WO2024113480A1 - 一种具有多模式近红外发光铋掺杂多组分光纤及其制备方法与应用 - Google Patents
一种具有多模式近红外发光铋掺杂多组分光纤及其制备方法与应用 Download PDFInfo
- Publication number
- WO2024113480A1 WO2024113480A1 PCT/CN2023/074163 CN2023074163W WO2024113480A1 WO 2024113480 A1 WO2024113480 A1 WO 2024113480A1 CN 2023074163 W CN2023074163 W CN 2023074163W WO 2024113480 A1 WO2024113480 A1 WO 2024113480A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical fiber
- bismuth
- doped
- core glass
- mode near
- Prior art date
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 105
- 238000002360 preparation method Methods 0.000 title claims abstract description 6
- 239000011521 glass Substances 0.000 claims abstract description 119
- 238000000034 method Methods 0.000 claims abstract description 26
- 238000002844 melting Methods 0.000 claims abstract description 21
- 230000008018 melting Effects 0.000 claims abstract description 21
- 239000000835 fiber Substances 0.000 claims abstract description 11
- 230000009467 reduction Effects 0.000 claims abstract description 11
- 238000012545 processing Methods 0.000 claims abstract description 10
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 9
- 239000000843 powder Substances 0.000 claims abstract description 8
- 239000002994 raw material Substances 0.000 claims abstract description 8
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 7
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 claims abstract description 7
- -1 alkaline earth metal salt Chemical class 0.000 claims abstract description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims abstract description 6
- 238000005498 polishing Methods 0.000 claims abstract description 5
- 239000011863 silicon-based powder Substances 0.000 claims abstract description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 claims abstract description 3
- 229910052593 corundum Inorganic materials 0.000 claims abstract description 3
- QZQVBEXLDFYHSR-UHFFFAOYSA-N gallium(III) oxide Inorganic materials O=[Ga]O[Ga]=O QZQVBEXLDFYHSR-UHFFFAOYSA-N 0.000 claims abstract description 3
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims abstract description 3
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000001095 magnesium carbonate Substances 0.000 claims abstract description 3
- 229910000021 magnesium carbonate Inorganic materials 0.000 claims abstract description 3
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 claims abstract description 3
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910000018 strontium carbonate Inorganic materials 0.000 claims abstract description 3
- LEDMRZGFZIAGGB-UHFFFAOYSA-L strontium carbonate Chemical compound [Sr+2].[O-]C([O-])=O LEDMRZGFZIAGGB-UHFFFAOYSA-L 0.000 claims abstract description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 claims abstract description 3
- 238000004020 luminiscence type Methods 0.000 claims description 56
- 238000005253 cladding Methods 0.000 claims description 37
- 239000000156 glass melt Substances 0.000 claims description 18
- 238000005491 wire drawing Methods 0.000 claims description 11
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 claims description 10
- 229910005793 GeO 2 Inorganic materials 0.000 claims description 10
- 238000012681 fiber drawing Methods 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 8
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 6
- 238000000137 annealing Methods 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 238000005553 drilling Methods 0.000 claims description 3
- 235000010216 calcium carbonate Nutrition 0.000 claims description 2
- 235000014380 magnesium carbonate Nutrition 0.000 claims description 2
- 230000002269 spontaneous effect Effects 0.000 abstract description 14
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 abstract description 7
- 229910052797 bismuth Inorganic materials 0.000 abstract description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 3
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(iii) oxide Chemical compound O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 abstract 2
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 abstract 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 abstract 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 abstract 1
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 239000000306 component Substances 0.000 description 64
- 238000004891 communication Methods 0.000 description 8
- 230000005284 excitation Effects 0.000 description 7
- 238000004080 punching Methods 0.000 description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- 238000011161 development Methods 0.000 description 4
- 238000001748 luminescence spectrum Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 3
- 238000000295 emission spectrum Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001621 bismuth Chemical class 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000000191 radiation effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
- C03C13/04—Fibre optics, e.g. core and clad fibre compositions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/02—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
- C03B37/025—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
- C03B37/027—Fibres composed of different sorts of glass, e.g. glass optical fibres
Definitions
- the present invention belongs to the technical field of optical fiber communication, and in particular relates to a bismuth-doped multi-component optical fiber with multi-mode near-infrared luminescence, and a preparation method and application thereof.
- optical communication systems mainly use erbium-doped fiber amplifiers, whose gain bandwidth can only cover C (1530-1565 nm) and L bands (1565-1605 nm), and only a small part of them is used.
- the Raman amplifier has a wide gain bandwidth, its structure is complex and the pump power is extremely high, making it difficult to put into practical application. Therefore, the development of a new type of broadband gain fiber to cover the entire communication band will become the key to the development and improvement of optical fiber communications.
- Bismuth-doped optical fiber has broadband near-infrared emission (1150-1800 nm) covering the entire communication band, which shows great potential in the development of new ultra-wideband amplifiers.
- bismuth-doped quartz optical fiber prepared by modified chemical vapor deposition (MCVD) has achieved effective amplification of optical signals within 1150-1800 nm.
- MCVD modified chemical vapor deposition
- the fiber doping concentration is low ( ⁇ 0.02 at%) and the drawing temperature is very high (>2000 °C), which makes it easier for bismuth to volatilize. Therefore, there are fewer bismuth gain centers in the optical fiber, resulting in the use of optical fiber lengths of tens or even hundreds of meters, making it difficult to achieve high-gain bismuth optical fiber.
- Bismuth-doped multi-component glass has the characteristics of highly adjustable components and high doping concentration.
- the existing patent application reports a method for preparing tube-melt co-drawn bismuth-doped optical fiber.
- the bismuth-doped optical fiber prepared by this method has a high drawing temperature and only exhibits a single fluorescence emission band, and cannot exhibit the amplified spontaneous emission effect of the optical fiber, which greatly limits its application as a gain fiber in broadband amplifiers.
- the purpose of the present invention is to provide a bismuth-doped multi-component optical fiber with multi-mode near-infrared luminescence and its preparation method and application.
- the bismuth-doped multi-component optical fiber prepared by the present invention has multi-mode broadband near-infrared emission under blue light excitation and has obvious broadband spontaneous radiation effect under semiconductor 808 nm laser pumping, so it is used to prepare ultra-broadband optical fiber amplifiers and tunable lasers.
- the present invention provides a bismuth-doped multi-component optical fiber with multi-mode near-infrared luminescence, which is made by preparing a preform rod with core glass and cladding glass, and then drawing it through a drawing tower;
- the core glass is prepared by a local reduction melting method, and the raw materials for preparing the core glass are calculated by molar percentage as follows: A 2 O 3 :5% ⁇ 15%, MO: 5% ⁇ 20%, R: 1%-15%, CeO 2 :0.1% ⁇ 1%, B 2 O 3 :0% ⁇ 10%, P2O5 : 0% ⁇ 10%, SiO 2 : 0% ⁇ 10%, Bi 2 O 3 :0.005% ⁇ 0.2%, GeO 2 : balance;
- A2O3 in the core glass is a trivalent oxide, including one or more of Al2O3 , Ga2O3 , In2O3 , and La2O3 ;
- MO in the core glass is an alkaline earth metal oxide or an alkaline earth metal salt, the alkaline earth metal oxide includes one or more of MgO, CaO, SrO, and BaO, and the alkaline earth metal salt includes one or more of MgCO3 , CaCO3 , SrCO3 , and BaCO3 ;
- R in the core glass is a reducing agent, including one or more of metal Al powder, metal Ti powder, and Si powder.
- the local reduction melting method utilizes a reducing agent to construct a local reduction environment when the core glass is melted.
- the local reduction melting method refers to uniformly mixing a reducing agent in the raw material, wherein the reducing agent constructs a local reduction environment when the core glass melts, and then the glass melt is poured into a mold, annealed, and cooled to obtain a bismuth-doped multi-component core glass.
- the present invention provides a method for preparing a bismuth-doped multi-component optical fiber having multi-mode near-infrared luminescence, comprising the following steps: (1) mixing the raw materials of various components and melting them by a local reduction melting method, then pouring the glass melt into a mold, annealing, and cooling to obtain a bismuth-doped multi-component fiber core glass;
- the raw materials for preparing bismuth-doped multi-component core glass are as follows in terms of molar percentage: A 2 O 3 :5% ⁇ 15%, MO: 5% ⁇ 20%, R: 1%-15%, CeO 2 :0.1% ⁇ 1%, B 2 O 3 :0 ⁇ 10%, P2O5 : 0 ⁇ 10%, SiO 2 : 0 ⁇ 10%, Bi 2 O 3 :0.005% ⁇ 0.2%, GeO 2 : balance.
