属薄膜層との間に空気層があることにより、輝度および反射率をより一層向上させることができる。
1.3.3. Air Layer In the present invention, the method of providing the metal thin film layer on the back surface side of the white base material layer is not limited to the form in which the smooth coat layer is provided or the form in which the adhesive layer or the adhesive layer is provided. For example, in the present invention, an air layer may be provided between the white base material layer and the metal thin film layer. The thickness of the air layer is preferably 0.1 μm or more and 100 μm or less, more preferably 0.2 μm or more and 50 μm or less, and particularly preferably 0.5 μm or more and 10 μm or less. The air layer is provided by simply overlapping the metal thin film layer and the white base material layer, or the metal vapor deposition layer and the white base material layer are in the range of 0.1% to 50% of the actual use area of the reflective film. It can be provided by bonding inside. The range is more preferably from 0.1% to 30%, further preferably from 0.1% to 10%. The presence of an air layer between the white base material layer and the metal thin film layer can further improve the luminance and reflectance.
 尚、本発明においては、所望の反射率及びΔbを満たす限り、上記したような中間層を介さずに、白色基材層の表面に直接金属薄膜層が設けられていてもよい。しかしながら、上記したような中間層を設けた場合、所望の反射率及びΔbをより容易に満たすことができる。 In the present invention, as long as the desired reflectance and Δb are satisfied, a metal thin film layer may be provided directly on the surface of the white base material layer without using the intermediate layer as described above. However, when the intermediate layer as described above is provided, the desired reflectance and Δb can be more easily satisfied.
1.4.保護層
 本発明の反射フィルムは、金属薄膜層を保護するために、金属薄膜層の裏面側、すなわち、フィルムの反射使用面とは反対側に保護層を有する。保護層を形成する材料は、金属薄膜層の腐食を防ぐことができ、かつ、金属薄膜層との密着性が良好であれば、特に限定されることなく使用することができるが、例えば、熱可塑性樹脂、熱硬化性樹脂、電子線硬化性樹脂、紫外線硬化性樹脂等のいずれかからなる塗料を用いることができる。具体的には、アミノ系樹脂、アミノアルキッド系樹脂、アクリル系樹脂、スチレン系樹脂、アクリル-スチレン共重合体、尿素-メラミン系樹脂、エポキシ系樹脂、フッ素系樹脂、ポリカーボネート、ニトロセルロース、セルロースアセテート、アルキッド系樹脂、ロジン変性マレイン酸樹脂、ポリアミド系樹脂等の単独、あるいは、これらの混合物からなる樹脂塗料を使用することができる。かかる塗料は、上記樹脂を水、溶剤等の溶媒に分散等させて形成することができる。また、必要に応じて、可塑剤、安定剤、紫外線吸収剤を添加することができる。なお、溶剤としては、通常、塗料に使用される溶剤と同様のものを使用することができる。
1.4. Protective layer In order to protect a metal thin film layer, the reflective film of this invention has a protective layer on the back surface side of a metal thin film layer, ie, the opposite side to the reflective use surface of a film. The material forming the protective layer can be used without particular limitation as long as it can prevent corrosion of the metal thin film layer and has good adhesion to the metal thin film layer. A paint made of any one of a plastic resin, a thermosetting resin, an electron beam curable resin, an ultraviolet curable resin, and the like can be used. Specifically, amino resins, amino alkyd resins, acrylic resins, styrene resins, acrylic-styrene copolymers, urea-melamine resins, epoxy resins, fluorine resins, polycarbonates, nitrocellulose, cellulose acetate In addition, resin coatings composed of alkyd resins, rosin-modified maleic acid resins, polyamide resins, or the like, or a mixture thereof can be used. Such a paint can be formed by dispersing the resin in a solvent such as water or a solvent. Moreover, a plasticizer, a stabilizer, and an ultraviolet absorber can be added as necessary. In addition, as a solvent, the thing similar to the solvent normally used for a coating material can be used.
 保護層は、上記塗料を必要に応じて適宜溶媒等で希釈したものを、例えば金属薄膜層の全面に、グラビアコーティング法、ロールコーティング法、ディップコーティング法等の通常のコーティング法によって塗布し、乾燥(硬化性樹脂の場合には硬化)させて形成される。 The protective layer is obtained by appropriately diluting the above-mentioned paint with a solvent or the like as necessary, for example, by applying a general coating method such as a gravure coating method, a roll coating method, a dip coating method on the entire surface of the metal thin film layer, and drying. It is formed by curing (in the case of a curable resin).
 塗料のコーティング以外でも保護層を形成することができる。そのための保護層形成手段としては、例えば、フィルムの貼り合わせや、他の材料の蒸着、スパッタ等が挙げられる。上述したように、フィルムの表面に金属薄膜層を形成したうえで、白色基材層を積層する場合には、フィルム自体が保護層の役目を果たすことになる。 A protective layer can also be formed other than paint coating. Examples of the protective layer forming means for that purpose include film bonding, vapor deposition of other materials, and sputtering. As described above, when the white thin film layer is laminated after forming the metal thin film layer on the surface of the film, the film itself serves as a protective layer.
 保護層の厚さは、特に制限されるものではないが、0.1μm~200μmの範囲内であることが好ましい。保護層の厚みが0.1μm以上であれば、金属薄膜層の表面を均一に被覆することができ、保護層を形成した効果が十分に発揮される。また、フィルム自体が保護層の役目を果たす場合には、保護層の厚みをかかる範囲内で調整することにより、用途や目的に応じて本反射フィルムの全体厚みを調整することができる。 The thickness of the protective layer is not particularly limited, but is preferably in the range of 0.1 μm to 200 μm. When the thickness of the protective layer is 0.1 μm or more, the surface of the metal thin film layer can be uniformly coated, and the effect of forming the protective layer is sufficiently exhibited. When the film itself serves as a protective layer, the overall thickness of the reflective film can be adjusted according to the application and purpose by adjusting the thickness of the protective layer within such a range.
 保護層は、無機または有機微粒子を添加することにより、着色化させることができる。保護層を着色化させることで、金属薄膜層から漏れる若干の光抜けを防止することができる。また、金属薄膜層を反射使用面として誤って使用してしまうというミスを防ぐほか、金属薄膜層のギラツキを抑制することができる。さらには、この保護層を印刷層として活用することもできる。かかる観点から、保護層用樹脂材料に例えば、硫酸バリウム、炭酸バリウム、炭酸カルシウム、石膏、酸化チタン、酸化ケイ素、アルミナ、シリカ、タルク、珪酸カルシウム、炭酸マグネシウム、カーボンブラック、グラファイト、酸化銅、二酸化マンガン、アニリンブラック、ペリレンブラック、チタンブラック、シアニンブラック、活性炭、フェライト、マグネタイト、酸化クロム、酸化鉄、二硫化モリブデン、クロム錯体、複合酸化物系黒色色素、等の無機顔料やアクリル系、ポリスチレン系、ポリウレタン系、アミド系、ポリカーボネート系、シリコーン系、尿素-ホルマリン系、メラミン系等の有機樹脂粒子、アルミニウム粉、真鍮粉、銅粉等の金属粉末、顔料、染料等のインク組成物等を、予め混合、分散したものを使用することができる。前記無機又は有機微粒子の添加量は、保護層の固形分に対して5~50質量%であることが好ましく、10~40質量%であることがさらに好ましい。 The protective layer can be colored by adding inorganic or organic fine particles. By coloring the protective layer, slight light leakage from the metal thin film layer can be prevented. Further, it is possible to prevent a mistake that the metal thin film layer is mistakenly used as a reflection use surface, and to suppress glare of the metal thin film layer. Furthermore, this protective layer can be used as a printing layer. From this point of view, the protective layer resin material includes, for example, barium sulfate, barium carbonate, calcium carbonate, gypsum, titanium oxide, silicon oxide, alumina, silica, talc, calcium silicate, magnesium carbonate, carbon black, graphite, copper oxide, and carbon dioxide. Inorganic pigments such as manganese, aniline black, perylene black, titanium black, cyanine black, activated carbon, ferrite, magnetite, chromium oxide, iron oxide, molybdenum disulfide, chromium complex, complex oxide black pigment, acrylic, polystyrene Organic resin particles such as polyurethane, amide, polycarbonate, silicone, urea-formalin and melamine, metal powders such as aluminum powder, brass powder and copper powder, ink compositions such as pigments and dyes, etc. Use premixed and dispersed materials. Can. The amount of the inorganic or organic fine particles added is preferably 5 to 50% by mass, more preferably 10 to 40% by mass, based on the solid content of the protective layer.
