WO2024113108A1 - Nitride-based semiconductor device and method for manufacturing thereof - Google Patents

Nitride-based semiconductor device and method for manufacturing thereof Download PDF

Info

Publication number
WO2024113108A1
WO2024113108A1 PCT/CN2022/134748 CN2022134748W WO2024113108A1 WO 2024113108 A1 WO2024113108 A1 WO 2024113108A1 CN 2022134748 W CN2022134748 W CN 2022134748W WO 2024113108 A1 WO2024113108 A1 WO 2024113108A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride
based semiconductor
side surfaces
layer
substrate
Prior art date
Application number
PCT/CN2022/134748
Other languages
French (fr)
Inventor
Shangqing QIU
Jianping Zhang
Original Assignee
Innoscience (suzhou) Semiconductor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innoscience (suzhou) Semiconductor Co., Ltd. filed Critical Innoscience (suzhou) Semiconductor Co., Ltd.
Priority to PCT/CN2022/134748 priority Critical patent/WO2024113108A1/en
Publication of WO2024113108A1 publication Critical patent/WO2024113108A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3135Double encapsulation or coating and encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks

Definitions

  • the present invention generally relates to a semiconductor device. More specifically, the present invention relates to a nitride-based semiconductor device having high electron mobility transistor (HEMT) and a metal blocking layer.
  • HEMT high electron mobility transistor
  • HEMT high-electron-mobility transistors
  • 2DEG two-dimensional electron gas
  • examples of devices having heterostructures further include heterojunction bipolar transistors (HBT) , heterojunction field effect transistor (HFET) , and modulation-doped FETs (MODFET) .
  • HBT heterojunction bipolar transistors
  • HFET heterojunction field effect transistor
  • MODFET modulation-doped FET
  • a nitride-based semiconductor device comprises a substrate, a nitride-based semiconductor die, a molding layer, and a metal blocking layer.
  • the substrate comprises a first surface and a second surface, and the first surface and the second surface are opposite to each other.
  • the nitride-based semiconductor die is disposed on the first surface of the substrate.
  • the molding layer encapsulates the nitride-based semiconductor die on the first surface.
  • the metal blocking layer covers the molding layer and the substrate.
  • the nitride-based semiconductor die comprises a first nitride-based semiconductor layer and a second nitride-based semiconductor layer.
  • the first nitride-based semiconductor layer is disposed on the second nitride-based semiconductor layer, and a bandgap of the first nitride-based semiconductor layer is higher than a bandgap of the second nitride-based semiconductor layer, and a 2DEG region is formed.
  • the molding layer has a plurality of first side surfaces
  • the substrate has a plurality of second side surfaces.
  • the second side surfaces connect the first surface and the second surface.
  • the second side surfaces are protruding from the first side surfaces.
  • the second surface is free from the molding layer and the metal blocking layer.
  • the metal blocking layer covers the first side surfaces and the second side surfaces.
  • a method for manufacturing a nitride-based semiconductor device includes steps as follows: disposing a nitride-based semiconductor die on a first surface of a substrate; encapsulating the nitride-based semiconductor die on the first surface with a molding layer; cutting the molding layer with a first cutting device and forming a plurality of first side surfaces on the molding layer; dicing the substrate and the molding layer with a second cutting device and forming a plurality of second side surfaces on the substrate; and depositing a metal blocking layer on the molding layer and the substrate.
  • the substrate comprises the first surface and a second surface, and the first surface and the second surface are opposite to each other.
  • the nitride-based semiconductor die comprises a first nitride-based semiconductor layer and a second nitride-based semiconductor layer.
  • the first nitride-based semiconductor layer is disposed on the second nitride-based semiconductor layer.
  • a bandgap of the first nitride-based semiconductor layer is higher than a bandgap of the second nitride-based semiconductor layer, and a 2DEG region is formed.
  • a shape of the first cutting device is different from a shape of the second cutting device.
  • the second side surfaces connect the first surface and the second surface.
  • the second side surfaces are protruding from the first side surfaces.
  • the second surface is free from the molding layer and the metal blocking layer.
  • the metal blocking layer covers the first side surfaces and the second side surfaces.
  • a nitride-based semiconductor device comprises a substrate, a nitride-based semiconductor die, a molding layer, and a metal blocking layer.
  • the substrate comprises a first surface and a second surface, and the first surface and the second surface are opposite to each other.
  • the nitride-based semiconductor die is disposed on the first surface of the substrate.
  • the molding layer encapsulates the nitride-based semiconductor die on the first surface.
  • the metal block layer covers the molding layer and the substrate.
  • the nitride-based semiconductor die comprises a first nitride-based semiconductor layer and a second nitride-based semiconductor layer.
  • the first nitride-based semiconductor layer is disposed on the second nitride-based semiconductor layer.
  • a bandgap of the first nitride-based semiconductor layer is higher than a bandgap of the second nitride-based semiconductor layer, and a 2DEG region is formed.
  • the molding layer has a first width in a first direction.
  • the substrate has a second width in the first direction.
  • the first width is shorter than the second width.
  • the first direction and a normal of the first surface are perpendicular.
  • the second surface is free from the molding layer and the metal blocking layer.
  • nitride-based semiconductor device comprising proper metal blocking layer can be achieved.
  • a HEMT device can be manufactured with high quality protecting layer.
  • FIG. 1 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure
  • FIG. 2 is a side sectional view of a nitride-based semiconductor die according to some embodiments of the present disclosure
  • FIGS. 3-6 are side sectional views of steps of a manufacturing method of a nitride-based semiconductor device according to some embodiments of the present disclosure
  • FIG. 7 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure.
  • FIG. 8 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure.
  • FIGS. 9-11 are side sectional views of steps of a manufacturing method of a nitride-based semiconductor device according to some embodiments of the present disclosure.
  • FIG. 12 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure.
  • FIG. 13 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure.
  • FIG. 14 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure.
  • FIG. 15 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure.
  • FIG. 16 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure.
  • FIG. 17 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure.
  • FIG. 1 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure.
  • the nitride-based semiconductor device 1A comprises a substrate 10, a nitride-based semiconductor die 11, a molding layer 13, and a metal blocking layer 14.
  • the substrate 10 has a surface 100 and a surface 101, and the surface 100 and the surface 101 are opposite to each other.
  • the nitride-based semiconductor die 11 is disposed on the surface 100 of the substrate 10.
  • the molding layer 13 encapsulates the nitride-based semiconductor die 11 on the surface 100 of the substrate 10.
  • the metal blocking layer 14 covers the molding layer 13 and the substrate 10.
  • FIG. 2 is a side sectional view of the nitride-based semiconductor die 11 according to some embodiments of the present disclosure.
  • the nitride-based semiconductor die 11 comprises a nitride-based semiconductor layer 110 and a nitride-based semiconductor layer 111.
  • the nitride-based semiconductor layer 110 is disposed on the nitride-based semiconductor layer 111.
  • a bandgap of the nitride-based semiconductor layer 110 is higher than a bandgap of the nitride-based semiconductor layer 111, and a 2DEG region is formed.
  • the 2DEG region is formed near an interface between the nitride-based semiconductor layer 110 and the nitride-based semiconductor layer 111.
  • the nitride-based semiconductor layer 110 and the nitride-based semiconductor layer 111 form a plurality of HEMT devices.
  • the nitride-based semiconductor layer 110 may include aluminum gallium nitride (AlGaN)
  • the nitride-based semiconductor layer 111 may include gallium nitride (GaN) .
  • the exemplary materials of the nitride-based semiconductor layers 110, 111 can include, for example but are not limited to, nitrides or group III-V compounds, such as GaN, AlN, InN, InAlN, In x Al y Ga (1–x–y) N where x+y ⁇ 1, Al y Ga (1–y) N where y ⁇ 1.
  • the exemplary materials of the nitride-based semiconductor layers are selected such that the nitride-based semiconductor layer 110 has a bandgap (i.e., forbidden band width) greater than a bandgap of the nitride-based semiconductor layer 111, which causes electron affinities thereof different from each other and forms a heterojunction therebetween.
  • the nitride-based semiconductor layers 111, 110 can serve as a channel layer and a barrier layer, respectively.
  • a triangular well potential is generated at a bonded interface between the channel and barrier layers, so that electrons accumulate in the triangular well potential, thereby generating a two-dimensional electron gas (2DEG) region adjacent to the heterojunction.
  • the molding layer 13 has a plurality of side surface 130, and the substrate 10 has a plurality of side surfaces 102.
  • the side surfaces 102 connect the surface 100 and the surface 101.
  • the side surfaces 102 are protruding from the side surfaces 130.
  • the side surfaces 102 are located below the side surfaces 130, and the substrate 10 and the molding layer 13 form a plurality of step-like structures on the side.
  • the side surfaces 102 of the substrate 10 jut out from the side surface 130 of the molding layer 13, and a periphery of the surface 100 of the substrate 10 is not covered by the molding layer 13.
  • the molding layer 13 has a width W3 in a direction d1
  • the substrate 10 has a width W4 in the direction d1.
  • the width W3 is shorter than the width W4.
  • the direction d1 and a normal of the surface 100 are perpendicular, and the normal and the direction d2 is parallel.
  • the surface 101 is free from the molding layer 13 and the metal blocking layer 14, and the metal block layer 14 covers the side surface 130 and the side surfaces 102. Since the molding layer 13 and the substrate 10 form the step-like structures at the sides, the step-like structure provides a better platform for the deposition of the metal blocking layer 14. In other word, the periphery of the substrate 10 is sticking out from the side surfaces 130, and the step-like structures can hold the metal blocking layer 14 properly, and the metal blocking layer 14 may surround the molding layer 13, the substrate 10, an the nitride-based semiconductor die 11 thereon.
  • the substrate 10 form a brim around the molding layer 13, and the projecting rim of the substrate 10 may carry a sufficient amount of metal blocking layer 14.
  • the periphery of the substrate 10 is abut against the metal blocking layer 14, and the metal blocking layer 14 provide a proper protection to the nitride-based semiconductor die 11.
  • the metal blocking layer 14 may block the electromagnetic signals from the environment of the nitride-based semiconductor device 1A.
  • the metal blocking layer 14 may be disposed through sputter deposition. Since the side surfaces 102 are protrude from the side surfaces 130, more material of the metal blocking layer 14 may be accumulated on the periphery of the substrate 10. Therefore, the thickness of the metal blocking layer 14 above the substrate 10 may be increased, and a better protection is provided. Also, part the metal blocking layer 14 is abutted against the side surfaces 102, and the molding layer 13 and the nitride-based semiconductor die 11 therein are well-surrounded and covered. With the increased thickness, the metal blocking layer 14 may provide a good protection.
  • the thickness T1 of the metal blocking layer 14 on the side surface 130 may be 0.12 mm. In some embodiments of the present disclosure, the thickness T1 fall in a range from 0.1 to 0.15 mm. Therefore, the metal blocking layer 14 can provide good protection.
  • the substrate 10 may be a printed circuit board.
  • the substrate 10 comprises a die pad 103 and a base pad 104.
  • the die pad 103 is disposed on the surface 100, and the base pad 104 is disposed on the surface 101.
  • the die pad 103 is embedded in the surface 100, and the base pad 104 is embedded in the surface 101.
  • a top surface of the die pad 103 and the surface 100 are coplanar, and a bottom surface of the base pad 104 and the surface 101 are coplanar.
  • the nitride-based semiconductor die 11 is disposed on the die pad 103.
  • the die pad 103 is connected to the based pad 104, and the die pad 103 is electrically connected to the base pad 104. Therefore, the die pad 103 and the base pad 104 provide a proper heat dissipation function to the nitride-based semiconductor die 11.
  • the molding layer 13 covers a periphery of the die pad 103. Therefore, the molding layer 13 encapsulates the nitride-based semiconductor die 11 on the die pad 103.
  • the base pad 104 is free from the molding layer 13 and the metal blocking layer 14. Therefore, the heat generated by the nitride-based semiconductor die 11 may be dissipated through the die pad 103 and the base pad 104.
  • materials of the die pad 103 and the base pad 104 include copper and nickel.
  • materials of the die pad 103 and the base pad 104 may include gold. Therefore, the heat may be dissipated through the die pad 103 and the base pad 104.
  • the nitride-based semiconductor device 1A comprises an epoxy layer 12.
  • the epoxy layer 12 is disposed on the die pad 103, and the epoxy layer 12 connects the nitride-based semiconductor die 11 and the die pad 103, and the nitride-based semiconductor die 11 is properly disposed on the die pad 103 and protected by the molding layer 13 and the metal blocking layer 14.
  • the nitride-based semiconductor device 1A further comprises a plurality of connecting wires 15, and the wire bonding between the substrate 10 and the nitride-based semiconductor die 11 is done through the connecting wires 15.
  • the substrate 10 comprises a plurality of connecting fingers 105 and a plurality of connecting pins 106.
  • the connecting fingers 105 are disposed on the surface 100, and the connecting pins 106 are disposed on the surface 101. Furthermore, the connecting fingers 105 are embedded in the surface 100, and the connecting pins 106 are embedded in the surface 101.
  • the connecting wires 15 electrically connect the nitride-based semiconductor die 11 and the connecting fingers 105, and the connecting fingers 105 electrically connects the connecting pins 106 respectively.
  • the connecting pins 106 are free from the molding layer 13 and the metal blocking layer 14.
  • the connecting fingers 105 are connected to the connecting pins 106, therefore; the connecting pins 106 can provide an interface to further connect to other devices. Also, the connecting pins 106 can provide a proper heat dissipation function.
  • materials of the connecting fingers 105 and the connecting pins 106 may include copper and nickel. In some embodiments, the materials of the connecting fingers 105 and the connecting pins 106 may include gold. Therefore, the connecting fingers 105 and the connecting pins 106 can form a good electrical connection.
