WO2022002163A1 - 一种通信装置及通信方法 - Google Patents

一种通信装置及通信方法 Download PDF

Info

Publication number
WO2022002163A1
WO2022002163A1 PCT/CN2021/103758 CN2021103758W WO2022002163A1 WO 2022002163 A1 WO2022002163 A1 WO 2022002163A1 CN 2021103758 W CN2021103758 W CN 2021103758W WO 2022002163 A1 WO2022002163 A1 WO 2022002163A1
Authority
WO
WIPO (PCT)
Prior art keywords
selection switch
band
radio frequency
different
end module
Prior art date
Application number
PCT/CN2021/103758
Other languages
English (en)
French (fr)
Inventor
徐求良
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022002163A1 publication Critical patent/WO2022002163A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/0057Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication device and a communication method.
  • the RF front-end module refers to the communication components between the antenna and the RF transceiver module, including multiple band-pass filters, PA (power amplifier), selection switches, antenna tuning and other devices.
  • PA power amplifier
  • the radio frequency front-end module in the prior art only includes one power amplifier, and the power amplifier selects one band-pass filter from a plurality of band-pass filters to be connected through a selection switch.
  • the RF front-end module only the selected band-pass filter works, and the rest of the band-pass filters are in an idle state, resulting in a waste of resources.
  • the present application provides a communication device and a communication method for improving resource utilization of a radio frequency front-end module.
  • a communication device in a first aspect, includes a radio frequency front-end module.
  • the radio frequency front-end module refers to a communication component between an antenna and a radio frequency transceiver module. It is used in a mobile terminal and is a communication device. important parts.
  • the radio frequency front-end module includes two selection switches and at least two bandpass filters arranged between the two selection switches.
  • the frequency front-end module also includes at least two power amplifiers and at least two output ports, the power amplifiers and the output ports are in one-to-one correspondence, and the power amplifier is used as an input end, and the output port is used as an output end.
  • Each power amplifier is configured to select a band-pass filter connection through a first selection switch, and then select an output port through a second selection switch to form a communication path. And each power amplifier can communicate with any one of the at least two band-pass filters through the first selection switch, and the band-pass filter communicated with the power amplifier passes through the second selection switch. It communicates with any one of the at least two output ports; that is, each power amplifier can choose any band-pass filter to communicate with, or can choose any one of the output ports to communicate.
  • the band-pass filters communicated with different power amplifiers are different band-pass filters, and the output ports communicated with different power amplifiers are different output ports.
  • the band-pass filter in the RF front-end module can be decoupled from the power amplifier, and the first selection switch can realize any power amplifier and any band
  • the pass filters are connected, and at least two power amplifiers are used, which can make at least two band pass filters in the radio frequency front-end module work, and improve the resource utilization effect in the radio frequency front-end module.
  • each bandpass filter is provided with a duplexer or filter. Different signals can be filtered.
  • the frequencies of the signals corresponding to different bandpass filters are different. Realize the transmission of signals of different frequencies.
  • the first selector switch and the second selector switch are both multi-pole multi-throw switches.
  • the multi-pole multi-throw switch realizes decoupling of at least two power amplifiers and at least two band-pass filters, and at least two power amplifiers can choose one of two different band-pass filters.
  • the number of power amplifiers is two, and the first selection switch and the second selection switch are double-pole multi-throw switches. It can support two different communication cards to communicate at the same time.
  • At least two antennas are also included. Wherein, each output port is selectively connected to one of the at least two antennas, and different output ports are connected to different antennas.
  • the band-pass filter in the RF front-end module can be decoupled from the power amplifier, and the connection between any power amplifier and any band-pass filter can be realized through the first selection switch. .
  • it can also support different communication cards for communication. The at least two power amplifiers can make the at least two band-pass filters in the radio frequency front-end module work, thereby improving the resource utilization effect in the radio frequency front-end module.
  • the radio frequency chip includes: at least two input ports and a third selection switch; the at least two input ports select the at least two input ports through the third selection switch Different ones of the power amplifiers are connected.
  • the radio frequency chip can be decoupled from the power amplifier through the third selection switch, and the radio frequency chip can select different power amplifiers as required.
  • the third selection switch is a multi-pole multi-throw switch.
  • the decoupling between the input port and the power amplifier is achieved through a multi-pole multi-throw switch.
  • the number of the third selection switches is in one-to-one correspondence with the input ports, and each third selection switch is a single-pole multi-throw switch. Implements decoupling between the input port and the power amplifier.
  • the number of the RF front-end modules is multiple, and the multiple RF front-end modules correspond to different working frequency bands; each antenna is connected with a fourth selection switch;
  • Each antenna selects at least part of the RF front-end modules to be connected to the plurality of RF front-end modules through the fourth selection switch.
  • different output ports can be selected through the fourth selection switch.
  • a multiplexer is also included, and the fourth selection switch is connected to the corresponding antenna through the multiplexer.
  • each antenna can function as a primary antenna or a diversity antenna.
  • the antenna is integrated to simplify the structure.
  • a baseband chip is also included, and the baseband chip is connected with the at least two input ports.
  • the signal is processed by the baseband chip.
  • a communication device in a second aspect, includes a radio frequency front-end module, and the radio frequency front-end module includes: a first selection switch, at least two power amplifiers, at least two bandpass filters, and a second selection switch. switch, and at least two output ports; wherein the first selection switch is used to selectively connect any one of the at least two power amplifiers and any one of the at least two bandpass filters A bandpass filter; the second selection switch is used to selectively connect any one of the at least two bandpass filters and any one of the at least two output ports.
  • the band-pass filter in the RF front-end module can be decoupled from the power amplifier, and the first selection switch can realize any power amplifier and any band
  • the pass filters are connected, and at least two power amplifiers are used, which can make at least two band pass filters in the radio frequency front-end module work, and improve the resource utilization effect in the radio frequency front-end module.
  • each bandpass filter is provided with a duplexer or filter. Different signals can be filtered.
  • the frequencies of the signals corresponding to different bandpass filters are different. Realize the transmission of signals of different frequencies.
  • the first selector switch and the second selector switch are both multi-pole multi-throw switches.
  • the multi-pole multi-throw switch realizes decoupling of at least two power amplifiers and at least two band-pass filters, and at least two power amplifiers can choose one of two different band-pass filters.
  • the number of power amplifiers is two, and the first selection switch and the second selection switch are double-pole multi-throw switches. It can support two different communication cards to communicate at the same time.
  • At least two antennas are also included. Wherein, each output port is selectively connected to one of the at least two antennas, and different output ports are connected to different antennas.
  • the band-pass filter in the RF front-end module can be decoupled from the power amplifier, and the connection between any power amplifier and any band-pass filter can be realized through the first selection switch. .
  • it can also support different communication cards for communication. The at least two power amplifiers can make the at least two band-pass filters in the radio frequency front-end module work, thereby improving the resource utilization effect in the radio frequency front-end module.
  • the radio frequency chip includes: at least two input ports and a third selection switch; the at least two input ports select the at least two input ports through the third selection switch Different ones of the power amplifiers are connected.
  • the radio frequency chip can be decoupled from the power amplifier through the third selection switch, and the radio frequency chip can select different power amplifiers as required.
  • the third selection switch is a multi-pole multi-throw switch.
  • the decoupling between the input port and the power amplifier is achieved through a multi-pole multi-throw switch.
  • the number of the third selection switches is in one-to-one correspondence with the input ports, and each third selection switch is a single-pole multi-throw switch. Implements decoupling between the input port and the power amplifier.
  • the number of the RF front-end modules is multiple, and the multiple RF front-end modules correspond to different working frequency bands; each antenna is connected with a fourth selection switch;
  • Each antenna selects at least part of the RF front-end modules to be connected to the plurality of RF front-end modules through the fourth selection switch.
  • different output ports can be selected through the fourth selection switch.
  • a multiplexer is also included, and the fourth selection switch is connected to the corresponding antenna through the multiplexer.
  • each antenna can function as a primary antenna or a diversity antenna.
  • the antenna is integrated to simplify the structure.
  • a baseband chip is also included, and the baseband chip is connected with the at least two input ports.
  • the signal is processed by the baseband chip.
  • a radio frequency front-end module in a third aspect, includes: a first selection switch, at least two power amplifiers, at least two bandpass filters, a second selection switch, and at least two outputs port; wherein the first selection switch is configured to selectively connect any one of the at least two power amplifiers and any one of the at least two bandpass filters; the The second selection switch is used for selectively connecting any one of the at least two bandpass filters and any one of the at least two output ports.
  • the band-pass filter in the RF front-end module can be decoupled from the power amplifier, and the first selection switch can realize any power amplifier and any band
  • the pass filters are connected, and at least two power amplifiers are used, which can make at least two band pass filters in the radio frequency front-end module work, and improve the resource utilization effect in the radio frequency front-end module.
  • each bandpass filter is provided with a duplexer or filter. Different signals can be filtered.
  • the frequencies of the signals corresponding to different bandpass filters are different. Realize the transmission of signals of different frequencies.
  • the first selector switch and the second selector switch are both multi-pole multi-throw switches.
  • the multi-pole multi-throw switch realizes decoupling of at least two power amplifiers and at least two band-pass filters, and at least two power amplifiers can choose one of two different band-pass filters.
  • the number of power amplifiers is two, and the first selection switch and the second selection switch are double-pole multi-throw switches. It can support two different communication cards to communicate at the same time.
  • a communication device in a fourth aspect, includes: a baseband chip, a radio frequency chip, and a set of radio frequency front-end modules; wherein, the set of radio frequency front-end modules includes at least two radio frequency front-end modules, different radio frequency The working frequency bands of the front-end modules are different, and each RF front-end module has at least two first channels.
  • each RF front-end module can refer to the structure of the RF front-end module shown above; the baseband chip is the same as the The radio frequency chip is connected, and the radio frequency chip is connected with each radio frequency front-end module; the radio frequency chip is configured to: select at least two different first-stage modules in any one of the radio frequency front-end modules in the group of radio frequency front-end modules. One channel is connected; or, the radio frequency chip selects at least two different radio frequency front-end modules in the group of radio frequency front-end modules to be connected.
  • the radio frequency front-end module to have at least two first channels, simultaneous communication of signals of different communication cards can be realized, and the communication effect of the communication device is improved.
  • the baseband chip is configured to send signals of at least two communication cards to the radio frequency chip.
  • the signal transmission of at least two communication cards is realized through the baseband chip.
  • the signals of the at least two communication cards are transmitted through different first channels in the same RF front-end module selected by the RF chip; or
  • the signals of the at least two communication cards are transmitted through at least two different radio frequency front-end modules selected by the radio frequency chip.
  • the signals of the communication card can be transmitted through different channels.
  • the radio frequency chip has at least two second channels and selection switches;
  • the at least two second channels are in one-to-one correspondence with the signals of the at least two communication cards;
  • Each second channel is connected to any first channel in the group of RF front-end modules through the selection switch; different second channels are connected to different first channels in the same RF front-end module through the selection switch ; or, different second channels communicate with different RF front-end modules through the selection switch.
  • the selection of the RF chip to the RF front-end module is realized through the selection switch.
  • the selector switch is a multi-pole multi-throw selector switch. Arbitrary options are realized.
  • a communication device in a fifth aspect, includes a baseband chip and a radio frequency chip; wherein the baseband chip transmits at least two signals to the radio frequency chip; the radio frequency chip transmits the at least two signals to the ports used for corresponding communication with different first channels of the same radio frequency front-end module; the radio frequency chip sends the signals of the at least two communication cards to the ports used for corresponding communication with different radio frequency front-end modules, each
  • the structure of the RF front-end module reference may be made to the structure of the RF front-end module shown above. The communication of two signals is realized at the same time.
  • the radio frequency chip has at least two second channels, a selection switch and at least two output ports; the at least two second channels and the signals of the at least two communication cards are one-to-one. Correspondingly; each second channel communicates with any one of the at least two output ports through the selection switch; the output ports communicated with different second channels are different output ports.
  • the selection of the RF chip to the RF front-end module is realized through the selection switch.
  • a communication method comprising the following steps:
  • any one of the at least two band-pass filters is selected by the first selection switch, so that any one of the at least two power amplifiers is selectively connected to the at least two power amplifiers by the first selection switch Any one of the band-pass filters is connected; the second selection switch that passes through selects any one of the at least two output ports to be connected, so that any one of the at least two band-pass filters is connected
  • the second selection switch is selectively communicated with any one of the at least two output ports; wherein, the band-pass filters communicated with different power amplifiers are different band-pass filters;
  • the output ports are different output ports.
  • the band-pass filter in the RF front-end module can be decoupled from the power amplifier, and the first selection switch can realize any power amplifier and any band
  • the pass filters are connected, and at least two power amplifiers are used, which can make at least two band pass filters in the radio frequency front-end module work, and improve the resource utilization effect in the radio frequency front-end module.
  • the first selector switch and the second selector switch are both multi-pole multi-throw switches.
  • each bandpass filter is provided with a duplexer or filter.
  • Fig. 1 is the structural block diagram of the radio frequency front-end module in the prior art
  • Fig. 2 is the structural block diagram of the communication system in the prior art
  • FIG. 3 is a structural block diagram of a radio frequency front-end module provided by an embodiment of the present application.
  • FIG. 4 is a structural block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 5 is a structural block diagram of another communication apparatus provided by an embodiment of the present application.
  • the communication device provided by the embodiments of the present application is applied to a mobile terminal, and the mobile terminal may be a common mobile terminal such as a mobile phone and a tablet computer.
  • the communication devices provided in the embodiments of the present application may be combined in different ways, that is, they may only include a radio frequency front-end module, or may include an assembly formed by combining the radio frequency front-end module and other components.
  • the RF front-end module is used in the communication of mobile terminals, and refers to the communication components between the antenna and the RF transceiver module. As shown in Figure 1, the RF front-end module has one input port and one output port.
  • the RF front-end module 2 is also provided with a plurality of band-pass filters 5.