 尚、本発明において、保護層は、その裏面側、すなわち、フィルムの反射使用面とは反対側がハードコート層によって構成されていることが好ましい。ハードコート層により、金属薄膜層の剥がれやフィルムへの物理的な損傷、金属薄膜層の腐食化をより適切に防止することができる。ハードコート層の具体例としては、アクリル系樹脂、ウレタン系樹脂、メラミン系樹脂、エポキシ系樹脂、有機シリケート化合物、シリコーン系樹脂等が好ましい。ハードコート層の厚みは保護層全体の厚みを考慮して適宜決定すればよい。 In the present invention, it is preferred that the back side of the protective layer, that is, the side opposite to the reflective use surface of the film is constituted by a hard coat layer. The hard coat layer can more appropriately prevent peeling of the metal thin film layer, physical damage to the film, and corrosion of the metal thin film layer. Specific examples of the hard coat layer are preferably acrylic resins, urethane resins, melamine resins, epoxy resins, organic silicate compounds, silicone resins, and the like. What is necessary is just to determine the thickness of a hard-coat layer suitably in consideration of the thickness of the whole protective layer.
1.5.層構成
 本発明の反射フィルムの層構成を例示すると、白色基材層/平滑コート層/金属薄膜層/保護層、白色基材層/粘着層または接着層/金属薄膜層/保護層、白色基材層/空気層/金属薄膜層/保護層、あるいは、白色基材層/平滑コート層/空気層/金属薄膜層/保護層等の層構成が挙げられる。ただし、白色基材層は光が照射される側に配置されている。また、本発明の反射フィルムはこれらの層の間に、更に他の層を有していてもよいし、白色基材層、金属薄膜層、保護層等がそれぞれ独立に複数層から構成されていても良い。
1.5. Layer structure Examples of the layer structure of the reflective film of the present invention include white base layer / smooth coat layer / metal thin film layer / protective layer, white base layer / adhesive layer or adhesive layer / metal thin film layer / protective layer, white group Examples thereof include a material layer / air layer / metal thin film layer / protective layer, or a white base layer / smooth coat layer / air layer / metal thin film layer / protective layer. However, the white base material layer is disposed on the side irradiated with light. Further, the reflective film of the present invention may further have other layers between these layers, and the white base material layer, the metal thin film layer, the protective layer, and the like are each independently composed of a plurality of layers. May be.
 本発明の反射フィルムの厚みは、所望の反射率を得るためには少なくとも45μm以上であることが好ましく、50μm以上であることがより好ましく、60μm以上であることがさらに好ましい。一方、近年の薄膜化への要求に応えるためにはより薄いほうが好ましく、上限は250μm以下であることが好ましく、200μm以下であることがより好ましく、150μm以下であることがさらに好ましい。 The thickness of the reflective film of the present invention is preferably at least 45 μm, more preferably 50 μm or more, and even more preferably 60 μm or more in order to obtain a desired reflectance. On the other hand, in order to meet the recent demand for thinning, a thinner one is preferable, and the upper limit is preferably 250 μm or less, more preferably 200 μm or less, and further preferably 150 μm or less.
 本発明においては、本発明の効果を損なわない範囲で、各層に必要に応じて、酸化防止剤、光安定剤、熱安定剤、加水分解防止剤、滑剤、分散剤、紫外線吸収剤、白色顔料、蛍光増白剤、および、その他の添加剤を配合することができる。 In the present invention, an antioxidant, a light stabilizer, a heat stabilizer, a hydrolysis inhibitor, a lubricant, a dispersant, an ultraviolet absorber, and a white pigment are optionally added to each layer as long as the effects of the present invention are not impaired. , Fluorescent brighteners, and other additives can be blended.
1.6.反射フィルムの特性
1.6.1.反射率
 本発明の反射フィルムは、白色基材層側から光を照射したときの波長550nmの光の反射率が98%以上であることが好ましく、98.5%以上であることがより好ましく、99%以上であることがさらに好ましい。図2に示す通り、550nmにおける反射率は、例えば液晶ディスプレイの部材であるバックライトに使用されたときの画面表示装置の輝度値と相関があり、550nmにおける反射率が98%以上であれば、画面表示装置の輝度値も高くなり、液晶ディスプレイに十分な明るさを付与することができる。なお、図2において、拡散型反射フィルムと正反射型反射フィルムでは、分光装置内の積分球における感度が異なるために、両者間の反射率の絶対値は単純比較が出来ない。
1.6. Characteristics of reflective film 1.6.1. Reflectivity In the reflective film of the present invention, the reflectance of light having a wavelength of 550 nm when irradiated with light from the white base layer side is preferably 98% or more, more preferably 98.5% or more, More preferably, it is 99% or more. As shown in FIG. 2, the reflectance at 550 nm has a correlation with the luminance value of the screen display device when used in a backlight which is a member of a liquid crystal display, for example, and the reflectance at 550 nm is 98% or more. The luminance value of the screen display device is also increased, and sufficient brightness can be imparted to the liquid crystal display. In FIG. 2, the diffuse reflection film and the regular reflection film have different sensitivities in the integrating sphere in the spectroscopic device, and therefore the absolute value of the reflectance between the two cannot be simply compared.
1.6.2.反射率差(Δb)
 また、本発明の反射フィルムにおいては、反射フィルムの波長450nmの光の反射率と波長750nmの光の反射率との差をΔbと定義する。このとき、前記Δbは1.0%以上4.0%未満である必要がある。図3に示す通り、本発明者らは、450nmにおける反射率と750nmにおける反射率の差(Δb)が、輝度を測定した際に得られる色度のうちのy値と相関があることを見出した。ここで、450nmにおける反射率と750nmにおける反射率の差が1.0%未満であると、実用上の観点から黄色味が強くなり過ぎてしまう。かかる観点から当該反射率の差は1.3%以上であることがより好ましく、1.5%以上であることがさらに好ましい。一方、上限については4.0%以上であると、輝度の向上効果がほとんど認められない。さらに、Δbが4.0%以上の場合、白色基材層と金属薄膜層とを必須とする本発明において、金属薄膜層の特性がほとんど奏されていないこととなる。すなわち、反射フィルムとして高反射率等が得られない虞がある。かかる観点から、3.5%未満であることがより好ましく、3.0%未満であることがさらに好ましい。なお、ここでいうy値とは、後述する輝度測定法、すなわち、ディスプレイのバックライトに本反射フィルムを使用した際に輝度値と同時に測定されるCIE表色系における色度座標中のx及びyのうちのyを指し、このxy色度座標の一定の領域(x、y:0.28~0.35)において、x及びyの値が大きい程黄色味を帯びることを意味することから、便宜的にy値の大小で黄色度の評価に利用されている。
1.6.2. Reflectance difference (Δb)
