WO2024114840A1 - 扣式电池 - Google Patents

扣式电池 Download PDF

Info

Publication number
WO2024114840A1
WO2024114840A1 PCT/CN2024/075469 CN2024075469W WO2024114840A1 WO 2024114840 A1 WO2024114840 A1 WO 2024114840A1 CN 2024075469 W CN2024075469 W CN 2024075469W WO 2024114840 A1 WO2024114840 A1 WO 2024114840A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
positive electrode
powder cake
electrode powder
button cell
Prior art date
Application number
PCT/CN2024/075469
Other languages
English (en)
French (fr)
Inventor
韩丹丹
刘治华
祝媛
曹浪
孙佩玲
Original Assignee
惠州亿纬锂能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州亿纬锂能股份有限公司 filed Critical 惠州亿纬锂能股份有限公司
Priority to EP24711108.1A priority Critical patent/EP4411850A1/en
Publication of WO2024114840A1 publication Critical patent/WO2024114840A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/109Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, for example, to button batteries.
  • the main components of lithium manganese dioxide batteries are the negative electrode shell, negative electrode, diaphragm, positive electrode (including positive electrode ring), positive electrode shell, and electrolyte. Due to the limited internal space of the battery cell, the space occupied by the positive and negative electrodes is limited, which in turn limits the capacity of the battery cell, that is, the service life.
  • lithium-manganese button cells use a structure in which a positive electrode ring wraps a positive electrode powder cake. This structure causes the positive electrode ring to occupy a large space, which in turn limits the layout space of the positive and negative electrodes, resulting in a small battery cell capacity and a short service life.
  • the present application provides a button-type battery, in which the battery cell has a large capacity and a long service life.
  • an embodiment of the present application provides a button-type battery, comprising: a shell, the shell comprising a positive electrode shell and a negative electrode shell connected to each other, the positive electrode shell and the negative electrode shell enclosing a cavity; a positive electrode powder cake, the positive electrode powder cake being arranged in the cavity; a current collector, the current collector being arranged in the cavity, the current collector and the positive electrode powder cake being stacked, and at least a portion of the current collector being embedded in the positive electrode powder cake, and a side of the current collector away from the positive electrode powder cake being in contact with a bottom surface of the positive electrode shell.
  • the current collector is a mesh structure.
  • the surface of the current collector embedded in the positive electrode powder cake is a frosted surface or is provided with burrs.
  • the height of the current collector embedded in the positive electrode powder cake accounts for 50% to 95% of the total height of the current collector.
  • the current collector includes a plurality of cross-arranged current collecting bars, the plurality of current collecting bars form a mesh structure, and the thickness of the intersections of the plurality of current collecting bars is greater than the thickness of the current collecting bars.
  • the current collector is made of nickel, aluminum or stainless steel.
  • the compaction density of the positive electrode powder cake is 2.0-3.0 g/mm 3 .
  • the cross-sections of the current collector and the positive electrode powder cake are both circular, and the ratio of the cross-section diameters of the current collector and the positive electrode powder cake is 1:1 to 1:1.5.
  • the mesh of the current collector is rhombus-shaped, and the ratio of the short pitch a to the long pitch b of the rhombus is 1:1 to 1:3.
  • the surface of the positive electrode powder cake in contact with the current collector and the longitudinal section of the current collector are both wavy, or the surface of the positive electrode powder cake in contact with the current collector and the longitudinal section of the current collector are both serrated.
  • the button cell provided in the present application forms a cavity for accommodating the positive electrode powder cake and the current collector by assembling the positive electrode shell and the negative electrode shell.
  • the space occupied by the current collector in the shell can be reduced, so that the volume of the positive electrode powder cake can be appropriately increased, thereby increasing the cell capacity and extending the service life of the battery.
  • FIG1 is a cross-sectional schematic diagram of a button cell provided in Example 1 of the present application.
  • FIG2 is a schematic diagram of the structure of a rolled current collector provided in Example 1 of the present application.
  • FIG3 is a schematic diagram of the structure of the current collector provided in Example 1 of the present application.
  • FIG4 is a schematic diagram of the explosion structure of the current collector and the positive electrode powder cake provided in Example 1 of the present application;
