WO2024116659A1 - アルミニウム合金箔、アルミニウム合金箔を用いた積層体およびそれらの製造方法 - Google Patents

アルミニウム合金箔、アルミニウム合金箔を用いた積層体およびそれらの製造方法 Download PDF

Info

Publication number
WO2024116659A1
WO2024116659A1 PCT/JP2023/038351 JP2023038351W WO2024116659A1 WO 2024116659 A1 WO2024116659 A1 WO 2024116659A1 JP 2023038351 W JP2023038351 W JP 2023038351W WO 2024116659 A1 WO2024116659 A1 WO 2024116659A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
alloy foil
mass
less
aluminum
Prior art date
Application number
PCT/JP2023/038351
Other languages
English (en)
French (fr)
Inventor
翔 合志
享 新宮
真輝 松本
Original Assignee
東洋アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋アルミニウム株式会社 filed Critical 東洋アルミニウム株式会社
Publication of WO2024116659A1 publication Critical patent/WO2024116659A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to aluminum alloy foil, a laminate using aluminum alloy foil, and a method for manufacturing the same.
  • Aluminum foil and aluminum alloy foil are laminated with a resin film layer and/or coating layer on one or both sides and are widely used in fields such as building materials, food packaging, pharmaceutical packaging, and aluminum etched circuits.
  • etching As the etching treatment liquid, solutions such as hydrochloric acid (HCl), nitric acid (HNO 3 ), sulfuric acid (H 2 SO 4 ), ferric chloride (FeCl 3 ), sodium hydroxide (NaOH), or hydrofluoric acid (HF), or a mixture containing two or more of these solutions, are used.
  • HCl hydrochloric acid
  • HNO 3 nitric acid
  • sulfuric acid H 2 SO 4
  • FeCl 3 ferric chloride
  • NaOH sodium hydroxide
  • HF hydrofluoric acid
  • Patent Document 1 discloses an aluminum alloy foil for printed circuits that contains Si, Fe, Cu, and Ni as an aluminum alloy foil with excellent chemical solubility during etching.
  • the aluminum alloy foil described in Patent Document 1 requires the use of hydrochloric acid (HCl) for the etching process, and has insufficient chemical solubility in weak acids, so there is a problem that it is not necessarily an effective solution to the issue of ceasing the use of harmful substances that have a large environmental impact or reducing their usage.
  • HCl hydrochloric acid
  • the etching process for aluminum foil or aluminum alloy foil must enable the formation of fine shapes such as circuits, but the occurrence of undissolved areas on the material surface after etching and the formation of locally deep dissolved pits must be suppressed as much as possible, as these can impair product characteristics such as circuits. Therefore, the chemical solubility of aluminum foil, etc., poses the challenge of ensuring uniform solubility in the etching process, which suppresses the formation of undissolved areas and pits.
  • the present invention aims to provide an aluminum alloy foil that has excellent chemical solubility in a weak acid environment and excellent uniform solubility in an acid environment, a laminate using the aluminum alloy foil, and a method for producing the same.
  • an aluminum alloy foil containing Fe, Ni, and Zn, with the remainder being Al and unavoidable impurities characterized in that, when the contents of Fe, Ni, and Zn in the aluminum alloy foil are [Fe], [Ni], and [Zn], respectively, in mass%, [Zn] is 0.4 to 5.1, [Fe] + [Ni] is 0.4 to 4.8, and [Fe] + [Ni] + 2 ⁇ [Zn] is 2.5 or more.
  • [Fe] in the aluminum alloy foil is 0.0001 or more and 3.1 or less, and [Ni] is 0.0001 or more and 3.0 or less, and the amount of Zn dissolved in the aluminum parent phase in the aluminum alloy foil is 0.3 mass% or more and 4.1 mass% or less.
  • [Fe] + [Ni] + 2 x [Zn] is controlled because adding Zn to form a solid solution makes the potential of the aluminum parent phase less noble, which has a synergistic effect with the effect of adding Fe or Ni described above, thereby further improving the chemical solubility of the aluminum alloy foil in a weak acid environment.
  • the reason for controlling [Zn], and preferably the amount of Zn in solid solution, is that most of the Zn dissolves in the aluminum parent phase, making the potential of the aluminum parent phase more base. Therefore, the aluminum parent phase in which Zn is dissolved increases the potential difference with the above-mentioned Al-Fe, Al-Ni and/or Al-Fe-Ni second phase particles, contributing to improving the chemical solubility of the aluminum alloy foil in a weak acid environment. Furthermore, the aluminum parent phase in which Zn is dissolved can improve the uniform solubility of the aluminum alloy foil in an acid environment.
  • the inevitable impurities are one or more elements selected from the group consisting of Si, Mn, Mg, Cu, In, Sn, Na, V, Ti, Zr, Cr, B, Ga, Bi, Pb, Sb, As, etc., and the total content of the one or more elements is preferably 0.6 mass% or less.
  • the content of Mn in the aluminum alloy foil is 0.4 mass% or less
  • the content of Mg is 0.4 mass% or less
  • the content of each of the above elements other than Mn and Mg contained as inevitable impurities in the aluminum alloy foil is preferably 0.2 mass% or less.
  • the area occupancy of second phase particles having an equivalent circle diameter of 0.1 ⁇ m or more distributed on the aluminum alloy foil surface is 1.7% or more, as determined by field emission scanning electron microscope (FE-SEM) analysis. It is also preferable that the area occupancy of second phase particles having an equivalent circle diameter of 3.0 ⁇ m or more distributed on the aluminum alloy foil surface is 2.0% or less.
  • the second phase particles are formed from Al-Fe, Al-Ni and/or Al-Fe-Ni particles, but in the case of particles with a circle-equivalent diameter of 0.1 ⁇ m or more, the potential difference with the aluminum parent phase becomes large, so unless the area occupancy rate on the aluminum alloy foil surface is controlled, the desired chemical solubility of the aluminum alloy foil in a weak acid environment cannot be obtained. On the other hand, in the case of coarse particles with a circle-equivalent diameter of 3.0 ⁇ m or more, they can cause defects such as cracks and pinholes, so unless the area occupancy rate on the aluminum alloy foil surface is controlled, rolling workability decreases.
  • the thickness is preferably 5 ⁇ m or more and 300 ⁇ m or less.
  • the aluminum alloy foil of the present invention may also be configured as a laminate by forming a resin film layer and/or a coating layer on one or both sides depending on the application.
  • the aluminum alloy foil having high chemical solubility in a weak acid environment and high uniform solubility in an acid environment as described above can be produced by a production method including the steps of: preparing a molten aluminum alloy containing Fe, Ni, and Zn with the remainder being Al and unavoidable impurities, in which the contents of Fe, Ni, and Zn in the molten aluminum alloy are, in mass %, [Fe], [Ni], and [Zn], respectively, such that [Zn] is 0.4 to 5.1, [Fe] + [Ni] is 0.4 to 4.8, and [Fe] + [Ni] + 2 ⁇ [Zn] is 2.5 or more; casting the molten aluminum alloy to obtain a casting; and cold rolling the casting to obtain an aluminum alloy foil.
  • the laminate using the aluminum alloy foil of the present invention can be produced by a production method including a step of preparing the aluminum alloy foil obtained by the above-mentioned production method, and a lamination step of laminating a resin film layer and/or a coating layer on one or both sides of the aluminum alloy foil.
  • the aluminum alloy foil of the present invention and the laminate using the aluminum alloy foil have high chemical solubility in a weak acid environment and high uniform solubility in an acid environment. Furthermore, the manufacturing method of the present invention makes it possible to manufacture the aluminum alloy foil and the laminate using the aluminum alloy foil having the above-mentioned characteristics.
  • 1 is a SEM photograph ( ⁇ 1000) of the surface of the aluminum alloy foil of Example 4, in which the area occupancy rate of second-phase particles having an equivalent circle diameter of 0.1 ⁇ m or more is 6.38%.
  • 1 is a SEM photograph ( ⁇ 1000) of the surface of the aluminum alloy foil of Example 12, in which the area occupancy rate of second-phase particles having an equivalent circle diameter of 3.0 ⁇ m or more is 1.69%.
  • 1 is a SEM photograph ( ⁇ 1000) of the surface of the aluminum alloy foil of Comparative Example 6, in which the area occupancy rate of second phase particles having an equivalent circle diameter of 0.1 ⁇ m or more is 3.85%.
  • FIG. 1 is a SEM photograph ( ⁇ 1000 magnification) of the surface of the aluminum alloy foil of Comparative Example 9, in which the area occupancy rate of second phase particles having an equivalent circle diameter of 3.0 ⁇ m or more is 7.55%.
  • FIG. 1 is a scatter plot showing the relationship between ([Fe]+[Ni]+2 ⁇ [Zn]) and chemical solubility in a weak acid environment (labeled “weak acid solubility” in the figure).
  • FIG. 1 is a scatter diagram showing the relationship between [Zn] and uniform solubility in an acidic environment (denoted as "uniform solubility" in the figure).
  • Aluminum alloy foil (1)
  • Aluminum alloy foil of the present invention contains iron (Fe), nickel (Ni), and zinc (Zn), with the balance being aluminum (Al) and inevitable impurities.
  • the aluminum alloy foil may contain inevitable impurities to the extent that they do not impair the chemical solubility in a weak acid environment, the uniform solubility in an acid environment, the rolling processability, the etching property, and the manufacturing suitability of the aluminum alloy foil.
  • the inevitable impurities consist of one or more elements selected from the group consisting of silicon (Si), manganese (Mn), magnesium (Mg), copper (Cu), indium (In), tin (Sn), sodium (Na), vanadium (V), titanium (Ti), zirconium (Zr), chromium (Cr), boron (B), gallium (Ga), bismuth (Bi), lead (Pb), antimony (Sb), and arsenic (As).
  • the content of aluminum (Al) contained in the aluminum alloy foil is preferably 89.0 mass% or more.
  • the Fe content exceeds 3.1% by mass, the material strength increases due to precipitation strengthening, and defects such as cracks occur, hindering rolling workability. Furthermore, coarse second phase particles are likely to be formed during casting, which not only hinders rolling workability and hinders uniform surface formation in etching treatment, but also causes defects such as pinholes in the process of manufacturing aluminum alloy foil with a thickness of 10 ⁇ m or less.
  • the lower limit of the Fe content is not particularly limited, but is usually about 0.0001% by mass. In order to reduce the Fe content to less than 0.0001% by mass, it is necessary to repeat the three-layer electrolysis method, which significantly increases the manufacturing cost.
  • the Fe content in the aluminum alloy foil is preferably 0.0001% by mass or more and 3.1% by mass or less, more preferably 0.0001% by mass or more and 1.8% by mass or less, and even more preferably 0.0001% by mass or more and 1.5% by mass or less.
  • Ni Nickel (Ni)>
  • Ni Ni-containing second phase particles and/or Al-Fe-Ni second phase particles together with Fe.
  • the Ni-containing second phase particles have a large potential difference with the aluminum matrix, and increase the effect as a cathode site. Therefore, adding Ni to an aluminum alloy improves the chemical solubility of the aluminum alloy foil in a weak acid environment.
  • the Ni content exceeds 3.0% by mass, the material strength increases due to precipitation strengthening, and defects such as cracked edges occur, hindering rolling workability. Furthermore, coarse second phase particles are likely to be formed during casting, which not only hinders rolling workability and hinders uniform surface formation in etching treatment, but also causes defects such as pinholes in the process of manufacturing aluminum alloy foil with a thickness of 10 ⁇ m or less.
  • the lower limit of the Ni content is not particularly limited, but is usually about 0.0001% by mass. In order to reduce the Ni content to less than 0.0001% by mass, it is necessary to repeat the three-layer electrolysis method, which significantly increases the manufacturing cost.
  • the Ni content in the aluminum alloy foil is preferably 0.0001% by mass or more and 3.0% by mass or less, more preferably 0.0001% by mass or more and 2.6% by mass or less, and even more preferably 0.0001% by mass or more and 1.8% by mass or less.
  • ⁇ Zinc (Zn)> When a certain amount of Zn is added to an aluminum alloy, most of it dissolves in the aluminum matrix, making the potential of the aluminum matrix less noble, thereby increasing the potential difference between the Al-Fe, Al-Ni and/or Al-Fe-Ni second phase particles and the aluminum matrix, improving the chemical solubility of the aluminum alloy foil in a weak acid environment, and improving the uniform solubility of the aluminum alloy foil in an acid environment.
  • the Zn content falls below 0.4 mass%, the amount of Zn dissolved in the aluminum parent phase decreases, the effect of making the potential of the aluminum parent phase less base becomes insufficient, and the chemical solubility of the aluminum alloy foil in a weak acid environment and the uniform solubility of the aluminum alloy foil in an acidic environment are impaired.
  • the Zn content exceeds 2.1 mass%, the uniform solubility of the aluminum alloy foil remains unchanged, but the chemical solubility is impaired.
  • the Zn content exceeds 5.1 mass%, the material strength increases due to solid solution strengthening, hindering rolling workability.
  • the Zn content in the aluminum alloy foil is preferably 0.4 mass% or more and 5.1 mass% or less, more preferably 0.5 mass% or more and 2.9 mass% or less, and even more preferably 0.75 mass% or more and 2.1 mass% or less.
  • [Fe] + [Ni] is preferably 0.4 to 4.8, more preferably 0.9 to 4.0, and even more preferably 1.4 to 2.9.
  • [Fe] + [Ni] + 2 x [Zn] is preferably 2.5 or more, more preferably 2.85 or more, and even more preferably 2.95 or more.
  • the amount of Zn in solid solution in the aluminum parent phase is preferably 0.3 mass% or more and 4.1 mass% or less, more preferably 0.4 mass% or more and 2.7 mass% or less, and even more preferably 0.5 mass% or more and 1.5 mass% or less.
