WO2024114099A1 - 射频模组及通信设备 - Google Patents

射频模组及通信设备 Download PDF

Info

Publication number
WO2024114099A1
WO2024114099A1 PCT/CN2023/122880 CN2023122880W WO2024114099A1 WO 2024114099 A1 WO2024114099 A1 WO 2024114099A1 CN 2023122880 W CN2023122880 W CN 2023122880W WO 2024114099 A1 WO2024114099 A1 WO 2024114099A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
frequency
transmission channel
power
modules
Prior art date
Application number
PCT/CN2023/122880
Other languages
English (en)
French (fr)
Inventor
陈锋
仝林
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2024114099A1 publication Critical patent/WO2024114099A1/zh

Links

Definitions

  • the present application relates to the field of antenna technology, and in particular to a radio frequency module and communication equipment.
  • a radio frequency module and communication equipment are provided, which can realize more frequency band combinations, improve the communication performance of the radio frequency module, and improve the user experience.
  • the first aspect of the present application provides a radio frequency module, including:
  • a radio frequency transceiver comprising a first transmission channel group and a second transmission channel group, wherein the first transmission channel group and the second transmission channel group each comprise a plurality of transmission channels;
  • At least one target RF module can be switchably connected to any of the power modules and any of the RF channels, and each of the RF modules is used to receive a RF signal transmitted from a target RF channel under the power supply of the target power module, and to amplify the power of the RF signal received by each of the RF modules;
  • different RF modules support different frequency bands of power amplified RF signals
  • two RF modules working simultaneously among the multiple RF modules have different target power modules
  • the two RF modules working simultaneously have different target RF channels
  • the target power module is a power module conductively connected to the RF module
  • the target RF channel is a RF channel conductively connected to the RF module.
  • a radio frequency module as described above is described above.
  • a third aspect of the present application provides a communication device, including:
  • a radio frequency transceiver comprising a first transmission channel group and a second transmission channel group, wherein the first transmission channel group and the second transmission channel group each comprise a plurality of transmission channels;
  • a first radio frequency module switchably connected to the first power module or the second power module, and switchably connected to the first transmission channel group or the second transmission channel group, for supporting transmission of radio frequency signals in a first frequency band;
  • the second RF module is respectively connected to the first power module, the second power module, the first transmission channel group and the second transmission channel group, and is used to support the transmission of RF signals in the second frequency band from the first transmission channel group under the power supply of the first power module, and to support the transmission of RF signals in the third frequency band from the second transmission channel group under the power supply of the second power module.
  • FIG1 is a structural block diagram of a radio frequency module according to an embodiment
  • FIG2 is a second structural block diagram of a radio frequency module according to an embodiment
  • FIG3 is a third structural block diagram of a radio frequency module according to an embodiment
  • FIG4 is a fourth structural block diagram of a radio frequency module according to an embodiment
  • FIG5 is a fifth structural block diagram of a radio frequency module according to an embodiment
  • FIG6 is a sixth structural block diagram of a radio frequency module according to an embodiment
  • FIG7 is a seventh structural block diagram of a radio frequency module according to an embodiment
  • FIG8 is an eighth structural block diagram of a radio frequency module according to an embodiment
  • FIG9 is a ninth structural block diagram of a radio frequency module according to an embodiment
  • FIG10 is a structural block diagram of a communication device in one embodiment
  • FIG11 is a second structural block diagram of a communication device in an embodiment
  • FIG12 is a third structural block diagram of a communication device in an embodiment
  • FIG. 13 is a fourth structural block diagram of a communication device in an embodiment.
  • first, second, etc. used in this application can be used in this article to describe various elements, but these elements are not limited by these terms. These terms are only used to distinguish the first element from another element, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, the features defined as “first” and “second” can explicitly or implicitly include at least one of the features. In the description of this application, the meaning of "plurality” is at least two, such as two, three, etc., unless otherwise clearly and specifically defined.
  • the radio frequency module involved in the embodiment of the present application can be applied to communication devices with wireless communication functions, and the communication devices can be handheld devices, vehicle-mounted devices, smart cars, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of user equipment (UE) (for example, mobile phones), mobile stations (MS), etc.
  • UE user equipment
  • MS mobile stations
  • FIG. 1 is a structural block diagram of a radio frequency module according to an embodiment.
  • the radio frequency module includes a plurality of power modules 10 , a radio frequency transceiver 20 and a plurality of radio frequency modules 30 .
  • the RF transceiver 20 includes a first transmission channel group and a second transmission channel group, each of which includes multiple transmission channels; multiple RF modules 30, at least one target RF module can be switchably connected to any power module 10 and any RF channel (FIG. 1 is illustrated by taking a target RF module as an example, and only shows the situation where the target RF module and other RF modules 30 can be connected to the power module 10 respectively), each RF module 30 is used to receive the RF signal transmitted from the target RF channel under the power supply of the target power module, and power amplify the RF signal received by each RF module; wherein different RF modules 30 support power amplification of RF signals
  • the frequency bands are different, the target power modules of two RF modules 30 working simultaneously among the multiple RF modules 30 are different, and the target RF channels of the two RF modules 30 working simultaneously are different, the target power module is the power module 10 conductively connected to the RF module 30, and the target RF channel is the RF channel conductively connected to the RF module
  • Each power module 10 is used to provide a power supply signal to the RF module 30 connected to the RF module 30 when it is connected to the RF module 30, so that the RF module 30 can power amplify the RF signal from the RF transceiver 20.
  • the voltage can be adjusted according to the frequency band of the RF signal that the RF module 30 needs to support power amplification, so as to output a power supply signal suitable for the normal operation of the RF module 30 to meet the needs of users.
  • the power module 10 can include, for example, a battery and a power management chip (Power management IC, PMIC) connected to the battery to adjust the power of the battery and provide it to the RF module 30.
  • Power management IC Power management IC
  • the first transmission channel group and the second transmission channel group are independent and non-interfering transmission channels, which are used to output the first network standard and the second network standard radio frequency signals to the connected radio frequency module 30, and the first network standard and the second network standard can be configured to be the same or different.
  • the first network standard and the second network standard can include GSM (Global System for Mobile Communications), UMTS (Universal Mobile Telecommunications System), LTE (Long Term Evolution) and NR (New Radio), etc., and each network standard can include multiple frequency bands.
  • the radio frequency signal of the first network standard can be called a 4G LTE signal
  • the radio frequency signal of the second network standard can be called a 5G NR signal
  • 4G LTE signals include low frequency signals, medium frequency signals, and high frequency signals
  • 5G NR signals include low frequency signals, medium frequency signals, high frequency signals, and ultra-high frequency signals.
  • the frequency band division of low frequency signals, medium frequency signals, high frequency signals, and ultra-high frequency signals can refer to the following table.
  • the first network standard and the second network standard can be configured to be the same or different. Since the first transmission channel group corresponding to the first network standard and the second transmission channel group corresponding to the second network standard are independent of each other and do not interfere with each other, DSDA different frequency band combined communications can be achieved regardless of whether the first network standard and the second network standard are configured to be the same or different.
  • ENDC E-UTRA NR Dual Connectivity, 4G and 5G dual connectivity
  • the first network standard and the second network standard need to be configured to be different, and one of the first network standard and the second network standard is an LTE network standard, and the other is an NR network standard.
  • each RF module 30 is used to receive the RF signal transmitted from the target RF channel under the power supply of the target power module, and amplify the power of each received RF signal.
  • At least one RF module 30 among the multiple RF modules 30 can be switchably connected to any power module 10 and any RF channel.
  • the RF module 30 is defined as the target RF module
  • the power module 10 connected to each RF module 30 is defined as the target power module
  • the RF channel connected to each RF module 30 is defined as the target RF channel.
  • the target RF module can be connected to multiple power modules 10, the first transmission channel group and the second transmission channel group respectively, and the connection between the target RF module and the target power module and the target RF channel can be conducted as needed, so that the target RF module can choose to be powered by the power module 10 as needed, and can also choose to amplify the RF signal of any RF channel.
  • the inventor has found through creative work that in the related art, in order to support DSDA (Dual SIM Dual Active (dual SIM dual pass, dual card dual pass) combined communication in different frequency bands and/or ENDC (E-UTRA NR Dual Connectivity, 4G and 5G dual connectivity) combined communication, the two RF modules 30 working at the same time must be connected to different RF channels and powered by different power modules 10.
  • different RF modules 30 support different frequency bands of RF signals for power amplification, the target power modules of two RF modules 30 working at the same time in the multiple RF modules 30 are different, and the target RF channels of the two RF modules 30 are different, so that the two RF modules 30 working at the same time have different target RF channels and target power modules.
  • this embodiment can realize combined communications of different frequency bands under DSDA, and can also realize ENDC combination and uplink CA (Carrier Aggregation) at the same time.
  • the target RF module can switch the target power module and the target RF channel, the target RF module can switch the target power module and the target RF channel, and cooperate with other RF modules 30, so that the RF module provided in this embodiment can realize more combined communications under DSDA, more ENDC combined communications and uplink CA compared to the RF module with the same number of RF modules 30 in the related art.
  • At least one target RF module among the multiple RF modules 30 can be switchably connected to any power module 10 and any RF channel, and different RF modules 30 support different frequency bands of RF signals for power amplification, and the target power modules of two RF modules 30 working simultaneously among the multiple RF modules 30 are different, and the target RF channels of the two RF modules 30 working simultaneously are different, so that the two RF modules 30 working simultaneously can realize different frequency band combination communication under DSDA, and uplink CA, and can also realize ENDC combination at the same time when the first transmission channel group and the second transmission channel group are configured with different network standards, and the target power module and the target RF channel of the target RF module can be switched, so that the RF module provided in this embodiment can realize more frequency band combinations, improve the communication performance of the RF module, and improve the user experience compared with the RF module with the same number of RF modules 30 in the related technology.
  • the RF module further includes: at least one first switch module 40 and at least one second switch module 50 ( FIG. 2 takes a target RF module, a first switch module 40 and a second switch module 50 as an example).
  • Each first switch module 40 is configured with multiple first ends and second ends, and the multiple first ends of each first switch module 40 are respectively connected to the multiple power modules 10, and the second end of each first switch module 40 is correspondingly connected to the power end of a target RF module.
  • the first switch module 40 is used to conduct the connection between the target RF module and the target power module;
  • each second switch module 50 is configured with two first ends and a second end, and the two first ends of each second switch module 50 are respectively connected to the first transmission channel group and the second transmission channel group, and the second end of each second switch module 50 is correspondingly connected to the input end of a target RF module, and the second switch module 50 is used to conduct the connection between the target RF module and the target RF channel.
  • the number of the first switch module 40 and the second switch module 50 can be one or more, and the second end of each first switch module 40 is connected to the power supply end of a target RF module, so that the power supply end of the target RF module can be switchably connected to multiple power supply modules 10; the second end of each second switch module 50 is connected to the input end of a target RF module, so that the input end of the target RF module can be switchably connected to the first transmission channel group and the second transmission channel group.
  • the connection state of the target RF module with the target power module and the target RF channel can be controlled.
  • the number of the power supply end and the input end of the target RF module may be one or more.
  • the target RF module can be connected to a first switch module 40 and a second switch module 50; when at least one of the power supply end and the input end is multiple, the number of the first switch module 40 and the second switch module 50 corresponding to the target RF module can be adjusted.
  • the optional embodiments can be referred to the description below, and no further examples are given here.
  • the first switch module 40 and the second switch module 50 may respectively include at least one switch device, and the switch device may be, for example, a single-pole multi-throw switch.
  • the switch device may be, for example, a single-pole multi-throw switch.
  • the first switch module 40 may be a single-pole double-throw switch, and the two first ends of the single-pole double-throw switch are respectively connected to the output ends of the two power supply modules 10, and the second end of the single-pole double-throw switch is connected to the power supply terminal of the target RF module.
  • the conduction state of the connection between each target RF module and each power module 10 and each RF channel can be independently controlled, so that the power module 10 and the RF channel can be switched more accurately.
  • the switch module can also be set in other combinations, as long as it can control the switchable connection state between the target RF module and the power module 10 and the RF channel, and the embodiments of the present application are not further limited.
  • the first switch module 40 and the second switch module 50 are also respectively configured with a controlled end; wherein, the RF transceiver 20 also includes a control circuit, the control circuit is respectively connected to the controlled end of the first switch module 40 and the controlled end of the second switch module 50, and the control circuit is used to control the conduction state of the first switch module 40 and the second switch module 50 according to the target working frequency band.
  • control circuit is connected to the controlled end of the first switch module 40 and the controlled end of the second switch module 50 respectively, so as to control the conduction state of the first switch module 40 and the second switch module 50.
  • the RF transceiver 20 can be configured with a control port, which is connected to the controlled end of the first switch module 40 and the controlled end of the second switch module 50 through the control port to send control signals to the first switch module 40 and the second switch module 50 respectively, so as to control the conduction state of the first switch module 40 and the second switch module respectively.
  • the RF transceiver 20 can be configured with one of a mipi (Mobile Industry Processor Interface) port and a GPIO (General Purpose Input Output) port, and the control circuit can be connected to the first switch module 40 and the second switch module 50 respectively through the mipi port or the GPIO port to send the first control signal and the second control signal to the first switch module 40 and the second switch module 50 respectively to control the conduction state, thereby improving the control efficiency.
  • mipi Mobile Industry Processor Interface
  • GPIO General Purpose Input Output
  • the target RF module includes a power amplification unit, as shown in Figure 3 (the power amplification unit is not shown in Figure 3), and the target RF module is configured with multiple power ports (two power ports are used as an example in the figure, and the two power ports correspond to VCC1 and VCC2 in the figure respectively), and the multiple power ports are respectively connected to the multiple power modules 10; wherein, the first switch module 40 is integrated in the target RF module, and the multiple first ends of the first switch module 40 are respectively connected to the multiple power ports, the second end of the first switch module 40 is connected to the power end of the power amplification unit, and the input end of the power amplification unit is connected to the second end of the second switch module 50.