  • materials of the connecting wires 15 may include aluminum. In some embodiments, the materials of the connecting wires 15 may include copper. Therefore, the connecting wires 15 may form electrical connection between the nitride-based semiconductor die 11 and the connecting fingers 105.
  • the molding layer 13 covers the connecting fingers 105. Therefore, the connecting wires 15 are protected by the molding layer 13. Also, the metal blocking layer 14 surrounds and covers the molding layer 13, and the connecting wires 15 can be protecting from electromagnetic signals generated by other devices.
  • a width W1 between the side surface 130 and the nearest edge of the connecting finger 105 is 0.1 mm, and therefore, the molding layer 13 can provide a proper protection.
  • the width W1 falls in the range from 0.075 to 0.125 mm, and the present disclosure is not limited thereto.
  • a width W2 between the side surface 102 and the nearest edge of the connecting pin 106 is 0.08 mm, and therefore, the connecting pins 106 can provide a proper interface for electrical connection.
  • the width W2 falls in a range from 0.05 to 0.1 mm, and the present disclosure is not limited thereto.
  • the substrate 10 has a solder mask 107, and the solder mask 107 is disposed among the connecting fingers 105, the connecting pins 106, the die pad 103, and the base pad 104. Also, the side surface 102 is form by part of the solder mask 107, and, therefore; the metal blocking layer 14 may be well deposited thereon.
  • FIGS. 3-6 are side sectional views of steps of a manufacturing method of a nitride-based semiconductor device according to some embodiments of the present disclosure.
  • a manufacturing method of the nitride-based semiconductor device 1A comprises: disposing the nitride-based semiconductor die 11 on the surface 100 of the substrate 10.
  • the substrate 10 has the die pad 103, the base pad 104, the connecting fingers 105, the connecting pins 106, and the solder mask 107.
  • the die pad 103 is connected to the base pad 104, and the connecting fingers 105 are connected to the connecting pins 106.
  • the solder mask 107 are disposed among the die pad 103, the base pad 104, the connecting fingers 105, and the connecting pins 106.
  • the substrate 10 has the surface 100 and the surface 101.
  • the die pad 103 and the connecting fingers 105 are disposed on the surface 100, and the base pad 104 and the connecting pins 106 are disposed on the surface 101.
  • the nitride-based semiconductor die 11 is disposed on the die pad 103.
  • the epoxy layer 12 and the connecting wires 15 are disposed, and the epoxy layer 12 connects the nitride-based semiconductor die 11 and the die pad 103, and the connecting wires 15 connect the nitride-based semiconductor die 11 and the connecting fingers 105.
  • the step of disposing the nitride-based semiconductor die 11 further comprises: connecting the nitride-based semiconductor die 11 and the die pad 103 of the substrate 10 with the epoxy layer 12; and connecting the nitride-based semiconductor die 11 and the connecting fingers 105 with the connecting wires 15.
  • the manufacturing method of the nitride-based semiconductor device 1A comprises: encapsulating the nitride-based semiconductor die 11 on the surface 100 with a molding layer 13.
  • the nitride-based semiconductor die 11 and the substrate 10 are covered with a blanket of molding layer 13.
  • the molding layer 13 may comprise epoxy, and the molding layer 13 may fill the space around the nitride-based semiconductor die 11, and the molding layer 13 encapsulates the nitride-based semiconductor die 11 after the molding layer 13 is solidified.
  • the manufacturing method of the nitride-based semiconductor device 1A comprises: cutting the molding layer 13 with a cutting device 16 and forming a plurality of side surfaces 130 on the molding layer 13.
  • the cutting device 16 may be a dicing knife. In some embodiments, the cutting device 16 may be a dicing saw, a plasma cutting device, or a laser cutting device. The cutting device 16 removes part of the molding layer 13, and parts of the surface 100 of the substrate 10 are exposed. The molding layer 13 is separate into a plurality of portions, and the side surfaces 130 surround the nitride-based semiconductor die 11.
  • a periphery of the molding layer 13 is separated from the rest of the molding layer 13 after the step of cutting the molding layer 13.
  • the side surfaces 130 are form, and the side surfaces 130 are connected to the surface 100 of the substrate 10, and a sufficient area of the surface 100 of the substrate 10 is exposed, so the exposed surface 100 is adapted to be cut again.
  • the manufacturing method of the nitride-based semiconductor device 1A comprises: dicing the substrate 10 and the molding layer 13 with a cutting device 17 and forming a plurality of side surfaces 102 on the substrate 10.
  • the cutting device 17 may be a dicing knife or a dicing saw, and a shape of the cutting device 16 is different from a shape of the cutting device 17.
  • the cutting device 17 removes part of the substrate 10, and the side surfaces 102 are formed. Since the shapes of the cutting devices 16, 17 are different, the side surfaces 102 are protruding from the side surfaces 130.
  • the cutting device 16 has a width W5
  • the cutting device 17 has a width W6.
  • openings having the width W5 is formed in the molding layer 13, and opening having the width W6 is formed in the substrate 10.
  • the width W5 is larger than the width W6, and, therefore; the side surfaces 102 are protruding from the side surfaces 130.
  • the manufacturing method of the nitride-based semiconductor device 1A comprises: depositing the metal blocking layer 14 on the molding layer 13 and the substrate 10. After depositing the metal blocking layer 14, the side surfaces 130 and the side surfaces 102 are covered with the metal blocking layer 14, and the nitride-based semiconductor device 1A as shown in FIG. 1 is formed.
  • the step of depositing the metal blocking layer 14 can form a metal blocking layer 14 with great thickness, and the nitride-based semiconductor device 1A with good protection is provided.
  • the molding layer 13 formed the step-like structures on the periphery of the surface 100 of the substrate 10, and the metal blocking layer 14 covers the step-like structures.
  • the step-like structures may accumulate more material of the metal blocking layer 14, and the thickness of the metal blocking layer 14 is increased.
  • the material of the metal blocking layer 14 may include metal.
  • the material of the metal blocking layer 14 may include metal. Therefore, the metal blocking layer 14 may block out the electromagnetic signals.
  • FIG. 7 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure.
  • the nitride-based semiconductor device 1B is similar to the nitride-based semiconductor device 1A as shown in FIG. 1.
  • the nitride-based semiconductor device 1B has a substrate 10B, a nitride-based semiconductor die 11, a molding layer 13B, and a metal blocking layer 14.
  • the nitride-based semiconductor die 11 is disposed on a surface 100 of the substrate 10B.
  • the molding layer 13B encapsulates the nitride-based semiconductor die 11 on the surface 100 of the substrate 10B, and the metal blocking layer 14 covers the molding layer 13B and the substrate 10B.
  • the molding layer 13B comprises a plurality of ridge structures 131.
  • the ridge structures 131 are disposed on a periphery of the surface 100 of the substrate 10B.
  • the molding layer 13B has a plurality of side surfaces 130B, and the ridge structures 131 surround the side surfaces 130B of the molding layer 13B. Therefore, the nitride-based semiconductor device 1B may have flexibility to have different design, and the manufacturing method of the present disclosure may have the flexibility to make the nitride-based semiconductor 1B with design that is different form the designs of the nitride-based semiconductor devices above.
  • the ridge structures 131 may carry more material while depositing the metal blocking layer 14, and the metal blocking layer 14 above the ridge structures 131 may have high thickness. In other word, more material of the metal blocking layer 14 can be deposited on the ridge structures 131.
  • the ridge structures 131 are separate from the side surfaces 130B, and a plurality of concave structures 132 are formed between the ridge structures 131 and the side surfaces 130B.
  • the metal blocking layer 14 fills the concave structures 132.
  • the concave structures 132 may accumulate more material of the metal blocking layer 14, and the thickness of the metal blocking layer 14 may be increased. Therefore, the nitride-based semiconductor device 1B comprises the metal blocking layer 14 with high thickness, and the nitride-based semiconductor device 1B is provided with good protection.
  • the top parts of the ridge structures 131 are peaks.
  • the ridge structures 131 have sharp ends, and the ridge structures 131 are tall enough to hold more material of the metal blocking layer 14.
  • the space between the side surface 130B and the ridge structure 131 can accommodate more material of the metal blocking layer 14, and the thickness of the metal blocking layer 14 may be increased.
  • the side surfaces 130B of the molding layer 13B are oblique, and more material of the metal blocking layer 14 will be deposited.
  • the substrate 10B has a surface 101 and a plurality of side surfaces 102B connecting the surface 100 and the surface 101. The surface 101 is free from the molding layer 13B and the metal blocking layer 14, and the side surfaces 102B are covered by the metal blocking layer 14. The side surfaces 102B of the substrate 10 are oblique, and more material of the metal blocking layer 14 will be deposited thereon.
  • FIG. 8 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure.
  • the nitride-based semiconductor device 1C is similar to the nitride-based semiconductor device 1A as shown in FIG 1.
  • the nitride-based semiconductor device 1C has a substrate 10C, a nitride-based semiconductor die 11, a molding layer 13C, and a metal blocking layer 14.
  • the nitride-based semiconductor die 11 is disposed on a surface 100 of the substrate 10C.
  • the molding layer 13C encapsulates the nitride-based semiconductor die 11 on the surface 100 of the substrate 10C, and the metal blocking layer 14 covers the molding layer 13C and the substrate 10C.
  • the molding layer 13C comprises a plurality of ridge structures 131C.
  • the ridge structures 131C are disposed on a periphery of the surface 100 of the substrate 10C.
  • the molding layer 13C has a plurality of side surfaces 130C, and the ridge structures 131C surround the side surfaces 130C of the molding layer 13C. Therefore, the nitride-based semiconductor device 1C may have flexibility to have different design, and the manufacturing method of the present disclosure may have the flexibility to make the nitride-based semiconductor 1C with design that is different form the designs of the nitride-based semiconductor devices above.
  • the ridge structures 131C are separate from the side surfaces 130C, and a plurality of concave structures 132 are formed between the ridge structures 131C and the side surface 130C.
  • the metal blocking layer 14 fills the concave structures 132.
  • the concave structures 132 may accumulate more material of the metal blocking layer 14, and the thickness of the metal blocking layer 14 may be increased. Therefore, the nitride-based semiconductor device 1C comprises the metal blocking layer 14 with high thickness, and the nitride-based semiconductor device 1C is provided with good protection.
  • the top parts of the ridge structures 131C are planes 133.
  • the top parts of the ridge structures 131C have flat surfaces, and the flat surfaces are horizontal.
  • the planes 133 are adapted to carry more material of the metal blocking layer 14, and the thickness of the metal blocking layer 14 is increased.
  • the metal blocking layer 14 surrounds the nitride-based semiconductor die 11 may be deposited on the planes 133, and the metal blocking layer 14 may have high thickness.
  • side sectional views of the ridge structures 131C have trapezoid shape. Therefore, the ridge structures 131C are disposed on the surface 100 of the substrate 10C firmly, and the ridge structures 131C won’ t be remove from the substrate 10C during deposition, and more material of the metal blocking layer 14 can be hold by the ridge structures 131C.
  • the side surfaces 130C of the molding layer 13C are oblique, and more material of the metal blocking layer 14 will be deposited.
  • the substrate 10C has a surface 101 and a plurality of side surfaces 102C connecting the surface 100 and the surface 101.
  • the surface 101 is free from the molding layer 13C and the metal blocking layer 14, and the side surfaces 102C are covered by the metal blocking layer 14.
  • the side surfaces 102C of the substrate 10 are oblique, and more material of the metal blocking layer 14 will be deposited thereon.
  • FIGS. 9-10 are side sectional views of steps of a manufacturing method of a nitride-based semiconductor device according to some embodiments of the present disclosure.
  • the manufacturing method of the nitride-based semiconductor device 1C comprises: cutting the molding layer 13C with a cutting device 16C and forming a plurality of side surfaces 130C and a plurality of concave structures on the molding layer 13C.
  • the cutting device 16C has a triangular cross-section.
  • the cutting device 16C cuts the molding layer 13C and form the side surfaces 130C that are oblique, and the concave structures 132 are formed around the nitride-based semiconductor die 11.
  • the manufacturing method of the nitride-based semiconductor device 1C comprises: cutting the molding layer 13C with a cutting device 18 and form a plurality of planes 133.
  • the cutting device 18 has a flat top, and the cutting device 18 does not touch the substrate 10C while cutting. In other words, the height W7 of the molding layer 13C is longer than the cutting depth W8 of the cutting device 18.
  • the cutting location of the cutting device 18 is located adjacent to the cutting location of the cutting device 16C, and the planes 133 are formed beside the concave structures 132.
  • the manufacturing method of the nitride-based semiconductor device 1C comprises: dicing the substrate 10C and the molding layer 13C with a cutting device 17C and forming a plurality of side surfaces 102C on the substrate 10C.
  • the cross-sectional of the cutting device 17C is a trapezoidal, and the side surfaces 102C are oblique. Also, the ridge structures 131C are formed, and the ridge structures 131C are adjacent to the side surfaces 130C respectively.
  • the manufacturing method of the nitride-based semiconductor device 1C comprises: depositing the metal blocking layer 14 on the molding layer 13C and the substrate 10C. After depositing the metal blocking layer 14, the side surfaces 130C and the side surfaces 102C are covered with the metal blocking layer 14, and the nitride-based semiconductor device 1C as shown in FIG. 8 is formed.
  • the metal blocking layer 14 can have great thickness, and the nitride-based semiconductor die 11 is well-protected.
  • FIG. 12 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure.
  • the nitride-based semiconductor device 1D is similar to the nitride-based semiconductor device 1A as shown in FIG. 1.
  • the nitride-based semiconductor device 1D has a substrate 10D, a nitride-based semiconductor die 11, a molding layer 13D, and a metal blocking layer 14.
  • the nitride-based semiconductor die 11 is disposed on a surface 100 of the substrate 10D.
  • the molding layer 13D encapsulates the nitride-based semiconductor die 11 on the surface 100 of the substrate 10D, and the metal blocking layer 14 covers the molding layer 13D and the substrate 10D.