  • the aluminum alloy foil may contain one or more elements selected from the group consisting of Si, Mn, Mg, Cu, In, Sn, Na, V, Ti, Zr, Cr, B, Ga, Bi, Pb, Sb, and As as inevitable impurities.
  • the total content of the one or more elements is preferably 0.6 mass% or less.
  • the content of Mn in the aluminum alloy foil is preferably 0.4 mass% or less
  • the content of Mg is preferably 0.4 mass% or less
  • the content of each of the above elements other than Mn and Mg contained as inevitable impurities in the aluminum alloy foil is preferably 0.2 mass% or less.
  • Si ⁇ Impurity components> (Si) Adding a certain amount of Si to an aluminum alloy improves the chemical solubility of the aluminum alloy foil in a weak acid environment, but if the Si content exceeds 0.2 mass %, it promotes coarsening of Al-Fe, Al-Ni and/or Al-Fe-Ni second phase particles, impairing the rolling workability and the uniform solubility of the aluminum alloy foil in an acid environment.
  • the lower limit of the Si content is not particularly limited, but is usually around 0.0001% by mass. In order to reduce the Si content to less than 0.0001% by mass, it becomes necessary to repeat the three-layer electrolysis method, which significantly increases the manufacturing cost. Therefore, the Si content in the aluminum alloy foil is preferably 0.0001% by mass or more and 0.2% by mass or less, more preferably 0.0001% by mass or more and 0.15% by mass or less, and even more preferably 0.0001% by mass or more and 0.1% by mass or less.
  • Mn When a certain amount of Mn is added to an aluminum alloy, most of it dissolves in the aluminum matrix, but a part of it forms second-phase particles such as Al-Mn-based, Al-Mn-Ni-based, Al-Mn-Si-based, Al-Mn-Fe-Ni-based, Al-Mn-Fe-Ni-based, Al-Mn-Ni-Si-based, Al-Mn-Si-Fe-based, or Al-Mn-Fe-Ni-Si-based together with Al-Mn, Fe, Ni, and Si.
  • second-phase particles such as Al-Mn-based, Al-Mn-Ni-based, Al-Mn-Si-based, Al-Mn-Fe-Ni-based, Al-Mn-Ni-Si-Fe-based, or Al-Mn-Fe-Ni-Si-based together with Al-Mn, Fe, Ni, and Si.
  • the Mn content in the second-phase particles and the amount of Mn dissolved in the aluminum matrix increase, and the potential of the second-phase particles approaches that of the aluminum matrix, reducing the effect of the second-phase particles as cathode sites. This reduces the chemical solubility of the aluminum alloy foil in a weak acid environment.
  • the lower limit of the Mn content is not particularly limited, but is usually around 0.0001% by mass. In order to reduce the Mn content to less than 0.0001% by mass, it becomes necessary to repeat the three-layer electrolysis method, which significantly increases the manufacturing cost. Therefore, the Mn content in the aluminum alloy foil is preferably 0.0001% by mass or more and 0.4% by mass or less, more preferably 0.0001% by mass or more and 0.2% by mass or less, and even more preferably 0.0001% by mass or more and 0.1% by mass or less.
  • Mg When a certain amount of Mg is added to an aluminum alloy, a part of it dissolves in the aluminum parent phase. When the Mg content exceeds 0.4 mass%, Mg is concentrated in the oxide film formed on the surface of the aluminum alloy material, and the oxide film is likely to have defects. Such defects in the oxide film can cause delamination at the bonding interface of a laminate in which, for example, an aluminum alloy foil and a resin film are laminated. In addition, the addition of Mg has the effect of reducing the chemical solubility of the aluminum alloy foil and improving the corrosion resistance.
  • the lower limit of the Mg content is not particularly limited, but is usually around 0.0001% by mass. In order to reduce the Mg content to less than 0.0001% by mass, it becomes necessary to repeat the three-layer electrolysis method, which significantly increases the manufacturing cost. Therefore, the Mg content in the aluminum alloy foil is preferably 0.0001% to 0.4% by mass, more preferably 0.0001% to 0.2% by mass, and even more preferably 0.0001% to 0.1% by mass.
  • Cu When a certain amount of Cu is added to an aluminum alloy, a part of it dissolves in the aluminum matrix. If the Cu content exceeds 0.2 mass%, the amount of Cu dissolved in the aluminum matrix increases, and the material strength increases due to solid solution strengthening, which may impair rolling workability.
  • the lower limit of the Cu content is not particularly limited, but is usually around 0.0001% by mass.
  • the Cu content in the aluminum alloy foil is preferably 0.0001% by mass or more and 0.2% by mass or less, more preferably 0.0001% by mass or more and 0.15% by mass or less, and even more preferably 0.0001% by mass or more and 0.1% by mass or less.
  • the In content in the aluminum alloy foil is preferably 0.0001 mass% or more and 0.2 mass% or less, and the Sn content is preferably 0.0001 mass% or more and 0.2 mass% or less.
  • Second Phase Particles Having an Equivalent Circle Diameter of 0.1 ⁇ m or More Distributed on the Aluminum Alloy Foil Surface Adding the above-mentioned elements to aluminum produces second-phase particles in the aluminum matrix.
  • the second-phase particles are Al-Fe, Al-Ni, and/or Al-Fe-Ni, etc. These second-phase particles have a large potential difference with the aluminum matrix and act as cathode sites. This improves the chemical solubility of the aluminum alloy foil in a weak acid environment.
  • the area occupancy rate of second phase particles having a circular equivalent diameter of 0.1 ⁇ m or more distributed on the surface of the aluminum alloy foil falls below 1.7%, the effect as a cathode site will not be sufficient, and the chemical solubility of the aluminum alloy foil in a weak acid environment will be insufficient. Therefore, on the surface of the aluminum alloy foil, the area occupancy rate of second phase particles having a circular equivalent diameter of 0.1 ⁇ m or more is preferably 1.7% or more, more preferably 4.1% or more, and even more preferably 5.6% or more.
  • Second-phase particles are Al-Fe, Al-Ni and/or Al-Fe-Ni type second-phase particles, and coarse second-phase particles having an equivalent circle diameter of 3.0 ⁇ m or more impair the rolling workability.
  • the area occupancy rate of second-phase particles with an equivalent circle diameter of 3.0 ⁇ m or more distributed on the surface of an aluminum alloy foil exceeds 2.0%, defects such as edge cracks will occur, impairing rolling workability. Therefore, on the surface of the aluminum alloy foil, the area occupancy rate of second-phase particles with an equivalent circle diameter of 3.0 ⁇ m or more is preferably 2.0% or less, more preferably 0.8% or less, and even more preferably 0.5% or less.
  • the thickness of the aluminum alloy foil of the present invention is preferably 5 ⁇ m or more from the viewpoint of strength and ease of production. From the viewpoint of weight reduction of the aluminum alloy foil, the thickness of the aluminum alloy foil is preferably 300 ⁇ m or less. Furthermore, the thickness of the aluminum alloy foil is more preferably 5 ⁇ m or more and 200 ⁇ m or less. In order to control the thickness of the aluminum alloy foil within the above range, casting and rolling may be performed according to a conventional method. In addition, a heat treatment may be appropriately performed for the purpose of homogenizing the aluminum alloy foil.
  • the manufacturing method of the aluminum alloy foil of the present invention is characterized by comprising a step of rolling a casting (hereinafter also referred to as an "ingot") containing Fe, Ni and Zn with the balance being Al and inevitable impurities, in which, when the contents of Fe, Ni and Zn are [Fe], [Ni] and [Zn], respectively, in mass%, [Zn] is 0.4 to 5.1, [Fe] + [Ni] is 0.4 to 4.8, and [Fe] + [Ni] + 2 ⁇ [Zn] is 2.5 or more.
  • An ingot having the above composition can be obtained, for example, by melting aluminum ingot, and adding Fe or Al-Fe mother alloy, Ni or Al-Ni mother alloy, and Zn or Al-Zn mother alloy to adjust the composition of the molten metal, and then casting and solidifying the molten metal.
  • the casting method There are no particular limitations on the casting method, and known methods such as semi-continuous casting, continuous casting, and mold casting can be used.
  • the obtained ingot may be subjected to heat treatment for the purpose of homogenization.
  • the homogenization heat treatment is preferably performed under conditions of a heating temperature of 400°C or higher and 630°C or lower, and a heating time of 1 hour or higher and 20 hours or lower.
  • the rolling method can be any widely known rolling method and is not particularly limited. However, from the viewpoint of making it easier to adjust the thickness of the aluminum alloy foil, it is preferable to provide a cold rolling process after the hot rolling process. Furthermore, the number of hot rollings in the hot rolling process and the number of cold rollings in the cold rolling process may be appropriately set according to the target final thickness of the aluminum alloy foil.
  • intermediate annealing When cold rolling is performed multiple times in the cold rolling process, it is preferable to perform intermediate annealing. In this case, it is preferable to perform the cold rolling process in the following order: one or more cold rollings, intermediate annealing, and one or more cold rollings. It is preferable to perform intermediate annealing under conditions of an annealing temperature of 50°C or higher and 500°C or lower, and an annealing time of 1 second or higher and 20 hours or lower. By performing intermediate annealing, it becomes possible to easily adjust the thickness of the aluminum alloy foil.
  • a heat treatment process may be performed at a temperature of 50°C to 450°C for 1 second to 50 hours.
  • the aluminum alloy foil of the present invention may be formed into a laminate by laminating a resin film layer and/or a coating layer on all or a part of one or both sides of the aluminum alloy foil.
  • a resin film layer and a coating layer on all or a part of one or both sides of the aluminum alloy foil it is preferable to laminate the coating layer on the aluminum alloy foil and then laminate the resin film layer on the coating layer.
  • the aluminum alloy foil of the present invention has excellent chemical solubility in a weak acid environment, so even if a laminate is formed by laminating a resin film layer and/or a coating layer on both the front and back sides of an aluminum alloy foil, when immersed in a weak acid, the aluminum alloy foil layer dissolves from the end face of the laminate, making it possible to easily separate the resin film layer and/or the coating layer from the aluminum alloy foil layer.
  • the number of resin film layers and coating layers to be laminated on the aluminum alloy foil and the order of lamination can be appropriately set according to the intended use of the laminate, and there are no particular limitations.
  • the thickness of the entire laminate is preferably 6 ⁇ m or more from the viewpoint of strength, and preferably 301 ⁇ m or less from the viewpoint of weight reduction, and more preferably 10 ⁇ m or more and 201 ⁇ m or less when both viewpoints are taken into consideration.
  • the resin film used for the resin film layer laminated on the aluminum alloy foil can be a wide variety of films made of known resins, and is not particularly limited.Specifically, films made of one or more resins selected from polyethylene, polypropylene, polybutylene, polyethylene terephthalate, polyethylene naphthalate, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, ethylene vinyl acetate copolymer, polyamide, polyimide, and vinyl chloride can be used.
  • the thickness of the resin film layer laminated to the aluminum alloy foil may be appropriately set, taking into consideration the thickness of the aluminum alloy foil and the thickness of the coating layer described below, so that the thickness of the entire laminate falls within the above-mentioned numerical range.
  • adhesion and lamination methods When laminating the resin film layer onto the aluminum alloy foil, a wide variety of known adhesion and lamination methods can be used as a method for adhering the two together, and there are no particular limitations. Specific examples include the dry lamination method using a two-component curing adhesive such as a polyester urethane or polyester adhesive, the co-extrusion method, the extrusion coating method, the extrusion lamination method, the heat sealing method, or the heat lamination method using an anchor coating agent.
  • a two-component curing adhesive such as a polyester urethane or polyester adhesive
  • the coating layer of the aluminum alloy foil may be an inorganic coating layer made of titanium oxide, silicon oxide, zirconium oxide, a chromium composition, or the like, or a resin coating layer made of acrylic, polycarbonate, silicone resin, fluororesin, or the like.
  • suitable coating layers for the aluminum alloy foil include surface modifications such as plasma treatment, fatty acids, and silane coupling agents, and modified products formed using acids and/or alkalis, and are not particularly limited.
  • the thickness of the coating layer may be appropriately set, taking into consideration the thicknesses of the aluminum alloy foil and the resin film layer, so that the thickness of the entire laminate falls within the above-mentioned numerical range.
  • Any known method can be used to form a coating layer on the aluminum alloy foil, including, for example, a method of applying a coating agent such as spin coating, bar coating, flow coating, dip coating, or die coating, or a combination of two or more of the above coating methods. Furthermore, after application, a heat treatment for drying or reaction may be performed.
  • a coating agent such as spin coating, bar coating, flow coating, dip coating, or die coating, or a combination of two or more of the above coating methods.
  • a heat treatment for drying or reaction may be performed.
