WO2024117069A1 - Reflective film - Google Patents

Reflective film Download PDF

Info

Publication number
WO2024117069A1
WO2024117069A1 PCT/JP2023/042320 JP2023042320W WO2024117069A1 WO 2024117069 A1 WO2024117069 A1 WO 2024117069A1 JP 2023042320 W JP2023042320 W JP 2023042320W WO 2024117069 A1 WO2024117069 A1 WO 2024117069A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
resin
reflective
metal
Prior art date
Application number
PCT/JP2023/042320
Other languages
French (fr)
Japanese (ja)
Inventor
帆奈美 伊藤
圭太 碓井
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2024117069A1 publication Critical patent/WO2024117069A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a reflective film.
  • a liquid crystal display device comprises a liquid crystal panel having an image display surface, a backlight that emits light toward the rear surface of the panel, and a housing that houses these.
  • the housing has a bezel portion as a frame around the image display surface.
  • a reflective film is disposed on the inner wall surface of the bezel portion.
  • the reflective film comprises, for example, a white resin film and a metal reflective layer on the film.
  • the reflective film is used to prevent light from the backlight from leaking out of the bezel portion (light leakage prevention function of the reflective film).
  • Technology relating to such reflective films is described, for example, in Patent Document 1 listed below.
  • Anti-reflection films are required to have high reflectivity and low transmittance for light from a backlight in order to prevent light leakage.
  • the inventors discovered that the low transmittance of conventional reflective films deteriorates (light transmittance increases) in high-temperature, high-humidity environments.
  • the present invention provides a reflective film suitable for suppressing an increase in light transmittance in high-temperature, high-humidity environments.
  • the present invention [1] includes a reflective film comprising a resin film having a first surface and a second surface opposite to the first surface, and a metal reflective layer on the first surface, the surface roughness Ra of the first surface being 50 nm or more.
  • the present invention [2] includes the reflective film described in [1] above, which has a luminous transmittance T1 (%), and has a luminous transmittance T2 (%) after a humidification test under conditions of 65°C, relative humidity 90%, and 500 hours, and the difference T2-T1 between the luminous transmittance T2 and the luminous transmittance T1 is 0.06 or less.
  • the present invention [3] includes the reflective film described in [1] or [2] above, in which the metal reflective layer is an aluminum layer.
  • the present invention [4] includes the reflective film according to any one of [1] to [3] above, in which the reflective film has a visual reflectance of 80% or more for light irradiated to the resin film side.
  • the present invention [5] includes the reflective film according to any one of [1] to [4] above, which has a blackening layer on the side of the metal reflective layer opposite the resin film.
  • the present invention [6] includes the reflective film described in [5] above, which has a cured resin layer on the side of the blackening layer opposite the metal reflective layer.
  • the reflective film of the present invention has a metal reflective layer on the first surface of the resin film, and the surface roughness Ra of the first surface is 50 nm or more.
  • migration of components (including carbon elements) derived from the resin film from the resin film to the metal reflective layer is suppressed in a high-temperature, high-humidity environment (this finding was obtained by the present inventors).
  • the components derived from the resin film are impurities for the metal reflective layer, and suppressing the migration of such impurities to the metal reflective layer is suitable for maintaining the optical properties of the metal reflective layer. Therefore, the reflective film of the present invention is suitable for suppressing an increase in light transmittance in a high-temperature, high-humidity environment.
  • 1 is a schematic cross-sectional view of one embodiment of a reflective film of the present invention.
  • 1 is a schematic cross-sectional view of a modified example of the reflective film of the present invention, which includes a blackening layer on a metal reflective layer.
  • 1 is a schematic cross-sectional view of a modified example of the reflective film of the present invention, which includes a cured resin layer on a metal reflective layer.
  • 1 is a schematic cross-sectional view of a modified example of the reflective film of the present invention, which includes a blackening layer and a cured resin layer in this order on a metal reflective layer.
  • the reflective film X of one embodiment of the present invention comprises a resin film 10 and a metal reflective layer 20 in this order in the thickness direction H.
  • the reflective film X extends in a direction (plane direction) perpendicular to the thickness direction H.
  • the reflective film X is, for example, a reflective film that prevents light from a backlight of a liquid crystal display device from leaking out of the housing.
  • the resin film 10 is a base material that ensures the strength of the reflective film X.
  • the resin film 10 has a first surface 11 and a second surface 12 opposite to the first surface 11.
  • the resin film 10 is, for example, a transparent resin film that has flexibility.
  • the material of the resin film 10 include polyester resin, polyolefin resin, acrylic resin, polycarbonate resin, polyethersulfone resin, polyarylate resin, melamine resin, polyamide resin, polyimide resin, cellulose resin, and polystyrene resin.
  • the polyester resin include polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate.
  • the polyolefin resin examples include polyethylene, polypropylene, and cycloolefin polymer.
  • examples of the acrylic resin include polymethacrylate.
  • the material of the resin film 10 is preferably polyester resin, and more preferably PET.
  • the resin film 10 is preferably a white film from the viewpoint of ensuring significant light reflectivity of the resin film 10.
  • the white film can be obtained, for example, by incorporating particles such as inorganic fillers that cause light scattering into the resin film. Examples of such particles include titanium oxide, calcium carbonate, barium sulfate, silica, and talc, and preferably titanium oxide and/or silica are used. These particles may be used alone or in combination of two or more types.
  • the average particle size of the particles is, for example, 0.05 ⁇ m or more, preferably 0.1 ⁇ m or more, and, for example, 2 ⁇ m or less, preferably 1 ⁇ m or less.
  • the content ratio of the particles in the resin film 10 as a white film is, for example, 5 mass% or more, preferably 10 mass% or more, and, for example, 50 mass% or less, preferably 40 mass% or less.
  • the thickness of the resin film 10 is preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more, and even more preferably 35 ⁇ m or more. From the viewpoint of ensuring the handleability of the resin film 10 in the roll-to-roll method, the thickness of the resin film 10 is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, even more preferably 150 ⁇ m or less, even more preferably 100 ⁇ m or less, even more preferably 70 ⁇ m or less, and particularly preferably 50 ⁇ m or less.
  • the surface roughness Ra (arithmetic mean surface roughness based on JIS B 0601-2001) of the first surface 11 of the resin film 10 is 50 nm or more.
  • Such a configuration is suitable for suppressing an increase in the light transmittance of the reflective film X in a high-temperature, high-humidity environment.
  • the specific details are as described below.
  • the surface roughness Ra of the first surface 11 is preferably 53 nm or more, more preferably 57 nm or more, and even more preferably 60 nm or more.
  • the surface roughness Ra of the first surface 11 is preferably 150 nm or less, more preferably 120 nm or less, even more preferably 100 nm or less, and even more preferably 80 nm or less.
  • the method for measuring the surface roughness Ra is specifically as described below in the examples.
  • the surface roughness Ra of 50 nm or more on the first surface 11 can be achieved, for example, by subjecting the resin film 10 to a roughening treatment.
  • roughening treatments include bombardment treatment, corona treatment, and UV treatment, with bombardment treatment being preferred.
  • the metal reflective layer 20 is disposed on the first surface 11 of the resin film 10. That is, the metal reflective layer 20 is in contact with the first surface 11.
  • the metal reflective layer 20 is formed from a metal having light reflectivity.
  • metal materials that form the metal reflective layer 20 include aluminum (Al), silver (Ag), titanium (Ti), and alloys thereof. From the viewpoint of ensuring good light reflectivity of the metal reflective layer 20 for visible light, the material of the metal reflective layer 20 is preferably aluminum or silver.
  • the thickness of the metal reflective layer 20 is preferably 30 nm or more, more preferably 50 nm or more, even more preferably 70 nm or more, even more preferably 90 nm or more, and particularly preferably 100 nm or more, from the viewpoint of ensuring the light reflectivity of the metal reflective layer 20 and the reflective film X.
  • the thickness of the metal reflective layer 20 is preferably 500 nm or less, more preferably 300 nm or less, even more preferably 200 nm or less, even more preferably 150 nm or less, and even more preferably 120 nm or less, from the viewpoint of ensuring the adhesion of the metal reflective layer 20 to the resin film 10.
  • the luminous reflectance (Y value) of the metal reflective layer 20 at wavelengths of 380 nm to 780 nm in the CIE-XYZ color system is preferably 70% or more, more preferably 75% or more, and even more preferably 80% or more, from the viewpoint of ensuring the light reflectivity of the metal reflective layer 20 and the reflective film X.
  • the luminous reflectance is, for example, 90% or less, 95% or less, or 100% or less.
  • the luminous reflectance can be measured, for example, by a spectrophotometer (product name "U-4100", manufactured by Hitachi High-Tech Science Corporation).
  • the luminous reflectance (Y value) of the reflective film X at wavelengths of 380 nm to 780 nm in the CIE-XYZ color system is preferably 80% or more, more preferably 82% or more, and even more preferably 85% or more, from the viewpoint of ensuring the light leakage prevention properties of the reflective film X described below.
  • the luminous reflectance is, for example, 90% or less, 95% or less, or 100% or less.
  • the luminous reflectance (Y value) of the reflective film X is the reflectance of light irradiated onto the reflective film X from the resin film 10 side.
  • the luminous transmittance T1 (Y value) of the reflective film X at wavelengths of 380 nm to 780 nm in the CIE-XYZ color system is preferably less than 0.10%, more preferably 0.09% or less, even more preferably 0.08% or less, and even more preferably 0.07% or less, from the viewpoint of ensuring the light leakage prevention properties of the reflective film X described later.
  • the luminous transmittance T1 is, for example, 0.00% or more, 0.01% or more, or 0.02% or more.
  • the luminous transmittance T1 is the luminous transmittance of the reflective film X before the humidification test described later.
  • the luminous transmittance of the reflective film X is the transmittance of light irradiated onto the reflective film X from the resin film 10 side.
  • the luminous transmittance of the reflective film can be measured, for example, by a spectrophotometer (product name "U-4100", manufactured by Hitachi High-Tech Science Corporation). The method for measuring the luminous transmittance is specifically as described later in the examples.
  • the luminous transmittance T2 (Y value) of the reflective film X at wavelengths of 380 nm to 780 nm in the CIE-XYZ color system after the humidification test is preferably less than 0.10%, more preferably 0.09% or less, even more preferably 0.08% or less, and even more preferably 0.07% or less, from the viewpoint of ensuring the light leakage prevention properties of the reflective film X in a high-temperature and high-humidity environment.
  • the luminous transmittance T2 is, for example, 0.00% or more, 0.01% or more, or 0.02% or more.
  • the humidification test is a humidification test under conditions of 65°C, relative humidity of 90%, and 500 hours.
  • the difference T2-T1 between the luminous transmittance T2 (%) and the luminous transmittance T1 (%) is preferably 0.06 or less, more preferably 0.04 or less, even more preferably 0.03 or less, and even more preferably 0.02 or less, from the viewpoint of suppressing a decrease in the light leakage prevention properties of the reflective film X in a high-temperature and high-humidity environment.
  • the difference T2-T1 is, for example, 0.00 or more or 0.01 or more.
  • the value of the difference T2-T1 is expressed in units of "%".
  • Reflective film X can be manufactured, for example, as follows.
  • a resin film 10 is prepared.
  • the first surface 11 (surface roughness Ra is 50 nm or more) of the resin film 10 is formed by a roughening treatment (roughening step).
  • the roughening treatment include bombardment treatment, corona treatment, and UV treatment, and the bombardment treatment is preferred.
  • argon (Ar) gas as an inert gas is ionized by high-frequency plasma and collided with the surface of the resin film.
  • the air pressure in the treatment chamber during the bombardment treatment is preferably 0.01 Pa or more, more preferably 0.03 Pa or more, and also preferably 1.2 Pa or less, more preferably 1.0 Pa or less.
  • the output (bombardment output) of the plasma generation source for the bombardment treatment is preferably 0.15 W/ cm2 or more, more preferably 0.19 W/cm2 or more, even more preferably 0.21 W/ cm2 or more, and is preferably 0.42 W/ cm2 or less, more preferably 0.38 W/ cm2 or less, even more preferably 0.35 W/ cm2 or less , from the viewpoint of achieving good surface roughening of the resin film 10.
  • the surface roughness Ra of the first surface 11 of the resin film 10 can be adjusted.
  • a metal reflective layer 20 is formed on the resin film 10 (metal reflective layer formation process).
  • a dry coating method is used to deposit a metal material on the first surface 11 of the resin film 10 to form the metal reflective layer 20.
  • dry coating methods include sputtering and vapor deposition, with sputtering being preferred.
  • a sputtering device capable of performing a film formation process by a roll-to-roll method.
  • a sputtering device capable of continuously performing bombardment and the subsequent film formation process while running the work film by a roll-to-roll method is used.
  • a sputtering gas in the sputtering method, is introduced under vacuum conditions into a film formation chamber equipped in the sputtering device, while a negative voltage is applied to a target placed on a cathode in the film formation chamber. This generates a glow discharge to ionize gas atoms, and the gas ions collide with the target surface at high speed, ejecting the target material from the target surface, and the ejected target material is deposited on the resin film 10.
  • the target material placed on the cathode in the film formation chamber is a sintered body of the metal material described above for the metal reflective layer 20, and preferably a sintered body of Al or an Al alloy.
  • the air pressure in the film formation chamber during film formation by sputtering is, for example, 0.02 Pa or more and, for example, 1 Pa or less.
  • Examples of power sources for applying voltage to the target include a DC power source, an AC power source, an MF power source, and an RF power source.
  • the absolute value of the discharge voltage during sputter film formation is, for example, 50 V or more and, for example, 500 V or less.
  • the reflective film of the present invention has a metal reflective layer 20 on the first surface 11 of the resin film 10, and the surface roughness Ra of the first surface 11 is 50 nm or more.
  • a reflective film X migration of components (including carbon elements) derived from the resin film 10 from the resin film 10 to the metal reflective layer 20 is suppressed in a high-temperature, high-humidity environment.
  • the components derived from the resin film 10 are impurities for the metal reflective layer 20, and suppressing the migration of such impurities to the metal reflective layer 20 is suitable for maintaining the optical properties of the metal reflective layer 20. Therefore, the reflective film X is suitable for suppressing an increase in light transmittance in a high-temperature, high-humidity environment. Specifically, as shown in the examples and comparative examples described below.
  • the reflective film X may further include other layers on the metal reflective layer 20.
  • FIG. 2 shows a case where the reflective film X has a blackening layer 30 on the metal reflective layer 20.
  • the reflective film X shown in FIG. 2 has a resin film 10, a metal reflective layer 20, and a blackening layer 30, in that order in the thickness direction H.
  • the blackening layer 30 is disposed on the metal reflective layer 20. That is, the blackening layer 30 is in contact with the metal reflective layer 20 in this embodiment. From the viewpoint of the light blocking properties of the reflective film X, it is preferable that the reflective film X has a blackening layer 30.
  • the blackening layer 30 contains a metal oxide having high light absorption.
  • the metal (first metal) forming the metal oxide include copper (Cu), indium (In), molybdenum (Mo) and iron (Fe).
  • the metal oxide preferably contains at least one selected from the group consisting of Cu, In, Mo and Fe.
  • an oxide containing Cu and In is preferable from the viewpoint of ensuring adhesion of the cured resin layer 40 to the blackening layer 30 and from the viewpoint of ensuring stability during sputtering film formation when a sputtering method is adopted as a film formation method for the blackening layer 30. That is, as the metal oxide, copper indium oxide is preferable.
  • the proportion of Cu in the total amount of Cu and In is preferably 10 atomic % or more, more preferably 20 atomic % or more, and even more preferably 30 atomic % or more, from the viewpoint of ensuring adhesion of the cured resin layer 40 to the blackening layer 30.
  • the proportion of Cu is preferably 90 atomic % or less, more preferably 80 atomic % or less, and even more preferably 70 atomic % or less.
  • the blackening layer 30 may contain an elemental metal in addition to the metal oxide.
  • the elemental metal include In, Cu, Mo, and Fe.
  • the elemental metal is preferably at least one selected from the group consisting of In, Cu, Mo, and Fe.
  • the blackening layer 30 contains multiple elemental metals, it is preferable that the multiple elemental metals include a metal different from the first metal in the above-mentioned metal oxide. More preferably, the elemental metal is a metal other than the first metal.
  • the proportion of the first metal in the blackening layer 30 is preferably 10 atomic % or more, more preferably 20 atomic % or more, and is preferably 90 atomic % or less, more preferably 80 atomic % or less, from the viewpoint of realizing high light blocking properties in the blackening layer 30.
  • the proportion of the second metal in the blackening layer 30 is preferably 10 atomic % or more, more preferably 20 atomic % or more, and is preferably 90 atomic % or less, more preferably 80 atomic % or less, from the viewpoint of realizing high light blocking properties in the blackening layer 30.
  • the blackening layer 30 preferably contains a metal oxide and a single metal other than the first metal, and more preferably contains indium oxide as the metal oxide and copper as the single metal.
  • the proportion of In in the blackening layer 30 is preferably 40 atomic % or more, more preferably 50 atomic % or more, and is preferably 90 atomic % or less, more preferably 80 atomic % or less, from the viewpoint of realizing high light-shielding properties in the blackening layer 30.
  • the proportion of Cu in the blackening layer 30 is preferably 5 atomic % or more, more preferably 10 atomic % or more, and is preferably 50 atomic % or less, more preferably 40 atomic % or less, from the viewpoint of realizing high light-shielding properties in the blackening layer 30.
  • the thickness of the blackening layer 30 is preferably 400 nm or less, more preferably 200 nm or less, even more preferably 150 nm or less, and even more preferably 110 nm or less, from the viewpoint of ensuring adhesion of the blackening layer 30 to the base (metal reflective layer 20 in this modified example).
  • the thickness of the blackening layer 30 is preferably 5 nm or more, more preferably 10 nm or more, even more preferably 20 nm or more, even more preferably 30 nm or more, and particularly preferably 50 nm or more, from the viewpoint of ensuring the light-shielding properties of the blackening layer 30 and the reflective film X.
  • the blackening layer 30 can be formed, for example, by forming a film of a metal oxide-containing material on the metal reflective layer 20 by a dry coating method.
  • dry coating methods include sputtering and vapor deposition.
  • the blackening layer 30 is a dry coating film formed by a dry coating method, and more preferably, a sputtered film formed by a sputtering method.
  • the target material placed on the cathode in the sputtering deposition chamber i.e., the material of the blackening layer 30
  • the target material placed on the cathode in the sputtering deposition chamber is, for example, a sintered body of the metal oxide described above, preferably a sintered body of copper indium oxide.
  • the target material is preferably a sintered body containing the metal oxide and elemental metal described above for the blackening layer 30.
  • the air pressure in the deposition chamber during sputtering deposition of the blackening layer 30 is, for example, 0.02 Pa or more, and, for example, 1 Pa or less.
  • the blackening layer 30 formed from an inorganic material containing metal oxide is less susceptible to compressive residual stress than a black ink layer formed from a resin component.