  • the band-pass filters 5 are used to filter out noise, interference and undesired noise. For the required signal, only the signal in the required frequency range is left, and each band-pass filter 5 targets different frequency ranges. Different operating frequency bands of the antenna 7 can be realized by selecting different band-pass filters 5 .
  • the radio frequency chip 1 is connected to the power amplifier 3 in the radio frequency front-end module 2, and the power amplifier 3 is connected to a plurality of bandpass filters 5 through the first single-pole multi-throw switch 4, and a plurality of bandpass filters can be selected. Any one of the 5 bandpass filter connections.
  • the band-pass filter 5 connected to the power amplifier 3 is connected to the antenna 7 through the second SPMD switch 6 to form a complete communication path.
  • FIG. 2 the internal communication system of the mobile terminal in the prior art is shown.
  • two independent RF front-end modules 300 are often set up, and the baseband chip 100 is connected to two RF chips 200. Each RF The chip 200 is connected to the antenna through a corresponding RF front-end module 300 .
  • this method of setting up two RF front-end modules 300 alone will cause more waste of band-pass filters.
  • using two independent RF front-end modules 300 will also cause more waste. Take up more space in the phone.
  • an embodiment of the present application provides a radio frequency front-end module, which will be described below with reference to specific drawings.
  • FIG. 3 shows a structural block diagram of a radio frequency front-end module provided by an embodiment of the present application.
  • the RF front-end module 10 provided in the embodiment of the present application includes a first selection switch 30 , a second selection switch 50 , a band-pass filter 40 , and a power amplifier 20 .
  • the bandpass filter 40 is mainly used to filter out noise, interference and unwanted signals, leaving only the signals within the desired frequency range.
  • the power amplifier 20 amplifies the input signal when transmitting the signal, so that the amplitude of the output signal is large enough for subsequent processing.
  • the selector switch is used to switch between on and off, allowing the signal to pass or not pass.
  • the RF front-end module 10 has an input port and an output port 60, and the input port and the output port 60 are used as signal input and output respectively.
  • the input port is used for connecting a communication card, such as a SIM card;
  • the output port 60 is used for connecting an antenna.
  • the input ports and output ports 60 are in one-to-one correspondence, and each input port and output port 60 can be connected through the band-pass filter 40 in the RF front-end module 10 to form a complete path from the communication card to the antenna.
  • the number of input ports and output ports 60 is at least two, and each input port is connected to the power amplifier 20 in the RF front-end module 10 in one-to-one correspondence.
  • the input port can also be understood as the input end of the power amplifier 20 .
  • FIG. 3 shows two output ports 60 , and the two output ports 60 are respectively connected to two power amplifiers 20 .
  • the two power amplifiers 20 are named as the first power amplifier 21 and the second power amplifier 22 respectively. It should be understood that the number of the power amplifiers 20 and the output ports 60 in the example in FIG. 3 is only a specific example, and the number of the output ports 60 and the power amplifiers 20 provided in the embodiments of the present application may also be three, four, five, etc. different numbers.
  • the number of the output ports 60 and the power amplifier 20 is not greater than the number of the band-pass filter 40 to ensure that each power amplifier 20 can be connected to one band-pass filter 40.
  • the first selection switch 30, at least two bandpass filters 40 and the second selection switch 50 constitute a channel selection module.
  • the input port and the output port 60 can select the bandpass filter 40 as the connection path through the channel selection module.
  • at least two band-pass filters 40 are located in the middle, and the first selection switch 30 and the second selection switch 50 are arranged at two ends of the band-pass filter 40 .
  • One end of the band-pass filter 40 is connected to the first selection switch 30 , and the other end is connected to the second selection switch 50 .
  • the first selection switch 30 is used for connection with at least two power amplifiers 20
  • the second selection switch 50 is used for connection with at least two output ports 60 .
  • the first selection switch 30 is used to selectively connect any one of the at least two power amplifiers 20 and any one of the at least two bandpass filters 40 .
  • the second selection switch 50 is used to selectively connect any one of the at least two bandpass filters 40 and any one of the at least two output ports 60 .
  • each bandpass filter 40 targets different frequency ranges, so that the power amplifier 20 can implement different operating frequency bands of the antenna by selecting different band-pass filters 40 .
  • each bandpass filter 40 is provided with a duplexer or filter.
  • each band-pass filter 40 is provided with a filter to filter unidirectional signals; or each band-pass filter 40 is provided with a duplexer to filter the transmitted signal and the received signal; or , part of the band-pass filter 40 is provided with a filter, and part of the band-pass filter 40 is provided with a duplexer.
  • four bandpass filters 40 are provided with filters, and one bandpass filter 40 is provided with a duplexer.
  • the power amplifier 20 When the input port and the output port 60 are connected, the power amplifier 20 corresponds to the number of the output port 60 one-to-one.
  • Each power amplifier 20 can select a band-pass filter 40 to be connected through the first selection switch 30, and then select an output port 60 through the second selection switch 50 to form a communication path.
  • each power amplifier 20 can be communicated with any one of the at least two band-pass filters 40 through the first selection switch 30, and the band-pass filter 40 communicated with the power amplifier 20 can be connected through the second selection switch 40.
  • the switch 50 communicates with any one of the at least two output ports 60 . That is, each power amplifier 20 can choose any one of the band-pass filters 40 for communication, and can also choose any one of the output ports 60 for communication.
  • the band-pass filters 40 connected to different power amplifiers 20 are different band-pass filters 40
  • the output ports 60 connected to different power amplifiers 20 are different output ports 60, so that each Each input port and output port 60 can select different bandpass filters 40 to form a complete path.
  • the first power amplifier 21 can select any one of the band-pass filters 40 from the first band-pass filter 41 to the fifth band-pass filter 45 through the first selection switch 30 to communicate with the first power amplifier.
  • a band-pass filter 40 connected to 21 can select any one of the output ports 60 to be connected through the second selection switch 50 . It can be seen from the above description that the power amplifier 20 and the band-pass filter 40 provided in the embodiments of the present application realize decoupling. Bandpass filter 40 . Similarly, decoupling is also implemented for the output port 60 , and any one of the band-pass filters 40 can select any one of the output ports 60 .
  • first bandpass filter 41 and the second bandpass filter 42 are used as examples for description.
  • the first power amplifier 21 is connected to the first bandpass filter 41 through the first selection switch 30 , and the first bandpass filter 41 is connected to the first output port 61 through the second selection switch 50 .
  • the second power amplifier 22 is connected to the second bandpass filter 42 through the first selection switch 30 , and the second selection switch 50 of the second bandpass filter 42 is connected to the second output port 62 .
  • the first power amplifier 21 is connected to the first band-pass filter 41 through the first selection switch 30 , and the first band-pass filter 41 is connected to the second output port 62 through the second selection switch 50 .
  • the second power amplifier 22 is connected to the second band-pass filter 42 through the first selection switch 30 , and the second selection switch 50 of the second band-pass filter 42 is connected to the first output port 61 .
  • the first power amplifier 21 is connected to the second band-pass filter 42 through the first selection switch 30, and the second band-pass filter 42 is connected to the first output port 61 through the second selection switch 50;
  • the first selection switch 30 is connected to the first band-pass filter 41 , and the first band-pass filter 41 communicates with the second output port 62 through the second selection switch 50 .
  • the first power amplifier 21 is connected to the second band-pass filter 42 through the first selection switch 30, and the second band-pass filter 42 is connected to the second output port 62 through the second selection switch 50;
  • the first selection switch 30 is connected to the first band-pass filter 41 , and the first band-pass filter 41 communicates with the first output port 61 through the second selection switch 50 .
  • the RF front-end module 10 has five bandpass filters 40 (a first bandpass filter 41, a second bandpass filter 42, a third bandpass filter 43, a fourth bandpass filter 44 and the fifth band-pass filter 45), the two power amplifiers 20 can arbitrarily select two band-pass filters from the first band-pass filter 41 to the fifth band-pass filter 45 through the first selection switch 30 40 is connected, and the output port 60 can also be selected through the second selection switch 50 .
  • the two power amplifiers 20 can arbitrarily select two band-pass filters from the first band-pass filter 41 to the fifth band-pass filter 45 through the first selection switch 30 40 is connected, and the output port 60 can also be selected through the second selection switch 50 .
  • the first selection switch 30 may be a multi-pole multi-throw switch.
  • the moving end of the first selection switch 30 corresponds to the number of the power amplifiers 20 , and each power amplifier 20 is connected to one moving end of the first selection switch 30 correspondingly.
  • the fixed end of the first selection switch 30 corresponds to the number of the band-pass filters 40, and each band-pass filter 40 is correspondingly connected to a fixed end. Taking the RF front-end module 10 shown in FIG. 3 as an example, when the number of power amplifiers 20 is two and the number of band-pass filters 40 is five, the moving ends of the first selection switch 30 are two, The fixed end is five.
  • Each movable end of the first selection switch 30 can be connected to any of the five immovable ends, and different movable ends are connected to different immovable ends.
  • the decoupling of the power amplifier 20 and the bandpass filter 40 is realized: any power amplifier 20 can be connected to any bandpass filter 40 , and different power amplifiers 20 can be connected to different bandpass filters 40 .
  • the second selection switch 50 may be a multi-pole multi-throw switch.
  • the movable end of the second selection switch 50 corresponds to the number of the output ports 60 , and each output port 60 is correspondingly connected to one movable end of the second selection switch 50 .
  • the fixed end of the second selection switch 50 corresponds to the number of the band-pass filters 40 , and each of the band-pass filters 40 is correspondingly connected to a fixed end. Taking the RF front-end module 10 shown in FIG. 3 as an example, when the number of output ports 60 is two and the number of band-pass filters 40 is five, the moving ends of the second selection switch 50 are two, The fixed end is five.
  • Each movable terminal of the second selector switch 50 can be connected to any of the five stationary terminals, and different movable terminals are connected to different stationary terminals.
  • the decoupling of the output port 60 and the bandpass filter 40 is realized: any output port 60 can be connected to any bandpass filter 40 , and different output ports 60 can be connected to different bandpass filters 40 .
  • the first selection switch 30 and the second selection switch 50 may also select other switches.
  • the first selection switch 30 may be at least two single-pole multi-throw switches.
  • the number of SPMT switches corresponds to the number of power amplifiers 20, the stationary end of each SPMT switch is connected to the power amplifier 20 in one-to-one correspondence, and the stationary end of each SPMT switch is connected to at least two bands.
  • the pass filters 40 are connected in one-to-one correspondence.
  • the stationary ends of the at least two SPMT switches are connected to the at least two bandpass filters 40 at the same time.
  • Each power amplifier 20 can select any one of the band-pass filters 40 to be connected through the corresponding SPMT switch, and different power amplifiers 20 can select different band-pass filters 40 to connect through the corresponding SPMT switch.
  • the setting manner is similar to that of the first selection switch 30 , and details are not described herein again.
  • the band-pass filter 40 in the RF front-end module 10 can be decoupled from the power amplifier 20, and the first selection switch 30 can realize any The power amplifier 20 is connected to any band-pass filter 40.
  • the RF front-end module 10 When the RF front-end module 10 is applied to the communication system of the mobile terminal, different communication cards can be connected through different power amplifiers 20, so that the effect of simultaneous communication between different communication cards can be achieved.
  • different communication cards when different communication cards communicate, they can communicate through different band-pass filters 40 in the RF front-end module 10, which reduces the idle condition of the band-pass filters 40 in the RF front-end module 10 and improves resource utilization.
  • Only one RF front-end module 10 provided in the embodiment of the present application can achieve the effect of two RF front-end modules 10 in the prior art, thereby reducing the production cost of the mobile terminal.
  • the mobile terminal of the prior art needs to calibrate two radio frequency front-end modules, and the present application only needs to calibrate one radio frequency front-end module 10. Thereby, the long calibration time of the mobile terminal production line is reduced, and the delivery efficiency is improved.
  • the filter 40 (different band-pass filters 40 correspond to different frequency bands), which reduces the interference between the antennas. There are many interference problems, improving the antenna OTA performance and improving the user experience.
  • FIG. 4 shows a structural block diagram of a communication apparatus provided by an embodiment of the present application.
  • the communication device includes a radio frequency chip, a radio frequency front-end module, and an antenna.
  • the communication process is: the communication card sends the signal to the RF chip, the RF chip sends the signal to the RF front-end module, and selects a band-pass filter to connect to the antenna through the RF front-end module.
  • the communication device shown in FIG. 4 is used to support simultaneous communication of two communication cards.
  • the communication device corresponds to two communication cards, and the number of antennas is also two.
  • the two communication cards can communicate separately through the two antennas.
  • a first communication card and a second communication card, and a first antenna 1051 and a second antenna 1052 are defined.
  • the first communication card can communicate through the first antenna 1051, and the second communication card can communicate through the second antenna 1052; or, the first communication card can communicate through the second antenna 1052, and the second communication card can communicate through the first antenna 1051.
  • Each communication card is connected to one radio frequency chip, and when two communication cards are used, two radio frequency chips are correspondingly set.
  • the two radio frequency chips are used to process the signals of the two communication cards in one-to-one correspondence.
  • the two radio frequency chips are defined as a first radio frequency chip 1011 and a second radio frequency chip 1012 .
  • the first radio frequency chip 1011 is used to process the signal of the first communication card
  • the second radio frequency chip 1012 is used to process the signal of the second communication card
  • the first radio frequency chip 1011 is used to process the signal of the second communication card
  • the second radio frequency chip 1012 is used for processing the signal of the first communication card.
  • Each RF communication chip has an input port, and the input port is used for connecting with the corresponding communication card (the above connection refers to the signal connection, and does not refer to the direct physical connection between the input port and the communication card).
  • the communication device When connected to the communication card, the communication device further includes a baseband chip (not shown in FIG. 4 ), the baseband chip is connected to the input port of the radio frequency chip, and is used to transmit the signal of the communication card to the radio frequency chip.
  • the number of radio frequency front-end modules of the communication device is multiple, such as three radio frequency front-end modules as shown in FIG. 4 .
  • each RF front-end module reference may be made to the structure shown in FIG. 3 , which will not be repeated here.
  • the three RF front-end modules are named as a first RF front-end module 1021 , a second RF front-end module 1022 and a third RF front-end module 1023 respectively.
  • the first radio frequency chip 1011 is connected with three radio frequency front-end modules through a selection switch, so that the first communication card can select one radio frequency front-end module for connection.
  • the selection switch is named as the third selection switch (not shown in the figure).
  • the first radio frequency chip 1011 includes at least two input ports and a third selection switch, and the number of the third selection switches is in one-to-one correspondence with the input ports.
  • the third selection switch is a single-pole multi-throw switch, the movable end of the third selection switch is connected to the corresponding input port, and the stationary end of the third selection switch serves as the output port of the first radio frequency chip 1011 and is respectively connected with the three radio frequency front-end modules.
  • the input ports are connected one by one.
  • the third selection switch can be switched between any RF front-end modules, so that the RF chip and the power amplifier can be decoupled through the third selection switch, and the RF chip can select different power amplifiers as needed.
  • the second RF chip 1012 is also connected to the three RF front-end modules through a selection switch.
  • the selection switch is also named as the third selection switch.
  • the third selection switch in the second RF chip 1012 is connected to the first RF chip 1011.
