WO2024111651A1 - タイヤ - Google Patents
タイヤ Download PDFInfo
- Publication number
- WO2024111651A1 WO2024111651A1 PCT/JP2023/042077 JP2023042077W WO2024111651A1 WO 2024111651 A1 WO2024111651 A1 WO 2024111651A1 JP 2023042077 W JP2023042077 W JP 2023042077W WO 2024111651 A1 WO2024111651 A1 WO 2024111651A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rubber
- styrene
- group
- carbon atoms
- tire
- Prior art date
Links
- 229920001971 elastomer Polymers 0.000 claims abstract description 263
- 239000005060 rubber Substances 0.000 claims abstract description 263
- 229920003048 styrene butadiene rubber Polymers 0.000 claims abstract description 178
- 239000011347 resin Substances 0.000 claims abstract description 168
- 229920005989 resin Polymers 0.000 claims abstract description 167
- 239000000835 fiber Substances 0.000 claims abstract description 89
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 58
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical group CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 claims abstract description 54
- 239000000945 filler Substances 0.000 claims abstract description 40
- 230000009477 glass transition Effects 0.000 claims abstract description 18
- -1 polyethylene terephthalate Polymers 0.000 claims description 59
- 125000000524 functional group Chemical group 0.000 claims description 21
- 229910052757 nitrogen Inorganic materials 0.000 claims description 20
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 19
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 19
- 239000003795 chemical substances by application Substances 0.000 claims description 17
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical class C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 claims description 15
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 13
- 150000003505 terpenes Chemical class 0.000 claims description 9
- 235000007586 terpenes Nutrition 0.000 claims description 9
- 125000003545 alkoxy group Chemical group 0.000 claims description 8
- 239000004793 Polystyrene Substances 0.000 claims description 7
- 229920002223 polystyrene Polymers 0.000 claims description 7
- 238000011049 filling Methods 0.000 claims description 2
- 239000000446 fuel Substances 0.000 abstract description 29
- 125000004432 carbon atom Chemical group C* 0.000 description 179
- 239000010410 layer Substances 0.000 description 172
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 91
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 88
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical class C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 71
- 150000001875 compounds Chemical class 0.000 description 70
- 239000000203 mixture Substances 0.000 description 70
- 239000000377 silicon dioxide Substances 0.000 description 44
- 230000001070 adhesive effect Effects 0.000 description 39
- 229920000642 polymer Polymers 0.000 description 39
- 239000000853 adhesive Substances 0.000 description 38
- 238000006116 polymerization reaction Methods 0.000 description 36
- 235000013824 polyphenols Nutrition 0.000 description 36
- 150000008442 polyphenolic compounds Chemical class 0.000 description 35
- 238000000034 method Methods 0.000 description 34
- 239000006229 carbon black Substances 0.000 description 33
- 235000019241 carbon black Nutrition 0.000 description 33
- 150000001299 aldehydes Chemical class 0.000 description 32
- 125000001931 aliphatic group Chemical group 0.000 description 31
- 125000000217 alkyl group Chemical group 0.000 description 29
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 29
- 125000002723 alicyclic group Chemical group 0.000 description 28
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 27
- 238000006243 chemical reaction Methods 0.000 description 25
- 125000003118 aryl group Chemical group 0.000 description 23
- 230000008878 coupling Effects 0.000 description 23
- 238000010168 coupling process Methods 0.000 description 23
- 238000005859 coupling reaction Methods 0.000 description 23
- 239000007822 coupling agent Substances 0.000 description 22
- 238000004073 vulcanization Methods 0.000 description 20
- 241000209094 Oryza Species 0.000 description 19
- 235000007164 Oryza sativa Nutrition 0.000 description 19
- 239000011248 coating agent Substances 0.000 description 19
- 238000000576 coating method Methods 0.000 description 19
- 235000009566 rice Nutrition 0.000 description 19
- 125000002947 alkylene group Chemical group 0.000 description 18
- 230000000694 effects Effects 0.000 description 18
- 150000002430 hydrocarbons Chemical group 0.000 description 18
- 229920000126 latex Polymers 0.000 description 18
- 244000043261 Hevea brasiliensis Species 0.000 description 16
- 238000009826 distribution Methods 0.000 description 16
- 239000010903 husk Substances 0.000 description 16
- 229920003052 natural elastomer Polymers 0.000 description 16
- 229920001194 natural rubber Polymers 0.000 description 16
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 239000012948 isocyanate Substances 0.000 description 14
- 239000002994 raw material Substances 0.000 description 14
- 229920002725 thermoplastic elastomer Polymers 0.000 description 14
- 229920002857 polybutadiene Polymers 0.000 description 13
- 229910052710 silicon Inorganic materials 0.000 description 13
- 229920001400 block copolymer Polymers 0.000 description 12
- 239000001257 hydrogen Substances 0.000 description 12
- 229910052739 hydrogen Inorganic materials 0.000 description 12
- 229920001169 thermoplastic Polymers 0.000 description 12
- 239000005062 Polybutadiene Substances 0.000 description 11
- 125000001424 substituent group Chemical group 0.000 description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 239000002174 Styrene-butadiene Substances 0.000 description 10
- 230000008602 contraction Effects 0.000 description 10
- 125000000753 cycloalkyl group Chemical group 0.000 description 10
- 150000002148 esters Chemical class 0.000 description 10
- 238000005227 gel permeation chromatography Methods 0.000 description 10
- 229930195733 hydrocarbon Natural products 0.000 description 10
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 10
- 238000004898 kneading Methods 0.000 description 10
- 239000003607 modifier Substances 0.000 description 10
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 9
- 239000003963 antioxidant agent Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 229920001778 nylon Polymers 0.000 description 9
- 125000000962 organic group Chemical group 0.000 description 9
- 239000003505 polymerization initiator Substances 0.000 description 9
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 9
- 238000005096 rolling process Methods 0.000 description 9
- GRWFGVWFFZKLTI-IUCAKERBSA-N (-)-α-pinene Chemical compound CC1=CC[C@@H]2C(C)(C)[C@H]1C2 GRWFGVWFFZKLTI-IUCAKERBSA-N 0.000 description 8
- 241000196324 Embryophyta Species 0.000 description 8
- 239000004677 Nylon Substances 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 8
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 8
- 150000005846 sugar alcohols Polymers 0.000 description 8
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 8
- 239000004593 Epoxy Substances 0.000 description 7
- 125000003277 amino group Chemical group 0.000 description 7
- 239000011324 bead Substances 0.000 description 7
- 235000014113 dietary fatty acids Nutrition 0.000 description 7
- 238000001125 extrusion Methods 0.000 description 7
- 239000000194 fatty acid Substances 0.000 description 7
- 229930195729 fatty acid Natural products 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 230000000704 physical effect Effects 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 239000004636 vulcanized rubber Substances 0.000 description 7
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 6
- 239000006087 Silane Coupling Agent Substances 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 238000005299 abrasion Methods 0.000 description 6
- 125000003342 alkenyl group Chemical group 0.000 description 6
- 125000000304 alkynyl group Chemical group 0.000 description 6
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 6
- 125000004122 cyclic group Chemical group 0.000 description 6
- 150000001993 dienes Chemical class 0.000 description 6
- 150000004665 fatty acids Chemical class 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 229920001084 poly(chloroprene) Polymers 0.000 description 6
- 229960001755 resorcinol Drugs 0.000 description 6
- 150000003839 salts Chemical group 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 6
- 239000002699 waste material Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000004438 BET method Methods 0.000 description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 5
- 238000005727 Friedel-Crafts reaction Methods 0.000 description 5
- 241000209504 Poaceae Species 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 239000003610 charcoal Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 125000000623 heterocyclic group Chemical group 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 5
- 230000000379 polymerizing effect Effects 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 125000001302 tertiary amino group Chemical group 0.000 description 5
- 229920002554 vinyl polymer Polymers 0.000 description 5
- 239000011787 zinc oxide Substances 0.000 description 5
- 235000014692 zinc oxide Nutrition 0.000 description 5
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Chemical compound C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 4
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- 125000005370 alkoxysilyl group Chemical group 0.000 description 4
- MVNCAPSFBDBCGF-UHFFFAOYSA-N alpha-pinene Natural products CC1=CCC23C1CC2C3(C)C MVNCAPSFBDBCGF-UHFFFAOYSA-N 0.000 description 4
- 150000001491 aromatic compounds Chemical class 0.000 description 4
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 4
- 238000013329 compounding Methods 0.000 description 4
- 238000006482 condensation reaction Methods 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 4
- 125000005843 halogen group Chemical group 0.000 description 4
- 125000004404 heteroalkyl group Chemical group 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000012442 inert solvent Substances 0.000 description 4
- 229920003049 isoprene rubber Polymers 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 125000004430 oxygen atom Chemical group O* 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- 125000006239 protecting group Chemical group 0.000 description 4
- GRWFGVWFFZKLTI-UHFFFAOYSA-N rac-alpha-Pinene Natural products CC1=CCC2C(C)(C)C1C2 GRWFGVWFFZKLTI-UHFFFAOYSA-N 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 125000004434 sulfur atom Chemical group 0.000 description 4
- 125000003396 thiol group Chemical group [H]S* 0.000 description 4
- 239000001993 wax Substances 0.000 description 4
- ZNRLMGFXSPUZNR-UHFFFAOYSA-N 2,2,4-trimethyl-1h-quinoline Chemical compound C1=CC=C2C(C)=CC(C)(C)NC2=C1 ZNRLMGFXSPUZNR-UHFFFAOYSA-N 0.000 description 3
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Butyraldehyde Chemical compound CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 229920002943 EPDM rubber Polymers 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 235000021355 Stearic acid Nutrition 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- VHVGFEDTMPYCSX-UHFFFAOYSA-N [1-[[2,2-dimethyl-3-[[4-(oxoazaniumylmethylidene)pyridin-1-yl]methoxy]propoxy]methyl]pyridin-4-ylidene]methyl-oxoazanium;dichloride Chemical compound [Cl-].[Cl-].C1=CC(=C[NH+]=O)C=CN1COCC(C)(C)COCN1C=CC(=C[NH+]=O)C=C1 VHVGFEDTMPYCSX-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- 125000000732 arylene group Chemical group 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 125000002993 cycloalkylene group Chemical group 0.000 description 3
- 230000002542 deteriorative effect Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Natural products OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000006011 modification reaction Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 125000002560 nitrile group Chemical group 0.000 description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 125000004437 phosphorous atom Chemical group 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000008117 stearic acid Substances 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 125000001981 tert-butyldimethylsilyl group Chemical group [H]C([H])([H])[Si]([H])(C([H])([H])[H])[*]C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- FZLHAQMQWDDWFI-UHFFFAOYSA-N 2-[2-(oxolan-2-yl)propan-2-yl]oxolane Chemical compound C1CCOC1C(C)(C)C1CCCO1 FZLHAQMQWDDWFI-UHFFFAOYSA-N 0.000 description 2
- BKOOMYPCSUNDGP-UHFFFAOYSA-N 2-methylbut-2-ene Chemical compound CC=C(C)C BKOOMYPCSUNDGP-UHFFFAOYSA-N 0.000 description 2
- VSKJLJHPAFKHBX-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical compound CC(=C)C=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 VSKJLJHPAFKHBX-UHFFFAOYSA-N 0.000 description 2