  • the thickness of the blackening layer 30 is preferably 400 nm or less.
  • the difference between the compressive residual stress on the side fixed to the metal reflective layer 20 and the compressive residual stress on the side opposite the metal reflective layer 20 is small (the thinner the blackening layer 30, the smaller the difference in compressive residual stress on both sides).
  • the small difference in compressive residual stress on both sides of the thickness direction H of the blackening layer 30 helps ensure adhesion of the blackening layer 30 to the metal reflective layer 20.
  • the entire process from the metal reflective layer formation process to the blackening layer formation process is performed on one pass line while the work film is transported using the roll-to-roll method. During the process on one pass line, the work film is never exposed to the atmosphere. Forming the blackening layer 30 on the metal reflective layer 20 after the formation of the metal reflective layer 20 without exposing the work film to the atmosphere helps to ensure adhesion of the blackening layer 30 to the metal reflective layer 20.
  • FIG. 3 shows a case where the reflective film X has a cured resin layer 40 on a metal reflective layer 20.
  • the reflective film X shown in FIG. 3 has a resin film 10, a metal reflective layer 20, and a cured resin layer 40, in that order in the thickness direction H.
  • the cured resin layer 40 is disposed on the metal reflective layer 20. That is, in this embodiment, the cured resin layer 40 is in contact with the metal reflective layer 20.
  • the cured resin layer 40 is a hard coat layer that makes the reflective film X less susceptible to scratches. From the viewpoint of the abrasion resistance of the reflective film X, it is preferable that the reflective film X has a cured resin layer 40.
  • the cured resin layer 40 is a cured product of a curable resin composition.
  • the curable resin composition contains a curable resin.
  • the curable resin include polyester resin, acrylic urethane resin, acrylic resin (excluding acrylic urethane resin), urethane resin (excluding acrylic urethane resin), amide resin, silicone resin, epoxy resin, and melamine resin. These curable resins may be used alone or in combination of two or more types. From the viewpoint of ensuring high hardness of the cured resin layer 40, at least one selected from the group consisting of acrylic urethane resin and acrylic resin is preferably used as the curable resin.
  • examples of the curable resin include ultraviolet-curable resin and thermosetting resin.
  • ultraviolet-curable resin is preferred from the viewpoint of improving the manufacturing efficiency of the reflective film X.
  • the curable resin composition may contain particles.
  • the particles include inorganic oxide particles and organic particles.
  • the inorganic oxide particle material include silica, alumina, titania, zirconia, calcium oxide, tin oxide, indium oxide, cadmium oxide, and antimony oxide.
  • the organic particle material include polymethyl methacrylate, polystyrene, polyurethane, acrylic-styrene copolymer, benzoguanamine, melamine, and polycarbonate.
  • the particles may be used alone or in combination of two or more kinds.
  • the particles are preferably inorganic oxide particles, and more preferably at least one selected from silica particles and zirconia particles.
  • the average particle diameter (D50) of the particles is preferably 20 nm or more, more preferably 25 nm or more, and even more preferably 30 nm or more, from the viewpoint of ensuring the hardness of the cured resin layer 40.
  • the average particle diameter (D50) of the particles is preferably 300 nm or less, and particularly preferably 100 nm or less, from the viewpoint of uniform dispersion of the particles in the cured resin layer 40.
  • the average particle diameter (D50) of the particles is the median diameter in the volume-based particle size distribution (the particle diameter at which the volume cumulative frequency reaches 50% from the small diameter side), and is determined, for example, based on the particle size distribution obtained by a laser diffraction/scattering method.
  • the proportion of particles in the cured resin layer 40 is preferably 5% by mass or more, more preferably 8% by mass or more, and even more preferably 10% by mass or more, from the viewpoint of ensuring the hardness of the cured resin layer 40.
  • the proportion of particles in the cured resin layer 40 is preferably 30% by mass or less, more preferably 20% by mass or less, and even more preferably 15% by mass or less, from the viewpoint of uniform dispersion of the particles in the cured resin layer 40.
  • the thickness of the cured resin layer 40 is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and even more preferably 0.7 ⁇ m or more, from the viewpoint of providing sufficient abrasion resistance in the cured resin layer 40.
  • the thickness of the cured resin layer 40 is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, even more preferably 2 ⁇ m or less, and even more preferably 1.5 ⁇ m or less, from the viewpoint of ensuring adhesion of the cured resin layer 40 to the blackening layer 30.
  • the cured resin layer 40 can be formed by applying the above-mentioned curable resin composition onto the metal reflective layer 20 to form a coating film, and then curing the coating film. If the curable resin composition contains an ultraviolet-curable resin, the coating film is cured by exposure to ultraviolet light. If the curable resin composition contains a thermosetting resin, the coating film is cured by heating.
  • FIG. 4 shows a case where the reflective film X comprises the above-mentioned blackening layer 30 and the above-mentioned cured resin layer 40 on the metal reflective layer 20.
  • the reflective film X shown in FIG. 4 comprises a resin film 10, a metal reflective layer 20, a blackening layer 30, and a cured resin layer 40, in this order in the thickness direction H.
  • the blackening layer 30 is disposed on the metal reflective layer 20. That is, the blackening layer 30 contacts the metal reflective layer 20 in this embodiment.
  • the cured resin layer 40 is disposed on the blackening layer 30. That is, the cured resin layer 40 contacts the blackening layer 30 in this embodiment.
  • the reflective film X shown in FIG. 4 can be manufactured by forming a cured resin layer 40 on the blackened layer 30 of the reflective film X shown in FIG. 2.
  • the cured resin layer 40 can be formed by applying the above-mentioned curable resin composition on the blackened layer 30 to form a coating film, and then curing the coating film.
  • Example 1 First, a white polyethylene terephthalate (PET) film (product name: “Lumirror E20", thickness: 38 ⁇ m, manufactured by Toray Industries, Inc.) was prepared as a resin film.
  • PET polyethylene terephthalate
  • a sputtering device was used to sequentially perform a bombardment process as a roughening process on one side (first side) of the PET film and the formation of a metal reflective layer (sputtering process).
  • a roll-to-roll sputtering device (DC magnetron sputtering device) was used in this sputtering process.
  • This device is equipped with a pay-out chamber, a pre-treatment chamber, a film-forming chamber, and a winding chamber.
  • the pay-out chamber is equipped with a pay-out roller.
  • a roll of the above-mentioned resin film was set on the pay-out roller as the work film.
  • the winding chamber is equipped with a winding roller capable of winding up the work film.
  • the work film can be run from the pay-out chamber to the winding chamber using the roll-to-roll method, while the bombardment process in the pre-treatment chamber and the film-forming process in the film-forming chamber can be performed on the work film.
  • bombardment processing was carried out in the pretreatment chamber, followed by sputter deposition in the deposition chamber, after which the work film was wound up on the take-up roller in the take-up chamber.
  • the transport speed of the work film was 3 m/min.
  • argon (Ar) gas as an inert gas was ionized by high-frequency plasma and collided with the surface of the PET film. This roughened the first surface of the PET film.
  • Ar was introduced into the pretreatment chamber after evacuating the inside of the sputtering device, and the pressure in the pretreatment chamber was set to 0.8 Pa.
  • the output of the plasma generation source was set to 0.32 W/ cm2 .
  • a 75 nm thick aluminum (Al) layer was formed as a metal reflective layer on the first surface of the PET film.
  • Ar was introduced as a sputtering gas into the deposition chamber after evacuating the sputtering device, and the air pressure in the deposition chamber was set to 0.3 to 0.4 Pa.
  • An Al target was used as the target.
  • a DC power supply was used as the power supply for applying voltage to the target.
  • the deposition temperature (the temperature of the PET film on which the Al layer is laminated) was set to 40°C.
  • the reflective film of Example 1 has a laminated structure of a resin film (thickness 38 ⁇ m) and a metal reflective layer (Al layer, thickness 75 nm).
  • Example 2 The reflective film of Example 2 was produced in the same manner as the reflective film of Example 1, except for the following. In the surface roughening treatment of the resin film, the output of the bombardment treatment in the pretreatment chamber for sputtering deposition was set to 0.21 W/ cm2 .
  • the reflective film of Example 2 has a laminated structure of a resin film (thickness 38 ⁇ m) and a metal reflective layer (Al layer, thickness 75 nm).
  • Example 3 The reflective film of Example 3 was produced in the same manner as the reflective film of Example 1, except for the following: A cured resin layer was further formed on the metal reflective layer. Specifically, the process is as follows.
  • a first curable resin composition was applied onto the metal reflective layer to form a coating.
  • the first curable resin composition contains an ultraviolet-curable acrylic urethane resin (product name: AICA ITRON Z844, manufactured by AICA Corporation) and methyl ethyl ketone as a solvent.
  • the coating was dried and then cured by exposure to ultraviolet light to form a 1 ⁇ m-thick cured resin layer.
  • the reflective film of Example 3 has a laminated structure of a substrate film (thickness 38 ⁇ m), a metal reflective layer (Al layer, thickness 75 nm), and a cured resin layer (thickness 1 ⁇ m).
  • Example 4 First, a white polyethylene terephthalate (PET) film (product name: “Lumirror E20", thickness: 38 ⁇ m, manufactured by Toray Industries, Inc.) was prepared as a substrate film.
  • PET polyethylene terephthalate
  • a sputtering device was used to sequentially perform a bombardment process as a roughening process on one side (first side) of the PET film, the formation of a metal reflective layer, and the formation of a blackening layer (sputtering process).
  • a roll-to-roll sputtering device DC magnetron sputtering device
  • This device is equipped with a pay-out chamber, a pre-treatment chamber, a first film-forming chamber, a second film-forming chamber, and a winding chamber.
  • the pay-out chamber is equipped with a pay-out roller. A roll of the above-mentioned resin film was set on the pay-out roller as the work film.
  • the winding chamber is equipped with a winding roller that can take up the work film.
  • a winding roller that can take up the work film.
  • first sputter deposition in the first deposition chamber, and second sputter deposition in the second deposition chamber were carried out in sequence, after which the work film was wound up on the winding roller in the winding chamber.
  • the transport speed of the work film was 3 m/min.
  • the bombardment treatment was carried out in the same manner as the above-mentioned bombardment treatment (output: 0.32 W/cm 2 ) in Example 1.
  • the first sputtering deposition was carried out in the same manner as the above-mentioned sputtering deposition in Example 1.
  • the second sputtering deposition Ar was introduced as a sputtering gas into the second deposition chamber after the above-mentioned evacuation of the sputtering device, and the pressure in the second deposition chamber was set to 0.3 to 0.4 Pa.
  • a black inorganic target product name "DIABLA12", a mixed target of indium oxide (In 2 O 3 ) and copper (Cu), In ratio of 67.3 ( ⁇ 3) mass%, manufactured by Mitsubishi Materials Corporation
  • a DC power supply was used as the power source for applying voltage to the target.
  • the deposition temperature (the temperature of the workpiece film on which the blackened layer is formed) was set to 40°C.
  • the reflective film of Example 4 has a laminated structure of a substrate film (thickness 38 ⁇ m), a metal reflective layer (Al layer, thickness 75 nm), and a blackened layer (thickness 30 nm).
  • Example 5 The reflective film of Example 5 was produced in the same manner as the reflective film of Example 4, except for the following: A cured resin layer was further formed on the blackened layer.
  • a second curable resin composition was applied onto the blackened layer to form a coating.
  • the second curable resin composition contains an ultraviolet-curable acrylic urethane resin (product name: AICA ITRON Z844, manufactured by AICA Corporation) and methyl ethyl ketone as a solvent.
  • the coating was dried and then cured by exposure to ultraviolet light to form a 1 ⁇ m-thick cured resin layer.
  • the reflective film of Example 5 has a laminated structure of a substrate film (thickness 38 ⁇ m), a metal reflective layer (Al layer, thickness 75 nm), a blackening layer (thickness 30 nm), and a cured resin layer (thickness 1 ⁇ m).
  • the reflective film of Comparative Example 1 was produced in the same manner as the reflective film of Example 1, except for the following. In the surface roughening treatment of the resin film, the output of the bombardment treatment in the pretreatment chamber for sputtering deposition was set to 0.11 W/ cm2 .
  • the reflective film of Comparative Example 1 has a laminated structure of a resin film (thickness 38 ⁇ m) and a metal reflective layer (Al layer, thickness 75 nm).
  • ⁇ Thickness of metal reflective layer, thickness of blackened layer> The thickness of the metal reflective layer in each of the reflective films of Examples 1 to 3 and Comparative Example 1, and the thickness of the metal reflective layer and the blackened layer in each of the reflective films of Examples 4 and 5 were measured by observation with a field emission transmission electron microscope (FE-TEM). Specifically, first, samples for cross-sectional observation of the metal reflective layer and the blackened layer in Examples 1 to 5 and Comparative Example 1 were prepared by the FIB microsampling method. In the FIB microsampling method, an FIB device (product name "FB2200", manufactured by Hitachi) was used, and the acceleration voltage was set to 10 kV.
  • FIB microsampling method an FIB device (product name "FB2200", manufactured by Hitachi) was used, and the acceleration voltage was set to 10 kV.
  • ⁇ Visual transmittance> The luminous transmittance of each of the reflective films of Examples 1 to 5 and Comparative Example 1 was measured (first transmittance measurement). Specifically, the measurement was as follows.
  • first film piece a piece of film for measurement (first film piece) was cut out from the reflective film.
  • the luminous transmittance of the first film piece was measured using a spectrophotometer (product name "U-4100", manufactured by Hitachi High-Tech Science Corporation). This transmittance is the luminous transmittance (Y value) in the CIE-XYZ color system of light with wavelengths of 380 nm to 780 nm transmitted through the first film piece.
  • the first film piece was placed in the spectrophotometer so that light was hitting the resin film side of the first film piece.
  • the luminous transmittance (Y value) in the first transmittance measurement is shown in Table 1 as the luminous transmittance T1 before the humidification test.
  • the luminous transmittance after the humidification test was measured (second transmittance measurement).
  • the reflective films were stored for 500 hours in an environment of 65°C and a relative humidity of 90%.
  • the second transmittance measurement was carried out in the same manner as the first transmittance measurement.
  • the luminous transmittance (Y value) in the second transmittance measurement is shown in Table 1 as the luminous transmittance T2 after the humidification test.
  • the difference T2-T1 (%) between the above-mentioned luminous transmittance T1 and luminous transmittance T2 is also shown in Table 1.
  • the side of the reflective film opposite the resin film side was attached to a black acrylic plate via a specified adhesive. This resulted in a laminated film.
  • a film piece for measurement (second film piece) was cut out from the laminated film.
  • the luminous reflectance of the second film piece was then measured using a spectrophotometer (product name "U-4100", manufactured by Hitachi High-Tech Science Corporation). This reflectance is the luminous reflectance (Y value) in the CIE-XYZ color system of light with a wavelength of 380 nm to 780 nm irradiated onto the second film piece.
  • the second film piece was placed in the spectrophotometer so that light was irradiated from the resin film side onto the second film piece.
  • Table 1 The measurement results are shown in Table 1.
  • ⁇ Surface roughness> The surface roughness of the first surface (the surface on the metal reflective layer side) of the resin film was examined for each of the reflective films of Examples 1 to 5 and Comparative Example 1. Specifically, first, a metal reflective layer was formed on the resin film in the manufacturing process of the reflective film, and then the metal reflective layer was removed by etching. This exposed the first surface of the resin film. In the etching, an aqueous sodium hydroxide solution was used as an etching solution.
  • the surface roughness Ra (arithmetic mean surface roughness based on JIS B 0601-2001) of the first surface of the resin film was obtained from an observation image of 1 ⁇ m square using an atomic force microscope (product name "Dimention-Edge SPM SYSTEM", manufactured by Bruker).
  • the surface roughness Ra (nm) is shown in Table 1.
  • TOF-SIMS The metal reflective layer of each of the reflective films in Example 1 and Comparative Example 1 was subjected to component analysis by time-of-flight secondary ion mass spectrometry (TOF-SIMS). Specifically, the results are as follows.
  • TOF-SIMS first analysis
  • a time-of-flight secondary ion mass spectrometer (name: TOF-SIMS 5, manufactured by ION-TOF) was used for the analysis.
  • TOF-SIMS 5 manufactured by ION-TOF
  • irradiation with an ion beam for etching and subsequent irradiation with an ion beam for measurement were alternately repeated.
  • Cs + cesium ions
  • the acceleration voltage was 1 kV
  • the irradiation range was 1000 ⁇ m ⁇ 1000 ⁇ m
  • each irradiation time was 5 seconds.
  • double-charged ions (Bi 3 ++ ) of bismuth clusters were used as the primary ions for irradiation
  • the acceleration voltage was 30 kV
  • the irradiation range was 100 ⁇ m ⁇ 100 ⁇ m in the center of the area irradiated with the ion beam for etching
  • a neutralization gun was used to correct the charging of the sample during analysis. In addition, this analysis was performed at room temperature.
  • This analysis obtained a profile (depth profile) in the depth direction (thickness direction of the metal reflective layer) of the mass spectrum of secondary ion (negative ion) intensity.
  • Components detected as secondary ions (negative ions) in this analysis included carbon (C).
  • the average ion intensity (counts/sec) of carbon was then determined at a depth of 5 ⁇ m or less (to the surface on the resin film side) from the exposed surface of the metal reflective layer.
  • the average ion intensity in the first analysis is shown in Table 1 as the ion intensity F1 before the humidification test.
  • each reflective film of Example 1 and Comparative Example 1 was subjected to a component analysis by TOF-SIMS after the humidification test (second analysis).
  • second analysis was carried out in the same manner as the first component analysis.
  • the average ionic strength in the second analysis is shown in Table 1 as the ionic strength F2 after the humidification test.
  • the ratio of ionic strength F2 to the above-mentioned ionic strength F1 (F2/F1) is also shown in Table 1.
  • the surface roughness Ra of the first surface of the resin film was 45.2 nm, which was relatively small.
  • the ratio (F2/F1) of the ionic strength of the carbon element in the metal reflective layer before and after the humidification test was 3.2, and the increase in the amount of carbon (impurity) in the metal reflective layer was relatively large. This is thought to be because the smoothness of the first surface of the resin film is high, so the adhesion between the resin film and the metal reflective layer is low, so the penetration of moisture from the resin film to the metal reflective layer is not suppressed, and the carbon component in the resin film diffuses and migrates to the metal reflective layer together with moisture.
  • the optical properties of the metal reflective layer are significantly deteriorated by the humidification test, and the difference T2-T1 (increase in luminous transmittance) in the luminous transmittance before and after the humidification test was 0.09.
  • the surface roughness Ra of the first surface of the resin film (interface with the metal reflective layer) is 50 nm or more.
  • the ratio of the ionic strength of the carbon element in the metal reflective layer (F2/F1) before and after the humidification test was less than 3.0 (specifically, 2.2 or 2.7), and the increase in the amount of carbon (impurity) in the metal reflective layer was relatively small. Therefore, in each of the reflective films of Examples 1 to 5, the difference T2-T1 in luminous transmittance before and after the humidification test (increase in luminous transmittance) was suppressed to 0.06 or less.
  • the reflective film of the present invention can be used, for example, as a reflective film placed inside the bezel of the housing of a liquid crystal display device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