  • the third selection switch of is similar and will not be repeated here.
  • each RF front-end module can be connected to two communication cards at the same time, each RF front-end module is provided with two power amplifiers, and the two power amplifiers correspond to the two RF chips respectively. connect.
  • the first RF chip 1011 is respectively connected to a power amplifier in the first RF front-end module 1021, the second RF front-end module 1022, and the third RF front-end module 1023; the second RF chip 1012 is respectively connected to the first RF front-end
  • the module 1021, the second RF front-end module 1022, and the third RF front-end module 1023 are connected to another power amplifier.
  • the above three RF front-end modules respectively correspond to different working frequency bands.
  • the first RF front-end module 1021 is a low-frequency RF front-end module
  • the second RF front-end module 1022 is a mid-band RF front-end module
  • the third RF front-end module 1023 is a high-frequency RF front-end module.
  • each output port of each RF front-end module is selected to be connected to one of the two antennas, and different output ports are connected to different antennas.
  • the two output ports of the first RF front-end module 1021 are respectively connected to the first antenna 1051 and the second antenna 1052 in a one-to-one correspondence
  • the two output ports of the second RF front-end module 1022 are respectively connected to the first antenna 1051 and the second antenna 1052.
  • the antennas 1052 are connected in a one-to-one correspondence
  • the two output ports of the third RF front-end module 1023 are respectively connected with the first antenna 1051 and the second antenna 1052 in a one-to-one correspondence.
  • Each antenna needs to be connected to multiple RF front-end modules, and during communication, only one RF front-end module is in a working state, so when connecting, each antenna selects one of multiple RF front-end modules through the fourth selection switch 1031
  • One of the RF front-end modules in the connection Taking the first antenna 1051 as an example, the first antenna 1051 is connected to three RF front-end modules through a selection switch. To distinguish it from other selection switches, the selection switch is named as the fourth selection switch 1031 .
  • the movable end of the fourth selection switch 1031 is connected to the first antenna 1051
  • the stationary end of the fourth selection switch 1031 is connected to the three RF front-end modules in one-to-one correspondence.
  • the fourth selection switch 1031 may be connected to the corresponding antenna through a multiplexer.
  • the first antenna 1051 is connected to the fourth selection switch 1031 through a multiplexer, and the fourth selection switch 1031 is connected to three RF front-end modules.
  • the fourth selection switch 1031 is a multi-pole multi-throw selection switch.
  • the second antenna 1052 is connected to the three RF front-end modules through the fourth selection switch 1032, and the specific connection method is the same as that of the fourth switch 1031, which will not be repeated here.
  • each antenna can be used as a main antenna and a diversity antenna.
  • the communication device further includes a plurality of front-end modules with integrated duplexers (referred to as front-end modules for short), which are named as the first front-end module 1041 , the second front-end module 1042 , the first front-end module 1042 , the There are three front-end modules 1043, and the working frequency bands corresponding to the three front-end modules are different.
  • Each radio frequency chip is respectively connected with three front-end modules in one-to-one correspondence.
  • each front-end module is correspondingly connected to two antennas, that is, each front-end module is connected to the antenna through a fourth selection switch.
  • the antenna acts as a diversity antenna.
  • the antenna acts as the main set antenna.
  • SIM1 is the first communication card
  • SIM2 is the second communication card
  • SIM1 will occupy multiple radio frequency channels, and SIM2 will use diversity monitoring.
  • SIM1 and SIM2 are on the same RF front-end module, the actual required frequency band is selected by the irrelevance of RF channels.
  • SIM1 and SIM2 are respectively connected to two power amplifiers, and the two power amplifiers select different bandpass filters through the first selection switch. Simultaneous communication of SIM1 and SIM2 is achieved through two bandpass filters.
  • SIM1 and SIM2 are on different RF front-end modules, the two SIM cards can completely go through independent RF paths, are not related to each other, and are completely identical.
  • SIM1 communicating through the first RF front-end module 1021 and SIM2 communicating through the second RF front-end module 1022 as an example.
  • SIM1 works in a low frequency band
  • SIM1 is connected to a power amplifier in the first radio frequency front-end module 1021, and can be connected to any band-pass filter through the first selection switch.
  • SIM2 works in the middle frequency band, SIM2 is connected to a power amplifier in the second RF front-end module 1022, and can be connected to any band-pass filter through the first selection switch, and SIM1 and SIM2 are connected to different band-pass filters.
  • SIM1 and SIM2 are in the same frequency band
  • network optimization is required to define the frequency bands of SIM1 and SIM2.
  • the signals of SIM1 and SIM2 are processed through network optimization, and different frequency bands are selected.
  • SIM1 and SIM2 both work in the low frequency band.
  • the first frequency band and the third frequency band are the same frequency band
  • the second frequency band and the fourth frequency band are different frequency bands from the first frequency band and the second frequency band.
  • SIM1 and SIM2 work in the first frequency band and the second frequency band respectively, through network optimization, SIM2 is changed from the original third frequency band to the fourth frequency band, and SIM1 keeps the original first frequency band; or through network optimization, SIM1 is changed by The original first frequency band is changed to the second frequency band, and SIM2 keeps the original third frequency band.
  • the two different bandpass filters in the first radio frequency front-end module 1021 are respectively connected to SIM1 and SIM2 to realize communication between SIM1 and SIM2.
  • SIM1 and SIM2 are in the interference frequency band, first optimize the network to avoid the interference frequency band.
  • the working frequency bands of SIM1 and SIM2 can be adjusted to frequency bands that do not interfere with each other, so as to realize synchronous communication between SIM1 and SIM2.
  • the communication device can use a set of radio frequency front-end modules, and realize dual-card dual-pass by utilizing decoupling between frequency bands and decoupling between baseband chips.
  • the area of the ornaments can be reduced, and the cost of the mobile terminal can also be reduced. At the same time, it can effectively solve the problem of frequency band interference and improve the communication effect of the mobile terminal.
  • the communication device provided by the embodiment of the present application does not specifically limit the communication card.
  • the input port of the corresponding radio frequency chip may correspond to the number of communication cards. Therefore, the total number of input ports of the radio frequency chip provided in the embodiment of the present application only needs to satisfy at least two, and the specific number may be determined according to the actual situation.
  • the radio frequency chip has at least two input ports, the corresponding baseband chip is connected to the at least two input ports.
  • the communication device does not specifically limit the number of the radio frequency front-end modules and the radio frequency chips.
  • each radio frequency chip corresponds to one communication card in FIG. 4 .
  • the number of radio frequency chips also changes accordingly.
  • only one radio frequency chip can be selected regardless of the number of communication cards.
  • the radio frequency chip has at least two input ports, and the specific number corresponds to the number of communication cards.
  • the third selection switch in the radio frequency chip is a multi-pole multi-throw switch.
  • At least two input ports are connected to different power amplifiers in the at least two power amplifiers through the third selection switch, so that the decoupling between the input port and the power amplifier can be realized through the multi-pole multi-throw switch, and each communication card can choose any one. of a power amplifier.
  • the RF front-end module is divided into different modules according to the working frequency band in Figure 4, or it is not necessary to divide the RF front-end module, and use one RF front-end module.
  • the communication device provided in this embodiment of the present application also does not specifically limit the number of antennas.
  • FIG. 4 illustrates the minimum number of antennas corresponding to the communication card, and multiple antennas, such as three or four, may be set. antenna. Therefore, in this embodiment of the present application, the number of antennas may be at least two, and the specific number of antennas may be selected from different numbers of antennas according to actual conditions.
  • FIG. 5 shows a structural block diagram of another communication apparatus provided by an embodiment of the present application.
  • the communication device is used for simultaneous communication of three communication cards.
  • the communication device shown in FIG. 5 includes a baseband chip 2010 , a radio frequency chip 2020 , a radio frequency front-end module 2030 and an antenna.
  • the communication mode is the same as the communication mode shown in FIG. 4 , and will not be repeated here.
  • the baseband chip 2010 shown in FIG. 5 includes three modules M0 , M1 and M2 , and each module corresponds to a communication card for transmitting the communication card to the radio frequency chip 2020 .
  • the radio frequency chip 2020 has three ports, and the three ports are respectively connected with the M0, M1 and M2 modules.
  • the number of the radio frequency chip 2020 is one, and two third selection switches 2021 are disposed in the radio frequency chip 2020, and each third selection switch 2021 is a single-pole double-throw switch.
  • the M0 module is connected to the moving end of one of the third selection switches 2021, the M2 module is connected to the moving end of the other third selection switch 2021, and the M1 module is selectively connected to the two The moving end of the third selection switch 2021 is connected.
  • the M0 module can be connected to a third selection switch 2021, and the M1 or M2 module can be connected to another third selection switch 2021; or, the M0 or M1 module can be connected to a third selection switch 2021, and the M2 module The group is connected to another third selection switch 2021.
  • the stationary ends of the two third selection switches 2021 are respectively connected to the two power amplifiers in each RF front-end module 2030 .
  • the third selection switch 2021 can also select a multi-pole multi-throw switch, which can also realize that the baseband chip 2010 is connected to the radio frequency front-end module 2030 through the radio frequency chip 2020 .
  • the number of RF front-end modules 2030 provided in this embodiment of the present application is four, and the structure of each RF front-end module 2030 may refer to the description of the RF front-end module 2030 shown in FIG. 3 , which will not be repeated here.
  • the four radio frequency front-end modules 2030 are divided according to working frequency bands, and can be divided into radio frequency front-end modules 2030 corresponding to different working frequency bands such as low frequency, intermediate frequency, and high frequency.
  • the three RF front-end modules 2030 correspond to the main set antenna, and the other RF front-end module 2030 corresponds to the graded antenna. As shown in FIG. 5 , three RF front-end modules 2030 are correspondingly connected to two antennas 2040, and the antennas 2040 are used as the main antenna.
  • connection mode of the three RF front-end modules 2030 and the two antennas 2040 reference may be made to the connection mode of the three RF front-end modules and the two antennas shown in FIG. 4 , which will not be repeated here.
  • Two output ports of another RF front-end module 2030 are connected to two antennas 2050, and the antennas 2050 are used as diversity antennas.
  • the antenna provided by the embodiments of the present application described above can be used as a main antenna or a diversity antenna.
  • the working principle shown in FIG. 5 is similar to the working principle shown in FIG. 4 and will not be repeated here. The only difference is that the communication device shown in FIG. 5 can communicate with three communication cards, and two communication cards in working state among the three communication cards can be connected to the main antenna or the diversity antenna.
  • the communication device may also use one RF front-end module without dividing the RF front-end module.
  • the RF front-end module can be equivalent to the sum of all channels in the four RF front-end modules shown in FIG. 5 .
  • the embodiment of the present application also provides a communication device, the communication device includes: a baseband chip, a radio frequency chip, and a set of radio frequency front-end modules; wherein, a set of radio frequency front-end modules includes at least two radio frequency front-end modules, different radio frequency front-end modules The working frequency bands of the modules are different, and each RF front-end module has at least two first channels; the baseband chip is connected to the RF chip, and the RF chip is connected to each RF front-end module; the RF chip is configured to: select a group of RF front-ends At least two different first channels in any one radio frequency front-end module in the modules are connected; or, the radio frequency chip selects at least two different radio frequency front-end modules in a group of radio frequency front-end modules to be connected.
  • the baseband chip is connected with the radio frequency chip, and the radio frequency chip is connected with the radio frequency front-end module, so as to realize the connection between the modules of the communication device, and through the connection relationship and the connection of the first internal channel in the radio frequency front-end module , so that the signals of different communication cards can communicate at the same time, and the communication effect of the communication device is improved.
  • the first channel may be a channel composed of a power amplifier and a band-pass filter.
  • the above-mentioned baseband chip is used for sending signals of at least two communication cards to the radio frequency chip, thereby realizing signal transmission of at least two communication cards through the baseband chip.
  • the baseband chip as shown in FIG. 5 has modules such as M0, M1, M3, etc., so that the signal transmission of the three communication cards can be realized.
  • the signals of at least two communication cards are transmitted through different first channels in the same RF front-end module selected by the RF chip; or the signals of at least two communication cards are transmitted through at least two different RF front-ends selected by the RF chip Module transfer.
  • the signals of the communication card can be transmitted through different channels. For details, refer to the related description in FIG. 4 .
  • the radio frequency chip has at least two second channels and selection switches.
  • at least two second channels are in one-to-one correspondence with the signals of at least two communication cards; each second channel is connected to any first channel in any RF front-end module in a group of RF front-end modules through a selection switch Connected; different second channels are connected to different first channels in the same RF front-end module through a selection switch; or, different second channels are connected to different RF front-end modules through a selection switch.
  • the selection of the RF chip to the RF front-end module is realized through the selection switch.
  • the selection of the radio frequency chip to the radio frequency front-end module is realized by the selection switch.
  • FIG. 5 For details, please refer to the relevant description in FIG. 5 .
  • the selector switch is a multi-pole multi-throw selector switch, so as to realize any matching, that is, the communication card can select any first channel connection in any RF front-end module.
  • the decoupling of the communication card and the first channel is realized, which can be arbitrarily combined as required.
  • An embodiment of the present application further provides a communication device, the communication device includes a baseband chip and a radio frequency chip; wherein the baseband chip transmits at least two signals to the radio frequency chip; the radio frequency chip transmits at least two signals to a radio frequency front-end The different first channels of the module correspond to the connected ports; the radio frequency chip sends the signals of at least two communication cards to the ports used for corresponding communication with different radio frequency front-end modules, so that the radio frequency chip can realize the communication of two different signals. transmission.
  • the radio frequency chip has at least two second channels, a selection switch and at least two output ports; the at least two second channels are in one-to-one correspondence with the signals of at least two communication cards; each second channel is connected to at least two communication cards through the selection switch.
  • the selection of the RF chip to the RF front-end module is realized through the selection switch.
  • the selection of the radio frequency chip to the radio frequency front-end module is realized by the selection switch.
  • the selector switch is a multi-pole multi-throw selector switch, so as to realize any matching, that is, the communication card can select any first channel connection in any RF front-end module.
  • the decoupling of the communication card and the first channel is realized, which can be arbitrarily combined as required.
  • An embodiment of the present application further provides a mobile terminal, where the mobile terminal may be a common mobile terminal such as a mobile phone and a tablet computer, and the mobile terminal may include the above-mentioned communication device.
  • the communication device may be arranged in the casing of the mobile terminal according to the space in the mobile terminal.
  • the band-pass filter and the power amplifier in the RF front-end module can be decoupled, and any power amplifier and any band-pass filter can be realized through the first selection switch. connection between.
  • the communication card, the radio frequency chip, the power amplifier, the band-pass filter and the antenna can be decoupled, and the above components can be combined arbitrarily, so that the flexibility
  • the communication channel is selected to improve the communication effect of the mobile terminal.