  • the molding layer 13D comprises a plurality of ridge structures 131D.
  • the ridge structures 131D are disposed on a periphery of the surface 100 of the substrate 10D.
  • the molding layer 13D has a plurality of side surfaces 130D, and the ridge structures 131D surround the side surfaces 130D of the molding layer 13D, and the ridge structures 131D are connected to the side surfaces 130D.
  • top parts of the ridge structures 131D are planes 133D, and the planes 133D are connected to the side surfaces 130D.
  • the molding layer 13D form a step-like structures on the periphery of the surface 100 of the substrate 10D. Therefore, more material of the metal blocking layer 14 is accumulated on the side surfaces 130D and the planes 133D, and the thickness of the metal blocking layer 14 may be increased.
  • the substrate 10D has a surface 101 and a plurality of side surfaces 102D, and the side surfaces 102D connect the surface 100 and the surface 101.
  • the surface 101 is free from the molding layer 13D and the metal blocking layer 14, and the side surfaces 102D are covered by the metal blocking layer 14. Therefore, the nitride-based semiconductor device 1D may have flexibility to have different design, and the manufacturing method of the present disclosure may have the flexibility to make the nitride-based semiconductor 1D with design that is different form the designs of the nitride-based semiconductor devices above.
  • the side surfaces 130D of the molding layer 13D and the side surfaces 102D of the substrate 10D are oblique, and more material of the metal blocking layer 14 may be deposited on the side surfaces 130D and the side surfaces 102D.
  • Side surfaces of the ridge structures 131D are oblique as well, and the side surfaces of the ridge structures 131D and the side surfaces 102D of the substrate 10D are continuous.
  • the ridge structures 131D and the side surfaces 102D of the substrate 10D are protruding from the side surfaces 130D. Therefore, more material of the metal blocking layer 14 may be deposited on the side surfaces of the ridge structures 131D and the side surfaces 102D of the substrate 10D.
  • the cutting device 16C does not touch the substrate 10D. Therefore, the ridge structures 131D connected to the side surfaces 130D are formed.
  • FIG. 13 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure.
  • the nitride-based semiconductor device 1E is similar to the nitride-based semiconductor device 1A as shown in FIG. 1.
  • the nitride-based semiconductor device 1E has a substrate 10E, a nitride-based semiconductor die 11, a molding layer 13E, and a metal blocking layer 14.
  • the nitride-based semiconductor die 11 is disposed on a surface 100 of the substrate 10E.
  • the molding layer 13E encapsulates the nitride-based semiconductor die 11 on the surface 100 of the substrate 10E, and the metal blocking layer 14 covers the molding layer 13E and the substrate 10E.
  • the molding layer 13E comprises a plurality of ridge structures 131E.
  • the ridge structures 131E are disposed on a periphery of the surface 100 of the substrate 10E.
  • the molding layer 13E has a plurality of side surfaces 130E, and the ridge structures 131E surround the side surfaces 130E of the molding layer 13E, and the ridge structures 131E are connected to the side surfaces 130E.
  • top parts of the ridge structures 131E are peaks.
  • the ridge structures 131E are high enough to hold more material of the metal blocking layer 14, and the thickness of the metal blocking layer 14 is increased.
  • a plurality of concave structures 132 are formed between the ridge structures 131E and the side surfaces 130E, and the metal blocking layer 14 fills the concave structures 132.
  • the bottoms of the concave structures 132 are form above the surface 100 of the substrate 10E. More material of the metal blocking layer 14 is accumulated in the concave structures 132, and the thickness of the metal blocking layer 14 on the concave structures 132 is increased.
  • the substrate 10E has a surface 101 and a plurality of side surfaces 102E, and the side surfaces 102E connect the surface 100 and the surface 101.
  • the surface 101 is free from the molding layer 13E and the metal blocking layer 14, and the side surfaces 102E are covered by the metal blocking layer 14. Therefore, the nitride-based semiconductor device 1E may have flexibility to have different design, and the manufacturing method of the present disclosure may have the flexibility to make the nitride-based semiconductor 1E with design that is different form the designs of the nitride-based semiconductor devices above.
  • the side surfaces 130E of the molding layer 13E and the side surfaces 102E of the substrate 10E are oblique, and more material of the metal blocking layer 14 may be deposited on the side surfaces 130E and the side surfaces 102E.
  • Side surfaces of the ridge structure 131E are oblique as well, and the sider surfaces of the ridge structures 131E and the side surfaces 102E of the substrate 10E are continuous.
  • the ridge structures 131E and the side surfaces 102E of the substrate 10E are protruding from the side surfaces 130E. Therefore, more material of the metal blocking layer 14 may be deposited on the side surface of the ridge structures 131E and the side surfaces 102E of the substrate 10E.
  • FIG. 14 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure.
  • the nitride-based semiconductor device 1F is similar to the nitride-based semiconductor device 1A as shown in FIG. 1.
  • the nitride-based semiconductor device 1F has a substrate 10F, a nitride-based semiconductor die 11, a molding layer 13F, and a metal blocking layer 14.
  • the nitride-based semiconductor die 11 is disposed on a surface 100 of the substrate 10F.
  • the molding layer 13F encapsulates the nitride-based semiconductor die 11 on the surface 100 of the substrate 10F, and the metal blocking layer 14 covers the molding layer 13F and the substrate 10F.
  • the substrate 10F has a surface 101, a surface 108, and a plurality of side surfaces 102F, and the surface 108 surrounds the surface 100, and the side surfaces 102F connected the surface 108 and the surface 101.
  • the surface 101 is free from the molding layer 13F and the metal blocking layer 14, and the side surfaces 102F are covered by the metal blocking layer 14, and the surface 108 is covered by the metal blocking layer 14. Therefore, the nitride-based semiconductor device 1F may have flexibility to have different design, and the manufacturing method of the present disclosure may have the flexibility to make the nitride-based semiconductor 1F with design that is different form the designs of the nitride-based semiconductor devices above.
  • the side surfaces 102F are protruding from the side surfaces 130F, and the substrate 10F form a step-like structure at the periphery, and the surface 108 is lower than the surface 100.
  • the surface 108 can carry more material of the metal blocking layer 14. Therefore, the metal blocking layer 14 around the surface 100 has greater thickness.
  • the side surfaces 130F of the molding layer 13F and the side surfaces 102F of the substrate 10F are oblique, and more material of the metal blocking layer 14 may be deposited on the side surfaces 130F and the side surfaces 102F.
  • FIG. 15 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure.
  • the nitride-based semiconductor device 1G is similar to the nitride-based semiconductor device 1A as shown in FIG. 1.
  • the nitride-based semiconductor device 1G has a substrate 10G, a nitride-based semiconductor die 11, a molding layer 13G, and a metal blocking layer 14.
  • the nitride-based semiconductor die 11 is disposed on a surface 100 of the substrate 10G.
  • the molding layer 13G encapsulates the nitride-based semiconductor die 11 on the surface 100 of the substrate 10G, and the metal blocking layer 14 covers the molding layer 13G and the substrate 10G.
  • the substrate 10G has a surface 101, a plurality of ridge structures 109H, and a plurality of side surfaces 102G.
  • the ridge structures 109H are formed on a periphery of the substrate 10G, and the side surfaces 102G surround the ridge structures 109H.
  • the surface 101 is free from the molding layer 13G and the metal blocking layer 14, and the side surfaces 102G are covered by the metal blocking layer 14, and the ridge structures 109H are covered by the metal blocking layer 14.
  • the nitride-based semiconductor device 1G may have flexibility to have different design, and the manufacturing method of the present disclosure may have the flexibility to make the nitride-based semiconductor device 1G with design that is different from the designs of the nitride-based semiconductor devices above.
  • the ridge structures 109 can carry more material of the metal blocking layer 14, and the ridge structures 109 surround the surface 100. Therefore, the thickness of the metal blocking layer 14 around the surface 100 is increased, and the nitride-based semiconductor device 1G may have good protection.
  • a plurality of concave structures 1010 are formed beside the ridge structures 109.
  • the metal blocking layer 14 fills the concave structures 1010. Therefore, the thickness of the metal blocking layer 14 around the surface 100 is further increased.
  • top parts of the ridge structures 109 are peaks. Therefore, the ridge structures 109 has sufficient height to hold more metal blocking layer 14 around the surface 100, and the nitride-based semiconductor die 11 on the surface 100 is well protected.
  • the side surfaces 130G of the molding layer 13G and the side surfaces 102G of the substrate 10G are oblique, and more material of the metal blocking layer 14 may be deposited on the side surface 130G and the side surface 102G.
  • FIG. 16 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure.
  • the nitride-based semiconductor device 1H is similar to the nitride-based semiconductor device 1A as shown in FIG. 1.
  • the nitride-based semiconductor device 1H has a substrate 10H, a nitride-based semiconductor die 11, a molding layer 13H, and a metal blocking layer 14.
  • the nitride-based semiconductor die 11 is disposed on a surface 100 of the substrate 10H.
  • the molding layer 13H encapsulates the nitride-based semiconductor die 11 on the surface 100 of the substrate 10H, and the metal blocking layer 14 covers the molding layer 13H and the substrate 10H.
  • the substrate 10H has a surface 101, a plurality of ridge structures 109H, and a plurality of side surfaces 102H.
  • the ridge structures 109H are formed on a periphery of the substrate 10H, and the side surfaces 102H surround the ridge structures 109H.
  • the surface 101 is free from the molding layer 13H and the molding blocking layer 14, and the side surfaces 102H are covered by the metal blocking layer 14, and the ridge structures 109H are covered by the metal blocking layer 14. Therefore, the nitride-based semiconductor device 1H may have flexibility to have different design, and the manufacturing method of the present disclosure may have the flexibility to make the nitride-based semiconductor 1H with design that is different form the designs of the nitride-based semiconductor devices above.
  • the ridge structure 109H can carry more material of the metal blocking layer 14, and the ridge structures 109H surround the surface 100. Therefore, the thickness of the metal blocking layer 14 around the surface 100 is increased, and the nitride-based semiconductor device 1H may have good protection.
  • a plurality of concave structures 1010 are formed beside the ridge structures 109H.
  • the metal blocking layer 14 fills the concave structure 1010. Therefore, the thickness of the metal blocking layer 14 around the surface 100 is further increased.
  • top parts of the ridge structures 109H are planes 1011.
  • the planes 1011 may carry more material of the metal blocking layer 14, and the thickness of the metal blocking layer 14 above the ridge structures 109H may be increased.
  • the side surfaces 130H of the molding layer 13H and the side surfaces 102H of the substrate 10H are oblique, and more material of the metal blocking layer 14 may be deposited on the side surface 130H and the side surface 102H.
  • FIG. 17 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure.
  • the nitride-based semiconductor device 1J is similar to the nitride-based semiconductor device 1A as shown in FIG. 1.
  • the nitride-based semiconductor device 1J has a substrate 10J, a nitride-based semiconductor die 11, a molding layer 13J, and a metal blocking layer 14.
  • the nitride-based semiconductor die 11 is disposed on a surface 100 of the substrate 10J.
  • the molding layer 13J encapsulates the nitride-based semiconductor die 11 on the surface 100 of the substrate 10J, and the metal blocking layer 14 covers the molding layer 13J and the substrate 10J.
  • the substrate 10J has a surface 101, a plurality of ridge structures 109J, and a plurality of side surfaces 102J.
  • the ridge structures 109J are formed on a periphery of the substrate 10J, and the side surfaces 102J surround the ridge structures 109J.
  • the molding layer 13J has a plurality of ridge structures 131J, and each of the ridge structures 131J is disposed on one of the ridge structures 109J.
  • the surface 101 is free from the molding layer 13J and the metal blocking layer 14, and the side surfaces 102J are covered by the metal blocking layer 14, and the ridge structures 109J, 131J are covered by the metal blocking layer 14.
  • the nitride-based semiconductor device 1J may have flexibility to have different design, and the manufacturing method of the present disclosure may have the flexibility to make the nitride-based semiconductor 1J with design that is different from the designs of the nitride-based semiconductor devices above.
  • the ridge structures 131J are separate from the side surfaces 130J of the molding layer 13J, therefore; gaps between the ridge structures 131J and the side surface 130J may gather more material of the metal blocking layer 14, and the thickness of the metal blocking layer 14 is increased.
  • a plurality of concave structures 1010 are formed beside the ridge structures 109J.
  • the metal blocking layer 14 fills the concave structure 1010. Therefore, the thickness of the metal blocking layer 14 around the surface 100 is further increased.
  • the side surfaces 130J of the molding layer 13J and the side surfaces 102J of the substrate 10J are oblique, and the ridge structures 131J and the ridge structures 109J have continuous side surfaces, and more material of the metal blocking layer 14 may be deposited on the side surfaces 130J, the side surfaces 102J, and side surfaces of the ridge structures 131J.
  • the terms “substantially, “ “substantial, “ “approximately” and “about” are used to describe and account for small variations. When used in conjunction with an event or circumstance, the terms can encompass instances in which the event or circumstance occurs precisely as well as instances in which the event or circumstance occurs to a close approximation.
  • the terms when used in conjunction with a numerical value, can encompass a range of variation of less than or equal to ⁇ 10%of that numerical value, such as less than or equal to ⁇ 5%, less than or equal to ⁇ 4%, less than or equal to ⁇ 3%, less than or equal to ⁇ 2%, less than or equal to ⁇ 1%, less than or equal to ⁇ 0.5%, less than or equal to ⁇ 0.1%, or less than or equal to ⁇ 0.05%.
  • substantially coplanar can refer to two surfaces within micrometers of lying along a same plane, such as within 40 ⁇ m, within 30 ⁇ m, within 20 ⁇ m, within 10 ⁇ m, or within 1 ⁇ m of lying along the same plane.
  • a component provided “on” or “over” another component can encompass cases where the former component is directly on (e.g., in physical contact with) the latter component, as well as cases where one or more intervening components are located between the former component and the latter component.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