In the reflective film of the present invention, the difference between the reflectance of light having a wavelength of 450 nm and the reflectance of light having a wavelength of 750 nm is defined as Δb. At this time, Δb needs to be 1.0% or more and less than 4.0%. As shown in FIG. 3, the present inventors have found that the difference (Δb) between the reflectance at 450 nm and the reflectance at 750 nm is correlated with the y value of the chromaticity obtained when the luminance is measured. It was. Here, if the difference between the reflectance at 450 nm and the reflectance at 750 nm is less than 1.0%, the yellowish color becomes too strong from a practical viewpoint. From this viewpoint, the difference in reflectance is more preferably 1.3% or more, and further preferably 1.5% or more. On the other hand, if the upper limit is 4.0% or more, the effect of improving the luminance is hardly recognized. Furthermore, when Δb is 4.0% or more, in the present invention in which the white base material layer and the metal thin film layer are essential, the characteristics of the metal thin film layer are hardly exhibited. That is, there is a possibility that a high reflectance or the like cannot be obtained as a reflective film. From this viewpoint, it is more preferably less than 3.5%, and further preferably less than 3.0%. The y value here is a luminance measurement method to be described later, that is, x and chromaticity coordinates in the CIE color system measured simultaneously with the luminance value when the present reflective film is used for a display backlight. It means y out of y, and in a certain region (x, y: 0.28 to 0.35) of this xy chromaticity coordinate, it means that the larger the value of x and y, the more yellowish it becomes For convenience, the y value is large and small, and it is used for the evaluation of yellowness.
1.6.3.反射率向上度(Δa/Δb)
 さらに、本発明の反射フィルムにおいては、白色基材層の波長450nmの光の反射率と波長750nmの光の反射率との差をΔaと定義する。本発明において、前記Δaと前記Δbとの比で表される反射率向上度(Δa/Δb)は、1.3以上、3.0以下である。このことにより、白色基材層と金属薄膜層の相乗効果を最大限に発揮することができる。
 すなわち、前記(Δa/Δb)が、1.3以上であれば、白色基材層と金属薄膜層を積層させることによる輝度向上効果を十分に得ることができる。かかる観点から、1.5以上であることがより好ましく、1.8以上であることがさらに好ましい。一方、上限は、3.0以下であることにより黄色味が抑制され、色度の良好な反射フィルムを得ることができる。かかる観点から、2.8以下であることがより好ましく、2.6以下であることがさらに好ましい。
1.6.3. Reflectivity improvement degree (Δa / Δb)
Furthermore, in the reflective film of the present invention, the difference between the reflectance of light having a wavelength of 450 nm and the reflectance of light having a wavelength of 750 nm of the white base material layer is defined as Δa. In the present invention, the degree of improvement in reflectance (Δa / Δb) represented by the ratio of Δa and Δb is 1.3 or more and 3.0 or less. Thus, the synergistic effect of the white base material layer and the metal thin film layer can be maximized.
That is, when the (Δa / Δb) is 1.3 or more, a brightness improvement effect by laminating the white base material layer and the metal thin film layer can be sufficiently obtained. From this viewpoint, it is more preferably 1.5 or more, and further preferably 1.8 or more. On the other hand, when the upper limit is 3.0 or less, yellowness is suppressed, and a reflective film with good chromaticity can be obtained. From this viewpoint, it is more preferably 2.8 or less, and further preferably 2.6 or less.
 本反射フィルムの波長550nmの光の透過率は、1.0%未満であることが好ましい。全光線透過率を1.0%未満とすることで、バックライトの光を効率よく反射することができ、輝度を向上させることができるほか、表示コントラストを向上することもできる。かかる観点から0.5%未満であることがより好ましく、0.3%未満であることがさらに好ましく、0.1%未満であることが特に好ましい。 The transmittance of light having a wavelength of 550 nm of the reflective film is preferably less than 1.0%. By setting the total light transmittance to less than 1.0%, the light of the backlight can be reflected efficiently, the luminance can be improved, and the display contrast can also be improved. From this viewpoint, it is more preferably less than 0.5%, further preferably less than 0.3%, and particularly preferably less than 0.1%.
1.6.4.耐久性
 本反射フィルムの耐久性は、恒温槽内で80℃条件下、240時間保持する高温処理前後の波長550nmの光に対する反射率の差を算出することにより求められる。前記反射率の差は、0.5%以下であることが好ましく、0.4%以下であることがより好ましく、0.3%以下であることがさらに好ましい。前記反射率の差が0.5%以下であることにより、例えば、液晶ディスプレイのバックライトに使用する際に晒される条件下でも輝度が低下することなく使用することができる。
1.6.4. Durability The durability of the present reflective film is determined by calculating the difference in reflectance with respect to light having a wavelength of 550 nm before and after a high temperature treatment held at 80 ° C. for 240 hours in a constant temperature bath. The difference in reflectance is preferably 0.5% or less, more preferably 0.4% or less, and further preferably 0.3% or less. When the difference in reflectance is 0.5% or less, for example, it can be used without a decrease in luminance even under conditions exposed to use in a backlight of a liquid crystal display.
2.反射フィルムの製造方法
 以下に、本反射フィルムの製造方法について、一例を挙げて説明するが、下記製造法に何ら限定されるものではない。
2. Production Method of Reflective Film Hereinafter, the production method of the present reflective film will be described with an example, but is not limited to the following production method.
 まず、白色基材層を構成する熱可塑性樹脂に充填剤を配合し、その他添加剤等を必要に応じて配合して樹脂組成物を作製する。具体的には、熱可塑性樹脂に充填剤等を加えてリボンブレンダー、タンブラー、ヘンシェルミキサー等で混合した後、1軸または2軸押出機等を用いて、樹脂の融点以上の温度で混練することにより各層用樹脂組成物を得ることができる。または、予め、充填剤等を熱可塑性樹脂に高濃度に配合したいわゆるマスターバッチを作っておき、このマスターバッチと樹脂とを混合して所望の濃度の樹脂組成物とすることもできる。 First, a filler is blended with the thermoplastic resin constituting the white base material layer, and other additives are blended as necessary to prepare a resin composition. Specifically, a filler or the like is added to a thermoplastic resin and mixed with a ribbon blender, tumbler, Henschel mixer, etc., and then kneaded at a temperature equal to or higher than the melting point of the resin using a single screw or twin screw extruder. Thus, a resin composition for each layer can be obtained. Alternatively, a so-called master batch in which a filler or the like is blended with a thermoplastic resin at a high concentration in advance is prepared, and the master batch and the resin are mixed to obtain a resin composition having a desired concentration.
 次に、このようにして得られた基材用樹脂組成物を溶融し、フィルム上に形成する。フィルム上に形成する方法としては、一般にインフレーション成形法やTダイを用いる押出成形法が好ましく用いられる。具体的には、基材用樹脂組成物を必要に応じて乾燥した後、押出機に供給し、樹脂の融点以上の温度に加熱して溶融する。あるいは、樹脂組成物を乾燥させずに押出機に供給しても良いが、乾燥させない場合には溶融押出する際に真空ベントを用いることが好ましい。その後、溶融した基材層用樹脂組成物をTダイのスリット状の吐出口から押し出し、冷却ロールに密着固化させてキャストシートを形成する。 Next, the resin composition for a substrate thus obtained is melted and formed on a film. In general, an inflation molding method or an extrusion molding method using a T die is preferably used as a method of forming on a film. Specifically, after drying the substrate resin composition as necessary, it is supplied to an extruder and heated to a temperature equal to or higher than the melting point of the resin to melt. Or you may supply a resin composition to an extruder, without drying, but when not drying, it is preferable to use a vacuum vent at the time of melt-extrusion. Thereafter, the melted resin composition for a base layer is extruded from a slit-shaped discharge port of a T die, and is solidified on a cooling roll to form a cast sheet.