Abstract

本申请提供一种通信装置及通信方法,通信装置包括射频前端模组,射频前端模组包括两个选择开关、设置在两个选择开关之间的至少两个带通滤波器。通过第一选择开关可选择不同的带通滤波器。射频前端模组还包括至少两个功率放大器和至少两个输出端口,功率放大器和输出端口一一对应。每个功率放大器可任意选择一个带通滤波器进行连通,也可选择任意一个输出端口连通。另外,不同功率放大器连通的带通滤波器为不同的带通滤波器,且不同功率放大器连通的输出端口为不同的输出端口。通过采用第一选择开关和第二选择开关可将射频前端模组内的带通滤波器与功率放大器解耦,通过第一选择开关可实现任意的功率放大器与任意的带通滤波器之间连接。

Description

一种通信装置及通信方法
相关申请的交叉引用
本申请要求在2020年06月30日提交中国专利局、申请号为202010622662.8、申请名称为“一种通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2020年12月31日提交中国专利局、申请号为202011624608.3、申请名称为“一种通信装置及通信方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及到一种通信装置及通信方法。
背景技术
射频前端模组是指介于天线与射频收发模组之间的通信零组件,包含多个带通滤波器、PA(功率放大器)、选择开关、天线调谐等器件。
现有技术中的射频前端模组仅包含有一个功率放大器,功率放大器通过选择开关在多个带通滤波器中选择一个带通滤波器连接。在射频前端模组使用时,仅被选择的带通滤波器工作,其余带通滤波器处于闲置状态,造成资源的浪费。
发明内容
本申请提供一种通信装置及通信方法,用以改善射频前端模组的资源利用率。
第一方面,提供了一种通信装置,该通信装置包括射频前端模组,射频前端模组是指介于天线与射频收发模组之间的通信零组件,应用于移动终端中,是通信的重要部件。射频前端模组包括两个选择开关、以及设置在两个选择开关之间的至少两个带通滤波器。频前端模组还包括至少两个功率放大器和至少两个输出端口,功率放大器和输出端口一一对应,且功率放大器作为输入端,输出端口作为输出端。每个功率放大器被配置为:通过第一选择开关选择一个带通滤波器连接,之后通过第二选择开关选择一个输出端口,形成一条通信的通路。且每个功率放大器可通过所述第一选择开关与所述至少两个带通滤波器中的任一个带通滤波器连通,与该功率放大器连通的带通滤波器通过所述第二选择开关与所述至少两个输出端口中的任一个输出端口连通;即每个功率放大器可任意选择一个带通滤波器进行连通,也可选择任意一个输出端口连通。另外,不同功率放大器连通的带通滤波器为不同的带通滤波器,且不同功率放大器连通的输出端口为不同的输出端口。在上述技术方案中,通过采用第一选择开关和第二选择开关可将射频前端模组内的带通滤波器与功率放大器解耦,通过第一选择开关可实现任意的功率放大器与任意的带通滤波器之间连接,采用至少两个功率放大器,至少可使得射频前端模组中的至少两个带通滤波器工作,提高了射频前端模组中的资源利用效果。
在一个具体的可实施方案中,每个带通滤波器上设置有双工器或滤波器。可实现对不同信号进行滤波。
在一个具体的可实施方案中,不同带通滤波器对应的信号的频率不同。实现不同频率的信号的传输。
在一个具体的可实施方案中,所述第一选择开关和所述第二选择开关均为多刀多掷开关。通过多刀多掷开关实现了将至少两个功率放大器与至少两个带通滤波器解耦,至少两个功率放大器可择一选择不同的两个带通滤波器。
在一个具体的可实施方案中,功率放大器的个数为两个,第一选择开关和第二选择开关为双刀多掷开关。可支持两个不同的通讯卡同时通信。
在一个具体的可实施方案中,还包括至少两个天线。其中,每个输出端口择一与所述至少两个天线中的一个天线连接,且不同的输出端口连接不同的天线。通过采用第一选择开关和第二选择开关可将射频前端模组内的带通滤波器与功率放大器解耦,通过第一选择开关可实现任意的功率放大器与任意的带通滤波器之间连接。采用至少两个功率放大器,还可支持不同通讯卡进行通信。至少两个功率放大器可使得射频前端模组中的至少两个带通滤波器工作,提高了射频前端模组中的资源利用效果。
在一个具体的可实施方案中,还包括射频芯片,所述射频芯片包括:至少两个输入端口以及第三选择开关;所述至少两个输入端口通过所述第三选择开关选择所述至少两个功率放大器中不同的功率放大器连通。通过第三选择开关可实现射频芯片与功率放大器解耦,射频芯片可根据需要选择不同的功率放大器。
在一个具体的可实施方案中,所述第三选择开关为多刀多掷开关。通过多刀多掷开关实现输入端口与功率放大器之间的解耦。
在一个具体的可实施方案中,第三选择开关的个数与输入端口一一对应,每个第三选择开关为单刀多掷开关。实现输入端口与功率放大器之间的解耦。
在一个具体的可实施方案中,所述射频前端模组的个数为多个,且多个射频前端模组对应不同的工作频段;每个天线连接有第四选择开关;
每个天线通过所述第四选择开关选择所述多个射频前端模组中的至少部分射频前端模组连接。实现天线与输出端口之间的解耦,可通过第四选择开关选择不同的输出端口。
在一个具体的可实施方案中,还包括多工器,所述第四选择开关通过多工器与对应的天线连接。
在一个具体的可实施方案中,每个天线可作为主集天线或分集天线。对天线进行了集成,简化了结构。
在一个具体的可实施方案中,还包括基带芯片,所述基带芯片与所述至少两个输入端口连接。通过基带芯片处理信号。
第二方面,提供了一种通信装置,该通信装置包括射频前端模组,所述射频前端模组包括:第一选择开关,至少两个功率放大器,至少两个带通滤波器,第二选择开关,及至少两个输出端口;其中,所述第一选择开关用于选择性地连通所述至少两个功率放大器中的任一功率放大器,和所述至少两个带通滤波器中的任一带通滤波器;所述第二选择开关用于选择性地连通所述至少两个带通滤波器中的任一带通滤波器,和所述至少两个输出端口中的任一输出端口。在上述技术方案中,通过采用第一选择开关和第二选择开关可将射频前端模组内的带通滤波器与功率放大器解耦,通过第一选择开关可实现任意的功率放大器与任意的带通滤波器之间连接,采用至少两个功率放大器,至少可使得射频前端模组中的至少两个带通滤波器工作,提高了射频前端模组中的资源利用效果。
在一个具体的可实施方案中,每个带通滤波器上设置有双工器或滤波器。可实现对不同信号进行滤波。
在一个具体的可实施方案中,不同带通滤波器对应的信号的频率不同。实现不同频率的信号的传输。
在一个具体的可实施方案中,所述第一选择开关和所述第二选择开关均为多刀多掷开关。通过多刀多掷开关实现了将至少两个功率放大器与至少两个带通滤波器解耦,至少两个功率放大器可择一选择不同的两个带通滤波器。
在一个具体的可实施方案中,功率放大器的个数为两个,第一选择开关和第二选择开关为双刀多掷开关。可支持两个不同的通讯卡同时通信。
在一个具体的可实施方案中,还包括至少两个天线。其中,每个输出端口择一与所述至少两个天线中的一个天线连接,且不同的输出端口连接不同的天线。通过采用第一选择开关和第二选择开关可将射频前端模组内的带通滤波器与功率放大器解耦,通过第一选择开关可实现任意的功率放大器与任意的带通滤波器之间连接。采用至少两个功率放大器,还可支持不同通讯卡进行通信。至少两个功率放大器可使得射频前端模组中的至少两个带通滤波器工作,提高了射频前端模组中的资源利用效果。
在一个具体的可实施方案中,还包括射频芯片,所述射频芯片包括:至少两个输入端口以及第三选择开关;所述至少两个输入端口通过所述第三选择开关选择所述至少两个功率放大器中不同的功率放大器连通。通过第三选择开关可实现射频芯片与功率放大器解耦,射频芯片可根据需要选择不同的功率放大器。
在一个具体的可实施方案中,所述第三选择开关为多刀多掷开关。通过多刀多掷开关实现输入端口与功率放大器之间的解耦。
在一个具体的可实施方案中,第三选择开关的个数与输入端口一一对应,每个第三选择开关为单刀多掷开关。实现输入端口与功率放大器之间的解耦。
在一个具体的可实施方案中,所述射频前端模组的个数为多个,且多个射频前端模组对应不同的工作频段;每个天线连接有第四选择开关;
每个天线通过所述第四选择开关选择所述多个射频前端模组中的至少部分射频前端模组连接。实现天线与输出端口之间的解耦,可通过第四选择开关选择不同的输出端口。
在一个具体的可实施方案中,还包括多工器,所述第四选择开关通过多工器与对应的天线连接。
在一个具体的可实施方案中,每个天线可作为主集天线或分集天线。对天线进行了集成,简化了结构。
在一个具体的可实施方案中,还包括基带芯片,所述基带芯片与所述至少两个输入端口连接。通过基带芯片处理信号。
第三方面,提供了一种射频前端模组,所述射频前端模组包括:第一选择开关,至少两个功率放大器,至少两个带通滤波器,第二选择开关,及至少两个输出端口;其中,所述第一选择开关用于选择性地连通所述至少两个功率放大器中的任一功率放大器,和所述至少两个带通滤波器中的任一带通滤波器;所述第二选择开关用于选择性地连通所述至少两个带通滤波器中的任一带通滤波器,和所述至少两个输出端口中的任一输出端口。在上述技术方案中,通过采用第一选择开关和第二选择开关可将射频前端模组内的带通滤波器与功率放大器解耦,通过第一选择开关可实现任意的功率放大器与任意的带通滤波器之间连接,采用至少两个功率放大器,至少可使得射频前端模组中的至少两个带通滤波器工作,提高了射频前端模组中的资源利用效果。
在一个具体的可实施方案中,每个带通滤波器上设置有双工器或滤波器。可实现对不同信号进行滤波。
在一个具体的可实施方案中,不同带通滤波器对应的信号的频率不同。实现不同频率的信号的传输。
在一个具体的可实施方案中,所述第一选择开关和所述第二选择开关均为多刀多掷开关。通过多刀多掷开关实现了将至少两个功率放大器与至少两个带通滤波器解耦,至少两个功率放大器可择一选择不同的两个带通滤波器。
在一个具体的可实施方案中,功率放大器的个数为两个,第一选择开关和第二选择开关为双刀多掷开关。可支持两个不同的通讯卡同时通信。
第四方面,提供了一种通信装置,该通信装置包括:基带芯片、射频芯片及一组射频前端模组;其中,所述一组射频前端模组包括至少两个射频前端模组,不同射频前端模组的工作频段不同,每个射频前端模组具有至少两个第一通道,每个射频前端模组的结构可参考上述所示的射频前端模组的结构;所述基带芯片与所述射频芯片连接,所述射频芯片与每个射频前端模组连接;所述射频芯片被配置为:选择所述一组射频前端模组中的任一个射频前段模组中的至少两个不同的第一通道连通;或者,所述射频芯片选择所述一组射频前端模组中至少两个不同的射频前端模组连通。在上述技术方案中,通过采用射频前端模组具有至少两个第一通道,从而可以实现不同通讯卡的信号同时通信,改善了通信装置的通信效果。
在一个具体的可实施方案中,所述基带芯片用于向所述射频芯片发送至少两个通讯卡的信号。通过基带芯片实现至少两个通讯卡的信号传输。
在一个具体的可实施方案中,所述至少两个通讯卡的信号通过所述射频芯片选择的同一射频前端模组中的不同的第一通道传输;或者
所述至少两个通讯卡的信号通过所述射频芯片选择的至少两个不同射频前端模组传输。通讯卡的信号可通过不同的通道传输。
在一个具体的可实施方案中,所述射频芯片具有至少两个第二通道、选择开关;
所述至少两个第二通道与所述至少两个通讯卡的信号一一对应;
每个第二通道通过所述选择开关与所述一组射频前端模组中的任一个第一通道连通;不同第二通道通过所述选择开关与同一射频前端模组中的不同第一通道连接;或,不同第二通道通过所述选择开关与不同的射频前端模组连通。通过选择开关实现射频芯片对射频前端模组的选择。
在一个具体的可实施方案中,所述选择开关为多刀多掷选择开关。实现了任意的选配。
第五方面,提供了一种通信装置,该通信装置包括基带芯片和射频芯片;其中,所述基带芯片向所述射频芯片传输至少两个信号;所述射频芯片将所述至少两个信号发送到用于与同一射频前端模组的不同第一通道对应连通的端口;所述射频芯片将所述至少两个通讯卡的信号发送到用于与不同射频前端模组对应连通的端口,每个射频前端模组的结构可参考上述所示的射频前端模组的结构。实现了两个信号同时的通讯。
在一个具体的可实施方案中,所述射频芯片具有至少两个第二通道、选择开关及至少两个输出端口;所述至少两个第二通道与所述至少两个通讯卡的信号一一对应;每个第二通道通过所述选择开关与所述至少两个输出端口中的任一个输出端口连通;不同第二通道连通的输出端口为不同的输出端口。通过选择开关实现射频芯片对射频前端模组的选择。
第六方面,提供了一种通信方法,所述方法包括以下步骤:
通过第一选择开关选择至少两个带通滤波器中的任一个带通滤波器,使得至少两个功率放大器中的任一功率放大器通过所述第一选择开关选择性地和所述至少两个带通滤波器中的任一带通滤波器连通;通过的第二选择开关选择至少两个输出端口中的任一个输出端口连通,使得所述至少两个带通滤波器中的任一带通滤波器通过所述第二选择开关选择性地和所述至少两个输出端口中的任一输出端口连通;其中,不同功率放大器连通的带通滤波器为不同的带通滤波器;不同功率放大器连通的输出端口为不同的输出端口。在上述技术方案中,通过采用第一选择开关和第二选择开关可将射频前端模组内的带通滤波器与功率放大器解耦,通过第一选择开关可实现任意的功率放大器与任意的带通滤波器之间连接,采用至少两个功率放大器,至少可使得射频前端模组中的至少两个带通滤波器工作,提高了射频前端模组中的资源利用效果。
在一个具体的可实施方案中,所述第一选择开关和所述第二选择开关均为多刀多掷开关。
在一个具体的可实施方案中,每个带通滤波器上设置有双工器或滤波器。
附图说明
图1为现有技术中射频前端模组的结构框图;
图2为现有技术中通信系统的结构框图;
图3为本申请实施例提供的射频前端模组的结构框图;
图4为本申请实施例提供的通信装置的结构框图;
图5为本申请实施例提供的另一通信装置的结构框图。
具体实施方式
首先说明,本申请中的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的结构,而不代表特定的顺序或先后次序。