- ZZMVLMVFYMGSMY-UHFFFAOYSA-N 4-n-(4-methylpentan-2-yl)-1-n-phenylbenzene-1,4-diamine Chemical compound C1=CC(NC(C)CC(C)C)=CC=C1NC1=CC=CC=C1 ZZMVLMVFYMGSMY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- 239000005063 High cis polybutadiene Substances 0.000 description 2
- 239000006237 Intermediate SAF Substances 0.000 description 2
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 2
- UTGQNNCQYDRXCH-UHFFFAOYSA-N N,N'-diphenyl-1,4-phenylenediamine Chemical compound C=1C=C(NC=2C=CC=CC=2)C=CC=1NC1=CC=CC=C1 UTGQNNCQYDRXCH-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 229910014276 N-Li Inorganic materials 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 229910014326 N—Li Inorganic materials 0.000 description 2
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 2
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 229920005549 butyl rubber Polymers 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 229920003244 diene elastomer Polymers 0.000 description 2
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- 229920005555 halobutyl Polymers 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- JARKCYVAAOWBJS-UHFFFAOYSA-N hexanal Chemical compound CCCCCC=O JARKCYVAAOWBJS-UHFFFAOYSA-N 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000002440 industrial waste Substances 0.000 description 2
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 2
- WGOPGODQLGJZGL-UHFFFAOYSA-N lithium;butane Chemical compound [Li+].CC[CH-]C WGOPGODQLGJZGL-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methylcyclopentane Chemical compound CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 2
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- QMMOXUPEWRXHJS-UHFFFAOYSA-N pentene-2 Natural products CCC=CC QMMOXUPEWRXHJS-UHFFFAOYSA-N 0.000 description 2
- 239000003209 petroleum derivative Substances 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 2
- 239000012779 reinforcing material Substances 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- NONOKGVFTBWRLD-UHFFFAOYSA-N thioisocyanate group Chemical group S(N=C=O)N=C=O NONOKGVFTBWRLD-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- WTARULDDTDQWMU-RKDXNWHRSA-N (+)-β-pinene Chemical compound C1[C@H]2C(C)(C)[C@@H]1CCC2=C WTARULDDTDQWMU-RKDXNWHRSA-N 0.000 description 1
- WTARULDDTDQWMU-IUCAKERBSA-N (-)-Nopinene Natural products C1[C@@H]2C(C)(C)[C@H]1CCC2=C WTARULDDTDQWMU-IUCAKERBSA-N 0.000 description 1
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- GDXHBFHOEYVPED-UHFFFAOYSA-N 1-(2-butoxyethoxy)butane Chemical compound CCCCOCCOCCCC GDXHBFHOEYVPED-UHFFFAOYSA-N 0.000 description 1
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical group O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- ISJVSYYRYKACPF-UHFFFAOYSA-N 2-(3-trimethoxysilylpropoxy)-n,n-bis(trimethylsilyl)ethanamine Chemical compound CO[Si](OC)(OC)CCCOCCN([Si](C)(C)C)[Si](C)(C)C ISJVSYYRYKACPF-UHFFFAOYSA-N 0.000 description 1
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical group C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 1
- CAXKESNLYCRFMJ-UHFFFAOYSA-N 2-[3-(dimethoxymethylsilyl)propoxy]-N,N-dimethylethanamine Chemical compound COC(OC)[SiH2]CCCOCCN(C)C CAXKESNLYCRFMJ-UHFFFAOYSA-N 0.000 description 1
- GAODDBNJCKQQDY-UHFFFAOYSA-N 2-methyl-4,6-bis(octylsulfanylmethyl)phenol Chemical compound CCCCCCCCSCC1=CC(C)=C(O)C(CSCCCCCCCC)=C1 GAODDBNJCKQQDY-UHFFFAOYSA-N 0.000 description 1
- CRWNQZTZTZWPOF-UHFFFAOYSA-N 2-methyl-4-phenylpyridine Chemical compound C1=NC(C)=CC(C=2C=CC=CC=2)=C1 CRWNQZTZTZWPOF-UHFFFAOYSA-N 0.000 description 1
- MHNNAWXXUZQSNM-UHFFFAOYSA-N 2-methylbut-1-ene Chemical compound CCC(C)=C MHNNAWXXUZQSNM-UHFFFAOYSA-N 0.000 description 1
- DVNPFNZTPMWRAX-UHFFFAOYSA-N 2-triethoxysilylethanethiol Chemical compound CCO[Si](CCS)(OCC)OCC DVNPFNZTPMWRAX-UHFFFAOYSA-N 0.000 description 1
- LOSLJXKHQKRRFN-UHFFFAOYSA-N 2-trimethoxysilylethanethiol Chemical compound CO[Si](OC)(OC)CCS LOSLJXKHQKRRFN-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QPISLCVEROXXQD-UHFFFAOYSA-N 3-(1,3-benzothiazol-2-yltetrasulfanyl)propyl-triethoxysilane Chemical compound C1=CC=C2SC(SSSSCCC[Si](OCC)(OCC)OCC)=NC2=C1 QPISLCVEROXXQD-UHFFFAOYSA-N 0.000 description 1
- HFGLXKZGFFRQAR-UHFFFAOYSA-N 3-(1,3-benzothiazol-2-yltetrasulfanyl)propyl-trimethoxysilane Chemical compound C1=CC=C2SC(SSSSCCC[Si](OC)(OC)OC)=NC2=C1 HFGLXKZGFFRQAR-UHFFFAOYSA-N 0.000 description 1
- LOOUJXUUGIUEBC-UHFFFAOYSA-N 3-(dimethoxymethylsilyl)propane-1-thiol Chemical compound COC(OC)[SiH2]CCCS LOOUJXUUGIUEBC-UHFFFAOYSA-N 0.000 description 1
- DIGKGWWSMMWBIZ-UHFFFAOYSA-N 3-[diethoxy(methyl)silyl]-n,n-bis(trimethylsilyl)propan-1-amine Chemical compound CCO[Si](C)(OCC)CCCN([Si](C)(C)C)[Si](C)(C)C DIGKGWWSMMWBIZ-UHFFFAOYSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- PAKGDPSCXSUALC-UHFFFAOYSA-N 3-methylbuta-1,2-diene Chemical compound CC(C)=C=C PAKGDPSCXSUALC-UHFFFAOYSA-N 0.000 description 1
- MWZXHAXMAVEYGN-UHFFFAOYSA-N 3-triethoxysilyl-n,n-bis(3-triethoxysilylpropyl)propan-1-amine Chemical compound CCO[Si](OCC)(OCC)CCCN(CCC[Si](OCC)(OCC)OCC)CCC[Si](OCC)(OCC)OCC MWZXHAXMAVEYGN-UHFFFAOYSA-N 0.000 description 1
- DCQBZYNUSLHVJC-UHFFFAOYSA-N 3-triethoxysilylpropane-1-thiol Chemical compound CCO[Si](OCC)(OCC)CCCS DCQBZYNUSLHVJC-UHFFFAOYSA-N 0.000 description 1
- ZSFMFCWJHYPFPG-UHFFFAOYSA-N 3-triethoxysilylpropyl 2-methylthiirane-2-carboxylate Chemical compound CCO[Si](OCC)(OCC)CCCOC(=O)C1(C)CS1 ZSFMFCWJHYPFPG-UHFFFAOYSA-N 0.000 description 1
- KHLWLJFRUQJJKQ-UHFFFAOYSA-N 3-trimethoxysilyl-n,n-bis(3-trimethoxysilylpropyl)propan-1-amine Chemical compound CO[Si](OC)(OC)CCCN(CCC[Si](OC)(OC)OC)CCC[Si](OC)(OC)OC KHLWLJFRUQJJKQ-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- AKQWHIMDQYDQSR-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylthiirane-2-carboxylate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C1(C)CS1 AKQWHIMDQYDQSR-UHFFFAOYSA-N 0.000 description 1
- IGCVGSIHIMMMQJ-UHFFFAOYSA-N 4-[3-(dimethylamino)propyl]-N,N,N',N'-tetramethyl-4-(trimethoxysilylmethyl)heptane-1,7-diamine Chemical compound CN(C)CCCC(C[Si](OC)(OC)OC)(CCCN(C)C)CCCN(C)C IGCVGSIHIMMMQJ-UHFFFAOYSA-N 0.000 description 1
- PRKPGWQEKNEVEU-UHFFFAOYSA-N 4-methyl-n-(3-triethoxysilylpropyl)pentan-2-imine Chemical compound CCO[Si](OCC)(OCC)CCCN=C(C)CC(C)C PRKPGWQEKNEVEU-UHFFFAOYSA-N 0.000 description 1
- XZIIFPSPUDAGJM-UHFFFAOYSA-N 6-chloro-2-n,2-n-diethylpyrimidine-2,4-diamine Chemical compound CCN(CC)C1=NC(N)=CC(Cl)=N1 XZIIFPSPUDAGJM-UHFFFAOYSA-N 0.000 description 1
- OAOABCKPVCUNKO-UHFFFAOYSA-N 8-methyl Nonanoic acid Chemical compound CC(C)CCCCCCC(O)=O OAOABCKPVCUNKO-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical group NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- UMHJEEQLYBKSAN-UHFFFAOYSA-N Adipaldehyde Chemical compound O=CCCCCC=O UMHJEEQLYBKSAN-UHFFFAOYSA-N 0.000 description 1
- 241001120493 Arene Species 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- ZSBKFEOSHGFEKJ-UHFFFAOYSA-N C1=CC=C2SC(SSSSCCC[SiH2]C(OC)OC)=NC2=C1 Chemical compound C1=CC=C2SC(SSSSCCC[SiH2]C(OC)OC)=NC2=C1 ZSBKFEOSHGFEKJ-UHFFFAOYSA-N 0.000 description 1
- SXLPVOKGQWNWFD-UHFFFAOYSA-N CCO[Si](CC[S+]=C(N(C)C)SSSSC(N(C)C)=[S+]CC[Si](OCC)(OCC)OCC)(OCC)OCC Chemical compound CCO[Si](CC[S+]=C(N(C)C)SSSSC(N(C)C)=[S+]CC[Si](OCC)(OCC)OCC)(OCC)OCC SXLPVOKGQWNWFD-UHFFFAOYSA-N 0.000 description 1
- ZZOXWBGGPBLVNQ-UHFFFAOYSA-N CN(C)C(SSSSC(N(C)C)=[S+]CCC[SiH2]C(OC)OC)=[S+]CCC[SiH2]C(OC)OC Chemical compound CN(C)C(SSSSC(N(C)C)=[S+]CCC[SiH2]C(OC)OC)=[S+]CCC[SiH2]C(OC)OC ZZOXWBGGPBLVNQ-UHFFFAOYSA-N 0.000 description 1
- SKFGZHGVWONCTD-UHFFFAOYSA-N CN(C)C(SSSSC(N(C)C)=[S+]CCC[Si](OC)(OC)OC)=[S+]CCC[Si](OC)(OC)OC Chemical compound CN(C)C(SSSSC(N(C)C)=[S+]CCC[Si](OC)(OC)OC)=[S+]CCC[Si](OC)(OC)OC SKFGZHGVWONCTD-UHFFFAOYSA-N 0.000 description 1
- CLCNSAPJAQKBCU-UHFFFAOYSA-N CN(C)CCCC(CCCN(C)C)C[Si](OC)(OC)OC Chemical compound CN(C)CCCC(CCCN(C)C)C[Si](OC)(OC)OC CLCNSAPJAQKBCU-UHFFFAOYSA-N 0.000 description 1
- QYSQVSQJCZHASQ-UHFFFAOYSA-N CO[Si](CCCC(CC(N)(CCC[Si](OC)(OC)OC)CCC[Si](OC)(OC)OC)(N)CCC[Si](OC)(OC)OC)(OC)OC Chemical compound CO[Si](CCCC(CC(N)(CCC[Si](OC)(OC)OC)CCC[Si](OC)(OC)OC)(N)CCC[Si](OC)(OC)OC)(OC)OC QYSQVSQJCZHASQ-UHFFFAOYSA-N 0.000 description 1
- WUVLTGRPVXWZQF-UHFFFAOYSA-N CO[Si](CCCC1(CC(C(CC1CN)CN)(CCC[Si](OC)(OC)OC)CCC[Si](OC)(OC)OC)CCC[Si](OC)(OC)OC)(OC)OC Chemical compound CO[Si](CCCC1(CC(C(CC1CN)CN)(CCC[Si](OC)(OC)OC)CCC[Si](OC)(OC)OC)CCC[Si](OC)(OC)OC)(OC)OC WUVLTGRPVXWZQF-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000219104 Cucurbitaceae Species 0.000 description 1
- 229920002085 Dialdehyde starch Polymers 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000758993 Equisetidae Species 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 241001441571 Hiodontidae Species 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical class [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229920000433 Lyocell Polymers 0.000 description 1
- WSMYVTOQOOLQHP-UHFFFAOYSA-N Malondialdehyde Chemical compound O=CCC=O WSMYVTOQOOLQHP-UHFFFAOYSA-N 0.000 description 1
- CWUNQAQTWJYTMM-UHFFFAOYSA-N N'-[3-(dimethylamino)propyl]-N,N-dimethyl-N'-(3-trimethoxysilylpropyl)propane-1,3-diamine Chemical compound CO[Si](OC)(OC)CCCN(CCCN(C)C)CCCN(C)C CWUNQAQTWJYTMM-UHFFFAOYSA-N 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 241000985694 Polypodiopsida Species 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- WTARULDDTDQWMU-UHFFFAOYSA-N Pseudopinene Natural products C1C2C(C)(C)C1CCC2=C WTARULDDTDQWMU-UHFFFAOYSA-N 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- 229910008051 Si-OH Inorganic materials 0.000 description 1
- 229910002808 Si–O–Si Inorganic materials 0.000 description 1
- 229910006358 Si—OH Inorganic materials 0.000 description 1
- IYFATESGLOUGBX-YVNJGZBMSA-N Sorbitan monopalmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O IYFATESGLOUGBX-YVNJGZBMSA-N 0.000 description 1
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 1
- 239000004147 Sorbitan trioleate Substances 0.000 description 1
- PRXRUNOAOLTIEF-ADSICKODSA-N Sorbitan trioleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCC\C=C/CCCCCCCC PRXRUNOAOLTIEF-ADSICKODSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- PCSMJKASWLYICJ-UHFFFAOYSA-N Succinic aldehyde Chemical compound O=CCCC=O PCSMJKASWLYICJ-UHFFFAOYSA-N 0.000 description 1
- 241000779819 Syncarpia glomulifera Species 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- 241000218215 Urticaceae Species 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- IJCWFDPJFXGQBN-RYNSOKOISA-N [(2R)-2-[(2R,3R,4S)-4-hydroxy-3-octadecanoyloxyoxolan-2-yl]-2-octadecanoyloxyethyl] octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCCCCCCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCCCCCCCCCCCC IJCWFDPJFXGQBN-RYNSOKOISA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- XCPQUQHBVVXMRQ-UHFFFAOYSA-N alpha-Fenchene Natural products C1CC2C(=C)CC1C2(C)C XCPQUQHBVVXMRQ-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229920006272 aromatic hydrocarbon resin Polymers 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000002102 aryl alkyloxo group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 125000004069 aziridinyl group Chemical group 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 229930006722 beta-pinene Natural products 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- QUEICCDHEFTIQD-UHFFFAOYSA-N buta-1,3-diene;2-ethenylpyridine;styrene Chemical compound C=CC=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=N1 QUEICCDHEFTIQD-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- DKVNPHBNOWQYFE-UHFFFAOYSA-N carbamodithioic acid Chemical compound NC(S)=S DKVNPHBNOWQYFE-UHFFFAOYSA-N 0.000 description 1
- VPKDCDLSJZCGKE-UHFFFAOYSA-N carbodiimide group Chemical group N=C=N VPKDCDLSJZCGKE-UHFFFAOYSA-N 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 150000001720 carbohydrates Chemical group 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical group O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- 150000001869 cobalt compounds Chemical class 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 125000000000 cycloalkoxy group Chemical group 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- GSYVJAOBRKCNOT-UHFFFAOYSA-N diethoxymethyl-[3-[3-(diethoxymethylsilyl)propyltetrasulfanyl]propyl]silane Chemical compound CCOC(OCC)[SiH2]CCCSSSSCCC[SiH2]C(OCC)OCC GSYVJAOBRKCNOT-UHFFFAOYSA-N 0.000 description 1
- 125000006264 diethylaminomethyl group Chemical group [H]C([H])([H])C([H])([H])N(C([H])([H])*)C([H])([H])C([H])([H])[H] 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- 125000006222 dimethylaminomethyl group Chemical group [H]C([H])([H])N(C([H])([H])[H])C([H])([H])* 0.000 description 1
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 description 1
- 239000012990 dithiocarbamate Substances 0.000 description 1