  • the first switch module 40 is integrated in the target RF module, and the multiple first ends of the first switch module 40 are respectively connected to the multiple power ports, the second end of the first switch module 40 is connected to the power end of the power amplification unit, and the input end of the power amplification unit is connected to the second end of the
  • the power amplifier unit is used to amplify the power of the received RF signal
  • the target RF module is configured with multiple power ports
  • the first switch module 40 is integrated in the corresponding target RF module
  • multiple first ends of the first switch module 40 are respectively connected to multiple power modules 10 through the multiple power ports
  • the second end of the first switch module 40 is connected to the power end of the power amplifier unit.
  • the first switch module 40 integrated in the target RF module can be configured with only one second end, and the second end can be connected to the power supply ends of multiple power amplifiers at the same time; or, the first switch module 40 can be configured with multiple second ends, and each second end is correspondingly connected to the power supply end of a power amplifier.
  • the power amplification unit in the target RF module can be one or more.
  • the multiple power amplification units can be powered by the same target power supply module or by different target power supply modules. At least one of the multiple power amplification units is correspondingly connected to the first switch module 40 and the second switch module 50, so as to be switchably connected to any power supply module 10 and to any RF channel.
  • each first switch module 40 may also be integrated into a corresponding power module 10 to improve integration, which is also beneficial to miniaturization of the radio frequency module and reduction of cost.
  • the target RF module includes a power amplification unit, as shown in Figure 4 (the power amplification unit is not shown in Figure 4), the target RF module is configured with a first input port and a second input port (corresponding to TX0 and TX1 in the figure respectively), the first input port is connected to the first transmission channel group, and the second input port is connected to the second transmission channel group; wherein, the second switch module 50 is integrated in the target RF module, the two first ends of the second switch module 50 are respectively connected to the first input port and the second input port, the second end of the second switch module 50 is connected to the input end of the power amplification unit, and the power supply end of the power amplification unit is connected to the second end of the first switch module 40.
  • the power amplifier unit is used to amplify the power of the received RF signal
  • the target RF module is configured with a first input port and a second input port
  • the second switch module 50 is integrated in the corresponding target RF module
  • the two first ends of the second switch module 50 are connected to the first transmission channel group and the second transmission channel group through the first input port and the second input port
  • the second end of the second switch module 50 is connected to the input end of the power amplifier unit.
  • the second end of the second switch module 50 integrated in the target RF module can be one, and the second end can be connected to the input ends of multiple power amplifiers, and can also be connected to the input end thereof through the RF switch inside the power amplification unit; the second end of the second switch module 50 can also be multiple, and the multiple second ends are respectively connected to the input ends of the multiple power amplifiers.
  • the power amplification unit in the target RF module can be one or more, and when there are multiple power amplification units, the multiple power amplification units can be connected to different transmission channels in the RF channel, and at least one of the multiple power amplification units can be switchably connected to any power module 10 and can be switchably connected to any RF channel.
  • the target RF module may be configured with a first input port, a second input port and a plurality of power ports at the same time, and the first switch module 40 and the second switch module 50 are both integrated in the target RF module.
  • the connection relationship between the first input port, the second input port, the plurality of power ports and each port and the first switch module 40 and the second switch module 50 can be referred to the relevant description in the above embodiments and will not be repeated here.
  • the mainboard area occupied by the RF module can be further reduced, the integration level can be improved, and it is beneficial to miniaturize the RF module and reduce the cost.
  • the first switch module 40 and the second switch module 50 corresponding to different target RF modules can also be configured as different integration situations.
  • the first switch module 40 and the second switch module 50 corresponding to one of the target RF modules can be integrated inside the target RF module, and the first switch module 40 and the second switch module 50 corresponding to the other target RF module can be arranged outside the other target RF module.
  • the large area and the small area of the main board can be better utilized, thereby improving the occupancy rate of the main board area.
  • the plurality of RF modules 30 include: a first RF module and a second RF module.
  • the first radio frequency module is used to amplify the power of the low frequency signal; the second radio frequency module is used to amplify the power of the intermediate frequency signal and the high frequency signal.
  • the first RF module receives a low-frequency signal through a target RF channel and performs power amplification on the low-frequency signal; the second RF module receives an intermediate frequency signal and a high-frequency signal through a target RF channel, and performs power amplification on the intermediate frequency signal and the high-frequency signal.
  • the first RF module and the second RF module can also be used to realize other auxiliary functions, for example, they can also be used to perform low-noise power amplification on the RF signal from the antenna side to realize the receiving function.
  • the first RF module can be a low-frequency power amplifier module with built-in low-noise amplifier (LB L-PA Mid, Low Band PA Mid With LNA), and the second RF module can be a medium- and high-frequency power amplifier module with built-in low-noise amplifier (MHB L-PA Mid, Middle and High Band PA Mid With LNA).
  • the second RF module can also include MHB L-PA Mid and a power amplifier switch module with integrated filter and low-noise amplifier (LPAF, LNA-PA ASM module with integrated filter).
  • the first transmission channel group includes a first low-frequency transmission channel, a first intermediate frequency transmission channel and a first high-frequency transmission channel (the first low-frequency transmission channel, the first intermediate frequency transmission channel and the first high-frequency transmission channel correspond to LB TX0, MB TX0, and HB TX0 in the figure respectively), and the second transmission channel group includes a second low-frequency transmission channel and a second high-frequency transmission channel (the second low-frequency transmission channel and the second high-frequency transmission channel correspond to LB TX1 and HB TX1 in the figure respectively);
  • the first RF module 301 is switchably connected to the first low-frequency transmission channel and the second low-frequency transmission channel and is switchably connected to a plurality of power modules 10;
  • the second RF module 302 includes: an intermediate- and high-frequency processing unit 310 and a high-frequency processing unit 320, the intermediate frequency input end of the intermediate- and high-frequency processing unit 310 is connected to the first intermediate frequency transmission channel, and the high-frequency output end of the intermediate
  • the input end is connected to the first high frequency transmission channel
  • the input end of the high frequency processing unit 320 is connected to the second high frequency transmission channel
  • the power supply end of the medium and high frequency processing unit 310 and the power supply end of the high frequency processing unit 320 are connected to different target power supply modules.
  • the first low-frequency transmission channel, the first intermediate frequency transmission channel and the first high-frequency transmission channel are respectively used to output the low-frequency signal, the intermediate frequency signal and the high-frequency signal of the first network standard
  • the second low-frequency transmission channel and the second high-frequency transmission channel are respectively used to output the low-frequency signal and the high-frequency signal of the second network standard.
  • the first RF module 301 can be, for example, LB L-PA Mid
  • the intermediate and high frequency processing unit 310 can be, for example, MHB L-PA Mid
  • the high-frequency processing unit 320 can be, for example, N41LPAF.
  • the first RF module 301, the intermediate and high frequency processing unit 310 and the high-frequency processing unit 320 can all have the characteristics of highly integrated devices and miniaturized devices, and can realize the transceiver function.
  • the low-frequency signal of the first network standard may be, for example, B5 or B8 RF signals
  • the intermediate-frequency signal of the first network standard may be, for example, B1 or B3 RF signals
  • the high-frequency signal of the first network standard may be, for example, B41 RF signals
  • the low-frequency signal of the second network standard may be, for example, N5 or N8 RF signals
  • the high-frequency signal of the second network standard may be, for example, N41 RF signals.
  • the first RF module 301 is switchably connected to the first low-frequency transmission channel and the second low-frequency transmission channel and is switchably connected to multiple power modules 10, so that the first RF module 301 can receive the low-frequency signal of the first network standard, and can also be switched to receive the low-frequency signal of the second network standard;
  • the intermediate frequency input end of the intermediate and high frequency processing unit 310 is connected to the first intermediate frequency transmission channel, and the high frequency input end of the intermediate and high frequency processing unit 310 is connected to the first high frequency transmission channel, so that the intermediate and high frequency processing unit 310 can receive the intermediate frequency signal and the high frequency signal of the first network standard;
  • the high frequency processing unit 320 is connected to the second high frequency transmission channel, so that it can receive the high frequency signal of the second network standard.
  • the RF module has the same number of RF modules as that in the present embodiment.
  • the medium and high frequency processing units 310 of the first RF module 301 and the second RF module 302 are connected to the same target power module and a target RF channel, and the high frequency processing unit 320 is connected to another target power module and another target RF channel.
  • the RF module cannot realize the LB (first network standard) + MB (second network standard), MB (first network standard) + LB (second network standard), HB (first network standard) + LB (second network standard) DSDA combination, ENDC combination and uplink under dual SIM cards. For many dual SIM card users, this will greatly limit their dual SIM card usage experience.
  • the dual-card DSDA combination of LB+HB, MB+LB, MB+HB, HB+LB, HB+HB, HB+HB, ENDC combination and CA uplink CA can be realized, which improves the transmission performance of the RF module and improves the user experience under dual cards.
  • the second transmission channel group also includes a second intermediate frequency transmission channel
  • the intermediate frequency input end of the intermediate and high frequency processing unit 310 can be switchably connected to the first intermediate frequency transmission channel and the second intermediate frequency transmission channel
  • the power supply end of the intermediate and high frequency processing unit 310 can be switchably connected to multiple power supply modules 10.
  • the second intermediate frequency transmission channel is used to output the intermediate frequency signal of the second network standard
  • the intermediate frequency input end of the intermediate and high frequency processing unit 310 can be switchably connected to the first intermediate frequency transmission channel and the second intermediate frequency transmission channel, so that the intermediate and high frequency processing unit 310 can receive the intermediate frequency signal and high frequency signal of the first network standard, and can also receive the intermediate frequency signal of the second network standard.
  • the dual-card DSDA combination of LB+MB, LB+HB, MB+LB, MB+HB, HB+LB, HB+MB, HB+HB can be realized,
  • the first transmission channel group includes a first low-frequency transmission channel and a first intermediate frequency transmission channel
  • the second transmission channel group includes a second low-frequency transmission channel and a second high-frequency transmission channel
  • the first RF module 301 can be switchably connected to the first low-frequency transmission channel and the second low-frequency transmission channel and can be switchably connected to multiple power modules 10
  • the second RF module 302 includes: an intermediate frequency processing unit 330 and a high-frequency processing unit 340, the intermediate frequency processing unit 330 is connected to the first intermediate frequency transmission channel, the high-frequency processing unit 340 is connected to the second high-frequency transmission channel, and the intermediate frequency processing unit 330 and the high-frequency processing unit 340 are conductively connected to different power modules 10.
  • the first low-frequency transmission channel and the first intermediate-frequency transmission channel are used to output the low-frequency signal of the first network standard
  • the intermediate frequency signal, the second low frequency transmission channel and the second high frequency transmission channel are respectively used to output the low frequency signal and the high frequency signal of the second network standard.
  • the first RF module 301 can be an LBL-PA Mid
  • the intermediate frequency processing unit 330 and the high frequency processing unit 340 of the second RF module 302 can be integrated with each other, and the intermediate frequency processing unit 330 and the high frequency processing unit 340 can work simultaneously
  • the second RF module 302 can be an MHB L-PA Mid supporting the ENDC dual-transmission function.
  • the first RF module 301 and the second RF module 302 can both have the characteristics of highly integrated devices and miniaturized devices, and can realize the transceiver function.
  • the first RF module 301 is switchably connected to the first low-frequency transmission channel and the second low-frequency transmission channel and is switchably connected to multiple power modules 10, so that the first RF module 301 can receive the low-frequency signal of the first network standard, and can also switch to receive the low-frequency signal of the second network standard;
  • the intermediate frequency processing unit 330 is connected to the first intermediate frequency transmission channel, and the high-frequency processing unit 340 is connected to the second high-frequency transmission channel, so that the intermediate frequency processing unit 330 can receive the intermediate frequency signal of the first network standard, and the high-frequency processing unit 340 can receive the high-frequency signal of the second network standard.
  • the RF module with the same number of RF modules as in the present embodiment usually the intermediate frequency processing unit 330 of the first RF module 301 and the second RF module 302 is connected to the same target power module and the same target RF channel, and the high frequency processing unit 340 is connected to another target power module and another target RF channel.
  • the RF module cannot realize DSDA combinations such as LB+MB, MB+LB, ENDC combinations and uplink CA under dual cards, and for many dual-card users, it will greatly limit their use experience under dual cards.
  • the intermediate frequency processing unit 330 and the high frequency processing unit 340 of the first RF module 301 and the second RF module 302 at least the dual-card DSDA combination, ENDC combination and CA uplink CA of LB+HB, MB+LB, and MB+HB can be realized, which improves the transmission performance of the RF module and improves the use experience under dual cards.
  • the second transmission channel group also includes a second intermediate frequency transmission channel; the input end of the intermediate frequency processing unit 330 can be switchably connected to the first intermediate frequency transmission channel and the second intermediate frequency transmission channel, and the power supply end of the intermediate frequency processing unit 330 can be switchably connected to multiple power supply modules 10; and/or, the first transmission channel group also includes a first high-frequency transmission channel; the high-frequency input end of the high-frequency processing unit 340 can be switchably connected to the first high-frequency transmission channel and the second high-frequency transmission channel, and the power supply end of the high-frequency processing unit 340 can be switchably connected to multiple power supply modules 10.
  • the second intermediate frequency transmission channel is used to output the intermediate frequency signal of the second network standard
  • the intermediate frequency processing unit 330 can be switchably connected to the first intermediate frequency transmission channel and the second intermediate frequency transmission channel, so that the intermediate frequency processing unit 330 can receive the intermediate frequency signal of the first network standard and the intermediate frequency signal of the second network standard