  • FIG5 is a schematic diagram of the assembly structure of the current collector and the positive electrode powder cake provided in Example 3 of the present application.
  • Shell 101. Cavity; 100. Positive electrode shell; 200. Negative electrode shell; 300. Current collector; 310. Current collector bar; 320. Intersection of current collector bars; 400. Positive electrode powder cake; 500. Diaphragm; 600. Negative electrode sheet; 700. Rolled current collector.
  • orientation or positional relationship indicated by the terms “center”, “up”, “down”, “left”, “right”, “vertical”, “horizontal”, “inside”, “outside”, etc. is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the present application and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation on the present application.
  • first and “second” are only used for descriptive purposes and cannot be understood as indicating or implying relative importance.
  • first position and “second position” are two different positions, and the first feature “above”, “above” and “above” the second feature include the first feature being directly above and obliquely above the second feature, or simply indicates that the horizontal height of the first feature is higher than the horizontal height of the second feature.
  • the first feature “below”, “below” and “below” the second feature include the first feature being directly below and obliquely below the second feature, or simply indicates that the horizontal height of the first feature is less than the horizontal height of the second feature.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or it can be indirectly connected through an intermediate medium, or it can be the internal communication of two components.
  • installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or it can be indirectly connected through an intermediate medium, or it can be the internal communication of two components.
  • this embodiment provides a button-type battery, including a housing 10, a positive electrode powder cake 400, and a current collector 300.
  • the housing 10 includes a positive electrode shell 100 and a negative electrode shell 200 connected to each other, and the positive electrode shell 100 and the negative electrode shell 200 enclose a cavity 101.
  • the positive electrode powder cake 400 is disposed in the cavity 101.
  • the current collector 300 is disposed in the cavity 101, and the current collector 300 and the positive electrode powder cake 400 are stacked, and at least a portion of the current collector 300 is embedded in the positive electrode powder cake 400, and a side of the current collector 300 away from the positive electrode powder cake 400 is in contact with the bottom surface of the positive electrode shell 100.
  • the button cell is assembled with the positive electrode shell 100 and the negative electrode shell 200 to form a cavity 101 for accommodating the positive electrode powder cake 400 and the current collector 300.
  • the current collector 300 occupies less space in the shell 10 compared with the arrangement of the positive electrode ring, so that the volume of the positive electrode powder cake 400 can be appropriately increased, thereby increasing the cell capacity and extending the battery life.
  • the positive electrode shell 100 and the negative electrode shell 200 are buckled and connected, and the current collector 300 , the positive electrode powder 400 , the separator 500 and the negative electrode sheet 600 are sequentially stacked from top to bottom inside the shell 10 .
  • the current collector 300 is a mesh structure.
  • the current collector 300 is an integrally formed mesh structure.
  • the mesh structure of the current collector 300 can facilitate the embedding of the current collector 300 in the positive electrode powder cake 400, and at the same time, it helps to press the current collector 300 and the positive electrode powder cake 400, and the connection between the two is more secure.
  • the incoming material of the current collector 300 in this embodiment is in a roll shape. Before the button battery is assembled, the rolled current collector 700 needs to be unfolded into a plane and punched into a circular sheet current collector 300 using an automatic mesh punching device.
  • the surface of the current collector 300 embedded in the positive electrode powder cake 400 is frosted or provided with burrs, thereby increasing the bonding force between the current collector 300 and the positive electrode powder cake 400 and preventing the two from separating.
  • the height of the current collector 300 embedded in the positive electrode powder cake 400 accounts for 50% to 95% of the total height of the current collector 300. For example, it can be 50%, 60%, 80% or 95%. It can be understood that the height of the current collector 300 embedded in the positive electrode powder cake 400 can be set according to the thickness of the positive electrode powder cake 400, the size of the cavity 101 and other parameters, which are not limited here. By embedding part of the current collector 300 into the positive electrode powder cake 400, the space occupied by the current collector 300 in the cavity 101 can be reduced, so that the volume of the positive electrode powder cake 400 can be appropriately increased, thereby increasing the capacity of the battery cell and extending the battery life.