A nitride-based semiconductor device comprises a substrate, a nitride-based semiconductor die, a molding layer, and a metal blocking layer. The substrate comprises a first surface and a second surface, and the first surface and the second surface are opposite to each other. The nitride-based semiconductor die is disposed on the first surface of the substrate. The molding layer encapsulates the nitride-based semiconductor die on the first surface. The metal blocking layer covers the molding layer and the substrate. The molding layer has a plurality of first side surfaces, and the substrate has a plurality of second side surfaces. The second side surfaces connect the first surface and the second surface. The second side surfaces are protruding from the first side surfaces. The second surface is free from the molding layer and the metal blocking layer. The metal blocking layer covers the first side surfaces and the second side surfaces.

Description

NITRIDE-BASED SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME
Inventors: Shangqing QIU; Jianping ZHANG
Field of the Invention:
The present invention generally relates to a semiconductor device. More specifically, the present invention relates to a nitride-based semiconductor device having high electron mobility transistor (HEMT) and a metal blocking layer.
Background of the Invention:
In recent years, intense research on high-electron-mobility transistors (HEMTs) has been prevalent for semiconductor devices, such as high power switching and high frequency applications. The HEMT utilizes a heterojunction interface between two materials with different bandgaps to form a quantum well-like structure, which accommodates a two-dimensional electron gas (2DEG) region, satisfying demands of high power/frequency devices. In addition to HEMTs, examples of devices having heterostructures further include heterojunction bipolar transistors (HBT) , heterojunction field effect transistor (HFET) , and modulation-doped FETs (MODFET) . At present, there is a need to improve the yield rate for HEMT devices, thereby making them suitable for mass production.
Summary of the Invention:
In accordance with one aspect of the present disclosure, a nitride-based semiconductor device is provided. The nitride-based semiconductor device comprises a substrate, a nitride-based semiconductor die, a molding layer, and a metal blocking layer. The substrate comprises a first surface and a second surface, and the first surface and the second surface are opposite to each other. The nitride-based semiconductor die is disposed on the first surface of the substrate. The molding layer encapsulates the nitride-based semiconductor die on the first surface. The metal blocking layer covers the molding layer and the substrate. The nitride-based semiconductor die comprises a first nitride-based semiconductor layer and a second nitride-based semiconductor layer. The first nitride-based semiconductor layer is disposed on the second nitride-based semiconductor layer, and a bandgap of the first nitride-based semiconductor layer is higher than a bandgap of the second nitride-based semiconductor layer, and a 2DEG region is formed. The molding layer has a plurality of first side surfaces, and the substrate has a plurality of second side surfaces. The second side surfaces connect the first surface and the second surface. The second side surfaces are protruding from the first side surfaces. The second surface is free from the molding layer and the  metal blocking layer. The metal blocking layer covers the first side surfaces and the second side surfaces.
In accordance with one aspect of the present disclosure, a method for manufacturing a nitride-based semiconductor device is provided. The method includes steps as follows: disposing a nitride-based semiconductor die on a first surface of a substrate; encapsulating the nitride-based semiconductor die on the first surface with a molding layer; cutting the molding layer with a first cutting device and forming a plurality of first side surfaces on the molding layer; dicing the substrate and the molding layer with a second cutting device and forming a plurality of second side surfaces on the substrate; and depositing a metal blocking layer on the molding layer and the substrate. The substrate comprises the first surface and a second surface, and the first surface and the second surface are opposite to each other. The nitride-based semiconductor die comprises a first nitride-based semiconductor layer and a second nitride-based semiconductor layer. The first nitride-based semiconductor layer is disposed on the second nitride-based semiconductor layer. A bandgap of the first nitride-based semiconductor layer is higher than a bandgap of the second nitride-based semiconductor layer, and a 2DEG region is formed. A shape of the first cutting device is different from a shape of the second cutting device. The second side surfaces connect the first surface and the second surface. The second side surfaces are protruding from the first side surfaces. The second surface is free from the molding layer and the metal blocking layer. The metal blocking layer covers the first side surfaces and the second side surfaces.
In accordance with one aspect of the present disclosure, a nitride-based semiconductor device is provided. The nitride-based semiconductor device comprises a substrate, a nitride-based semiconductor die, a molding layer, and a metal blocking layer. The substrate comprises a first surface and a second surface, and the first surface and the second surface are opposite to each other. The nitride-based semiconductor die is disposed on the first surface of the substrate. The molding layer encapsulates the nitride-based semiconductor die on the first surface. The metal block layer covers the molding layer and the substrate. The nitride-based semiconductor die comprises a first nitride-based semiconductor layer and a second nitride-based semiconductor layer. The first nitride-based semiconductor layer is disposed on the second nitride-based semiconductor layer. A bandgap of the first nitride-based semiconductor layer is higher than a bandgap of the second nitride-based semiconductor layer, and a 2DEG region is formed. The molding layer has a first width in a first direction. The substrate has a second width in the first direction. The first width is shorter than the second width. The first direction and a normal of the first surface are perpendicular. The second surface is free from the molding layer and the metal blocking layer.
By applying the above configuration, nitride-based semiconductor device comprising proper metal blocking layer can be achieved. As such, a HEMT device can be manufactured with high quality protecting layer.
Brief Description of the Drawings:
Aspects of the present disclosure are readily understood from the following detailed description when read with the accompanying figures. It should be noted that various features may not be drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion. Embodiments of the present disclosure are described in more detail hereinafter with reference to the drawings, in which:
FIG. 1 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure;
FIG. 2 is a side sectional view of a nitride-based semiconductor die according to some embodiments of the present disclosure;
FIGS. 3-6 are side sectional views of steps of a manufacturing method of a nitride-based semiconductor device according to some embodiments of the present disclosure;
FIG. 7 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure;
FIG. 8 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure;
FIGS. 9-11 are side sectional views of steps of a manufacturing method of a nitride-based semiconductor device according to some embodiments of the present disclosure;
FIG. 12 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure;
FIG. 13 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure;
FIG. 14 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure;
FIG. 15 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure;
FIG. 16 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure; and
FIG. 17 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure.
Detailed Description:
Common reference numerals are used throughout the drawings and the detailed description to indicate the same or similar components. Embodiments of the present disclosure will be readily understood from the following detailed description taken in conjunction with the accompanying drawings.
Spatial descriptions, such as "above, " "below, " "up, " "left, " "right, " "down, " "top, " "bottom, " "vertical, " "horizontal, " "side, " "higher, " "lower, " "upper, " "over, " "under, " and so forth, are specified with respect to a certain component or group of components, or a certain plane of a component or group of components, for the orientation of the component (s) as shown in the associated figure. It should be understood that the spatial descriptions used herein are for purposes of illustration only, and that practical implementations of the structures described herein can be spatially arranged in any orientation or manner, provided that the merits of embodiments of this disclosure are not deviated from by such arrangement.
In the following description, semiconductor devices, methods for manufacturing the same, and the likes are set forth as preferred examples. It will be apparent to those skilled in the art that modifications, including additions and/or substitutions may be made without departing from the scope and spirit of the present disclosure. Specific details may be omitted so as not to obscure the present disclosure; however, the disclosure is written to enable one skilled in the art to practice the teachings herein without undue experimentation.
FIG. 1 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure. The nitride-based semiconductor device 1A comprises a substrate 10, a nitride-based semiconductor die 11, a molding layer 13, and a metal blocking layer 14.
The substrate 10 has a surface 100 and a surface 101, and the surface 100 and the surface 101 are opposite to each other. The nitride-based semiconductor die 11 is disposed on the surface 100 of the substrate 10. The molding layer 13 encapsulates the nitride-based semiconductor die 11 on the surface 100 of the substrate 10. The metal blocking layer 14 covers the molding layer 13 and the substrate 10.
FIG. 2 is a side sectional view of the nitride-based semiconductor die 11 according to some embodiments of the present disclosure. The nitride-based semiconductor die 11 comprises a nitride-based semiconductor layer 110 and a nitride-based semiconductor layer 111. The nitride-based semiconductor layer 110 is disposed on the nitride-based semiconductor layer 111. A bandgap of the nitride-based semiconductor layer 110 is higher than a bandgap of the nitride-based semiconductor layer 111, and a 2DEG region is formed.
The 2DEG region is formed near an interface between the nitride-based semiconductor layer 110 and the nitride-based semiconductor layer 111. The nitride-based semiconductor layer 110 and the nitride-based semiconductor layer 111 form a plurality of HEMT devices. For example, the nitride-based semiconductor layer 110 may include aluminum gallium nitride (AlGaN) , and the nitride-based semiconductor layer 111 may include gallium nitride (GaN) .
To be specific, the exemplary materials of the nitride-based semiconductor layers 110, 111 can include, for example but are not limited to, nitrides or group III-V compounds, such as GaN, AlN, InN, InAlN, In xAl yGa  (1–x–y) N where x+y ≤ 1, Al yGa  (1–y) N where y ≤ 1.
The exemplary materials of the nitride-based semiconductor layers are selected such that the nitride-based semiconductor layer 110 has a bandgap (i.e., forbidden band width) greater than a bandgap of the nitride-based semiconductor layer 111, which causes electron affinities thereof different from each other and forms a heterojunction therebetween. As such, the nitride-based semiconductor layers 111, 110 can serve as a channel layer and a barrier layer, respectively. A triangular well potential is generated at a bonded interface between the channel and barrier layers, so that electrons accumulate in the triangular well potential, thereby generating a two-dimensional electron gas (2DEG) region adjacent to the heterojunction.
Referring to FIG. 1, the molding layer 13 has a plurality of side surface 130, and the substrate 10 has a plurality of side surfaces 102. The side surfaces 102 connect the surface 100 and the surface 101.
The side surfaces 102 are protruding from the side surfaces 130. The side surfaces 102 are located below the side surfaces 130, and the substrate 10 and the molding layer 13 form a plurality of step-like structures on the side. The side surfaces 102 of the substrate 10 jut out from the side surface 130 of the molding layer 13, and a periphery of the surface 100 of the substrate 10 is not covered by the molding layer 13.
In other words, the molding layer 13 has a width W3 in a direction d1, and the substrate 10 has a width W4 in the direction d1. The width W3 is shorter than the width W4. The direction d1 and a normal of the surface 100 are perpendicular, and the normal and the direction d2 is parallel.
The surface 101 is free from the molding layer 13 and the metal blocking layer 14, and the metal block layer 14 covers the side surface 130 and the side surfaces 102. Since the molding layer 13 and the substrate 10 form the step-like structures at the sides, the step-like structure provides a better platform for the deposition of the metal blocking layer 14. In other word, the periphery of the substrate 10 is sticking out from the side surfaces 130, and the step-like structures can hold the metal blocking layer 14 properly, and the metal blocking layer 14 may surround the molding layer 13, the substrate 10, an the nitride-based semiconductor die 11 thereon.