  • the high-frequency processing unit 340 can be switchably connected to the first high-frequency transmission channel and the second high-frequency transmission channel, so that the high-frequency processing unit 340 can receive the high-frequency signal of the first network standard and the high-frequency signal of the second network standard.
  • the first RF module 301, the intermediate frequency processing unit 330 of the second RF module 302 and the high frequency processing unit 340 can at least realize the dual-card DSDA combination, ENDC combination and uplink CA of LB+MB, LB+HB, MB+LB, and MB+HB; and/or when the high frequency processing unit 340 can switch the target power module and the target transmission channel, the first RF module 301, the intermediate frequency processing unit 330 of the second RF module 302 and the high frequency processing unit 340 can at least realize the dual-card DSDA combination, ENDC combination and uplink CA of LB+HB, MB+LB, MB+HB, and HB+LB.
  • more frequency band combinations can be realized.
  • the second transmission channel group also includes an ultra-high frequency transmission channel (such as UHB TX1 in the figure); the multiple RF modules also include a third RF module 303, the third RF module 303 is connected to the ultra-high frequency transmission channel, and the third RF module 303 is used for power amplification of ultra-high frequency signals.
  • an ultra-high frequency transmission channel such as UHB TX1 in the figure
  • the multiple RF modules also include a third RF module 303, the third RF module 303 is connected to the ultra-high frequency transmission channel, and the third RF module 303 is used for power amplification of ultra-high frequency signals.
  • the third RF module 303 receives the UHF signal through the UHF transmission channel and amplifies the UHF signal.
  • the UHF signal is, for example, an N78 RF signal.
  • the third RF module 303 can also be used to implement other auxiliary functions. For example, it can also be used to perform low-noise power amplification on the RF signal from the antenna side to achieve
  • the third RF module 303 can be a LPAF.
  • the third RF module 303 can be configured to support one-way transmission and two-way reception (1T2R/2R), further reducing the demand for module peripheral devices and achieving high performance and simplicity of the overall solution.
  • the RF module can also realize dual-card DSDA combination, ENDC combination and uplink CA for ultra-high frequency signals, further increase the number of combinations and enhance the user experience.
  • each RF module 30 and processing unit can also be connected to the antenna through the RF front-end module (the antennas are such as ANT1, ANT2, ANT3 and ANT4 in Figures 6-9, and the RF front-end module is not shown in Figures 6-9) to output the power-amplified RF signal to the antenna through the RF front-end module for the antenna to radiate externally.
  • the antennas are such as ANT1, ANT2, ANT3 and ANT4 in Figures 6-9, and the RF front-end module is not shown in Figures 6-9
  • the RF module can be divided into different modules as needed to complete all or part of the functions of the above-mentioned RF module.
  • An embodiment of the present application also provides a communication device, which may include the RF module of any of the above embodiments.
  • the communication device can switch the target power module and the target RF channel of the target RF module so that the RF module provided by this embodiment can achieve combined communication in more frequency bands, improve communication performance, and thus enhance user experience, compared to the RF module with the same number of RF modules in the related technology.
  • the communication device may include a first power module 101 , a second power module 102 , a RF transceiver 20 , a first RF module 301 , and a second RF module 302 .
  • the first power module 101, the second power module 102, the RF transceiver 20, the first RF module 301 and the second RF module 302 can refer to the relevant description in the above-mentioned RF module embodiment, which will not be repeated here.
  • the RF signal of the first frequency band may be a low frequency signal
  • the RF signal of the second frequency band may be an intermediate frequency signal and a high frequency signal
  • the RF signal of the third frequency band may be a high frequency signal
  • the communication device can realize the combined communication of LB+MB and LB+HB by switching the power module and the RF channel group of the first RF module 301.
  • the first frequency band may also be a RF signal of a frequency band other than the low frequency
  • the RF signals of the second and third frequency bands may also be RF signals of other frequency bands, so as to realize other combined communications.
  • the first RF module 301 can be switchably connected to the first power module 101 or the second power module 102, and can be switchably connected to the first transmission channel group or the second transmission channel group, for supporting the transmission of RF signals in the first frequency band;
  • the second RF module 302 is respectively connected to the first power module 101 and the second power module 102, the first transmission channel group and the second transmission channel group, for supporting the transmission of RF signals in the second frequency band from the first transmission channel group under the power supply of the first power module 101.
  • Transmission under the power supply of the second power module 102, supports the transmission of the RF signal of the third frequency band from the second transmission channel group; thereby, the first RF module 301 and the second RF module 302 working simultaneously can realize different frequency band combination communication under DSDA, and uplink CA, and when the first transmission channel group and the second transmission channel group are configured as different network standards, the ENDC combination can also be realized at the same time, and by switching the power module and the RF channel group of the first RF module 301, the communication device provided in this embodiment can realize more frequency band combinations relative to the communication device with the same number of RF modules in the related technology, thereby improving the communication performance of the communication device and improving the user experience.
  • the first transmission channel group includes a first low-frequency transmission channel, a first intermediate-frequency transmission channel and a first high-frequency transmission channel.
  • the second transmission channel group includes a second low-frequency transmission channel and a second high-frequency transmission channel; the first RF module 301 is switchably connected to the first power module 101 or the second power module 102 through the first switch module 40, and is switchably connected to the first low-frequency transmission channel or the second low-frequency transmission channel through the second switch module 50.
  • the second RF module 302 includes: a medium-high frequency processing unit 310 and a high frequency processing unit 320 .
  • the intermediate and high frequency processing unit 310 has an intermediate frequency input end connected to the first intermediate frequency transmission channel, a high frequency input end connected to the first high frequency transmission channel, a power supply end connected to the first power supply module 101, and the intermediate and high frequency processing unit 310 is used to power amplify the first intermediate frequency signal and the first high frequency signal;
  • the high frequency processing unit 320 has an input end connected to the second high frequency transmission channel, a power supply end connected to the second power supply module 102, and the high frequency processing unit 320 is used to power amplify the second high frequency signal.
  • the second transmission channel group also includes a second intermediate frequency transmission channel
  • the intermediate frequency input end of the intermediate and high frequency processing unit 310 can also be switchably connected to the first intermediate frequency transmission channel and the second intermediate frequency transmission channel
  • the power supply end of the intermediate and high frequency processing unit 310 can be switchably connected to the first power supply module 101 and the second power supply module 102.
  • the communication device further includes a first switch module 40 and a second switch module 50 .
  • the first transmission channel group includes a first low-frequency transmission channel and a first intermediate frequency transmission channel
  • the second transmission channel group includes a second low-frequency transmission channel and a second high-frequency transmission channel
  • the first RF module 301 is switchably connected to the first power supply module 101 or the second power supply module 102 through the first switch module 40, and is switchably connected to the first low-frequency transmission channel or the second low-frequency transmission channel through the second switch module 50.
  • the second RF module 302 includes: an intermediate frequency processing unit 330 and a high frequency processing unit 340 .
  • the intermediate frequency processing unit 330 is connected to the first intermediate frequency transmission channel and the first power module 101 respectively, and is used to power amplify the first intermediate frequency signal;
  • the high frequency processing unit 340 is connected to the second high frequency transmission channel and the second power module 102 respectively, and is used to power amplify the second high frequency signal.
  • the second transmission channel group also includes a second intermediate frequency transmission channel; the input end of the intermediate frequency processing unit 330 is switchably connected to the first intermediate frequency transmission channel and the second intermediate frequency transmission channel and the power end of the intermediate frequency processing unit 330 is switchably connected to the first power module 101 and the second power module 102; and/or, the first transmission channel group of the first RF channel also includes a first high-frequency transmission channel; the high-frequency input end of the high-frequency processing unit 340 is switchably connected to the first high-frequency transmission channel and the second high-frequency transmission channel, and the power end of the high-frequency processing unit 340 is switchably connected to the first power module 101 and the second power module 102.
  • the second transmission channel group further includes an ultra-high frequency transmission channel; the communication device further includes: a third radio frequency module 303 .
  • the third RF module 303 is connected to the second power module 102 and the UHF transmission channel respectively, and is used to support the transmission of UHF signals.
  • the first RF module 301 when the communication device is configured to support combined communication of the first frequency band and the second frequency band, the first RF module 301 is switched to be connected to the second power supply module 102 through the first switch module 40, and is switched to be connected to the second low-frequency transmission channel through the second switch module 50.
  • the first frequency band is a low frequency band
  • the second frequency band can be a medium frequency band and/or a high frequency band of the network standard corresponding to the first transmission channel group.
  • the first RF module 301 switches the first switch module 40 and the second switch module 50, so that the communication device can realize the combined communication requirements of the first frequency band and the second frequency band, improve the communication performance of the communication device, and improve the user experience.
  • the first RF module 301 when the communication device is configured to support combined communication of the first frequency band and the third frequency band, the first RF module 301 is switched to be connected to the first power supply module 101 through the first switch module 40, and is switched to be connected to the first low-frequency transmission channel through the second switch module 50.
  • the first frequency band is a low frequency band
  • the third frequency band can be an intermediate frequency of the network standard corresponding to the second transmission channel group.
  • the first RF module 301 switches the first switch module 40 and the second switch module 50 so that the communication device can meet the combined communication requirements of the first frequency band and the third frequency band, thereby improving the communication performance of the communication device and the user experience.
  • the first switch module 40, the second switch module 50, the first low frequency transmission channel, the first intermediate frequency transmission channel, the first high frequency transmission channel, the second low frequency transmission channel, the second high frequency transmission channel, the ultra-high frequency transmission channel, the intermediate and high frequency processing unit 310, the high frequency processing unit 320, the intermediate frequency processing unit 330, the high frequency processing unit 340 and the third RF module 303 of the communication device can all refer to the relevant description in the above RF module embodiment, and will not be repeated here. It can be understood that at least one of the first switch module 40 and the second switch module 50 in this embodiment can be integrated inside the first RF module 301 to further improve the integration and reduce the cost.
  • the first transmission channel group can be used to connect with the first SIM card to output the RF signal corresponding to the first SIM card
  • the second transmission channel group can be used to connect with the second SIM card to output the RF signal corresponding to the second SIM card.
  • the SIM card can be called a user identity card, a smart card, etc.
  • the first SIM card and the second SIM card can be installed on a circuit board inside the communication device.
  • the first SIM card can be used as an information storage device to store the user's identity information or store the user's personal information, etc.
  • the second SIM card can also be used as an information storage device to store the user's identity information, the user's personal information, etc.
  • the first SIM card can be used to support the communication of the first network standard
  • the second SIM card can be used to support the communication of the second network standard.
  • the description of the first network standard and the second network standard refers to the above embodiment, which will not be repeated here. Since the first SIM card corresponds to the first transmission channel group and the second SIM card corresponds to the second transmission channel group, when the second SIM card communicates, it will not affect the interaction and use of the first SIM card; when the first SIM card communicates, it will not affect the interaction and use of the second SIM card. Therefore, the communication device can realize dual-card dual-pass.
  • the communication device may be divided into different modules as needed to complete all or part of the functions of the above communication device.
  • the mobile phone 11 may include a memory 21 (which optionally includes one or more computer-readable storage media), a processor 22, a peripheral device interface 23, a radio frequency system 24, and an input/output (I/O) subsystem 26. These components optionally communicate through one or more communication buses or signal lines 29. It can be understood by those skilled in the art that the mobile phone 11 shown in Figure 13 does not constitute a limitation on the mobile phone, and may include more or fewer components than shown in the figure, or combine certain components, or arrange components differently.
  • the various components shown in Figure 13 are implemented in hardware, software, or a combination of hardware and software, including one or more signal processing and/or application-specific integrated circuits.
  • the memory 21 optionally includes a high-speed random access memory, and optionally also includes a non-volatile memory, such as one or more disk storage devices, flash memory devices, or other non-volatile solid-state memory devices.
  • a non-volatile memory such as one or more disk storage devices, flash memory devices, or other non-volatile solid-state memory devices.
  • the software components stored in the memory 21 include an operating system 211, a communication circuit (or an instruction set) 212, a global positioning system (GPS) circuit (or an instruction set) 213, etc.
  • GPS global positioning system
  • the processor 22 and other control circuits can be used to control the operation of the mobile phone 11.
  • the processor 22 can be based on one or more microprocessors, microcontrollers, digital signal processors, baseband processors, power management units, audio codec chips, application-specific integrated circuits, etc.
  • the processor 22 may be configured to implement a control algorithm for controlling the use of an antenna in the handset 11.
  • the processor 22 may also issue control commands for controlling switches in the radio frequency system 24, etc.
  • the I/O subsystem 26 couples input/output peripherals on the mobile phone 11, such as a keypad and other input control devices, to the peripheral device interface 23.
  • the I/O subsystem 26 optionally includes a touch screen, buttons, a tone generator, an accelerometer (motion sensor), an ambient light sensor and other sensors, light emitting diodes and other status indicators, a data interface, etc.
  • a user can control the operation of the mobile phone 11 by supplying commands via the I/O subsystem 26, and can use the output resources of the I/O subsystem 26 to receive status information and other output from the mobile phone 11. For example, a user can press button 261 to turn the mobile phone on or off.
  • the radio frequency system 24 may include the radio frequency module in any of the aforementioned embodiments.
  • Non-volatile memory may include read-only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM) or flash memory.
  • Volatile memory may include random access memory (RM), which is used as an external cache memory.
  • RM is available in various forms, such as static RM (SRM), dynamic RM (DRM), synchronous DRM (SDRM), double data rate SDRM (DDR SDRM), enhanced SDRM (ESDRM), synchronous link (Synchlink) DRM (SLDRM), memory bus (Rmbus) direct RM (RDRM), direct memory bus dynamic RM (DRDRM), and memory bus dynamic RM (RDRM).
  • SRM static RM
  • DRM synchronous DRM
  • DDR SDRM double data rate SDRM
  • EDRM enhanced SDRM
  • SDRM synchronous link
  • SDRM static RM
  • DDR SDRM double data rate SDRM
  • EDRM enhanced SDRM
  • SDRM synchronous link (Synchlink) DRM
  • SDRM static RM
  • Rmbus direct RM
  • RDRM direct memory bus dynamic RM
  • RDRM memory bus dynamic RM