- step (2) processing the bismuth-doped multi-component core glass obtained in step (1) into a core glass rod, and polishing the surface and end face; (3) drilling a hole along the central axis at the end face of the cladding glass rod and then polishing the inner wall of the hole; (4) placing the core glass rod in the central hole of the cladding glass rod to obtain an optical fiber preform; (5) placing the optical fiber preform rod into an optical fiber drawing tower for drawing to obtain the bismuth-doped multi-component optical fiber having multi-mode near-infrared luminescence.
- a 2 O 3 in the bismuth-doped multi-component core glass is a trivalent oxide, including at least one of Al 2 O 3 , Ga 2 O 3 , In 2 O 3 , and La 2 O 3 .
- MO in the bismuth-doped multi-component core glass is an alkaline earth metal oxide or an alkaline earth metal salt
- the alkaline earth metal oxide includes one or more of MgO, CaO, SrO, and BaO
- the alkaline earth metal salt includes one or more of MgCO 3 , CaCO 3 , SrCO 3 , and BaCO 3
- R in the bismuth-doped multi-component core glass is a reducing agent, including one or more of metal Al powder, metal Ti powder, and Si powder.
- the local reduction melting method utilizes a reducing agent to construct a local reduction environment when the core glass is melted.
- step (1) A 2 O 3 : 10% to 15%.
- step (1) MO: 10% to 15%.
- step (1) R: 2% to 8%.
- step (1) the melting is specifically carried out at 1300-1600° C. and kept warm for 0.5-1 h.
- step (1) the annealing treatment is specifically performed at 480-620° C. and kept warm for 2-6 hours.
- the core glass rod has a diameter of 1.2 to 4 mm and a length of 50 to 75 mm.
- the inner diameter of the cladding glass rod is 0.02 to 0.05 mm larger than that of the core glass rod, the outer diameter of the cladding glass rod is 20 to 40 mm, and the length of the cladding glass rod is 80 to 120 mm.
- the cladding glass rod is a commercial cylindrical K9 glass rod.
- the drawing refers to wire drawing, specifically, the wire drawing tower is gradually heated to 800-950° C. at 3-8° C./min for wire drawing, and the wire drawing time is 20-60 min.
- the drawing refers to wire drawing, specifically, the wire drawing tower is gradually heated to 800-950° C. at 5° C./min for wire drawing, and the wire drawing time is 20-60 min.
- the diameter of the multi-mode near-infrared luminescent bismuth-doped multi-component optical fiber in step (5) is 115 to 140 ⁇ m.
- the present invention also provides application of the bismuth-doped multi-component optical fiber with multi-mode near-infrared luminescence in preparing a broadband optical fiber amplifier or a tunable laser.
- the core glass composition of the present invention is highly adjustable, breaking through the composition limitation of high melting point glass required for optical fiber prepared by MCVD method and fused core method, and the process is simple.
- the method of the present invention can be used to draw optical fibers at low temperatures (800-950° C.), thereby avoiding the volatilization of bismuth caused by the MCVD method and the high-temperature fused core method in preparing optical fibers.
- the present invention introduces a reducing agent into the fiber core to ensure efficient luminescence of low-concentration bismuth-doped optical fibers, while avoiding bismuth clusters caused by high-concentration bismuth doping and fiber loss caused by bismuth metal precipitation.
- the bismuth-doped multi-component optical fiber prepared in the present invention has multi-mode near-infrared emission under blue light excitation, which can cover 850 ⁇ 1600 nm and has a half-width of 600 nm, which is much wider than bismuth-doped quartz optical fiber and other bismuth-doped multi-component optical fibers.
- the multi-mode near-infrared luminescent bismuth-doped multi-component optical fiber prepared by the present invention has an obvious broadband spontaneous emission spectrum signal under the excitation of a semiconductor 808 nm laser, which can cover the near-infrared range of 1000-1600 nm and can be applied in the fields of broadband optical fiber amplifiers and broadband tunable optical fiber lasers.
- FIG. 1 is a side microscope image of a bismuth-doped multi-component optical fiber having multi-mode near-infrared luminescence prepared in Example 1 of the present invention.
- FIG. 2 is a luminescence spectrum of the bismuth-doped multi-component optical fiber with multi-mode near-infrared luminescence prepared in Example 1 of the present invention and the bismuth-doped multi-component core glass prepared in Example 1 excited at 460 nm.
- FIG. 3 is a luminescence spectrum of the bismuth-doped multi-component optical fiber with multi-mode near-infrared luminescence prepared in Example 1 of the present invention and the bismuth-doped multi-component core glass prepared in Example 1 when excited at 808 nm.
- FIG4 is an amplified spontaneous emission spectrum of the bismuth-doped multi-component optical fiber having multi-mode near-infrared luminescence prepared in Example 1 of the present invention.
- Example 1 (1) 76.85 mol GeO 2 ⁇ 11 mol CaO ⁇ 8 mol Al 2 O 3 ⁇ 4 mol Al ⁇ 0.1 mol CeO 2 and 0.05 mol Bi 2 O 3 After mixing, melt at a temperature of 1500°C for 0.5 h. After melting, a glass melt is obtained. The glass melt is then poured into a mold for annealing at a temperature of 540°C for 4 h. After cooling, bismuth-doped multi-component core glass is obtained.
- step (1) Processing the bismuth-doped multi-component core glass prepared in step (1) into a core glass rod, wherein the core glass rod has a diameter of 2 mm and a length of 65 mm, and the surface and end face are polished; (3) Use a commercial K9 glass rod as a cladding glass rod, and drill a hole along the central axis on the end face of the cladding glass rod, wherein the diameter of the cladding K9 glass rod is 35 mm and the length is 100 mm. The diameter of the inner hole obtained by drilling is 2.05 mm and the length is 65 mm.
- the inner wall of the hole is polished to obtain an optical fiber preform rod; (5) Place the optical fiber preform into the optical fiber drawing tower, gradually increase the temperature of the drawing tower at 5 °C/min to 860°C and draw for 30 min, and a bismuth-doped multi-component optical fiber with multi-mode near-infrared luminescence and a diameter of 125 ⁇ m was obtained.
- the bismuth-doped multi-component optical fiber with multi-mode near-infrared luminescence prepared in Example 1 has multi-mode luminescence and amplified spontaneous emission.
- Example 2 (1) 58.995 mol GeO 2 , 10 mol SiO 2 , 20 mol CaO, 5 mol Al 2 O 3 , 5 mol Si, 1 mol CeO 2 and 0.005 mol Bi 2 O 3 were mixed and melted at a temperature of 1550°C for 1 h. After the melting was completed, a glass melt was obtained. The glass melt was then poured into a mold and annealed at a temperature of 600°C for 6 h. After cooling, a bismuth-doped multi-component core glass was obtained.
- step (1) processing the bismuth-doped multi-component core glass prepared in step (1) into a core glass rod, wherein the core glass rod has a diameter of 1.2 mm and a length of 50 mm, and the surface and end face are polished; (3) A commercial K9 glass rod is used as a cladding glass rod, and a hole is punched along the central axis of the end face of the cladding glass rod, wherein the diameter of the cladding K9 glass rod is 20 mm and the length is 80 mm.
- the inner hole obtained by the punching has a diameter of 1.25 mm and a length of 50 mm, and the inner wall of the hole is polished to obtain an optical fiber preform rod; (5)
- the optical fiber preform was placed in an optical fiber drawing tower, and the temperature of the drawing tower was gradually increased at a rate of 8 °C/min to 920 °C for 60 min to obtain a bismuth-doped multi-component optical fiber with a multi-mode near-infrared luminescence and a diameter of 135 ⁇ m.
- the bismuth-doped multi-component optical fiber with multi-mode near-infrared luminescence prepared in Example 2 has multi-mode luminescence and amplified spontaneous emission.
- Example 3 (1) 54.3 mol GeO 2 , 10 mol P 2 O 5 , 5 mol MgO, 15 mol Ga 2 O 3 , 15 mol Ti, 0.5 CeO 2 and 0.2 mol Bi 2 O 3 are mixed and melted at a temperature of 1300°C for 0.5 h. After the melting is completed, a glass melt is obtained. The glass melt is then poured into a mold and annealed at a temperature of 480°C for 2 h. After cooling, a bismuth-doped multi-component core glass is obtained.