 白色基材層は、少なくとも一軸方向に延伸されていることが好ましく、2軸方向に延伸されていることがさらに好ましい。延伸は、ロール、テンター、エアーインフレーション、チューブラー、マンドレル等により行うことができる。例えば、ロールによりMD方向に延伸した後、テンターによってTD方向に延伸してもよいし、チューブラーによって2軸延伸してもよい。次に、必要に応じて熱固定を行うことにより白色反射フィルムを得ることができる。 The white base material layer is preferably stretched at least in a uniaxial direction, and more preferably stretched in a biaxial direction. Stretching can be performed with a roll, a tenter, air inflation, a tubular, a mandrel, or the like. For example, after stretching in the MD direction by a roll, it may be stretched in the TD direction by a tenter, or biaxially stretched by a tubular. Next, a white reflective film can be obtained by performing heat setting as necessary.
 次に必要に応じて、平滑コート層用樹脂塗料を白色基材層上に塗布し乾燥または硬化させる。この平滑コート層上に、金属薄膜層を形成する。その後、金属薄膜層の上に、保護層を形成することで反射フィルム(白色基材層/平滑コート層/金属薄膜層/保護層)を得る。 Next, if necessary, a resin coating for a smooth coat layer is applied on the white base layer and dried or cured. A metal thin film layer is formed on the smooth coat layer. Then, a reflective film (white base material layer / smooth coat layer / metal thin film layer / protective layer) is obtained by forming a protective layer on the metal thin film layer.
 あるいは、別途、保護層に金属薄膜層を形成させる。次に白色基材層と金属薄膜層とを必要に応じて接着剤または粘着剤等を介して積層させる。もしくは、金属薄膜層と白色基材層を単に重ねるか、または、金属蒸着層と白色基材層を前記反射フィルムの実使用面積のうちの0.1%~10%の範囲内で接着することにより、空気層を介して積層させる。 Alternatively, a metal thin film layer is separately formed on the protective layer. Next, a white base material layer and a metal thin film layer are laminated | stacked through an adhesive agent or an adhesive as needed. Alternatively, the metal thin film layer and the white base material layer are simply overlapped, or the metal vapor deposition layer and the white base material layer are bonded within the range of 0.1% to 10% of the actual use area of the reflective film. By laminating through the air layer.
 以下に実施例および比較例を示し、本発明をさらに具体的に説明するが、本発明は、何ら実施例および比較例に限定されない。なお、実施例に示す測定値および評価は以下に示すようにして行った。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the examples and comparative examples. In addition, the measured value and evaluation which are shown to an Example were performed as shown below.
(測定および評価方法)
1.反射率
 反射フィルムの反射率は、株式会社日立ハイテクノロジーズ社製の分光光度計「UV-4000」(商品名)を用い、アルミナ製標準構成板で校正した反射率を基準(100%)となるような条件で300nm-800nmの波長域(0.5nm単位)で測定した。
(Measurement and evaluation method)
1. Reflectance The reflectance of the reflective film is based on the reflectance (100%) calibrated with a standard component plate made of alumina using a spectrophotometer “UV-4000” (trade name) manufactured by Hitachi High-Technologies Corporation. The measurement was performed in the wavelength range of 300 nm to 800 nm (in units of 0.5 nm) under such conditions.
2.反射率向上度の算出
 上記の反射率測定により450nmと750nmでの反射率を読み取り、Δaを白色基材単独での450nmにおける反射率と750nmにおける反射率の差とし、Δbを本反射フィルムの450nmにおける反射率と750nmにおける反射率の差とし、反射フィルムの反射率向上度(Δa/Δb)を算出した。
2. Calculation of reflectivity improvement The reflectivity at 450 nm and 750 nm is read by the above reflectivity measurement, Δa is the difference between the reflectivity at 450 nm and the reflectivity at 750 nm of the white base material alone, and Δb is 450 nm of the present reflective film. The reflectance improvement degree (Δa / Δb) of the reflective film was calculated as the difference between the reflectance at 750 nm and the reflectance at 750 nm.
3.透過率
 「白色基材層単独での光の透過率」及び「反射フィルム全体としての光の透過率」をそれぞれ測定した。具体的には、株式会社日立ハイテクノロジーズ社製の分光光度計「UV-4000」(商品名)を用い、アルミナ製標準構成板で校正した透過率を基準(100%)とし、光路中にフィルムサンプルを挿入することで、300nm-800nmの波長域(0.5nm単位)におけるフィルムサンプルの透過率を測定した。
3. Transmittance “Light transmittance of the white base material layer alone” and “Light transmittance of the reflective film as a whole” were measured. Specifically, a spectrophotometer “UV-4000” (trade name) manufactured by Hitachi High-Technologies Corporation is used, and the transmittance calibrated with an alumina standard component plate is used as a reference (100%), and a film is formed in the optical path. By inserting the sample, the transmittance of the film sample in the wavelength range of 300 nm to 800 nm (0.5 nm unit) was measured.
4.輝度・y値
 液晶ディスプレイ( 株式会社センチュリー製「プラスワン」8インチ、型番:LCD8000V) のバックライトユニットの反射フィルムとして、本反射フィルムサンプルを使用し、45cm 離れたそのディスプレイの9点平均輝度値、及びy値を輝度計(コニカミノルタ株式会社製、型式:CA-2000) によって測定した。
4). Luminance / y value This reflective film sample was used as a reflective film for the backlight unit of a liquid crystal display (Century Co., Ltd. “Plus One” 8 inch, model number: LCD8000V). The y value was measured with a luminance meter (Konica Minolta, Inc., model: CA-2000).
5.耐久性
 フィルムサンプルの反射率を測定し、高温試験として恒温槽内で80℃条件下、240時間保持したのち、再度反射率を測定した。高温試験前後の550nmにおける反射率の差を算出し、下記評価基準に基づき評価を行った。
◎ : 高温処理前後の550nmにおける反射率の差が、0.3%以内
○ : 高温処理前後の550nmにおける反射率の差が、0.5%以内
× : 高温処理前後の550nmにおける反射率の差が、0.5%を超える
5. Durability The reflectivity of the film sample was measured, and as a high-temperature test, the reflectivity was measured again after being held in a thermostatic bath at 80 ° C. for 240 hours. The difference in reflectance at 550 nm before and after the high temperature test was calculated and evaluated based on the following evaluation criteria.
◎: Reflectance difference at 550 nm before and after the high temperature treatment is within 0.3% ○: Reflectance difference at 550 nm before and after the high temperature treatment is within 0.5% ×: Difference in reflectance at 550 nm before and after the high temperature treatment Over 0.5%
6.銀層の剥離強度
 セロテープ(登録商標、ニチバン製、CT405AP-18)をフィルムサンプルのコート面に10cm貼り付け、180°方向に急速に剥離し、銀層の剥がれ方について評価した。
◎:コート層が全く剥離しないレベル。
○:コート層がほとんど剥離せず、実使用上問題ないレベル
×:コート層が大幅に剥離するレベル
6). Peel strength of silver layer Cello tape (registered trademark, manufactured by Nichiban Co., Ltd., CT405AP-18) was affixed to the coated surface of the film sample by 10 cm and peeled rapidly in the direction of 180 ° to evaluate how the silver layer peeled off.
(Double-circle): The level which a coating layer does not peel at all.
○: Level at which the coat layer hardly peels off and does not cause any problem in actual use ×: Level at which the coat layer peels off significantly
(実施例1)
(白色基材層)
 白色基材層は、厚さ100μmのポリオレフィン系白色基材(三菱樹脂株式会社製、商品名「Lumirex II R20」)を使用した。
(Example 1)
(White base material layer)
As the white base material layer, a polyolefin white base material (trade name “Lumirex II R20” manufactured by Mitsubishi Plastics, Inc.) having a thickness of 100 μm was used.
(金属薄膜層の形成)
 ポリエチレンテレフタレートフィルム(三菱樹脂株式会社製、商品名「ダイアホイル T600E25」、厚み25μm)のプライマー処理面に平滑コート層として電子線硬化型アクリル樹脂と希釈溶剤 MIBKとを質量比率1:1で混合して樹脂固形分比率を50質量%に調整した樹脂溶液(インク)を、バーコーターによりコーティングして、乾燥・硬化させ、厚み2μmの平滑コート層を形成した。平滑コート層の表面に金属薄膜層としてスパッタリング法により厚み120nmの銀薄膜層を形成し、銀薄膜フィルムを得た。
(Formation of metal thin film layer)