  • a coating layer examples include surface treatment methods such as ion plasma treatment, ion plating treatment, sputtering treatment, vapor deposition treatment, and plating treatment, or a surface treatment method that combines two or more of the above surface treatment methods. Furthermore, a lamination method of a coating layer that combines one or more of the above-mentioned coating methods and one or more of the above-mentioned surface treatment methods may be used.
  • Aluminum alloys having the compositions shown in Tables 1 and 2 were melted and cast using a metal mold casting method at a cooling rate of 1°C/sec or more and 15°C/sec or less to obtain ingots of the aluminum alloys of the Examples and Comparative Examples. The resulting ingots of the aluminum alloys were then heat treated at 530°C for 5 hours. Subsequently, cold rolling was performed multiple times to a thickness of 50 ⁇ m to produce the aluminum alloy foils of Examples 1 to 45 shown in Table 1 and the aluminum alloy foils of Comparative Examples 1 to 16 shown in Table 2.
  • the area occupancy rate of the second phase particles on each sample surface was measured using a backscattered electron image obtained by observing each sample surface with a field emission scanning electron microscope (FE-SEM). Specifically, 10 rectangular fields randomly selected from the backscattered electron images of each sample surface were observed. The range of each rectangular field was a rectangular field of 0.01069 mm2 (119.4 ⁇ m ⁇ 89.5 ⁇ m).
  • the backscattered electron images of each rectangular field were binarized under the condition of brightness of 100 to 255 using image processing software (Mitani Shoji Co., Ltd.: WinROOF2021) to extract second phase particles with a circle equivalent diameter of 0.1 ⁇ m or more and second phase particles with a circle equivalent diameter of 3.0 ⁇ m or more.
  • the area occupancy rate of the second phase particles in the measurement surface was calculated using the image processing software described above, and the average value of the above calculation results obtained from 10 rectangular fields of view was taken as the area occupancy rate of the second phase particles.
  • Tables 1 and 2 The results are shown in Tables 1 and 2.
  • Figure 1A shows an SEM photograph of the aluminum alloy foil surface of Example 4, in which the area occupancy of second phase particles with a circle-equivalent diameter of 0.1 ⁇ m or more is 6.38%, as an example of an SEM photograph before binarization processing
  • Figure 1B shows an SEM photograph of the aluminum alloy foil surface of Example 12, in which the area occupancy of second phase particles with a circle-equivalent diameter of 3.0 ⁇ m or more is 1.69%.
  • Figure 2A shows an SEM photograph of the aluminum alloy foil surface of Comparative Example 6, in which the area occupancy of second phase particles with a circle-equivalent diameter of 0.1 ⁇ m or more is 3.85%
  • Figure 2B shows an SEM photograph of the aluminum alloy foil surface of Comparative Example 9, in which the area occupancy of second phase particles with a circle-equivalent diameter of 3.0 ⁇ m or more is 7.55%.
  • the chemical solubility of the aluminum alloy foil surface in a weak acid environment was evaluated by the following method. That is, the aluminum alloy foil of each example and each comparative example was cut into a size of 40 mm x 40 mm, and as a pretreatment, it was immersed in a 1 mass% sodium hydroxide solution at 35 ° C for 60 seconds, and then immersed in a 30 mass% nitric acid solution at 25 ° C for 60 seconds to prepare a test piece for measurement.
  • test piece was immersed in an aqueous solution containing 3 mass% sodium chloride and 3 mass% acetic acid at 40 ° C for 2700 seconds, and the masses before and after immersion were measured to calculate the dissolution loss per unit surface area of each test piece.
  • a test piece with a dissolution loss per unit surface area of 2.8 ⁇ g / mm 2 or more was evaluated as having sufficient chemical solubility. The results are shown in Tables 1 and 2.
  • the evaluation of the uniform solubility of the aluminum alloy foil surface in an acidic environment was performed by the following method. That is, the aluminum alloy foil of each example and each comparative example was cut into a size of 10 mm x 40 mm, and was pretreated by immersing in a 1 mass% sodium hydroxide solution at 35 ° C for 60 seconds, and then immersing in a 30 mass% nitric acid solution at 25 ° C for 60 seconds to obtain a test piece for measurement.
  • Each test piece was immersed in an aqueous solution containing 8 mass% hydrochloric acid and 4 mass% aluminum chloride at 35 ° C for a predetermined time so that the dissolution loss of each test piece was 0.0025 g or more and 0.0029 g or less.
  • the maximum height roughness Sz of the surface of each test piece (aluminum alloy foil) after immersion was measured based on observation with a laser microscope.
  • the observation of the surface irregularities of the test piece with a laser microscope was performed using a laser microscope VK-X3000 manufactured by Keyence Corporation, with laser confocal shape measurement being performed in a rectangular field of view of 285.727 ⁇ m x 214.295 ⁇ m.
  • the maximum height roughness Sz of the test piece was measured using the obtained observation results with the multi-file analysis application of the VK-X3000 manufactured by Keyence Corporation. Specifically, first, surface shape correction was performed to remove waviness with a cutoff value of 0.5 mm for the obtained shape data, and then height cut level correction was performed with a cut level of 50 to remove noise components of laser light reflection.
  • the maximum height roughness Sz of each test specimen was measured using Keyence Corporation's VK-X3000 multi-file analysis application in accordance with the morphological parameters in the surface quality parameters of ISO 25178.
  • the maximum height roughness Sz of each test specimen used for evaluation was the average value of the calculation results obtained from five rectangular fields of view. Test specimens with a maximum height roughness Sz of 7.1 ⁇ m or less were evaluated as having sufficient uniform solubility. The results are shown in Tables 1 and 2.
  • the rolling workability of the aluminum alloy foil was evaluated by the following method. That is, in the cold rolling process, when the ingots (cast bodies) of each Example and each Comparative Example having the composition shown in Tables 1 and 2 were cold rolled to a predetermined thickness, the rolling workability of the sample (aluminum alloy foil) in which the reduction in material width due to edge cracking was less than 3% of the material width before the start of cold rolling was evaluated as "A”, the rolling workability of the sample in which the reduction in material width due to edge cracking was 3% or more but less than 10% was evaluated as "B”, the rolling workability of the sample in which the reduction in material width due to edge cracking was 10% or more but less than 25% was evaluated as "C”, and the rolling workability of the sample in which the reduction in material width due to edge cracking was 25% or more was evaluated as "F”. The results are shown in Tables 1 and 2.
  • the amount of Zn dissolved in the aluminum alloy foil was measured by the following method. That is, 0.1 g of a sample was taken from each aluminum alloy foil, and only the aluminum parent phase in the aluminum alloy foil was dissolved with phenol, and the second phase particles were collected by filtering with a membrane filter (H100A047A, manufactured by Toyo Roshi Kaisha, Ltd.) having a pore size of 0.1 ⁇ m. The second phase particles were dissolved with acid and alkali, and the amount of Zn precipitated was determined using an inductively coupled plasma emission spectrometer (ICPS-8100, manufactured by Shimadzu Corporation). The amount of Zn dissolved in the aluminum alloy foil was determined by subtracting the amount of Zn precipitated from the Zn content of the entire aluminum alloy foil. The results are shown in Table 3.
  • the above-mentioned potential measurements were carried out at a temperature of 25°C and in the open atmosphere using the following method.
  • the aluminum alloy foil of each Example and Comparative Example was cut into a size of 15 mm x 17 mm, and as a pretreatment, it was immersed in a 1% by mass sodium hydroxide solution at 35°C for 15 seconds, and then immersed in a 30% by mass nitric acid solution at 25°C for 30 seconds to prepare a test piece.
  • the potential was measured using a corrosion cell VM1 manufactured by EC Frontier Co., Ltd.
  • the electrode potential was measured by a three-electrode method using a 25°C, pH 5.5, 5 mass% NaCl aqueous solution as the test solution, a platinum-plated titanium rod (counter electrode VM1-5 manufactured by EC Frontier Co., Ltd.) as the counter electrode, an Ag/AgCl reference electrode RE-1A manufactured by EC Frontier Co., Ltd. as the reference electrode, and a sample holder VM1-3 manufactured by EC Frontier Co., Ltd. as the working electrode sample holder.
  • the sample holder has a circular sample window with an area of 1 cm2 , and the surface of the test piece exposed from this sample window acts as the working electrode.
  • the measurement of the natural potential and the potential when the absolute value of the cathodic current density reaches 1 mA/cm 2 was performed by first immersing the above working electrode, counter electrode, and reference electrode in the above test solution and leaving it for 600 seconds. During this time, the electrode potential was measured at a sampling interval of 10 seconds, and the average value of 60 points was taken as the "natural potential" of the aluminum alloy foil. Next, the natural potential of each test piece was swept in the negative direction to -1500 mV at a sweep rate of 0.5 mV/s using a potentiostat (Hokuto Denko Corporation: Electrochemical Measurement System HZ-7000 Series), and a cathodic polarization curve was measured.
  • a potentiostat Hokuto Denko Corporation: Electrochemical Measurement System HZ-7000 Series
  • the aluminum alloy foils of Examples 1 to 45 shown in Table 1 have a chemical solubility in a weak acid environment (dissolution loss per unit surface area) of 2.8 ⁇ g/ mm2 or more, a uniform solubility in an acid environment (maximum height roughness Sz after acid treatment) of 7.1 ⁇ m or less, and rolling workability when cold rolled is evaluated as "A", "B” or “C” (see Table 1). It was found that each aluminum alloy foil has excellent chemical solubility in a weak acid environment, excellent uniform solubility in an acid environment, and excellent rolling workability.
  • the aluminum alloy foils of Comparative Examples 1 to 16 shown in Table 2 have a chemical solubility in a weak acid environment (dissolution loss per unit surface area) of less than 2.8 ⁇ g/ mm2 , a uniform solubility in an acid environment (maximum height roughness Sz after acid treatment) of more than 7.1 ⁇ m, or the rolling workability when cold-rolled is evaluated as "F" (see Table 2). Therefore, it was found that good results were not obtained in at least one of the evaluations of chemical solubility in a weak acid environment, uniform solubility in an acid environment, and rolling workability.
  • Fig. 3 shows a scatter diagram illustrating the relationship between [Fe] + [Ni] + 2 ⁇ [Zn] and weak acid solubility ( ⁇ g/mm 2 ) when the contents of Fe, Ni and Zn in the aluminum alloy foils of Examples 1 to 45 and Comparative Examples 1 to 16 are [Fe], [Ni] and [Zn], respectively, in mass % .
  • Fig. 4 shows a scatter diagram illustrating the relationship of uniform solubility ( ⁇ m) to [Zn].
  • the Fe content is at least 0.0001% by mass to 3.1% by mass
  • the Ni content is at least 0.0001% by mass to 3.0% by mass
  • the Zn solid solution amount is at least 0.3% by mass to 4.1% by mass
  • the inevitable impurities are one or more elements selected from the group consisting of Si, Mn, Mg, Cu, In, Sn, Na, V, Ti, Zr, Cr, B, Ga, Bi, Pb, Sb, and As, the total content of the one or more elements is 0.6% by mass or less, the Mn content is preferably 0.4% by mass or less, the Mg content is preferably 0.4% by mass or less, and the content of each of the above elements other than Mn and Mg contained as inevitable impurities is preferably 0.2% by mass or less.
  • the area occupancy of second phase particles having an equivalent circle diameter of 0.1 ⁇ m or more distributed on the aluminum alloy foil surface is preferably 1.7% or more, and the area occupancy of second phase particles having an equivalent circle diameter of 3.0 ⁇ m or more distributed on the aluminum alloy foil surface is preferably 2.0% or less.
  • the aluminum alloy foil developed in the present invention has excellent chemical solubility in a weak acid environment and uniform solubility in an acid environment, so that it can be used effectively as a substrate for etching treatments aimed at forming special fine surfaces in fields where switching to etching treatment solutions with less environmental impact is required.
  • it has excellent chemical solubility in a strong acid environment, so that it can contribute to improving the efficiency of conventional etching treatments and reducing the amount of etching treatment solution used.
  • the aluminum alloy foil of the present invention may be configured as a laminate by laminating a resin film layer and/or a coating layer on one or both sides depending on the application.
  • the aluminum alloy foil in the laminate using the aluminum alloy foil of the present invention has the excellent properties described above, such as high chemical solubility, so that surface treatment for improving adhesive strength and etching treatment for processing into a desired shape can be performed using a weak acid. Therefore, the laminate using the aluminum alloy foil of the present invention can be manufactured by a manufacturing method with less environmental impact. Furthermore, the aluminum alloy foil (layer) in the laminate easily dissolves even when the laminate using the aluminum alloy foil of the present invention is disposed of, so that it is extremely easy to separate the resin film layer and recycle it.
  • 1a, 1b, 1c, 1d Aluminum alloy foil 2a, 2b, 2c, 2d: Aluminum parent phase 3a, 3c: Second phase particles having an equivalent circle diameter of 0.1 ⁇ m or more 4b, 4d: Second phase particles having an equivalent circle diameter of 3.0 ⁇ m or more