  • the current collector 300 includes a plurality of cross-arranged current collector bars 310, the plurality of current collector bars 310 form a mesh structure, and the thickness of the intersection 320 of the plurality of current collector bars is greater than the thickness of the current collector bars 310.
  • the thickness of the intersection 320 of the current collector bars is set to 1.2 to 1.5 times the thickness of the current collector bars 310, and can be 1.2 times, 1.3 times, 1.4 times or 1.5 times, etc.
  • Increasing the thickness of the intersection 320 of the current collector bars can increase the structural strength of the current collector 300 and prevent the current collector 300 from being damaged during assembly or use.
  • the mesh of the current collector 300 is a rhombus, and the ratio of the long pitch a to the short pitch b of the rhombus is 1:1 to 1:3, and can be 1:1, 1:2, 1:3 or other ratios, and the ratio can be selected according to the battery model.
  • the setting of the mesh can make the current collector 300 easier to be pressed into the positive electrode powder cake 400, reducing the difficulty of processing.
  • the material of the current collector 300 is nickel, aluminum or stainless steel.
  • the material selection of the current collector 300 affects the pulse capability of the battery cell.
  • the current collector 300 is made of nickel or aluminum, which has a stronger performance in large current pulses.
  • the positive electrode powder cake 400 is mostly made of manganese powder.
  • the compaction density of the positive electrode powder cake 400 is 2.0-3.0 g/mm 3 , illustratively, it can be 2.0 g/mm 3 , 2.5 g/mm 3 , 3.0 g/mm 3 or other values.
  • the cross-sections of the current collector 300 and the positive electrode powder cake 400 are both circular, and the ratio of the cross-sectional diameters of the current collector 300 and the positive electrode powder cake 400 is 1:1 to 1:1.5, and can be 1:1, 1:1.2, 1:1.5 or other ratios.
  • the current collector 300 and the positive electrode powder cake 400 can be placed concentrically, and the cross-sectional area of the current collector 300 is smaller than the cross-sectional area of the positive electrode powder cake 400, so as to ensure that the current collector 300 can be embedded in the positive electrode powder cake 400.
  • a current collector 300 is pressed and embedded in a positive electrode powder cake 400 by a tablet press to form a positive electrode.
  • a negative electrode sheet 600 is placed in a negative electrode shell 200, and a cut separator 500 is covered on the negative electrode sheet 600.
  • An electrolyte is dripped on the separator 500. After the dripping is completed, the positive electrode powder cake 400 is placed on the separator 500, and the positive electrode shell 100 is buckled on the negative electrode shell 200 to encapsulate a sealed battery.
  • the structure of the button battery provided in this embodiment is the same as that of the first embodiment, and the difference lies in the assembly process of the battery. The following only describes the assembly process of the button battery of this embodiment:
  • the button battery provided in this embodiment is the same as that in the first embodiment, except for the assembly process of the battery. The following only describes the assembly process of the button battery in this embodiment:
  • the current collector 300 is pressed and embedded in the positive electrode powder cake 400 by a tablet press to form a positive electrode.
  • the mold for pressing the current collector 300 and the positive electrode powder cake 400 on the tablet press is wavy or sawtooth-shaped, so that the surface of the positive electrode powder cake 400 in contact with the current collector 300 and the longitudinal section of the current collector 300 are both wavy, or the surface of the positive electrode powder cake 400 in contact with the current collector 300 and the longitudinal section of the current collector 300 are both sawtooth-shaped.
  • the use of a wavy or sawtooth-shaped mold can increase the binding force between the current collector 300 and the positive electrode powder cake 400 to prevent the two from separating.
  • the negative electrode sheet 600 is loaded into the negative electrode shell 200, and the cut diaphragm 500 is covered on the negative electrode sheet 600.
  • the electrolyte is dripped on the diaphragm 500. After the dripping is completed, the positive electrode powder cake 400 is placed on the diaphragm 500, and the positive electrode shell 100 is buckled on the negative electrode shell 200 to encapsulate a sealed battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请公开了扣式电池。该扣式电池包括壳体10、正极粉饼400和集流体300,壳体10包括互相连接的正极壳100和负极壳200,正极壳100和负极壳200围合形成有空腔101。正极粉饼400设置在空腔101内。集流体300设置在空腔101内,集流体300和正极粉饼400层叠设置,且至少部分集流体300嵌入正极粉饼400中,集流体300远离正极粉饼400的一面和正极壳100的底面接触设置。