A reflective film (X) according to the present invention comprises: a resin film (10) that has a first surface (11) and a second surface (12) opposite to the first surface (11); and a metallic reflective layer (20) on the first surface (11). The surface roughness Ra of the first surface (11) is 50 nm or more.

Description

反射フィルムReflective Film
 本発明は、反射フィルムに関する。 The present invention relates to a reflective film.
 液晶表示装置は、画像表示面を有する液晶パネルと、当該パネルの背面に向けて光を出射するバックライトと、これらを収容する筐体とを備える。筐体は、画像表示面まわりの枠としてのベゼル部を有する。ベゼル部内の内壁面には、反射フィルムが配置される。反射フィルムは、例えば、白色樹脂フィルムと、当該フィルム上の金属反射層とを備える。反射フィルムは、バックライトからの光がベゼル部から漏れ出るのを防止するために用いられる(反射フィルムの漏光防止機能)。このような反射フィルムに関する技術は、例えば、下記の特許文献1に記載されている。 A liquid crystal display device comprises a liquid crystal panel having an image display surface, a backlight that emits light toward the rear surface of the panel, and a housing that houses these. The housing has a bezel portion as a frame around the image display surface. A reflective film is disposed on the inner wall surface of the bezel portion. The reflective film comprises, for example, a white resin film and a metal reflective layer on the film. The reflective film is used to prevent light from the backlight from leaking out of the bezel portion (light leakage prevention function of the reflective film). Technology relating to such reflective films is described, for example, in Patent Document 1 listed below.
特開2004-184443号公報JP 2004-184443 A
 反射防止フィルムには、漏光防止機能の実現のために、バックライトからの光に対する高反射性および低透過性が求められる。しかしながら、従来の反射フィルムでは、高温高湿環境下において低透過性が劣化すること(光透過率が上昇すること)を、本発明らは見いだした。 Anti-reflection films are required to have high reflectivity and low transmittance for light from a backlight in order to prevent light leakage. However, the inventors discovered that the low transmittance of conventional reflective films deteriorates (light transmittance increases) in high-temperature, high-humidity environments.
 本発明は、高温高湿環境下での光透過率の上昇を抑制するのに適した反射フィルムを提供する。 The present invention provides a reflective film suitable for suppressing an increase in light transmittance in high-temperature, high-humidity environments.
 本発明[1]は、第1面と当該第1面とは反対側の第2面とを有する樹脂フィルムと、前記第1面上の金属反射層とを備え、前記第1面の表面粗さRaが50nm以上である、反射フィルムを含む。 The present invention [1] includes a reflective film comprising a resin film having a first surface and a second surface opposite to the first surface, and a metal reflective layer on the first surface, the surface roughness Ra of the first surface being 50 nm or more.
 本発明[2]は、前記反射フィルムが、視感透過率T1(%)を有し、且つ、65℃、相対湿度90%および500時間の条件での加湿試験の後に視感透過率T2(%)を有し、視感透過率T2と視感透過率T1との差T2-T1が0.06以下である、上記[1]に記載の反射フィルムを含む。 The present invention [2] includes the reflective film described in [1] above, which has a luminous transmittance T1 (%), and has a luminous transmittance T2 (%) after a humidification test under conditions of 65°C, relative humidity 90%, and 500 hours, and the difference T2-T1 between the luminous transmittance T2 and the luminous transmittance T1 is 0.06 or less.
 本発明[3]は、前記金属反射層がアルミニウム層である、上記[1]または[2]に記載の反射フィルムを含む。 The present invention [3] includes the reflective film described in [1] or [2] above, in which the metal reflective layer is an aluminum layer.
 本発明[4]は、前記樹脂フィルム側に照射される光に対して前記反射フィルムが80%以上の視感反射率を有する、上記[1]から[3]のいずれか一つに記載の反射フィルムを含む。 The present invention [4] includes the reflective film according to any one of [1] to [3] above, in which the reflective film has a visual reflectance of 80% or more for light irradiated to the resin film side.
 本発明[5]は、前記金属反射層における前記樹脂フィルムとは反対側に黒化層を備える、上記[1]から[4]のいずれか一つに記載の反射フィルムを含む。 The present invention [5] includes the reflective film according to any one of [1] to [4] above, which has a blackening layer on the side of the metal reflective layer opposite the resin film.
 本発明[6]は、前記黒化層における前記金属反射層とは反対側に硬化樹脂層を備える、上記[5]に記載の反射フィルムを含む。 The present invention [6] includes the reflective film described in [5] above, which has a cured resin layer on the side of the blackening layer opposite the metal reflective layer.
 本発明の反射フィルムは、上記のように、樹脂フィルムの第1面上に金属反射層を備え、当該第1面の表面粗さRaが50nm以上である。このような反射フィルムでは、高温高湿環境下において、樹脂フィルムから金属反射層への、樹脂フィルムに由来する成分(炭素元素を含む)の移行が抑制される(このような知見を本発明らは得た)。樹脂フィルムに由来する成分は、金属反射層にとっての不純物であり、そのような不純物の金属反射層への移行が抑制されることは、金属反射層の光学特性を維持するのに適する。したがって、本発明の反射フィルムは、高温高湿環境下での光透過率の上昇を抑制するのに適する。 As described above, the reflective film of the present invention has a metal reflective layer on the first surface of the resin film, and the surface roughness Ra of the first surface is 50 nm or more. In such a reflective film, migration of components (including carbon elements) derived from the resin film from the resin film to the metal reflective layer is suppressed in a high-temperature, high-humidity environment (this finding was obtained by the present inventors). The components derived from the resin film are impurities for the metal reflective layer, and suppressing the migration of such impurities to the metal reflective layer is suitable for maintaining the optical properties of the metal reflective layer. Therefore, the reflective film of the present invention is suitable for suppressing an increase in light transmittance in a high-temperature, high-humidity environment.
本発明の反射フィルムの一実施形態の断面模式図である。1 is a schematic cross-sectional view of one embodiment of a reflective film of the present invention. 本発明の反射フィルムの一の変形例の断面模式図である。本変形例は、金属反射層上に黒化層を備える。1 is a schematic cross-sectional view of a modified example of the reflective film of the present invention, which includes a blackening layer on a metal reflective layer. 本発明の反射フィルムの一の変形例の断面模式図である。本変形例は、金属反射層上に硬化樹脂層を備える。1 is a schematic cross-sectional view of a modified example of the reflective film of the present invention, which includes a cured resin layer on a metal reflective layer. 本発明の反射フィルムの一の変形例の断面模式図である。本変形例は、金属反射層上に黒化層と硬化樹脂層とをこの順で備える。1 is a schematic cross-sectional view of a modified example of the reflective film of the present invention, which includes a blackening layer and a cured resin layer in this order on a metal reflective layer.
 本発明の一実施形態の反射フィルムXは、図1に示すように、樹脂フィルム10と、金属反射層20とを厚さ方向Hに順に備える。反射フィルムXは、厚さ方向Hと直交する方向(面方向)に広がる。反射フィルムXは、例えば、液晶表示装置のバックライトからの光が筐体から漏れ出るのを防止する反射フィルムである。 As shown in FIG. 1, the reflective film X of one embodiment of the present invention comprises a resin film 10 and a metal reflective layer 20 in this order in the thickness direction H. The reflective film X extends in a direction (plane direction) perpendicular to the thickness direction H. The reflective film X is, for example, a reflective film that prevents light from a backlight of a liquid crystal display device from leaking out of the housing.
 樹脂フィルム10は、反射フィルムXの強度を確保する基材である。樹脂フィルム10は、第1面11と、当該第1面11とは反対側の第2面12とを有する。また、樹脂フィルム10は、例えば、可撓性を有する透明な樹脂フィルムである。樹脂フィルム10の材料としては、例えば、ポリエステル樹脂、ポリオレフィン樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリエーテルスルフォン樹脂、ポリアリレート樹脂、メラミン樹脂、ポリアミド樹脂、ポリイミド樹脂、セルロース樹脂、およびポリスチレン樹脂が挙げられる。ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、およびポリエチレンナフタレートが挙げられる。ポリオレフィン樹脂としては、例えば、ポリエチレン、ポリプロピレン、およびシクロオレフィンポリマーが挙げられる。アクリル樹脂としては、例えばポリメタクリレートが挙げられる。樹脂フィルム10の材料は、透明性および強度の観点から、好ましくはポリエステル樹脂であり、より好ましくはPETである。 The resin film 10 is a base material that ensures the strength of the reflective film X. The resin film 10 has a first surface 11 and a second surface 12 opposite to the first surface 11. The resin film 10 is, for example, a transparent resin film that has flexibility. Examples of the material of the resin film 10 include polyester resin, polyolefin resin, acrylic resin, polycarbonate resin, polyethersulfone resin, polyarylate resin, melamine resin, polyamide resin, polyimide resin, cellulose resin, and polystyrene resin. Examples of the polyester resin include polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate. Examples of the polyolefin resin include polyethylene, polypropylene, and cycloolefin polymer. Examples of the acrylic resin include polymethacrylate. From the viewpoints of transparency and strength, the material of the resin film 10 is preferably polyester resin, and more preferably PET.
 樹脂フィルム10は、樹脂フィルム10の有意な光反射性を確保する観点から、白色フィルムであるのが好ましい。白色フィルムは、例えば、光散乱を生じさせる無機フィラーなどの粒子を上述の樹脂フィルムに含有させることにより、得られる。そのような粒子としては、例えば、酸化チタン、炭酸カルシウム、硫酸バリウム、シリカ、およびタルクが挙げられ、好ましくは、酸化チタンおよび/またはシリカが用いられる。これら粒子は、単独で用いられてもよいし、二種類以上が用いられてもよい。当該粒子の平均粒子径は、例えば0.05μm以上、好ましくは0.1μm以上であり、また、例えば2μm以下、好ましくは1μm以下である。白色フィルムとしての樹脂フィルム10における同粒子の含有割合は、例えば5質量%以上、好ましくは10質量%以上であり、また、例えば50質量%以下、好ましくは40質量%以下である。 The resin film 10 is preferably a white film from the viewpoint of ensuring significant light reflectivity of the resin film 10. The white film can be obtained, for example, by incorporating particles such as inorganic fillers that cause light scattering into the resin film. Examples of such particles include titanium oxide, calcium carbonate, barium sulfate, silica, and talc, and preferably titanium oxide and/or silica are used. These particles may be used alone or in combination of two or more types. The average particle size of the particles is, for example, 0.05 μm or more, preferably 0.1 μm or more, and, for example, 2 μm or less, preferably 1 μm or less. The content ratio of the particles in the resin film 10 as a white film is, for example, 5 mass% or more, preferably 10 mass% or more, and, for example, 50 mass% or less, preferably 40 mass% or less.
 樹脂フィルム10の厚さは、反射フィルムXの強度の観点から、好ましくは20μm以上、より好ましくは30μm以上、更に好ましくは35μm以上である。樹脂フィルム10の厚さは、ロールトゥロール方式における樹脂フィルム10の取り扱い性を確保する観点から、好ましくは300μm以下、より好ましくは200μm以下、更に好ましくは150μm以下、一層好ましくは100μm以下、より一層好ましくは70μm以下、特に好ましくは50μm以下である。 From the viewpoint of the strength of the reflective film X, the thickness of the resin film 10 is preferably 20 μm or more, more preferably 30 μm or more, and even more preferably 35 μm or more. From the viewpoint of ensuring the handleability of the resin film 10 in the roll-to-roll method, the thickness of the resin film 10 is preferably 300 μm or less, more preferably 200 μm or less, even more preferably 150 μm or less, even more preferably 100 μm or less, even more preferably 70 μm or less, and particularly preferably 50 μm or less.
 樹脂フィルム10の第1面11の表面粗さRa(JIS B 0601-2001に基づく算術平均表面粗さ)は、50nm以上である。このような構成は、高温高湿環境下での反射フィルムXの光透過率の上昇を抑制するのに適する。具体的には、後述のとおりである。高温高湿環境下での反射フィルムXの光透過率の上昇を抑制する観点から、第1面11の表面粗さRaは、好ましくは53nm以上、より好ましくは57nm以上、更に好ましくは60nm以上である。第1面11の表面粗さRaは、金属反射層20において厚さの均一性を確保する観点から、好ましくは150nm以下、より好ましくは120nm以下、更に好ましくは100nm以下、一層好ましくは80nm以下である。表面粗さRaの測定方法は、具体的には、実施例に関して後述するとおりである。 The surface roughness Ra (arithmetic mean surface roughness based on JIS B 0601-2001) of the first surface 11 of the resin film 10 is 50 nm or more. Such a configuration is suitable for suppressing an increase in the light transmittance of the reflective film X in a high-temperature, high-humidity environment. The specific details are as described below. From the viewpoint of suppressing an increase in the light transmittance of the reflective film X in a high-temperature, high-humidity environment, the surface roughness Ra of the first surface 11 is preferably 53 nm or more, more preferably 57 nm or more, and even more preferably 60 nm or more. From the viewpoint of ensuring the uniformity of the thickness of the metal reflective layer 20, the surface roughness Ra of the first surface 11 is preferably 150 nm or less, more preferably 120 nm or less, even more preferably 100 nm or less, and even more preferably 80 nm or less. The method for measuring the surface roughness Ra is specifically as described below in the examples.
 第1面11における50nm以上の表面粗さRaは、例えば、樹脂フィルム10に対する粗面化処理によって実現できる。粗面化処理としては、例えば、ボンバード処理、コロナ処理、およびUV処理が挙げられ、ボンバード処理が好ましい。 The surface roughness Ra of 50 nm or more on the first surface 11 can be achieved, for example, by subjecting the resin film 10 to a roughening treatment. Examples of roughening treatments include bombardment treatment, corona treatment, and UV treatment, with bombardment treatment being preferred.
 金属反射層20は、樹脂フィルム10の第1面11上に配置されている。すなわち、金属反射層20は、第1面11に接する。 The metal reflective layer 20 is disposed on the first surface 11 of the resin film 10. That is, the metal reflective layer 20 is in contact with the first surface 11.
 金属反射層20は、光反射性を有する金属から形成されている。金属反射層20を形成する金属材料としては、例えば、アルミニウム(Al)、銀(Ag)、チタン(Ti)、および、これらの合金が挙げられる。可視光に対する金属反射層20の良好な光反射性を確保する観点から、金属反射層20の材料としては、アルミニウムまたは銀が好ましい。 The metal reflective layer 20 is formed from a metal having light reflectivity. Examples of metal materials that form the metal reflective layer 20 include aluminum (Al), silver (Ag), titanium (Ti), and alloys thereof. From the viewpoint of ensuring good light reflectivity of the metal reflective layer 20 for visible light, the material of the metal reflective layer 20 is preferably aluminum or silver.
 金属反射層20の厚さは、金属反射層20および反射フィルムXの光反射性を確保する観点から、好ましくは30nm以上、より好ましくは50nm以上、更に好ましくは70nm以上、一層好ましくは90nm以上、特に好ましくは100nm以上である。金属反射層20の厚さは、樹脂フィルム10に対する金属反射層20の密着性を確保する観点から、好ましくは500nm以下、より好ましくは300nm以下、更に好ましくは200nm以下、一層好ましくは150nm以下、より一層好ましくは120nm以下である。 The thickness of the metal reflective layer 20 is preferably 30 nm or more, more preferably 50 nm or more, even more preferably 70 nm or more, even more preferably 90 nm or more, and particularly preferably 100 nm or more, from the viewpoint of ensuring the light reflectivity of the metal reflective layer 20 and the reflective film X. The thickness of the metal reflective layer 20 is preferably 500 nm or less, more preferably 300 nm or less, even more preferably 200 nm or less, even more preferably 150 nm or less, and even more preferably 120 nm or less, from the viewpoint of ensuring the adhesion of the metal reflective layer 20 to the resin film 10.