为方便理解本申请实施例提供的通信装置,介绍一下其应用场景,本申请实施例提供的通信装置应用于移动终端,移动终端可为手机、平板电脑等常见的移动终端。本申请实施例提供的通信装置可为不同的组合,即可仅包含射频前端模组,也可包含射频前端模组与其他部件组合而成的组件。
射频前端模组应用于移动终端的通信中,是指介于天线与射频收发模组之间的通信零组件。如图1所示射频前端模组具有一个输入端口和一个输出端口,射频前端模组2内还设置了多个带通滤波器5,带通滤波器5用于滤除杂讯、干扰及不需要的讯号,只留下所需频率范围内的信号,每个带通滤波器5针对的频率范围不同。可通过选择不同的带通滤波器5实现天线7的不同工作频段。在使用时,射频芯片1与射频前端模组2中的功率放大器3连接,功率放大器3通过第一单刀多掷开关4与多个带通滤波器5连接,并可选择多个带通滤波器5中的任一个带通滤波器连接。与功率放大器3连接的带通滤波器5通过第二单刀多掷开关6与天线7连接,形成完整的通信通路。由图1可看出,目前的射频前端模组2在使用时,仅一个带通滤波器5处于工作状态,其余的带通滤波器5处于闲置状态,但是为了满足天线7在不同频段的工作状态,又不得不设置多个带通滤波器5。这就 造成资源的浪费。
另外,如图2所示的现有技术中的移动终端的内部通信系统。目前所有的双卡双待手机的通信系统中,为支持双卡的数据和语音业务,往往会设置两个独立的射频前端模组300,基带芯片100与两个射频芯片200连接,每个射频芯片200通过一个对应的射频前端模组300与天线连接。但是这种单独设置两个射频前端模组300的方式,会造成更多的带通滤波器浪费,同时相比一个射频前端模组300的情况,采用两个独立的射频前端模组300还会占用手机内更大的空间。为此本申请实施例提供了一种射频前端模组,下面结合具体的附图对其进行说明。
图3示出了本申请实施例提供的射频前端模组的结构框图。本申请实施例提供的射频前端模组10包括第一选择开关30、第二选择开关50、带通滤波器40及功率放大器20。带通滤波器40主要用来滤除杂讯、干扰及不需要的信号,只留下所需频率范围内的信号。功率放大器20则是在发射信号时放大输入信号,使得输出的信号幅度够大,以便后续处理。选择开关则是利用开启和关闭之间切换,允许信号通过或不通过。
射频前端模组10具有输入端口和输出端口60,输入端口和输出端口60分别作为信号的输入和输出。作为一个示例,输入端口用于连接通讯卡,如SIM卡;输出端口60用于连接天线。另外,输入端口和输出端口60一一对应,每个输入端口和输出端口60可通过射频前端模组10中的带通滤波器40连通,以形成通讯卡到天线的完整通路。
输入端口和输出端口60的个数至少为两个,且每个输入端口与射频前端模组10内的功率放大器20一一对应连接,输入端口还可理解为是功率放大器20的输入端。示例性的,图3中示出了两个输出端口60,两个输出端口60分别对应连接两个功率放大器20。为方便描述将两个功率放大器20分别命名为第一功率放大器21、第二功率放大器22。应理解图3示例的功率放大器20及输出端口60的个数仅为一个具体示例,本申请实施例提供的输出端口60及功率放大器20的个数还可为三个、四个、五个等不同的个数。具体可依据移动终端中设置的通讯卡的个数而定。另外,在设置功率放大器20时,输出端口60及功率放大器20的个数不大于带通滤波器40的个数,以保证每个功率放大器20均可连接一个带通滤波器40。
第一选择开关30、至少两个带通滤波器40及第二选择开关50组成通道选择模块。输入端口和输出端口60可通过通道选择模块选择带通滤波器40作为连接的通路。在器件设置时,至少两个带通滤波器40位于中间,第一选择开关30及第二选择开关50分列在带通滤波器40的两端。带通滤波器40的一端与第一选择开关30连接,另一端与第二选择开关50连接。第一选择开关30用于与至少两个功率放大器20连接,第二选择开关50用于与至少两个输出端口60连接。即第一选择开关30用于选择性地连通至少两个功率放大器20中的任一功率放大器,和至少两个带通滤波器40中的任一带通滤波器。而第二选择开关50用于选择性地连通至少两个带通滤波器40中的任一带通滤波器,和至少两个输出端口60中的任一输出端口。
作为一个可选的方案,不同带通滤波器40对应的信号的频率不同。即每个带通滤波器40针对的频率范围不同,功率放大器20从而可通过选择不同的带通滤波器40来实现天线的不同工作频段。在一个可选的方案中,每个带通滤波器40上设置有双工器或滤波器。如每个带通滤波器40上设置有滤波器,以实现对单方向信号进行滤波;或者每个带通滤波器40上设置有双工器,以实现对发射信号和接收信号进行滤波;或者,部分带通 滤波器40上设置有滤波器,部分带通滤波器40上设置有双工器。示例性的,如图3中所示,四个带通滤波器40上设置有滤波器,一个带通滤波器40上设置有双工器。
在输入端口和输出端口60连接时,功率放大器20与输出端口60的个数一一对应。每个功率放大器20可通过第一选择开关30选择一个带通滤波器40连接,之后通过第二选择开关50选择一个输出端口60,形成一条通信的通路。其中,每个功率放大器20可通过第一选择开关30与至少两个带通滤波器40中的任一个带通滤波器40连通,与该功率放大器20连通的带通滤波器40通过第二选择开关50与至少两个输出端口60中的任一个输出端口60连通。即每个功率放大器20可任意选择一个带通滤波器40进行连通,也可选择任意一个输出端口60连通。另外,对于至少两个功率放大器20,不同功率放大器20连通的带通滤波器40为不同的带通滤波器40,且不同功率放大器20连通的输出端口60为不同的输出端口60,从而使得每个输入端口和输出端口60可选择不同的带通滤波器40形成完整的通路。
以图3为例,第一功率放大器21可通过第一选择开关30选择第一带通滤波器41至第五带通滤波器45中的任一个带通滤波器40连通,与第一功率放大器21连接的一个带通滤波器40通过第二选择开关50可选择任一个输出端口60连通。由上述描述可看出,本申请实施例提供的功率放大器20与带通滤波器40实现了解耦,功率放大器20可任意选择带通滤波器40连接,且不同的功率放大器20可选择不同的带通滤波器40。同理,对于输出端口60也实现了解耦,任一个带通滤波器40可选择任一个输出端口60。
为方便理解,以第一带通滤波器41和第二带通滤波器42为例进行说明,在输入端口和输出端口60连接时,存在如下几种情况:
1)第一功率放大器21通过第一选择开关30与第一带通滤波器41连接,第一带通滤波器41通过第二选择开关50选择第一输出端口61连接。第二功率放大器22通过第一选择开关30与第二带通滤波器42连接,第二带通滤波器42第二选择开关50与第二输出端口62连通。
2)第一功率放大器21通过第一选择开关30与第一带通滤波器41连接,第一带通滤波器41通过第二选择开关50选择第二输出端口62连接。第二功率放大器22通过第一选择开关30与第二带通滤波器42连接,第二带通滤波器42第二选择开关50与第一输出端口61连通。
3)第一功率放大器21通过第一选择开关30与第二带通滤波器42连接,第二带通滤波器42通过第二选择开关50与第一输出端口61连接;第二功率放大器22通过第一选择开关30与第一带通滤波器41连接,第一带通滤波器41通过第二选择开关50与第二输出端口62连通。
4)第一功率放大器21通过第一选择开关30与第二带通滤波器42连接,第二带通滤波器42通过第二选择开关50与第二输出端口62连接;第二功率放大器22通过第一选择开关30与第一带通滤波器41连接,第一带通滤波器41通过第二选择开关50与第一输出端口61连通。
以上述示例为参考,在射频前端模组10具有五个带通滤波器40(第一带通滤波器41、第二带通滤波器42、第三带通滤波器43、第四带通滤波器44及第五带通滤波器45)时,两个功率放大器20通过第一选择开关30可任意选择第一带通滤波器41至第五带通滤波器45中的两个带通滤波器40进行连接,也可通过第二选择开关50选择输出端口60。
在一个可选的方案中,第一选择开关30可为多刀多掷开关。第一选择开关30的动端与功率放大器20的个数对应,每个功率放大器20与第一选择开关30的一个动端对应连接。第一选择开关30的不动端与带通滤波器40的个数对应,每个带通滤波器40与一个不动端对应连接。以图3所示的射频前端模组10为例,在功率放大器20的个数为两个、带通滤波器40的个数为五个时,第一选择开关30的动端为两个、不动端为五个。第一选择开关30中的每个动端可与五个不动端中的任一不动端连接,且不同的动端与不同的不动端连接。从而实现功率放大器20与带通滤波器40的解耦:任一的功率放大器20可与任意的带通滤波器40连接,不同的功率放大器20与不同的带通滤波器40连接。
在一个可选的方案中,第二选择开关50可为多刀多掷开关。第二选择开关50的动端与输出端口60的个数对应,每个输出端口60与第二选择开关50的一个动端对应连接。第二选择开关50的不动端与带通滤波器40的个数对应,每个带通滤波器40与一个不动端对应连接。以图3所示的射频前端模组10为例,在输出端口60的个数为两个、带通滤波器40的个数为五个时,第二选择开关50的动端为两个、不动端为五个。第二选择开关50中的每个动端可与五个不动端中的任一不动端连接,且不同的动端与不同的不动端连接。从而实现输出端口60与带通滤波器40的解耦:任一的输出端口60可与任意的带通滤波器40连接,不同的输出端口60与不同的带通滤波器40连接。
在一个可选的方案中,第一选择开关30和第二选择开关50还可选择其他的开关,以第一选择开关30为例,第一选择开关30可为至少两个单刀多掷开关。单刀多掷开关的个数与功率放大器20的个数对应,每个单刀多掷开关的不动端与功率放大器20一一对应连接,每个单刀多掷开关的不动端与至少两个带通滤波器40一一对应连接。且至少两个单刀多掷开关的不动端与至少两个带通滤波器40同时连接。每个功率放大器20通过对应单刀多掷开关可择一选择任一个带通滤波器40连接,不同的功率放大器20可通过对应的单刀多掷开关选择不同的带通滤波器40连接。
第二选择开关50在采用至少两个单刀多掷开关时,设置方式与第一选择开关30相类似,在此不再详细赘述。
由上述描述可看出,通过采用第一选择开关30和第二选择开关50可将射频前端模组10内的带通滤波器40与功率放大器20解耦,通过第一选择开关30可实现任意的功率放大器20与任意的带通滤波器40之间连接。在射频前端模组10应用到移动终端的通信系统中时,可通过不同的功率放大器20连接不同的通讯卡,从而可实现不同通讯卡同时通信的效果。另外在不同通讯卡通信时,可通过射频前端模组10中的不同的带通滤波器40通信,降低了射频前端模组10中带通滤波器40闲置的情况,提高了资源利用率。
与图2所示的现有技术中的射频前端模组对比可发现,在同时具有五个带通滤波器时,现有技术中的射频前端模组中有四个带通滤波器在闲置,且仅能支持一个通讯卡进行通信。而在本申请实施例图3提供的带通滤波器40中仅3条带通滤波器40被闲置,且可支持两个不同的通讯卡同时进行通信。在减少带通滤波器40闲置的情况下,还提升了一个射频前端模组10支持通讯卡的个数。在采用本申请实施例提供的射频前端模组10时,无需采用图2所示的通过两个独立的射频前端模组来支持通讯卡通信。从而可达到如下效果:
1)本申请实施例提供的射频前端模组10仅需一个即可实现现有技术中两个射频前端模组10的效果,降低了移动终端的生产成本。
2)现有技术的移动终端需要对两个射频前端模组进行校准,而本申请仅需校准一个 射频前端模组10。从而降低了移动终端产线校准时间过长的情况,提高发货效率。
3)现有技术中的移动终端两个射频前端模组需要占用较大的摆件面积,而摆件面积的增加会严重压缩PCB面积,而本申请实施例提供的射频前端模组10可降低占用的摆件面积。
4)现有技术中的移动终端采用两个射频前端模组时,不可避免会存在两个通讯卡选择同一频段工作,而本申请公开的技术方案中,通过采用通讯卡选择不同的带通滤波器40(不同带通滤波器40对应的频段不同),降低了天线之间的干扰。干扰问题非常多,改善天线OTA性能,提高了用户体验。
为方便理解本申请实施例提供的射频前端模组10的效果,下面结合本申请实施例提供射频前端模组10的应用场景进行说明。
图4示出了本申请实施例提供的通信装置的结构框图。通信装置包括射频芯片、射频前端模组、天线。以发射信号为例,通信流程为:通讯卡将信号发送给射频芯片,射频芯片将信号发送到射频前端模组,并通过射频前端模组选择带通滤波器与天线连接。
在图4中示出的通信装置用于支持两个通讯卡同时通信。通信装置对应两个通讯卡,天线的个数也为两个。两个通讯卡可通过两个天线分别进行通信。为方便描述,定义了第一通讯卡和第二通讯卡,以及第一天线1051和第二天线1052。在通信时,第一通讯卡可通过第一天线1051通信,第二通讯卡通过第二天线1052通信;或者,第一通讯卡通过第二天线1052通信,第二通讯卡通过第一天线1051通信。
每个通讯卡对应连接一个射频芯片,在采用两个通讯卡时,对应设置了两个射频芯片。两个射频芯片用于一一对应处理两个通讯卡的信号。为方便描述将两个射频芯片定义为第一射频芯片1011和第二射频芯片1012。第一射频芯片1011用于处理第一通讯卡的信号,第二射频芯片1012用于处理第二通讯卡的信号;或者第一射频芯片1011用于处理第二通讯卡的信号,第二射频芯片1012用于处理第一通讯卡的信号。
每个通射频芯片具有一个输入端口,该输入端口用于与对应的通讯卡连接(上述连接指代的是信号连接,并不指代输入端口直接与通讯卡物理连接)。在与通讯卡连接时,通信装置还包括基带芯片(图4未示出),基带芯片与射频芯片的输入端口连接,用以将通讯卡的信号传递给射频芯片。
通信装置的射频前端模组的个数为多个,如图4所示的三个射频前端模组。每个射频前端模组的结构可参考图3所示的结构,在此不再赘述。为方便描述,将三个射频前端模组分别命名为第一射频前端模组1021、第二射频前端模组1022及第三射频前端模组1023。