- step (1) processing the bismuth-doped multi-component core glass prepared in step (1) into a core glass rod, wherein the core glass rod has a diameter of 4 mm and a length of 75 mm, and the surface and end face are polished; (3) A commercial K9 glass rod is used as a cladding glass rod, and a hole is punched along the central axis of the end face of the cladding glass rod, wherein the diameter of the cladding K9 glass rod is 40 mm and the length is 120 mm.
- the inner hole obtained by the punching has a diameter of 4.05 mm and a length of 75 mm, and the inner wall of the hole is polished to obtain an optical fiber preform rod; (5)
- the optical fiber preform was placed in an optical fiber drawing tower, and the temperature of the drawing tower was gradually increased at a rate of 3 °C/min to 920 °C for 60 min to obtain a bismuth-doped multi-component optical fiber with a multi-mode near-infrared luminescence and a diameter of 118 ⁇ m.
- the bismuth-doped multi-component optical fiber with multi-mode near-infrared luminescence prepared in Example 3 has multi-mode luminescence and amplified spontaneous emission.
- Example 4 (1) 60.9 mol GeO 2 , 10 mol B 2 O 3 , 12 mol SrO, 4 mol Al 2 O 3 , 8 mol La 2 O 3 , 4 mol Al, 1 CeO 2 and 0.1 mol Bi 2 O 3 are mixed and melted at a temperature of 1400°C for 0.5 h. After the melting is completed, a glass melt is obtained. The glass melt is then poured into a mold and annealed at a temperature of 500°C for 3 h. The mixture is cooled to obtain a bismuth-doped multi-component core glass.
- step (1) processing the bismuth-doped multi-component core glass prepared in step (1) into a core glass rod, wherein the core glass rod has a diameter of 1.8 mm and a length of 75 mm, and the surface and end face are polished; (3) A commercial K9 glass rod is used as a cladding glass rod, and a hole is punched along the central axis on the end face of the cladding glass rod, wherein the diameter of the cladding K9 glass rod is 30 mm and the length is 100 mm.
- the inner hole obtained by the punching has a diameter of 1.82 mm and a length of 75 mm, and the inner wall of the hole is polished to obtain an optical fiber preform rod; (5)
- the optical fiber preform was placed in an optical fiber drawing tower, and the drawing tower was gradually heated at 4 °C/min to 820 °C and drawn for 40 min to obtain a bismuth-doped multi-component optical fiber with multi-mode near-infrared luminescence and a diameter of 140 ⁇ m.
- the bismuth-doped multi-component optical fiber with multi-mode near-infrared luminescence prepared in Example 4 has multi-mode luminescence and amplified spontaneous emission.
- Example 5 (1) 66.48 mol GeO 2 , 5 mol SiO 2 , 10 mol BaO, 10 mol In 2 O 3 , 8 mol Si, 0.5 CeO 2 and 0.02 mol Bi 2 O 3 are mixed and melted at a temperature of 1520°C for 0.5 h. After the melting is completed, a glass melt is obtained. The glass melt is then poured into a mold and annealed at a temperature of 560°C for 3 h. After cooling, a bismuth-doped multi-component core glass is obtained.
- step (1) processing the bismuth-doped multi-component core glass prepared in step (1) into a core glass rod, wherein the core glass rod has a diameter of 2.5 mm and a length of 60 mm, and the surface and end face are polished; (3) A commercial K9 glass rod is used as a cladding glass rod, and a hole is punched along the central axis on the end face of the cladding glass rod, wherein the diameter of the cladding K9 glass rod is 30 mm and the length is 100 mm.
- the inner hole obtained by the punching has a diameter of 2.55 mm and a length of 60 mm, and the inner wall of the hole is polished to obtain an optical fiber preform rod; (5)
- the optical fiber preform was placed in an optical fiber drawing tower, and the temperature of the drawing tower was gradually increased at a rate of 6 °C/min to 880 °C for 40 min to obtain a bismuth-doped multi-component optical fiber with a multi-mode near-infrared luminescence and a diameter of 130 ⁇ m.
- the bismuth-doped multi-component optical fiber with multi-mode near-infrared luminescence prepared in Example 5 has multi-mode luminescence and amplified spontaneous emission.
- Example 6 (1) 71.95 mol GeO 2 , 10 mol CaO, 4 mol Ga 2 O 3 , 8 mol Al 2 O 3 , 5 mol Al, 1 CeO 2 and 0.05 mol Bi 2 O 3 are mixed and melted at a temperature of 1600°C for 0.5 h. After the melting is completed, a glass melt is obtained. The glass melt is then poured into a mold and annealed at a temperature of 620°C for 2 h. After cooling, a bismuth-doped multi-component core glass is obtained.
- step (1) processing the bismuth-doped multi-component core glass prepared in step (1) into a core glass rod, wherein the core glass rod has a diameter of 3 mm and a length of 60 mm, and the surface and end face are polished; (3) A commercial K9 glass rod is used as a cladding glass rod, and a hole is punched along the central axis on the end face of the cladding glass rod, wherein the diameter of the cladding K9 glass rod is 30 mm and the length is 100 mm.
- the inner hole obtained by the punching has a diameter of 3.02 mm and a length of 60 mm, and the inner wall of the hole is polished to obtain an optical fiber preform rod; (5)
- the optical fiber preform was placed in an optical fiber drawing tower, and the temperature of the drawing tower was gradually increased at a rate of 7 °C/min to 950 °C for drawing for 60 min to obtain a bismuth-doped multi-component optical fiber with a multi-mode near-infrared luminescence and a diameter of 120 ⁇ m.
- the bismuth-doped multi-component optical fiber with multi-mode near-infrared luminescence prepared in Example 6 has multi-mode luminescence and amplified spontaneous emission.
- Example 7 (1) 75.62 mol GeO 2 , 5 mol MgO, 5 mol CaO, 10 mol Al 2 O 3 , 4 mol Al, 0.3 CeO 2 and 0.08 mol Bi 2 O 3 were mixed and melted at a temperature of 1540°C for 0.5 h. After the melting was completed, a glass melt was obtained. The glass melt was then poured into a mold and annealed at a temperature of 580°C for 3 h. After cooling, a bismuth-doped multi-component core glass was obtained.
- step (1) processing the bismuth-doped multi-component core glass prepared in step (1) into a core glass rod, wherein the core glass rod has a diameter of 3.5 mm and a length of 65 mm, and the surface and end face are polished; (3) A commercial K9 glass rod is used as a cladding glass rod, and a hole is punched along the central axis of the end face of the cladding glass rod, wherein the diameter of the cladding K9 glass rod is 30 mm and the length is 100 mm.
- the inner hole obtained by the punching has a diameter of 3.55 mm and a length of 65 mm, and the inner wall of the hole is polished to obtain an optical fiber preform rod; (5)
- the optical fiber preform was placed in an optical fiber drawing tower, and the temperature of the drawing tower was gradually increased at a rate of 5 °C/min to 900 °C and drawn for 40 min to obtain a bismuth-doped multi-component optical fiber with a multi-mode near-infrared luminescence and a diameter of 135 ⁇ m.
- the bismuth-doped multi-component optical fiber with multi-mode near-infrared luminescence prepared in Example 7 has multi-mode luminescence and amplified spontaneous emission.
- Figure 1 is a side microscope image of the bismuth-doped multi-component optical fiber with multi-mode near-infrared luminescence prepared in Example 1. As can be seen from Figure 1, the interface between the core and the cladding is obvious.
- Figure 2 is a luminescence spectrum of the bismuth-doped multi-component optical fiber with multi-mode near-infrared luminescence prepared in Example 1 and the bismuth-doped multi-component core glass prepared in Example 1 under 460 nm excitation.
- the bismuth-doped multi-component optical fiber has multi-mode near-infrared luminescence, and its luminescence covers 850-1600 nm, and the luminescence half-width is 600 nm, which is similar to the luminescence of the core glass.
- Figure 3 is a luminescence spectrum of the bismuth-doped multi-component optical fiber with multi-mode near-infrared luminescence prepared in Example 1 and the bismuth-doped multi-component core glass prepared in Example 1 under 808 nm excitation.