 金属反射層20の、CIE-XYZ表色系での波長380nm~780nmの視感反射率(Y値)は、金属反射層20および反射フィルムXの光反射性を確保する観点から、好ましくは70%以上、より好ましくは75%以上、更に好ましくは80%以上である。同視感反射率は、例えば、90%以下、95%以下または100%以下である。視感反射率は、例えば、分光光度計(品名「U-4100」,日立ハイテクサイエンス社製)によって測定できる。 The luminous reflectance (Y value) of the metal reflective layer 20 at wavelengths of 380 nm to 780 nm in the CIE-XYZ color system is preferably 70% or more, more preferably 75% or more, and even more preferably 80% or more, from the viewpoint of ensuring the light reflectivity of the metal reflective layer 20 and the reflective film X. The luminous reflectance is, for example, 90% or less, 95% or less, or 100% or less. The luminous reflectance can be measured, for example, by a spectrophotometer (product name "U-4100", manufactured by Hitachi High-Tech Science Corporation).
 反射フィルムXの、CIE-XYZ表色系での波長380nm~780nmの視感反射率(Y値)は、反射フィルムXに関する後述の漏光防止性を確保する観点から、好ましくは80%以上、より好ましくは82%以上、更に好ましくは85%以上である。同視感反射率は、例えば、90%以下、95%以下または100%以下である。反射フィルムXの視感反射率(Y値)とは、反射フィルムXに対して樹脂フィルム10側から照射される光の反射率とする。 The luminous reflectance (Y value) of the reflective film X at wavelengths of 380 nm to 780 nm in the CIE-XYZ color system is preferably 80% or more, more preferably 82% or more, and even more preferably 85% or more, from the viewpoint of ensuring the light leakage prevention properties of the reflective film X described below. The luminous reflectance is, for example, 90% or less, 95% or less, or 100% or less. The luminous reflectance (Y value) of the reflective film X is the reflectance of light irradiated onto the reflective film X from the resin film 10 side.
 反射フィルムXの、CIE-XYZ表色系での波長380nm~780nmの視感透過率T1(Y値)は、反射フィルムXに関する後述の漏光防止性を確保する観点から、好ましくは0.10%未満、より好ましくは0.09%以下、更に好ましくは0.08%以下、一層好ましくは0.07%以下である。視感透過率T1は、例えば、0.00%以上、0.01%以上または0.02%以上である。視感透過率T1は、後記の加湿試験前の反射フィルムXの視感透過率である。また、反射フィルムXの視感透過率とは、反射フィルムXに対して樹脂フィルム10側から照射される光の透過率とする。反射フィルムの視感透過率は、例えば、分光光度計(品名「U-4100」,日立ハイテクサイエンス社製)によって測定できる。視感透過率の測定方法は、具体的には、実施例に関して後述するとおりである。 The luminous transmittance T1 (Y value) of the reflective film X at wavelengths of 380 nm to 780 nm in the CIE-XYZ color system is preferably less than 0.10%, more preferably 0.09% or less, even more preferably 0.08% or less, and even more preferably 0.07% or less, from the viewpoint of ensuring the light leakage prevention properties of the reflective film X described later. The luminous transmittance T1 is, for example, 0.00% or more, 0.01% or more, or 0.02% or more. The luminous transmittance T1 is the luminous transmittance of the reflective film X before the humidification test described later. The luminous transmittance of the reflective film X is the transmittance of light irradiated onto the reflective film X from the resin film 10 side. The luminous transmittance of the reflective film can be measured, for example, by a spectrophotometer (product name "U-4100", manufactured by Hitachi High-Tech Science Corporation). The method for measuring the luminous transmittance is specifically as described later in the examples.
 加湿試験後の反射フィルムXの、CIE-XYZ表色系での波長380nm~780nmの視感透過率T2(Y値)は、高温高湿環境下での反射フィルムXの漏光防止性を確保する観点から、好ましくは0.10%未満、より好ましくは0.09%以下、更に好ましくは0.08%以下、一層好ましくは0.07%以下である。視感透過率T2は、例えば、0.00%以上、0.01%以上または0.02%以上である。加湿試験とは、65℃、相対湿度90%および500時間の条件での加湿試験である。 The luminous transmittance T2 (Y value) of the reflective film X at wavelengths of 380 nm to 780 nm in the CIE-XYZ color system after the humidification test is preferably less than 0.10%, more preferably 0.09% or less, even more preferably 0.08% or less, and even more preferably 0.07% or less, from the viewpoint of ensuring the light leakage prevention properties of the reflective film X in a high-temperature and high-humidity environment. The luminous transmittance T2 is, for example, 0.00% or more, 0.01% or more, or 0.02% or more. The humidification test is a humidification test under conditions of 65°C, relative humidity of 90%, and 500 hours.
 視感透過率T2(%)と視感透過率T1(%)との差T2-T1は、高温高湿環境下での反射フィルムXの漏光防止性の低下を抑制する観点から、好ましくは0.06以下、より好ましくは0.04以下、更に好ましくは0.03以下、一層好ましくは0.02以下である。差T2-T1は、例えば、0.00以上または0.01以上である。差T2-T1の値の単位は“%”である。 The difference T2-T1 between the luminous transmittance T2 (%) and the luminous transmittance T1 (%) is preferably 0.06 or less, more preferably 0.04 or less, even more preferably 0.03 or less, and even more preferably 0.02 or less, from the viewpoint of suppressing a decrease in the light leakage prevention properties of the reflective film X in a high-temperature and high-humidity environment. The difference T2-T1 is, for example, 0.00 or more or 0.01 or more. The value of the difference T2-T1 is expressed in units of "%".
 反射フィルムXは、例えば、次のようにして製造できる。 Reflective film X can be manufactured, for example, as follows.
 まず、樹脂フィルム10を用意する。樹脂フィルム10の第1面11(表面粗さRaが50nm以上)は、粗面化処理によって形成する(粗面化工程)。粗面化処理としては、例えば、ボンバード処理、コロナ処理、およびUV処理が挙げられ、ボンバード処理が好ましい。ボンバード処理では、不活性ガスとしてのアルゴン(Ar)ガスを高周波プラズマによってイオン化させて樹脂フィルム表面に衝突させる。ボンバード処理中の処理室内の気圧は、好ましくは0.01Pa以上、より好ましくは0.03以上であり、また、好ましくは1.2Pa以下、より好ましくは1.0Pa以下である。ボンバード処理用のプラズマ発生源の出力(ボンバード出力)は、樹脂フィルム10の良好な粗面化を実現する観点から、好ましくは0.15W/cm以上、より好ましくは0.19W/cm以上、更に好ましくは0.21W/cm以上であり、また、好ましくは0.42W/cm以下、より好ましくは0.38W/cm以下、更に好ましくは0.35W/cm以下である。ボンバード処理の条件の調整により、樹脂フィルム10の第1面11の表面粗さRaを調整できる。 First, a resin film 10 is prepared. The first surface 11 (surface roughness Ra is 50 nm or more) of the resin film 10 is formed by a roughening treatment (roughening step). Examples of the roughening treatment include bombardment treatment, corona treatment, and UV treatment, and the bombardment treatment is preferred. In the bombardment treatment, argon (Ar) gas as an inert gas is ionized by high-frequency plasma and collided with the surface of the resin film. The air pressure in the treatment chamber during the bombardment treatment is preferably 0.01 Pa or more, more preferably 0.03 Pa or more, and also preferably 1.2 Pa or less, more preferably 1.0 Pa or less. The output (bombardment output) of the plasma generation source for the bombardment treatment is preferably 0.15 W/ cm2 or more, more preferably 0.19 W/cm2 or more, even more preferably 0.21 W/ cm2 or more, and is preferably 0.42 W/ cm2 or less, more preferably 0.38 W/ cm2 or less, even more preferably 0.35 W/ cm2 or less , from the viewpoint of achieving good surface roughening of the resin film 10. By adjusting the conditions of the bombardment treatment, the surface roughness Ra of the first surface 11 of the resin film 10 can be adjusted.
 次に、樹脂フィルム10上に金属反射層20を形成する(金属反射層形成工程)。この工程では、例えば、ドライコーティング法により、樹脂フィルム10の第1面11上に金属材料を成膜して金属反射層20を形成する。ドライコーティング法としては、例えば、スパッタリング法、および蒸着法が挙げられ、スパッタリング法が好ましい。 Next, a metal reflective layer 20 is formed on the resin film 10 (metal reflective layer formation process). In this process, for example, a dry coating method is used to deposit a metal material on the first surface 11 of the resin film 10 to form the metal reflective layer 20. Examples of dry coating methods include sputtering and vapor deposition, with sputtering being preferred.
 スパッタリング法では、例えば、ロールトゥロール方式で成膜プロセスを実施できるスパッタ装置を使用する。上述の粗面化工程においてボンバード処理を実施する場合、ロールトゥロール方式でワークフィルムを走行させつつボンバード処理とその後の成膜プロセスとを連続的に実施できるスパッタ装置を使用する。スパッタリング法では、具体的には、スパッタ装置が備える成膜室内に真空条件下でスパッタリングガス(不活性ガス)を導入しつつ、成膜室内のカソード上に配置されたターゲットにマイナスの電圧を印加する。これにより、グロー放電を発生させてガス原子をイオン化し、当該ガスイオンを高速でターゲット表面に衝突させ、ターゲット表面からターゲット材料を弾き出し、弾き出されたターゲット材料を、樹脂フィルム10上に堆積させる。 In the sputtering method, for example, a sputtering device capable of performing a film formation process by a roll-to-roll method is used. When performing bombardment in the above-mentioned roughening process, a sputtering device capable of continuously performing bombardment and the subsequent film formation process while running the work film by a roll-to-roll method is used. Specifically, in the sputtering method, a sputtering gas (inert gas) is introduced under vacuum conditions into a film formation chamber equipped in the sputtering device, while a negative voltage is applied to a target placed on a cathode in the film formation chamber. This generates a glow discharge to ionize gas atoms, and the gas ions collide with the target surface at high speed, ejecting the target material from the target surface, and the ejected target material is deposited on the resin film 10.
 成膜室内のカソード上に配置されるターゲットの材料(即ち、金属反射層20の材料)としては、金属反射層20に関して上述した金属材料の焼結体が用いられ、好ましくは、AlまたはAl合金の焼結体が用いられる。スパッタリング法による成膜(スパッタ成膜)中の成膜室内の気圧は、例えば0.02Pa以上であり、また、例えば1Pa以下である。ターゲットに対する電圧印加のための電源としては、例えば、DC電源、AC電源、MF電源、およびRF電源が挙げられる。スパッタ成膜中の放電電圧の絶対値は、例えば50V以上であり、また、例えば500V以下である。 The target material placed on the cathode in the film formation chamber (i.e., the material of the metal reflective layer 20) is a sintered body of the metal material described above for the metal reflective layer 20, and preferably a sintered body of Al or an Al alloy. The air pressure in the film formation chamber during film formation by sputtering (sputter film formation) is, for example, 0.02 Pa or more and, for example, 1 Pa or less. Examples of power sources for applying voltage to the target include a DC power source, an AC power source, an MF power source, and an RF power source. The absolute value of the discharge voltage during sputter film formation is, for example, 50 V or more and, for example, 500 V or less.
 本発明の反射フィルムは、上述のように、樹脂フィルム10の第1面11上に金属反射層20を備え、当該第1面11の表面粗さRaが50nm以上である。このような反射フィルムXでは、高温高湿環境下において、樹脂フィルム10から金属反射層20への、樹脂フィルム10に由来する成分(炭素元素を含む)の移行が抑制される。樹脂フィルム10に由来する成分は、金属反射層20にとっての不純物であり、そのような不純物の金属反射層20への移行が抑制されることは、金属反射層20の光学特性を維持するのに適する。したがって、反射フィルムXは、高温高湿環境下での光透過率の上昇を抑制するのに適する。具体的には、後記の実施例および比較例をもって示すとおりである。 As described above, the reflective film of the present invention has a metal reflective layer 20 on the first surface 11 of the resin film 10, and the surface roughness Ra of the first surface 11 is 50 nm or more. In such a reflective film X, migration of components (including carbon elements) derived from the resin film 10 from the resin film 10 to the metal reflective layer 20 is suppressed in a high-temperature, high-humidity environment. The components derived from the resin film 10 are impurities for the metal reflective layer 20, and suppressing the migration of such impurities to the metal reflective layer 20 is suitable for maintaining the optical properties of the metal reflective layer 20. Therefore, the reflective film X is suitable for suppressing an increase in light transmittance in a high-temperature, high-humidity environment. Specifically, as shown in the examples and comparative examples described below.
 反射フィルムXは、金属反射層20上に更に他の層を備えてもよい。 The reflective film X may further include other layers on the metal reflective layer 20.
 図2は、反射フィルムXが金属反射層20上に黒化層30を備える場合を示す。図2に示す反射フィルムXは、樹脂フィルム10と、金属反射層20と、黒化層30とを、厚さ方向Hにこの順で備える。黒化層30は、本変形例では、金属反射層20上に配置されている。すなわち、黒化層30は、本実施形態では金属反射層20に接する。反射フィルムXの遮光性の観点からは、反射フィルムXは黒化層30を備えるのが好ましい。 FIG. 2 shows a case where the reflective film X has a blackening layer 30 on the metal reflective layer 20. The reflective film X shown in FIG. 2 has a resin film 10, a metal reflective layer 20, and a blackening layer 30, in that order in the thickness direction H. In this modified example, the blackening layer 30 is disposed on the metal reflective layer 20. That is, the blackening layer 30 is in contact with the metal reflective layer 20 in this embodiment. From the viewpoint of the light blocking properties of the reflective film X, it is preferable that the reflective film X has a blackening layer 30.
 黒化層30は、光吸収性が高い金属酸化物を含有する。当該金属酸化物を形成する金属(第1金属)としては、例えば、銅(Cu)、インジウム(In)、モリブデン(Mo)および鉄(Fe)が挙げられる。金属酸化物は、好ましくは、Cu、In、MoおよびFeからなる群から選択される少なくとも一つを含む。金属酸化物としては、黒化層30に対する硬化樹脂層40の密着性を確保する観点、および、黒化層30の成膜方法としてスパッタリング法を採用する場合の当該スパッタ成膜時の安定性を確保する観点から、CuおよびInを含む酸化物が好ましい。すなわち、金属酸化物としては、銅インジウム酸化物が好ましい。当該銅インジウム酸化物における、CuおよびInの合計量におけるCuの割合は、黒化層30に対する硬化樹脂層40の密着性を確保する観点から、好ましくは10原子%以上、より好ましくは20原子%以上、更に好ましくは30原子%以上である。Cuの同割合は、好ましくは90原子%以下、より好ましくは80原子%以下、更に好ましくは70原子%以下である。 The blackening layer 30 contains a metal oxide having high light absorption. Examples of the metal (first metal) forming the metal oxide include copper (Cu), indium (In), molybdenum (Mo) and iron (Fe). The metal oxide preferably contains at least one selected from the group consisting of Cu, In, Mo and Fe. As the metal oxide, an oxide containing Cu and In is preferable from the viewpoint of ensuring adhesion of the cured resin layer 40 to the blackening layer 30 and from the viewpoint of ensuring stability during sputtering film formation when a sputtering method is adopted as a film formation method for the blackening layer 30. That is, as the metal oxide, copper indium oxide is preferable. In the copper indium oxide, the proportion of Cu in the total amount of Cu and In is preferably 10 atomic % or more, more preferably 20 atomic % or more, and even more preferably 30 atomic % or more, from the viewpoint of ensuring adhesion of the cured resin layer 40 to the blackening layer 30. The proportion of Cu is preferably 90 atomic % or less, more preferably 80 atomic % or less, and even more preferably 70 atomic % or less.