In other words, the substrate 10 form a brim around the molding layer 13, and the projecting rim of the substrate 10 may carry a sufficient amount of metal blocking layer 14. The periphery of the substrate 10 is abut against the metal blocking layer 14, and the metal blocking layer 14 provide a proper protection to the nitride-based semiconductor die 11. Especially, the metal blocking layer 14 may block the electromagnetic signals from the environment of the nitride-based semiconductor device 1A.
To be specific, the metal blocking layer 14 may be disposed through sputter deposition. Since the side surfaces 102 are protrude from the side surfaces 130, more material of the metal blocking layer 14 may be accumulated on the periphery of the substrate 10. Therefore, the thickness of the metal blocking layer 14 above the substrate 10 may be increased, and a better protection is provided. Also, part the metal blocking layer 14 is abutted against the side surfaces 102, and the molding layer 13 and the nitride-based semiconductor die 11 therein are well-surrounded and covered. With the increased thickness, the metal blocking layer 14 may provide a good protection.
For example, the thickness T1 of the metal blocking layer 14 on the side surface 130 may be 0.12 mm. In some embodiments of the present disclosure, the thickness T1 fall in a range from 0.1 to 0.15 mm. Therefore, the metal blocking layer 14 can provide good protection.
In this embodiment, the substrate 10 may be a printed circuit board. The substrate 10 comprises a die pad 103 and a base pad 104. The die pad 103 is disposed on the surface 100, and the base pad 104 is disposed on the surface 101. To be specific, the die pad 103 is embedded in the surface 100, and the base pad 104 is embedded in the surface 101. A top surface of the die pad 103 and the surface 100 are coplanar, and a bottom surface of the base pad 104 and the surface 101 are coplanar.
The nitride-based semiconductor die 11 is disposed on the die pad 103. The die pad 103 is connected to the based pad 104, and the die pad 103 is electrically connected to the base pad 104. Therefore, the die pad 103 and the base pad 104 provide a proper heat dissipation function to the nitride-based semiconductor die 11.
The molding layer 13 covers a periphery of the die pad 103. Therefore, the molding layer 13 encapsulates the nitride-based semiconductor die 11 on the die pad 103. The base pad 104 is free from the molding layer 13 and the metal blocking layer 14. Therefore, the heat generated by the nitride-based semiconductor die 11 may be dissipated through the die pad 103 and the base pad 104.
For example, materials of the die pad 103 and the base pad 104 include copper and nickel. In some embodiment, materials of the die pad 103 and the base pad 104 may include gold. Therefore, the heat may be dissipated through the die pad 103 and the base pad 104.
In this embodiment, the nitride-based semiconductor device 1A comprises an epoxy layer 12. The epoxy layer 12 is disposed on the die pad 103, and the epoxy layer 12 connects the nitride-based semiconductor die 11 and the die pad 103, and the nitride-based semiconductor die 11 is properly disposed on the die pad 103 and protected by the molding layer 13 and the metal blocking layer 14.
In this embodiment, the nitride-based semiconductor device 1A further comprises a plurality of connecting wires 15, and the wire bonding between the substrate 10 and the nitride-based semiconductor die 11 is done through the connecting wires 15.
To be specific, in this embodiment, the substrate 10 comprises a plurality of connecting fingers 105 and a plurality of connecting pins 106. The connecting fingers 105 are disposed on the surface 100, and the connecting pins 106 are disposed on the surface 101. Furthermore, the connecting fingers 105 are embedded in the surface 100, and the connecting pins 106 are embedded in the surface 101. The connecting wires 15 electrically connect the nitride-based semiconductor die 11 and the connecting fingers 105, and the connecting fingers 105 electrically connects the connecting pins 106 respectively. The connecting pins 106 are free from the molding layer 13 and the metal blocking layer 14. The connecting fingers 105 are connected to the connecting pins 106, therefore; the connecting pins 106 can provide an interface to further connect to other devices. Also, the connecting pins 106 can provide a proper heat dissipation function.
For example, materials of the connecting fingers 105 and the connecting pins 106 may include copper and nickel. In some embodiments, the materials of the connecting fingers 105 and the connecting pins 106 may include gold. Therefore, the connecting fingers 105 and the connecting pins 106 can form a good electrical connection. For another example, materials of the connecting wires 15 may include aluminum. In some embodiments, the materials of the connecting wires 15 may include copper. Therefore, the connecting wires 15 may form electrical connection between the nitride-based semiconductor die 11 and the connecting fingers 105.
In this embodiment, the molding layer 13 covers the connecting fingers 105. Therefore, the connecting wires 15 are protected by the molding layer 13. Also, the metal blocking layer 14 surrounds and covers the molding layer 13, and the connecting wires 15 can be protecting from electromagnetic signals generated by other devices.
For example, a width W1 between the side surface 130 and the nearest edge of the connecting finger 105 is 0.1 mm, and therefore, the molding layer 13 can provide a proper protection. In some embodiments, the width W1 falls in the range from 0.075 to 0.125 mm, and the present disclosure is not limited thereto.
For another example, a width W2 between the side surface 102 and the nearest edge of the connecting pin 106 is 0.08 mm, and therefore, the connecting pins 106 can provide a proper  interface for electrical connection. In some embodiments, the width W2 falls in a range from 0.05 to 0.1 mm, and the present disclosure is not limited thereto.
In this embodiment, the substrate 10 has a solder mask 107, and the solder mask 107 is disposed among the connecting fingers 105, the connecting pins 106, the die pad 103, and the base pad 104. Also, the side surface 102 is form by part of the solder mask 107, and, therefore; the metal blocking layer 14 may be well deposited thereon.
FIGS. 3-6 are side sectional views of steps of a manufacturing method of a nitride-based semiconductor device according to some embodiments of the present disclosure. Referring to FIG. 3, in some embodiments, a manufacturing method of the nitride-based semiconductor device 1A comprises: disposing the nitride-based semiconductor die 11 on the surface 100 of the substrate 10.
To be specific, the substrate 10 has the die pad 103, the base pad 104, the connecting fingers 105, the connecting pins 106, and the solder mask 107. The die pad 103 is connected to the base pad 104, and the connecting fingers 105 are connected to the connecting pins 106. The solder mask 107 are disposed among the die pad 103, the base pad 104, the connecting fingers 105, and the connecting pins 106.
In this embodiment, the substrate 10 has the surface 100 and the surface 101. The die pad 103 and the connecting fingers 105 are disposed on the surface 100, and the base pad 104 and the connecting pins 106 are disposed on the surface 101. In this step, the nitride-based semiconductor die 11 is disposed on the die pad 103. Furthermore, the epoxy layer 12 and the connecting wires 15 are disposed, and the epoxy layer 12 connects the nitride-based semiconductor die 11 and the die pad 103, and the connecting wires 15 connect the nitride-based semiconductor die 11 and the connecting fingers 105.
In other words, the step of disposing the nitride-based semiconductor die 11 further comprises: connecting the nitride-based semiconductor die 11 and the die pad 103 of the substrate 10 with the epoxy layer 12; and connecting the nitride-based semiconductor die 11 and the connecting fingers 105 with the connecting wires 15.
Referring to FIG. 4, after the nitride-based semiconductor die 11 is disposed, the manufacturing method of the nitride-based semiconductor device 1A comprises: encapsulating the nitride-based semiconductor die 11 on the surface 100 with a molding layer 13.
In this embodiment, the nitride-based semiconductor die 11 and the substrate 10 are covered with a blanket of molding layer 13. For example, the molding layer 13 may comprise epoxy, and the molding layer 13 may fill the space around the nitride-based semiconductor die 11, and the molding layer 13 encapsulates the nitride-based semiconductor die 11 after the molding layer 13 is solidified.
Referring to FIG. 5, after the nitride-based semiconductor die 11 is encapsulated, the manufacturing method of the nitride-based semiconductor device 1A comprises: cutting the molding layer 13 with a cutting device 16 and forming a plurality of side surfaces 130 on the molding layer 13.
In this embodiment, the cutting device 16 may be a dicing knife. In some embodiments, the cutting device 16 may be a dicing saw, a plasma cutting device, or a laser cutting device. The cutting device 16 removes part of the molding layer 13, and parts of the surface 100 of the substrate 10 are exposed. The molding layer 13 is separate into a plurality of portions, and the side surfaces 130 surround the nitride-based semiconductor die 11.
In other words, a periphery of the molding layer 13 is separated from the rest of the molding layer 13 after the step of cutting the molding layer 13. The side surfaces 130 are form, and the side surfaces 130 are connected to the surface 100 of the substrate 10, and a sufficient area of the surface 100 of the substrate 10 is exposed, so the exposed surface 100 is adapted to be cut again.
Referring to FIG. 6, after the molding layer 13 is cut, the manufacturing method of the nitride-based semiconductor device 1A comprises: dicing the substrate 10 and the molding layer 13 with a cutting device 17 and forming a plurality of side surfaces 102 on the substrate 10.
In this embodiment, the cutting device 17 may be a dicing knife or a dicing saw, and a shape of the cutting device 16 is different from a shape of the cutting device 17. The cutting device 17 removes part of the substrate 10, and the side surfaces 102 are formed. Since the shapes of the  cutting devices  16, 17 are different, the side surfaces 102 are protruding from the side surfaces 130.
To be specific, the cutting device 16 has a width W5, and the cutting device 17 has a width W6. After cutting and dicing, openings having the width W5 is formed in the molding layer 13, and opening having the width W6 is formed in the substrate 10. The width W5 is larger than the width W6, and, therefore; the side surfaces 102 are protruding from the side surfaces 130.
After the substrate 10 is diced, the manufacturing method of the nitride-based semiconductor device 1A comprises: depositing the metal blocking layer 14 on the molding layer 13 and the substrate 10. After depositing the metal blocking layer 14, the side surfaces 130 and the side surfaces 102 are covered with the metal blocking layer 14, and the nitride-based semiconductor device 1A as shown in FIG. 1 is formed.
Since the side surfaces 102 are protruding from the side surfaces 130, the periphery of the substrate 10 form a plurality of step-like structures, and more material will be accumulated on the side surfaces 130. Therefore, the step of depositing the metal blocking layer 14 can form a  metal blocking layer 14 with great thickness, and the nitride-based semiconductor device 1A with good protection is provided.
In other words, the molding layer 13 formed the step-like structures on the periphery of the surface 100 of the substrate 10, and the metal blocking layer 14 covers the step-like structures. The step-like structures may accumulate more material of the metal blocking layer 14, and the thickness of the metal blocking layer 14 is increased.
The material of the metal blocking layer 14 may include metal. For example, the material of the metal blocking layer 14 may include metal. Therefore, the metal blocking layer 14 may block out the electromagnetic signals.
FIG. 7 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure. Referring to FIG. 7, the nitride-based semiconductor device 1B is similar to the nitride-based semiconductor device 1A as shown in FIG. 1. The nitride-based semiconductor device 1B has a substrate 10B, a nitride-based semiconductor die 11, a molding layer 13B, and a metal blocking layer 14. The nitride-based semiconductor die 11 is disposed on a surface 100 of the substrate 10B. The molding layer 13B encapsulates the nitride-based semiconductor die 11 on the surface 100 of the substrate 10B, and the metal blocking layer 14 covers the molding layer 13B and the substrate 10B.
In this embodiment, the molding layer 13B comprises a plurality of ridge structures 131. The ridge structures 131 are disposed on a periphery of the surface 100 of the substrate 10B. The molding layer 13B has a plurality of side surfaces 130B, and the ridge structures 131 surround the side surfaces 130B of the molding layer 13B. Therefore, the nitride-based semiconductor device 1B may have flexibility to have different design, and the manufacturing method of the present disclosure may have the flexibility to make the nitride-based semiconductor 1B with design that is different form the designs of the nitride-based semiconductor devices above.