Description

扣式电池
本申请要求在2023年02月06日提交中国专利局、申请号为202320122324.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,例如涉及扣式电池。
背景技术
锂二氧化锰电池主要组成部分为负极壳、负极、隔膜、正极(包含正极环)、正极壳、电解液六部分。由于电芯内部空间有限,因而限制了正极和负极的占用空间,进而限制了电芯的容量,即使用寿命。
现阶段锂锰扣式电芯多采用正极环包裹正极粉饼的结构,这种结构导致正极环占用空间较大,进而导致正极和负极的布置空间受到限制,电芯容量较小,使用寿命较短。
因此,亟需提出一种扣式电池来解决上述问题。
发明内容
本申请提供了一种扣式电池,该扣式电池中的电芯容量大,使用寿命长。
第一方面,本申请实施例提供一种扣式电池,包括:壳体,所述壳体包括互相连接的正极壳和负极壳,所述正极壳和所述负极壳围合形成有空腔;正极粉饼,所述正极粉饼设置在所述空腔内;集流体,所述集流体设置在所述空腔内,所述集流体和所述正极粉饼层叠设置,且至少部分所述集流体嵌入所述正极粉饼中,所述集流体远离所述正极粉饼的一面和所述正极壳的底面接触设置。
在一实施例中,所述集流体为网状结构。
在一实施例中,所述集流体嵌入所述正极粉饼的表面为磨砂面或设置有毛刺。
在一实施例中,所述集流体嵌入所述正极粉饼的高度占所述集流体总高度的50%~95%。
在一实施例中,所述集流体包括多个交叉设置的集流条,多个所述集流条形成网状结构,多个所述集流条相交处的厚度大于所述集流条的厚度。
在一实施例中,所述集流体的材质为镍、铝或不锈钢。
在一实施例中,所述正极粉饼的压实密度为2.0~3.0g/mm 3
在一实施例中,所述集流体和所述正极粉饼的横截面均为圆形,所述集流体与所述正极粉饼的横截面直径之比为1:1~1:1.5。
在一实施例中,所述集流体的网孔为菱形,所述菱形的短节距a与长节距b的比值为1:1~1:3。
在一实施例中,所述正极粉饼与所述集流体相接触的表面和所述集流体的纵截面均为波浪型,或所述正极粉饼与所述集流体相接触的表面和所述集流体的纵截面均为锯齿形。
本申请的有益效果:
本申请提供的扣式电池通过正极壳和负极壳的装配形成容纳正极粉饼和集流体的空腔。通过将至少部分集流体嵌入到正极粉饼中,能够减少集流体在壳体内的占用空间,从而可以适当增加正极粉饼的体积,进而增加了电芯容量,延长了电池的使用寿命。
附图说明
图1是本申请实施例一提供的扣式电池的截面示意图;
图2是本申请实施例一提供的卷状集流体的结构示意图;
图3是本申请实施例一提供的集流体的结构示意图;
图4是本申请实施例一提供的集流体和正极粉饼的爆炸结构示意图;
图5是本申请实施例三提供的集流体和正极粉饼的装配结构示意图。
图中:
10、壳体;101、空腔;100、正极壳;200、负极壳;300、集流体;310、集流条;320、集流条相交处;400、正极粉饼;500、隔膜;600、负极片;700、卷状集流体。
具体实施方式
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“第一位置”和“第二位置”为两个不同的位置,而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征的水平高度高于第二特征的水平高度。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征的水平高度小于第二特征的水平高度。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据情况理解上述术语在本申请中的含义。
下面描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
实施例
参见图1和图2,本实施例提供一种扣式电池,包括壳体10、正极粉饼400和集流体300,壳体10包括互相连接的正极壳100和负极壳200,正极壳100和负极壳200围合形成有空腔101。正极粉饼400设置在空腔101内。集流体300设置在空腔101内,集流体300和正极粉饼400层叠设置,且至少部分集流体300嵌入正极粉饼400中,集流体300远离正极粉饼400的一面和正极壳100的底面接触设置。
上述扣式电池通过正极壳100和负极壳200的装配形成容纳正极粉饼400和集流体300的空腔101。通过将至少部分集流体300嵌入到正极粉饼400中,相较于正极环的设置,集流体300在壳体10内的占用空间较小,从而可以适当增加正极粉饼400的体积,进而增加电芯容量,延长电池的使用寿命。