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、弱酸環境における化学溶解性および酸性環境における均一溶解性に優れたアルミニウム合金箔、アルミニウム合金箔を用いた積層体およびそれらの製造方法を提供することを目的とする。本発明によれば、Fe、NiおよびZnを含有し、残部がAlおよび不可避不純物からなるアルミニウム合金箔において、アルミニウム合金箔中のFe、NiおよびZnの含有量を、質量%で、それぞれ[Fe]、[Ni]および[Zn]としたとき、[Zn]が0.4以上5.1以下であり、[Fe]+[Ni]が0.4以上4.8以下であり、そして[Fe]+[Ni]+2×[Zn]が2.5以上であるアルミニウム合金箔およびそれを用いた積層体などが提供される。

Description

アルミニウム合金箔、アルミニウム合金箔を用いた積層体およびそれらの製造方法
 本発明は、アルミニウム合金箔、アルミニウム合金箔を用いた積層体およびそれらの製造方法に関する。
 アルミニウム箔やアルミニウム合金箔は、それらの片面または両面に樹脂フィルム層および/またはコーティング層を積層した積層体として、建材、食品包材、医薬品包材、アルミニウムエッチング回路などの分野で広く用いられている。
 上述のようなアルミニウム箔等やそれらの積層体では、接着性の改善や電気化学的反応性の向上などを目的として、比表面積を大きくしたり、もしくは特殊な表面性状を付与したりするための表面処理や、酸化物等の不要な部分を溶解除去することにより表面を活性化させるための処理などが広く実施されている。上記のような表面処理の代表的なものとしてはエッチング処理が挙げられ、エッチング用処理液としては、塩酸(HCl)、硝酸(HNO)、硫酸(HSO)、塩化第二鉄(FeCl)、水酸化ナトリウム(NaOH)またはフッ化水素酸(HF)などの溶液、もしくはそれらの溶液を2種以上含む混合液などが使用されている。
 ところが、近年の地球環境保護の観点から、環境負荷の少ない工業材料の開発や製造技術の開発が求められている。そのため、金属業界においては、強酸、強アルカリを始めとする環境負荷の大きい有害物質を使用する機会が多いことから、これらの有害物質の使用の中止、もしくは大幅な使用量の削減に向けた数多くの取り組みが進められている。
 上述した状況はアルミニウム業界においても同様であり、アルミニウム箔等の製造過程において用いるエッチング用処理液も有害物質であるため、エッチング処理に使用した廃液は、その種類や状態に応じて産業廃棄物として適切に処理する必要があり、環境面のみならず、運用面、コスト面からも大きな負荷となっているという問題があった。
 そのため、アルミニウム箔等をエッチング処理する製造条件面からは、廃液処理がより簡便なエッチング用処理液、具体的には酢酸やクエン酸などの弱酸への切り替えができれば環境負荷の低減が可能である。しかしながら、従来のアルミニウム箔またはアルミニウム合金箔では、必ずしもこれらの弱酸に対する化学溶解性が十分ではないことから、弱酸を用いたエッチング処理によって所望の表面性状や特性を得ることができないという問題がある。そのため、アルミニウム箔等をエッチング処理する材料面からは、弱酸に対する化学溶解性に優れたアルミニウム箔やアルミニウム合金箔の開発ができれば、環境負荷の低減への貢献が可能である。
 例えば、特開2008-121090号公報(特許文献1)では、エッチング処理時の化学溶解性に優れたアルミニウム合金箔として、Si、Fe、Cu、Niを含有させた印刷回路用アルミニウム合金箔が開示されている。しかし、特許文献1に記載のアルミニウム合金箔は、エッチング処理に塩酸(HCl)を使用する必要があり、弱酸に対する化学溶解性が不十分であるために、環境負荷の大きい有害物質の使用の中止、もしくは使用量の削減という課題に対して必ずしも有効な解決手段となり得ないという問題があった。
 一方で、アルミニウム箔やアルミニウム合金箔のエッチング処理では、回路などの微細な形状の形成を可能にする必要があるが、エッチング処理した後の材料表面内における未溶解部分の発生や局所的に深く溶解したピットの形成は、回路などの製品特性を損なうために極力抑制されなければならない。そのため、アルミニウム箔等の化学溶解性には、エッチング処理において未溶解部分やピットの形成が抑制された均一溶解性を確保することも必要になるという課題がある。
特開2008-121090号公報
 そこで、本発明は、弱酸環境における化学溶解性および酸性環境における均一溶解性に優れたアルミニウム合金箔、アルミニウム合金箔を用いた積層体およびそれらの製造方法を提供することを目的とする。
 本発明者等は、上記問題を解決するために鋭意研究を重ねた結果、アルミニウムに対する特定の添加元素の割合を特定の範囲に制御し、アルミニウム母相の電位を卑、アルミニウム合金箔に分布する第二相粒子の電位を貴にすることにより上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明によれば、Fe、NiおよびZnを含有し、残部がAlおよび不可避不純物からなるアルミニウム合金箔において、アルミニウム合金箔中のFe、NiおよびZnの含有量を、質量%で、それぞれ[Fe]、[Ni]および[Zn]としたとき、[Zn]が0.4以上5.1以下であり、[Fe]+[Ni]が0.4以上4.8以下であり、そして[Fe]+[Ni]+2×[Zn]が2.5以上であることを特徴とするアルミニウム合金箔が提供される。
 また、アルミニウム合金箔中の[Fe]が0.0001以上3.1以下であり、[Ni]が0.0001以上3.0以下であることが好ましく、アルミニウム合金箔中のアルミニウム母相へ固溶しているZn固溶量は0.3質量%以上4.1質量%以下であることが好ましい。
 本発明において、[Fe]+[Ni]を制御し、好ましくは[Fe]、[Ni]を制御するのは、アルミニウム合金中に一定量のFeやNiを添加すると、アルミニウム母相との電位差が大きいAl-Fe系、Al-Ni系および/またはAl-Fe-Ni系の第二相粒子を形成する。そして、上記の第二相粒子は、カソードサイトとしての効果を増大させて弱酸環境におけるアルミニウム合金箔の化学溶解性を向上させることに寄与するからである。また、本発明において、[Fe]+[Ni]+2×[Zn]を制御するのは、Znを添加し固溶させアルミニウム母相の電位を卑にすることにより、前述のFeやNiを添加することによる効果との相乗効果により、弱酸環境におけるアルミニウム合金箔の化学溶解性をより向上させることができるからである。
 また、[Zn]を制御し、好ましくはZn固溶量を制御するのは、Znの大半がアルミニウム母相に固溶してアルミニウム母相の電位を卑にするからである。そのため、Znが固溶したアルミニウム母相は、上述したAl-Fe系、Al-Ni系および/またはAl-Fe-Ni系の第二相粒子との間で電位差を拡大し、弱酸環境におけるアルミニウム合金箔の化学溶解性を向上させることに寄与する。さらに、Znが固溶したアルミニウム母相は、酸性環境におけるアルミニウム合金箔の均一溶解性を向上させることができる。
 本発明では、不可避不純物はSi、Mn、Mg、Cu、In、Sn、Na、V、Ti、Zr、Cr、B、Ga、Bi、Pb、SbおよびAs等からなる群より選択される1種または2種以上の元素からなり、前記1種または2種以上の元素の含有量の合計は0.6質量%以下とすることが好ましい。特にアルミニウム合金箔中のMnの含有量は0.4質量%以下とし、Mgの含有量は0.4質量%以下とすることが好ましく、アルミニウム合金箔中に不可避不純物として含まれるMnおよびMgを除く上記各元素の含有量はそれぞれに0.2質量%以下であることが好ましい。
 不純物の存在は、アルミニウム合金箔の弱酸環境における化学溶解性や酸性環境における均一溶解性の制御を困難にするばかりでなく、割れやピンホールなどの欠陥を発生させて悪影響を及ぼす場合が多い。その中でも、Mn、Mgはアルミニウム母相に固溶してアルミニウム母相の電位に影響を及ぼすので、その含有量を制御することが大切となる。
 本発明では、電界放出型走査電子顕微鏡(FE-SEM)解析により、アルミニウム合金箔表面に分布している円相当径が0.1μm以上である第二相粒子の面積占有率は1.7%以上であることが好ましい。また、アルミニウム合金箔表面に分布している円相当径が3.0μm以上である第二相粒子の面積占有率は2.0%以下であることが好ましい。
 第二相粒子はAl-Fe系、Al-Ni系および/またはAl-Fe-Ni系の粒子から形成されるが、円相当径が0.1μm以上の粒子の場合はアルミニウム母相との電位差が大きくなるので、アルミニウム合金箔表面に対する面積占有率を制御しないと弱酸環境におけるアルミニウム合金箔の所望の化学溶解性を得られなくなる。一方、円相当径が3.0μm以上の粗大な粒子の場合は割れやピンホールなどの欠陥の要因となるので、アルミニウム合金箔表面に対する面積占有率を制御しないと圧延加工性が低下する。
 本発明において、アルミニウム合金箔の適当な強度や加工の容易性を求める場合、その厚みは5μm以上300μm以下であることが好ましい。
 また、本発明のアルミニウム合金箔は、用途に応じてその片面または両面に樹脂フィルム層および/またはコーティング層を形成することにより積層体として構成してもよい。
 本発明において、上述したような弱酸環境における高い化学溶解性と、酸性環境における高い均一溶解性を有するアルミニウム合金箔は、Fe、NiおよびZnを含有し、残部がAlおよび不可避不純物からなるアルミニウム合金溶湯において、アルミニウム合金溶湯中のFe、NiおよびZnの含有量を、質量%で、それぞれ[Fe]、[Ni]および[Zn]としたとき、[Zn]を0.4以上5.1以下に、[Fe]+[Ni]を0.4以上4.8以下に、そして[Fe]+[Ni]+2×[Zn]を2.5以上に調整したアルミニウム合金溶湯を準備する工程と、溶湯を鋳造し鋳造体を得る鋳造工程と、鋳造体を冷間圧延することによりアルミニウム合金箔を得る圧延工程とを備えている製造方法により製造することができる。
 また、本発明のアルミニウム合金箔を用いた積層体は、上述の製造方法によって得られるアルミニウム合金箔を準備する工程と、アルミニウム合金箔の片面または両面に樹脂フィルム層および/またはコーティング層を積層する積層工程とを備えている製造方法により製造することができる。
 本発明のアルミニウム合金箔、アルミニウム合金箔を用いた積層体は、弱酸環境における高い化学溶解性と、酸性環境における高い均一溶解性を有する。また、本発明の製造方法によれば、前述の特性を有するアルミニウム合金箔、アルミニウム合金箔を用いた積層体を製造することが可能になる。
円相当径が0.1μm以上の第二相粒子の面積占有率が6.38%である実施例4のアルミニウム合金箔表面のSEM写真(×1000倍)である。 円相当径が3.0μm以上の第二相粒子の面積占有率が1.69%である実施例12のアルミニウム合金箔表面のSEM写真(×1000倍)である。 円相当径が0.1μm以上の第二相粒子の面積占有率が3.85%である比較例6のアルミニウム合金箔表面のSEM写真(×1000倍)である。 円相当径が3.0μm以上の第二相粒子の面積占有率が7.55%である比較例9のアルミニウム合金箔表面のSEM写真(×1000倍)である。 ([Fe]+[Ni]+2×[Zn])と弱酸環境における化学溶解性(図中では「弱酸溶解性」と表記。)との関係を示した散布図である。 [Zn]と酸性環境における均一溶解性(図中では「均一溶解性」と表記。)との関係を示した散布図である。
 以下、本発明の一実施形態に係るアルミニウム合金箔、アルミニウム合金箔を用いた積層体およびそれらの製造方法について、図面を参照しながら詳細に説明する。なお、本発明は、以下に示される実施例に限定されるものではなく、本発明の技術的思想を逸脱しない範囲内で各種の変更が可能である。
1.アルミニウム合金箔
(1)アルミニウム合金箔
 本発明のアルミニウム合金箔は、鉄(Fe)、ニッケル(Ni)、亜鉛(Zn)を含み、残部は、アルミニウム(Al)および不可避不純物からなる。アルミニウム合金箔は、弱酸環境における化学溶解性および酸性環境における均一溶解性、圧延加工性、エッチング性、アルミニウム合金箔の製造適性を阻害しない範囲で不可避不純物を含んでいてもよい。