- the bismuth-doped multi-component optical fiber has broadband near-infrared luminescence, and its luminescence covers 1000-1600 nm, and the luminescence half-maximum width is 400 nm, which is similar to the luminescence of the core glass.
- Figure 4 is an amplified spontaneous emission spectrum of the bismuth-doped multi-component optical fiber with multi-mode near-infrared luminescence prepared in Example 1. As shown in Figure 4, under 808 nm pumping, the bismuth-doped multi-component optical fiber with multi-mode near-infrared luminescence prepared in Example 1 has an obvious broadband signal, which increases with the increase of pump power.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Glass Compositions (AREA)
Abstract
一种具有多模式近红外发光铋掺杂多组分光纤及其制备方法与应用。制备方法包括:用局域还原熔融法制备铋掺杂多组分纤芯玻璃,加工成棒状,表面与端面抛光,纤芯玻璃原料按摩尔%计为:A 2O 3 5~15%,MO 5~20%,R 1-15%,CeO 2 0.1~1%,B 2O 3 0~10%,P 2O 5 0~10%,SiO 2 0~10%,Bi 2O 3 0.005~0.2%,余量为GeO 2; A 2O 3为三价氧化物,包括Al 2O 3、Ga 2O 3、In 2O 3、La 2O 3一种以上;MO为包括MgO、CaO、SrO、BaO一种以上的碱土金属氧化物,或为包括MgCO 3、CaCO 3、SrCO 3、BaCO 3一种以上的碱土金属盐;R为还原剂,包括Al粉、Ti粉、Si粉一种以上;将所得纤芯玻璃棒置于打孔、抛光的商用K9玻璃棒中,制成预制棒,经拉制得到光纤。光纤拉制温度低,避免铋挥发;所得光纤具有多模式近红外发射和明显的光纤放大自发辐射效应。
Description
本发明属于光纤通信技术领域,具体涉及一种具有多模式近红外发光铋掺杂多组分光纤及其制备方法与应用。
现代通信技术推动了全球信息化进程,特别是物联网和5G通信的飞速发展,更是为构造万物互联时代奠定了重要基础。这些必然对光通信的容量和速度,尤其是光纤放大器的增益带宽提出了迫切要求。目前,得益于低损耗光纤技术的突破,光信号在光纤中的传输带宽可覆盖1100-1800 nm。目前,光通信系统主要使用掺铒光纤放大器,其增益带宽只能覆盖C(1530-1565 nm)和L波段(1 565-1605 nm),仅使用其中的很小一部分。另外,拉曼放大器虽然具有较宽的增益带宽,但结构复杂且泵浦功率极高,难以投入实际应用。因此,研发新型的宽带增益光纤使其覆盖整个通讯波段将成为发展和完善光纤通信的关键。
铋掺杂光纤具有覆盖整个通信波段的宽带近红外发射(1150-1800 nm),使其在开发新型超宽带放大器展现了巨大的潜力。目前,基于改进的化学气相沉积(MCVD)法制备的铋掺杂石英光纤已在1150-1800 nm内实现光信号的有效放大。而MCVD法制备的铋掺杂光纤主要限制在石英基或者高硅体系,且需要调整纤芯组分和泵浦方案以实现不同波段的光放大。另外,光纤掺杂浓度较低(<0.02 at%),拉制温度很高(>2000 ℃),这样也更容易导致铋挥发。因此,光纤中的铋增益中心较少,导致光纤使用长度达到几十甚至几百米,难以实现高增益铋光纤。
铋掺多组分玻璃具有组分高度可调,掺杂浓度高等特点。现有专利申请报道了一种管-熔体共拉铋掺杂光纤的制备方法。然而,利用该方法制备的铋掺杂光纤拉丝温度高,且仅表现出单一的荧光发射带,且无法表现出光纤的放大自发辐射效应,这大大限制了其作为增益光纤在在宽带放大器中的应用。
为了克服现有技术存在的发射带单一,拉丝温度高,无放大自发辐射效应等缺点与不足,本发明的目的在于提供一种具有多模式近红外发光铋掺杂多组分光纤及其制备方法与应用。
本发明制备所得的铋掺杂多组分光纤在蓝光激发下具有多模式宽带近红外发射,在半导体808 nm激光器泵浦下具有明显的宽带自发辐射效应,因此用于制备超宽带光纤放大器和可调谐激光器。
本发明提供一种具有多模式近红外发光铋掺杂多组分光纤,经纤芯玻璃和包层玻璃制备预制棒,再经拉丝塔拉制而成;
所述纤芯玻璃经局域还原熔融法制备而成,制备纤芯玻璃的原料按摩尔百分比计为:
A 2O 3:5%~15%,
MO:5%~20%,
R:1%-15%,
CeO 2:0.1%~1%,
B 2O 3:0%~10%,
P 2O 5:0%~10%,
SiO 2:0%~10%,
Bi 2O 3:0.005%~0.2%,
GeO 2:余量;
所述纤芯玻璃经局域还原熔融法制备而成,制备纤芯玻璃的原料按摩尔百分比计为:
A 2O 3:5%~15%,
MO:5%~20%,
R:1%-15%,
CeO 2:0.1%~1%,
B 2O 3:0%~10%,
P 2O 5:0%~10%,
SiO 2:0%~10%,
Bi 2O 3:0.005%~0.2%,
GeO 2:余量;
其中,所述纤芯玻璃中A
2O
3为三价氧化物,包括Al
2O
3、Ga
2O
3、In
2O
3、La
2O
3中的一种以上;所述纤芯玻璃中MO为碱土金属氧化物或碱土金属盐,碱土金属氧化物包括MgO、CaO、SrO、BaO中的一种以上,碱土金属盐包括MgCO
3、CaCO
3、SrCO
3、BaCO
3中的一种以上;所述纤芯玻璃中R为还原剂,包括金属Al粉、金属Ti粉、Si粉中的一种以上。
进一步地,所述局域还原熔融法是利用还原剂在纤芯玻璃熔融时构造局部还原的环境。
进一步地,所述局域还原熔融法是指在原料中均匀混合还原剂,还原剂在纤芯玻璃熔融时构造局部还原的环境,再将玻璃熔体浇注模具中,退火处理,冷却,获得铋掺杂多组分纤芯玻璃。
本发明提供一种具有多模式近红外发光铋掺杂多组分光纤的制备方法,包括以下步骤:
(1) 将各组分原料混合经局域还原熔融法熔制后,再将玻璃熔体浇注模具中,退火处理,冷却,得到铋掺杂多组分纤芯玻璃;
制备铋掺杂多组分纤芯玻璃的原料按摩尔百分比计为:
A 2O 3:5%~15%,
MO:5%~20%,
R:1%-15%,
CeO 2:0.1%~1%,
B 2O 3:0~10%,
P 2O 5:0~10%,
SiO 2:0~10%,
Bi 2O 3:0.005%~0.2%,
GeO 2:余量。
(1) 将各组分原料混合经局域还原熔融法熔制后,再将玻璃熔体浇注模具中,退火处理,冷却,得到铋掺杂多组分纤芯玻璃;
制备铋掺杂多组分纤芯玻璃的原料按摩尔百分比计为:
A 2O 3:5%~15%,
MO:5%~20%,
R:1%-15%,
CeO 2:0.1%~1%,
B 2O 3:0~10%,
P 2O 5:0~10%,
SiO 2:0~10%,
Bi 2O 3:0.005%~0.2%,
GeO 2:余量。
(2) 将步骤(1)得到的铋掺杂多组分纤芯玻璃加工成纤芯玻璃棒,且将表面与端面抛光;
(3) 在包层玻璃棒端面沿中心轴打孔,后将孔内壁抛光;
(4) 将纤芯玻璃棒置于包层玻璃棒中心孔道,制得光纤预制棒;
(5) 将光纤预制棒放入光纤拉丝塔,进行拉制,得到所述具有多模式近红外发光铋掺杂多组分光纤。
(3) 在包层玻璃棒端面沿中心轴打孔,后将孔内壁抛光;
(4) 将纤芯玻璃棒置于包层玻璃棒中心孔道,制得光纤预制棒;