 黒化層30は、金属酸化物に加えて単体金属を含有してもよい。単体金属(第2金属)としては、In、Cu、MoおよびFeが挙げられる。単体金属は、好ましくは、In、Cu、MoおよびFeからなる群から選択される少なくとも一つである。黒化層30が複数の単体金属を含む場合、当該複数の単体金属は、上述の金属酸化物における第1金属とは異なる金属を含むのが好ましい。より好ましくは、単体金属は、第1金属以外の金属である。 The blackening layer 30 may contain an elemental metal in addition to the metal oxide. Examples of the elemental metal (second metal) include In, Cu, Mo, and Fe. The elemental metal is preferably at least one selected from the group consisting of In, Cu, Mo, and Fe. When the blackening layer 30 contains multiple elemental metals, it is preferable that the multiple elemental metals include a metal different from the first metal in the above-mentioned metal oxide. More preferably, the elemental metal is a metal other than the first metal.
 黒化層30における第1金属の割合は、黒化層30において高い遮光性を実現する観点から、好ましくは10原子%以上、より好ましくは20原子%以上であり、また、好ましくは90原子%以下、より好ましくは80原子%以下である。黒化層30における第2金属の割合は、黒化層30において高い遮光性を実現する観点から、好ましくは10原子%以上、より好ましくは20原子%以上であり、また、好ましくは90原子%以下、より好ましくは80原子%以下である。 The proportion of the first metal in the blackening layer 30 is preferably 10 atomic % or more, more preferably 20 atomic % or more, and is preferably 90 atomic % or less, more preferably 80 atomic % or less, from the viewpoint of realizing high light blocking properties in the blackening layer 30. The proportion of the second metal in the blackening layer 30 is preferably 10 atomic % or more, more preferably 20 atomic % or more, and is preferably 90 atomic % or less, more preferably 80 atomic % or less, from the viewpoint of realizing high light blocking properties in the blackening layer 30.
 黒化層30において高い遮光性を実現する観点から、黒化層30は、好ましくは、金属酸化物を含み且つ第1金属以外の単体金属を含み、より好ましくは、金属酸化物として酸化インジウムを含み且つ単体金属として銅を含む。黒化層30が酸化インジウムと銅とを含む場合、黒化層30におけるInの割合は、黒化層30において高い遮光性を実現する観点から、好ましくは40原子%以上、より好ましくは50原子%以上であり、また、好ましくは90原子%以下、より好ましくは80原子%以下である。黒化層30が酸化インジウムと銅とを含む場合、黒化層30におけるCuの割合は、黒化層30において高い遮光性を実現する観点から、好ましくは5原子%以上、より好ましくは10原子%以上であり、また、好ましくは50原子%以下、より好ましくは40原子%以下である。 From the viewpoint of realizing high light-shielding properties in the blackening layer 30, the blackening layer 30 preferably contains a metal oxide and a single metal other than the first metal, and more preferably contains indium oxide as the metal oxide and copper as the single metal. When the blackening layer 30 contains indium oxide and copper, the proportion of In in the blackening layer 30 is preferably 40 atomic % or more, more preferably 50 atomic % or more, and is preferably 90 atomic % or less, more preferably 80 atomic % or less, from the viewpoint of realizing high light-shielding properties in the blackening layer 30. When the blackening layer 30 contains indium oxide and copper, the proportion of Cu in the blackening layer 30 is preferably 5 atomic % or more, more preferably 10 atomic % or more, and is preferably 50 atomic % or less, more preferably 40 atomic % or less, from the viewpoint of realizing high light-shielding properties in the blackening layer 30.
 黒化層30の厚さは、下地(本変形例では金属反射層20)に対する黒化層30の密着性を確保する観点から、好ましくは400nm以下、より好ましくは200nm以下、更に好ましくは150nm以下、一層好ましくは110nm以下である。黒化層30の厚さは、黒化層30および反射フィルムXの遮光性を確保する観点から、好ましくは5nm以上、より好ましくは10nm以上、更に好ましくは20nm以上、一層好ましくは30nm以上、特に好ましくは50nm以上である。 The thickness of the blackening layer 30 is preferably 400 nm or less, more preferably 200 nm or less, even more preferably 150 nm or less, and even more preferably 110 nm or less, from the viewpoint of ensuring adhesion of the blackening layer 30 to the base (metal reflective layer 20 in this modified example). The thickness of the blackening layer 30 is preferably 5 nm or more, more preferably 10 nm or more, even more preferably 20 nm or more, even more preferably 30 nm or more, and particularly preferably 50 nm or more, from the viewpoint of ensuring the light-shielding properties of the blackening layer 30 and the reflective film X.
 黒化層30は、例えば、ドライコーティング法により、金属反射層20上に金属酸化物含有材料を成膜することによって形成できる。ドライコーティング法としては、例えば、スパッタリング法、および蒸着法が挙げられる。下地としての金属反射層20に対する黒化層30の密着性を確保する観点から、黒化層30は、ドライコーティング法によって形成されたドライコーティング膜であり、より好ましくは、スパッタリング法で形成されたスパッタ膜である。 The blackening layer 30 can be formed, for example, by forming a film of a metal oxide-containing material on the metal reflective layer 20 by a dry coating method. Examples of dry coating methods include sputtering and vapor deposition. From the viewpoint of ensuring the adhesion of the blackening layer 30 to the metal reflective layer 20 as the base, the blackening layer 30 is a dry coating film formed by a dry coating method, and more preferably, a sputtered film formed by a sputtering method.
 スパッタリング法による黒化層形成工程において、スパッタ成膜室内のカソード上に配置されるターゲットの材料(即ち、黒化層30の材料)としては、例えば、上述の金属酸化物の焼結体が用いられ、好ましくは、銅インジウム酸化物の焼結体が用いられる。或いは、ターゲットの材料としては、黒化層30に関して上述した金属酸化物と単体金属とを含む焼結体が好ましい。黒化層30のスパッタ成膜中の成膜室内の気圧は、例えば0.02Pa以上であり、また、例えば1Pa以下である。 In the blackening layer formation process using the sputtering method, the target material placed on the cathode in the sputtering deposition chamber (i.e., the material of the blackening layer 30) is, for example, a sintered body of the metal oxide described above, preferably a sintered body of copper indium oxide. Alternatively, the target material is preferably a sintered body containing the metal oxide and elemental metal described above for the blackening layer 30. The air pressure in the deposition chamber during sputtering deposition of the blackening layer 30 is, for example, 0.02 Pa or more, and, for example, 1 Pa or less.
 金属酸化物を含む無機材料から形成された黒化層30には、樹脂成分を含有して形成される黒インキ層よりも、圧縮残留応力が生じにくい。加えて、黒化層30の厚さは、好ましくは400nm以下である。このような薄い黒化層30(無機黒化層)においては、金属反射層20に固定される側の圧縮残留応力と、金属反射層20とは反対側の圧縮残留応力との差が、小さい(黒化層30が薄いほど、両側の圧縮残留応力の差は小さい)。そして、黒化層30における厚さ方向Hの両側の圧縮残留応力の差が小さいことは、金属反射層20に対する黒化層30の密着性の確保に役立つ。 The blackening layer 30 formed from an inorganic material containing metal oxide is less susceptible to compressive residual stress than a black ink layer formed from a resin component. In addition, the thickness of the blackening layer 30 is preferably 400 nm or less. In such a thin blackening layer 30 (inorganic blackening layer), the difference between the compressive residual stress on the side fixed to the metal reflective layer 20 and the compressive residual stress on the side opposite the metal reflective layer 20 is small (the thinner the blackening layer 30, the smaller the difference in compressive residual stress on both sides). Furthermore, the small difference in compressive residual stress on both sides of the thickness direction H of the blackening layer 30 helps ensure adhesion of the blackening layer 30 to the metal reflective layer 20.
 金属反射層形成工程から黒化層形成工程までの一連のプロセス(金属反射層形成工程前にボンバード処理を実施する場合には、当該ボンバード処理からの一連のプロセス)は、ロールトゥロール方式でワークフィルムを搬送しながら、一つのパスラインで実施する。一つのパスラインでのプロセス中、ワークフィルムは一度も大気中に出されない。金属反射層20の形成後にワークフィルムを大気中に出さずに当該金属反射層20上に黒化層30を形成することは、金属反射層20に対する黒化層30の密着性を確保するのに役立つ。 The entire process from the metal reflective layer formation process to the blackening layer formation process (if bombardment is performed before the metal reflective layer formation process, the entire process from the bombardment) is performed on one pass line while the work film is transported using the roll-to-roll method. During the process on one pass line, the work film is never exposed to the atmosphere. Forming the blackening layer 30 on the metal reflective layer 20 after the formation of the metal reflective layer 20 without exposing the work film to the atmosphere helps to ensure adhesion of the blackening layer 30 to the metal reflective layer 20.
 図3は、反射フィルムXが金属反射層20上に硬化樹脂層40を備える場合を示す。図3に示す反射フィルムXは、樹脂フィルム10と、金属反射層20と、硬化樹脂層40とを、厚さ方向Hにこの順で備える。硬化樹脂層40は、本変形例では、金属反射層20上に配置されている。すなわち、硬化樹脂層40は、本実施形態では金属反射層20に接する。 FIG. 3 shows a case where the reflective film X has a cured resin layer 40 on a metal reflective layer 20. The reflective film X shown in FIG. 3 has a resin film 10, a metal reflective layer 20, and a cured resin layer 40, in that order in the thickness direction H. In this modified example, the cured resin layer 40 is disposed on the metal reflective layer 20. That is, in this embodiment, the cured resin layer 40 is in contact with the metal reflective layer 20.
 硬化樹脂層40は、反射フィルムXに擦り傷が形成されにくくするためのハードコート層である。反射フィルムXの耐擦過性の観点からは、反射フィルムXは硬化樹脂層40を備えるのが好ましい。 The cured resin layer 40 is a hard coat layer that makes the reflective film X less susceptible to scratches. From the viewpoint of the abrasion resistance of the reflective film X, it is preferable that the reflective film X has a cured resin layer 40.
 硬化樹脂層40は、硬化性樹脂組成物の硬化物である。硬化性樹脂組成物は、硬化性樹脂を含有する。硬化性樹脂としては、例えば、ポリエステル樹脂、アクリルウレタン樹脂、アクリル樹脂(アクリルウレタン樹脂を除く)、ウレタン樹脂(アクリルウレタン樹脂を除く)、アミド樹脂、シリコーン樹脂、エポキシ樹脂、およびメラミン樹脂が挙げられる。これら硬化性樹脂は、単独で用いられてもよいし、二種類以上が併用されてもよい。硬化樹脂層40の高硬度の確保の観点から、硬化性樹脂としては、好ましくは、アクリルウレタン樹脂およびアクリル樹脂からなる群より選択される少なくとも一つが用いられる。 The cured resin layer 40 is a cured product of a curable resin composition. The curable resin composition contains a curable resin. Examples of the curable resin include polyester resin, acrylic urethane resin, acrylic resin (excluding acrylic urethane resin), urethane resin (excluding acrylic urethane resin), amide resin, silicone resin, epoxy resin, and melamine resin. These curable resins may be used alone or in combination of two or more types. From the viewpoint of ensuring high hardness of the cured resin layer 40, at least one selected from the group consisting of acrylic urethane resin and acrylic resin is preferably used as the curable resin.
 また、硬化性樹脂としては、例えば、紫外線硬化型樹脂および熱硬化型樹脂が挙げられる。高温加熱せずに硬化可能であるために反射フィルムXの製造効率向上に役立つ観点から、硬化性樹脂としては、紫外線硬化型樹脂が好ましい。 In addition, examples of the curable resin include ultraviolet-curable resin and thermosetting resin. As the curable resin can be cured without high temperature heating, ultraviolet-curable resin is preferred from the viewpoint of improving the manufacturing efficiency of the reflective film X.
 硬化性樹脂組成物は、粒子を含有してもよい。粒子としては、例えば、無機酸化物粒子および有機粒子が挙げられる。無機酸化物粒子の材料としては、例えば、シリカ、アルミナ、チタニア、ジルコニア、酸化カルシウム、酸化スズ、酸化インジウム、酸化カドミウム、および酸化アンチモンが挙げられる。有機粒子の材料としては、例えば、ポリメチルメタクリレート、ポリスチレン、ポリウレタン、アクリル・スチレン共重合体、ベンゾグアナミン、メラミン、およびポリカーボネートが挙げられる。粒子は、単独で用いられてもよいし、二種類以上が併用されてもよい。粒子としては、好ましくは無機酸化物粒子が用いられ、より好ましくは、シリカ粒子およびジルコニア粒子から選択される少なくとも一つが用いられる。 The curable resin composition may contain particles. Examples of the particles include inorganic oxide particles and organic particles. Examples of the inorganic oxide particle material include silica, alumina, titania, zirconia, calcium oxide, tin oxide, indium oxide, cadmium oxide, and antimony oxide. Examples of the organic particle material include polymethyl methacrylate, polystyrene, polyurethane, acrylic-styrene copolymer, benzoguanamine, melamine, and polycarbonate. The particles may be used alone or in combination of two or more kinds. The particles are preferably inorganic oxide particles, and more preferably at least one selected from silica particles and zirconia particles.
 粒子の平均粒子径(D50)は、硬化樹脂層40の硬さを確保する観点から、好ましくは20nm以上、より好ましくは25nm以上、更に好ましくは30nm以上である。粒子の平均粒子径(D50)は、硬化樹脂層40内での粒子の均一分散化の観点から、好ましくは300nm以下、特に好ましくは100nm以下である。粒子の平均粒子径(D50)は、体積基準の粒度分布におけるメジアン径(小径側から体積累積頻度が50%に達する粒径)であり、例えば、レーザー回析・散乱法によって得られる粒度分布に基づいて求められる。 The average particle diameter (D50) of the particles is preferably 20 nm or more, more preferably 25 nm or more, and even more preferably 30 nm or more, from the viewpoint of ensuring the hardness of the cured resin layer 40. The average particle diameter (D50) of the particles is preferably 300 nm or less, and particularly preferably 100 nm or less, from the viewpoint of uniform dispersion of the particles in the cured resin layer 40. The average particle diameter (D50) of the particles is the median diameter in the volume-based particle size distribution (the particle diameter at which the volume cumulative frequency reaches 50% from the small diameter side), and is determined, for example, based on the particle size distribution obtained by a laser diffraction/scattering method.
 硬化樹脂層40における粒子の割合は、硬化樹脂層40の硬さを確保する観点から、好ましくは5質量%以上、より好ましくは8質量%以上、更に好ましくは10質量%以上である。硬化樹脂層40における粒子の割合は、硬化樹脂層40内での粒子の均一分散化の観点から、好ましくは30質量%以下、より好ましくは20質量%以下、更に好ましくは15質量%以下である。 The proportion of particles in the cured resin layer 40 is preferably 5% by mass or more, more preferably 8% by mass or more, and even more preferably 10% by mass or more, from the viewpoint of ensuring the hardness of the cured resin layer 40. The proportion of particles in the cured resin layer 40 is preferably 30% by mass or less, more preferably 20% by mass or less, and even more preferably 15% by mass or less, from the viewpoint of uniform dispersion of the particles in the cured resin layer 40.
 硬化樹脂層40の厚さは、硬化樹脂層40において充分な耐擦過性を発現させる観点から、好ましくは0.1μm以上、より好ましくは0.5μm以上、更に好ましくは0.7μm以上である。硬化樹脂層40の厚さは、黒化層30に対する硬化樹脂層40の密着性を確保する観点から、好ましくは5μm以下、より好ましくは3μm以下、更に好ましくは2μm以下、一層好ましくは1.5μm以下である。 The thickness of the cured resin layer 40 is preferably 0.1 μm or more, more preferably 0.5 μm or more, and even more preferably 0.7 μm or more, from the viewpoint of providing sufficient abrasion resistance in the cured resin layer 40. The thickness of the cured resin layer 40 is preferably 5 μm or less, more preferably 3 μm or less, even more preferably 2 μm or less, and even more preferably 1.5 μm or less, from the viewpoint of ensuring adhesion of the cured resin layer 40 to the blackening layer 30.
 硬化樹脂層40は、金属反射層20上に上述の硬化性樹脂組成物を塗布して塗膜を形成した後、この塗膜を硬化させることによって形成できる。硬化性樹脂組成物が紫外線硬化型樹脂を含有する場合には、紫外線照射によって塗膜を硬化させる。硬化性樹脂組成物が熱硬化型樹脂を含有する場合には、加熱によって前記塗膜を硬化させる。 The cured resin layer 40 can be formed by applying the above-mentioned curable resin composition onto the metal reflective layer 20 to form a coating film, and then curing the coating film. If the curable resin composition contains an ultraviolet-curable resin, the coating film is cured by exposure to ultraviolet light. If the curable resin composition contains a thermosetting resin, the coating film is cured by heating.