 不可避不純物は、シリコン(Si)、マンガン(Mn)、マグネシウム(Mg)、銅(Cu)、インジウム(In)、錫(Sn)、ナトリウム(Na)、バナジウム(V)、チタン(Ti)、ジルコニウム(Zr)、クロム(Cr)、ホウ素(B)、ガリウム(Ga)、ビスマス(Bi)、鉛(Pb)、アンチモン(Sb)および砒素(As)等からなる群より選択される1種または2種以上の元素からなる。なお、本発明において、アルミニウム合金箔中に含まれるアルミニウム(Al)の含有量は89.0質量%以上であることが好ましい。
(2)アルミニウム合金箔の組成
<鉄(Fe)>
 アルミニウム合金中に一定量のFeを添加すると、Al-Fe系の第二相粒子および/またはNiと共にAl-Fe-Ni系の第二相粒子を形成する。Feを含む第二相粒子はアルミニウム母相よりも電位が貴であるカソードサイトとして働き、弱酸環境におけるアルミニウム合金箔の化学溶解性を向上させる。
 Feの含有量が3.1質量%を超えると、析出強化により材料強度が高くなり、耳割れなどの欠陥が発生して圧延加工性を阻害する。さらに、鋳造時に粗大な第二相粒子が形成され易くなり、これは、圧延加工性を阻害し、エッチング処理において均一な表面形成を阻害するのみならず、厚み10μm以下のアルミニウム合金箔を製造する工程においてはピンホールなどの欠陥の発生要因となる。Feの含有量の下限値は特に限定されないが、通常0.0001質量%程度である。Feの含有量を0.0001質量%未満にするためには三層電解法を繰り返すこと等が必要になり、製造コストが著しく高くなる。そのため、アルミニウム合金箔中のFe含有量は0.0001質量%以上3.1質量%以下であることが好ましく、0.0001質量%以上1.8質量%以下であることがより好ましく、そして0.0001質量%以上1.5質量%以下であることがさらに好ましい。
<ニッケル(Ni)>
 アルミニウム合金中に一定量のNiを添加すると、Al-Ni系の第二相粒子および/またはFeと共にAl-Fe-Ni系の第二相粒子を形成する。Niを含む第二相粒子は特にアルミニウム母相との電位差が大きく、カソードサイトとしての効果を増大させる。そのため、アルミニウム合金中へNiを添加すると、弱酸環境におけるアルミニウム合金箔の化学溶解性を向上させる。
 Niの含有量が3.0質量%を超えると、析出強化により材料強度が高くなり、耳割れなどの欠陥が発生して圧延加工性を阻害する。さらに、鋳造時に粗大な第二相粒子が形成され易くなり、これは、圧延加工性を阻害し、エッチング処理においては均一な表面形成を阻害するのみならず、厚み10μm以下のアルミニウム合金箔を製造する工程においてはピンホールなどの欠陥の発生要因となる。Niの含有量の下限値は特に限定されないが、通常0.0001質量%程度である。Niの含有量を0.0001質量%未満にするためには三層電解法を繰り返すこと等が必要になり、製造コストが著しく高くなる。そのため、アルミニウム合金箔中のNi含有量は0.0001質量%以上3.0質量%以下であることが好ましく、0.0001質量%以上2.6質量%以下であることがより好ましく、そして0.0001質量%以上1.8質量%以下であることがさらに好ましい。
<亜鉛(Zn)>
 アルミニウム合金中に一定量のZnを添加すると、大半がアルミニウム母相に固溶し、アルミニウム母相の電位は卑になる。これにより、Al-Fe系、Al-Ni系および/またはAl-Fe-Ni系の第二相粒子とアルミニウム母相との間の電位差が拡大し、弱酸環境におけるアルミニウム合金箔の化学溶解性を向上させ、酸性環境におけるアルミニウム合金箔の均一溶解性を向上させる。
 Znの含有量が0.4質量%を下回ると、アルミニウム母相中のZn固溶量が減少し、アルミニウム母相の電位を卑にする効果が不十分となり、弱酸環境におけるアルミニウム合金箔の化学溶解性および酸性環境におけるアルミニウム合金箔の均一溶解性が損なわれる。一方、Znの含有量が2.1質量%を超えてさらに増加すると、アルミニウム合金箔の均一溶解性は変わらないが、化学溶解性が損なわれる。Znの含有量が5.1質量%を超えると、固溶強化によって材料強度が高くなり、圧延加工性を阻害する。そのため、アルミニウム合金箔中のZn含有量は0.4質量%以上5.1質量%以下であることが好ましく、0.5質量%以上2.9質量%以下であることがより好ましく、そして0.75質量%以上2.1質量%以下であることがさらに好ましい。
<[Fe]+[Ni]>
 アルミニウム合金中に一定量のFeやNiを添加すると、Al-Fe系、Al-Ni系および/またはAl-Fe-Ni系の第二相粒子を形成する。これらの第二相粒子は特にアルミニウム母相との電位差が大きく、カソードサイトとしての効果が増大するので、弱酸環境におけるアルミニウム合金箔の化学溶解性を向上させる。
 アルミニウム合金箔中のFeおよびNiの含有量を、質量%で、それぞれ[Fe]および[Ni]としたとき、[Fe]+[Ni]が0.4を下回ると、第二相粒子の数が減少し、アルミニウム母相に対するカソードサイトとしての十分な効果を得られなくなり、弱酸環境におけるアルミニウム合金箔の化学溶解性が不十分となる。[Fe]+[Ni]が4.8を超えると、析出強化により材料強度が高くなり、耳割れなどの欠陥が発生して圧延加工性を阻害する。そのため、[Fe]+[Ni]は0.4以上4.8以下であることが好ましく、0.9以上4.0以下であることがより好ましく、そして1.4以上2.9以下であることがさらに好ましい。
<[Fe]+[Ni]+2×[Zn]>
 アルミニウム合金中に一定量のFeやNiを添加すると、Al-Fe系、Al-Ni系および/またはAl-Fe-Ni系の第二相粒子を形成する。これらの第二相粒子は特にアルミニウム母相との電位差が大きく、カソードサイトとしての効果が増大するので、弱酸環境におけるアルミニウム合金箔の化学溶解性を向上させる。
 また、アルミニウム合金中に一定量のZnを添加すると、大半がアルミニウム母相に固溶し、アルミニウム母相の電位を卑にする効果を発揮する。これにより、Al-Fe系、Al-Ni系および/またはAl-Fe-Ni系の第二相粒子とZnが固溶したアルミニウム母相との電位差が拡大し、弱酸環境におけるアルミニウム合金箔の化学溶解性をさらに向上させる。
 アルミニウム合金箔中のFe、NiおよびZnの含有量を、質量%で、それぞれ[Fe]、[Ni]および[Zn]としたとき、[Fe]+[Ni]+2×[Zn]が2.5を下回ると、前述のFeやNiを添加することによる効果とZnを添加することによる効果の相乗効果が不十分になり、弱酸環境におけるアルミニウム合金箔の化学溶解性が不十分となる。そのため、[Fe]+[Ni]+2×[Zn]は2.5以上であることが好ましく、2.85以上であることがより好ましく、そして2.95以上であることがさらに好ましい。
<Zn固溶量>
 アルミニウム母相中に固溶状態で存在するZnは、エッチング処理時の均一表面形成、すなわち未溶解部の発生抑制に寄与する。Zn固溶量が多いほど、アルミニウム母相の電位は卑となり、酸性環境におけるアルミニウム合金箔の均一溶解性を向上させる。
 Zn固溶量が4.1質量%を超えると、固溶強化によって材料強度が高くなり、圧延加工性を阻害する。Zn固溶量が0.3質量%を下回ると、アルミニウム母相の電位を卑にする効果が不十分となり、酸性環境におけるアルミニウム合金箔の均一溶解性が損なわれる。そのため、アルミニウム合金箔において、アルミニウム母相へ固溶しているZn固溶量は0.3質量%以上4.1質量%以下であることが好ましく、0.4質量%以上2.7質量%以下であることがより好ましく、そして0.5質量%以上1.5質量%以下であることがさらに好ましい。
<不純物>
 上述した元素以外に、アルミニウム合金箔中には不可避不純物としてSi、Mn、Mg、Cu、In、Sn、Na、V、Ti、Zr、Cr、B、Ga、Bi、Pb、SbおよびAs等からなる群より選択される1種または2種以上の元素が含まれていてもよい。前記1種または2種以上の元素の含有量の合計は0.6質量%以下であることが好ましい。特にアルミニウム合金箔中のMnの含有量は0.4質量%以下とし、Mgの含有量は0.4質量%以下とすることが好ましく、アルミニウム合金箔中に不可避不純物として含まれるMnおよびMgを除く上記各元素の含有量はそれぞれに0.2質量%以下であることが好ましい。
<不純物の成分>
(Si)
 アルミニウム合金中に一定量のSiを添加すると、弱酸環境におけるアルミニウム合金箔の化学溶解性が向上する。ただし、Si含有量が0.2質量%を超えると、Al-Fe系、Al-Ni系および/またはAl-Fe-Ni系の第二相粒子の粗大化を促し、圧延加工性、および酸性環境におけるアルミニウム合金箔の均一溶解性が損なわれる。
 Siの含有量の下限値は特に限定されないが、通常0.0001質量%程度である。Siの含有量を0.0001質量%未満にするためには三層電解法を繰り返すこと等が必要になり、製造コストが著しく高くなる。そのため、アルミニウム合金箔中のSi含有量は0.0001質量%以上0.2質量%以下であることが好ましく、0.0001質量%以上0.15質量%以下であることがより好ましく、そして0.0001質量%以上0.1質量%以下であることがさらに好ましい。
(Mn)
 アルミニウム合金中に一定量のMnを添加すると、大半はアルミニウム母相に固溶するが、一部はAl-Mn系またはFe、Ni、Siと共に、Al-Mn-Fe系、Al-Mn-Ni系、Al-Mn-Si系、Al-Mn-Fe-Ni系、Al-Mn-Ni-Si系、Al-Mn-Si-Fe系、もしくはAl-Mn-Fe-Ni-Si系などの第二相粒子を形成する。Mnの含有量が0.4質量%を超えると、第二相粒子中のMn含有量およびアルミニウム母相中のMn固溶量が増加し、第二相粒子の電位がアルミニウム母相の電位に近付いて第二相粒子のカソードサイトとしての効果が減少する。これにより、弱酸環境におけるアルミニウム合金箔の化学溶解性が低下する。
 Mnの含有量の下限値は特に限定されないが、通常0.0001質量%程度である。Mnの含有量を0.0001質量%未満にするためには三層電解法を繰り返すこと等が必要になり、製造コストが著しく高くなる。そのため、アルミニウム合金箔中のMn含有量は0.0001質量%以上0.4質量%以下であることが好ましく、0.0001質量%以上0.2質量%以下であることがより好ましく、そして0.0001質量%以上0.1質量%以下であることがさらに好ましい。
(Mg)
 アルミニウム合金中に一定量のMgを添加すると、一部はアルミニウム母相に固溶する。Mgの含有量が0.4質量%を超えると、Mgがアルミニウム合金材表面に形成された酸化被膜中に濃縮し、酸化被膜に欠陥を生じ易くなる。このような酸化被膜の欠陥は、例えばアルミニウム合金箔と樹脂フィルムなどを積層した積層体の接合界面においてデラミネーションを引き起こす要因となる。また、Mgの添加は、アルミニウム合金箔の化学溶解性を低下させて耐食性を向上させる効果がある。
 Mgの含有量の下限値は特に限定されないが、通常0.0001質量%程度である。Mgの含有量を0.0001質量%未満にするためには三層電解法を繰り返すこと等が必要になり、製造コストが著しく高くなる。そのため、アルミニウム合金箔中のMg含有量は0.0001質量%以上0.4質量%以下であることが好ましく、0.0001質量%以上0.2質量%以下であることがより好ましく、そして0.0001質量%以上0.1質量%以下であることがさらに好ましい。
(Cu)
 アルミニウム合金中に一定量のCuを添加すると、一部はアルミニウム母相に固溶する。Cuの含有量が0.2質量%を超えると、アルミニウム母相中のCu固溶量が増加し、固溶強化により材料強度が高くなり、圧延加工性を阻害する場合がある。
 Cuの含有量の下限値は特に限定されないが、通常0.0001質量%程度である。Cuの含有量を0.0001質量%未満にするためには三層電解法に加え分別結晶法を繰り返すこと等が必要になり、製造コストが著しく高くなる。そのため、アルミニウム合金箔中のCu含有量は0.0001質量%以上0.2質量%以下であることが好ましく、0.0001質量%以上0.15質量%以下であることがより好ましく、そして0.0001質量%以上0.1質量%以下であることがさらに好ましい。
(In、Sn)
 アルミニウム合金中に一定量のInおよび/またはSnを添加すると、大半がアルミニウム母相に固溶し、アルミニウム母相の電位を卑にする効果を発揮する。これにより、Al-Fe系、Al-Ni系および/またはAl-Fe-Ni系の第二相粒子とInおよび/またはSnが固溶したアルミニウム母相との電位差が拡大し、弱酸環境におけるアルミニウム合金箔の化学溶解性が向上する。Inおよび/またはSnの添加量が0.2質量%を超えると、アルミニウム母相の電位を卑にする効果は飽和すると共に、圧延加工性を阻害する。そのため、アルミニウム合金箔中のIn含有量は、0.0001質量%以上0.2質量%以下であることが好ましく、Sn含有量は、0.0001質量%以上0.2質量%以下であることが好ましい。