(5) 将光纤预制棒放入光纤拉丝塔,进行拉制,得到所述具有多模式近红外发光铋掺杂多组分光纤。
进一步地,步骤(1)中,所述铋掺杂多组分纤芯玻璃中A
2O
3为三价氧化物,包括Al
2O
3、Ga
2O
3、In
2O
3、La
2O
3中的一种以上。
进一步地,步骤(1)中,所述铋掺杂多组分纤芯玻璃中MO为碱土金属氧化物或碱土金属盐,碱土金属氧化物包括MgO、CaO、SrO、BaO中的一种以上,碱土金属盐包括MgCO
3、CaCO
3、SrCO
3、BaCO
3中的一种以上;
进一步地,步骤(1)中,所述铋掺杂多组分纤芯玻璃中R为还原剂,包括金属Al粉、金属Ti粉、Si粉中的一种以上。
进一步地,步骤(1)中,所述铋掺杂多组分纤芯玻璃中R为还原剂,包括金属Al粉、金属Ti粉、Si粉中的一种以上。
进一步地,步骤(1)中,所述局域还原熔融法是利用还原剂在纤芯玻璃熔融时构造局部还原的环境。
进一步地,步骤(1)中,A
2O
3:10%~15%。
进一步地,步骤(1)中,MO:10%~15%。
进一步地,步骤(1)中,R:2%~8%。
进一步地,步骤(1)中,所述熔融具体为在1300-1600℃下熔融保温0.5~1 h。
进一步地,步骤(1)中,所述的退火处理具体为480~620℃,保温2~6 h。
进一步地,步骤(2)中,所述纤芯玻璃棒的尺寸为直径1.2~4 mm,长度为50~75 mm。
进一步地,步骤(3)中,包层玻璃棒内孔直径大于纤芯玻璃棒0.02~0.05 mm,包层玻璃棒的外径20~40 mm,包层玻璃棒的长度80~120 mm。
进一步地,步骤(3)中,所述包层玻璃棒为商用的圆柱形K9玻璃棒。
进一步地,步骤(5)中,所述拉制是指拉丝,具体为拉丝塔以3-8℃/min逐渐升温至800~950℃进行拉丝,拉丝时间为20~60 min。
进一步地,步骤(5)中,所述拉制是指拉丝,具体为拉丝塔以5℃/min逐渐升温至800~950℃进行拉丝,拉丝时间为20~60 min。
进一步地,步骤(5)所述具有多模式近红外发光铋掺杂多组分光纤的直径为115~140 μm。
本发明还提供所述具有多模式近红外发光铋掺杂多组分光纤在制备宽带光纤放大器或可调谐激光器中的应用。
与现有技术相比,本发明具有以下优点和有益效果:
(1) 本发明中的纤芯玻璃组分高度可调,突破了MCVD法和熔芯法制备的光纤所需的高熔点玻璃的组分限制,且工艺简单。
(1) 本发明中的纤芯玻璃组分高度可调,突破了MCVD法和熔芯法制备的光纤所需的高熔点玻璃的组分限制,且工艺简单。
(2) 采用本发明的方法,可在低温(800~950℃)进行光纤拉制,能避免MCVD法和高温熔芯法制备光纤所导致的铋挥发。
(3) 本发明在纤芯中引入了还原剂可保证低浓度铋掺杂光纤的高效发光,同时避免高浓度铋掺杂所导致的铋团簇,铋金属析出所引起的光纤损耗。
(4) 本发明制备的铋掺杂多组分光纤在蓝光激发下具有多模式的近红外发射,可覆盖850~1600 nm,且半高宽为600 nm,远宽于铋掺杂石英光纤和其他铋掺杂多组分光纤。
(5) 本发明制备的具有多模式近红外发光铋掺杂多组分光纤在半导体808 nm激光器激发下,具有明显的宽带自发辐射谱信号,可覆盖1000-1600 nm近红外范围,可在宽带光纤放大器和宽带可调谐光纤激光等领域获得应用。
图1 为本发明实施例1制备的具有多模式近红外发光铋掺杂多组分光纤侧面显微镜图。
图2为本发明实施例1制备的具有多模式近红外发光铋掺杂多组分光纤和实施例1制备的铋掺杂多组分纤芯玻璃在460 nm处激发的发光谱图。
图3为本发明实施例1制备的具有多模式近红外发光铋掺杂多组分光纤和实施例1制备的铋掺杂多组分纤芯玻璃在808 nm处激发的发光谱图。
图4为本发明实施例1制备的具有多模式近红外发光铋掺杂多组分光纤的放大自发辐射谱图。
在此处键入本发明的最佳实施方式描述段落。
下面结合具体实施例和附图对本发明作进一步具体详细描述,但本发明的实施方式不局限此。
实施例
1
(1) 将76.85 mol GeO 2、11 mol CaO、8 mol Al 2O 3、4 mol Al、0.1 mol CeO 2和0.05 mol Bi 2O 3混合后熔制,熔制的温度为1500℃,熔制的时间为0.5 h,熔制完成后,得到玻璃熔体,然后将玻璃熔体浇注模具中,退火处理,退火处理的温度为540℃,退火处理的时间为4 h,冷却,获得铋掺杂多组分纤芯玻璃;
(2) 将步骤(1)中制备得到的铋掺杂多组分纤芯玻璃加工成纤芯玻璃棒,其中纤芯玻璃棒的直径为2 mm,长度为65 mm,且将表面与端面抛光;
(3) 将商用的K9玻璃棒作为包层玻璃棒,并在包层玻璃棒端面沿中心轴打孔,其中包层K9玻璃棒的直径为35 mm,长度为100 mm,打孔得到的内孔的直径为2.05 mm,长度为65 mm,且将孔内壁抛光,制得光纤预制棒;
(5) 将光纤预制棒放入光纤拉丝塔,拉丝塔以5 ℃/min逐渐升温至在860℃的条件下拉制30 min,得到具有多模式近红外发光铋掺杂多组分光纤,直径为125 μm。
(1) 将76.85 mol GeO 2、11 mol CaO、8 mol Al 2O 3、4 mol Al、0.1 mol CeO 2和0.05 mol Bi 2O 3混合后熔制,熔制的温度为1500℃,熔制的时间为0.5 h,熔制完成后,得到玻璃熔体,然后将玻璃熔体浇注模具中,退火处理,退火处理的温度为540℃,退火处理的时间为4 h,冷却,获得铋掺杂多组分纤芯玻璃;
(2) 将步骤(1)中制备得到的铋掺杂多组分纤芯玻璃加工成纤芯玻璃棒,其中纤芯玻璃棒的直径为2 mm,长度为65 mm,且将表面与端面抛光;
(3) 将商用的K9玻璃棒作为包层玻璃棒,并在包层玻璃棒端面沿中心轴打孔,其中包层K9玻璃棒的直径为35 mm,长度为100 mm,打孔得到的内孔的直径为2.05 mm,长度为65 mm,且将孔内壁抛光,制得光纤预制棒;
(5) 将光纤预制棒放入光纤拉丝塔,拉丝塔以5 ℃/min逐渐升温至在860℃的条件下拉制30 min,得到具有多模式近红外发光铋掺杂多组分光纤,直径为125 μm。
实施例1制备得到的具有多模式近红外发光铋掺杂多组分光纤具有多模式发光和放大自发辐射。
实施例2
(1) 将58.995 mol GeO 2、10 mol SiO 2,20 mol CaO、5 mol Al 2O 3、5 mol Si、1 mol CeO 2和0.005 mol Bi 2O 3混合后熔制,熔制的温度为1550℃,熔制的时间为1 h,熔制完成后,得到玻璃熔体,然后将玻璃熔体浇注模具中,退火处理,退火处理的温度为600℃,退火处理的时间为6 h,冷却,获得铋掺杂多组分纤芯玻璃;
(2) 将步骤(1)中制备得到的铋掺杂多组分纤芯玻璃加工成纤芯玻璃棒,其中纤芯玻璃棒的直径为1.2 mm,长度为50 mm,且将表面与端面抛光;
(3) 商用的K9玻璃棒作为包层玻璃棒,并在包层玻璃棒端面沿中心轴打孔,其中包层K9玻璃棒的直径为20 mm,长度为80 mm,打孔得到的内孔的直径为1.25 mm,长度为50 mm,且将孔内壁抛光,制得光纤预制棒;
(5) 将光纤预制棒放入光纤拉丝塔,拉丝塔以8 ℃/min逐渐升温至在920℃的条件下拉制60 min,得到具有多模式近红外发光铋掺杂多组分光纤,直径为135 μm。
(1) 将58.995 mol GeO 2、10 mol SiO 2,20 mol CaO、5 mol Al 2O 3、5 mol Si、1 mol CeO 2和0.005 mol Bi 2O 3混合后熔制,熔制的温度为1550℃,熔制的时间为1 h,熔制完成后,得到玻璃熔体,然后将玻璃熔体浇注模具中,退火处理,退火处理的温度为600℃,退火处理的时间为6 h,冷却,获得铋掺杂多组分纤芯玻璃;
(2) 将步骤(1)中制备得到的铋掺杂多组分纤芯玻璃加工成纤芯玻璃棒,其中纤芯玻璃棒的直径为1.2 mm,长度为50 mm,且将表面与端面抛光;
(3) 商用的K9玻璃棒作为包层玻璃棒,并在包层玻璃棒端面沿中心轴打孔,其中包层K9玻璃棒的直径为20 mm,长度为80 mm,打孔得到的内孔的直径为1.25 mm,长度为50 mm,且将孔内壁抛光,制得光纤预制棒;