第一射频芯片1011通过选择开关与三个射频前端模组进行连接,以使得第一通讯卡可择一选择一个射频前端模组进行连接。为与第一选择开关、第二选择开关区分,该选择开关命名为第三选择开关(图中未示出)。第一射频芯片1011包括至少两个输入端口和第三选择开关,第三选择开关的个数与输入端口一一对应。第三选择开关为单刀多掷开关,第三选择开关的动端与对应的输入端口连接,第三选择开关的不动端作为第一射频芯片1011的输出端口分别与三个射频前端模组的输入端口一一对应连接。在使用时,第三选择开关可在任意的射频前端模组之间切换,从而通过第三选择开关可实现射频芯片与功率放大器解耦,射频芯片可根据需要选择不同的功率放大器。
同理,第二射频芯片1012也通过选择开关与三个射频前端模组连接,该选择开关也命名为第三选择开关,第二射频芯片1012内的第三选择开关与第一射频芯片1011内的第 三选择开关类似,在此不再赘述。
在通讯卡为两个时,每个射频前端模组可同时与两个通讯卡连接,每个射频前端模组内设置有两个功率放大器,两个功率放大器分别与两个射频芯片一一对应连接。如:第一射频芯片1011分别与第一射频前端模组1021、第二射频前端模组1022、第三射频前端模组1023中的一个功率放大器连接;第二射频芯片1012分别与第一射频前端模组1021、第二射频前端模组1022、第三射频前端模组1023中的另一个功率放大器连接。
上述三个射频前端模组分别对应不同的工作频段,示例性的,第一射频前端模组1021为低频段的射频前端模组、第二射频前端模组1022为中频段的射频前端模组、第三射频前端模组1023为高频段的射频前端模组。
三个射频前端模组与天线连接时,每个射频前端模组的每个输出端口择一与两个天线中的一个天线连接,且不同的输出端口连接不同的天线。如第一射频前端模组1021的两个输出端口分别与第一天线1051和第二天线1052一一对应连接;第二射频前端模组1022的两个输出端口分别与第一天线1051和第二天线1052一一对应连接;第三射频前端模组1023的两个输出端口分别与第一天线1051和第二天线1052一一对应连接。
每个天线需连接多个射频前端模组,而在通信时,仅一个射频前端模组处于工作状态,因此在连接时,每个天线通过第四选择开关1031择一选择多个射频前端模组中的一个射频前端模组连接。以第一天线1051为例,第一天线1051通过选择开关与三个射频前端模组连接。为与其他选择开关区分,将该选择开关命名为第四选择开关1031。第四选择开关1031的动端与第一天线1051连接,第四选择开关1031的不动端与三个射频前端模组一一对应连接。
作为一个可选的方案,第四选择开关1031可通过多工器与对应的天线连接。示例性的,第一天线1051通过多工器与第四选择开关1031连接,第四选择开关1031与三个射频前端模组连接。其中的第四选择开关1031为多刀多掷选择开关。
第二天线1052通过第四选择开关1032与三个射频前端模组连接,具体连接方式与第四开关1031相同,在此不再赘述。
作为一个可选的方案,每个天线可作为主集天线和分集天线。如图4中所示,通信装置还包括多个带集成双工器的前端模块(简称为前端模块),为方便描述,将其分别命名为第一前端模块1041、第二前端模块1042、第三前端模块1043,且三个前端模块对应的工作频段不同,如第一前端模块1041对应低频段、第二前端模块1042对应中频段、第三前端模块1043对应高频段。每个射频芯片分别与三个前端模块一一对应连接。另外,每个前端模块分别与两个天线对应连接,即每个前端模块通过第四选择开关与天线连接。在射频芯片通过前端模块与天线连接时,天线作为分集天线。在射频芯片通过射频前端模组与天线连接时,天线作为主集天线。
下面结合第一通讯卡和第二通讯卡在同步通信时的情况,对本申请实施例提供的通信装置进行说明。其中,SIM1为第一通讯卡,SIM2为第二通讯卡。
如果是载波聚合的时候,SIM1会占用多个射频通路,SIM2采用分集监听。存在以下情况:
情况1)SIM2跟SIM1完全同一个射频前端模组上;
情况2)SIM2跟SIM1处在完全不同的高中低三个射频前端模组上;
情况3)SIM2&SIM1处在完全相同的频段上;
情况4)SIM2&SIM1处在有干扰的频段上。
对于情况1),如果SIM1和SIM2处在同一个射频前端模组上,通过射频通道不相关来选择实际需要的频段。以SIM1和SIM2均在第一射频前端模组1021通信为例,SIM1和SIM2分别与两个功率放大器连接,通过第一选择开关两个功率放大器分别选择不同的带通滤波器。通过两个带通滤波器实现SIM1和SIM2的同时通信。
对于情况2),如果SIM1和SIM2在不同的射频前端模组上,两张SIM卡完全可以走独立的射频通路,互不相关,完全同工。以SIM1通过第一射频前端模组1021通信,SIM2通过第二射频前端模组1022为例。SIM1处于低频段工作,SIM1与第一射频前端模组1021中的一个功率放大器连接,并通过第一选择开关可选择任意的一个带通滤波器连接。SIM2处于中频段工作,SIM2与第二射频前端模组1022中的一个功率放大器连接,并通过第一选择开关可选择任意的一个带通滤波器连接,SIM1和SIM2连接不同的带通滤波器。
对于情况3),如果SIM1和SIM2处在同一个频段上,需要网络优化来定义SIM1和SIM2的频段。通过网络优化对SIM1和SIM2的信号进行处理,选择不同的频段,如SIM1和SIM2均工作在低频段,SIM1在低频段具有第一频段和第二频段两个工作频段,SIM2在低频段具有第三频段和第四频段两个工作频段。其中,第一频段和第三频段为同一频段,第二频段和第四频段为与第一频段和第二频段不同的频段。在SIM1和SIM2分别工作在第一频段和第二频段时,通过网络优化,使得SIM2由原来的第三频段更改为第四频段,SIM1保持原来的第一频段;或者通过网络优化,使得SIM1由原来的第一频段更改为第二频段,SIM2保持原来的第三频段。在网络优化后,通过第一射频前端模组1021中的两个不同带通滤波器分别与SIM1和SIM2连接,实现SIM1和SIM2通信。
对于情况4),如果SIM1和SIM2处在干扰频段上,首先优化网络,规避干扰频段。具体优化方式可参考对于情况3)的相关处理情况。可采用相同的方式将SIM1和SIM2的工作频段调整为相互不干扰的频段,实现SIM1和SIM2的同步通信。
通过上述描述可看出,本申请实施例提供的通信装置可采用一套射频前端模组,利用频段之间的解耦,利用基带芯片之间的解耦,实现了双卡双通。另外,在通过一套射频前端模组实现双卡双通,相对现有技术中两套射频前端模组的情况,可减少摆件面积,同时还可降低移动终端的成本。同时,还可有效解决频段干扰问题,改善移动终端的通信效果。
作为一个变形的方案,本申请实施例提供的通信装置对通讯卡不作具体限定。在通讯卡的个数为多个时,如三个、四个时,对应的射频芯片的输入端口与通讯卡的个数对应即可。因此,在本申请实施例中提供的射频芯片的输入端口的总个数满足至少两个即可,具体的个数可根据实际的情况而定。在射频芯片具有至少两个输入端口时,对应的基带芯片与上述至少两个输入端口连接。
另外,本申请实施例提供的通信装置对射频前端模组和射频芯片的个数不做具体限定。在图4中,虽然示例出两个射频芯片,但是在图4中采用每个射频芯片对应一个通讯卡,在通讯卡的个数变化时,射频芯片的个数也跟随变化。或者还可采用无论通讯卡的个数为多个,仅选择一个射频芯片。该射频芯片的输入端口至少为两个,具体个数与通讯卡的个数相对应。对应的,射频芯片内的第三选择开关选用多刀多掷开关。至少两个输入端口通过第三选择开关选择至少两个功率放大器中不同的功率放大器连通,从而通过多刀多掷开关可实现输入端口与功率放大器之间的解耦,每个通讯卡可选择任意的一个功率放大器。
对于射频前端模组在图4中按照工作频段划分成不同的模块,也可不对射频前端模组 进行划分,采用一个射频前端模组。
本申请实施例提供的通信装置对天线的个数也不作具体限定,在图4中示例出与通讯卡对应的最少的天线个数,也可设置多个,如三个、四个等不同的天线。因此在本申请实施例中天线的个数至少为两个即可,具体的天线的个数可根据实际的情况选择不同个数的天线。
图5示出了本申请实施例提供的另一通信装置的结构框图。在图5所示的结构框图中,通信装置用于三个通讯卡同时通信。图5所示的通信装置包括基带芯片2010、射频芯片2020、射频前端模组2030及天线。通信方式与图4所示的通信方式相同,在此不再赘述。
图5所示的基带芯片2010包括M0、M1及M2三个模组,每个模组对应一个通讯卡,用以将通讯卡传递到射频芯片2020。射频芯片2020具有三个端口,三个端口分别与M0、M1及M2模组连接。射频芯片2020的个数为一个,射频芯片2020内设置有两个第三选择开关2021,每个第三选择开关2021为单刀双掷开关。
如图5所示的结构框图,M0模组与其中的一个第三选择开关2021的动端连接,M2模组与另一个第三选择开关2021的动端连接,M1模组选择性的与两个第三选择开关2021的动端连接。在使用时,可M0模组与一个第三选择开关2021连接,M1或M2模组与另一个第三选择开关2021连接;或者,M0或M1模组与一个第三选择开关2021连接,M2模组与另一个第三选择开关2021连接。两个第三选择开关2021的不动端分别与每个射频前端模组2030中的两个功率放大器连接。
在一个可选的方案中,第三选择开关2021也可选择多刀多掷开关,同样可实现基带芯片2010通过射频芯片2020与射频前端模组2030连接。
本申请实施例提供的射频前端模组2030的个数为四个,每个射频前端模组2030的结构可参考图3中所示的射频前端模组2030的描述,在此不再赘述。四个射频前端模组2030根据工作频段进行划分,可以划分为低频、中频、高频等不同的工作频段对应的射频前端模组2030。另外,三个射频前端模组2030对应主集天线,另一个射频前端模组2030对应分级天线。如图5中所示,三个射频前端模组2030与两个天线2040对应连接,天线2040作为主集天线。三个射频前端模组2030与两个天线2040的连接方式可参考图4中所示的三个射频前端模组与两个天线的连接方式,在此不再赘述。另一个射频前端模组2030的两个输出端口与两个天线2050连接,天线2050作为分集天线。由上述描述本申请实施例提供的天线可作为主集天线或者分集天线。
图5所示的工作原理与图4所示的工作原理相近似,在此不再赘述。唯一的区别在于图5所示的通信装置可实现对三个通讯卡的通信,可将三个通讯卡中处于工作状态的两个通讯卡与主集天线或者分集天线连接。
在一个可选的方案中,通信装置也可不对射频前端模组进行划分,采用一个射频前端模组。该射频前端模组可等效于图5所示的四个射频前端模组中所有通道的总和。
本申请实施例还提供了一种通信装置,该通信装置包括:基带芯片、射频芯片及一组射频前端模组;其中,一组射频前端模组包括至少两个射频前端模组,不同射频前端模组的工作频段不同,每个射频前端模组具有至少两个第一通道;基带芯片与射频芯片连接,射频芯片与每个射频前端模组连接;射频芯片被配置为:选择一组射频前端模组中的任一个射频前段模组中的至少两个不同的第一通道连通;或者,射频芯片选择一组射频前端模组中至少两个不同的射频前端模组连通。上述的射频芯片、射频前端模组可参考图4或图 5中的相关描述。在具体连接时,通过基带芯片与射频芯片连接,射频芯片与射频前端模组连接,实现通信装置的模块之间的连接,并且通过该连接关系以及射频前端模组中的内部第一通道的连接,从而可以实现不同通讯卡的信号同时通信,改善了通信装置的通信效果。其中,第一通道可为功率放大器与带通滤波器组成的通道。
上述的基带芯片用于向射频芯片发送至少两个通讯卡的信号,从而通过基带芯片实现至少两个通讯卡的信号传输。如图5中所示的基带芯片具有M0、M1、M3等模组,从而可实现三个通讯卡的信号传输。
在信号传输时,至少两个通讯卡的信号通过射频芯片选择的同一射频前端模组中的不同的第一通道传输;或者至少两个通讯卡的信号通过射频芯片选择的至少两个不同射频前端模组传输。通讯卡的信号可通过不同的通道传输。具体可参考图4中的相关描述。
另外,射频芯片具有至少两个第二通道、选择开关。其中,至少两个第二通道与至少两个通讯卡的信号一一对应;每个第二通道通过选择开关与一组射频前端模组中的任一个射频前端模组中的任一个第一通道连通;不同第二通道通过选择开关与同一射频前端模组中的不同第一通道连接;或,不同第二通道通过选择开关与不同的射频前端模组连通。通过选择开关实现射频芯片对射频前端模组的选择。通过选择开关实现射频芯片对射频前端模组的选择,具体可参考图5中的相关描述。其中的选择开关为多刀多掷选择开关,从而实现了任意的选配,即通讯卡可选择任意的射频前端模组中的任一个第一通道连接。实现了通讯卡与第一通道的解耦,可以根据需要任意进行组合。
本申请实施例还提供了一种通信装置,该通信装置包括基带芯片和射频芯片;其中,基带芯片向射频芯片传输至少两个信号;射频芯片将至少两个信号发送到用于与同一射频前端模组的不同第一通道对应连通的端口;射频芯片将至少两个通讯卡的信号发送到用于与不同射频前端模组对应连通的端口,从而可通过射频芯片实现了两个不同的信号的传输。其中,射频芯片具有至少两个第二通道、选择开关及至少两个输出端口;至少两个第二通道与至少两个通讯卡的信号一一对应;每个第二通道通过选择开关与至少两个输出端口中的任一个输出端口连通;不同第二通道连通的输出端口为不同的输出端口。通过选择开关实现射频芯片对射频前端模组的选择。通过选择开关实现射频芯片对射频前端模组的选择,具体可参考图5中的相关描述。其中的选择开关为多刀多掷选择开关,从而实现了任意的选配,即通讯卡可选择任意的射频前端模组中的任一个第一通道连接。实现了通讯卡与第一通道的解耦,可以根据需要任意进行组合。
本申请实施例还提供了一种移动终端,该移动终端可为手机、平板电脑等常见的移动终端,该移动终端可包含上述的通信装置。通信装置可根据移动终端内的空间,布置在移动终端的壳体内。通信装置中通过采用第一选择开关和第二选择开关可将射频前端模组内的带通滤波器与功率放大器解耦,通过第一选择开关可实现任意的功率放大器与任意的带通滤波器之间连接。另外,通过第一选择开关、第二选择开关及第三选择开关可将通讯卡、射频芯片、功率放大器、带通滤波器及天线进行解耦,可以对上述部件进行任意的组合,从而可灵活的选择通信时的通路,提升移动终端的通信效果。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (13)