The ridge structures 131 may carry more material while depositing the metal blocking layer 14, and the metal blocking layer 14 above the ridge structures 131 may have high thickness. In other word, more material of the metal blocking layer 14 can be deposited on the ridge structures 131.
In this embodiment, the ridge structures 131 are separate from the side surfaces 130B, and a plurality of concave structures 132 are formed between the ridge structures 131 and the side surfaces 130B. The metal blocking layer 14 fills the concave structures 132.
During the deposition of the metal blocking layer 14, the concave structures 132 may accumulate more material of the metal blocking layer 14, and the thickness of the metal blocking layer 14 may be increased. Therefore, the nitride-based semiconductor device 1B comprises the  metal blocking layer 14 with high thickness, and the nitride-based semiconductor device 1B is provided with good protection.
In this embodiment, the top parts of the ridge structures 131 are peaks. The ridge structures 131 have sharp ends, and the ridge structures 131 are tall enough to hold more material of the metal blocking layer 14. The space between the side surface 130B and the ridge structure 131 can accommodate more material of the metal blocking layer 14, and the thickness of the metal blocking layer 14 may be increased.
In this embodiment, the side surfaces 130B of the molding layer 13B are oblique, and more material of the metal blocking layer 14 will be deposited. Also, the substrate 10B has a surface 101 and a plurality of side surfaces 102B connecting the surface 100 and the surface 101. The surface 101 is free from the molding layer 13B and the metal blocking layer 14, and the side surfaces 102B are covered by the metal blocking layer 14. The side surfaces 102B of the substrate 10 are oblique, and more material of the metal blocking layer 14 will be deposited thereon.
FIG. 8 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure. Referring to FIG. 8, the nitride-based semiconductor device 1C is similar to the nitride-based semiconductor device 1A as shown in FIG 1. The nitride-based semiconductor device 1C has a substrate 10C, a nitride-based semiconductor die 11, a molding layer 13C, and a metal blocking layer 14. The nitride-based semiconductor die 11 is disposed on a surface 100 of the substrate 10C. The molding layer 13C encapsulates the nitride-based semiconductor die 11 on the surface 100 of the substrate 10C, and the metal blocking layer 14 covers the molding layer 13C and the substrate 10C.
In this embodiment, the molding layer 13C comprises a plurality of ridge structures 131C. The ridge structures 131C are disposed on a periphery of the surface 100 of the substrate 10C. The molding layer 13C has a plurality of side surfaces 130C, and the ridge structures 131C surround the side surfaces 130C of the molding layer 13C. Therefore, the nitride-based semiconductor device 1C may have flexibility to have different design, and the manufacturing method of the present disclosure may have the flexibility to make the nitride-based semiconductor 1C with design that is different form the designs of the nitride-based semiconductor devices above.
In this embodiment, the ridge structures 131C are separate from the side surfaces 130C, and a plurality of concave structures 132 are formed between the ridge structures 131C and the side surface 130C. The metal blocking layer 14 fills the concave structures 132.
During the deposition of the metal blocking layer 14, the concave structures 132 may accumulate more material of the metal blocking layer 14, and the thickness of the metal blocking layer 14 may be increased. Therefore, the nitride-based semiconductor device 1C comprises the  metal blocking layer 14 with high thickness, and the nitride-based semiconductor device 1C is provided with good protection.
In this embodiment, the top parts of the ridge structures 131C are planes 133. The top parts of the ridge structures 131C have flat surfaces, and the flat surfaces are horizontal. The planes 133 are adapted to carry more material of the metal blocking layer 14, and the thickness of the metal blocking layer 14 is increased. In other words, the metal blocking layer 14 surrounds the nitride-based semiconductor die 11 may be deposited on the planes 133, and the metal blocking layer 14 may have high thickness.
In this embodiment, side sectional views of the ridge structures 131C have trapezoid shape. Therefore, the ridge structures 131C are disposed on the surface 100 of the substrate 10C firmly, and the ridge structures 131C won’ t be remove from the substrate 10C during deposition, and more material of the metal blocking layer 14 can be hold by the ridge structures 131C.
In this embodiment, the side surfaces 130C of the molding layer 13C are oblique, and more material of the metal blocking layer 14 will be deposited. Also, the substrate 10C has a surface 101 and a plurality of side surfaces 102C connecting the surface 100 and the surface 101. The surface 101 is free from the molding layer 13C and the metal blocking layer 14, and the side surfaces 102C are covered by the metal blocking layer 14. The side surfaces 102C of the substrate 10 are oblique, and more material of the metal blocking layer 14 will be deposited thereon.
FIGS. 9-10 are side sectional views of steps of a manufacturing method of a nitride-based semiconductor device according to some embodiments of the present disclosure. Referring to FIG. 9, in some embodiments, after the nitride-based semiconductor die 11 is encapsulated on the surface 100 of the substrate 10C with the molding layer 13C, the manufacturing method of the nitride-based semiconductor device 1C comprises: cutting the molding layer 13C with a cutting device 16C and forming a plurality of side surfaces 130C and a plurality of concave structures on the molding layer 13C.
In this embodiment, the cutting device 16C has a triangular cross-section. The cutting device 16C cuts the molding layer 13C and form the side surfaces 130C that are oblique, and the concave structures 132 are formed around the nitride-based semiconductor die 11.
Referring to FIG. 10, in some embodiments, after the molding layer 13C is cut, the manufacturing method of the nitride-based semiconductor device 1C comprises: cutting the molding layer 13C with a cutting device 18 and form a plurality of planes 133.
In this embodiment, the cutting device 18 has a flat top, and the cutting device 18 does not touch the substrate 10C while cutting. In other words, the height W7 of the molding layer 13C is longer than the cutting depth W8 of the cutting device 18.
The cutting location of the cutting device 18 is located adjacent to the cutting location of the cutting device 16C, and the planes 133 are formed beside the concave structures 132.
Referring to FIG. 11, in some embodiments, after the planes 133 are formed, the manufacturing method of the nitride-based semiconductor device 1C comprises: dicing the substrate 10C and the molding layer 13C with a cutting device 17C and forming a plurality of side surfaces 102C on the substrate 10C.
In this embodiment, the cross-sectional of the cutting device 17C is a trapezoidal, and the side surfaces 102C are oblique. Also, the ridge structures 131C are formed, and the ridge structures 131C are adjacent to the side surfaces 130C respectively.
After the substrate 10C is diced, the manufacturing method of the nitride-based semiconductor device 1C comprises: depositing the metal blocking layer 14 on the molding layer 13C and the substrate 10C. After depositing the metal blocking layer 14, the side surfaces 130C and the side surfaces 102C are covered with the metal blocking layer 14, and the nitride-based semiconductor device 1C as shown in FIG. 8 is formed.
Since the side surfaces 102C are protruding from the side surfaces 130C, and the ridge structures 131C and the concave structures 132 are formed around the side surface 130C, the metal blocking layer 14 can have great thickness, and the nitride-based semiconductor die 11 is well-protected.
FIG. 12 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure. Referring to FIG. 12, the nitride-based semiconductor device 1D is similar to the nitride-based semiconductor device 1A as shown in FIG. 1. The nitride-based semiconductor device 1D has a substrate 10D, a nitride-based semiconductor die 11, a molding layer 13D, and a metal blocking layer 14. The nitride-based semiconductor die 11 is disposed on a surface 100 of the substrate 10D. The molding layer 13D encapsulates the nitride-based semiconductor die 11 on the surface 100 of the substrate 10D, and the metal blocking layer 14 covers the molding layer 13D and the substrate 10D.
In this embodiment, the molding layer 13D comprises a plurality of ridge structures 131D. The ridge structures 131D are disposed on a periphery of the surface 100 of the substrate 10D. The molding layer 13D has a plurality of side surfaces 130D, and the ridge structures 131D surround the side surfaces 130D of the molding layer 13D, and the ridge structures 131D are connected to the side surfaces 130D.
In this embodiment, top parts of the ridge structures 131D are planes 133D, and the planes 133D are connected to the side surfaces 130D. The molding layer 13D form a step-like structures on the periphery of the surface 100 of the substrate 10D. Therefore, more material of  the metal blocking layer 14 is accumulated on the side surfaces 130D and the planes 133D, and the thickness of the metal blocking layer 14 may be increased.
In this embodiment, the substrate 10D has a surface 101 and a plurality of side surfaces 102D, and the side surfaces 102D connect the surface 100 and the surface 101. The surface 101 is free from the molding layer 13D and the metal blocking layer 14, and the side surfaces 102D are covered by the metal blocking layer 14. Therefore, the nitride-based semiconductor device 1D may have flexibility to have different design, and the manufacturing method of the present disclosure may have the flexibility to make the nitride-based semiconductor 1D with design that is different form the designs of the nitride-based semiconductor devices above. Also, the side surfaces 130D of the molding layer 13D and the side surfaces 102D of the substrate 10D are oblique, and more material of the metal blocking layer 14 may be deposited on the side surfaces 130D and the side surfaces 102D.
Side surfaces of the ridge structures 131D are oblique as well, and the side surfaces of the ridge structures 131D and the side surfaces 102D of the substrate 10D are continuous. The ridge structures 131D and the side surfaces 102D of the substrate 10D are protruding from the side surfaces 130D. Therefore, more material of the metal blocking layer 14 may be deposited on the side surfaces of the ridge structures 131D and the side surfaces 102D of the substrate 10D.
In the manufacturing method of the nitride-based semiconductor device 1D, during cutting the molding layer 13D with the cutting device 16C (as shown in FIG. 9) and forming the side surfaces 130D on the molding layer 13D, the cutting device 16C does not touch the substrate 10D. Therefore, the ridge structures 131D connected to the side surfaces 130D are formed.
FIG. 13 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure. Referring to FIG. 13, the nitride-based semiconductor device 1E is similar to the nitride-based semiconductor device 1A as shown in FIG. 1. The nitride-based semiconductor device 1E has a substrate 10E, a nitride-based semiconductor die 11, a molding layer 13E, and a metal blocking layer 14. The nitride-based semiconductor die 11 is disposed on a surface 100 of the substrate 10E. The molding layer 13E encapsulates the nitride-based semiconductor die 11 on the surface 100 of the substrate 10E, and the metal blocking layer 14 covers the molding layer 13E and the substrate 10E.
In this embodiment, the molding layer 13E comprises a plurality of ridge structures 131E. The ridge structures 131E are disposed on a periphery of the surface 100 of the substrate 10E. The molding layer 13E has a plurality of side surfaces 130E, and the ridge structures 131E surround the side surfaces 130E of the molding layer 13E, and the ridge structures 131E are connected to the side surfaces 130E.
In this embodiment, top parts of the ridge structures 131E are peaks. The ridge structures 131E are high enough to hold more material of the metal blocking layer 14, and the thickness of the metal blocking layer 14 is increased.
In this embodiment, a plurality of concave structures 132 are formed between the ridge structures 131E and the side surfaces 130E, and the metal blocking layer 14 fills the concave structures 132. The bottoms of the concave structures 132 are form above the surface 100 of the substrate 10E. More material of the metal blocking layer 14 is accumulated in the concave structures 132, and the thickness of the metal blocking layer 14 on the concave structures 132 is increased.
In this embodiment, the substrate 10E has a surface 101 and a plurality of side surfaces 102E, and the side surfaces 102E connect the surface 100 and the surface 101. The surface 101 is free from the molding layer 13E and the metal blocking layer 14, and the side surfaces 102E are covered by the metal blocking layer 14. Therefore, the nitride-based semiconductor device 1E may have flexibility to have different design, and the manufacturing method of the present disclosure may have the flexibility to make the nitride-based semiconductor 1E with design that is different form the designs of the nitride-based semiconductor devices above. Also, the side surfaces 130E of the molding layer 13E and the side surfaces 102E of the substrate 10E are oblique, and more material of the metal blocking layer 14 may be deposited on the side surfaces 130E and the side surfaces 102E.