(5) 将光纤预制棒放入光纤拉丝塔,拉丝塔以8 ℃/min逐渐升温至在920℃的条件下拉制60 min,得到具有多模式近红外发光铋掺杂多组分光纤,直径为135 μm。
实施例2制备得到的具有多模式近红外发光铋掺杂多组分光纤具有多模式发光和放大自发辐射。
实施例
3
(1) 将54.3 mol GeO 2、10 mol P 2O 5,5 mol MgO、15 mol Ga 2O 3、15 mol Ti、0.5 CeO 2和0.2 mol Bi 2O 3混合后熔制,熔制的温度为1300℃,熔制的时间为0.5 h,熔制完成后,得到玻璃熔体,然后将玻璃熔体浇注模具中,退火处理,退火处理的温度为480℃,退火处理的时间为2 h,冷却,获得铋掺杂多组分纤芯玻璃;
(2) 将步骤(1)中制备得到的铋掺杂多组分纤芯玻璃加工成纤芯玻璃棒,其中纤芯玻璃棒的直径为4 mm,长度为75 mm,且将表面与端面抛光;
(3) 商用的K9玻璃棒作为包层玻璃棒,并在包层玻璃棒端面沿中心轴打孔,其中包层K9玻璃棒的直径为40 mm,长度为120 mm,打孔得到的内孔的直径为4.05 mm,长度为75 mm,且将孔内壁抛光,制得光纤预制棒;
(5) 将光纤预制棒放入光纤拉丝塔,拉丝塔以3 ℃/min逐渐升温至在920℃的条件下拉制60 min,得到具有多模式近红外发光铋掺杂多组分光纤,直径为118 μm。
(1) 将54.3 mol GeO 2、10 mol P 2O 5,5 mol MgO、15 mol Ga 2O 3、15 mol Ti、0.5 CeO 2和0.2 mol Bi 2O 3混合后熔制,熔制的温度为1300℃,熔制的时间为0.5 h,熔制完成后,得到玻璃熔体,然后将玻璃熔体浇注模具中,退火处理,退火处理的温度为480℃,退火处理的时间为2 h,冷却,获得铋掺杂多组分纤芯玻璃;
(2) 将步骤(1)中制备得到的铋掺杂多组分纤芯玻璃加工成纤芯玻璃棒,其中纤芯玻璃棒的直径为4 mm,长度为75 mm,且将表面与端面抛光;
(3) 商用的K9玻璃棒作为包层玻璃棒,并在包层玻璃棒端面沿中心轴打孔,其中包层K9玻璃棒的直径为40 mm,长度为120 mm,打孔得到的内孔的直径为4.05 mm,长度为75 mm,且将孔内壁抛光,制得光纤预制棒;
(5) 将光纤预制棒放入光纤拉丝塔,拉丝塔以3 ℃/min逐渐升温至在920℃的条件下拉制60 min,得到具有多模式近红外发光铋掺杂多组分光纤,直径为118 μm。
实施例3制备得到的具有多模式近红外发光铋掺杂多组分光纤具有多模式发光和放大自发辐射。
实施例4
(1) 将60.9 mol GeO 2、10 mol B 2O 3,12 mol SrO、4 mol Al 2O 3、8 mol La 2O 3、4 mol Al、1 CeO 2和0.1 mol Bi 2O 3混合后熔制,熔制的温度为1400℃,熔制的时间为0.5 h,熔制完成后,得到玻璃熔体,然后将玻璃熔体浇注模具中,退火处理,退火处理的温度为500℃,退火处理的时间为3 h,冷却,获得铋掺杂多组分纤芯玻璃;
(2) 将步骤(1)中制备得到的铋掺杂多组分纤芯玻璃加工成纤芯玻璃棒,其中纤芯玻璃棒的直径为1.8 mm,长度为75 mm,且将表面与端面抛光;
(3) 商用的K9玻璃棒作为包层玻璃棒,并在包层玻璃棒端面沿中心轴打孔,其中包层K9玻璃棒的直径为30 mm,长度为100 mm,打孔得到的内孔的直径为1.82 mm,长度为75 mm,且将孔内壁抛光,制得光纤预制棒;
(5) 将光纤预制棒放入光纤拉丝塔,拉丝塔以4 ℃/min逐渐升温至在820℃的条件下拉制40 min,得到具有多模式近红外发光铋掺杂多组分光纤,直径为140 μm。
(1) 将60.9 mol GeO 2、10 mol B 2O 3,12 mol SrO、4 mol Al 2O 3、8 mol La 2O 3、4 mol Al、1 CeO 2和0.1 mol Bi 2O 3混合后熔制,熔制的温度为1400℃,熔制的时间为0.5 h,熔制完成后,得到玻璃熔体,然后将玻璃熔体浇注模具中,退火处理,退火处理的温度为500℃,退火处理的时间为3 h,冷却,获得铋掺杂多组分纤芯玻璃;
(2) 将步骤(1)中制备得到的铋掺杂多组分纤芯玻璃加工成纤芯玻璃棒,其中纤芯玻璃棒的直径为1.8 mm,长度为75 mm,且将表面与端面抛光;
(3) 商用的K9玻璃棒作为包层玻璃棒,并在包层玻璃棒端面沿中心轴打孔,其中包层K9玻璃棒的直径为30 mm,长度为100 mm,打孔得到的内孔的直径为1.82 mm,长度为75 mm,且将孔内壁抛光,制得光纤预制棒;
(5) 将光纤预制棒放入光纤拉丝塔,拉丝塔以4 ℃/min逐渐升温至在820℃的条件下拉制40 min,得到具有多模式近红外发光铋掺杂多组分光纤,直径为140 μm。
实施例4制备得到的具有多模式近红外发光铋掺杂多组分光纤具有多模式发光和放大自发辐射。
实施例
5
(1) 将66.48 mol GeO 2、5 mol SiO 2,10 mol BaO、10 mol In 2O 3、8 mol Si、0.5 CeO 2和0.02 mol Bi 2O 3混合后熔制,熔制的温度为1520℃,熔制的时间为0.5 h,熔制完成后,得到玻璃熔体,然后将玻璃熔体浇注模具中,退火处理,退火处理的温度为560℃,退火处理的时间为3 h,冷却,获得铋掺杂多组分纤芯玻璃;
(2) 将步骤(1)中制备得到的铋掺杂多组分纤芯玻璃加工成纤芯玻璃棒,其中纤芯玻璃棒的直径为2.5 mm,长度为60 mm,且将表面与端面抛光;
(3) 商用的K9玻璃棒作为包层玻璃棒,并在包层玻璃棒端面沿中心轴打孔,其中包层K9玻璃棒的直径为30 mm,长度为100 mm,打孔得到的内孔的直径为2.55 mm,长度为60 mm,且将孔内壁抛光,制得光纤预制棒;
(5) 将光纤预制棒放入光纤拉丝塔,拉丝塔以6 ℃/min逐渐升温至在880℃的条件下拉制40 min,得到具有多模式近红外发光铋掺杂多组分光纤,直径为130 μm。
(1) 将66.48 mol GeO 2、5 mol SiO 2,10 mol BaO、10 mol In 2O 3、8 mol Si、0.5 CeO 2和0.02 mol Bi 2O 3混合后熔制,熔制的温度为1520℃,熔制的时间为0.5 h,熔制完成后,得到玻璃熔体,然后将玻璃熔体浇注模具中,退火处理,退火处理的温度为560℃,退火处理的时间为3 h,冷却,获得铋掺杂多组分纤芯玻璃;
(2) 将步骤(1)中制备得到的铋掺杂多组分纤芯玻璃加工成纤芯玻璃棒,其中纤芯玻璃棒的直径为2.5 mm,长度为60 mm,且将表面与端面抛光;
(3) 商用的K9玻璃棒作为包层玻璃棒,并在包层玻璃棒端面沿中心轴打孔,其中包层K9玻璃棒的直径为30 mm,长度为100 mm,打孔得到的内孔的直径为2.55 mm,长度为60 mm,且将孔内壁抛光,制得光纤预制棒;
(5) 将光纤预制棒放入光纤拉丝塔,拉丝塔以6 ℃/min逐渐升温至在880℃的条件下拉制40 min,得到具有多模式近红外发光铋掺杂多组分光纤,直径为130 μm。
实施例5制备得到的具有多模式近红外发光铋掺杂多组分光纤具有多模式发光和放大自发辐射。
实施例6
(1) 将71.95 mol GeO 2、10 mol CaO、4 mol Ga 2O 3、8mol Al 2O 3、5 mol Al、1 CeO 2和0.05 mol Bi 2O 3混合后熔制,熔制的温度为1600℃,熔制的时间为0.5 h,熔制完成后,得到玻璃熔体,然后将玻璃熔体浇注模具中,退火处理,退火处理的温度为620℃,退火处理的时间为2 h,冷却,获得铋掺杂多组分纤芯玻璃;
(2) 将步骤(1)中制备得到的铋掺杂多组分纤芯玻璃加工成纤芯玻璃棒,其中纤芯玻璃棒的直径为3 mm,长度为60 mm,且将表面与端面抛光;
(3) 商用的K9玻璃棒作为包层玻璃棒,并在包层玻璃棒端面沿中心轴打孔,其中包层K9玻璃棒的直径为30 mm,长度为100 mm,打孔得到的内孔的直径为3.02 mm,长度为60 mm,且将孔内壁抛光,制得光纤预制棒;