 図4は、反射フィルムXが、金属反射層20上に、上述の黒化層30と上述の硬化樹脂層40とを備える場合を示す。図4に示す反射フィルムXは、樹脂フィルム10と、金属反射層20と、黒化層30と、硬化樹脂層40とを、厚さ方向Hにこの順で備える。黒化層30は、本変形例では、金属反射層20上に配置されている。すなわち、黒化層30は、本実施形態では金属反射層20に接する。また、硬化樹脂層40は、本変形例では、黒化層30上に配置されている。すなわち、硬化樹脂層40は、本実施形態では黒化層30に接する。 FIG. 4 shows a case where the reflective film X comprises the above-mentioned blackening layer 30 and the above-mentioned cured resin layer 40 on the metal reflective layer 20. The reflective film X shown in FIG. 4 comprises a resin film 10, a metal reflective layer 20, a blackening layer 30, and a cured resin layer 40, in this order in the thickness direction H. In this modified example, the blackening layer 30 is disposed on the metal reflective layer 20. That is, the blackening layer 30 contacts the metal reflective layer 20 in this embodiment. Also, in this modified example, the cured resin layer 40 is disposed on the blackening layer 30. That is, the cured resin layer 40 contacts the blackening layer 30 in this embodiment.
 図4に示す反射フィルムXは、図2に示す反射フィルムXの黒化層30上に硬化樹脂層40を形成することによって製造できる。当該硬化樹脂層40は、黒化層30上に上述の硬化性樹脂組成物を塗布して塗膜を形成した後、この塗膜を硬化させることによって形成できる。 The reflective film X shown in FIG. 4 can be manufactured by forming a cured resin layer 40 on the blackened layer 30 of the reflective film X shown in FIG. 2. The cured resin layer 40 can be formed by applying the above-mentioned curable resin composition on the blackened layer 30 to form a coating film, and then curing the coating film.
 本発明について、以下に実施例を示して具体的に説明する。ただし、本発明は、実施例に限定されない。また、以下に記載されている配合量(含有量)、物性値、パラメータなどの具体的数値は、上述の「発明を実施するための形態」において記載されている、それらに対応する配合量(含有量)、物性値、パラメータなどの上限(「以下」または「未満」として定義されている数値)または下限(「以上」または「超える」として定義されている数値)に代替できる。 The present invention will be specifically described below with reference to examples. However, the present invention is not limited to the examples. Furthermore, the specific numerical values of the compounding amounts (contents), physical properties, parameters, etc. described below can be replaced with the upper limits (numerical values defined as "equal to or less than") or lower limits (numerical values defined as "equal to or more than") of the corresponding compounding amounts (contents), physical properties, parameters, etc. described in the above-mentioned "Form for carrying out the invention."
〔実施例1〕
 まず、樹脂フィルムとしての白色ポリエチレンテレフタレート(PET)フィルム(品名「ルミラー E20」,厚さ38μm,東レ製)を用意した。
Example 1
First, a white polyethylene terephthalate (PET) film (product name: "Lumirror E20", thickness: 38 μm, manufactured by Toray Industries, Inc.) was prepared as a resin film.
 次に、スパッタ装置により、PETフィルムの一方面(第1面)に対する、粗面化処理としてのボンバード処理と、金属反射層の形成とを、順次に実施した(スパッタプロセス)。このスパッタプロセスでは、ロールトゥロール方式のスパッタ装置(DCマグネトロンスパッタ装置)を使用した。同装置は、繰出し室と、前処理室と、成膜室と、巻取り室とを備える。繰出し室は、繰出しローラを備える。繰出しローラには、ワークフィルムとして上述の樹脂フィルムのロールをセットした。巻取り室は、ワークフィルムを巻き取り可能な巻取りローラを備える。このスパッタ装置では、繰出し室から巻取り室までロールトゥロール方式でワークフィルムを走行させつつ、当該ワークフィルムに対し、前処理室でのボンバード処理と、成膜室での成膜プロセスとを、実施可能である。 Next, a sputtering device was used to sequentially perform a bombardment process as a roughening process on one side (first side) of the PET film and the formation of a metal reflective layer (sputtering process). A roll-to-roll sputtering device (DC magnetron sputtering device) was used in this sputtering process. This device is equipped with a pay-out chamber, a pre-treatment chamber, a film-forming chamber, and a winding chamber. The pay-out chamber is equipped with a pay-out roller. A roll of the above-mentioned resin film was set on the pay-out roller as the work film. The winding chamber is equipped with a winding roller capable of winding up the work film. With this sputtering device, the work film can be run from the pay-out chamber to the winding chamber using the roll-to-roll method, while the bombardment process in the pre-treatment chamber and the film-forming process in the film-forming chamber can be performed on the work film.
 スパッタプロセスでは、前処理室でのボンバード処理と、成膜室でのスパッタ成膜とを順次に実施し、その後に、巻取り室の巻取りローラにワークフィルムを巻き取った。ワークフィルムの搬送速度は、3m/分とした。 In the sputtering process, bombardment processing was carried out in the pretreatment chamber, followed by sputter deposition in the deposition chamber, after which the work film was wound up on the take-up roller in the take-up chamber. The transport speed of the work film was 3 m/min.
 ボンバード処理では、具体的には、不活性ガスとしてのアルゴン(Ar)ガスを高周波プラズマによってイオン化させてPETフィルム表面に衝突させた。これにより、PETフィルムの第1面を粗面化した。この処理では、スパッタ装置内を真空排気した後の前処理室内にArを導入し、前処理室内の気圧を0.8Paとした。また、プラズマ発生源の出力(ボンバード出力)を0.32W/cmとした。 Specifically, in the bombardment treatment, argon (Ar) gas as an inert gas was ionized by high-frequency plasma and collided with the surface of the PET film. This roughened the first surface of the PET film. In this treatment, Ar was introduced into the pretreatment chamber after evacuating the inside of the sputtering device, and the pressure in the pretreatment chamber was set to 0.8 Pa. The output of the plasma generation source (bombardment output) was set to 0.32 W/ cm2 .
 スパッタ成膜では、具体的には、PETフィルムの第1面上に、厚さ75nmのアルミニウム(Al)層を金属反射層として形成した。このスパッタ成膜では、スパッタ装置内を真空排気した後の成膜室内に、スパッタリングガスとしてのArを導入し、成膜室内の気圧を0.3~0.4Paとした。ターゲットとしては、Alターゲットを用いた。ターゲットに対する電圧印加のための電源としては、DC電源を用いた。成膜温度(Al層が積層されるPETフィルムの温度)は40℃とした。 Specifically, in the sputtering deposition, a 75 nm thick aluminum (Al) layer was formed as a metal reflective layer on the first surface of the PET film. In this sputtering deposition, Ar was introduced as a sputtering gas into the deposition chamber after evacuating the sputtering device, and the air pressure in the deposition chamber was set to 0.3 to 0.4 Pa. An Al target was used as the target. A DC power supply was used as the power supply for applying voltage to the target. The deposition temperature (the temperature of the PET film on which the Al layer is laminated) was set to 40°C.
 以上のようにして、実施例1の反射フィルムを作製した。実施例1の反射フィルムは、樹脂フィルム(厚さ38μm)と、金属反射層(Al層,厚さ75nm)との積層構造を有する。 In this manner, the reflective film of Example 1 was produced. The reflective film of Example 1 has a laminated structure of a resin film (thickness 38 μm) and a metal reflective layer (Al layer, thickness 75 nm).
〔実施例2〕
 次のこと以外は実施例1の反射フィルムと同様にして、実施例2の反射フィルムを作製した。樹脂フィルムに対する粗面化処理において、スパッタ成膜の前処理室でのボンバード処理の出力を0.21W/cmとした。実施例2の反射フィルムは、樹脂フィルム(厚さ38μm)と、金属反射層(Al層,厚さ75nm)との積層構造を有する。
Example 2
The reflective film of Example 2 was produced in the same manner as the reflective film of Example 1, except for the following. In the surface roughening treatment of the resin film, the output of the bombardment treatment in the pretreatment chamber for sputtering deposition was set to 0.21 W/ cm2 . The reflective film of Example 2 has a laminated structure of a resin film (thickness 38 μm) and a metal reflective layer (Al layer, thickness 75 nm).
〔実施例3〕
 次のこと以外は実施例1の反射フィルムと同様にして、実施例3の反射フィルムを作製した。金属反射層上に、更に硬化樹脂層を形成した。具体的には、次のとおりである。
Example 3
The reflective film of Example 3 was produced in the same manner as the reflective film of Example 1, except for the following: A cured resin layer was further formed on the metal reflective layer. Specifically, the process is as follows.
 まず、金属反射層上に、第1の硬化型樹脂組成物を塗布して塗膜を形成した。第1の硬化型樹脂組成物は、紫外線硬化型アクリルウレタン樹脂(品名「アイカアイトロン Z844」,アイカ工業製)と、溶媒としてのメチルエチルケトンとを含有する。次に、塗膜を乾燥させた後、紫外線照射によって当該塗膜を硬化させて、厚さ1μmの硬化樹脂層を形成した。 First, a first curable resin composition was applied onto the metal reflective layer to form a coating. The first curable resin composition contains an ultraviolet-curable acrylic urethane resin (product name: AICA ITRON Z844, manufactured by AICA Corporation) and methyl ethyl ketone as a solvent. Next, the coating was dried and then cured by exposure to ultraviolet light to form a 1 μm-thick cured resin layer.
 実施例3の反射フィルムは、基材フィルム(厚さ38μm)と、金属反射層(Al層,厚さ75nm)と、硬化樹脂層(厚さ1μm)との積層構造を有する。 The reflective film of Example 3 has a laminated structure of a substrate film (thickness 38 μm), a metal reflective layer (Al layer, thickness 75 nm), and a cured resin layer (thickness 1 μm).
〔実施例4〕
 まず、基材フィルムとしての白色ポリエチレンテレフタレート(PET)フィルム(品名「ルミラー E20」,厚さ38μm,東レ製)を用意した。
Example 4
First, a white polyethylene terephthalate (PET) film (product name: "Lumirror E20", thickness: 38 μm, manufactured by Toray Industries, Inc.) was prepared as a substrate film.
 次に、スパッタ装置により、PETフィルムの一方面(第1面)に対する、粗面化処理としてのボンバード処理と、金属反射層の形成と、黒化層の形成とを、順次に実施した(スパッタプロセス)。このスパッタプロセスでは、ロールトゥロール方式のスパッタ装置(DCマグネトロンスパッタ装置)を使用した。同装置は、繰出し室と、前処理室と、第1成膜室と、第2成膜室と、巻取り室とを備える。繰出し室は、繰出しローラを備える。繰出しローラには、ワークフィルムとして上述の樹脂フィルムのロールをセットした。巻取り室は、ワークフィルムを巻き取り可能な巻取りローラを備える。このスパッタ装置では、繰出し室から巻取り室までロールトゥロール方式でワークフィルムを走行させつつ、当該ワークフィルムに対し、前処理室でのボンバード処理と、第1成膜室および第2成膜室での成膜プロセスとを、実施可能である。 Next, a sputtering device was used to sequentially perform a bombardment process as a roughening process on one side (first side) of the PET film, the formation of a metal reflective layer, and the formation of a blackening layer (sputtering process). In this sputtering process, a roll-to-roll sputtering device (DC magnetron sputtering device) was used. This device is equipped with a pay-out chamber, a pre-treatment chamber, a first film-forming chamber, a second film-forming chamber, and a winding chamber. The pay-out chamber is equipped with a pay-out roller. A roll of the above-mentioned resin film was set on the pay-out roller as the work film. The winding chamber is equipped with a winding roller that can take up the work film. In this sputtering device, while the work film is run from the pay-out chamber to the winding chamber using a roll-to-roll method, the bombardment process in the pre-treatment chamber and the film-forming process in the first and second film-forming chambers can be performed on the work film.
 スパッタプロセスでは、前処理室でのボンバード処理と、第1成膜室での第1スパッタ成膜と、第2成膜室での第2スパッタ成膜とを順次に実施し、その後に、巻取り室の巻取りローラにワークフィルムを巻き取った。ワークフィルムの搬送速度は、3m/分とした。 In the sputtering process, bombardment in the pretreatment chamber, first sputter deposition in the first deposition chamber, and second sputter deposition in the second deposition chamber were carried out in sequence, after which the work film was wound up on the winding roller in the winding chamber. The transport speed of the work film was 3 m/min.
 ボンバード処理は、実施例1における上述のボンバード処理(出力0.32W/cm)と同様に実施した。第1スパッタ成膜は、実施例1における上述のスパッタ成膜と同様に実施した。 The bombardment treatment was carried out in the same manner as the above-mentioned bombardment treatment (output: 0.32 W/cm 2 ) in Example 1. The first sputtering deposition was carried out in the same manner as the above-mentioned sputtering deposition in Example 1.
 第2スパッタ成膜においては、スパッタ装置の上述の真空排気の後の第2成膜室内に、スパッタリングガスとしてのArを導入し、第2成膜室内の気圧を0.3~0.4Paとした。また、ターゲットとしては、黒色無機物ターゲット(品名「DIABLA12」,酸化インジウム(In)と銅(Cu)との混合ターゲット,In割合は67.3(±3)質量%,三菱マテリアル社製)を用いた。ターゲットに対する電圧印加のための電源としては、DC電源を用いた。成膜温度(黒化層が形成されるワークフィルムの温度)は40℃とした。 In the second sputtering deposition, Ar was introduced as a sputtering gas into the second deposition chamber after the above-mentioned evacuation of the sputtering device, and the pressure in the second deposition chamber was set to 0.3 to 0.4 Pa. In addition, a black inorganic target (product name "DIABLA12", a mixed target of indium oxide (In 2 O 3 ) and copper (Cu), In ratio of 67.3 (±3) mass%, manufactured by Mitsubishi Materials Corporation) was used as the target. A DC power supply was used as the power source for applying voltage to the target. The deposition temperature (the temperature of the workpiece film on which the blackened layer is formed) was set to 40°C.
 以上のようにして、実施例4の反射フィルムを作製した。実施例4の反射フィルムは、基材フィルム(厚さ38μm)と、金属反射層(Al層,厚さ75nm)と、黒化層(厚さ30nm)との積層構造を有する。 In this manner, the reflective film of Example 4 was produced. The reflective film of Example 4 has a laminated structure of a substrate film (thickness 38 μm), a metal reflective layer (Al layer, thickness 75 nm), and a blackened layer (thickness 30 nm).
〔実施例5〕
 次のこと以外は実施例4の反射フィルムと同様にして、実施例5の反射フィルムを作製した。黒化層上に、更に硬化樹脂層を形成した。具体的には、次のとおりである。
Example 5
The reflective film of Example 5 was produced in the same manner as the reflective film of Example 4, except for the following: A cured resin layer was further formed on the blackened layer.
 まず、黒化層上に、第2の硬化型樹脂組成物を塗布して塗膜を形成した。第2の硬化型樹脂組成物は、紫外線硬化型アクリルウレタン樹脂(品名「アイカアイトロン Z844」,アイカ工業製)と、溶媒としてのメチルエチルケトンとを含有する。次に、塗膜を乾燥させた後、紫外線照射によって当該塗膜を硬化させて、厚さ1μmの硬化樹脂層を形成した。 First, a second curable resin composition was applied onto the blackened layer to form a coating. The second curable resin composition contains an ultraviolet-curable acrylic urethane resin (product name: AICA ITRON Z844, manufactured by AICA Corporation) and methyl ethyl ketone as a solvent. Next, the coating was dried and then cured by exposure to ultraviolet light to form a 1 μm-thick cured resin layer.
 以上のようにして、実施例5の反射フィルムを作製した。実施例5の反射フィルムは、基材フィルム(厚さ38μm)と、金属反射層(Al層,厚さ75nm)と、黒化層(厚さ30nm)と、硬化樹脂層(厚さ1μm)との積層構造を有する。 In this manner, the reflective film of Example 5 was produced. The reflective film of Example 5 has a laminated structure of a substrate film (thickness 38 μm), a metal reflective layer (Al layer, thickness 75 nm), a blackening layer (thickness 30 nm), and a cured resin layer (thickness 1 μm).
〔比較例1〕
 次のこと以外は実施例1の反射フィルムと同様にして、比較例1の反射フィルムを作製した。樹脂フィルムに対する粗面化処理において、スパッタ成膜の前処理室でのボンバード処理の出力を0.11W/cmとした。比較例1の反射フィルムは、樹脂フィルム(厚さ38μm)と、金属反射層(Al層,厚さ75nm)との積層構造を有する。
Comparative Example 1
The reflective film of Comparative Example 1 was produced in the same manner as the reflective film of Example 1, except for the following. In the surface roughening treatment of the resin film, the output of the bombardment treatment in the pretreatment chamber for sputtering deposition was set to 0.11 W/ cm2 . The reflective film of Comparative Example 1 has a laminated structure of a resin film (thickness 38 μm) and a metal reflective layer (Al layer, thickness 75 nm).