<アルミニウム合金箔表面に分布している円相当径が0.1μm以上である第二相粒子の面積占有率>
 アルミニウムに上述の各元素を添加すると、アルミニウム母相中に第二相粒子を生成する。具体的には、Al-Fe系、Al-Ni系および/またはAl-Fe-Ni系等の第二相粒子であるが、これらの第二相粒子は、アルミニウム母相との電位差が大きく、カソードサイトとして作用する。これにより、弱酸環境におけるアルミニウム合金箔の化学溶解性が向上する。
 アルミニウム合金箔において、その表面に分布している円相当径が0.1μm以上である第二相粒子の面積占有率が1.7%を下回ると、カソードサイトとしての十分な効果を得られなくなり、弱酸環境におけるアルミニウム合金箔の化学溶解性が不十分となる。そのため、アルミニウム合金箔表面において、円相当径が0.1μm以上の第二相粒子の面積占有率は1.7%以上であることが好ましく、4.1%以上であることがより好ましく、そして5.6%以上であることがさらに好ましい。
<アルミニウム合金箔表面に分布している円相当径が3.0μm以上である第二相粒子の面積占有率>
 アルミニウムに上述の各元素を添加すると、アルミニウム母相中に第二相粒子を生成する。具体的には、Al-Fe系、Al-Ni系および/またはAl-Fe-Ni系等の第二相粒子であるが、円相当径が3.0μm以上の粗大な第二相粒子は圧延加工性を阻害する。
 アルミニウム合金箔において、その表面に分布している円相当径が3.0μm以上である第二相粒子の面積占有率が2.0%を超えると、耳割れなどの欠陥が発生し、圧延加工性を阻害する。そのため、アルミニウム合金箔表面において、円相当径が3.0μm以上の第二相粒子の面積占有率は2.0%以下であることが好ましく、0.8%以下であることがより好ましく、そして0.5%以下であることがさらに好ましい。
<アルミニウム合金箔の厚み>
 本発明のアルミニウム合金箔の厚みは、強度および製造の容易性の観点から5μm以上であることが好ましい。また、アルミニウム合金箔の軽量化という観点からは、アルミニウム合金箔の厚みを300μm以下とすることが好ましい。さらに、アルミニウム合金箔の厚みは、5μm以上200μm以下とすることがより好ましい。アルミニウム合金箔の厚みを上記範囲内に制御するには、常法に従って、鋳造および圧延を行えばよい。また、アルミニウム合金箔の均質化などを目的として適宜熱処理を施してもよい。
2.アルミニウム合金箔の製造方法
 本発明のアルミニウム合金箔の製造方法は、Fe、NiおよびZnを含有し、残部がAlおよび不可避不純物からなり、Fe、NiおよびZnの含有量を、質量%で、それぞれ[Fe]、[Ni]および[Zn]としたとき、[Zn]が0.4以上5.1以下であり、[Fe]+[Ni]が0.4以上4.8以下であり、そして[Fe]+[Ni]+2×[Zn]が2.5以上である鋳造体(以下、「鋳塊」ともいう。)を圧延する工程を備えていることを特徴とする。
 上記組成を有する鋳塊は、例えばアルミニウム地金を溶解し、FeまたはAl-Fe母合金、ならびにNiまたはAl-Ni母合金、ならびにZnまたはAl-Zn母合金を添加することにより成分調整をした溶湯を鋳造し、凝固させることにより得られる。鋳造方法は特に限定されず、半連続鋳造、連続鋳造または金型鋳造などの公知の方法を利用することができる。
 得られた鋳塊は、均質化などを目的として熱処理を行ってもよい。均質化熱処理は、例えば加熱温度を400℃以上630℃以下、加熱時間を1時間以上20時間以下の条件で行うことが好ましい。
 圧延方法としては、広く公知の圧延方法を利用することが可能であり、特に限定はない。ただし、アルミニウム合金箔の厚みを調整し易くするという観点から、熱間圧延工程の後に冷間圧延工程を設けることが好ましい。また、熱間圧延工程における熱間圧延の回数および冷間圧延工程における冷間圧延の回数は目標とするアルミニウム合金箔の最終厚みに応じて適宜設定すればよい。
 冷間圧延工程において冷間圧延を複数回実施する場合、中間焼鈍を実施することが好ましい。この場合、冷間圧延工程を、1回または複数回の冷間圧延、中間焼鈍、1回または複数回の冷間圧延の順に実施することが好ましい。中間焼鈍は、焼鈍温度を50℃以上500℃以下、焼鈍時間を1秒以上20時間以下の条件に設定して実施することが好ましい。中間焼鈍を実施することにより、アルミニウム合金箔の厚みを容易に調整することが可能になる。
 冷間圧延工程の後に、さらに50℃以上450℃以下の温度で1秒から50時間程度の熱処理を実施するための熱処理工程を設けてもよい。熱処理工程を設けることにより、アルミニウム合金箔の表面に残留している圧延油の除去による濡れ性の向上やアルミニウム合金箔の組織の均質化による機械特性の調整などをできるようになる。
3.アルミニウム合金箔を用いた積層体およびその製造方法
<アルミニウム合金箔を用いた積層体>
 本発明のアルミニウム合金箔は、その片面または両面の全部もしくは一部に樹脂フィルム層および/またはコーティング層を積層することにより、積層体を形成してもよい。また、アルミニウム合金箔の片面または両面の全部もしくは一部に樹脂フィルム層およびコーティング層の双方を積層する場合、アルミニウム合金箔の上にコーティング層を積層し、該コーティング層の上に樹脂フィルム層を積層することが望ましい。
 本発明のアルミニウム合金箔は弱酸環境における優れた化学溶解性を備えるため、例えばアルミニウム合金箔の表面および裏面の両面に樹脂フィルム層および/またはコーティング層を積層した積層体を形成しても、弱酸に浸漬した際には該積層体の端面からアルミニウム合金箔層が溶解し、樹脂フィルム層および/またはコーティング層をアルミニウム合金箔層から容易に分離することが可能になる。
 アルミニウム合金箔を用いた積層体を形成する場合、アルミニウム合金箔に積層する樹脂フィルム層およびコーティング層の積層数や積層する順序などは、その積層体の使用用途などに応じて適宜設定すればよく、特に限定はない。また、積層体全体の厚みは、強度の観点からは6μm以上であることが好ましく、軽量化の観点からは301μm以下であることが好ましく、そして両者の観点など考慮すれば10μm以上201μm以下であることがさらに好ましい。
<樹脂フィルム(層)>
 アルミニウム合金箔に積層する樹脂フィルム層に使用する樹脂フィルムとしては、公知の樹脂を材料とするフィルムを広く使用することができ、特に限定はない。具体的には、ポリエチレン、ポリプロピレン、ポリブチレン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリビニルクロライド、ポリビニリデンクロライド、ポリビニルアルコール、エチレン酢酸ビニル共重合体、ポリアミド、ポリイミドおよび塩化ビニルから選ばれる1種または2種以上の樹脂からなるフィルムを用いることができる。
 アルミニウム合金箔に積層される樹脂フィルム層の厚みは、積層体全体の厚みが上述した数値範囲内となるように、アルミニウム合金箔の厚みおよび後述するコーティング層の厚みも考慮して適宜設定すればよい。
 樹脂フィルム層をアルミニウム合金箔に積層するに際して両者を接着する方法としては、公知の接着・積層方法を広く採用することができ、特に限定はない。具体的には、ポリエステルウレタン系、ポリエステル系などの2液硬化型接着剤を用いるドライラミネーション法、共押し出し法、押し出しコート法、押し出しラミネート法、ヒートシール法、またはアンカーコート剤を用いるヒートラミネーション法などが挙げられる。
<コーティング(層)>
 アルミニウム合金箔のコーティング層としては、チタン酸化物、シリコン酸化物、ジルコニウム酸化物またはクロム組成物などからなる無機物コーティング層、もしくはアクリル、ポリカーボネート、シリコン樹脂またはフッ素樹脂などからなる樹脂コーティング層を採用することができる。
 その他、アルミニウム合金箔のコーティング層には、プラズマ処理、脂肪酸、シランカップリング剤などによる表面修飾や、酸および/またはアルカリなどを用いて形成される変成物などを好適に使用することができ、特に限定はない。コーティング層の厚みも、積層体全体の厚みが上述した数値範囲内となるようにアルミニウム合金箔および樹脂フィルム層の厚みも考慮し、適宜設定すればよい。
 アルミニウム合金箔にコーティング層を形成する方法としては、任意の公知の方法を利用することができるが、例えばスピンコーティング法、バーコーティング法、フローコーティング法、ディップコーティング法またはダイコーティング法などのコーティング剤を用いて塗工する方法が挙げられ、もしくは前記2つ以上の塗工方法を組み合わせた塗工方法を用いてもよく、さらに、塗工後に乾燥または反応のための加熱処理を施してもよい。
 また、コーティング層を形成する他の方法としては、イオンプラズマ処理、イオンプレーティング処理、スパッタリング処理、蒸着処理またはめっき処理などの表面処理方法が挙げられ、もしくは前記2つ以上の表面処理方法を組み合わせた表面処理方法であってもよい。さらに、上述した1または2以上の塗工方法と1または2以上の表面処理方法とを組み合わせたコーティング層の積層方法を用いてもよい。
 以下、実施例および比較例を挙げて、本発明の特徴をより一層明確にする。
 表1および表2に示す組成を有するアルミニウム合金を溶解し、金型鋳造法にてアルミニウム合金を1℃/秒以上15℃/秒以下の冷却速度で溶解鋳造することにより、実施例および比較例のアルミニウム合金の鋳塊を得た。次に得られたアルミニウム合金の鋳塊を530℃にて5時間熱処理を行った。続いて50μmの厚みまで冷間圧延を複数回実施し、表1に示す実施例1~45のアルミニウム合金箔および表2に示す比較例1~16のアルミニウム合金箔を作製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
<アルミニウム合金箔の組成の測定>
 アルミニウム合金箔中の各成分の分析は、各アルミニウム合金箔を1.00g量り取り、誘導結合プラズマ発光分析装置(株式会社島津製作所製:ICPS-8100)を用いて測定することにより行った。その結果を表1および表2に示す。上記測定方法による各元素の検出限界は0.01質量%であるので、表1および表2において、検出限界未満の元素については全て0.00%と表示した。
<アルミニウム合金箔表面に分布している第二相粒子の円相当径の算出および面積占有率の測定>
 アルミニウム合金箔表面に分布している第二相粒子の円相当径の算出および面積占有率の測定は、以下の方法により行った。すなわち、測定用試料としては、各実施例および各比較例のアルミニウム合金箔表面を琢磨布(株式会社ストルアス製:MD-MolおよびMD-Nap)ならびにダイヤモンド懸濁液(株式会社ストルアス製:ダイヤプロ Mol R 3μmおよびダイヤプロNap R 1μm)を使用して鏡面仕上げしたものを用いた。
 各試料表面での第二相粒子の面積占有率の測定には、各試料表面を電界放出型走査電子顕微鏡(FE-SEM)で観察して得られた反射電子像を用いた。具体的には、先ず各試料表面の反射電子像の中から無作為に選んだ10箇所の矩形視野を観察した。各矩形視野の範囲は、0.01069mmの矩形視野(119.4μm×89.5μm)とした。各矩形視野の反射電子像を画像処理ソフト(三谷商事株式会社製:WinROOF2021)によって輝度100以上255以下の条件で2値化処理することにより、円相当径が0.1μm以上の第二相粒子と、円相当径が3.0μm以上の第二相粒子を抽出した。
 このようにして抽出された円相当径が0.1μm以上の第二相粒子および円相当径が3.0μm以上の第二相粒子のそれぞれについて、前述の画像処理ソフトを用いて測定面(矩形視野)内における第二相粒子の面積占有率を算出し、10箇所の短形視野から得られた上記算出結果の平均値を第二相粒子の面積占有率とした。その結果を表1および表2に示す。
 図1Aには、2値化処理前のSEM写真の例示として、円相当径が0.1μm以上の第二相粒子の面積占有率が6.38%である実施例4のアルミニウム合金箔表面のSEM写真を示し、図1Bには、円相当径が3.0μm以上の第二相粒子の面積占有率が1.69%である実施例12のアルミニウム合金箔表面のSEM写真を示した。また、図2Aには、円相当径が0.1μm以上の第二相粒子の面積占有率が3.85%である比較例6のアルミニウム合金箔表面のSEM写真を示し、図2Bには、円相当径が3.0μm以上の第二相粒子の面積占有率が7.55%である比較例9のアルミニウム合金箔表面のSEM写真を示した。