(5) 将光纤预制棒放入光纤拉丝塔,拉丝塔以7 ℃/min逐渐升温至在950℃的条件下拉制60 min,得到具有多模式近红外发光铋掺杂多组分光纤,直径为120 μm。
(1) 将71.95 mol GeO 2、10 mol CaO、4 mol Ga 2O 3、8mol Al 2O 3、5 mol Al、1 CeO 2和0.05 mol Bi 2O 3混合后熔制,熔制的温度为1600℃,熔制的时间为0.5 h,熔制完成后,得到玻璃熔体,然后将玻璃熔体浇注模具中,退火处理,退火处理的温度为620℃,退火处理的时间为2 h,冷却,获得铋掺杂多组分纤芯玻璃;
(2) 将步骤(1)中制备得到的铋掺杂多组分纤芯玻璃加工成纤芯玻璃棒,其中纤芯玻璃棒的直径为3 mm,长度为60 mm,且将表面与端面抛光;
(3) 商用的K9玻璃棒作为包层玻璃棒,并在包层玻璃棒端面沿中心轴打孔,其中包层K9玻璃棒的直径为30 mm,长度为100 mm,打孔得到的内孔的直径为3.02 mm,长度为60 mm,且将孔内壁抛光,制得光纤预制棒;
(5) 将光纤预制棒放入光纤拉丝塔,拉丝塔以7 ℃/min逐渐升温至在950℃的条件下拉制60 min,得到具有多模式近红外发光铋掺杂多组分光纤,直径为120 μm。
实施例6制备得到的具有多模式近红外发光铋掺杂多组分光纤具有多模式发光和放大自发辐射。
实施例7
(1) 将75.62 mol GeO 2、5 mol MgO、5 mol CaO、10 mol Al 2O 3、4 mol Al、0.3 CeO 2和0.08 mol Bi 2O 3混合后熔制,熔制的温度为1540℃,熔制的时间为0.5 h,熔制完成后,得到玻璃熔体,然后将玻璃熔体浇注模具中,退火处理,退火处理的温度为580℃,退火处理的时间为3 h,冷却,获得铋掺杂多组分纤芯玻璃;
(2) 将步骤(1)中制备得到的铋掺杂多组分纤芯玻璃加工成纤芯玻璃棒,其中纤芯玻璃棒的直径为3.5 mm,长度为65 mm,且将表面与端面抛光;
(3) 商用的K9玻璃棒作为包层玻璃棒,并在包层玻璃棒端面沿中心轴打孔,其中包层K9玻璃棒的直径为30 mm,长度为100 mm,打孔得到的内孔的直径为3.55 mm,长度为65 mm,且将孔内壁抛光,制得光纤预制棒;
(5) 将光纤预制棒放入光纤拉丝塔,拉丝塔以5 ℃/min逐渐升温至在900℃的条件下拉制40 min,得到具有多模式近红外发光铋掺杂多组分光纤,直径为135 μm。
(1) 将75.62 mol GeO 2、5 mol MgO、5 mol CaO、10 mol Al 2O 3、4 mol Al、0.3 CeO 2和0.08 mol Bi 2O 3混合后熔制,熔制的温度为1540℃,熔制的时间为0.5 h,熔制完成后,得到玻璃熔体,然后将玻璃熔体浇注模具中,退火处理,退火处理的温度为580℃,退火处理的时间为3 h,冷却,获得铋掺杂多组分纤芯玻璃;
(2) 将步骤(1)中制备得到的铋掺杂多组分纤芯玻璃加工成纤芯玻璃棒,其中纤芯玻璃棒的直径为3.5 mm,长度为65 mm,且将表面与端面抛光;
(3) 商用的K9玻璃棒作为包层玻璃棒,并在包层玻璃棒端面沿中心轴打孔,其中包层K9玻璃棒的直径为30 mm,长度为100 mm,打孔得到的内孔的直径为3.55 mm,长度为65 mm,且将孔内壁抛光,制得光纤预制棒;
(5) 将光纤预制棒放入光纤拉丝塔,拉丝塔以5 ℃/min逐渐升温至在900℃的条件下拉制40 min,得到具有多模式近红外发光铋掺杂多组分光纤,直径为135 μm。
实施例7制备得到的具有多模式近红外发光铋掺杂多组分光纤具有多模式发光和放大自发辐射。
图1为实施例1制备的具有多模式近红外发光铋掺杂多组分光纤的侧面显微镜图。由图1可知纤芯与包层界面明显。
图2为实施例1制备的具有多模式近红外发光铋掺杂多组分光纤和实施例1制备的铋掺杂多组分纤芯玻璃在460 nm激发下的发光谱图。由图2可知在460 nm激发下,铋掺杂多组分光纤具有多模式近红外发光,其发光覆盖850-1600 nm,发光半高宽600 nm,与纤芯玻璃发光类似。
图3为实施例1制备的具有多模式近红外发光铋掺杂多组分光纤和实施例1制备的铋掺杂多组分纤芯玻璃在808 nm激发下的发光谱图。由图3可知在808 nm激发下,铋掺杂多组分光纤具有宽带近红外发光,其发光覆盖1000-1600 nm,发光半高宽400 nm,与纤芯玻璃发光类似。
图4为实施例1制备的具有多模式近红外发光铋掺杂多组分光纤的放大自发辐射谱图。由图4可知在808 nm泵浦下,实施例1制备的具有多模式近红外发光铋掺杂多组分光纤具有一个明显的宽带信号,且随着泵浦功率增加而增强。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (10)
- 一种具有多模式近红外发光铋掺杂多组分光纤,其特征在于,经纤芯玻璃和包层玻璃制备预制棒,再经拉丝塔拉制而成;所述纤芯玻璃经局域还原熔融法制备而成,制备纤芯玻璃的原料按摩尔百分比计为:A 2O 3:5%~15%,MO:5%~20%,R:1%-15%,CeO 2:0.1%~1%,B 2O 3:0%~10%,P 2O 5:0%~10%,SiO 2:0%~10%,Bi 2O 3:0.005%~0.2%,GeO 2:余量;其中,所述纤芯玻璃中A 2O 3为三价氧化物,包括Al 2O 3、Ga 2O 3、In 2O 3、La 2O 3中的一种以上;所述纤芯玻璃中MO为碱土金属氧化物或碱土金属盐,碱土金属氧化物包括MgO、CaO、SrO、BaO中的一种以上,碱土金属盐包括MgCO 3、CaCO 3、SrCO 3、BaCO 3中的一种以上;所述纤芯玻璃中R为还原剂,包括金属Al粉、金属Ti粉、Si粉中的一种以上。
- 根据权利要求1所述的一种具有多模式近红外发光铋掺杂多组分光纤,其特征在于,所述包层玻璃为商用的圆柱形K9玻璃棒。
- 权利要求1-2任一项所述一种具有多模式近红外发光铋掺杂多组分光纤的制备方法,其特征在于,包括以下步骤:(1) 将各组分原料混合经局域还原熔融法熔制后,再将玻璃熔体浇注模具中,退火处理,冷却,获得铋掺杂多组分纤芯玻璃;制备铋掺杂多组分纤芯玻璃的原料按摩尔百分比计为:A 2O 3:5%~15%,MO:5%~20%,R:1%-15%,CeO 2:0.1%~1%,B 2O 3:0~10%,P 2O 5:0~10%,SiO 2:0~10%,Bi 2O 3:0.005%~0.2%,GeO 2:余量;(2) 将步骤(1)得到的铋掺杂多组分纤芯玻璃加工成纤芯玻璃棒,且将表面与端面抛光;(3) 将包层玻璃棒端面沿中心轴打孔,且将孔内壁抛光;(4) 将纤芯玻璃棒置于包层玻璃棒中心孔道,制得光纤预制棒;(5) 将光纤预制棒放入光纤拉丝塔,进行拉制,得到所述具有多模式近红外发光铋掺杂多组分光纤。
- 根据权利要求3所述的一种具有多模式近红外发光铋掺杂多组分光纤的制备方法,其特征在于,步骤(1)中,所述熔融的温度为1300-1600℃,所述熔融的时间为0.5~1 h。
- 根据权利要求3所述的一种具有多模式近红外发光铋掺杂多组分光纤的制备方法,其特征在于,步骤(1)中,所述退火的温度为480~620℃,所述退火的时间为2~6 h。
- 根据权利要求3所述的一种具有多模式近红外发光铋掺杂多组分光纤的制备方法,其特征在于,步骤(2)中,所述纤芯玻璃棒的尺寸为直径1.2~4 mm,长度为50~75 mm。
- 根据权利要求3所述的一种具有多模式近红外发光铋掺杂多组分光纤的制备方法,其特征在于,步骤(3)中,所述包层玻璃棒为商用的圆柱形K9玻璃棒,包层玻璃棒内孔直径大于纤芯玻璃棒0.02~0.05 mm,包层玻璃棒的外径20~40 mm,包层玻璃棒的长度80~120 mm。
- 根据权利要求3所述的一种具有多模式近红外发光铋掺杂多组分光纤的制备方法,其特征在于,步骤(5)中,所述拉制是指拉丝,具体为拉丝塔以3-8℃/min逐渐升温至800~950℃进行拉丝,拉丝时间为20~60 min。
- 根据权利要求3所述的一种具有多模式近红外发光铋掺杂多组分光纤的制备方法,其特征在于,步骤(5)中,所述具有多模式近红外发光铋掺杂多组分光纤的直径为115~140 μm。