  1. 一种通信装置,其特征在于,包括射频前端模组,所述射频前端模组包括:
    第一选择开关,至少两个功率放大器,至少两个带通滤波器,第二选择开关,及至少两个输出端口;其中,
    每个功率放大器被配置为:通过所述第一选择开关与所述至少两个带通滤波器中的任一个带通滤波器连通,且与该功率放大器连通的带通滤波器通过所述第二选择开关与所述至少两个输出端口中的任一个输出端口连通;
    不同功率放大器连通的带通滤波器为不同的带通滤波器;不同功率放大器连通的输出端口为不同的输出端口。
  2. 如权利要求1所述的通信装置,其特征在于,每个带通滤波器上设置有双工器或滤波器。
  3. 如权利要求1或2所述的通信装置,其特征在于,所述第一选择开关和所述第二选择开关均为多刀多掷开关。
  4. 如权利要求1~3任一项所述的通信装置,其特征在于,还包括至少两个天线;
    每个输出端口择一与所述至少两个天线中的一个天线连接,且不同的输出端口连接不同的天线。
  5. 如权利要求4所述的通信装置,其特征在于,还包括射频芯片,所述射频芯片包括:
    至少两个输入端口以及第三选择开关;
    所述至少两个输入端口通过所述第三选择开关选择所述至少两个功率放大器中不同的功率放大器连通。
  6. 如权利要求5所述的通信装置,其特征在于,所述第三选择开关为多刀多掷开关。
  7. 如权利要求4~6任一项所述的通信装置,其特征在于,
    所述射频前端模组的个数为多个,且多个射频前端模组对应不同的工作频段;
    每个天线连接有第四选择开关;
    每个天线通过所述第四选择开关选择所述多个射频前端模组中的至少部分射频前端模组连接。
  8. 如权利要求7所述的通信装置,其特征在于,还包括多工器,所述第四选择开关通过所述多工器与对应的天线连接。
  9. 如权利要求4~8任一项所述的通信装置,其特征在于,每个天线可作为主集天线或分集天线。
  10. 如权利要求5~9任一项所述的通信装置,其特征在于,还包括基带芯片,所述基带芯片与所述至少两个输入端口连接。
  11. 一种通信方法,其特征在于,所述通信方法包括以下步骤:
    通过第一选择开关选择至少两个带通滤波器中的任一个带通滤波器,使得至少两个功率放大器中的任一功率放大器通过所述第一选择开关选择性地和所述至少两个带通滤波器中的任一带通滤波器连通;
    通过的第二选择开关选择至少两个输出端口中的任一个输出端口连通,使得所述至少两个带通滤波器中的任一带通滤波器通过所述第二选择开关选择性地和所述至少两个输出端口中的任一输出端口连通;其中,
    不同功率放大器连通的带通滤波器为不同的带通滤波器;不同功率放大器连通的输出端口为不同的输出端口。
  12. 如权利要求11所述的通信方法,其特征在于,所述第一选择开关和所述第二选择开关均为多刀多掷开关。
  13. 如权利要求11所述的通信方法,其特征在于,每个带通滤波器上设置有双工器或滤波器。
PCT/CN2021/103758 2020-06-30 2021-06-30 一种通信装置及通信方法 WO2022002163A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010622662 2020-06-30
CN202010622662.8 2020-06-30
CN202011624608.3 2020-12-31
CN202011624608.3A CN113872616B (zh) 2020-06-30 2020-12-31 一种通信装置及通信方法