<アルミニウム合金箔の弱酸環境における化学溶解性の評価>
 アルミニウム合金箔表面の弱酸環境における化学溶解性の評価は、以下の方法により行った。すなわち、各実施例および各比較例のアルミニウム合金箔を40mm×40mmの大きさに切り出し、前処理として1質量%の水酸化ナトリウム溶液に35℃で60秒の条件で浸漬処理を行い、続いて30質量%の硝酸に25℃で60秒の条件で浸漬処理を施したものを測定用の試験片とした。各試験片を3質量%の塩化ナトリウムと3質量%の酢酸を含んだ水溶液に40℃で2700秒の条件で浸漬し、浸漬前後の質量を計測することにより、各試験片の単位表面積当たりの溶解減量を算出した。その結果、試験片の単位表面積当たりの溶解減量が2.8μg/mm以上のものを十分な化学溶解性を有するものとして評価した。その結果を表1および表2に示す。
<酸性環境における均一溶解性の評価>
 アルミニウム合金箔表面の酸性環境における均一溶解性の評価は、以下の方法により行った。すなわち、各実施例および各比較例のアルミニウム合金箔を10mm×40mmの大きさに切り出し、前処理として1質量%の水酸化ナトリウム溶液に35℃で60秒の条件で浸漬処理を行い、続いて30質量%の硝酸に25℃で60秒の条件で浸漬処理を施したものを測定用の試験片とした。各試験片の溶解減量が0.0025g以上0.0029g以内に収まるように、8質量%の塩酸と4質量%の塩化アルミニウムを含んだ35℃の水溶液に所定の時間浸漬した。浸漬後の各試験片(アルミニウム合金箔)の表面を、レーザー顕微鏡による観察に基づいて最大高さ粗さSzを計測した。
 レーザー顕微鏡による試験片表面凹凸の観察は、株式会社キーエンス製のレーザーマイクロスコープVK-X3000を用いて、レーザーコンフォーカルによる形状測定を285.727μm×214.295μmの短形の視野範囲にて行った。得られた観察結果に対して、株式会社キーエンス製のVK-X3000マルチファイル解析アプリケーションを使用して試験片の最大高さ粗さSzを計測した。具体的には、先ず得られた形状データに対してカットオフ値0.5mmとしてうねり除去の面形状補正を行い、続いてレーザー光反射のノイズ成分を除去すべく、カットレベル50にて高さカットレベル補正を実施した。
 各試験片の最大高さ粗さSzは、ISO25178の表面性状のパラメータ中の形態パラメータに準じて株式会社キーエンス製のVK-X3000マルチファイル解析アプリケーションを使用して計測値を得た。評価に用いる各試験片の最大高さ粗さSzは、5箇所の短形視野から得られた算出結果の平均値とした。試験片の最大高さ粗さSzが7.1μm以下のものを十分な均一溶解性を有するものとして評価した。その結果を表1および表2に示す。
<圧延加工性の評価>
 アルミニウム合金箔の圧延加工性の評価は、以下の方法により行った。すなわち、冷間圧延工程において、表1および表2に示す組成を有する各実施例および各比較例の鋳塊(鋳造体)を所定の厚さまで冷間圧延したとき、耳割れによる材料幅の減少が冷間圧延開始前の材料幅の3%未満であった試料(アルミニウム合金箔)の圧延加工性を「A」とし、3%以上10%未満であった試料の圧延加工性を「B」とし、10%以上25%未満であった試料の圧延加工性を「C」とし、25%以上であった試料の圧延加工性を「F」として評価した。その結果を表1および表2に示す。
<アルミニウム合金箔中のZn固溶量の測定>
 アルミニウム合金箔中のZn固溶量の測定は、以下の方法により行った。すなわち、各アルミニウム合金箔から0.1gの試料を採取し、フェノールでアルミニウム合金箔中のアルミニウム母相のみを溶解し、孔径0.1μmのメンブレンフィルター(東洋濾紙株式会社製:H100A047A)でろ過することにより、第二相粒子を捕集した。この第二相粒子を酸およびアルカリで溶解し、誘導結合プラズマ発光分析装置(株式会社島津製作所製:ICPS-8100)を用いてZnの析出量を求めた。Zn固溶量は、アルミニウム合金箔全体のZnの含有量から上記Znの析出量を差し引くことにより求めた。その結果を表3に示す。
<アルミニウム合金箔の自然電位およびカソード分極曲線の測定>
 アルミニウム合金箔の組成、第二相粒子の面積占有率、Zn固溶量が化学溶解性に及ぼす影響を調べるため、自然電位およびカソード電流密度の絶対値が1mA/cmに到達するときの電位を測定した。
 具体的には、上述の電位の測定は、温度25℃、大気開放の条件下にて、以下の方法により実施した。また、各実施例および各比較例のアルミニウム合金箔を15mm×17mmの大きさに切り出し、前処理として1質量%の水酸化ナトリウム溶液に35℃で15秒の条件で浸漬処理を行い、続いて30質量%の硝酸に25℃で30秒の条件で浸漬処理を施したものを試験片とした。
 電位の測定は、株式会社イーシーフロンティア製腐食セルVM1を用いて実施した。試験溶液として25℃、pH5.5、5質量%NaCl水溶液を用い、対極として白金メッキチタン棒(株式会社イーシーフロンティア製:対極VM1-5)を用い、参照電極として株式会社イーシーフロンティア製のAg/AgCl参照電極RE-1Aを用い、そして作用電極用サンプルホルダーとして株式会社イーシーフロンティア製サンプルホルダーVM1-3を用いて、3電極法により電極電位を測定した。なお、上記サンプルホルダーには面積1cmの円形状の試料窓があり、この試料窓より露出した試験片の表面が作用電極として作用する。
 自然電位およびカソード電流密度の絶対値が1mA/cmに到達するときの電位の測定は、先ず上記の試験溶液に、上記の作用電極、対極および参照電極を浸漬し、600秒間静置した。この間、サンプリング間隔10秒にて電極電位を測定し、60点の平均値をアルミニウム合金箔の「自然電位」とした。続いて、各試験片の自然電位から、ポテンショスタット(北斗電工株式会社製:電気化学測定システムHZ-7000シリーズ)により掃引速度0.5mV/sにて卑方向に-1500mVまで掃引し、カソード分極曲線を測定した。このカソード分極曲線において、電流密度の絶対値が1mA/cmに到達したときの電極電位を読み取り、それをアルミニウム合金箔の「カソード電流密度の絶対値が1mA/cmに到達するときの電位」とした。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3より、例えばアルミニウム合金箔において、Zn固溶量が増加し、アルミニウム母相の電位が卑になると、該測定における自然電位も卑となる。また、例えばアルミニウム合金箔中のFeおよびNiの含有量を、質量%で[Fe]および[Ni]としたとき、[Fe]+[Ni]の増加、もしくは円相当径が0.1μm以上である第二相粒子の面積占有率の増加により、アルミニウム母相に対してカソードサイトとして作用する部分が増加すると、より小さい電位掃引で1mA/cmの電流密度に到達する。従って、アルミニウム合金箔の「カソード電流密度の絶対値が1mA/cmに到達するときの電位」が大きいほど、すなわち自然電位に近いほど、カソードサイトとして作用する部分が多いと判断することができる。
<考察>
 表1に示される実施例1~45のアルミニウム合金箔は、弱酸環境における化学溶解性(単位表面積当たりの溶解減量)が2.8μg/mm以上であり、酸性環境における均一溶解性(酸処理後の最大高さ粗さSz)が7.1μm以下であり、そして冷間圧延したときの圧延加工性の評価が「A」、「B」もしくは「C」であることから(表1参照)、いずれのアルミニウム合金箔も弱酸環境における優れた化学溶解性と、酸性環境における優れた均一溶解性と、そして優れた圧延加工性を有することが判った。
 一方、表2に示される比較例1~16のアルミニウム合金箔は、弱酸環境における化学溶解性(単位表面積当たりの溶解減量)が2.8μg/mm未満であるか、酸性環境における均一溶解性(酸処理後の最大高さ粗さSz)が7.1μmよりも大きいか、もしくは冷間圧延したときの圧延加工性の評価が「F」であるので(表2参照)、弱酸環境における化学溶解性、酸性環境における均一溶解性および圧延加工性の少なくとも1つ以上の評価において良好な結果が得られないことが判った。
 図3には、実施例1~45および比較例1~16のアルミニウム合金箔において、アルミニウム合金箔中のFe、NiおよびZnの含有量を、質量%で、それぞれ[Fe]、[Ni]および[Zn]としたとき、[Fe]+[Ni]+2×[Zn]と弱酸溶解性(μg/mm)の関係を示した散布図が表されている。図4には、[Zn]に対する均一溶解性(μm)の関係を示した散布図が表されている。
 実施例のアルミニウム合金箔と比較例のアルミニウム合金箔とを比較すると、表1,2および図3,4より、弱酸環境における化学溶解性(単位表面積当たりの溶解減量)が2.8μg/mm以上であり、酸性環境における均一溶解性(酸処理後の最大高さ粗さSz)が7.1μm以下であり、そして圧延加工性の評価が「A」、「B」もしくは「C」であるアルミニウム合金箔を得るためには、[Zn]が0.4以上5.1以下であり、[Fe]+[Ni]が0.4以上4.8以下であり、そして[Fe]+[Ni]+2×[Zn]が2.5以上必要であることが判った。
 これは、表3に示すアルミニウム合金箔中のZn固溶量に対する自然電位およびカソード分極曲線の測定結果などより、アルミニウム合金中にFe、Ni、Znを添加し、[Zn]、[Fe]+[Ni]および[Fe]+[Ni]+2×[Zn]を制御すれば、アルミニウム母相の電位を卑とし、アルミニウム合金箔に分布する第二相粒子の電位を貴とすることが可能となり、その結果、アルミニウム合金箔の化学溶解性や均一溶解性などが向上したものであると考えられる。
 また、表1,2より、上述の弱酸環境における化学溶解性、酸性環境における均一溶解性および圧延加工性に優れたアルミニウム合金箔を得るためには、少なくともFeの含有量が0.0001質量%以上3.1質量%以下であり、Niの含有量が0.0001質量%以上3.0質量%以下であることが好ましく、Zn固溶量が0.3質量%以上4.1質量%以下であることが好ましく、不可避不純物はSi、Mn、Mg、Cu、In、Sn、Na、V、Ti、Zr、Cr、B、Ga、Bi、Pb、SbおよびAsからなる群より選択される1種または2種以上の元素からなり、前記1種または2種以上の元素の含有量の合計が0.6質量%以下であり、Mnの含有量は0.4質量%以下とし、Mgの含有量は0.4質量%以下とすることが好ましく、不可避不純物として含まれるMnおよびMgを除く上記各元素の含有量はそれぞれに0.2質量%以下であることが好ましいことが判った。
 さらに、表1,2より、アルミニウム合金箔表面に分布している円相当径が0.1μm以上である第二相粒子の面積占有率が1.7%以上であることが好ましく、アルミニウム合金箔表面に分布している円相当径が3.0μm以上である第二相粒子の面積占有率が2.0%以下であることが好ましいことが判った。
<利用の形態>
 本発明で開発されたアルミニウム合金箔は、弱酸環境における化学溶解性および酸性環境における均一溶解性に優れるので、環境負荷の少ないエッチング用処理液への切り替えが求められる分野において、特に特殊微細表面形成を目的としたエッチング処理用の基材として十分な効果を発揮することができる。また、強酸環境における化学溶解性にも優れるので、従来のエッチング処理における処理効率の向上や、エッチング用処理液の使用量削減にも貢献することができる。
 本発明のアルミニウム合金箔は、用途に応じてその片面または両面に樹脂フィルム層および/またはコーティング層を積層することにより積層体として構成してもよい。この場合、本発明のアルミニウム合金箔を用いた積層体は、構成中のアルミニウム合金箔が高度な化学溶解性など上述したような優れた特性を備えているので、接着力を向上させる目的で行う表面処理や所望の形状に加工するためのエッチング処理などを、弱酸を用いて処理することが可能になる。そのため、本発明のアルミニウム合金箔を用いた積層体は、より環境負荷の少ない製造方法によって上記の積層体を製造することができるようになる。さらに、本発明のアルミニウム合金箔を用いた積層体は、廃棄時においても積層体中のアルミニウム合金箔(層)が容易に溶解するので、樹脂フィルム層を分離しリサイクルすることも極めて容易になる。
 1a、1b、1c、1d:アルミニウム合金箔
 2a、2b、2c、2d:アルミニウム母相
 3a、3c:円相当径が0.1μm以上の第二相粒子
 4b、4d:円相当径が3.0μm以上の第二相粒子