- 244000309146 drought grass Species 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- HDERJYVLTPVNRI-UHFFFAOYSA-N ethene;ethenyl acetate Chemical group C=C.CC(=O)OC=C HDERJYVLTPVNRI-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000005677 ethinylene group Chemical class [*:2]C#C[*:1] 0.000 description 1
- DECIPOUIJURFOJ-UHFFFAOYSA-N ethoxyquin Chemical compound N1C(C)(C)C=C(C)C2=CC(OCC)=CC=C21 DECIPOUIJURFOJ-UHFFFAOYSA-N 0.000 description 1
- 235000019285 ethoxyquin Nutrition 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- LCWMKIHBLJLORW-UHFFFAOYSA-N gamma-carene Natural products C1CC(=C)CC2C(C)(C)C21 LCWMKIHBLJLORW-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 125000000717 hydrazino group Chemical group [H]N([*])N([H])[H] 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 125000000879 imine group Chemical group 0.000 description 1
- 150000002466 imines Chemical group 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 150000004658 ketimines Chemical group 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 235000001510 limonene Nutrition 0.000 description 1
- 229940087305 limonene Drugs 0.000 description 1
- UBJFKNSINUCEAL-UHFFFAOYSA-N lithium;2-methylpropane Chemical compound [Li+].C[C-](C)C UBJFKNSINUCEAL-UHFFFAOYSA-N 0.000 description 1
- CETVQRFGPOGIQJ-UHFFFAOYSA-N lithium;hexane Chemical compound [Li+].CCCCC[CH2-] CETVQRFGPOGIQJ-UHFFFAOYSA-N 0.000 description 1
- YNXURHRFIMQACJ-UHFFFAOYSA-N lithium;methanidylbenzene Chemical compound [Li+].[CH2-]C1=CC=CC=C1 YNXURHRFIMQACJ-UHFFFAOYSA-N 0.000 description 1
- 238000010551 living anionic polymerization reaction Methods 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 239000004200 microcrystalline wax Substances 0.000 description 1
- 235000019808 microcrystalline wax Nutrition 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 229930003658 monoterpene Natural products 0.000 description 1
- 235000002577 monoterpenes Nutrition 0.000 description 1
- QSAHYVPJMMYBOB-UHFFFAOYSA-N n,n-dimethyl-2-(3-trimethoxysilylpropoxy)ethanamine Chemical compound CO[Si](OC)(OC)CCCOCCN(C)C QSAHYVPJMMYBOB-UHFFFAOYSA-N 0.000 description 1
- QANFDEXNUDRRPG-UHFFFAOYSA-N n,n-dimethyl-3-(3-trimethoxysilylpropoxy)propan-1-amine Chemical compound CO[Si](OC)(OC)CCCOCCCN(C)C QANFDEXNUDRRPG-UHFFFAOYSA-N 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- RCHKEJKUUXXBSM-UHFFFAOYSA-N n-benzyl-2-(3-formylindol-1-yl)acetamide Chemical compound C12=CC=CC=C2C(C=O)=CN1CC(=O)NCC1=CC=CC=C1 RCHKEJKUUXXBSM-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- LVMTVPFRTKXRPH-UHFFFAOYSA-N penta-1,2-diene Chemical compound CCC=C=C LVMTVPFRTKXRPH-UHFFFAOYSA-N 0.000 description 1
- NHKJPPKXDNZFBJ-UHFFFAOYSA-N phenyllithium Chemical compound [Li]C1=CC=CC=C1 NHKJPPKXDNZFBJ-UHFFFAOYSA-N 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000001739 pinus spp. Substances 0.000 description 1
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 1
- ZRLVQFQTCMUIRM-UHFFFAOYSA-N potassium;2-methylbutan-2-olate Chemical compound [K+].CCC(C)(C)[O-] ZRLVQFQTCMUIRM-UHFFFAOYSA-N 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- SBYHFKPVCBCYGV-UHFFFAOYSA-N quinuclidine Chemical compound C1CC2CCN1CC2 SBYHFKPVCBCYGV-UHFFFAOYSA-N 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 description 1
- CGRKYEALWSRNJS-UHFFFAOYSA-N sodium;2-methylbutan-2-olate Chemical compound [Na+].CCC(C)(C)[O-] CGRKYEALWSRNJS-UHFFFAOYSA-N 0.000 description 1
- 229940035044 sorbitan monolaurate Drugs 0.000 description 1
- 239000001593 sorbitan monooleate Substances 0.000 description 1
- 235000011069 sorbitan monooleate Nutrition 0.000 description 1
- 229940035049 sorbitan monooleate Drugs 0.000 description 1
- 235000011071 sorbitan monopalmitate Nutrition 0.000 description 1
- 239000001570 sorbitan monopalmitate Substances 0.000 description 1
- 229940031953 sorbitan monopalmitate Drugs 0.000 description 1
- 239000001587 sorbitan monostearate Substances 0.000 description 1
- 235000011076 sorbitan monostearate Nutrition 0.000 description 1
- 229940035048 sorbitan monostearate Drugs 0.000 description 1
- 235000019337 sorbitan trioleate Nutrition 0.000 description 1
- 229960000391 sorbitan trioleate Drugs 0.000 description 1
- 239000001589 sorbitan tristearate Substances 0.000 description 1
- 235000011078 sorbitan tristearate Nutrition 0.000 description 1
- 229960004129 sorbitan tristearate Drugs 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- QAZLUNIWYYOJPC-UHFFFAOYSA-M sulfenamide Chemical compound [Cl-].COC1=C(C)C=[N+]2C3=NC4=CC=C(OC)C=C4N3SCC2=C1C QAZLUNIWYYOJPC-UHFFFAOYSA-M 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- KUAZQDVKQLNFPE-UHFFFAOYSA-N thiram Chemical compound CN(C)C(=S)SSC(=S)N(C)C KUAZQDVKQLNFPE-UHFFFAOYSA-N 0.000 description 1
- 229960002447 thiram Drugs 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 125000004665 trialkylsilyl group Chemical group 0.000 description 1
- HFFLGKNGCAIQMO-UHFFFAOYSA-N trichloroacetaldehyde Chemical compound ClC(Cl)(Cl)C=O HFFLGKNGCAIQMO-UHFFFAOYSA-N 0.000 description 1
- 150000005691 triesters Chemical class 0.000 description 1
- ASAOXGWSIOQTDI-UHFFFAOYSA-N triethoxy-[2-(2-triethoxysilylethyltetrasulfanyl)ethyl]silane Chemical compound CCO[Si](OCC)(OCC)CCSSSSCC[Si](OCC)(OCC)OCC ASAOXGWSIOQTDI-UHFFFAOYSA-N 0.000 description 1
- FBBATURSCRIBHN-UHFFFAOYSA-N triethoxy-[3-(3-triethoxysilylpropyldisulfanyl)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCSSCCC[Si](OCC)(OCC)OCC FBBATURSCRIBHN-UHFFFAOYSA-N 0.000 description 1
- VTHOKNTVYKTUPI-UHFFFAOYSA-N triethoxy-[3-(3-triethoxysilylpropyltetrasulfanyl)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCSSSSCCC[Si](OCC)(OCC)OCC VTHOKNTVYKTUPI-UHFFFAOYSA-N 0.000 description 1
- KLFNHRIZTXWZHT-UHFFFAOYSA-N triethoxy-[3-(3-triethoxysilylpropyltrisulfanyl)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCSSSCCC[Si](OCC)(OCC)OCC KLFNHRIZTXWZHT-UHFFFAOYSA-N 0.000 description 1
- JSXKIRYGYMKWSK-UHFFFAOYSA-N trimethoxy-[2-(2-trimethoxysilylethyltetrasulfanyl)ethyl]silane Chemical compound CO[Si](OC)(OC)CCSSSSCC[Si](OC)(OC)OC JSXKIRYGYMKWSK-UHFFFAOYSA-N 0.000 description 1
- JTTSZDBCLAKKAY-UHFFFAOYSA-N trimethoxy-[3-(3-trimethoxysilylpropyltetrasulfanyl)propyl]silane Chemical compound CO[Si](OC)(OC)CCCSSSSCCC[Si](OC)(OC)OC JTTSZDBCLAKKAY-UHFFFAOYSA-N 0.000 description 1
- 229940036248 turpentine Drugs 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- ABDKAPXRBAPSQN-UHFFFAOYSA-N veratrole Chemical compound COC1=CC=CC=C1OC ABDKAPXRBAPSQN-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/18—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
- B60C9/20—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
- B60C9/22—Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L15/00—Compositions of rubber derivatives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L7/00—Compositions of natural rubber
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
- C08L9/06—Copolymers with styrene
Definitions
- the present invention relates to tires.
- Patent Document 1 discloses that the braking performance of a tire on both dry and wet road surfaces is improved by applying a rubber composition obtained by compounding a rubber component containing 70 mass % or more of natural rubber with a thermoplastic resin and a filler containing silica to the tread rubber of the tire.
- a rubber composition obtained by compounding a rubber component containing 70 mass % or more of natural rubber with a thermoplastic resin and a filler containing silica to the tread rubber of the tire.
- a rubber composition obtained by compounding a rubber component containing 70 mass % or more of natural rubber with a thermoplastic resin and a filler containing silica
- Patent Document 1 the technology described in Patent Document 1 can improve the wet braking performance of tires, the addition of a softening component, resin (thermoplastic resin), reduces the rigidity of the tread rubber and deteriorates the handling stability of the tire.
- resin thermoplastic resin
- the present invention aims to solve the problems of the conventional technology described above and provide a tire that has improved wet braking performance and fuel economy without compromising driving stability.
- a tire comprising a tread rubber layer located on the outermost surface of a tread portion, and a reinforcing layer located radially inward of the tread rubber layer and including an organic fiber cord
- the tread rubber layer includes a rubber component, a resin component, and a filler
- the rubber component includes an isoprene skeleton rubber and a styrene-butadiene rubber, At least one of the styrene-butadiene rubbers has a glass transition temperature of less than ⁇ 40° C.
- the resin component has an SP value difference from the isoprene skeleton rubber of 1.40 (cal/cm 3 ) 1/2 or less
- the tread rubber layer has the following formula (1):
- the mass ratio of the resin component to the isoprene skeleton rubber is ⁇ 0.5 (1)
- the organic fiber cord of the reinforcing layer has an elastic modulus of 4.0 to 30 mN/(dtex ⁇ %) at 1-2% elongation.
- the present invention provides a tire that has improved wet braking performance and fuel economy without compromising driving stability.
- FIG. 1 is a cross-sectional view of one embodiment of a tire of the present invention.
- FIG. 2 is a graph showing a load-elongation curve of a cord.
- the compounds described herein may be derived in whole or in part from fossil sources, from biological sources such as plant sources, from recycled sources such as used tires, or from a mixture of two or more of fossil sources, biological sources, and/or renewable sources.
- the glass transition temperature of isoprene skeleton rubber and styrene-butadiene rubber is determined in accordance with ISO 22768:2006, by recording a DSC curve while increasing the temperature within a specified temperature range, and the peak top (inflection point) of the DSC differential curve is taken as the glass transition temperature.
- SP values solubility parameters of isoprene-based rubber, styrene-butadiene rubber, and resin components are calculated according to the Fedors method.
- the softening point of the resin component is measured in accordance with JIS-K2207-1996 (ring and ball method).
- the weight average molecular weight of the resin component is measured by gel permeation chromatography (GPC) and calculated as a polystyrene equivalent value.
- the elastic modulus, breaking strength, and breaking elongation of the organic fiber cord at 1-2% elongation are values measured at room temperature (23°C).
- the physical properties of the organic fiber cord are measured in accordance with JIS L 1013 "Testing methods for chemical fiber filament yarns.”
- the tire of the present embodiment includes a tread rubber layer located on the outermost surface of a tread portion, and a reinforcing layer located radially inward of the tread rubber layer and including organic fiber cords.
- the tread rubber layer includes a rubber component, a resin component, and a filler
- the rubber component includes an isoprene skeleton rubber and a styrene-butadiene rubber
- at least one of the styrene-butadiene rubber has a glass transition temperature of less than ⁇ 40° C.
- the resin component has an SP value difference with the isoprene skeleton rubber of 1.40 (cal/cm 3 ) 1/2 or less
- the tread rubber layer satisfies the following formula (1):
- the mass ratio of the resin component to the isoprene skeleton rubber is ⁇ 0.5 (1) and the organic fiber cord of the reinforcing layer has an elastic modulus of 4.0 to 30 mN/(dtex ⁇ %) at 1-2%
- the tread rubber layer contains a resin component whose SP value difference from that of the isoprene skeleton rubber is 1.40 (cal/cm 3 ) 1/2 or less, thereby improving wet braking performance.
- a resin component in the tread rubber layer reduces the fuel economy of the tire.
- including a styrene-butadiene rubber with a glass transition temperature of less than -40°C in the tread rubber layer improves the dispersibility of the filler, thereby complementing the fuel economy of the tire.
- the tread rubber layer contains an isoprene skeleton rubber, which can increase the breaking strength, thereby reducing the rolling resistance of the tire and improving the fuel economy.
- the wet braking performance of the tire can be further improved.
- a resin component which is a softening component
- the rigidity of the tread rubber layer decreases, and the steering stability of the tire deteriorates.
- a reinforcing layer containing organic fiber cords having an elastic modulus of 4.0 to 30 mN/(dtex ⁇ %) at 1-2% elongation is disposed on the tire radially inner side of the tread rubber layer, thereby improving the rigidity of the tread portion of the tire and suppressing deterioration of the steering stability of the tire. Therefore, the tire of the present embodiment has improved wet braking performance and fuel economy without deteriorating driving stability.