Publications (1)

Publication Number Publication Date
WO2022002163A1 true WO2022002163A1 (zh) 2022-01-06

Family

ID=78982093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103758 WO2022002163A1 (zh) 2020-06-30 2021-06-30 一种通信装置及通信方法

Country Status (2)

Country Link
CN (1) CN113872616B (zh)
WO (1) WO2022002163A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105684320A (zh) * 2013-11-08 2016-06-15 瑞典爱立信有限公司 带有内部并行天线校准的无线电单元
US20180019768A1 (en) * 2016-07-17 2018-01-18 Skyworks Solutions, Inc. Uplink carrier aggregation front-end architecture that supports simultaneous mimo
CN108964699A (zh) * 2013-10-30 2018-12-07 网件公司 具有高频带选择性的射频前端模块
CN110022160A (zh) * 2017-12-07 2019-07-16 英飞凌科技股份有限公司 用于射频滤波器的系统和方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101902243B (zh) * 2010-07-28 2013-01-02 锐迪科创微电子(北京)有限公司 可配置多模式射频前端模块及具有该模块的移动终端
US9325042B2 (en) * 2012-09-12 2016-04-26 Sony Corporation RF front end module and mobile wireless device
US20140169243A1 (en) * 2012-12-18 2014-06-19 Rf Micro Devices, Inc. Mobile communication circuitry for three or more antennas
CN107231167A (zh) * 2016-03-24 2017-10-03 北京小米移动软件有限公司 射频电路的电子设备
CN107094032A (zh) * 2017-05-10 2017-08-25 广州慧智微电子有限公司 一种射频前端模块及射频信号处理方法
CN210839537U (zh) * 2019-11-22 2020-06-23 深圳市泰衡诺科技有限公司 一种分集电路和多频段通信设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108964699A (zh) * 2013-10-30 2018-12-07 网件公司 具有高频带选择性的射频前端模块
CN105684320A (zh) * 2013-11-08 2016-06-15 瑞典爱立信有限公司 带有内部并行天线校准的无线电单元
US20180019768A1 (en) * 2016-07-17 2018-01-18 Skyworks Solutions, Inc. Uplink carrier aggregation front-end architecture that supports simultaneous mimo
CN110022160A (zh) * 2017-12-07 2019-07-16 英飞凌科技股份有限公司 用于射频滤波器的系统和方法

Also Published As

Publication number Publication date
CN113872616A (zh) 2021-12-31
CN113872616B (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
US11218286B2 (en) Reducing intermodulation distortion for intra-band dual connectivity
WO2022017404A1 (zh) 一种射频前端架构、天线装置及通信终端
WO2013063938A1 (zh) 功率放大模块、多模射频收发器、双工器和多模终端
CN102404021A (zh) 双工放大模块、射频前端模块和多模终端
GB2500265A (en) Reconfigurable RF circuit using two filters arranged to pass different carrier frequencies connected to a single amplifier with a selectable frequency range
WO2021238453A1 (zh) 射频PA Mid器件、射频系统和通信设备
CN212935883U (zh) 高频电路以及通信装置
CN112769438B (zh) 射频mmpa器件、射频系统和通信设备
CN106849984A (zh) 一种多模射频共用的方法及系统
US8049558B2 (en) Switchable balanced amplifier
US20210006274A1 (en) Radio frequency front end circuit and communication device
US7383032B2 (en) Cellular phone and method for receiving and transmitting signals of different frequency bands
WO2022062584A1 (zh) 射频drx器件、射频收发系统和通信设备
US20200313710A1 (en) Front-end circuit and communication device
US20210143847A1 (en) Radio frequency front end module and communication device
US20210211146A1 (en) Front end module
CN102404881A (zh) 双模射频收发装置、滤波装置和双模终端
WO2022143453A1 (zh) 射频电路及电子设备
US20200304167A1 (en) Front end module
CN114826318A (zh) 一种双发射频电路及电子设备
US11050456B2 (en) Radio frequency module and communication device
CN114124115A (zh) 射频前端器件、射频收发系统和通信设备
WO2021056880A1 (zh) 一种射频前端架构
WO2023236530A1 (zh) 射频PA Mid器件、射频系统和通信设备
WO2023065863A1 (zh) 一种接收器件、射频系统及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21832788

Country of ref document: EP

Kind code of ref document: A1