Landscapes

  • Transmitters (AREA)
  • Transceivers (AREA)

Abstract

本申请涉及一种射频模组及通信设备,其中射频模组包括多个电源模块(10)、射频收发器(20)及多个射频模块(30),射频收发器(20)包括第一发射通道组、第二发射通道组,多个射频模块(30)中至少一目标射频模块可切换连接至任一电源模块(10)以及任一射频通道,且不同射频模块(30)支持功率放大的射频信号的频段不同,多个射频模块(30)中同时工作的两个射频模块(30)的目标电源模块不同,以及同时工作的两个射频模块(30)的目标射频通道不同,从而相对于相关技术中相同数量射频模块(30)的射频模组,能够实现更多的频段组合,提高射频模组的通信性能,提高用户体验。

Description

射频模组及通信设备
相关申请的交叉引用
本申请要求于2022年11月30日提交中国专利局、申请号为2022115298431、发明名称为“射频模组及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,特别是涉及一种射频模组及通信设备。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成示例性技术。
随着射频技术的发展,不同频段的通信需求越来越高。然而,更多不同频段的组合通信需要依靠更多数量的射频模块支撑,极大地限制了射频模块较少的通信设备给用户带来的体验。
发明内容
根据本申请的各种实施例,提供一种射频模组及通信设备,能够实现更多的频段组合,提高射频模组的通信性能,提高用户体验。
本申请第一方面提供了一种射频模组,包括:
多个电源模块;
射频收发器,包括第一发射通道组和第二发射通道组,所述第一发射通道组和所述第二发射通道组各自包括多个发射通道;
多个射频模块,至少一目标射频模块可切换连接至任一所述电源模块以及任一射频通道,各所述射频模块用于在目标电源模块的供电作用下,接收来自目标射频通道传输的射频信号,并对各自接收的射频信号进行功率放大;
其中,不同所述射频模块支持功率放大的射频信号的频段不同,所述多个射频模块中同时工作的两个射频模块的目标电源模块不同,以及所述同时工作的两个射频模块的目标射频通道不同,所述目标电源模块为与所述射频模块导通连接的电源模块,所述目标射频通道为与所述射频模块导通连接的射频通道。
本申请第二方面提供了一种通信设备,包括:
如上所述的射频模组。
本申请第三方面提供了一种通信设备,包括:
第一电源模块和第二电源模块;
射频收发器,包括第一发射通道组和第二发射通道组,所述第一发射通道组和所述第二发射通道组各自包括多个发射通道;
第一射频模块,可切换地与所述第一电源模块或所述第二电源模块连接,并可切换地与所述第一发射通道组或所述第二发射通道组连接,用于支持第一频段的射频信号的发射;
第二射频模块,分别与所述第一电源模块、所述第二电源模块、所述第一发射通道组及所述第二发射通道组连接,用于在所述第一电源模块的供电作用下支持对来自所述第一发射通道组的第二频段的射频信号的发射,在所述第二电源模块的供电作用下支持对来自所述第二发射通道组的第三频段的射频信号的发射。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、 目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一实施例的射频模组的结构框图之一;
图2为一实施例的射频模组的结构框图之二;
图3为一实施例的射频模组的结构框图之三;
图4为一实施例的射频模组的结构框图之四;
图5为一实施例的射频模组的结构框图之五;
图6为一实施例的射频模组的结构框图之六;
图7为一实施例的射频模组的结构框图之七;
图8为一实施例的射频模组的结构框图之八;
图9为一实施例的射频模组的结构框图之九;
图10为一实施例中的通信设备的结构框图之一;
图11为一实施例中的通信设备的结构框图之二;
图12为一实施例中的通信设备的结构框图之三;
图13为一实施例中的通信设备的结构框图之四。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
本申请实施例涉及的射频模组可以应用到具有无线通信功能的通信设备,其通信设备可以为手持设备、车载设备、智能汽车、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(User Equipment,UE)(例如,手机),移动台(Mobile Station,MS)等等。为方便描述,上面提到的设备统称为通信设备。
图1为一实施例的射频模组的结构框图,参考图1,在本实施例中,射频模组包括多个电源模块10、射频收发器20及多个射频模块30。
射频收发器20,包括第一发射通道组和第二发射通道组,第一发射通道组和第二发射通道组各自包括多个发射通道;多个射频模块30,至少一目标射频模块可切换连接至任一电源模块10以及任一射频通道(图1以一个目标射频模块为例进行示意,并仅示出目标射频模块及其他射频模块30分别与电源模块10之间可以导通连接的情况),各射频模块30用于在目标电源模块的供电作用下,接收来自目标射频通道传输的射频信号,并对各自接收的射频信号进行功率放大;其中,不同射频模块30支持功率放大的射频信号 的频段不同,多个射频模块30中同时工作的两个射频模块30的目标电源模块不同,以及同时工作的两个射频模块30的目标射频通道不同,目标电源模块为与射频模块30导通连接的电源模块10,目标射频通道为与射频模块30导通连接的射频通道。
其中,电源模块10的数量为多个,各电源模块10可连接多个射频模块30,各电源模块10用于在与射频模块30导通连接时,向导通连接的射频模块30提供供电信号,以使得射频模块30对来自射频收发器20的射频信号进行功率放大。可选地,电源模块10在与射频模块30导通连接时,可以根据射频模块30需要支持功率放大的射频信号的频段进行电压调节,以输出适用于射频模块30正常工作的供电信号,以满足用户的需求。电源模块10例如可以包括电池和与电池连接的电源管理芯片(Power management IC,PMIC),以将电池的电能进行调整后提供至射频模块30。
其中,第一发射通道组和第二发射通道组为相互独立、互不干扰的传输通道,用于向导通连接的射频模块30对应输出第一网络制式、第二网络制式的射频信号,第一网络制式和第二网络制式可以配置为相同或不同。第一网络制式和第二网络制式可以包括GSM(Global System for Mobile Communications,全球移动通信系统)、UMTS(Universal Mobile Telecommunications System,通用移动通信系统)、LTE(长期演进,Long Term Evolution)和NR(NewRadio,新空口)等,每种网络制式可用包括多个频段。可选地,以第一网络制式为LTE网络制式和第二网络制式为NR网络制式为例,第一网络制式的射频信号可以称为4G LTE信号,第二网络制式的射频信号可以称为5G NR信号。4G LTE信号包括低频信号、中频信号、高频信号,5G NR信号包括低频信号、中频信号、高频信号和超高频信号,低频信号、中频信号、高频信号和超高频信号的频段划分可以参照下表。
为了实现DSDA(Dual SIM Dual Active,双卡双通)下更多不同频段组合通信时,第一网络制式和第二网络制式可以配置为相同或者不同,由于对应第一网络制式的第一发射通道组与对应第二网络制式的第二发射通道组相互独立,互不干扰,因此,无论第一网络制式和第二网络制式配置为相同或者不同,均可以实现DSDA不同频段组合通信。为了实现ENDC(E-UTRA NR Dual Connectivity,4G和5G双连接)组合通信时,第一网络制式和第二网络制式需要配置为不同,且第一网络制式和第二网络制式中的一个为LTE网络制式,另一个为NR网络制式。
其中,射频模块30的数量为多个,各射频模块30用于在目标电源模块的供电作用下,接收来自目标射频通道传输的射频信号,并对各自接收的射频信号进行功率放大。多个射频模块30中至少一射频模块30可切换地连接至任一电源模块10以及任一射频通道,本实施例将该射频模块30定义为目标射频模块,将与各射频模块30导通连接的电源模块10定义为目标电源模块,将与各射频模块30导通连接的射频通道定义为目标射频通道。可以理解,目标射频模块可以分别与多个电源模块10、第一发射通道组及第二发射通道组连接,并根据需要导通目标射频模块与目标电源模块、目标射频通道之间的连接,从而目标射频模块可以根据需要选择由其中的电源模块10供电,还可以选择对任一射频通道的射频信号进行放大处理。
发明人经过创造性的劳动发现,在相关技术中,为了支持DSDA(Dual SIM Dual  Active,双卡双通)下不同频段组合通信和/或ENDC(E-UTRA NR Dual Connectivity,4G和5G双连接)组合通信,同时工作的两个射频模块30必须连接至不同的射频通道及由不同的电源模块10进行供电。而在本申请实施例中,不同射频模块30支持功率放大的射频信号的频段不同,多个射频模块30中同时工作的两个射频模块30的目标电源模块不同,以及两个射频模块30的目标射频通道不同,由此同时工作的两个射频模块30由于目标射频通道及目标电源模块不同。
以第一发射通道组和第二发射通道组被配置的网络制式不同为例,则本实施例可以实现DSDA下不同频段组合通信,还可以同时实现ENDC组合及上行CA(Carrier Aggregation,载波聚合)。并且,由于目标射频模块可以切换目标电源模块和目标射频通道,因此目标射频模块可以通过目标电源模块、目标射频通道的切换,及与其他射频模块30相互配合,使得本实施例提供的射频模组相对于相关技术中相同数量射频模块30的射频模组,能够实现更多的DSDA下的组合通信,及更多的ENDC组合通信和上行CA。
上述实施例中,通过设置多个电源模块10、第一发射通道组、第二发射通道组及多个射频模块30,多个射频模块30中至少一目标射频模块可切换连接至任一电源模块10以及任一射频通道,且不同射频模块30支持功率放大的射频信号的频段不同,多个射频模块30中同时工作的两个射频模块30的目标电源模块不同,以及同时工作的两个射频模块30的目标射频通道不同,从而同时工作的两个射频模块30可以实现DSDA下不同频段组合通信,及上行CA,当第一发射通道组和第二发射通道组配置不同的网络制式时还可以同时实现ENDC组合,并且,可以通过对目标射频模块的目标电源模块、目标射频通道的切换,使得本实施例提供的射频模组相对于相关技术中相同数量射频模块30的射频模组,能够实现更多的频段组合,提高射频模组的通信性能,提高用户体验。
在一实施例中,如图2所示,射频模组还包括:至少一第一开关模块40和至少一第二开关模块50(图2中以一个目标射频模块、一个第一开关模块40及一个第二开关模块50为例进行示意)。
各第一开关模块40被配置有多个第一端和第二端,各第一开关模块40的多个第一端分别与多个电源模块10对应连接,各第一开关模块40的第二端对应与一目标射频模块的电源端连接,第一开关模块40用于导通目标射频模块与目标电源模块之间的连接;各第二开关模块50被配置有两个第一端和第二端,各第二开关模块50的两个第一端分别与第一发射通道组和第二发射通道组连接,各第二开关模块50的第二端对应与一目标射频模块的输入端连接,第二开关模块50用于导通目标射频模块与目标射频通道之间的连接。
其中,第一开关模块40、第二开关模块50的数量可以为一个或多个,各第一开关模块40的第二端对应与一目标射频模块的电源端连接,以使得目标射频模块的该电源端可切换地连接多个电源模块10;各第二开关模块50的第二端对应与一目标射频模块的输入端连接,以使得目标射频模块的该输入端可切换地连接第一发射通道组和第二发射通道组。通过控制第一开关模块40、第二开关模块50的导通状态,即可控制目标射频模块与目标电源模块、目标射频通道的连接状态。需要说明的是,目标射频模块的电源端、输入端的数量可能为一个或多个,当电源端、输入端各为一个时,目标射频模块可以对应与一个第一开关模块40、一个第二开关模块50连接;当电源端、输入端中至少一个为多个时,可以调整目标射频模块对应的第一开关模块40和第二开关模块50的数量,可选实施例可参见后文的描述,在此先不做进一步举例。
可选地,第一开关模块40、第二开关模块50可以分别包括至少一个开关器件,开关器件例如可以是单刀多掷开关。例如,当某一目标射频模块的电源端分别与两个电源模块10连接时,第一开关模块40可以是单刀双掷开关,单刀双掷开关的两个第一端分别与两个电源模块10的输出端对应连接,单刀双掷开关的第二端与该目标射频模块的电源端连接。
通过设置与目标射频模块对应的第一开关模块40和第二开关模块50,从而可以独立控制各目标射频模块与各电源模块10、各射频通道之间的连接的导通状态,更加精准地进行电源模块10及射频通道的切换。
可以理解,在其他实施例中,也可以以其他组合形式的方式设置开关模块,只要能够控制目标射频模块与电源模块10、射频通道之间的可切换的连接状态即可,本申请实施例不做进一步的限定。
在一实施例中,第一开关模块40和第二开关模块50还分别被配置有受控端;其中,射频收发器20还包括控制电路,控制电路分别与第一开关模块40的受控端和第二开关模块50的受控端连接,控制电路用于根据目标工作频段控制第一开关模块40和第二开关模块50的导通状态。