Side surfaces of the ridge structure 131E are oblique as well, and the sider surfaces of the ridge structures 131E and the side surfaces 102E of the substrate 10E are continuous. The ridge structures 131E and the side surfaces 102E of the substrate 10E are protruding from the side surfaces 130E. Therefore, more material of the metal blocking layer 14 may be deposited on the side surface of the ridge structures 131E and the side surfaces 102E of the substrate 10E.
FIG. 14 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure. Referring to FIG. 14, the nitride-based semiconductor device 1F is similar to the nitride-based semiconductor device 1A as shown in FIG. 1. The nitride-based semiconductor device 1F has a substrate 10F, a nitride-based semiconductor die 11, a molding layer 13F, and a metal blocking layer 14. The nitride-based semiconductor die 11 is disposed on a surface 100 of the substrate 10F. The molding layer 13F encapsulates the nitride-based semiconductor die 11 on the surface 100 of the substrate 10F, and the metal blocking layer 14 covers the molding layer 13F and the substrate 10F.
In this embodiment, the substrate 10F has a surface 101, a surface 108, and a plurality of side surfaces 102F, and the surface 108 surrounds the surface 100, and the side surfaces 102F connected the surface 108 and the surface 101. The surface 101 is free from the molding layer  13F and the metal blocking layer 14, and the side surfaces 102F are covered by the metal blocking layer 14, and the surface 108 is covered by the metal blocking layer 14. Therefore, the nitride-based semiconductor device 1F may have flexibility to have different design, and the manufacturing method of the present disclosure may have the flexibility to make the nitride-based semiconductor 1F with design that is different form the designs of the nitride-based semiconductor devices above.
Also, the side surfaces 102F are protruding from the side surfaces 130F, and the substrate 10F form a step-like structure at the periphery, and the surface 108 is lower than the surface 100. The surface 108 can carry more material of the metal blocking layer 14. Therefore, the metal blocking layer 14 around the surface 100 has greater thickness.
The side surfaces 130F of the molding layer 13F and the side surfaces 102F of the substrate 10F are oblique, and more material of the metal blocking layer 14 may be deposited on the side surfaces 130F and the side surfaces 102F.
FIG. 15 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure. Referring to FIG. 15, the nitride-based semiconductor device 1G is similar to the nitride-based semiconductor device 1A as shown in FIG. 1. The nitride-based semiconductor device 1G has a substrate 10G, a nitride-based semiconductor die 11, a molding layer 13G, and a metal blocking layer 14. The nitride-based semiconductor die 11 is disposed on a surface 100 of the substrate 10G. The molding layer 13G encapsulates the nitride-based semiconductor die 11 on the surface 100 of the substrate 10G, and the metal blocking layer 14 covers the molding layer 13G and the substrate 10G.
In this embodiment, the substrate 10G has a surface 101, a plurality of ridge structures 109H, and a plurality of side surfaces 102G. The ridge structures 109H are formed on a periphery of the substrate 10G, and the side surfaces 102G surround the ridge structures 109H. The surface 101 is free from the molding layer 13G and the metal blocking layer 14, and the side surfaces 102G are covered by the metal blocking layer 14, and the ridge structures 109H are covered by the metal blocking layer 14. Therefore, the nitride-based semiconductor device 1G may have flexibility to have different design, and the manufacturing method of the present disclosure may have the flexibility to make the nitride-based semiconductor device 1G with design that is different from the designs of the nitride-based semiconductor devices above.
The ridge structures 109 can carry more material of the metal blocking layer 14, and the ridge structures 109 surround the surface 100. Therefore, the thickness of the metal blocking layer 14 around the surface 100 is increased, and the nitride-based semiconductor device 1G may have good protection.
In this embodiment, a plurality of concave structures 1010 are formed beside the ridge structures 109. The metal blocking layer 14 fills the concave structures 1010. Therefore, the thickness of the metal blocking layer 14 around the surface 100 is further increased.
In this embodiment, top parts of the ridge structures 109 are peaks. Therefore, the ridge structures 109 has sufficient height to hold more metal blocking layer 14 around the surface 100, and the nitride-based semiconductor die 11 on the surface 100 is well protected.
The side surfaces 130G of the molding layer 13G and the side surfaces 102G of the substrate 10G are oblique, and more material of the metal blocking layer 14 may be deposited on the side surface 130G and the side surface 102G.
FIG. 16 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure. Referring to FIG. 16, the nitride-based semiconductor device 1H is similar to the nitride-based semiconductor device 1A as shown in FIG. 1. The nitride-based semiconductor device 1H has a substrate 10H, a nitride-based semiconductor die 11, a molding layer 13H, and a metal blocking layer 14. The nitride-based semiconductor die 11 is disposed on a surface 100 of the substrate 10H. The molding layer 13H encapsulates the nitride-based semiconductor die 11 on the surface 100 of the substrate 10H, and the metal blocking layer 14 covers the molding layer 13H and the substrate 10H.
In this embodiment, the substrate 10H has a surface 101, a plurality of ridge structures 109H, and a plurality of side surfaces 102H. The ridge structures 109H are formed on a periphery of the substrate 10H, and the side surfaces 102H surround the ridge structures 109H. The surface 101 is free from the molding layer 13H and the molding blocking layer 14, and the side surfaces 102H are covered by the metal blocking layer 14, and the ridge structures 109H are covered by the metal blocking layer 14. Therefore, the nitride-based semiconductor device 1H may have flexibility to have different design, and the manufacturing method of the present disclosure may have the flexibility to make the nitride-based semiconductor 1H with design that is different form the designs of the nitride-based semiconductor devices above.
The ridge structure 109H can carry more material of the metal blocking layer 14, and the ridge structures 109H surround the surface 100. Therefore, the thickness of the metal blocking layer 14 around the surface 100 is increased, and the nitride-based semiconductor device 1H may have good protection.
In this embodiment, a plurality of concave structures 1010 are formed beside the ridge structures 109H. The metal blocking layer 14 fills the concave structure 1010. Therefore, the thickness of the metal blocking layer 14 around the surface 100 is further increased.
In this embodiment, top parts of the ridge structures 109H are planes 1011. The planes 1011 may carry more material of the metal blocking layer 14, and the thickness of the metal blocking layer 14 above the ridge structures 109H may be increased.
The side surfaces 130H of the molding layer 13H and the side surfaces 102H of the substrate 10H are oblique, and more material of the metal blocking layer 14 may be deposited on the side surface 130H and the side surface 102H.
FIG. 17 is a side sectional view of a nitride-based semiconductor device according to some embodiments of the present disclosure. Referring to FIG. 17, the nitride-based semiconductor device 1J is similar to the nitride-based semiconductor device 1A as shown in FIG. 1. The nitride-based semiconductor device 1J has a substrate 10J, a nitride-based semiconductor die 11, a molding layer 13J, and a metal blocking layer 14. The nitride-based semiconductor die 11 is disposed on a surface 100 of the substrate 10J. The molding layer 13J encapsulates the nitride-based semiconductor die 11 on the surface 100 of the substrate 10J, and the metal blocking layer 14 covers the molding layer 13J and the substrate 10J.
In this embodiment, the substrate 10J has a surface 101, a plurality of ridge structures 109J, and a plurality of side surfaces 102J. The ridge structures 109J are formed on a periphery of the substrate 10J, and the side surfaces 102J surround the ridge structures 109J. The molding layer 13J has a plurality of ridge structures 131J, and each of the ridge structures 131J is disposed on one of the ridge structures 109J. The surface 101 is free from the molding layer 13J and the metal blocking layer 14, and the side surfaces 102J are covered by the metal blocking layer 14, and the  ridge structures  109J, 131J are covered by the metal blocking layer 14. Therefore, the nitride-based semiconductor device 1J may have flexibility to have different design, and the manufacturing method of the present disclosure may have the flexibility to make the nitride-based semiconductor 1J with design that is different from the designs of the nitride-based semiconductor devices above. Also, the ridge structures 131J are separate from the side surfaces 130J of the molding layer 13J, therefore; gaps between the ridge structures 131J and the side surface 130J may gather more material of the metal blocking layer 14, and the thickness of the metal blocking layer 14 is increased.
In this embodiment, a plurality of concave structures 1010 are formed beside the ridge structures 109J. The metal blocking layer 14 fills the concave structure 1010. Therefore, the thickness of the metal blocking layer 14 around the surface 100 is further increased.
The side surfaces 130J of the molding layer 13J and the side surfaces 102J of the substrate 10J are oblique, and the ridge structures 131J and the ridge structures 109J have continuous side surfaces, and more material of the metal blocking layer 14 may be deposited on the side surfaces 130J, the side surfaces 102J, and side surfaces of the ridge structures 131J.
The foregoing description of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations will be apparent to the practitioner skilled in the art.
The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications that are suited to the particular use contemplated.
As used herein and not otherwise defined, the terms "substantially, " "substantial, " "approximately" and "about" are used to describe and account for small variations. When used in conjunction with an event or circumstance, the terms can encompass instances in which the event or circumstance occurs precisely as well as instances in which the event or circumstance occurs to a close approximation. For example, when used in conjunction with a numerical value, the terms can encompass a range of variation of less than or equal to ±10%of that numerical value, such as less than or equal to ±5%, less than or equal to ±4%, less than or equal to ±3%, less than or equal to ±2%, less than or equal to ±1%, less than or equal to ±0.5%, less than or equal to ±0.1%, or less than or equal to ±0.05%. The term “substantially coplanar” can refer to two surfaces within micrometers of lying along a same plane, such as within 40 μm, within 30 μm, within 20 μm, within 10 μm, or within 1 μm of lying along the same plane.
As used herein, the singular terms “a, ” “an, ” and “the” may include plural referents unless the context clearly dictates otherwise. In the description of some embodiments, a component provided “on” or “over” another component can encompass cases where the former component is directly on (e.g., in physical contact with) the latter component, as well as cases where one or more intervening components are located between the former component and the latter component.
While the present disclosure has been described and illustrated with reference to specific embodiments thereof, these descriptions and illustrations are not limiting. It should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the present disclosure as defined by the appended claims. The illustrations may not necessarily be drawn to scale. There may be distinctions between the artistic renditions in the present disclosure and the actual apparatus due to manufacturing processes and tolerances. Further, it is understood that actual devices and layers may deviate from the rectangular layer depictions of the FIGS. and may include angles surfaces or edges, rounded corners, etc. due to manufacturing processes such as conformal deposition, etching, etc. There may be other embodiments of the present disclosure which are not specifically  illustrated. The specification and the drawings are to be regarded as illustrative rather than restrictive. Modifications may be made to adapt a particular situation, material, composition of matter, method, or process to the objective, spirit and scope of the present disclosure. All such modifications are intended to be within the scope of the claims appended hereto. While the methods disclosed herein have been described with reference to particular operations performed in a particular order, it will be understood that these operations may be combined, sub-divided, or re-ordered to form an equivalent method without departing from the teachings of the present disclosure. Accordingly, unless specifically indicated herein, the order and grouping of the operations are not limitations.