An electron beam curable acrylic resin and a diluting solvent MIBK are mixed at a mass ratio of 1: 1 as a smooth coat layer on a primer-treated surface of a polyethylene terephthalate film (trade name “Diafoil T600E25”, manufactured by Mitsubishi Plastics, Inc., thickness 25 μm). Then, a resin solution (ink) having a resin solid content ratio adjusted to 50% by mass was coated with a bar coater, dried and cured, and a smooth coating layer having a thickness of 2 μm was formed. A silver thin film layer having a thickness of 120 nm was formed as a metal thin film layer on the surface of the smooth coat layer by sputtering to obtain a silver thin film.
(反射フィルムの作製)
 前記白色基材層にアクリル酸エステル系粘着剤を塗布し、乾燥して、粘着層(厚み2μm)を形成し、上記銀薄膜フィルムの銀薄膜面が粘着層側となるように重ね、ハンドローラーにてラミネートすることで、厚みが129.12μmの反射フィルムを作製した。作製した反射フィルムについて、上記に示す各評価を行った。その結果を表1に示す。
(Production of reflective film)
An acrylic ester-based pressure-sensitive adhesive is applied to the white base layer and dried to form an adhesive layer (thickness 2 μm). The silver thin film surface of the silver thin film is overlapped with the adhesive layer side, and a hand roller Was used to produce a reflective film having a thickness of 129.12 μm. Each evaluation shown above was performed about the produced reflective film. The results are shown in Table 1.
(実施例2)
 実施例1と同様の白色基材層に対して、電子線硬化型アクリル樹脂と光開始剤、および希釈溶剤 MIBKとを質量比率1:0.03:1で混合して樹脂固形分比率を50質量%に調整した樹脂溶液(インク)を、バーコーターによりコーティングして、乾燥・硬化させ、厚み2μmの平滑コート層を形成した。平滑コート層の表面に金属薄膜層としてスパッタリング法により厚み120nmの銀薄膜層を形成し、銀薄膜層の表面に保護層として上記の平滑コート層と同様の層を形成し、厚みが104.12μmの反射フィルムを作製した。得られた反射フィルムについて、上記に示す各評価を行った。結果を表1に示す。
(Example 2)
An electron beam curable acrylic resin, a photoinitiator, and a diluent solvent MIBK are mixed at a mass ratio of 1: 0.03: 1 with respect to the same white base material layer as in Example 1 to obtain a resin solid content ratio of 50. A resin solution (ink) adjusted to mass% was coated with a bar coater, dried and cured to form a smooth coat layer having a thickness of 2 μm. A silver thin film layer having a thickness of 120 nm is formed as a metal thin film layer on the surface of the smooth coat layer by a sputtering method, and a layer similar to the above smooth coat layer is formed as a protective layer on the surface of the silver thin film layer. A reflective film was prepared. Each evaluation shown above was performed about the obtained reflective film. The results are shown in Table 1.
(実施例3)
 白色基材層と銀薄膜フィルムとを単に重ね合わせた状態とし、厚みが130.12μmの反射フィルムとしたこと以外は実施例1と同様にして反射フィルムを作製した。このうち、空気層は3μmであった。得られた反射フィルムについて、上記に示す各評価を行った。結果を表1に示す。
(Example 3)
A reflective film was produced in the same manner as in Example 1 except that the white base material layer and the silver thin film were simply overlapped to obtain a reflective film having a thickness of 130.12 μm. Among these, the air layer was 3 μm. Each evaluation shown above was performed about the obtained reflective film. The results are shown in Table 1.
(実施例4)
 白色基材層を厚さ70μmのポリオレフィン系白色基材(三菱樹脂株式会社製、商品名「Lumirex II R20」)に変更し、厚みが100.12μmの反射フィルムを得たこと以外は実施例3と同様にして反射フィルムを作製した。このうち、空気層は3μmであった。得られた反射フィルムについて、上記に示す各評価を行った。結果を表1に示す。
Example 4
Example 3 except that the white base material layer was changed to a polyolefin white base material having a thickness of 70 μm (trade name “Lumirex II R20” manufactured by Mitsubishi Plastics Co., Ltd.), and a reflective film having a thickness of 100.12 μm was obtained. A reflective film was produced in the same manner as described above. Among these, the air layer was 3 μm. Each evaluation shown above was performed about the obtained reflective film. The results are shown in Table 1.
(実施例5)
 白色基材層を厚さ80μmのポリオレフィン系白色基材(三菱樹脂株式会社製、商品名「Lumirex II R20」)に変更し、厚みが111.12μmの反射フィルムを得たこと以外は実施例2と同様にして反射フィルムを作製した。得られた反射フィルムについて、上記に示す各評価を行った。結果を表1に示す。
(Example 5)
Example 2 except that the white base material layer was changed to a polyolefin white base material having a thickness of 80 μm (trade name “Lumirex II R20” manufactured by Mitsubishi Plastics Co., Ltd.) to obtain a reflective film having a thickness of 111.12 μm. A reflective film was produced in the same manner as described above. Each evaluation shown above was performed about the obtained reflective film. The results are shown in Table 1.
(実施例6)
 実施例5において、平滑コート層を設けずに直接銀蒸着すること以外は同様に加工して得られた反射フィルムについて、上記に示す各評価を行った。結果を表1に示す。
(Example 6)
In Example 5, each evaluation shown above was performed about the reflective film obtained by processing similarly except not depositing a smooth coat layer but direct silver vapor deposition. The results are shown in Table 1.
(実施例7)
 金属薄膜層を厚み60nmの銀薄膜層にすること以外は実施例5と同様にして反射フィルムを作製した。得られた反射フィルムについて、上記に示す各評価を行った。結果を表1に示す。
(Example 7)
A reflective film was produced in the same manner as in Example 5 except that the metal thin film layer was a silver thin film layer having a thickness of 60 nm. Each evaluation shown above was performed about the obtained reflective film. The results are shown in Table 1.
(実施例8)
 実施例2において、保護層の上にさらに電子線硬化型アクリル樹脂と酸化チタンと光開始剤と希釈溶剤 MIBKとを質量比率1:0.3:0.02:3で混合して樹脂固形分比率を50質量%に調整した樹脂溶液(インク)を、バーコーターによりコーティングして、乾燥・硬化させることで厚み2.0μmのハードコート層を設けた。得られた反射フィルムについて、上記に示す各評価を行った。結果を表1に示す。
(Example 8)
In Example 2, an electron beam curable acrylic resin, titanium oxide, a photoinitiator, and a diluent solvent MIBK were further mixed on the protective layer at a mass ratio of 1: 0.3: 0.02: 3 to obtain a resin solid content. The resin solution (ink) whose ratio was adjusted to 50% by mass was coated with a bar coater, dried and cured to provide a hard coat layer having a thickness of 2.0 μm. Each evaluation shown above was performed about the obtained reflective film. The results are shown in Table 1.
(実施例9)
 白色基材層をポリエステル系白色フィルム(東レ株式会社製、商品名「Lumirror E80E」)とすること以外は実施例3と同様にして反射フィルムを作製した。得られた反射フィルムについて、上記に示す各評価を行った。結果を表1に示す。
Example 9
A reflective film was produced in the same manner as in Example 3 except that the white base material layer was a polyester white film (trade name “Lumirror E80E” manufactured by Toray Industries, Inc.). Each evaluation shown above was performed about the obtained reflective film. The results are shown in Table 1.
(実施例10)
 金属薄膜層を厚み120nmのアルミ薄膜層にすること以外は実施例3と同様にして反射フィルムを作製した。得られた反射フィルムについて、上記に示す各評価を行った。結果を表1に示す。
(Example 10)
A reflective film was produced in the same manner as in Example 3 except that the metal thin film layer was an aluminum thin film layer having a thickness of 120 nm. Each evaluation shown above was performed about the obtained reflective film. The results are shown in Table 1.
(比較例1)
 厚さ100μmのポリオレフィン系白色基材(三菱樹脂株式会社製、商品名「Lumirex II R20」)単独について、上記に示す各評価を行った。結果を表2に示す。
(Comparative Example 1)