- 权利要求1-2任一项所述具有多模式近红外发光铋掺杂多组分光纤在制备宽带光纤放大器或可调谐激光器中应用。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211531244.3A CN115849703A (zh) | 2022-12-01 | 2022-12-01 | 一种具有多模式近红外发光铋掺杂多组分光纤及其制备方法与应用 |
CN202211531244.3 | 2022-12-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024113480A1 true WO2024113480A1 (zh) | 2024-06-06 |
Family
ID=85669003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/074163 WO2024113480A1 (zh) | 2022-12-01 | 2023-02-01 | 一种具有多模式近红外发光铋掺杂多组分光纤及其制备方法与应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115849703A (zh) |
WO (1) | WO2024113480A1 (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009035448A (ja) * | 2007-08-01 | 2009-02-19 | Nippon Sheet Glass Co Ltd | ガラス組成物および光ファイバ |
CN105884191A (zh) * | 2016-04-13 | 2016-08-24 | 武汉理工大学 | 一种铋掺杂锗酸盐光学玻璃及其制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103601364B (zh) * | 2013-11-16 | 2016-01-13 | 华中科技大学 | 成分和价态可控的掺铋石英光纤制备方法及掺铋石英光纤 |
-
2022
- 2022-12-01 CN CN202211531244.3A patent/CN115849703A/zh active Pending
-
2023
- 2023-02-01 WO PCT/CN2023/074163 patent/WO2024113480A1/zh unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009035448A (ja) * | 2007-08-01 | 2009-02-19 | Nippon Sheet Glass Co Ltd | ガラス組成物および光ファイバ |
CN105884191A (zh) * | 2016-04-13 | 2016-08-24 | 武汉理工大学 | 一种铋掺杂锗酸盐光学玻璃及其制备方法 |
Non-Patent Citations (2)
Title |
---|
"LIGHTGUIDE FIBER, EDITION 1", 31 August 1980, POSTS & TELECOM PRESS, article NAGAO WAMI: "Rod and Tube Method", pages: 82 - 83 * |
LIU CHENGZHEN, ZHUANG YIXI, HAN JIANJUN, RUAN JIAN, LIU CHAO, ZHAO XIUJIAN: "Multi-band near-infrared emission in low concentration bismuth doped alkaline earth alumino-boro-germanate glass", CERAMICS INTERNATIONAL, ELSEVIER, AMSTERDAM., NL, vol. 46, no. 10, 1 July 2020 (2020-07-01), NL , pages 15544 - 15553, XP093177691, ISSN: 0272-8842, DOI: 10.1016/j.ceramint.2020.03.101 * |
Also Published As
Publication number | Publication date |
---|---|
CN115849703A (zh) | 2023-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Blanc et al. | Formation and applications of nanoparticles in silica optical fibers | |
CN101351934B (zh) | 在1000-1700nm的波长范围工作的放大光纤,其制备方法和纤维激光器 | |
CN109809685B (zh) | 可输出单模高性能激光的微晶玻璃回音壁模式谐振腔及其制备方法 | |
WO1991011401A1 (fr) | Verres quartzeux dopes avec un element de terre rare et production d'un tel verre | |
CN101923189B (zh) | 掺铥碲酸盐玻璃双包层光纤及其制备方法 | |
JPH07291652A (ja) | 光信号増幅器用ガラスおよび光信号増幅器の製造方法 | |
CN104609722B (zh) | 一种管‑熔体共拉铋掺杂光纤的制备方法 | |
JP2002527332A (ja) | 光増幅器用光ファイバー | |
CN114409263A (zh) | 一种用作增益介质的掺铋多组分玻璃光纤及其制备方法 | |
KR20130119048A (ko) | 형광 효율이 우수한 이득매질용 광학유리 및 이를 이용한 광섬유 | |
CN110407462A (zh) | 一种稀土掺杂硅酸盐玻璃及其制备方法和应用 | |
CN1315746C (zh) | 铒镱共掺多组份氧化物玻璃单模光纤芯玻璃及制备单模光纤的方法 | |
WO2024113480A1 (zh) | 一种具有多模式近红外发光铋掺杂多组分光纤及其制备方法与应用 | |
US20020041750A1 (en) | Rare earth element-doped, Bi-Sb-Al-Si glass and its use in optical amplifiers | |
JP5516413B2 (ja) | 光増幅ガラス | |
CN105068178B (zh) | 一种近红外发光铋掺杂多组分光纤及制备方法 | |
CN114276023B (zh) | 一种红外硫系玻璃陶瓷光纤及其制备方法 | |
JP2004102210A (ja) | ガラス、光導波路製造方法および光導波路 | |
JP2004277252A (ja) | 光増幅ガラスおよび光導波路 | |
CN102211871B (zh) | 镱铋共掺无碱硼磷酸盐光学玻璃及其制备方法 | |
CN109180010B (zh) | 一种高增益的Tm3+/Ho3+共掺多组分锗酸盐玻璃单模光纤及其制备方法 | |
JP3475109B2 (ja) | 希土類元素ドープガラス | |
JPH03265537A (ja) | 希土類元素ドープガラスの製造方法 | |
CN118724468A (zh) | 光纤纤芯用玻璃组合物、光纤及其制造方法和作为增益介质的用途、以及光纤放大器 | |
CN113105119B (zh) | 一种镧锑酸盐玻璃光纤及其制备方法与应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23895656 Country of ref document: EP Kind code of ref document: A1 |