继续参见图1,正极壳100和负极壳200上下扣合连接,壳体10内部从上至下依次层叠设置有集流体300、正极粉饼400、隔膜500和负极片600。
参见图2和图3,可选地,集流体300为网状结构。可选地,集流体300为一体成型的网状结构。集流体300采用网状结构能够方便集流体300嵌入正极粉饼400中,同时,有助于集流体300和正极粉饼400进行压合,两者之间的连接更为牢固。可选地,本实施例中集流体300来料为卷状,在扣式电池装配之前,需将卷状集流体700展开成平面并采用自动冲网设备冲制成圆形片状集流体300。
根据正极粉饼400的特质,集流体300嵌入正极粉饼400的表面为磨砂面或设置有毛刺,从而增加集流体300和正极粉饼400之间的结合力,防止两者脱离。
集流体300嵌入正极粉饼400的高度占集流体300总高度的50%~95%,示例性地,可以是50%、60%、80%或95%等。可以理解地,集流体300嵌入正极粉饼400的高度可以根据正极粉饼400的厚度、空腔101的大小等参数进行设置,在此不作限定。通过将部分集流体300嵌入到正极粉饼400中,能够减少集流体300在空腔101内的占用空间,从而可以适当增加正极粉饼400的体积,进而提高电芯容量,延长电池寿命。
集流体300包括多个交叉设置的集流条310,多个集流条310形成网状结构,多个集流条相交处320的厚度大于集流条310的厚度。在本实施例中,将集流条相交处320的厚度设置为集流条310厚度的1.2~1.5倍,示例性地,可以为1.2倍、1.3倍、1.4倍或1.5倍等。增加集流条相交处320的厚度可以增加集流体300的结构强度,防止集流体300在装配或使用过程中发生损坏。
集流体300的网孔为菱形,菱形的长节距a与短节距b的比值为1:1~1:3,示例性地,可以为1:1、1:2、1:3或其他比值,比例可根据电池型号进行选择。网孔的设置能够使集流体300更能容易地被压入正极粉饼400中,降低加工难度。
集流体300的材质为镍、铝或不锈钢,集流体300的材质选型影响电芯的脉冲能力,集流体300采用镍或铝,在大电流脉冲方面表现能力较强。
正极粉饼400多采用锰粉制成,为了更好地结合集流体300,正极粉饼400的压实密度为2.0~3.0g/mm 3,示例性地,可以为2.0g/mm 3、2.5g/mm 3、3.0g/mm 3或其他数值。
集流体300和正极粉饼400的横截面均为圆形,集流体300与正极粉饼400的横截面直径之比为1:1~1:1.5,示例性地,可以为1:1、1:1.2、1:1.5或其他比值。集流体300和正极粉饼400可同心放置,集流体300的横截面面积小于正极粉饼400的横截面面积,从而保证集流体300能够嵌入到正极粉饼400中。
本实施例中的扣式电池的装配过程如下:
参见图4,利用压片机将集流体300压合嵌入正极粉饼400制成正极。将负极片600装入负极壳200内,将裁好的隔膜500覆盖在负极片600上,在隔膜500上方滴加电解液,滴加完成后,将正极粉饼400放在隔膜500上方,将正极壳100扣合在负极壳200上,封装为具有密封性的电池。
实施例
本实施提供的扣式电池的结构和实施例一相同,不同之处在于电池的装配过程,以下仅对本实施例的扣式电池的装配过程进行说明:
将负极片600装入负极壳200,将裁好的隔膜500覆盖在负极片600上,在隔膜500上方滴加电解液,滴加完成后,将正极粉饼400放在隔膜500上方,将集流体300放置在正极粉饼400上方,将正极壳100和负极壳200密封扣合,通过正极壳100和负极壳200扣合后产生的压力使集流体300嵌入正极粉饼400中。
实施例
本实施例提供的扣式电池和实施例一相同,不同之处在于电池的装配过程,以下仅对本实施例的扣式电池的装配过程进行说明:
参见图5,利用压片机将集流体300压合嵌入正极粉饼400制成正极,压片机上压合集流体300和正极粉饼400的模具为波浪型或锯齿形,从而正极粉饼400与集流体300相接触的表面和集流体300的纵截面均为波浪型,或正极粉饼400与集流体300相接触的表面和集流体300的纵截面均为锯齿形,采用波浪型或锯齿形模具能够增加集流体300和正极粉饼400的结合力,防止两者脱离。将负极片600装入负极壳200,将裁好的隔膜500覆盖在负极片600上,在隔膜500上方滴加电解液,滴加完成后,将正极粉饼400放在隔膜500上方,将正极壳100扣合在负极壳200上,封装为具有密封性的电池。