 

Claims (11)

  1.  Fe、NiおよびZnを含有し、残部がAlおよび不可避不純物からなるアルミニウム合金箔において、
     アルミニウム合金箔中のFe、NiおよびZnの含有量を、質量%で、それぞれ[Fe]、[Ni]および[Zn]としたとき、
     [Zn]が0.4以上5.1以下であり、
     [Fe]+[Ni]が0.4以上4.8以下であり、そして
     [Fe]+[Ni]+2×[Zn]が2.5以上であることを特徴とするアルミニウム合金箔。
  2.  [Fe]が0.0001以上3.1以下であり、[Ni]が0.0001以上3.0以下であることを特徴とする請求項1に記載のアルミニウム合金箔。
  3.  溶質元素としてZnを含み、Zn固溶量が0.3質量%以上4.1質量%以下であることを特徴とする請求項1に記載のアルミニウム合金箔。
  4.  前記不可避不純物はSi、Mn、Mg、Cu、In、Sn、Na、V、Ti、Zr、Cr、B、Ga、Bi、Pb、SbおよびAsからなる群より選択される1種または2種以上の元素からなり、前記1種または2種以上の元素の含有量の合計が0.6質量%以下であることを特徴とする請求項1に記載のアルミニウム合金箔。
  5.  Mnの含有量が0.4質量%以下であり、Mgの含有量が0.4質量%以下であることを特徴とする請求項4に記載のアルミニウム合金箔。
  6.  アルミニウム合金箔表面に分布している円相当径が0.1μm以上である第二相粒子の面積占有率が、1.7%以上であることを特徴とする請求項1に記載のアルミニウム合金箔。
  7.  アルミニウム合金箔表面に分布している円相当径が3.0μm以上である第二相粒子の面積占有率が、2.0%以下であることを特徴とする請求項6に記載のアルミニウム合金箔。
  8.  厚みが5μm以上300μm以下であることを特徴とする請求項7に記載のアルミニウム合金箔。
  9.  請求項1から8のいずれか1項に記載のアルミニウム合金箔の片面または両面に、樹脂フィルム層および/またはコーティング層が積層されていることを特徴とする積層体。
  10.  Fe、NiおよびZnを含有し、残部がAlおよび不可避不純物からなるアルミニウム合金溶湯において、
     アルミニウム合金溶湯中のFe、NiおよびZnの含有量を、質量%で、それぞれ[Fe]、[Ni]および[Zn]としたとき、
     [Zn]を0.4以上5.1以下に、
     [Fe]+[Ni]を0.4以上4.8以下に、そして
     [Fe]+[Ni]+2×[Zn]を2.5以上に調整した前記アルミニウム合金溶湯を準備する工程と、
     前記溶湯を鋳造し、鋳造体を得る鋳造工程と、
    前記鋳造体を冷間圧延することによりアルミニウム合金箔を得る圧延工程と
    を備えていることを特徴とするアルミニウム合金箔の製造方法。
  11.  請求項10に記載された製造方法によって得られたアルミニウム合金箔を準備する工程と、
     前記アルミニウム合金箔の片面または両面に、樹脂フィルム層および/またはコーティング層を積層する積層工程と
    を備えていることを特徴とする積層体の製造方法。

     
PCT/JP2023/038351 2022-11-28 2023-10-24 アルミニウム合金箔、アルミニウム合金箔を用いた積層体およびそれらの製造方法 WO2024116659A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-189058 2022-11-28
JP2022189058 2022-11-28

Publications (1)

Publication Number Publication Date
WO2024116659A1 true WO2024116659A1 (ja) 2024-06-06

Family

ID=91323684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038351 WO2024116659A1 (ja) 2022-11-28 2023-10-24 アルミニウム合金箔、アルミニウム合金箔を用いた積層体およびそれらの製造方法

Country Status (1)

Country Link
WO (1) WO2024116659A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070714A (ja) * 2005-09-09 2007-03-22 Mitsubishi Alum Co Ltd 抗菌性アルミニウム展伸材及びその製造方法
JP2008024992A (ja) * 2006-07-21 2008-02-07 Toyo Aluminium Kk 印刷回路用アルミニウム合金箔
JP2018537292A (ja) * 2015-11-13 2018-12-20 グランジェス・アーベー ろう付けシート及びその製造方法
JP2021532985A (ja) * 2018-06-21 2021-12-02 アーコニック テクノロジーズ エルエルシーArconic Technologies Llc 耐食性高強度ろう付けシート
WO2022196574A1 (ja) * 2021-03-17 2022-09-22 Maアルミニウム株式会社 ろう付用アルミニウムブレージングシートおよびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070714A (ja) * 2005-09-09 2007-03-22 Mitsubishi Alum Co Ltd 抗菌性アルミニウム展伸材及びその製造方法
JP2008024992A (ja) * 2006-07-21 2008-02-07 Toyo Aluminium Kk 印刷回路用アルミニウム合金箔
JP2018537292A (ja) * 2015-11-13 2018-12-20 グランジェス・アーベー ろう付けシート及びその製造方法
JP2021532985A (ja) * 2018-06-21 2021-12-02 アーコニック テクノロジーズ エルエルシーArconic Technologies Llc 耐食性高強度ろう付けシート
WO2022196574A1 (ja) * 2021-03-17 2022-09-22 Maアルミニウム株式会社 ろう付用アルミニウムブレージングシートおよびその製造方法

Similar Documents

Publication Publication Date Title
EP4163411A1 (en) Hot-dipped zinc-aluminum-magnesium coated steel sheet and manufacturing method therefor
CN103703155B (zh) 铝合金片材及其制造方法
JP6797201B2 (ja) 高形成複層アルミニウム合金パッケージ
Papis et al. Light metal compound casting
WO2003089237A1 (en) Ultra-longlife, high formability brazing sheet
TW200927960A (en) Copper alloy sheet material for electric and electronic parts
TWI261947B (en) Titanium system material for fuel cell separator, and manufacturing method therefor
EP2427584B1 (en) Aluminium lithographic sheet
EP3441504A1 (en) Aluminum alloy material and production method therefor, and aluminum alloy cladding material using aluminum alloy material
JP2010031348A (ja) 表面処理鋼板および樹脂被覆鋼板
Tierce et al. Corrosion behaviour of brazing material AA4343
JP7475328B2 (ja) アルミニウム合金箔、積層体、アルミニウム合金箔の製造方法、および積層体の製造方法
Tierce et al. Corrosion behaviour of brazed multilayer material AA4343/AA3003/AA4343: Influence of coolant parameters
JP2004137603A (ja) 保護性酸化物コーティングを急速に作製する電解採取用アノード
WO2024116659A1 (ja) アルミニウム合金箔、アルミニウム合金箔を用いた積層体およびそれらの製造方法
JP5332341B2 (ja) 表面処理鋼板および樹脂被覆鋼板
KR102336415B1 (ko) 구리 합금 압연재 및 그 제조 방법 및 전기 전자 부품
JP3879038B2 (ja) Mg合金製品の表面処理方法および高耐食性被膜を形成したMg合金製品
Chen et al. Influence of mixed rare earth elements (Y and Ce) on the microstructure and corrosion behaviour of Mg-4Al-3Ca alloy
WO2020189673A1 (ja) アルミニウム合金箔、積層体、アルミニウム合金箔の製造方法、および積層体の製造方法
Hughes et al. Desmutting of aluminium alloy 2024-T3 using rare earth electrolyte
JP5728118B1 (ja) 表面処理銅箔、該表面処理銅箔の製造方法、および該表面処理銅箔を用いた銅張積層板
Donten et al. Voltammetric, Optical, and Spectroscopic Examination of Anodically Forced Passivation of Cobalt‐Tungsten Amorphous Alloys
TWI741186B (zh) 鋁積層體及其製造方法
JP2004018906A (ja) 表面処理アルミニウム材、その製造方法、アルミニウム成形体及びアルミニウム缶