Each evaluation shown above was performed about the polyolefin-type white base material (Mitsubishi resin Co., Ltd. make, brand name "Lumirex II R20") 100-micrometer-thick. The results are shown in Table 2.
(比較例2)
 厚さ70μmのポリオレフィン系白色基材(三菱樹脂株式会社製、商品名「Lumirex II R20」)単独について、上記に示す各評価を行った。結果を表2に示す。
(Comparative Example 2)
Each evaluation shown above was performed about the polyolefin-type white base material (The Mitsubishi Plastics Co., Ltd. make, brand name "Lumirex II R20") 70-micrometer-thick. The results are shown in Table 2.
(比較例3)
 厚さ80μmのポリオレフィン系白色基材(三菱樹脂株式会社製、商品名「Lumirex II R20」)単独について、上記に示す各評価を行った。結果を表2に示す。
(Comparative Example 3)
Each evaluation shown above was performed about the polyolefin-type white base material (The Mitsubishi Plastics Co., Ltd. make, brand name "Lumirex II R20") 80-micrometer-thick. The results are shown in Table 2.
(比較例4)
 実施例1で示した銀薄膜フィルム単独について、上記に示す各評価を行った。結果を表2に示す。
(Comparative Example 4)
Each evaluation shown above was performed about the silver thin film single shown in Example 1. FIG. The results are shown in Table 2.
(比較例5)
 銀薄膜面に対し保護層を設けなかったこと以外は、実施例2と同様にして反射フィルムを作製した。得られた反射フィルムについて、銀薄膜面を反射使用面として上記に示す各評価を行った。結果を表2に示す。
(Comparative Example 5)
A reflective film was produced in the same manner as in Example 2 except that the protective layer was not provided on the silver thin film surface. About the obtained reflective film, each evaluation shown above was performed by making a silver thin film surface into a reflective use surface. The results are shown in Table 2.
(比較例6)
 白色基材層を厚さ225μmのポリオレフィン系白色基材(三菱樹脂株式会社製、商品名「Lumirex II R20」)に変更し、厚みが229.12μmの反射フィルムを得たこと以外は実施例2と同様にして反射フィルムを作製した。得られた反射フィルムについて、上記に示す各評価を行った。結果を表2に示す。
(Comparative Example 6)
Example 2 except that the white base material layer was changed to a polyolefin white base material having a thickness of 225 μm (trade name “Lumirex II R20” manufactured by Mitsubishi Plastics Co., Ltd.), and a reflective film having a thickness of 229.12 μm was obtained. A reflective film was produced in the same manner as described above. Each evaluation shown above was performed about the obtained reflective film. The results are shown in Table 2.
(比較例7)
 厚さ225μmのポリオレフィン系白色基材(三菱樹脂株式会社製、商品名「Lumirex II R20」)単独について、上記に示す各評価を行った。結果を表2に示す。
(Comparative Example 7)
Each evaluation shown above was performed about the polyolefin-type white base material (Mitsubishi resin Co., Ltd. make, brand name "Lumirex II R20") single thickness of 225 micrometers. The results are shown in Table 2.
(比較例8)
 実施例9における厚さ80μmのポリエステル系白色基材単独について、上記に示す各評価を行った。結果を表2に示す。
(Comparative Example 8)
Each evaluation shown above was performed about the 80-micrometer-thick polyester-type white base material alone in Example 9. The results are shown in Table 2.
(参考例1)
 屈折率の異なる2種の透明ポリエステル層による超多層型反射フィルム(3M社製、商品名「ESR-80」)について、上記に示す各評価を行った。結果を表2に示す。
(Reference Example 1)
Each of the evaluations described above was performed on an ultra-multilayer reflective film (trade name “ESR-80” manufactured by 3M Co., Ltd.) composed of two types of transparent polyester layers having different refractive indexes. The results are shown in Table 2.
(シミュレーション試験)
 表3に示すように白色基材層の厚さを変更し、450nm、750nm、550nmにおける反射率を光線追跡シミュレーションソフト(製品名:Light Tools)を用いて計測した。各反射率の値より得られたΔa、Δb、および、Δa/Δbの値を表3に示す。
(Simulation test)
As shown in Table 3, the thickness of the white base material layer was changed, and the reflectance at 450 nm, 750 nm, and 550 nm was measured using a ray tracing simulation software (product name: Light Tools). Table 3 shows Δa, Δb, and Δa / Δb values obtained from the reflectance values.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 参考までに、実施例1~10、比較例1~8及び参考例1について、図2に550nmにおける反射率と輝度との関係を、図3にΔbとy値との関係を示す。 For reference, for Examples 1 to 10, Comparative Examples 1 to 8 and Reference Example 1, FIG. 2 shows the relationship between the reflectance at 550 nm and the luminance, and FIG. 3 shows the relationship between Δb and the y value.
<考察>
 表1から明らかなように、各実施例のフィルムは、反射率、輝度、色度(黄色化の低減)、耐久性のすべてにおいて良好であった。一方、白色基材層単独である比較例1やそれを薄膜化したフィルムである比較例2および比較例3は、反射率が低く、応じて輝度も低下していた。また、銀薄膜フィルム単独である比較例4のフィルムは、黄色みが強く、耐久性が劣っていた。さらに、白色基材層に平滑コート層を設け、銀蒸着し、銀薄膜層面から特性評価した比較例5については、黄色みが極めて強く、輝度も低下することが分かった。
 また、表3からは、特定の金属薄膜層の厚みに対して、白色基材層の厚みを適宜変更することにより、本発明の反射フィルムのΔa、Δb、および、Δa/Δbの値を好適な範囲に調整することができ、結果として反射率、輝度、色度(黄色化の低減)を良好にできることがわかった。
<Discussion>
As is clear from Table 1, the film of each example was good in all of reflectance, luminance, chromaticity (reduction in yellowing), and durability. On the other hand, Comparative Example 1 which is a white base material layer alone and Comparative Example 2 and Comparative Example 3 which are films obtained by thinning the white base layer have low reflectivity, and brightness is accordingly reduced. Moreover, the film of the comparative example 4 which is a silver thin film single was strong yellowish, and its durability was inferior. Furthermore, it was found that in Comparative Example 5 in which a smooth coat layer was provided on the white base material layer, silver was deposited, and the characteristics were evaluated from the surface of the silver thin film layer, the yellowness was extremely strong and the luminance was also lowered.
Further, from Table 3, the values of Δa, Δb, and Δa / Δb of the reflective film of the present invention are suitably changed by appropriately changing the thickness of the white base material layer with respect to the thickness of the specific metal thin film layer. It was found that the reflectance, luminance, and chromaticity (reduction of yellowing) can be improved as a result.
 本発明によれば、高反射率、高輝度でかつ高耐久性であるとともに、反射光が良好な色度となる(反射光の黄色味を抑えることができる)反射フィルムを、より安価に提供することができる。本発明に係る反射フィルムは、従来の高価な超多層の反射フィルムの代替として例えば、液晶ディスプレイ等の電子デバイス用表示装置の反射部材として好適に利用可能である。この場合、LED光源や光学フィルムの再設計をせずとも、良好な光反射特性を確保できる。 According to the present invention, a reflective film having high reflectivity, high brightness, and high durability, and having reflected light having good chromaticity (which can suppress yellowness of reflected light) is provided at a lower cost. can do. The reflective film according to the present invention can be suitably used as a reflective member of a display device for an electronic device such as a liquid crystal display, for example, as an alternative to a conventional expensive super multilayer reflective film. In this case, good light reflection characteristics can be ensured without redesigning the LED light source and the optical film.
 1:白色基材層
 2:中間層
 3:金属薄膜層
 4:保護層
1: White base layer 2: Intermediate layer 3: Metal thin film layer 4: Protective layer