- Fig. 1 is a cross-sectional view of one embodiment of a tire of the present invention.
- the tire 1 shown in Fig. 1 has a pair of bead portions 2, a pair of sidewall portions 3, and a tread portion 4 connected to both sidewall portions 3, and includes a carcass 5 extending in a toroidal shape between the pair of bead portions 2 to reinforce the respective portions 2, 3, and 4, a belt 6 disposed on the tire radial outer side of a crown portion of the carcass 5, a belt reinforcing layer (also called a "cap layer”) 7A disposed on the tire radial outer side of the belt 6 so as to cover the entire belt 6, and a pair of belt reinforcing layers (also called “layer layers”) 7B disposed so as to cover only both ends of the belt reinforcing layer 7A.
- a belt reinforcing layer also called a "cap layer”
- the carcass 5 of the tire 1 shown in FIG. 1 is composed of one carcass ply made of multiple parallel-arranged cords covered with a coating rubber, and the carcass 5 is composed of a main body portion that extends in a toroidal shape between the bead cores 8 embedded in the bead portion 2, and a folded-up portion that is wound up radially outward around each bead core 8 from the inner side toward the outer side in the tire width direction, but the number and structure of the plies of the carcass 5 in the tire of the present invention are not limited to this.
- the belt 6 of the tire 1 shown in FIG. 1 is made up of two belt layers 6A and 6B, but in the tire of the present invention, the number of belt layers constituting the belt 6 is not limited to this, and the number of belt layers may be three or more.
- the belt layers 6A and 6B are usually made up of rubberized layers of metal cords or organic fiber cords (preferably steel cords) that extend at an angle to the tire equatorial plane, and the two belt layers 6A and 6B are laminated to form the belt 6 so that the cords constituting the belt layers cross each other with the tire equatorial plane in between.
- the belt reinforcing layers 7A, 7B are formed by coating organic fiber cords (reinforcing material) arranged substantially parallel to the tire circumferential direction (for example, at an angle of 0 to 5° with respect to the tire circumferential direction) with a coating rubber.
- the belt reinforcing layers 7A, 7B are formed by continuously winding narrow strips, prepared by coating organic fiber cords with a coating rubber, in a spiral shape in the tire circumferential direction. In this case, since there are no joints in the tire circumferential direction, the tire has good uniformity, and since there are no joints, strain concentration in the joints can be prevented.
- each of the belt reinforcing layers 7A and 7B is a single layer, but may be two or more layers.
- the tire 1 shown in FIG. 1 includes a tread rubber layer 9 located on the outermost surface of the tread portion 4, and the tread rubber layer 9 contains a rubber component, a resin component, and a filler, as described in detail below, the rubber component contains an isoprene skeleton rubber and a styrene-butadiene rubber, at least one of the styrene-butadiene rubbers has a glass transition temperature of less than ⁇ 40° C., the resin component has an SP value difference with the isoprene skeleton rubber of 1.40 (cal/cm 3 ) 1/2 or less, and further the tread rubber 9 layer satisfies the above formula (1).
- the rubber component contains an isoprene skeleton rubber and a styrene-butadiene rubber
- at least one of the styrene-butadiene rubbers has a glass transition temperature of less than ⁇ 40° C.
- the resin component has an SP value difference with the isoprene
- the tire of the present invention may be modified in various ways as long as it comprises a tread rubber layer located on the outermost surface of the tread portion and a reinforcing layer containing organic fiber cords located radially inward of the tread rubber layer.
- the tread rubber layer 9 of the tire 1 shown in FIG. 1 may be divided into a cap rubber located on the outermost surface side and a base rubber located radially inward of the cap rubber.
- the reinforcing layer containing the organic fiber cord is not particularly limited as long as it is located on the radially inner side of the tread rubber layer 9, and may be, for example, any of the belt layers 6A, 6B and belt reinforcing layers 7A, 7B of the tire 1 shown in FIG. 1.
- the reinforcing layer containing the organic fiber cord is preferably used in at least one of the belt layer 6B (i.e., the outermost layer in the radial direction of the tire among the belt layers constituting the belt 6) and the belt reinforcing layers 7A, 7B of the tire 1 shown in FIG. 1, more preferably in at least one of the belt reinforcing layers 7A, 7B, and even more preferably in both of the belt reinforcing layers 7A, 7B.
- the tread rubber layer includes a rubber component, a resin component, and a filler.
- the tread rubber layer can be made of, for example, a rubber composition including a rubber component, a resin component, and a filler.
- the rubber component contains an isoprene skeleton rubber and a styrene-butadiene rubber, and may further contain other rubber components.
- the isoprene skeleton rubber is a rubber having an isoprene unit as a main skeleton, and specific examples thereof include natural rubber (NR) and synthetic isoprene rubber (IR).
- the rubber component containing isoprene skeleton rubber can increase the fracture strength of the tread rubber layer, which in turn reduces the rolling resistance of a tire having the tread rubber layer, improving fuel economy and also improving the wear resistance of the tire.
- the content of the isoprene skeleton rubber is preferably 1 to 80 parts by mass, and more preferably 1 to 40 parts by mass, per 100 parts by mass of the rubber component.
- the content of the isoprene skeleton rubber is 1 to 80 parts by mass per 100 parts by mass of the rubber component, the fuel efficiency and wet braking performance of the tire can be further improved.
- the content of the isoprene skeleton rubber is 1 to 40 parts by mass per 100 parts by mass of the rubber component, the fuel efficiency and wet braking performance of the tire can be further improved.
- the content of the isoprene skeleton rubber is more preferably 10 parts by mass or more per 100 parts by mass of the rubber component.
- the rubber component of the tread rubber layer contains styrene-butadiene rubber (SBR), and at least one of the styrene-butadiene rubbers (SBR) has a glass transition temperature lower than ⁇ 40° C., preferably lower than ⁇ 45° C., more preferably lower than ⁇ 50° C., and preferably higher than ⁇ 90° C. If the glass transition temperature of at least one type of styrene-butadiene rubber is lower than ⁇ 40° C., the fuel economy and wear resistance of the tire can be sufficiently improved. In addition, styrene-butadiene rubber having a glass transition temperature higher than ⁇ 90° C. is easy to synthesize.
- the rubber component of the tread rubber layer may contain styrene-butadiene rubber having a glass transition temperature of -40°C or higher.
- the content of the styrene-butadiene rubber is preferably 20 to 99 parts by mass, more preferably 30 to 99 parts by mass, more preferably 40 to 99 parts by mass, even more preferably 50 to 99 parts by mass, and even more preferably 60 to 99 parts by mass, per 100 parts by mass of the rubber component.
- the content of the styrene-butadiene rubber is 60 to 99 parts by mass per 100 parts by mass of the rubber component, the fuel economy and wet braking performance of the tire can be further improved.
- the difference in SP value between the isoprene skeleton rubber and the styrene-butadiene rubber is preferably 0.3 (cal/cm 3 ) 1/2 or more, and more preferably 0.35 (cal/cm 3 ) 1/2 or more.
- the difference in SP value between the isoprene skeleton rubber and the styrene-butadiene rubber is 0.3 (cal/cm 3 ) 1/2 or more, the isoprene skeleton rubber and the styrene-butadiene rubber tend to be incompatible.
- the styrene-butadiene rubber preferably has a bound styrene content of less than 15% by mass.
- the bound styrene content of the styrene-butadiene rubber means the proportion of styrene units contained in the styrene-butadiene rubber.
- the bound styrene content of the styrene-butadiene rubber is less than 15% by mass, the glass transition temperature is likely to be low.
- the bound styrene content of the styrene-butadiene rubber is more preferably 14% by mass or less, more preferably 13% by mass or less, and even more preferably 12% by mass or less.
- the bound styrene content of the styrene-butadiene rubber is preferably 5% by mass or more, more preferably 7% by mass or more, and even more preferably 8% by mass or more.
- the amount of bound styrene in the styrene-butadiene rubber can be adjusted by the amount of monomer used in polymerization of the styrene-butadiene rubber, the degree of polymerization, and the like.
- the styrene-butadiene rubber is preferably modified with a modifier having a functional group containing a nitrogen atom and an alkoxy group.
- a modifier having a functional group containing a nitrogen atom and an alkoxy group the balance between the wet braking performance, fuel economy, and abrasion resistance of the tire is improved, and in particular, the fuel economy and abrasion resistance can be further improved.
- the modifying agent having a functional group containing a nitrogen atom and an alkoxy group is a general term for modifying agents having at least one functional group containing a nitrogen atom and at least one alkoxy group.
- the functional group containing a nitrogen atom is preferably selected from the following:
- the functional group is selected from the group consisting of a primary amino group, a primary amino group protected with a hydrolyzable protecting group, an onium salt residue of a primary amine, an isocyanate group, a thioisocyanate group, an imine group, an imine residue, an amide group, a secondary amino group protected with a hydrolyzable protecting group, a cyclic secondary amino group, an onium salt residue of a cyclic secondary amine, a non-cyclic secondary amino group, an onium salt residue of a non-cyclic secondary amine, an isocyanuric acid triester residue, a cyclic tertiary amino group, a non-cyclic tertiary amino group, a nitrile group, a pyridine residue, an onium salt residue of a cyclic tertiary amine, and an onium salt residue of a non-cyclic terti
- the styrene-butadiene rubber is preferably modified with an aminoalkoxysilane compound, and from the viewpoint of having a high affinity for the filler, it is more preferable that the terminal is modified with an aminoalkoxysilane compound.
- the terminal of the styrene-butadiene rubber is modified with an aminoalkoxysilane compound, the interaction between the modified styrene-butadiene rubber and the filler (particularly silica) becomes particularly large.
- the modified site of the styrene-butadiene rubber may be the molecular terminal as described above, but may also be the main chain.
- Styrene-butadiene rubber having modified molecular terminals can be produced by reacting various modifiers with the terminals of a styrene-butadiene copolymer having active terminals, for example, according to the methods described in WO 2003/046020 and JP 2007-217562 A.
- the styrene-butadiene rubber having modified molecular terminals can be produced by reacting an aminoalkoxysilane compound with the terminals of a styrene-butadiene copolymer having an active terminal with a cis-1,4 bond content of 75% or more, and then reacting the resulting mixture with a carboxylic acid partial ester of a polyhydric alcohol for stabilization, according to the methods described in WO 2003/046020 and JP 2007-217562 A.
- the carboxylic acid partial ester of a polyhydric alcohol means an ester of a polyhydric alcohol and a carboxylic acid, which has one or more hydroxyl groups. Specifically, an ester of a sugar or modified sugar having 4 or more carbon atoms and a fatty acid is preferably used.
- this ester include (1) a fatty acid partial ester of a polyhydric alcohol, in particular a partial ester (which may be a monoester, diester, or triester) of a saturated higher fatty acid or an unsaturated higher fatty acid having 10 to 20 carbon atoms and a polyhydric alcohol, and (2) an ester compound in which 1 to 3 partial esters of a polycarboxylic acid and a higher alcohol are bonded to a polyhydric alcohol.
- the polyhydric alcohol used as a raw material for the partial ester is preferably a saccharide having 5 or 6 carbon atoms and at least three hydroxyl groups (which may or may not be hydrogenated), glycol, polyhydroxy compound, etc.
- the raw material fatty acid is preferably a saturated or unsaturated fatty acid having 10 to 20 carbon atoms, such as stearic acid, lauric acid, or palmitic acid.
- fatty acid partial esters of polyhydric alcohols sorbitan fatty acid esters are preferred, and specific examples thereof include sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan tristearate, sorbitan monooleate, and sorbitan trioleate.
- the aminoalkoxysilane compound is not particularly limited, but is preferably an aminoalkoxysilane compound represented by the following general formula (i).
- R 11 and R 12 each independently represent a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, at least one of R 11 and R 12 is substituted with an amino group, a is an integer of 0 to 2, and when there are multiple OR 12 , each OR 12 may be the same or different, and no active proton is contained in the molecule.
- aminoalkoxysilane compound an aminoalkoxysilane compound represented by the following general formula (ii) is also preferred.
- a 1 is at least one functional group selected from a saturated cyclic tertiary amine compound residue, an unsaturated cyclic tertiary amine compound residue, a ketimine residue, a nitrile group, a (thio)isocyanate group, an isocyanuric acid trihydrocarbyl ester group, a nitrile group, a pyridine group, a (thio)ketone group, an amide group, and a primary or secondary amino group having a hydrolyzable group.
- a 1 When n4 is 2 or more, A 1 may be the same or different, and A 1 may be a divalent group that bonds with Si to form a cyclic structure.
- R 21 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and when n1 is 2 or more, R 21 may be the same or different.
- R 22 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, either of which may contain a nitrogen atom and/or a silicon atom.
- R 22 When n2 is 2 or greater, R 22 may be the same or different from each other, or may be joined together to form a ring.
- R 23 represents a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, or a halogen atom, and when n3 is 2 or greater, may be the same or different.
- R 24 is a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and when n4 is 2 or greater, R 24 may be the same or different.
- the hydrolyzable group in the hydrolyzable group-containing primary or secondary amino group a trimethylsilyl group or a tert-butyldimethylsilyl group is preferred, and a trimethylsilyl group is particularly preferred.
- aminoalkoxysilane compound represented by the above general formula (ii) is preferably an aminoalkoxysilane compound represented by the following general formula (iii).
- p1+p2+p3 2 (wherein p2 is an integer of 1 or 2, and p1 and p3 are integers of 0 or 1).
- A2 is NRa (Ra is a monovalent hydrocarbon group, a hydrolyzable group, or a nitrogen-containing organic group).
- R 25 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
- R 26 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, or a nitrogen-containing organic group, any of which may contain a nitrogen atom and/or a silicon atom.
- R 26 may be the same or different from each other, or may be joined together to form a ring.
- R 27 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, or a halogen atom.
- R 28 is a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
- a trimethylsilyl group or a tert-butyldimethylsilyl group is preferred, and a trimethylsilyl group is particularly preferred.