Claims (10)

  1. 扣式电池,包括:
    壳体(10),所述壳体(10)包括互相连接的正极壳(100)和负极壳(200),所述正极壳(100)和所述负极壳(200)围合形成有空腔(101);
    正极粉饼(400),所述正极粉饼(400)设置在所述空腔(101)内;
    集流体(300),所述集流体(300)设置在所述空腔(101)内,所述集流体(300)和所述正极粉饼(400)层叠设置,且至少部分所述集流体(300)嵌入所述正极粉饼(400)中,所述集流体(300)远离所述正极粉饼(400)的一面和所述正极壳(100)的底面接触设置。
  2. 根据权利要求1所述的扣式电池,其中,所述集流体(300)为网状结构。
  3. 根据权利要求1所述的扣式电池,其中,所述集流体(300)嵌入所述正极粉饼(400)的表面为磨砂面或设置有毛刺。
  4. 根据权利要求1所述的扣式电池,其中,所述集流体(300)嵌入所述正极粉饼(400)的高度占所述集流体(300)总高度的50%~95%。
  5. 根据权利要求2所述的扣式电池,其中,所述集流体(300)包括多个交叉设置的集流条(310),多个所述集流条(310)形成网状结构,多个所述集流条相交处(320)的厚度大于所述集流条(310)的厚度。
  6. 根据权利要求1所述的扣式电池,其中,所述集流体(300)的材质为镍、铝或不锈钢。
  7. 根据权利要求1所述的扣式电池,其中,所述正极粉饼(400)的压实密度为2.0~3.0g/mm 3
  8. 根据权利要求1所述的扣式电池,其中,所述集流体(300)和所述正极粉饼(400)的横截面均为圆形,所述集流体(300)与所述正极粉饼(400)的横截面直径之比为1:1~1:1.5。
  9. 根据权利要求2所述的扣式电池,其中,所述集流体(300)的网孔为菱形,所述菱形的短节距a与长节距b的比值为1:1~1:3。
  10. 根据权利要求1-9任一项所述的扣式电池,其中,所述正极粉饼(400)与所述集流体(300)相接触的表面和所述集流体(300)的纵截面均为波浪型,或所述正极粉饼(400)与所述集流体(300)相接触的表面和所述集流体(300)的纵截面均为锯齿形。
PCT/CN2024/075469 2023-02-06 2024-02-02 扣式电池 WO2024114840A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP24711108.1A EP4411850A1 (en) 2023-02-06 2024-02-02 Button battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202320122324.7U CN219286444U (zh) 2023-02-06 2023-02-06 扣式电池
CN202320122324.7 2023-02-06