Claims (9)

  1.  白色基材層と、金属薄膜層と、保護層とをこの順に有し、該白色基材層が反射使用面側に配置された反射フィルムであって、
     該反射フィルムに対して前記白色基材層側から光を照射した場合において、
     下記で表されるΔbが1.0%以上、4.0%未満であり、かつ、下記で表されるΔaと前記Δbとの比で表される反射率向上度(Δa/Δb)が1.3以上、3.0以下であることを特徴とする、反射フィルム。
    Δa:前記白色基材層の波長450nmの光の反射率と波長750nmの光の反射率との差
    Δb:前記反射フィルムの波長450nmの光の反射率と波長750nmの光の反射率との差
    A reflective film in which a white base material layer, a metal thin film layer, and a protective layer are provided in this order, and the white base material layer is disposed on the reflective use surface side,
    In the case where light is irradiated from the white base material layer side to the reflective film,
    Δb expressed below is 1.0% or more and less than 4.0%, and the reflectance improvement degree (Δa / Δb) expressed by the ratio of Δa expressed below and Δb is 1 A reflective film characterized in that it is 3 or more and 3.0 or less.
    Δa: difference between the reflectance of light with a wavelength of 450 nm and the reflectance of light with a wavelength of 750 nm of the white base layer Δb: difference between the reflectance of light with a wavelength of 450 nm and the reflectance of light with a wavelength of 750 nm of the reflective film
  2.  前記白色基材層の波長550nmの光の反射率が95%以上となる請求項1に記載の反射フィルム。 The reflective film according to claim 1, wherein the reflectance of light having a wavelength of 550 nm of the white base material layer is 95% or more.
  3.  前記白色基材層の波長550nmの光の透過率が1.0%以上である請求項1又は2に記載の反射フィルム。 The reflective film according to claim 1 or 2, wherein the white base material layer has a light transmittance of 1.0% or more at a wavelength of 550 nm.
  4.  前記白色基材層の厚み比率が、前記反射フィルムの厚みの50%以上である請求項1~3のいずれか1項に記載の反射フィルム。 The reflective film according to any one of claims 1 to 3, wherein a thickness ratio of the white base material layer is 50% or more of a thickness of the reflective film.
  5.  前記白色基材層と金属薄膜層との間に全光線透過率が80%以上の接着層または粘着層を含むことを特徴とする請求項1~4のいずれか1項に記載の反射フィルム。 The reflective film according to any one of claims 1 to 4, further comprising an adhesive layer or an adhesive layer having a total light transmittance of 80% or more between the white base material layer and the metal thin film layer.
  6.  前記白色基材層と金属薄膜層との間に空気層を有することを特徴とする請求項1~4のいずれか1項に記載の反射フィルム。 5. The reflective film according to claim 1, further comprising an air layer between the white base material layer and the metal thin film layer.
  7.  前記白色基材層において、金属薄膜層が設けられる側の面に平滑コート層を備え、かつ、該平滑コート層の金属薄膜層が設けられる側の表面粗さ(Ra)が300nm以下であることを特徴とする請求項1~6のいずれか1項に記載の反射フィルム。 In the white base material layer, a smooth coat layer is provided on the surface on which the metal thin film layer is provided, and the surface roughness (Ra) on the side of the smooth coat layer on which the metal thin film layer is provided is 300 nm or less. The reflective film according to any one of claims 1 to 6, wherein:
  8.  前記保護層の厚みが1~200μmであることを特徴とする請求項1~7のいずれか1項に記載の反射フィルム。 The reflective film according to any one of claims 1 to 7, wherein the protective layer has a thickness of 1 to 200 µm.
  9.  請求項1~8のいずれか1項に記載の反射フィルムを備える電子デバイス用表示装置。 An electronic device display device comprising the reflective film according to any one of claims 1 to 8.
PCT/JP2015/081219 2014-11-07 2015-11-05 Reflective film WO2016072472A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580056297.6A CN107076889A (en) 2014-11-07 2015-11-05 Reflectance coating
JP2016557811A JPWO2016072472A1 (en) 2014-11-07 2015-11-05 Reflective film
KR1020177011282A KR102452766B1 (en) 2014-11-07 2015-11-05 Reflective film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-227013 2014-11-07
JP2014227013 2014-11-07
JP2015-193746 2015-09-30
JP2015193746 2015-09-30