- aminoalkoxysilane compound represented by the above general formula (ii) is also preferably an aminoalkoxysilane compound represented by the following general formula (iv) or (v).
- R 31 is a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
- R 32 and R 33 each independently represent a hydrolyzable group, a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
- R 34 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and when q1 is 2, may be the same or different.
- R 35 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and when q2 is 2 or greater, R 35 may be the same or different.
- R 36 is a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
- R 37 is a dimethylaminomethyl group, a dimethylaminoethyl group, a diethylaminomethyl group, a diethylaminoethyl group, a methylsilyl(methyl)aminomethyl group, a methylsilyl(methyl)aminoethyl group, a methylsilyl(ethyl)aminomethyl group, a methylsilyl(ethyl)aminoethyl group, a dimethylsilylaminomethyl group, a dimethylsilylaminoethyl group, a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and when r1 is 2 or more, they may be the same or different.
- R 38 is a hydrocarbyloxy group having 1 to 20 carbon atoms, a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and when r2 is 2, they may be the same or different.
- a specific example of the aminoalkoxysilane compound represented by the general formula (v) is N-(1,3-dimethylbutylidene)-3-triethoxysilyl-1-propaneamine.
- aminoalkoxysilane compound represented by the above general formula (ii) is also preferably an aminoalkoxysilane compound represented by the following general formula (vi) or (vii).
- R 40 is a trimethylsilyl group, a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
- R 41 is a hydrocarbyloxy group having 1 to 20 carbon atoms, a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
- R 42 is a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
- TMS represents a trimethylsilyl group (hereinafter the same).
- R 43 and R 44 each independently represent a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
- R 45 is a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and each R 45 may be the same or different.
- aminoalkoxysilane compound represented by the above general formula (ii) is also preferably an aminoalkoxysilane compound represented by the following general formula (viii) or the following general formula (ix).
- s1+s2 is 3 (wherein s1 is an integer of 0 to 2, and s2 is an integer of 1 to 3).
- R 46 is a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
- R 47 and R 48 are each independently a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms. Multiple R 47s or R 48s may be the same or different.
- X is a halogen atom.
- R 49 is a divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a divalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
- R 50 and R 51 are each independently a hydrolyzable group, a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, or R 50 and R 51 combine together to form a divalent organic group.
- R 52 and R 53 each independently represent a halogen atom, a hydrocarbyloxy group, a monovalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
- R 50 and R 51 are preferably a hydrolyzable group, and the hydrolyzable group is preferably a trimethylsilyl group or a tert-butyldimethylsilyl group, and particularly preferably a trimethylsilyl group.
- aminoalkoxysilane compound represented by the above general formula (ii) is also preferably an aminoalkoxysilane compound represented by the following general formula (x), the following general formula (xi), the following general formula (xii), or the following general formula (xiii).
- R 54 to R 92 in general formulas (x) to (xiii) may be the same or different and are a monovalent or divalent aliphatic or alicyclic hydrocarbon group having 1 to 20 carbon atoms, or a monovalent or divalent aromatic hydrocarbon group having 6 to 18 carbon atoms.
- ⁇ and ⁇ are integers of 0 to 5.
- N1,N1,N7,N7-tetramethyl-4-((trimethoxysilyl)methyl)heptane-1,7-diamine 2-((hexyl-dimethoxysilyl)methyl)-N1,N1,N3,N3-2-pentamethylpropane-1,3-diamine, N1-(3-(dimethylamino)propyl)-N3,N3-dimethyl-N1-(3-(trimethoxysilyl)propyl)propane-1,3-diamine, and 4-(3-(dimethylamino)propyl)-N1,N1,N7,N7-tetramethyl-4-((trimethoxysilyl)methyl)heptane-1,7-diamine are particularly preferred.
- SBR styrene-butadiene rubber
- I a coupling agent represented by the following general formula (I), in which case the fuel economy and wear resistance of the tire can be further improved.
- R 1 , R 2 and R 3 each independently represent a single bond or an alkylene group having 1 to 20 carbon atoms.
- R 4 , R 5 , R 6 , R 7 and R 9 each independently represent an alkyl group having 1 to 20 carbon atoms.
- R 8 and R 11 each independently represent an alkylene group having 1 to 20 carbon atoms.
- R 10 represents an alkyl group or a trialkylsilyl group having 1 to 20 carbon atoms.
- m represents an integer of 1 to 3;
- p represents 1 or 2.
- i, j, and k each independently represent an integer of 0 to 6, provided that (i+j+k) is an integer of 3 to 10.
- A represents a hydrocarbon group having 1 to 20 carbon atoms, or an organic group having at least one atom selected from the group consisting of an oxygen atom, a nitrogen atom, a silicon atom, a sulfur atom and a phosphorus atom and having no active hydrogen.
- the hydrocarbon group represented by A includes saturated, unsaturated, aliphatic and aromatic hydrocarbon groups.
- organic group not having active hydrogen examples include organic groups not having a functional group having active hydrogen, such as a hydroxyl group (-OH), a secondary amino group (>NH), a primary amino group (-NH 2 ) or a sulfhydryl group (-SH).
- the styrene-butadiene rubber modified with the coupling agent represented by the above general formula (I) has a weight average molecular weight (Mw) of 20 ⁇ 10 4 to 300 ⁇ 10 4 , contains 0.25 to 30 mass% of modified styrene-butadiene rubber having a molecular weight of 200 ⁇ 10 4 to 500 ⁇ 10 4 based on the total amount of the modified styrene-butadiene rubber, and preferably has a shrinkage factor (g') of less than 0.64.
- Mw weight average molecular weight
- g' shrinkage factor
- a polymer having branches tends to have a smaller molecular size compared to a linear polymer having the same absolute molecular weight
- the contraction factor (g') is an index of the ratio of the molecular size to that of a linear polymer having the same absolute molecular weight. That is, the contraction factor (g') tends to be smaller as the branching degree of the polymer increases.
- the intrinsic viscosity is used as an index of the molecular size
- the contraction factor (g') at each absolute molecular weight of the modified styrene-butadiene rubber is calculated, and the average value of the contraction factor (g') at the absolute molecular weight of 100 x 10 4 to 200 x 10 4 is taken as the contraction factor (g') of the modified styrene-butadiene rubber.
- “branch” is formed by directly or indirectly bonding one polymer to another polymer.
- “branching degree” is the number of polymers that are directly or indirectly bonded to one branch. For example, when five styrene-butadiene copolymer chains described below are indirectly bonded to each other via coupling residues described below, the degree of branching is 5.
- the coupling residue is a structural unit of a modified styrene-butadiene rubber bonded to the styrene-butadiene copolymer chain, and is, for example, a structural unit derived from a coupling agent produced by reacting a styrene-butadiene copolymer described below with a coupling agent.
- the styrene-butadiene copolymer chain is a structural unit of a modified styrene-butadiene rubber, and is, for example, a structural unit derived from a styrene-butadiene copolymer produced by reacting a styrene-butadiene copolymer described below with a coupling agent.
- the contraction factor (g') is preferably less than 0.64, more preferably 0.63 or less, more preferably 0.60 or less, even more preferably 0.59 or less, and even more preferably 0.57 or less.
- the lower limit of the contraction factor (g') is not particularly limited and may be equal to or less than the detection limit, but is preferably 0.30 or more, more preferably 0.33 or more, even more preferably 0.35 or more, and even more preferably 0.45 or more.
- the shrinkage factor (g') tends to depend on the degree of branching, for example, the shrinkage factor (g') can be controlled using the degree of branching as an index.
- the shrinkage factor (g') tends to be 0.59 or more and 0.63 or less
- the shrinkage factor (g') tends to be 0.45 or more and 0.59 or less.
- the styrene-butadiene rubber modified by the coupling agent represented by the general formula (I) preferably has a branch and a degree of branching of 5 or more.
- the modified styrene-butadiene rubber has one or more coupling residues and a styrene-butadiene copolymer chain bonded to the coupling residue, and more preferably, the branch includes a branch in which 5 or more styrene-butadiene copolymer chains are bonded to one coupling residue.
- the contraction factor (g') can be more reliably made less than 0.64.
- the number of styrene-butadiene copolymer chains bonded to one coupling residue can be confirmed from the value of the contraction factor (g').
- the modified styrene-butadiene rubber has branches, and the degree of branching is 6 or more.
- the modified styrene-butadiene rubber has one or more coupling residues and a styrene-butadiene copolymer chain bonded to the coupling residue
- the above-mentioned branches include branches in which 6 or more of the styrene-butadiene copolymer chains are bonded to one coupling residue.
- the modified styrene-butadiene rubber has branches, and the degree of branching is more preferably 7 or more, and even more preferably 8 or more.
- the upper limit of the degree of branching is not particularly limited, but is preferably 18 or less.
- the modified styrene-butadiene rubber has one or more coupling residues and a styrene-butadiene copolymer chain bonded to the coupling residue, and further, it is more preferable that the above-mentioned branches include a branch in which 7 or more styrene-butadiene copolymer chains are bonded to one coupling residue, and it is particularly preferable that the above-mentioned branches include a branch in which 8 or more styrene-butadiene copolymer chains are bonded to one coupling residue.
- the shrinkage factor (g') can be made 0.59 or less.
- At least one end of the styrene-butadiene copolymer chain is bonded to a silicon atom of the coupling residue.
- the ends of a plurality of styrene-butadiene copolymer chains may be bonded to one silicon atom.
- an end of the styrene-butadiene copolymer chain and an alkoxy group or hydroxyl group having 1 to 20 carbon atoms may be bonded to one silicon atom, and as a result, that one silicon atom may constitute an alkoxysilyl group or silanol group having 1 to 20 carbon atoms.
- the modified styrene-butadiene rubber can be an oil-extended rubber to which an extender oil has been added.
- the modified styrene-butadiene rubber may be either non-oil-extended or oil-extended, but from the viewpoint of wear resistance, the Mooney viscosity measured at 100°C is preferably 20 or more and 100 or less, and more preferably 30 or more and 80 or less.
- the weight average molecular weight (Mw) of the modified styrene-butadiene rubber is preferably 20 ⁇ 10 4 or more and 300 ⁇ 10 4 or less, more preferably 50 ⁇ 10 4 or more, more preferably 64 ⁇ 10 4 or more, and even more preferably 80 ⁇ 10 4 or more.
- the weight average molecular weight is preferably 250 ⁇ 10 4 or less, more preferably 180 ⁇ 10 4 or less, and more preferably 150 ⁇ 10 4 or less.
- the weight average molecular weight is 20 ⁇ 10 4 or more, the low loss property and abrasion resistance of the tread rubber layer can be sufficiently improved.
- the weight average molecular weight is 300 ⁇ 10 4 or less, the processability of the rubber composition used in the tread rubber layer is improved.
- the modified styrene-butadiene rubber preferably contains 0.25% by mass or more and 30% by mass or less of modified styrene-butadiene rubber having a molecular weight of 200 ⁇ 10 4 or more and 500 ⁇ 10 4 or less (hereinafter also referred to as "specific high molecular weight component") relative to the total amount (100% by mass) of the modified styrene-butadiene rubber.
- specific high molecular weight component modified styrene-butadiene rubber having a molecular weight of 200 ⁇ 10 4 or more and 500 ⁇ 10 4 or less
- the modified styrene-butadiene rubber preferably contains 1.0% by mass or more of the specific high molecular weight component, more preferably contains 1.4% by mass or more, even more preferably contains 1.75% by mass or more, even more preferably contains 2.0% by mass or more, particularly preferably contains 2.15% by mass or more, and extremely preferably contains 2.5% by mass or more.
- the modified styrene-butadiene rubber contains the specific high molecular weight component in an amount of preferably 28% by mass or less, more preferably 25% by mass or less, even more preferably 20% by mass or less, and still more preferably 18% by mass or less.
- the "molecular weight" of the rubber component is the standard polystyrene equivalent molecular weight obtained by GPC (gel permeation chromatography).
- GPC gel permeation chromatography
- the amount of an organic monolithium compound used as a polymerization initiator described later may be adjusted.
- a method having a residence time distribution is used, that is, the time distribution of the propagation reaction is expanded.
- the molecular weight distribution (Mw/Mn), which is expressed as the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn), is preferably 1.6 or more and 3.0 or less. If the molecular weight distribution of the modified styrene-butadiene rubber is in this range, the rubber composition used in the tread rubber layer will have good processability.
- the manufacturing method of the modified styrene-butadiene rubber is not particularly limited, but it preferably has a polymerization step in which butadiene and styrene are copolymerized using an organic monolithium compound as a polymerization initiator to obtain a styrene-butadiene copolymer, and a reaction step in which a pentafunctional or higher reactive compound (hereinafter also referred to as a "coupling agent”) is reacted with the active terminal of the styrene-butadiene copolymer.
- a pentafunctional or higher reactive compound hereinafter also referred to as a "coupling agent”
- the polymerization step is preferably a polymerization by a propagation reaction due to a living anionic polymerization reaction, which makes it possible to obtain a styrene-butadiene copolymer having an active terminal, and thus to obtain a modified styrene-butadiene rubber with a high modification rate.
- the styrene-butadiene copolymer is obtained by copolymerizing 1,3-butadiene and styrene.
- the amount of the organic monolithium compound used as a polymerization initiator is preferably determined depending on the molecular weight of the target styrene-butadiene copolymer or modified styrene-butadiene rubber.
- the amount of monomers such as 1,3-butadiene and styrene used relative to the amount of polymerization initiator used is related to the degree of polymerization, that is, the number average molecular weight and/or the weight average molecular weight. Therefore, in order to increase the molecular weight, it is preferable to adjust the amount of polymerization initiator to a smaller amount, and in order to decrease the molecular weight, it is preferable to adjust the amount of polymerization initiator to a larger amount.
- the organic monolithium compound is preferably an alkyllithium compound from the viewpoint of industrial availability and ease of control of the polymerization reaction.
- a styrene-butadiene copolymer having an alkyl group at the polymerization initiation terminal is obtained.