〈金属反射層の厚さ,黒化層の厚さ〉
 実施例1~3および比較例1の各反射フィルムにおける金属反射層の厚さと、実施例4,5の各反射フィルムにおける金属反射層および黒化層の厚さとを、電界放射型透過電子顕微鏡(FE-TEM)での観察により測定した。具体的には、まず、FIBマイクロサンプリング法により、実施例1~5および比較例1における金属反射層・黒化層の断面観察用サンプルを作製した。FIBマイクロサンプリング法では、FIB装置(品名「FB2200」,Hitachi製)を使用し、加速電圧を10kVとした。次に、断面観察用サンプルにおける金属反射層・黒化層の断面をFE-TEMによって観察し、当該観察画像において、金属反射層の厚さと黒化層の厚さとを測定した。同観察では、FE-TEM装置(品名「JEM-2800」,JEOL製)を使用し、加速電圧を200kVとした。測定結果を表1に示す。
<Thickness of metal reflective layer, thickness of blackened layer>
The thickness of the metal reflective layer in each of the reflective films of Examples 1 to 3 and Comparative Example 1, and the thickness of the metal reflective layer and the blackened layer in each of the reflective films of Examples 4 and 5 were measured by observation with a field emission transmission electron microscope (FE-TEM). Specifically, first, samples for cross-sectional observation of the metal reflective layer and the blackened layer in Examples 1 to 5 and Comparative Example 1 were prepared by the FIB microsampling method. In the FIB microsampling method, an FIB device (product name "FB2200", manufactured by Hitachi) was used, and the acceleration voltage was set to 10 kV. Next, the cross-section of the metal reflective layer and the blackened layer in the sample for cross-sectional observation was observed by FE-TEM, and the thickness of the metal reflective layer and the thickness of the blackened layer were measured in the observed image. In the observation, an FE-TEM device (product name "JEM-2800", manufactured by JEOL) was used, and the acceleration voltage was set to 200 kV. The measurement results are shown in Table 1.
〈視感透過率〉
 実施例1~5および比較例1の各反射フィルムについて、視感透過率を測定した(第1の透過率測定)。具体的には、次のとおりである。
<Visual transmittance>
The luminous transmittance of each of the reflective films of Examples 1 to 5 and Comparative Example 1 was measured (first transmittance measurement). Specifically, the measurement was as follows.
 まず、反射フィルムから、測定用のフィルム片(第1フィルム片)を切り出した。次に、第1フィルム片について、分光光度計(品名「U-4100」,日立ハイテクサイエンス社製)により、視感透過率を測定した。この透過率は、第1フィルム片に対する波長380nm~780nmの透過光の、CIE-XYZ表色系での視感透過率(Y値)である。本測定では、第1フィルム片に対してその樹脂フィルム側から光が当たるように、第1フィルム片を分光光度計内に設置した。第1の透過率測定における視感透過率(Y値)を、加湿試験前の視感透過率T1として表1に示す。 First, a piece of film for measurement (first film piece) was cut out from the reflective film. Next, the luminous transmittance of the first film piece was measured using a spectrophotometer (product name "U-4100", manufactured by Hitachi High-Tech Science Corporation). This transmittance is the luminous transmittance (Y value) in the CIE-XYZ color system of light with wavelengths of 380 nm to 780 nm transmitted through the first film piece. In this measurement, the first film piece was placed in the spectrophotometer so that light was hitting the resin film side of the first film piece. The luminous transmittance (Y value) in the first transmittance measurement is shown in Table 1 as the luminous transmittance T1 before the humidification test.
 また、実施例1~5および比較例1の各反射フィルムについて、加湿試験後の視感透過率を測定した(第2の透過率測定)。加湿試験では、反射フィルムを、65℃および相対湿度90%の環境下で500時間、保管した。第2の透過率測定は、第1の透過率測定と同様に実施した。第2の透過率測定における視感透過率(Y値)を、加湿試験後の視感透過率T2として表1に示す。上述の視感透過率T1と視感透過率T2との差T2-T1(%)も表1に示す。 Furthermore, for each of the reflective films of Examples 1 to 5 and Comparative Example 1, the luminous transmittance after the humidification test was measured (second transmittance measurement). In the humidification test, the reflective films were stored for 500 hours in an environment of 65°C and a relative humidity of 90%. The second transmittance measurement was carried out in the same manner as the first transmittance measurement. The luminous transmittance (Y value) in the second transmittance measurement is shown in Table 1 as the luminous transmittance T2 after the humidification test. The difference T2-T1 (%) between the above-mentioned luminous transmittance T1 and luminous transmittance T2 is also shown in Table 1.
〈視感反射率〉
 実施例1~5および比較例1の各反射フィルムの視感反射率を測定した。具体的には、次のとおりである。
<Visual reflectance>
The luminous reflectance of each of the reflective films of Examples 1 to 5 and Comparative Example 1 was measured. Specifically, the measurements were as follows.
 まず、反射フィルムにおける樹脂フィルム側とは反対側を、所定の粘着剤を介して黒色アクリル板に対して貼り合わせた。これにより、積層フィルムを得た。次に、積層フィルムから、測定用のフィルム片(第2フィルム片)を切り出した。次に、第2フィルム片について、分光光度計(品名「U-4100」,日立ハイテクサイエンス社製)により、視感反射率を測定した。この反射率は、第2フィルム片に対する波長380nm~780nmの照射光の、CIE-XYZ表色系での視感反射率(Y値)である。本測定では、第2フィルム片に対してその樹脂フィルム側から光が当たるように、第2フィルム片を分光光度計内に設置した。測定結果を表1に示す。 First, the side of the reflective film opposite the resin film side was attached to a black acrylic plate via a specified adhesive. This resulted in a laminated film. Next, a film piece for measurement (second film piece) was cut out from the laminated film. The luminous reflectance of the second film piece was then measured using a spectrophotometer (product name "U-4100", manufactured by Hitachi High-Tech Science Corporation). This reflectance is the luminous reflectance (Y value) in the CIE-XYZ color system of light with a wavelength of 380 nm to 780 nm irradiated onto the second film piece. In this measurement, the second film piece was placed in the spectrophotometer so that light was irradiated from the resin film side onto the second film piece. The measurement results are shown in Table 1.
〈表面粗さ〉
 実施例1~5および比較例1の各反射フィルムについて、樹脂フィルムの第1面(金属反射層側の表面)の表面粗さを調べた。具体的には、まず、反射フィルムの製造過程において樹脂フィルム上に金属反射層を形成した後、その金属反射層をエッチングによって除去した。これにより、樹脂フィルムの第1面を露出させた。エッチングでは、エッチング液として水酸化ナトリウム水溶液を用いた。次に、樹脂フィルムの第1面の表面粗さRa(JIS B 0601-2001に基づく算術平均表面粗さ)を、原子間力顕微鏡(品名「Dimention-Edge SPM SYSTEM」,Bruker社製)による1μm四方の観察像から求めた。その表面粗さRa(nm)を表1に示す。
<Surface roughness>
The surface roughness of the first surface (the surface on the metal reflective layer side) of the resin film was examined for each of the reflective films of Examples 1 to 5 and Comparative Example 1. Specifically, first, a metal reflective layer was formed on the resin film in the manufacturing process of the reflective film, and then the metal reflective layer was removed by etching. This exposed the first surface of the resin film. In the etching, an aqueous sodium hydroxide solution was used as an etching solution. Next, the surface roughness Ra (arithmetic mean surface roughness based on JIS B 0601-2001) of the first surface of the resin film was obtained from an observation image of 1 μm square using an atomic force microscope (product name "Dimention-Edge SPM SYSTEM", manufactured by Bruker). The surface roughness Ra (nm) is shown in Table 1.
〈TOF-SIMS〉
 実施例1および比較例1の各反射フィルムの金属反射層について、飛行時間型二次イオン質量分析法(TOF-SIMS)によって成分分析した。具体的には、次のとおりである。
<TOF-SIMS>
The metal reflective layer of each of the reflective films in Example 1 and Comparative Example 1 was subjected to component analysis by time-of-flight secondary ion mass spectrometry (TOF-SIMS). Specifically, the results are as follows.
 具体的には、TOF-SIMSにより、反射フィルムの金属反射層における露出面から厚さ方向の成分分析を実施した(第1の分析)。分析には、飛行時間型二次イオン質量分析装置(品名「TOF-SIMS 5」,ION-TOF社製)を使用した。本分析では、エッチング用イオンビームの照射と、その後の測定用イオンビーム(1次イオンビーム)の照射とを交互に繰り返した。エッチング用イオンビームの照射では、セシウムイオン(Cs)を用い、加速電圧を1kVとし、照射範囲を1000μm×1000μmとし、各照射時間を5秒とした。測定用イオンビームの照射では、照射1次イオンとしてビスマスクラスターのダブルチャージイオン(Bi ++)を用い、加速電圧を30kVとし、照射範囲を、エッチング用イオンビーム照射領域の中央部100μm×100μmとし、分析中の試料の帯電を補正する中和銃を使用した。また、本分析は室温にて行った。 Specifically, a component analysis was performed in the thickness direction from the exposed surface of the metal reflective layer of the reflective film by TOF-SIMS (first analysis). A time-of-flight secondary ion mass spectrometer (name: TOF-SIMS 5, manufactured by ION-TOF) was used for the analysis. In this analysis, irradiation with an ion beam for etching and subsequent irradiation with an ion beam for measurement (primary ion beam) were alternately repeated. In the irradiation with the ion beam for etching, cesium ions (Cs + ) were used, the acceleration voltage was 1 kV, the irradiation range was 1000 μm×1000 μm, and each irradiation time was 5 seconds. In the irradiation with the ion beam for measurement, double-charged ions (Bi 3 ++ ) of bismuth clusters were used as the primary ions for irradiation, the acceleration voltage was 30 kV, the irradiation range was 100 μm×100 μm in the center of the area irradiated with the ion beam for etching, and a neutralization gun was used to correct the charging of the sample during analysis. In addition, this analysis was performed at room temperature.
 本分析により、二次イオン(負イオン)強度の質量スペクトルの、深さ方向(金属反射層の厚さ方向)のプロファイル(デプスプロファイル)を取得した。本分析において二次イオン(負イオン)として検知した成分には、炭素(C)が含まれる。そして、金属反射層における露出表面から深さ5μm以下(樹脂フィルム側の表面まで)の炭素の平均イオン強度(counts/sec)を求めた。第1の分析における平均イオン強度を、加湿試験前のイオン強度F1として表1に示す。 This analysis obtained a profile (depth profile) in the depth direction (thickness direction of the metal reflective layer) of the mass spectrum of secondary ion (negative ion) intensity. Components detected as secondary ions (negative ions) in this analysis included carbon (C). The average ion intensity (counts/sec) of carbon was then determined at a depth of 5 μm or less (to the surface on the resin film side) from the exposed surface of the metal reflective layer. The average ion intensity in the first analysis is shown in Table 1 as the ion intensity F1 before the humidification test.
 また、実施例1および比較例1の各反射フィルムの金属反射層について、加湿試験の後、TOF-SIMSによって成分分析した(第2の分析)。加湿試験では、反射フィルムを、65℃および相対湿度90%の環境下で500時間、保管した。第2の成分分析は、第1の成分分析と同様に実施した。第2の分析における平均イオン強度を、加湿試験後のイオン強度F2として表1に示す。上述のイオン強度F1に対するイオン強度F2の比率(F2/F1)も表1に示す。 Furthermore, the metal reflective layer of each reflective film of Example 1 and Comparative Example 1 was subjected to a component analysis by TOF-SIMS after the humidification test (second analysis). In the humidification test, the reflective film was stored for 500 hours in an environment of 65°C and a relative humidity of 90%. The second component analysis was carried out in the same manner as the first component analysis. The average ionic strength in the second analysis is shown in Table 1 as the ionic strength F2 after the humidification test. The ratio of ionic strength F2 to the above-mentioned ionic strength F1 (F2/F1) is also shown in Table 1.
 比較例1の反射フィルムにおいては、樹脂フィルムの第1面(金属反射層との界面)の表面粗さRaが45.2nmであり、比較的小さい。このような反射フィルムでは、加湿試験前後の金属反射層中の炭素元素のイオン強度の比率(F2/F1)が3.2であり、金属反射層における炭素(不純物)の増加量が比較的大きかった。これは、樹脂フィルムの第1面の平滑性が高いために樹脂フィルムと金属反射層との密着性が低いことから、樹脂フィルムから金属反射層への水分の浸入が抑制されず、樹脂フィルム中の炭素成分が水分とともに金属反射層に拡散・移行したためであると考えられる。そのため、比較例1の反射フィルムでは、加湿試験による金属反射層の光学特性の劣化が大きく、加湿試験前後の視感透過率の差T2-T1(視感透過率の上昇)が0.09であった。これに対し、実施例1~5の各反射フィルムにおいては、樹脂フィルムの第1面(金属反射層との界面)の表面粗さRaが50nm以上である。このような反射フィルムでは、加湿試験前後の金属反射層中の炭素元素のイオン強度の比率(F2/F1)が3.0未満(具体的には、2.2または2.7)であり、金属反射層における炭素(不純物)の増加量が比較的小さかった。そのため、実施例1~5の各反射フィルムでは、加湿試験前後の視感透過率の差T2-T1(視感透過率の上昇)が0.06以下に抑制された。 In the reflective film of Comparative Example 1, the surface roughness Ra of the first surface of the resin film (interface with the metal reflective layer) was 45.2 nm, which was relatively small. In such a reflective film, the ratio (F2/F1) of the ionic strength of the carbon element in the metal reflective layer before and after the humidification test was 3.2, and the increase in the amount of carbon (impurity) in the metal reflective layer was relatively large. This is thought to be because the smoothness of the first surface of the resin film is high, so the adhesion between the resin film and the metal reflective layer is low, so the penetration of moisture from the resin film to the metal reflective layer is not suppressed, and the carbon component in the resin film diffuses and migrates to the metal reflective layer together with moisture. Therefore, in the reflective film of Comparative Example 1, the optical properties of the metal reflective layer are significantly deteriorated by the humidification test, and the difference T2-T1 (increase in luminous transmittance) in the luminous transmittance before and after the humidification test was 0.09. In contrast, in each of the reflective films of Examples 1 to 5, the surface roughness Ra of the first surface of the resin film (interface with the metal reflective layer) is 50 nm or more. In such a reflective film, the ratio of the ionic strength of the carbon element in the metal reflective layer (F2/F1) before and after the humidification test was less than 3.0 (specifically, 2.2 or 2.7), and the increase in the amount of carbon (impurity) in the metal reflective layer was relatively small. Therefore, in each of the reflective films of Examples 1 to 5, the difference T2-T1 in luminous transmittance before and after the humidification test (increase in luminous transmittance) was suppressed to 0.06 or less.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上述の実施形態は本発明の例示であり、当該実施形態によって本発明を限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記の請求の範囲に含まれる。 The above-described embodiments are merely examples of the present invention, and the present invention should not be interpreted as being limited by these embodiments. Modifications of the present invention that are obvious to those skilled in the art are included in the scope of the claims below.
 本発明の反射フィルムは、例えば、液晶表示装置における筐体のベゼル部内に配置される反射フィルムとして、用いることができる。 The reflective film of the present invention can be used, for example, as a reflective film placed inside the bezel of the housing of a liquid crystal display device.
X  反射フィルム
H  厚さ方向
10 樹脂フィルム
11 第1面
12 第2面
20 金属反射層
30 黒化層
40 硬化樹脂層
 