Publications (1)

Publication Number Publication Date
WO2016072472A1 true WO2016072472A1 (en) 2016-05-12

Family

ID=55909196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081219 WO2016072472A1 (en) 2014-11-07 2015-11-05 Reflective film

Country Status (5)

Country Link
JP (1) JPWO2016072472A1 (en)
KR (1) KR102452766B1 (en)
CN (1) CN107076889A (en)
TW (1) TWI670178B (en)
WO (1) WO2016072472A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11880059B2 (en) 2019-09-06 2024-01-23 3M Innovative Properties Company Backlight including reflective polarizer and diffuse reflective film assembly for uniform illumination
WO2024117069A1 (en) * 2022-11-30 2024-06-06 日東電工株式会社 Reflective film
WO2024117068A1 (en) * 2022-11-30 2024-06-06 日東電工株式会社 Reflective film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115437050A (en) * 2021-06-04 2022-12-06 宁波激智科技股份有限公司 Silver reflector plate, preparation method thereof and backlight module

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10193494A (en) * 1997-01-16 1998-07-28 Oike Ind Co Ltd Diffusion reflecting film
JP2002333511A (en) * 2001-05-09 2002-11-22 Mitsubishi Plastics Ind Ltd Resinous film for light reflex
WO2005039872A1 (en) * 2003-10-27 2005-05-06 Mitsubishi Plastics, Inc. Reflective film
JP2006106736A (en) * 2004-10-01 2006-04-20 Samsung Electronics Co Ltd Optical film, backlight assembly having same and display device having same
JP2006142817A (en) * 2004-10-21 2006-06-08 Toyobo Co Ltd Laminated polyester film and specularly reflective film
JP2008083648A (en) * 2006-09-29 2008-04-10 Exploit Technology Co Ltd Reflecting piece and back light module using the reflecting piece
JP2010128087A (en) * 2008-11-26 2010-06-10 Mitsubishi Plastics Inc Optical film and optical film laminated metallic body
JP2010149447A (en) * 2008-12-26 2010-07-08 Toray Ind Inc Laminated film
JP2011170295A (en) * 2010-02-22 2011-09-01 Sekisui Plastics Co Ltd Light reflection plate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0816175B2 (en) 1991-01-22 1996-02-21 東レ株式会社 White polyester film for LCD reflector
JP3769842B2 (en) 1996-11-05 2006-04-26 東レ株式会社 Metal vapor deposition film, method for producing the same, and capacitor using the same
JP4914562B2 (en) 2003-06-19 2012-04-11 株式会社ユポ・コーポレーション Light reflector and surface light source device using the same
JP2006023488A (en) * 2004-07-07 2006-01-26 Panac Co Ltd Multilayer reflector 3
WO2006043626A1 (en) * 2004-10-21 2006-04-27 Toyo Boseki Kabushiki Kaisha Multilayer polyester film and specularly reflective film
JP4888990B2 (en) 2004-10-26 2012-02-29 尾池工業株式会社 Reflector for backlight device
EP1813969A1 (en) * 2004-11-16 2007-08-01 Mitsubishi Plastics Inc. Aliphatic polyester resin reflective film and reflector plate
JP4750405B2 (en) * 2004-11-16 2011-08-17 三菱樹脂株式会社 Aliphatic polyester resin reflective film and reflector
US7557989B2 (en) 2005-06-03 2009-07-07 3M Innovative Properties Company Reflective polarizer and display device having the same
JP5805951B2 (en) 2010-07-16 2015-11-10 三菱樹脂株式会社 Reflective material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10193494A (en) * 1997-01-16 1998-07-28 Oike Ind Co Ltd Diffusion reflecting film
JP2002333511A (en) * 2001-05-09 2002-11-22 Mitsubishi Plastics Ind Ltd Resinous film for light reflex
WO2005039872A1 (en) * 2003-10-27 2005-05-06 Mitsubishi Plastics, Inc. Reflective film
JP2006106736A (en) * 2004-10-01 2006-04-20 Samsung Electronics Co Ltd Optical film, backlight assembly having same and display device having same
JP2006142817A (en) * 2004-10-21 2006-06-08 Toyobo Co Ltd Laminated polyester film and specularly reflective film
JP2008083648A (en) * 2006-09-29 2008-04-10 Exploit Technology Co Ltd Reflecting piece and back light module using the reflecting piece
JP2010128087A (en) * 2008-11-26 2010-06-10 Mitsubishi Plastics Inc Optical film and optical film laminated metallic body
JP2010149447A (en) * 2008-12-26 2010-07-08 Toray Ind Inc Laminated film
JP2011170295A (en) * 2010-02-22 2011-09-01 Sekisui Plastics Co Ltd Light reflection plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11880059B2 (en) 2019-09-06 2024-01-23 3M Innovative Properties Company Backlight including reflective polarizer and diffuse reflective film assembly for uniform illumination
WO2024117069A1 (en) * 2022-11-30 2024-06-06 日東電工株式会社 Reflective film
WO2024117068A1 (en) * 2022-11-30 2024-06-06 日東電工株式会社 Reflective film

Also Published As

Publication number Publication date
CN107076889A (en) 2017-08-18
KR20170080578A (en) 2017-07-10
JPWO2016072472A1 (en) 2017-08-17
KR102452766B1 (en) 2022-10-07
TW201622980A (en) 2016-07-01
TWI670178B (en) 2019-09-01

Similar Documents

Publication Publication Date Title
TWI667134B (en) Quantum dot protection film, quantum dot film using the same, and backlight unit
US10120110B2 (en) Wavelength conversion sheet, backlight unit, and phosphor protective film
TWI661216B (en) Protective film for wavelength conversion sheet, wavelength conversion sheet and backlight unit
TWI506303B (en) Reflective film
JP4816183B2 (en) Optically laminated biaxially stretched polyester film and hard coat film using the same
KR101492306B1 (en) Laminated film and molding and reflector
WO2016072472A1 (en) Reflective film
JP2017167545A (en) Sheet-shaped transparent molding, transparent screen provided with the same, and image projection device provided with the same
WO2002016497A1 (en) Biaxially oriented polyester film, adhesive film and colored hard coating film
TW202200723A (en) Resin composition for low-reflection light-shielding layer, and low-reflection light-shielding layer and low-reflection light-shielding laminated body using the same
TW202146942A (en) Low-reflection materials
JP2002258760A (en) Colored hard coat film
JP2007133003A (en) Reflection sheet
CN103650638B (en) Organic EL scattering films and use this organic EL light emitting device
TWI816281B (en) A composite quantum-dot film and the method to make the same
WO2018179663A1 (en) Image display device
JP2004341067A (en) Reflector, and illuminator and display device using reflector
KR20220105632A (en) Optical laminate and image display device
WO2015098767A1 (en) Optical reflection film
JP2024018661A (en) Reflective film, wound body, and display device for electronic device
JP5163348B2 (en) Light reflecting laminate
JP2004341068A (en) Reflector, and illuminator and display device using reflector
JP2004157409A (en) Reflector, illuminator and display device using the same
JP2018069573A (en) Laminated polyester film, and blue light-cut film for protecting screen
JP2019082550A (en) Reflection sheet, and backlight using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856482

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016557811

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177011282

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15856482

Country of ref document: EP

Kind code of ref document: A1