- the alkyllithium compound include n-butyllithium, sec-butyllithium, tert-butyllithium, n-hexyllithium, benzyllithium, phenyllithium, and stilbenelithium.
- n-butyllithium and sec-butyllithium are preferred from the viewpoint of industrial availability and ease of control of the polymerization reaction.
- These organic monolithium compounds may be used alone or in combination of two or more.
- examples of the polymerization reaction mode include a batch polymerization mode and a continuous polymerization mode.
- the continuous mode one or more connected reactors can be used.
- a tank type or a tube type reactor equipped with an agitator is used.
- the monomer, the inert solvent, and the polymerization initiator are continuously fed into the reactor, a polymer solution containing the polymer is obtained in the reactor, and the polymer solution is continuously discharged.
- a tank type reactor equipped with an agitator is used for example.
- the monomer, the inert solvent, and the polymerization initiator are fed, and if necessary, the monomer is continuously or intermittently added during the polymerization, a polymer solution containing the polymer is obtained in the reactor, and the polymer solution is discharged after the polymerization is completed.
- a continuous mode is preferred, which allows the polymer to be continuously discharged and used for the next reaction in a short time.
- the polymerization step is preferably carried out in an inert solvent.
- the solvent include hydrocarbon solvents such as saturated hydrocarbons and aromatic hydrocarbons.
- specific examples of the hydrocarbon solvent include, but are not limited to, aliphatic hydrocarbons such as butane, pentane, hexane, and heptane; alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclopentane, and methylcyclohexane; aromatic hydrocarbons such as benzene, toluene, and xylene, and hydrocarbons consisting of mixtures thereof.
- styrene-butadiene copolymer having a high concentration of active ends tends to be obtained, and a modified styrene-butadiene rubber with a high modification rate tends to be obtained, which is preferable.
- a polar compound may be added.
- styrene By adding a polar compound, styrene can be randomly copolymerized with 1,3-butadiene, and the polar compound tends to be usable as a vinylating agent for controlling the microstructure of the 1,3-butadiene portion.
- polar compound examples include ethers such as tetrahydrofuran, diethyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol dibutyl ether, dimethoxybenzene, and 2,2-bis(2-oxolanyl)propane; tertiary amine compounds such as tetramethylethylenediamine, dipiperidinoethane, trimethylamine, triethylamine, pyridine, and quinuclidine; alkali metal alkoxide compounds such as potassium tert-amylate, potassium tert-butylate, sodium tert-butylate, and sodium tert-amylate; and phosphine compounds such as triphenylphosphine. These polar compounds may be used alone or in combination of two or more.
- ethers such as tetrahydrofuran, diethyl ether,
- the polymerization temperature is preferably 0°C or higher, more preferably 120°C or lower, and particularly preferably 50°C or higher and 100°C or lower. By keeping the temperature in this range, it tends to be possible to ensure a sufficient amount of reaction of the coupling agent with the active terminals after the polymerization is completed.
- the amount of bound butadiene in the styrene-butadiene copolymer or modified styrene-butadiene rubber is not particularly limited, but is preferably from 40% by mass to 100% by mass, and more preferably from 55% by mass to 80% by mass.
- the amount of bound styrene in the styrene-butadiene copolymer or modified styrene-butadiene rubber is not particularly limited, but is preferably more than 0 mass% and not more than 60 mass%, and more preferably 20 mass% or more and not more than 45 mass%.
- the low loss property and the wear resistance of the tread rubber layer can be further improved.
- the amount of bound styrene can be measured by ultraviolet absorption of the phenyl group, from which the amount of bound butadiene can also be calculated.
- the amount of vinyl bonds in the butadiene bond units is not particularly limited, but is preferably 10 mol % to 75 mol %, more preferably 20 mol % to 65 mol %.
- the amount of vinyl bonds is within the above range, the low loss property and wear resistance of the tread rubber layer can be further improved.
- the amount of vinyl bonds (1,2-bonds) in the butadiene bond units can be determined by the Hampton method [R. R. Hampton, Analytical Chemistry, 21, 923 (1949)].
- the alkoxysilyl group of the coupling agent represented by the above general formula (I) tends to react with, for example, the active terminal of the styrene-butadiene copolymer, dissociating the alkoxylithium and forming a bond between the terminal of the styrene-butadiene copolymer chain and the silicon of the coupling residue.
- the number of alkoxysilyl groups in the coupling residue is the total number of SiOR in one molecule of the coupling agent minus the number of SiORs subtracted by the reaction.
- the azasilacycle group in the coupling agent forms an >N-Li bond and a bond between the terminal of the styrene-butadiene copolymer and the silicon of the coupling residue.
- the >N-Li bond tends to easily become >NH and LiOH due to water, etc. during finishing.
- the alkoxysilyl group remaining unreacted in the coupling agent tends to easily become a silanol (Si-OH group) due to water, etc. during finishing.
- the reaction temperature in the reaction step is preferably the same as the polymerization temperature of the styrene-butadiene copolymer, more preferably from 0° C. to 120° C., and even more preferably from 50° C. to 100° C.
- the temperature change from the end of the polymerization step to the addition of the coupling agent is preferably 10° C. or less, more preferably 5° C. or less.
- the reaction time in the reaction step is preferably 10 seconds or more, more preferably 30 seconds or more. From the viewpoint of the coupling rate, the time from the end of the polymerization step to the start of the reaction step is preferably shorter, and more preferably within 5 minutes.
- the mixing in the reaction step may be performed by mechanical stirring, stirring with a static mixer, or the like.
- the reaction step is also a continuous process.
- the reactor used in the reaction step may be, for example, a tank type or a tube type equipped with a stirrer.
- the coupling agent may be diluted with an inert solvent and continuously fed to the reactor.
- the coupling agent may be added to the polymerization reactor, or may be transferred to another reactor to carry out the reaction step.
- A is preferably represented by any one of the following general formulas (II) to (V).
- a represented by any one of the general formulas (II) to (V) a modified styrene-butadiene rubber with superior performance can be obtained.
- B 1 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, and a represents an integer of 1 to 10. When a plurality of B 1s are present, each B 1 is independent.
- B2 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms
- B3 represents an alkyl group having 1 to 20 carbon atoms
- a represents an integer of 1 to 10.
- B4 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, and a represents an integer of 1 to 10. When a plurality of B4s are present, each B4 is independent.
- B5 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, and a represents an integer of 1 to 10. When a plurality of B5s are present, each B5 is independent.
- examples of the hydrocarbon group having 1 to 20 carbon atoms include an alkylene group having 1 to 20 carbon atoms.
- A is represented by the general formula (II) or (III), and k is 0. More preferably, in the general formula (I), A is represented by the general formula (II) or (III), k represents 0, and in the general formula (II) or (III), a represents an integer of 2 to 10. More preferably, in said general formula (I), A is represented by said general formula (II), k represents 0, and in said general formula (II), a represents an integer of 2 to 10.
- Examples of such coupling agents include bis(3-trimethoxysilylpropyl)-[3-(2,2-dimethoxy-1-aza-2-silacyclopentane)propyl]amine, tris(3-trimethoxysilylpropyl)amine, tris(3-triethoxysilylpropyl)amine, tris(3-trimethoxysilylpropyl)-[3-(2,2-dimethoxy-1-aza-2-silacyclopentane)propyl]-1,3-propanediamine, tetrakis[3-(2,2-dimethoxy-1-aza-2-silacyclopentane)propyl]-1,3-propanediamine, and tetrakis(3-trimethoxysilylpropyl).
- the amount of the compound represented by general formula (I) added as the coupling agent can be adjusted so that the moles of the styrene-butadiene copolymer to the moles of the coupling agent react in the desired stoichiometric ratio, which tends to achieve the desired degree of branching.
- the specific number of moles of the polymerization initiator is preferably 5.0 times or more, more preferably 6.0 times or more, relative to the number of moles of the coupling agent.
- the number of functional groups of the coupling agent ((m-1) x i + p x j + k) is preferably an integer of 5 to 10, and more preferably an integer of 6 to 10.
- the molecular weight distribution (Mw/Mn) of the styrene-butadiene copolymer is preferably 1.5 or more and 2.5 or less, more preferably 1.8 or more and 2.2 or less.
- the obtained modified styrene-butadiene rubber is one in which a single peak is detected in the molecular weight curve by GPC.
- Mp 1 peak molecular weight of the modified styrene-butadiene rubber as measured by GPC is Mp 1 and the peak molecular weight of the styrene-butadiene copolymer is Mp 2 .
- Mp2 peak molecular weight of the modified styrene-butadiene rubber as measured by GPC is Mp 1 and the peak molecular weight of the styrene-butadiene copolymer is Mp 2 .
- Mp2 is more preferably from 20 ⁇ 10 4 to 80 ⁇ 10 4
- Mp1 is more preferably from 30 ⁇ 10 4 to 150 ⁇ 10 4.
- Mp1 and Mp2 are determined by the method described in the examples below.
- the modification rate of the modified styrene-butadiene rubber is preferably 30% by mass or more, more preferably 50% by mass or more, and even more preferably 70% by mass or more. A modification rate of 30% by mass or more can further improve the low loss and abrasion resistance of the tread rubber layer.
- a deactivator, neutralizing agent, etc. may be added to the copolymer solution as necessary.
- deactivators include, but are not limited to, water; alcohols such as methanol, ethanol, isopropanol, etc.
- neutralizing agents include, but are not limited to, carboxylic acids such as stearic acid, oleic acid, and versatic acid (a highly branched carboxylic acid mixture having 9 to 11 carbon atoms, with the main carbon atom being 10); aqueous solutions of inorganic acids, and carbon dioxide gas.
- antioxidant such as 2,6-di-tert-butyl-4-hydroxytoluene (BHT), n-octadecyl-3-(4'-hydroxy-3',5'-di-tert-butylphenol)propionate, or 2-methyl-4,6-bis[(octylthio)methyl]phenol to the modified styrene-butadiene rubber.
- BHT 2,6-di-tert-butyl-4-hydroxytoluene
- n-octadecyl-3-(4'-hydroxy-3',5'-di-tert-butylphenol)propionate or 2-methyl-4,6-bis[(octylthio)methyl]phenol
- the modified styrene-butadiene rubber can be obtained from the polymer solution by known methods. Examples of such methods include a method in which the solvent is separated by steam stripping or the like, the polymer is filtered, and then dehydrated and dried to obtain the polymer, a method in which the polymer is concentrated in a flashing tank and then devolatilized using a vent extruder or the like, and a method in which the polymer is directly devolatilized using a drum dryer or the like.
- the modified styrene-butadiene rubber obtained by reacting the coupling agent represented by the above general formula (I) with a styrene-butadiene copolymer is represented, for example, by the following general formula (VI).
- D represents a styrene-butadiene copolymer chain
- the weight average molecular weight of the styrene-butadiene copolymer chain is preferably 10 ⁇ 10 4 to 100 ⁇ 10 4.
- the styrene-butadiene copolymer chain is a structural unit of a modified styrene-butadiene rubber, and is, for example, a structural unit derived from a styrene-butadiene copolymer produced by reacting a styrene-butadiene copolymer with a coupling agent.
- R 12 , R 13 and R 14 each independently represent a single bond or an alkylene group having 1 to 20 carbon atoms.
- R 15 and R 18 each independently represent an alkyl group having 1 to 20 carbon atoms.
- R 16 , R 19 , and R 20 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
- R 17 and R 21 each independently represent an alkylene group having 1 to 20 carbon atoms.
- R 22 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
- m and x are integers of 1 to 3, with x ⁇ m; p is 1 or 2; y is an integer of 1 to 3, with y ⁇ (p+1); and z is an integer of 1 or 2.
- R 12 to R 22 , m, p, x, y, and z are each independent and may be the same or different.
- i represents an integer from 0 to 6
- j represents an integer from 0 to 6
- k represents an integer from 0 to 6
- (i+j+k) is an integer from 3 to 10
- ((x ⁇ i)+(y ⁇ j)+(z ⁇ k)) is an integer from 5 to 30.
- A represents a hydrocarbon group having 1 to 20 carbon atoms, or an organic group having at least one atom selected from the group consisting of an oxygen atom, a nitrogen atom, a silicon atom, a sulfur atom, and a phosphorus atom, and having no active hydrogen.
- the hydrocarbon group represented by A includes saturated, unsaturated, aliphatic, and aromatic hydrocarbon groups.
- Examples of the organic group having no active hydrogen include organic groups having no functional groups having active hydrogen, such as a hydroxyl group (-OH), a secondary amino group (>NH), a primary amino group (-NH 2 ), or a sulfhydryl group (-SH).
- A is preferably represented by any one of the above general formulas (II) to (V).
- a represented by any one of the general formulas (II) to (V) the low loss and wear resistance of the tread rubber layer can be further improved.
- modified styrene-butadiene rubber-- It is also preferable that at least one end of the styrene-butadiene rubber (SBR) is modified with a modifying agent containing a compound (alkoxysilane) represented by the following general formula (1).
- SBR styrene-butadiene rubber
- the rubber component a styrene-butadiene rubber modified with a modifier containing a compound represented by the above general formula (1) containing an oligosiloxane, which is a filler affinity functional group, and a tertiary amino group
- the dispersibility of fillers such as silica can be improved.
- the dispersibility of the filler in the rubber composition used in the tread rubber layer is improved, which greatly improves low loss properties, reduces the rolling resistance of the tire, and improves fuel efficiency.
- R 1 to R 8 are each independently an alkyl group having 1 to 20 carbon atoms; L 1 and L 2 are each independently an alkylene group having 1 to 20 carbon atoms; and n is an integer of 2 to 4.