其中,控制电路分别与第一开关模块40的受控端和第二开关模块50的受控端连接,从而可以控制第一开关模块40、第二开关模块50的导通状态。可选地,射频收发器20可以被配置有控制端口,通过控制端口与第一开关模块40的受控端、第二开关模块50的受控端连接,以分别向第一开关模块40、第二开关模块50发送控制信号,分别控制第一开关模块40、第二关模块的导通状态。例如,射频收发器20可以配置有mipi(Mobile Industry Processor Interface,移动行业处理器端口)端口、GPIO(General Purpose Input Output,通用输入/输出)端口中的一种,控制电路可以通过mipi端口或GPIO端口分别第一开关模块40、第二开关模块50连接,以分别向第一开关模块40、第二开关模块50发送第一控制信号、第二控制信号进行导通状态的控制,提高控制效率。
在一实施例中,目标射频模块包括功率放大单元,如图3所示(图3中未示出功率放大单元),目标射频模块被配置有多个电源端口(图中以两个电源端口为例进行示意,两个电源端口分别对应图中的VCC1、VCC2),多个电源端口分别与多个电源模块10对应连接;其中,第一开关模块40集成在目标射频模块中,第一开关模块40的多个第一端分别与多个电源端口对应连接,第一开关模块40的第二端与功率放大单元的电源端连接,功率放大单元的输入端连接至第二开关模块50的第二端。
其中,功率放大单元用于对接收的射频信号进行功率放大,目标射频模块被配置有多个电源端口,第一开关模块40集成在对应的目标射频模块中,第一开关模块40的多个第一端分别通过该多个电源端口与多个电源模块10对应连接,第一开关模块40的第二端与功率放大单元的电源端连接。通过将第一开关模块40集成在目标射频模块的内部,能够减少射频模组占用的主板面积,提高集成度,有利于射频模组的小型化,降低成本。
可以理解,当功率放大单元包括多个功率放大器时,集成在目标射频模块中的第一开关模块40可以仅配置有一个第二端,第二端可以同时与多个功率放大器的电源端连接;或者,第一开关模块40可以配置有多个第二端,各第二端对应连接一功率放大器的电源端。需要说明的是,目标射频模块中的功率放大单元可以为一个或多个,当功率放大单元为多个时,多个功率放大单元可以由同一目标电源模块供电,也可以由不同目标电源模块供电,多个功率放大单元中至少一个功率放大单元对应与第一开关模块40、第二开关模块50连接,以可切换地连接至任一电源模块10及可切换地连接至任一射频通道。
在其他实施例中,各第一开关模块40还可以集成在某一对应的电源模块10中,以提高集成度,同样有利于射频模组的小型化,降低成本。
在一实施例中,目标射频模块包括功率放大单元,如图4所示(图4未示出功率放大单元),目标射频模块被配置有第一输入端口和第二输入端口(分别对应图中的TX0、TX1),第一输入端口与第一发射通道组连接,第二输入端口与第二发射通道组连接;其中,第二开关模块50集成在目标射频模块中,第二开关模块50的两个第一端分别与第一输入端口、第二输入端口对应连接,第二开关模块50的第二端与功率放大单元的输入端连接,功率放大单元的电源端连接至第一开关模块40的第二端。
其中,功率放大单元用于对接收的射频信号进行功率放大,目标射频模块被配置有第一输入端口和第二输入端口,第二开关模块50集成在对应的目标射频模块中,第二开关模块50的两个第一端通过第一输入端口、第二输入端口与第一发射通道组、第二发射通道组对应连接,第二开关模块50的第二端与功率放大单元的输入端连接。通过将第二开关模块50集成在目标射频模块的内部,能够减少射频模组占用的主板面积,提高集成度,有利于射频模组的小型化,降低成本。
可以理解,当功率放大单元包括多个功率放大器时,集成在目标射频模块中的第二开关模块50的第二端可以为一个,该第二端可连接至多个功率放大器的输入端,还可以通过功率放大单元内部的射频开关选择导通连接至其中的输入端;第二开关模块50的第二端也可以为多个,多个第二端分别与多个功率放大器的输入端对应连接。需要说明的是,目标射频模块中的功率放大单元可以为一个或多个,当功率放大单元为多个时,多个功率放大单元可以与射频通道中不同的发射通道连接,多个功率放大单元中至少一个可切换地连接至任一电源模块10及可切换地连接任一射频通道。
在一实施例中,如图5所示(图5未示出功率放大单元),目标射频模块可以同时被配置有第一输入端口、第二输入端口及多个电源端口,第一开关模块40和第二开关模块50均集成在目标射频模块中,第一输入端口、第二输入端口、多个电源端口及各端口与第一开关模块40、第二开关模块50的连接关系可以参见上述实施例中的相关描述,在此不再赘述。
通过同时将第一开关模块40、第二开关模块50集成在目标射频模块的内部,能够进一步减少射频模组占用的主板面积,提高集成度,有利于射频模组的小型化,降低成本。
可以理解,在另一些实施例中,在射频模组包括多个目标射频模块的情况下,不同的目标射频模块对应的第一开关模块40、第二开关模块50还可以配置为不同的集成情况,例如,当目标射频模块有两个时,可以将其中一目标射频模块对应的第一开关模块40、第二开关模块50均集成在该目标射频模块内部,另一目标射频模块对应的第一开关模块40、第二开关模块50可以设于该另一目标射频模块的外部,从而,可以更好的利用主板大的区域面积及小的区域面积,提高主板面积的可占用率。
在一实施例中,多个射频模块30包括:第一射频模块和第二射频模块。
第一射频模块,用于对低频信号进行功率放大;第二射频模块,用于对中频信号和高频信号进行功率放大。
其中,第一射频模块通过目标射频通道接收低频信号,并对低频信号进行功率放大;第二射频模块通过目标射频通道接收中频信号和高频信号,并对中频信号和高频信号进行功率放大。可选地,第一射频模块和第二射频模块还可以用于实现其他辅助功能,例如,还可以用于对来自天线侧的射频信号进行低噪声功率放大,以实现接收功能,第一射频模块可以为内置低噪放的低频功率放大器模块(LB L-PA Mid,Low Band PA Mid With LNA),第二射频模块可以为内置低噪放的中高频功率放大器模块(MHB L-PA Mid,Middle and High Band PA Mid With LNA),第二射频模块还可以包括MHB L-PA Mid和集成有滤波器和低噪声放大器的功率放大器开关模组(LPAF,LNA-PA ASM module with integrated filter)。
可选地,如图6所示,第一发射通道组包括第一低频发射通道、第一中频发射通道及第一高频发射通道(第一低频发射通道、第一中频发射通道及第一高频发射通道分别对应图中的LB TX0、MB TX0、HB TX0),第二发射通道组包括第二低频发射通道及第二高频发射通道(第二低频发射通道及第二高频发射通道分别对应图中的LB TX1、HB TX1);第一射频模块301可切换地连接第一低频发射通道和第二低频发射通道且可切换地连接多个电源模块10;第二射频模块302包括:中高频处理单元310和高频处理单元320,中高频处理单元310的中频输入端与第一中频发射通道连接,中高频处理单元310的高频输 入端与第一高频发射通道连接,高频处理单元320的输入端与第二高频发射通道连接,中高频处理单元310的电源端与高频处理单元320的电源端连接不同的目标电源模块。
其中,第一低频发射通道、第一中频发射通道及第一高频发射通道分别用于输出第一网络制式的低频信号、中频信号及高频信号,第二低频发射通道及第二高频发射通道分别用于对应输出第二网络制式的低频信号、高频信号。第一射频模块301例如可以是LB L-PA Mid,中高频处理单元310例如可以为MHB L-PA Mid,高频处理单元320例如可以为N41LPAF,第一射频模块301、中高频处理单元310及高频处理单元320均可以具有器件高度集成化以及器件小型化的特点,能够实现收发功能。以第一网络制式为LTE网络制式,第二网络制式为NR网络制式为例,则第一网络制式的低频信号例如可以为B5、B8射频信号,第一网络制式的中频信号例如可以为B1、B3射频信号,第一网络制式的高频信号例如可以为B41射频信号;第二网络制式的低频信号例如可以为N5、N8射频信号,第二网络制式的高频信号例如可以为N41射频信号。
第一射频模块301可切换地连接第一低频发射通道和第二低频发射通道且可切换地连接多个电源模块10,从而,第一射频模块301可以接收第一网络制式的低频信号,也可以切换为接收第二网络制式的低频信号;中高频处理单元310的中频输入端与第一中频发射通道连接,中高频处理单元310的高频输入端与第一高频发射通道连接,从而中高频处理单元310可以接收第一网络制式的中频信号和高频信号;高频处理单元320与第二高频发射通道连接,从而可以接收第二网络制式的高频信号。
相关技术中与本实施例具有相同数量射频模块的射频模组,通常第一射频模块301、第二射频模块302的中高频处理单元310连接至相同的一目标电源模块及一目标射频通道相同,高频处理单元320连接至另一目标电源模块及另一目标射频通道,该射频模组无法实现双卡下的LB(第一网络制式)+MB(第二网络制式)、MB(第一网络制式)+LB(第二网络制式)、HB(第一网络制式)+LB(第二网络制式)DSDA组合、ENDC组合和上行,而对于众多的双卡用户来说,将极大的限制其双卡下的使用体验。而在本实施例中,以第一发射通道组和第二发射通道组配置的网络制式不同为例,通过第一射频模块301、第二射频模块302的中高频处理单元310及高频处理单元320的两两组合,至少可以实现LB+HB、MB+LB、MB+HB、HB+LB、HB+HB的双卡DSDA组合、ENDC组合及CA上行CA,提升了射频模组的发射性能,并提升了双卡下的使用体验。
可选地,第二发射通道组还包括第二中频发射通道,中高频处理单元310的中频输入端可切换地连接至第一中频发射通道和第二中频发射通道,且中高频处理单元310的电源端可切换地连接多个电源模块10。
其中,第二中频发射通道用于输出第二网络制式的中频信号,中高频处理单元310的中频输入端可切换地连接至第一中频发射通道和第二中频发射通道,从而,中高频处理单元310能够接收第一网络制式的中频信号、高频信号,还能接收第二网络制式的中频信号,由此,以第一发射通道组和第二发射通道组配置的网络制式不同为例,通过第一射频模块301、第二射频模块302的中高频处理单元310及高频处理单元320的两两组合,至少可以实现LB+MB、LB+HB、MB+LB、MB+HB、HB+LB、HB+MB、HB+HB的双卡DSDA组合、
可选地,如图7所示,第一发射通道组包括第一低频发射通道和第一中频发射通道,第二发射通道组包括第二低频发射通道及第二高频发射通道;第一射频模块301可切换地连接至第一低频发射通道和第二低频发射通道且可切换地连接多个电源模块10;第二射频模块302包括:中频处理单元330和高频处理单元340,中频处理单元330与第一中频发射通道连接,高频处理单元340与第二高频发射通道连接,中频处理单元330与高频处理单元340导通连接不同的电源模块10。
其中,第一低频发射通道、第一中频发射通道分别用于输出第一网络制式的低频信号、 中频信号,第二低频发射通道及第二高频发射通道分别用于对应输出第二网络制式的低频信号、高频信号。第一射频模块301可以是LB L-PA Mid,第二射频模块302的中频处理单元330和高频处理单元340可以相互集成,且中频处理单元330和高频处理单元340可以同时工作,第二射频模块302可以是支持ENDC双发功能的MHB L-PA Mid。从而,第一射频模块301、第二射频模块302均可以具有器件高度集成化以及器件小型化的特点,能够实现收发功能。
第一射频模块301可切换地连接第一低频发射通道和第二低频发射通道且可切换地连接多个电源模块10,从而,第一射频模块301可以接收第一网络制式的低频信号,也可以切换为接收第二网络制式的低频信号;中频处理单元330与第一中频发射通道连接,高频处理单元340与第二高频发射通道连接,从而,中频处理单元330可以接收第一网络制式的中频信号,高频处理单元340可以接收第二网络制式的高频信号。
相关技术中与本实施例具有相同数量射频模块的射频模组,通常第一射频模块301、第二射频模块302的中频处理单元330连接至相同的一目标电源模块及一目标射频通道相同,高频处理单元340连接至另一目标电源模块及另一目标射频通道,该射频模组无法实现双卡下的LB+MB、MB+LB等DSDA组合、ENDC组合和上行CA,而对于众多的双卡用户来说,将极大的限制其双卡下的使用体验。而在本实施例中,以第一发射通道组和第二发射通道组配置的网络制式不同为例,通过第一射频模块301、第二射频模块302的中频处理单元330及高频处理单元340的两两组合,至少可以实现LB+HB、MB+LB、MB+HB的双卡DSDA组合、ENDC组合及CA上行CA,提升了射频模组的发射性能,并提升了双卡下的使用体验。
可选地,第二发射通道组还包括第二中频发射通道;中频处理单元330的输入端可切换地连接至第一中频发射通道和第二中频发射通道且中频处理单元330的电源端可切换地连接多个电源模块10;和/或,第一发射通道组还包括第一高频发射通道;高频处理单元340的高频输入端可切换地连接至第一高频发射通道和第二高频发射通道,且高频处理单元340的电源端可切换地连接多个电源模块10。
其中,第二中频发射通道用于输出第二网络制式的中频信号,中频处理单元330可切换地连接至第一中频发射通道和第二中频发射通道,从而,中频处理单元330能够接收第一网络制式的中频信号,还可以接收第二网络制式的中频信号;和/或高频处理单元340可切换地连接至第一高频发射通道和第二高频发射通道,从而,高频处理单元340可以接收第一网络制式的高频信号,还可以接收第二网络制式的高频信号。