Claims (25)

  1. A nitride-based semiconductor device comprising:
    a substrate comprising a first surface and a second surface which are opposite to each other;
    a nitride-based semiconductor die disposed on the first surface of the substrate;
    a molding layer encapsulating the nitride-based semiconductor die on the first surface; and
    a metal blocking layer covering the molding layer and the substrate;
    wherein the nitride-based semiconductor die comprises a first nitride-based semiconductor layer and a second nitride-based semiconductor layer, and the first nitride-based semiconductor layer is disposed on the second nitride-based semiconductor layer, and a bandgap of the first nitride-based semiconductor layer is higher than a bandgap of the second nitride-based semiconductor layer, and a 2DEG region is formed;
    wherein the molding layer has a plurality of first side surfaces, and the substrate has a plurality of second side surfaces;
    wherein the second side surfaces connect the first surface and the second surface, and the second side surfaces are protruding from the first side surfaces, and the second surface is free from the molding layer and the metal blocking layer;
    wherein the metal blocking layer covers the first side surfaces and the second side surfaces.
  2. The nitride-based semiconductor device of claim 1, wherein the substrate comprises:
    a die pad disposed on the first surface; and
    a base pad disposed on the second surface;
    wherein the die pad electrically connects the base pad;
    wherein the nitride-based semiconductor die is disposed on the die pad, and the molding layer covers a periphery of the die pad, and the base pad is free from the molding layer and the metal blocking layer.
  3. The nitride-based semiconductor device of any one of the preceding claims further comprising a plurality of connecting wires, wherein the substrate comprises:
    a plurality of connecting fingers disposed on the first surface; and
    a plurality of connecting pins disposed on the second surface;
    wherein the connecting wires electrically connect the nitride-based semiconductor die to the connecting fingers, and the connecting fingers electrically connects the connecting pins respectively;
    wherein the molding layer covers the connecting fingers;
    wherein the connecting pins are free from the molding layer and the metal blocking layer.
  4. The nitride-based semiconductor device of any one of the preceding claims, wherein the molding layer comprises a plurality of first ridge structures, and the first ridge structures are disposed on a periphery of the first surface of the substrate, and the first ridge structures surround the first side surfaces.
  5. The nitride-based semiconductor device of any one of the preceding claims, wherein the first ridge structures are separate from the first side surfaces, and a plurality of concave structures are formed between the first ridge structures and the first side surfaces, and the metal blocking layer fills the concave structures.
  6. The nitride-based semiconductor device of any one of the preceding claims, wherein top parts of the first ridge structures are peaks.
  7. The nitride-based semiconductor device of any one of the preceding claims, wherein top parts of the first ridge structures are planes.
  8. The nitride-based semiconductor device of any one of the preceding claims, wherein side sectional views of the first ridge structures have trapezoid shape.
  9. The nitride-based semiconductor device of any one of the preceding claims, wherein the first ridge structures are connected to the first side surfaces.
  10. The nitride-based semiconductor device of any one of the preceding claims, wherein the substrate comprises a plurality of second ridge structures, and the second ridge structures are formed on a periphery of the substrate, and the second side surfaces surround the second ridge structures.
  11. The nitride-based semiconductor device of any one of the preceding claims, wherein top parts of the second ridge structures are peaks.
  12. The nitride-based semiconductor device of any one of the preceding claims, wherein top parts of the second ridge structures are planes.
  13. The nitride-based semiconductor device of any one of the preceding claims, wherein the molding layer comprises a plurality of first ridge structures, and each of the first ridge structures is disposed on one of the second ridge structures.
  14. The nitride-based semiconductor device of any one of the preceding claims, wherein the first ridge structure and the second ridge structure have continuous side surface.
  15. The nitride-based semiconductor device of any one of the preceding claims, wherein part of the metal blocking layer is abutted against the second side surfaces.
  16. A manufacturing method of a nitride-based semiconductor device comprising:
    disposing a nitride-based semiconductor die on a first surface of a substrate;
    encapsulating the nitride-based semiconductor die on the first surface with a molding layer;
    cutting the molding layer with a first cutting device and forming a plurality of first side surfaces on the molding layer;
    dicing the substrate and the molding layer with a second cutting device and forming a plurality of second side surfaces on the substrate; and
    depositing a metal blocking layer on the molding layer and the substrate;
    wherein the substrate comprises the first surface and a second surface which are opposite to each other;
    wherein the nitride-based semiconductor die comprises a first nitride-based semiconductor layer and a second nitride-based semiconductor layer, and the first nitride-based semiconductor layer is disposed on the second nitride-based semiconductor layer, and a bandgap of the first nitride-based semiconductor layer is higher than a bandgap of the second nitride-based semiconductor layer, and a 2DEG region is formed;
    wherein a shape of the first cutting device is different from a shape of the second cutting device;
    wherein the second side surfaces connect the first surface and the second surface, and the second side surfaces are protruding from the first side surfaces, and the second surface is free from the molding layer and the metal blocking layer;
    wherein the metal blocking layer covers the first side surfaces and the second side surfaces.
  17. The manufacturing method of claim 16, wherein the first cutting device has a first width, and the second cutting device has a second width, and the first width is larger than the second width.
  18. The manufacturing method of any one of the preceding claims, wherein the first cutting device doesn’t touch the substrate during the step of cutting the molding layer.
  19. The manufacturing method of any one of the preceding claims, wherein a periphery of the molding layer is separated from the rest of the molding layer after the step of cutting the molding layer.
  20. The manufacturing method of any one of the preceding claims, wherein the first cutting device cuts part of the substrate during the step of cutting the molding layer.
  21. A nitride-based semiconductor device comprising:
    a substrate comprising a first surface and a second surface which are opposite to each other;
    a nitride-based semiconductor die disposed on the first surface of the substrate;
    a molding layer encapsulating the nitride-based semiconductor die on the first surface; and
    a metal blocking layer covering the molding layer and the substrate;
    wherein the nitride-based semiconductor die comprises a first nitride-based semiconductor layer and a second nitride-based semiconductor layer, and the first nitride-based semiconductor layer is disposed on the second nitride-based semiconductor layer, and a bandgap of the first nitride-based semiconductor layer is higher than a bandgap of the second nitride-based semiconductor layer, and a 2DEG region is formed;
    wherein the molding layer has a first width in a first direction, and the substrate has a second width in the first direction, and the first width is shorter than the second width, and the first direction and a normal of the first surface are perpendicular;
    wherein the second surface is free from the molding layer and the metal blocking layer.
  22. The nitride-based semiconductor device of claim 21, wherein the molding layer has a plurality of first side surfaces, and the substrate has a plurality of second side surfaces;
    wherein the first side surfaces connect the first surface and the second surface, and the second side surfaces are protruding from the first side surfaces;
    wherein the metal blocking layer covers the first side surfaces and the second side surfaces.
  23. The nitride-based semiconductor device of any one of the preceding claims, wherein the first side surfaces are oblique.
  24. The nitride-based semiconductor device of any one of the preceding claims, wherein the second side surfaces are oblique.
  25. The nitride-based semiconductor device of any one of the preceding claims, wherein the molding layer formed a plurality of step-like structures on a periphery of the first surface of the substrate, and the metal blocking layer covers the step-like structures.
PCT/CN2022/134748 2022-11-28 2022-11-28 Nitride-based semiconductor device and method for manufacturing thereof WO2024113108A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/134748 WO2024113108A1 (en) 2022-11-28 2022-11-28 Nitride-based semiconductor device and method for manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/134748 WO2024113108A1 (en) 2022-11-28 2022-11-28 Nitride-based semiconductor device and method for manufacturing thereof

Publications (1)

Publication Number Publication Date
WO2024113108A1 true WO2024113108A1 (en) 2024-06-06

Family

ID=91322714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134748 WO2024113108A1 (en) 2022-11-28 2022-11-28 Nitride-based semiconductor device and method for manufacturing thereof

Country Status (1)

Country Link
WO (1) WO2024113108A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479767A (en) * 2010-11-24 2012-05-30 宇芯(毛里求斯)控股有限公司 Semiconductor device package with electromagnetic shielding
US20120218729A1 (en) * 2011-02-28 2012-08-30 Rf Micro Devices, Inc. Microshield on standard qfn package
US20190109094A1 (en) * 2017-10-05 2019-04-11 Disco Corporation Package substrate processing method and protective tape
CN113169150A (en) * 2021-03-10 2021-07-23 英诺赛科(苏州)半导体有限公司 III-nitride-based semiconductor package structure and manufacturing method thereof
CN113169137A (en) * 2018-12-12 2021-07-23 罗姆股份有限公司 Terahertz device and method for manufacturing terahertz device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479767A (en) * 2010-11-24 2012-05-30 宇芯(毛里求斯)控股有限公司 Semiconductor device package with electromagnetic shielding
US20120218729A1 (en) * 2011-02-28 2012-08-30 Rf Micro Devices, Inc. Microshield on standard qfn package
US20190109094A1 (en) * 2017-10-05 2019-04-11 Disco Corporation Package substrate processing method and protective tape
CN113169137A (en) * 2018-12-12 2021-07-23 罗姆股份有限公司 Terahertz device and method for manufacturing terahertz device
CN113169150A (en) * 2021-03-10 2021-07-23 英诺赛科(苏州)半导体有限公司 III-nitride-based semiconductor package structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
WO2022174562A1 (en) Semiconductor device and method for manufacturing thereof
US20220262710A1 (en) Semiconductor device and method of manufacturing the same
US20220302296A1 (en) Semiconductor device and method for manufacturing the same
WO2022183512A1 (en) Nitride semiconductor device and method for manufacturing the same
US20240038852A1 (en) Semiconductor device and method for manufacturing the same
WO2022257122A1 (en) Nitride-based semiconductor device and method for manufacturing the same
WO2024113108A1 (en) Nitride-based semiconductor device and method for manufacturing thereof
US11967521B2 (en) Integrated semiconductor device and method for manufacturing the same
WO2023102744A1 (en) Nitride-based semiconductor device and method for manufacturing the same
US20210408979A1 (en) Radio frequency (rf) transistor amplifier packages with improved isolation and lead configurations
WO2024092612A1 (en) Semiconductor packaged structure and method for manufacturing thereof
WO2024113355A1 (en) Nitride-based semiconductor device and method for manufacturing thereof
WO2024103312A1 (en) Nitride-based semiconductor circuit and method for manufacturing the same
WO2024098355A1 (en) Nitride-based semiconductor circuit and method for manufacturing the same
CN118266085A (en) Nitride-based semiconductor circuit and method for manufacturing the same
WO2024098356A1 (en) Nitride-based semiconductor circuit and method for manufacturing thereof
WO2024011439A1 (en) Semiconductor packaged device and method for manufacturing the same
WO2024082224A1 (en) Iii-nitride-based semiconductor packaged structure and method for manufacturing the same
WO2023201697A1 (en) Semiconductor packaged device and method for manufacturing the same
WO2024011623A1 (en) Nitride-based semiconductor circuit and method for manufacturing the same
WO2024087083A1 (en) Semiconductor packaged device and method for manufacturing the same
US11621322B2 (en) Die-to-die isolation structures for packaged transistor devices
US11410945B2 (en) Semiconductor package having partial outer metal layer and packaging method thereof
WO2024000475A1 (en) Semiconductor packaged device and method for manufacturing thereof
WO2024108369A1 (en) Semiconductor packaged device and method for manufacturing the same