- R 1 to R 4 may each independently be a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
- R 1 to R 4 When R 1 to R 4 are substituted, they may each independently be substituted with one or more substituents selected from the group consisting of an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cycloalkoxy group having 4 to 10 carbon atoms, an aryl group having 6 to 12 carbon atoms, an aryloxy group having 6 to 12 carbon atoms, an alkanoyloxy group having 2 to 12 carbon atoms (Ra-COO-, where Ra is an alkyl group having 1 to 9 carbon atoms), an aralkyloxy group having 7 to 13 carbon atoms, an arylalkyl group having 7 to 13 carbon atoms, and an alkylaryl group having 7 to 13 carbon atoms
- R 1 to R 4 may be a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, and even more specifically, R 1 to R 4 may be each independently a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms.
- R 5 to R 8 are each independently a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, specifically, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, more specifically, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, and when substituted, may be substituted with the substituents described above for R 1 to R 4 .
- R 5 to R 8 are not alkyl groups but hydrolyzable substituents, the bonds N-R 5 R 6 and N-R 7 R 8 may be hydrolyzed to N-H in the presence of moisture, which may adversely affect the processability of the polymer.
- R 1 to R 4 can be a methyl group or an ethyl group
- R 5 to R 8 can be an alkyl group having 1 to 10 carbon atoms.
- the amino groups in the compound represented by formula (1) are preferably tertiary amino groups.
- the tertiary amino groups provide the compound represented by formula (1) with better processability when used as a modifying agent.
- a protecting group for protecting an amino group is bonded to R 5 to R 8 or when hydrogen is bonded to R 5 to R 8 , it may be difficult to realize the effect of the compound represented by formula (1).
- the anion reacts with hydrogen during the modification process and loses reactivity, making the modification reaction itself impossible, and when a protecting group is bonded, the modification reaction takes place, but in the state bonded to the polymer terminal, it is deprotected by hydrolysis during post-processing to become a primary or secondary amino group, and the deprotected primary or secondary amino group may cause an increase in the viscosity of the compound during subsequent blending, which may cause a decrease in processability.
- L 1 and L 2 in the compound represented by the formula (1) are each independently a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms. More specifically, L 1 and L 2 can each independently be an alkylene group having 1 to 10 carbon atoms, and even more specifically, an alkylene group having 1 to 6 carbon atoms, such as a methylene group, an ethylene group, or a propylene group.
- the L 1 and L 2 are each independently an alkylene group having 1 to 3 carbon atoms such as a methylene group, an ethylene group, or a propylene group, and more specifically, a propylene group.
- L 1 and L 2 may be substituted with the substituents described above for R 1 to R 4 .
- the compound represented by the formula (1) is preferably, for example, any one of the compounds represented by the following structural formulas (1-1) to (1-5), because this allows for more excellent low loss properties to be achieved.
- the compound represented by formula (1) has an alkoxysilane structure that bonds with the active terminal of the styrene-butadiene copolymer, while the Si-O-Si structure and three or more amino groups bonded to the terminal show affinity for fillers such as silica, and can therefore promote the bonding between the filler and the modified styrene-butadiene rubber compared to conventional modifiers containing one amino group in the molecule.
- the degree of bonding of the active terminal of the styrene-butadiene copolymer is uniform, and when the change in molecular weight distribution is observed before and after coupling, the molecular weight distribution after coupling does not increase and remains constant compared to before.
- the compound represented by the formula (1) can be produced through a condensation reaction represented by the following reaction scheme.
- R 1 to R 8 , L 1 and L 2 , and n are the same as those defined in the above formula (1), and R′ and R′′ are any substituents that do not affect the condensation reaction.
- R′ and R′′ can each independently be the same as any one of R 1 to R 4 .
- the reaction in the above reaction scheme proceeds in the presence of an acid, and the acid can be any acid that is generally used in condensation reactions, without any restrictions.
- the acid can be any acid that is generally used in condensation reactions, without any restrictions.
- Those skilled in the art can select an optimal acid depending on various process variables such as the type of reactor in which the reaction is carried out, the starting materials, and the reaction temperature.
- the styrene-butadiene rubber modified with a modifier containing the compound represented by formula (1) can have a narrow molecular weight distribution (Mw/Mn, also called “polydispersity index (PDI)") of 1.1 to 3.0. If the molecular weight distribution of the modified styrene-butadiene rubber exceeds 3.0 or is less than 1.1, the tensile properties and viscoelasticity of the tread rubber layer may be reduced. Considering the remarkable effect of improving the tensile properties and viscoelasticity by controlling the molecular weight distribution of the modified styrene-butadiene rubber, the molecular weight distribution of the modified styrene-butadiene rubber is preferably in the range of 1.3 to 2.0. By using the modifier, the modified styrene-butadiene rubber has a molecular weight distribution similar to that of the styrene-butadiene copolymer before modification.
- Mw/Mn also called "polydispers
- the molecular weight distribution of the modified styrene-butadiene rubber can be calculated from the ratio (Mw/Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn).
- the number average molecular weight (Mn) is the common average of the molecular weights of individual polymers calculated by measuring the molecular weights of n polymer molecules, calculating the sum of the molecular weights, and dividing the sum by n
- the weight average molecular weight (Mw) represents the molecular weight distribution of a polymer composition.
- the average of the total molecular weight can be expressed in grams per mole (g/mol).
- the weight average molecular weight and number average molecular weight are each a polystyrene-equivalent molecular weight analyzed by gel permeation chromatography (GPC).
- the modified styrene-butadiene rubber satisfies the above-mentioned molecular weight distribution conditions, and at the same time, the number average molecular weight (Mn) can be 50,000 g/mol to 2,000,000 g/mol, more specifically, 200,000 g/mol to 800,000 g/mol, and the weight average molecular weight (Mw) can be 100,000 g/mol to 4,000,000 g/mol, more specifically, 300,000 g/mol to 1,500,000 g/mol.
- the weight average molecular weight (Mw) of the modified styrene-butadiene rubber is less than 100,000 g/mol or the number average molecular weight (Mn) is less than 50,000 g/mol
- the tensile properties of the tread rubber layer may be reduced.
- the weight average molecular weight (Mw) exceeds 4,000,000 g/mol or the number average molecular weight (Mn) exceeds 2,000,000 g/mol the processability of the modified styrene-butadiene rubber decreases, which deteriorates the workability of the rubber composition used in the tread rubber layer, making kneading difficult, and it may be difficult to sufficiently improve the physical properties of the tread rubber layer.
- the viscoelasticity and processability of the rubber composition for the tread rubber layer can be improved in a well-balanced manner.
- the modified styrene-butadiene rubber preferably has a vinyl bond content in the butadiene portion of 5% or more, more preferably 10% or more, and more preferably 60% or less.
- the glass transition temperature can be adjusted to an appropriate range.
- the modified styrene-butadiene rubber may have a Mooney viscosity (MV) at 100° C. of 40 to 140, specifically 60 to 100.
- MV Mooney viscosity
- the Mooney viscosity can be measured using a Mooney viscometer, for example, MV2000E manufactured by Monsanto, at 100° C., rotor speed 2 ⁇ 0.02 rpm, and a large rotor.
- the sample used here is left at room temperature (23 ⁇ 3° C.) for 30 minutes or more, and then 27 ⁇ 3 g of the sample is taken and filled into the die cavity, and the platen is operated to measure.
- the modified styrene-butadiene rubber is preferably modified at one end with a modifier containing a compound represented by the above general formula (1), and is preferably further modified at the other end with a modifier containing a compound represented by the following general formula (2).
- R 9 to R 11 are each independently hydrogen; an alkyl group having 1 to 30 carbon atoms; an alkenyl group having 2 to 30 carbon atoms; an alkynyl group having 2 to 30 carbon atoms; a heteroalkyl group having 1 to 30 carbon atoms, a heteroalkenyl group having 2 to 30 carbon atoms; a heteroalkynyl group having 2 to 30 carbon atoms; a cycloalkyl group having 5 to 30 carbon atoms; an aryl group having 6 to 30 carbon atoms; or a heterocyclic group having 3 to 30 carbon atoms.
- R 12 is a single bond; an alkylene group having 1 to 20 carbon atoms which is substituted or unsubstituted with a substituent; a cycloalkylene group having 5 to 20 carbon atoms which is substituted or unsubstituted with a substituent; or an arylene group having 5 to 20 carbon atoms which is substituted or unsubstituted with a substituent, wherein the substituent is an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
- R 13 is an alkyl group having 1 to 30 carbon atoms; an alkenyl group having 2 to 30 carbon atoms; an alkynyl group having 2 to 30 carbon atoms; a heteroalkyl group having 1 to 30 carbon atoms; a heteroalkenyl group having 2 to 30 carbon atoms; a heteroalkynyl group having 2 to 30 carbon atoms; a cycloalkyl group having 5 to 30 carbon atoms; an aryl group having 6 to 30 carbon atoms; a heterocyclic group having 3 to 30 carbon atoms; or a functional group represented by the following general formula (2a) or general formula (2b), where m is an integer of 1 to 5, and at least one of R 13 is a functional group represented by the following general formula (2a) or general formula (2b), and when m is an integer of 2 to 5, the multiple R 13 may be the same as or different from each other.
- R 14 is a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms; a substituted or unsubstituted cycloalkylene group having 5 to 20 carbon atoms; or a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, wherein the substituent is an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
- R 15 and R 16 are each independently an alkylene group having 1 to 20 carbon atoms which is substituted or unsubstituted with an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
- R 17 is hydrogen; an alkyl group having 1 to 30 carbon atoms; an alkenyl group having 2 to 30 carbon atoms; an alkynyl group having 2 to 30 carbon atoms; a heteroalkyl group having 1 to 30 carbon atoms; a heteroalkenyl group having 2 to 30 carbon atoms; a heteroalkynyl group having 2 to 30 carbon atoms; a cycloalkyl group having 5 to 30 carbon atoms; an aryl group having 6 to 30 carbon atoms; or a heterocyclic group having 3 to 30 carbon atoms; and X is an N, O, or S atom, with the proviso that when X is O or S, R 17 does not exist.
- R 18 is a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms; a substituted or unsubstituted cycloalkylene group having 5 to 20 carbon atoms; or a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, wherein the substituent is an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
- R 19 and R 20 are each independently an alkyl group having 1 to 30 carbon atoms; an alkenyl group having 2 to 30 carbon atoms; an alkynyl group having 2 to 30 carbon atoms; a heteroalkyl group having 1 to 30 carbon atoms; a heteroalkenyl group having 2 to 30 carbon atoms; a heteroalkynyl group having 2 to 30 carbon atoms; a cycloalkyl group having 5 to 30 carbon atoms; an aryl group having 6 to 30 carbon atoms; or a heterocyclic group having 3 to 30 carbon atoms.
- R 9 to R 11 are each independently hydrogen; an alkyl group having 1 to 10 carbon atoms; an alkenyl group having 2 to 10 carbon atoms; or an alkynyl group having 2 to 10 carbon atoms;
- R 12 is a single bond; or an unsubstituted alkylene group having 1 to 10 carbon atoms;
- R 13 is an alkyl group having 1 to 10 carbon atoms; an alkenyl group having 2 to 10 carbon atoms; an alkynyl group having 2 to 10 carbon atoms; or a functional group represented by the above general formula (2a) or general formula (2b); in the above general formula (2a), R 14 is an unsubstituted alkylene group having 1 to 10 carbon atoms; R 15 and R 16 are each independently an unsubstituted alkylene group having 1 to 10 carbon atoms; R In the above general formula (2b), R 18 is an unsubstituted alkylene group having 1 to 10 carbon atoms,
- the compound represented by the above general formula (2) can be a compound represented by the following structural formulas (2-1) to (2-3).
- the modifying agent containing the compound represented by formula (2) is used as a modification initiator.
- a butadiene monomer and a styrene monomer are polymerized in a hydrocarbon solvent in the presence of a modifying agent containing the compound represented by formula (2), whereby a modifying group derived from the compound represented by formula (2) can be imparted to the styrene-butadiene copolymer.
- the rubber component may further contain other rubbers, and the content of the other rubbers in 100 parts by mass of the rubber component is preferably 35 parts by mass or less.
- other rubbers include butadiene rubber (BR), chloroprene rubber (CR), butyl rubber (IIR), halogenated butyl rubber, ethylene-propylene rubber (EPR, EPDM), fluororubber, silicone rubber, urethane rubber, etc.
- diene rubbers such as butadiene rubber (BR) and chloroprene rubber (CR) are preferred, and butadiene rubber (BR) is more preferred.
- the butadiene rubber (BR) high-cis polybutadiene is preferable, and the high-cis polybutadiene preferably has a cis-1,4 bond content of 90% by mass or more.
- the content of the butadiene rubber is preferably in the range of 1 to 35 parts by mass per 100 parts by mass of the rubber component.
- the tread rubber layer includes a resin component.
- the resin component has an SP value difference from the isoprene skeleton rubber of 1.40 (cal/cm 3 ) 1/2 or less.
- the tread rubber layer also has a SP value satisfying the following formula (1):
- the mass ratio of the resin component to the isoprene skeleton rubber is ⁇ 0.5 (1) Meet the following.
- the difference in SP value between the resin component and the isoprene skeleton rubber is 1.40 (cal/cm 3 ) 1/2 or less, the compatibility of the resin component with the isoprene skeleton rubber is increased, the mobility of the rubber component is controlled, and the hysteresis loss (tan ⁇ ) in the low temperature region can be improved, thereby improving the wet braking performance of the tire.
- the difference in SP value between the resin component and the isoprene skeleton rubber is preferably 1.35 (cal/cm 3 ) 1/2 or less, more preferably 0.50 (cal/cm 3 ) 1/2 or less, more preferably 0.45 (cal/cm 3 ) 1/2 or less, more preferably 0.3 (cal/cm 3 ) 1/2 or less, and even more preferably 0.25 (cal/cm 3 ) 1/2 or less.
- the difference in SP value between the resin component and the isoprene skeleton rubber is 0.50 (cal/cm 3 ) 1/2 or less, the compatibility between the resin component and the isoprene skeleton rubber is further improved, and the wet braking performance of the tire is further improved.
- the mass ratio of the resin component to the isoprene skeleton rubber [mass ratio of resin component/isoprene skeleton rubber] be 0.5 or more, the wet braking performance of the tire can be further improved.