以第一发射通道组和第二发射通道组配置的网络制式不同为例,当中频处理单元330可切换地目标电源模块和目标发射通道时,第一射频模块301、第二射频模块302的中频处理单元330及高频处理单元340的两两组合,至少可以实现LB+MB、LB+HB、MB+LB、MB+HB的双卡DSDA组合、ENDC组合及上行CA;和/或当高频处理单元340可切换地目标电源模块和目标发射通道时,第一射频模块301、第二射频模块302的中频处理单元330及高频处理单元340的两两组合,至少可以实现LB+HB、MB+LB、MB+HB、HB+LB的双卡DSDA组合、ENDC组合及上行CA。相对于相关技术中相同数量模块的射频模组,能够实现更多的频段组合。
在一实施例中,在上述实施例的基础上,如图8、图9所示(图8以图6所示实施例为基础进行示意,图9以图7所示实施例为基础进行示意),第二发射通道组还包括超高频发射通道(如图中的UHB TX1);多个射频模块还包括第三射频模块303,第三射频模块303与超高频发射通道连接,第三射频模块303用于超高频信号进行功率放大。
其中,第三射频模块303通过超高频发射通道接收超高频信号,并对超高频信号进行功率放大,超高频信号例如为N78射频信号。可选地,第三射频模块303还可以用于实现其他辅助功能,例如,还可以用于对来自天线侧的射频信号进行低噪声功率放大,以实现 接收功能,第三射频模块303可以为LPAF。可选地,第三射频模块303可以被配置为支持一路发射和双路接收(1T2R/2R),进一步减少模组外围器件需求,达到整体方案的高性能和简洁。
从而,在上述实施例的基础上,射频模组还可以实现关于超高频信号的双卡DSDA组合、ENDC组合及上行CA,进一步提高组合的数量,提升用户的体验。
可以理解,上述实施例中,各射频模块30、处理单元还可以通过射频前端模块与天线连接(天线例如图6-9中的ANT1、ANT2、ANT3及ANT4,图6-9未示出射频前端模块),以通过射频前端模块向天线输出功率放大后的射频信号,以供天线对外辐射。
上述射频模组中各个模块、电路的划分仅仅用于举例说明,在其他实施例中,可将射频模组按照需要划分为不同的模块,以完成上述射频模组的全部或部分功能。
本申请实施例还提供了一种通信设备,通信设备可包括上述任一实施例中的射频模组,通信设备能够通过对目标射频模块的目标电源模块、目标射频通道的切换,使得本实施例提供的射频模组相对于相关技术中相同数量射频模块的射频模组,能够实现更多频段的组合通信,提升通信性能,以提升用户体验。
本申请实施例还提供了另一种通信设备,如图10所示,通信设备可包括第一电源模块101、第二电源模块102、射频收发器20、第一射频模块301及第二射频模块302。
第一电源模块101和第二电源模块102;射频收发器20,包括第一发射通道组和第二发射通道组,第一发射通道组和第二发射通道组各自包括多个发射通道;第一射频模块301,可切换地与第一电源模块101或第二电源模块102连接,并可切换地与第一发射通道组或第二发射通道组连接,用于支持第一频段的射频信号的发射;第二射频模块302,分别与第一电源模块101和第二电源模块102、第一发射通道组及第二发射通道组连接,用于在第一电源模块101的供电作用下支持对来自第一发射通道组的第二频段的射频信号的发射,在第二电源模块102的供电作用下支持对来自第二发射通道组的第三频段的射频信号的发射。
其中,第一电源模块101、第二电源模块102、射频收发器20、第一射频模块301及第二射频模块302可参考上述射频模组实施例中的相关描述,在此不再赘述。
可选地,第一频段的射频信号可以是低频信号,第二频段的射频信号可以是中频信号和高频信号,第三频段的射频信号可以是高频信号,以使得通信设备可以通过第一射频模块301的电源模块和射频通道组的切换,从而实现LB+MB、LB+HB的组合通信。可以理解,在其他实施例中,第一频段也可以是低频以外的其他频段的射频信号,第二频段、第三频段的射频信号也可以是其他频段的射频信号,从而实现其他的组合通信。
上述实施例中,通过设置第一电源模块101、第二电源模块102、第一发射通道组、第二发射通道组、第一射频模块301及第二射频模块302,第一射频模块301可切换地与第一电源模块101或第二电源模块102连接,并可切换地与第一发射通道组或第二发射通道组连接,用于支持第一频段的射频信号的发射;第二射频模块302分别与第一电源模块101和第二电源模块102、第一发射通道组及第二发射通道组连接,用于在第一电源模块101的供电作用下支持对来自第一发射通道组的第二频段的射频信号的发射,在第二电源模块102的供电作用下支持对来自第二发射通道组的第三频段的射频信号的发射;从而同时工作的第一射频模块301和第二射频模块302可以实现DSDA下不同频段组合通信,及上行CA,当第一发射通道组和第二发射通道组被配置为不同的网络制式时还可以同时实现ENDC组合,并且,可以通过对第一射频模块301的电源模块、射频通道组的切换,使得本实施例提供的通信设备相对于相关技术中相同数量射频模块的通信设备,能够实现更多的频段组合,提高通信设备的通信性能,提高用户体验。
在一实施例中,如图11所示,通信设备还包括第一开关模块40和第二开关模块50。
其中,第一发射通道组包括第一低频发射通道、第一中频发射通道和第一高频发射通 道,第二发射通道组包括第二低频发射通道和第二高频发射通道;第一射频模块301通过第一开关模块40可切换地与第一电源模块101或第二电源模块102连接,并通过第二开关模块50可切换地与第一低频发射通道或第二低频发射通道连接。
在一实施例中,请继续参考图11,第二射频模块302包括:中高频处理单元310和高频处理单元320。
中高频处理单元310,中高频处理单元310的中频输入端与第一中频发射通道连接,中高频处理单元310的高频输入端与第一高频发射通道连接,中高频处理单元310的电源端与第一电源模块101连接,中高频处理单元310用于对第一中频信号和第一高频信号进行功率放大;高频处理单元320,高频处理单元320的输入端与第二高频发射通道连接,高频处理单元320的电源端与第二电源模块102连接,高频处理单元320用于对第二高频信号进行功率放大。
可选地,在其他实施例中,第二发射通道组还包括第二中频发射通道,中高频处理单元310的中频输入端也可以可切换地连接至第一中频发射通道和第二中频发射通道,且中高频处理单元310的电源端可切换地连接第一电源模块101和第二电源模块102。
在一实施例中,如图12所示,通信设备还包括第一开关模块40和第二开关模块50。
其中,第一发射通道组包括第一低频发射通道和第一中频发射通道,第二发射通道组包括第二低频发射通道及第二高频发射通道;第一射频模块301通过第一开关模块40可切换地与第一电源模块101或第二电源模块102连接,并通过第二开关模块50可切换地与第一低频发射通道或第二低频发射通道连接。
在一实施例中,请继续参考图12,第二射频模块302包括:中频处理单元330和高频处理单元340。
中频处理单元330,分别与第一中频发射通道、第一电源模块101连接,用于对第一中频信号进行功率放大;高频处理单元340,分别与第二高频发射通道、第二电源模块102连接,用于对第二高频信号进行功率放大。
可选地,在其他实施例中,第二发射通道组还包括第二中频发射通道;中频处理单元330的输入端可切换地连接至第一中频发射通道和第二中频发射通道且中频处理单元330的电源端可切换地连接第一电源模块101和第二电源模块102;和/或,第一射频通道第一发射通道组还包括第一高频发射通道;高频处理单元340的高频输入端可切换地连接至第一高频发射通道和第二高频发射通道,且高频处理单元340的电源端可切换地连接第一电源模块101和第二电源模块102。
在一实施例中,请继续参考图11和图12,第二发射通道组还包括超高频发射通道;通信设备还包括:第三射频模块303。
第三射频模块303,分别与第二电源模块102、超高频发射通道连接,用于支持超高频信号的发射。
在一实施例中,当通信设备被配置为需要支持第一频段和第二频段的组合通信时,第一射频模块301通过第一开关模块40切换至与第二电源模块102连接,并通过第二开关模块50切换至与第二低频发射通道连接。
其中,第一频段为低频频段,第二频段可以为对应第一发射通道组的网络制式的中频频段和/或高频频段。第一射频模块301通过第一开关模块40、第二开关模块50的切换,使得通信设备能够实现第一频段和第二频段的组合通信需求,提高通信设备的通信性能,提高用户体验。
在一实施例中,通信设备被配置为需要支持第一频段和第三频段的组合通信时,第一射频模块301通过第一开关模块40切换至与第一电源模块101连接,并通过第二开关模块50切换至与第一低频发射通道连接。
其中,第一频段为低频频段,第三频段可以为对应第二发射通道组的网络制式的中频 频段和/或高频频段。第一射频模块301通过第一开关模块40、第二开关模块50的切换,使得通信设备能够实现第一频段和第三频段的组合通信需求,提高通信设备的通信性能,提高用户体验。
在上述实施例中,通信设备的第一开关模块40、第二开关模块50、第一低频发射通道、第一中频发射通道、第一高频发射通道、第二低频发射通道、第二高频发射通道、超高频发射通道、中高频处理单元310、高频处理单元320、中频处理单元330、高频处理单元340及第三射频模块303均可参考上述射频模组实施例中的相关描述,在此不再赘述。可以理解,本实施例中的第一开关模块40、第二开关模块50中的至少一个可以集成在第一射频模块301的内部,以进一步提高集成度,降低成本。
在上述实施例中,第一发射通道组可用于与第一SIM卡连接,以输出与第一SIM卡对应的射频信号,第二发射通道组可用于与第二SIM卡连接,以输出与第二SIM卡对应的射频信号。
其中,SIM卡可以称为用户身份识别卡、智能卡等,可选地,第一SIM卡和第二SIM卡可以安装在通信设备内部的电路板上,第一SIM卡可以作为信息存储器,用于存储用户的身份识别信息,或者存储用户的个人信息等;第二SIM卡也可以作为信息存储器,用于存储用户的身份识别信息、用户的个人信息等。
其中,第一SIM卡可用于支持第一网络制式的通信,第二SIM卡可用于支持第二网络制式的通信,第一网络制式、第二网络制式的描述参见上述实施例,在此不再赘述。由于第一SIM卡对应第一发射通道组,第二SIM卡对应第二发射通道组,因此,当第二SIM卡进行通信时,不会影响第一SIM卡的交互和使用;当第一SIM卡进行通信时,也不会影响第二SIM卡的交互和使用,因此,通信设备可以实现双卡双通。
上述通信设备中各个模块、单元的划分仅仅用于举例说明,在其他实施例中,可将通信设备按照需要划分为不同的模块,以完成上述通信设备的全部或部分功能。
进一步的,以上述通信设备为手机11为例进行说明,如图13所示,该手机11可包括存储器21(其任选地包括一个或多个计算机可读存储介质)、处理器22、外围设备接口23、射频系统24、输入/输出(I/O)子系统26。这些部件任选地通过一个或多个通信总线或信号线29进行通信。本领域技术人员可以理解,图13所示的手机11并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。图13中所示的各种部件以硬件、软件、或硬件与软件两者的组合来实现,包括一个或多个信号处理和/或专用集成电路。
存储器21任选地包括高速随机存取存储器,并且还任选地包括非易失性存储器,诸如一个或多个磁盘存储设备、闪存存储器设备、或其他非易失性固态存储器设备。示例性的,存储于存储器21中的软件部件包括操作系统211、通信电路(或指令集)212、全球定位系统(GPS)电路(或指令集)213等。
处理器22和其他控制电路(诸如射频系统24中的控制电路)可以用于控制手机11的操作。该处理器22可以基于一个或多个微处理器、微控制器、数字信号处理器、基带处理器、功率管理单元、音频编解码器芯片、专用集成电路等。
处理器22可以被配置为实现控制手机11中的天线的使用的控制算法。处理器22还可以发出用于控制射频系统24中各开关的控制命令等。
I/O子系统26将手机11上的输入/输出外围设备诸如键区和其他输入控制设备耦接到外围设备接口23。I/O子系统26任选地包括触摸屏、按键、音调发生器、加速度计(运动传感器)、周围光传感器和其他传感器、发光二极管以及其他状态指示器、数据接口等。示例性的,用户可以通过经由I/O子系统26供给命令来控制手机11的操作,并且可以使用I/O子系统26的输出资源来从手机11接收状态信息和其他输出。例如,用户按压按钮261即可启动手机或者关闭手机。
射频系统24可以包括前述任一实施例中的射频模组。
本申请所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。合适的非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RM),它用作外部高速缓冲存储器。作为说明而非局限,RM以多种形式可得,诸如静态RM(SRM)、动态RM(DRM)、同步DRM(SDRM)、双数据率SDRM(DDR SDRM)、增强型SDRM(ESDRM)、同步链路(Synchlink)DRM(SLDRM)、存储器总线(Rmbus)直接RM(RDRM)、直接存储器总线动态RM(DRDRM)、以及存储器总线动态RM(RDRM)。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (21)