Publications (1)

Publication Number Publication Date
WO2024114840A1 true WO2024114840A1 (zh) 2024-06-06

Family

ID=86913587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/075469 WO2024114840A1 (zh) 2023-02-06 2024-02-02 扣式电池

Country Status (3)

Country Link
EP (1) EP4411850A1 (zh)
CN (1) CN219286444U (zh)
WO (1) WO2024114840A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN219286444U (zh) * 2023-02-06 2023-06-30 惠州亿纬锂能股份有限公司 扣式电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101752612A (zh) * 2008-12-15 2010-06-23 山东神工海特电子科技有限公司 3v可充锂二氧化锰电池的制备方法
CN102315480A (zh) * 2010-07-02 2012-01-11 博特科科技(深圳)有限公司 一种扣式锂电池及其制备方法
CN106953100A (zh) * 2017-05-08 2017-07-14 宁波必霸能源有限公司 正极集流体、正极饼、扣式电池及正极集流体加工方法
CN211957692U (zh) * 2020-02-03 2020-11-17 缪汉平 一种新型纽扣式电池
CN219286444U (zh) * 2023-02-06 2023-06-30 惠州亿纬锂能股份有限公司 扣式电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101752612A (zh) * 2008-12-15 2010-06-23 山东神工海特电子科技有限公司 3v可充锂二氧化锰电池的制备方法
CN102315480A (zh) * 2010-07-02 2012-01-11 博特科科技(深圳)有限公司 一种扣式锂电池及其制备方法
CN106953100A (zh) * 2017-05-08 2017-07-14 宁波必霸能源有限公司 正极集流体、正极饼、扣式电池及正极集流体加工方法
CN211957692U (zh) * 2020-02-03 2020-11-17 缪汉平 一种新型纽扣式电池
CN219286444U (zh) * 2023-02-06 2023-06-30 惠州亿纬锂能股份有限公司 扣式电池

Also Published As

Publication number Publication date
EP4411850A1 (en) 2024-08-07
CN219286444U (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
WO2024114840A1 (zh) 扣式电池
JP4580620B2 (ja) 電池に用いる渦巻状電極群の製造方法
JP6020442B2 (ja) 円筒形電池及び電池用電極構造
US10468711B2 (en) Electrode plate, layered electrode group, and battery
EP2757624A1 (en) Cylindrical battery
US9379363B2 (en) Cylindrical battery
US9722215B2 (en) Cylindrical battery
CN112786973A (zh) 一种叠片扣式锂离子电池
US7432018B2 (en) Cylindrical alkaline storage battery
JP2001023680A (ja) 巻回構造の電極体を有する電池
JP3923259B2 (ja) 電池の製造方法
JP2011171112A (ja) アルカリ亜鉛蓄電池
CN211789187U (zh) 电池外壳及锂电池
KR20000076959A (ko) 사각형 배터리
JP3407979B2 (ja) 角形密閉電池
CN215644896U (zh) 电芯组件、电池及电子设备
CN215184151U (zh) 一种叠片扣式锂离子电池
CN211829022U (zh) 一种纽扣式锂离子电池
CN211605197U (zh) 扣式电池
JP2804557B2 (ja) 角形電池およびその製造方法
JP3973115B2 (ja) 巻回構造の電極体を有する電池
JPH087919A (ja) 薄形電池
JP2002298824A (ja) 密閉型蓄電池およびその製造方法
CN111446398A (zh) 电池外壳及锂电池
JPH0447665A (ja) 角形電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2024711108

Country of ref document: EP

Effective date: 20240320