X: Reflective film H: Thickness direction 10: Resin film 11: First surface 12: Second surface 20: Metallic reflective layer 30: Blackened layer 40: Cured resin layer

Claims (6)

  1.  第1面と当該第1面とは反対側の第2面とを有する樹脂フィルムと、
     前記第1面上の金属反射層とを備え、
     前記第1面の表面粗さRaが50nm以上である、反射フィルム。
    a resin film having a first surface and a second surface opposite to the first surface;
    a metallic reflective layer on the first surface;
    A reflective film, wherein the first surface has a surface roughness Ra of 50 nm or more.
  2.  前記反射フィルムが、視感透過率T1(%)を有し、且つ、65℃、相対湿度90%および500時間の条件での加湿試験の後に視感透過率T2(%)を有し、視感透過率T2と視感透過率T1との差T2-T1が0.06以下である、請求項1に記載の反射フィルム。 The reflective film according to claim 1, wherein the reflective film has a luminous transmittance T1 (%), and has a luminous transmittance T2 (%) after a humidification test under conditions of 65°C, 90% relative humidity and 500 hours, and the difference T2-T1 between the luminous transmittance T2 and the luminous transmittance T1 is 0.06 or less.
  3.  前記金属反射層がアルミニウム層である、請求項1に記載の反射フィルム。 The reflective film of claim 1, wherein the metal reflective layer is an aluminum layer.
  4.  前記樹脂フィルム側に照射される光に対して前記反射フィルムが80%以上の視感反射率を有する、請求項1に記載の反射フィルム。 The reflective film according to claim 1, wherein the reflective film has a visual reflectance of 80% or more for light irradiated to the resin film side.
  5.  前記金属反射層における前記樹脂フィルムとは反対側に黒化層を備える、請求項1から4のいずれか一つに記載の反射フィルム。 The reflective film according to any one of claims 1 to 4, comprising a blackening layer on the side of the metal reflective layer opposite the resin film.
  6.  前記黒化層における前記金属反射層とは反対側に硬化樹脂層を備える、請求項5に記載の反射フィルム。
     
    The reflective film according to claim 5 , further comprising a cured resin layer on the side of the blackening layer opposite to the metal reflective layer.
PCT/JP2023/042320 2022-11-30 2023-11-27 Reflective film WO2024117069A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022192388 2022-11-30
JP2022-192388 2022-11-30

Publications (1)

Publication Number Publication Date
WO2024117069A1 true WO2024117069A1 (en) 2024-06-06

Family

ID=91323999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/042320 WO2024117069A1 (en) 2022-11-30 2023-11-27 Reflective film

Country Status (1)

Country Link
WO (1) WO2024117069A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194587A1 (en) * 2014-06-18 2015-12-23 ジオマテック株式会社 Laminate, method for manufacturing same, and electronic device
JP2016027148A (en) * 2014-07-01 2016-02-18 三菱エンジニアリングプラスチックス株式会社 Polyester resin composition, injection molded article, light reflecting body base, and light reflecting body
WO2016072472A1 (en) * 2014-11-07 2016-05-12 三菱樹脂株式会社 Reflective film
CN112831285A (en) * 2019-11-22 2021-05-25 上海永超新材料科技股份有限公司 Shading film for mobile phone rear cover plate and preparation method and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194587A1 (en) * 2014-06-18 2015-12-23 ジオマテック株式会社 Laminate, method for manufacturing same, and electronic device
JP2016027148A (en) * 2014-07-01 2016-02-18 三菱エンジニアリングプラスチックス株式会社 Polyester resin composition, injection molded article, light reflecting body base, and light reflecting body
WO2016072472A1 (en) * 2014-11-07 2016-05-12 三菱樹脂株式会社 Reflective film
CN112831285A (en) * 2019-11-22 2021-05-25 上海永超新材料科技股份有限公司 Shading film for mobile phone rear cover plate and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP3708564B2 (en) Method for modifying thin layer of metal oxide etc. using low ion beam
JP4697450B2 (en) Transparent conductive film or transparent conductive sheet, and touch panel using the same
JPWO2018203526A1 (en) Aluminum vapor-deposited film and method for producing the same
JP4078520B2 (en) Manufacturing method of filter with antireflection function for display device
JP2000277256A (en) Method and device for manufacture of organic electroluminescent element
WO2022014569A1 (en) Optical film with anti-fouling layer
WO2024117069A1 (en) Reflective film
JP2002371350A (en) Method for manufacturing transparent laminate
JP2002371355A (en) Method for manufacturing transparent thin film
JP2009190216A (en) Gas barrier sheet
EP3660182A1 (en) Film forming method and film forming apparatus
JP4699123B2 (en) Electromagnetic wave shielding filter, manufacturing method thereof, display including the electromagnetic wave shielding filter, and electromagnetic wave shielding structure
US20170031070A1 (en) Plastic Substrate having a Porous Layer and Method for Producing the Porous Layer
EP3660548A1 (en) Optical member and producing method of optical member
WO2024117068A1 (en) Reflective film
TW202429172A (en) Reflective film
JP2008098084A (en) Optical component and its manufacturing method
WO2015166963A1 (en) Transparent conductive film and method for producing same
TW202306757A (en) Optical multilayer body and image display device
JP2009283348A (en) Transparent conductive film, and touch panel using the same
JP7509852B2 (en) Transparent Conductive Film
JPH11258407A (en) Antireflection film
JP7535528B2 (en) Light-transmitting conductive film and transparent conductive film
JP2024126219A (en) Transparent Conductive Film
JP5217144B2 (en) Organic EL display, optical component used therefor, gas barrier substrate used therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23897717

Country of ref document: EP

Kind code of ref document: A1