  1. 一种射频模组,包括:
    多个电源模块;
    射频收发器,包括第一发射通道组和第二发射通道组,所述第一发射通道组和所述第二发射通道组各自包括多个发射通道;
    多个射频模块,至少一目标射频模块可切换连接至任一所述电源模块以及任一射频通道,各所述射频模块用于在目标电源模块的供电作用下,接收来自目标射频通道传输的射频信号,并对各自接收的射频信号进行功率放大;
    其中,不同所述射频模块支持功率放大的射频信号的频段不同,所述多个射频模块中同时工作的两个射频模块的目标电源模块不同,以及所述同时工作的两个射频模块的目标射频通道不同,所述目标电源模块为与所述射频模块导通连接的电源模块,所述目标射频通道为与所述射频模块导通连接的射频通道。
  2. 根据权利要求1所述的射频模组,其中所述射频模组还包括:
    至少一第一开关模块,各所述第一开关模块被配置有多个第一端和第二端,各所述第一开关模块的多个第一端分别与多个电源模块对应连接,各所述第一开关模块的第二端对应与一所述目标射频模块的电源端连接,所述第一开关模块用于导通所述目标射频模块与所述目标电源模块之间的连接;
    至少一第二开关模块,各所述第二开关模块被配置有两个第一端和第二端,各所述第二开关模块的两个第一端分别与所述第一发射通道组和所述第二发射通道组连接,各所述第二开关模块的第二端对应与一所述目标射频模块的输入端连接,所述第二开关模块用于导通所述目标射频模块与所述目标射频通道之间的连接。
  3. 根据权利要求2所述的射频模组,其中所述目标射频模块包括功率放大单元,所述目标射频模块被配置有多个电源端口,所述多个电源端口分别与多个所述电源模块对应连接;
    其中,所述第一开关模块集成在所述目标射频模块中,所述第一开关模块的多个第一端分别与所述多个电源端口对应连接,所述第一开关模块的第二端与所述功率放大单元的电源端连接,所述功率放大单元的输入端连接至所述第二开关模块的第二端。
  4. 根据权利要求2所述的射频模组,其中所述目标射频模块包括功率放大单元,所述目标射频模块被配置有第一输入端口和第二输入端口,所述第一输入端口与所述第一发射通道组连接,所述第二输入端口与所述第二发射通道组连接;
    其中,所述第二开关模块集成在所述目标射频模块中,所述第二开关模块的两个第一端分别与所述第一输入端口、所述第二输入端口对应连接,所述第二开关模块的第二端与所述功率放大单元的输入端连接,所述功率放大单元的电源端连接至所述第一开关模块的第二端。
  5. 根据权利要求2所述的射频模组,其中所述第一开关模块和所述第二开关模块还分别被配置有受控端;
    其中,所述射频收发器还包括控制电路,所述控制电路分别与所述第一开关模块的受控端和所述第二开关模块的受控端连接,所述控制电路用于根据目标工作频段控制所述第一开关模块和所述第二开关模块的导通状态。
  6. 根据权利要求2-5任一项所述的射频模组,其中所述多个射频模块包括:
    第一射频模块,用于对低频信号进行功率放大;
    第二射频模块,用于对中频信号和高频信号进行功率放大。
  7. 根据权利要求6所述的射频模组,其中所述第一发射通道组包括第一低频发射通道、第一中频发射通道及第一高频发射通道,所述第二发射通道组包括第二低频发射通道及第二高频发射通道;
    其中,所述第一射频模块可切换地连接所述第一低频发射通道和所述第二低频发射通道且可切换地连接多个所述电源模块;所述第二射频模块包括:中高频处理单元和高频处理单元,所述中高频处理单元的中频输入端与所述第一中频发射通道连接,所述中高频处理单元的高频输入端与所述第一高频发射通道连接,所述高频处理单元的输入端与所述第二高频发射通道连接,所述中高频处理单元的电源端与所述高频处理单元的电源端连接不同的目标电源模块。
  8. 根据权利要求7所述的射频模组,其中所述第二发射通道组还包括第二中频发射通道,所述中高频处理单元的中频输入端可切换地连接至所述第一中频发射通道和所述第二中频发射通道,且所述中高频处理单元的电源端可切换地连接多个所述电源模块。
  9. 根据权利要求6所述的射频模组,其中所述第一发射通道组包括第一低频发射通道和第一中频发射通道,所述第二发射通道组包括第二低频发射通道及第二高频发射通道;
    其中,所述第一射频模块可切换地连接至所述第一低频发射通道和所述第二低频发射通道且可切换地连接多个所述电源模块;所述第二射频模块包括:中频处理单元和高频处理单元,所述中频处理单元与所述第一中频发射通道连接,所述高频处理单元与所述第二高频发射通道连接,所述中频处理单元与所述高频处理单元导通连接不同的电源模块。
  10. 根据权利要求9所述的射频模组,其中所述第二发射通道组还包括第二中频发射通道;所述中频处理单元的输入端可切换地连接至所述第一中频发射通道和所述第二中频发射通道且所述中频处理单元的电源端可切换地连接多个所述电源模块;和/或
    所述第一发射通道组还包括第一高频发射通道;所述高频处理单元的高频输入端可切换地连接至所述第一高频发射通道和所述第二高频发射通道,且所述高频处理单元的电源端可切换地连接多个所述电源模块。
  11. 根据权利要求7-10任一项所述的射频模组,其中所述第二发射通道组还包括超高频发射通道;所述多个射频模块还包括第三射频模块,所述第三射频模块与所述超高频发射通道连接,所述第三射频模块用于超高频信号进行功率放大。
  12. 一种通信设备,包括:
    如权利要求1-11任一项所述的射频模组。
  13. 根据权利要求12所述的通信设备,其中所述第一发射通道组用于与第一SIM卡连接,以输出与所述第一SIM卡对应的射频信号,所述第二发射通道组用于与第二SIM卡连接,以输出与所述第二SIM卡对应的射频信号。
  14. 一种通信设备,包括:
    第一电源模块和第二电源模块;
    射频收发器,包括第一发射通道组和第二发射通道组,所述第一发射通道组和所述第二发射通道组各自包括多个发射通道;
    第一射频模块,可切换地与所述第一电源模块或所述第二电源模块连接,并可切换地与所述第一发射通道组或所述第二发射通道组连接,用于支持第一频段的射频信号的发射;
    第二射频模块,分别与所述第一电源模块所述第二电源模块、所述第一发射通道组及所述第二发射通道组连接,用于在所述第一电源模块的供电作用下支持对来自所述第一发射通道组的第二频段的射频信号的发射,在所述第二电源模块的供电作用下支持对来自所述第二发射通道组的第三频段的射频信号的发射。
  15. 根据权利要求14所述的通信设备,其中所述通信设备还包括第一开关模块和第二开关模块;
    所述第一发射通道组包括第一低频发射通道、第一中频发射通道和第一高频发射通道,所述第二发射通道组包括第二低频发射通道和第二高频发射通道;
    所述第一射频模块通过所述第一开关模块可切换地与所述第一电源模块或所述第二 电源模块连接,并通过所述第二开关模块可切换地与所述第一低频发射通道或所述第二低频发射通道连接。
  16. 根据权利要求15所述的通信设备,其中所述第二射频模块包括:
    中高频处理单元,所述中高频处理单元的中频输入端与所述第一中频发射通道连接,所述中高频处理单元的高频输入端与所述第一高频发射通道连接,所述中高频处理单元的电源端与所述第一电源模块连接,所述中高频处理单元用于对第一中频信号和第一高频信号进行功率放大;
    高频处理单元,所述高频处理单元的输入端与所述第二高频发射通道连接,所述高频处理单元的电源端与所述第二电源模块连接,所述高频处理单元用于对第二高频信号进行功率放大。
  17. 根据权利要求14所述的通信设备,其中还包括第一开关模块和第二开关模块;
    所述第一发射通道组包括第一低频发射通道和第一中频发射通道,所述第二发射通道组包括第二低频发射通道及第二高频发射通道;
    所述第一射频模块通过所述第一开关模块可切换地与所述第一电源模块或所述第二电源模块连接,并通过所述第二开关模块可切换地与所述第一低频发射通道或所述第二低频发射通道连接。
  18. 根据权利要求17所述的通信设备,其中所述第二射频模块包括:
    中频处理单元,分别与所述第一中频发射通道、所述第一电源模块连接,用于对第一中频信号进行功率放大;
    高频处理单元,分别与所述第二高频发射通道、所述第二电源模块连接,用于对第二高频信号进行功率放大。
  19. 根据权利要求15-18任一项所述的通信设备,其中所述通信设备被配置为支持所述第一频段和所述第二频段的组合通信时,所述第一射频模块通过所述第一开关模块切换至与所述第二电源模块连接,并通过所述第二开关模块切换至与所述第二低频发射通道连接。
  20. 根据权利要求15-18任一项所述的通信设备,其中所述通信设备被配置为支持所述第一频段和所述第三频段的组合通信时,所述第一射频模块通过所述第一开关模块切换至与所述第一电源模块连接,并通过所述第二开关模块切换至与所述第一低频发射通道连接。
  21. 根据权利要求15-18任一项所述的通信设备,其中所述第二发射通道组还包括超高频发射通道;所述通信设备还包括:
    第三射频模块,分别与所述第二电源模块、所述超高频发射通道连接,用于支持超高频信号的发射。
PCT/CN2023/122880 2022-11-30 2023-09-28 射频模组及通信设备 WO2024114099A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211529843.1A CN118118039A (zh) 2022-11-30 2022-11-30 射频模组及通信设备
CN202211529843.1 2022-11-30

Publications (1)

Publication Number Publication Date
WO2024114099A1 true WO2024114099A1 (zh) 2024-06-06

Family

ID=91216033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/122880 WO2024114099A1 (zh) 2022-11-30 2023-09-28 射频模组及通信设备

Country Status (2)

Country Link
CN (1) CN118118039A (zh)
WO (1) WO2024114099A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113228417A (zh) * 2018-12-29 2021-08-06 华为技术有限公司 一种多频段射频前端器件,多频段接收机及多频段发射机
CN113285732A (zh) * 2021-05-24 2021-08-20 Oppo广东移动通信有限公司 射频系统、天线切换方法和通信设备
CN113676206A (zh) * 2021-08-12 2021-11-19 Oppo广东移动通信有限公司 射频系统和通信设备
WO2022002163A1 (zh) * 2020-06-30 2022-01-06 华为技术有限公司 一种通信装置及通信方法
WO2022205171A1 (zh) * 2021-03-31 2022-10-06 华为技术有限公司 一种信号传输方法、装置、存储介质及芯片系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113228417A (zh) * 2018-12-29 2021-08-06 华为技术有限公司 一种多频段射频前端器件,多频段接收机及多频段发射机
WO2022002163A1 (zh) * 2020-06-30 2022-01-06 华为技术有限公司 一种通信装置及通信方法
WO2022205171A1 (zh) * 2021-03-31 2022-10-06 华为技术有限公司 一种信号传输方法、装置、存储介质及芯片系统
CN113285732A (zh) * 2021-05-24 2021-08-20 Oppo广东移动通信有限公司 射频系统、天线切换方法和通信设备
CN113676206A (zh) * 2021-08-12 2021-11-19 Oppo广东移动通信有限公司 射频系统和通信设备

Also Published As

Publication number Publication date
CN118118039A (zh) 2024-05-31

Similar Documents

Publication Publication Date Title
WO2023016199A1 (zh) 射频系统和通信设备
CN216721325U (zh) 射频模组和通信设备
CN216490477U (zh) 射频系统和通信设备
WO2023016198A1 (zh) 射频系统和通信设备
CN113676209B (zh) 放大器模组、射频系统及通信设备
CN114124140B (zh) 射频系统和通信设备
WO2023016204A1 (zh) 放大器模组、射频系统及通信设备
CN113676191B (zh) 发射模组、射频系统及通信设备
WO2023016209A1 (zh) 发射模组、射频系统及通信设备
CN113676212B (zh) 放大器模组、射频系统及通信设备
CN113676213A (zh) 放大器模组、射频系统及通信设备
CN217406537U (zh) 射频系统和通信设备
CN114553250A (zh) 射频系统和通信设备
CN114142886B (zh) 射频系统及通信设备
CN216057092U (zh) 电子设备
CN114124139A (zh) 射频系统及通信设备
CN114095048A (zh) 射频系统及通信设备
WO2023142765A1 (zh) 射频前端模组和射频系统
WO2023142766A1 (zh) 射频前端模组和射频系统
WO2024114099A1 (zh) 射频模组及通信设备
CN115102560B (zh) 射频系统及通信设备
CN113949401B (zh) 射频系统及通信设备
CN114124136A (zh) 射频系统及通信设备
CN216721321U (zh) 射频前端器件、射频系统和通信设备
CN112202466A (zh) 无线通信电路和相关联的无线通信设备