- the mass ratio of the resin component to the isoprene skeleton rubber [mass ratio of resin component/isoprene skeleton rubber] is preferably 0.65 or more, more preferably 0.7 or more, and more preferably 0.8 or more, and is preferably 2.0 or less, more preferably 1.9 or less, and even more preferably 1.8 or less.
- the content of the resin component is preferably 1 part by mass or more and less than 50 parts by mass per 100 parts by mass of the rubber component.
- the content of the resin component in the tread rubber layer is 1 part by mass or more per 100 parts by mass of the rubber component, the effect of the resin component is fully expressed, and when it is less than 50 parts by mass, the resin component is less likely to precipitate from the tire, and the effect of the resin component can be fully expressed.
- the content of the resin component in the tread rubber layer is preferably 5 parts by mass or more, more preferably 7 parts by mass or more, more preferably 9 parts by mass or more, more preferably 15 parts by mass or more, and even more preferably 17 parts by mass or more per 100 parts by mass of the rubber component. Also, from the viewpoint of suppressing the precipitation of the resin component from the tire and suppressing the deterioration of the tire appearance, the content of the resin component in the tread rubber layer is more preferably 45 parts by mass or less, and even more preferably 40 parts by mass or less per 100 parts by mass of the rubber component.
- the resin component is preferably at least partially hydrogenated.
- compatibility with isoprene skeleton rubber is further increased, the mobility of the rubber component is further controlled, and the hysteresis loss (tan ⁇ ) in the low temperature range can be further improved, thereby further improving the wet braking performance of the tire.
- the resin component preferably has a softening point higher than 110°C and a weight average molecular weight in polystyrene equivalent of 200 to 1600 g/mol.
- the softening point of the resin component is higher than 110°C, the tread rubber layer can be sufficiently reinforced, and the wear resistance of the tire can be further improved.
- the softening point of the resin component is preferably 116°C or higher, more preferably 120°C or higher, more preferably 123°C or higher, and even more preferably 127°C or higher.
- the softening point of the resin component is preferably 160°C or lower, more preferably 150°C or lower, more preferably 145°C or lower, more preferably 141°C or lower, and even more preferably 136°C or lower.
- the polystyrene-equivalent weight average molecular weight of the resin component is preferably 500 g/mol or more, more preferably 550 g/mol or more, even more preferably 600 g/mol or more, still more preferably 650 g/mol or more, and even more preferably 700 g/mol or more.
- the polystyrene-equivalent weight average molecular weight of the resin component is more preferably 1570 g/mol or less, more preferably 1530 g/mol or less, more preferably 1500 g/mol or less, more preferably 1470 g/mol or less, more preferably 1430 g/mol or less, more preferably 1400 g/mol or less, more preferably 1370 g/mol or less, more preferably 1330 g/mol or less, more preferably 1300 g/mol or less, more preferably 1200 g/mol or less, more preferably 1100 g/mol or less, more preferably 1000 g/mol or less, and even more preferably 950 g/mol or less.
- the ratio (Ts HR /Mw HR ) of the softening point (Ts HR ) (unit: ° C.) of the resin component to the polystyrene-equivalent weight average molecular weight (Mw HR ) (unit: g/mol) of the resin component is preferably 0.07 or more, more preferably 0.083 or more, more preferably 0.095 or more, more preferably 0.104 or more, more preferably 0.125 or more, more preferably 0.135 or more, more preferably 0.14 or more, and even more preferably 0.141 or more.
- the ratio (Ts HR /Mw HR ) is preferably 0.25 or less, preferably 0.24 or less, preferably 0.23 or less, preferably 0.19 or less, more preferably 0.18 or less, and even more preferably 0.17 or less.
- the resin component examples include C5 resins, C5 - C9 resins, C9 resins, terpene resins, dicyclopentadiene resins, terpene-aromatic compound resins, and the like. These resins may be used alone or in combination of two or more.
- the above-mentioned at least partially hydrogenated resin component means a resin obtained by reducing and hydrogenating a resin. Examples of resins that can be used as raw materials for the hydrogenated resin component include C5 resins, C5 - C9 resins, C9 resins, terpene resins, dicyclopentadiene resins, and terpene-aromatic compound resins. These resins may be used alone or in combination of two or more.
- the C5 resin may be an aliphatic petroleum resin obtained by (co)polymerizing a C5 fraction obtained by thermal cracking of naphtha in the petrochemical industry.
- the C5 fraction usually contains olefinic hydrocarbons such as 1-pentene, 2-pentene, 2-methyl-1-butene, 2-methyl-2-butene, and 3-methyl-1-butene, and diolefinic hydrocarbons such as 2-methyl-1,3-butadiene, 1,2-pentadiene, 1,3-pentadiene, and 3-methyl-1,2-butadiene, etc.
- olefinic hydrocarbons such as 1-pentene, 2-pentene, 2-methyl-1-butene, 2-methyl-2-butene, and 3-methyl-1-butene
- diolefinic hydrocarbons such as 2-methyl-1,3-butadiene, 1,2-pentadiene, 1,3-pentadiene, and 3-methyl-1,2-butadiene, etc.
- the C5 - C9 resin refers to a C5 - C9 synthetic petroleum resin.
- the C5 -C9 resin include solid polymers obtained by polymerizing a petroleum-derived C5 - C11 fraction using a Friedel-Crafts catalyst such as AlCl3 or BF3 .
- More specific examples of the C5- C9 resin include copolymers mainly composed of styrene, vinyltoluene, ⁇ -methylstyrene, indene, etc.
- a resin having a small amount of C9 or more components is preferred from the viewpoint of compatibility with the rubber component.
- "having a small amount of C9 or more components” means that the amount of C9 or more components in the total amount of the resin is less than 50 mass%, preferably 40 mass% or less.
- Commercially available C5 - C9 resins can be used.
- the C9 resin refers to a C9 synthetic petroleum resin, for example, a solid polymer obtained by polymerizing a C9 fraction using a Friedel-Crafts type catalyst such as AlCl3 or BF3 .
- Examples of C9 resins include copolymers containing indene, ⁇ -methylstyrene, vinyltoluene, or the like as main components.
- the terpene resin is a solid resin obtained by blending turpentine, which is obtained at the same time as rosin is obtained from pine trees, or a polymerization component separated from this, and polymerizing it using a Friedel-Crafts catalyst, and examples of this include ⁇ -pinene resin and ⁇ -pinene resin.
- a representative example of a terpene-aromatic compound resin is terpene-phenol resin. This terpene-phenol resin can be obtained by reacting terpenes with various phenols using a Friedel-Crafts catalyst, or by further condensing with formalin.
- terpenes used as raw materials there are no particular restrictions on the terpenes used as raw materials, and monoterpene hydrocarbons such as ⁇ -pinene and limonene are preferred, and those containing ⁇ -pinene are more preferred, with ⁇ -pinene being particularly preferred. Styrene, etc. may also be included in the skeleton.
- the dicyclopentadiene-based resin refers to a resin obtained by polymerizing dicyclopentadiene using a Friedel-Crafts type catalyst such as AlCl3 or BF3 .
- the resin that is the raw material for the hydrogenated resin component may contain, for example, a resin obtained by copolymerizing a C5 fraction with dicyclopentadiene (DCPD) ( C5 -DCPD resin).
- DCPD dicyclopentadiene
- the C5 -DCPD-based resin is considered to be included in the dicyclopentadiene-based resin.
- the C5 -DCPD-based resin is considered to be included in the C5 -based resin.
- the resin component is preferably at least one selected from the group consisting of hydrogenated C5 resin, hydrogenated C5 - C9 resin, hydrogenated dicyclopentadiene resin (hydrogenated DCPD resin), and hydrogenated terpene resin, more preferably at least one selected from the group consisting of hydrogenated C5 resin and hydrogenated C5 - C9 resin, and even more preferably hydrogenated C5 resin.
- the resin has a hydrogenated DCPD structure or a hydrogenated cyclic structure in at least the monomer.
- the resin component is at least one selected from the group consisting of hydrogenated C5 resin, hydrogenated C5 - C9 resin, hydrogenated dicyclopentadiene resin, and hydrogenated terpene resin
- the wet braking performance of the tire having the tread rubber layer can be further improved, and the fuel economy can be further improved.
- the tread rubber layer contains a filler, which improves the reinforcing property of the tread rubber layer.
- the content of the filler in the tread rubber layer is preferably in the range of 40 to 125 parts by mass per 100 parts by mass of the rubber component.
- the reinforcement of the tread rubber layer is sufficient, and the wear resistance of the tire can be further improved, and when the content is 125 parts by mass or less, the elastic modulus of the tread rubber layer does not become too high, and the wet braking performance of the tire is further improved.
- the content of the filler in the tread rubber layer is more preferably 45 parts by mass or more, more preferably 50 parts by mass or more, and even more preferably 55 parts by mass or more per 100 parts by mass of the rubber component. Also, from the viewpoint of improving the wet braking performance of the tire, the content of the filler in the tread rubber layer is more preferably 105 parts by mass or less, more preferably 100 parts by mass or less, and even more preferably 95 parts by mass or less per 100 parts by mass of the rubber component.
- the filler preferably contains silica, and more preferably contains silica having a nitrogen adsorption specific surface area (BET method) of 80 m 2 /g or more and less than 330 m 2 /g.
- BET method nitrogen adsorption specific surface area
- the tire can be sufficiently reinforced and the rolling resistance of the tire can be further reduced.
- the nitrogen adsorption specific surface area (BET method) of silica is less than 330 m 2 /g, the elastic modulus of the tread rubber layer does not become too high, and the wet braking performance of the tire is further improved.
- the nitrogen adsorption specific surface area (BET method) of silica is preferably 110 m 2 /g or more, preferably 130 m 2 /g or more, preferably 150 m 2 /g or more, and more preferably 180 m 2 /g or more.
- the nitrogen adsorption specific surface area (BET method) of silica is preferably 300 m 2 /g or less, more preferably 280 m 2 /g or less, and even more preferably 270 m 2 /g or less.
- silica examples include wet silica (hydrated silicic acid), dry silica (anhydrous silicic acid), calcium silicate, aluminum silicate, etc., and among these, wet silica is preferred. These silicas may be used alone or in combination of two or more types.
- the silica is also preferably plant-derived silica.
- the silica derived from the plant is preferably silica derived from a silicic acid plant from the viewpoint of reducing environmental load.
- the silicic acid plant is present, for example, in moss, ferns, horsetails, Cucurbitaceae, Urticaceae, and Poaceae plants.
- Poaceae plants are preferred, that is, the silica derived from the plant is preferably silica derived from a Poaceae plant.
- the silica derived from a Poaceae plant can be procured locally as raw material near a tire manufacturing plant, so that it can reduce the energy and cost of transportation and storage, and is environmentally preferable from various viewpoints.
- Examples of the Gramineae plant include rice, bamboo grass, sugarcane, etc., and among these, rice is preferred.
- Rice is widely cultivated for food, so it can be procured locally in a wide area, and rice husks are generated in large quantities as industrial waste, so it is easy to secure the amount. Therefore, from the viewpoint of availability, silica derived from rice husks (hereinafter also referred to as "rice husk silica”) is particularly preferred as plant-derived silica.
- rice husk silica By using the rice husk silica, rice husks that become industrial waste can be effectively utilized, and raw materials can be procured locally near tire manufacturing plants, so that energy and costs for transportation and storage can be reduced, which is environmentally preferable from various viewpoints.
- the rice husk silica may be a powder of rice husk charcoal obtained by carbonizing rice husks by heating, or may be precipitated silica produced by a wet method using an alkali silicate aqueous solution, which is prepared by extracting rice husk ash generated when rice husks are burned as fuel in a biomass boiler with an alkali to prepare an alkali silicate aqueous solution.
- the method for producing the rice husk charcoal is not particularly limited, and various known methods can be used.
- rice husk charcoal can be obtained by pyrolyzing the rice husks by steaming them in a kiln.
- the rice husk charcoal thus obtained is pulverized using a known pulverizer (e.g., a ball mill), and then sorted and classified into a predetermined particle size range to obtain rice husk charcoal powder.
- a known pulverizer e.g., a ball mill
- the rice husk-derived precipitated silica can be produced by the method described in JP 2019-38728 A.
- the content of silica in the tread rubber layer is preferably 40 parts by mass or more, more preferably 45 parts by mass or more, more preferably 50 parts by mass or more, and even more preferably 55 parts by mass or more, per 100 parts by mass of the rubber component, from the viewpoint of improving the mechanical strength of the tread rubber layer and further improving the abrasion resistance of the tire. Also, from the viewpoint of further improving the wet braking performance of the tire, the content of silica in the tread rubber layer is preferably 125 parts by mass or less, more preferably 105 parts by mass or less, more preferably 100 parts by mass or less, and even more preferably 95 parts by mass or less, per 100 parts by mass of the rubber component.
- the filler preferably contains carbon black, which reinforces the tread rubber layer and improves the abrasion resistance of the tire.
- the carbon black is not particularly limited, and examples thereof include GPF, FEF, HAF, ISAF, and SAF grade carbon black. These carbon blacks may be used alone or in combination of two or more. The carbon black may also be recycled carbon black.
- waste carbon black refers to carbon black recovered from raw materials that are waste materials that have been recycled.
- waste materials that have been recycled include rubber products (especially vulcanized rubber products) that contain carbon black, such as used rubber and used tires, and waste oil.
- Recycled carbon black is different from carbon black that is produced directly from raw materials such as petroleum and natural gas hydrocarbons, that is, carbon black that is not recycled. Note that “used” here does not only include carbon black that has actually been used and then discarded, but also carbon black that has been produced but discarded without actually being used.
- the content of carbon black in the tread rubber layer is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and even more preferably 5 parts by mass or more, per 100 parts by mass of the rubber component.
- the content of carbon black in the tread rubber layer is preferably 20 parts by mass or less, more preferably 15 parts by mass or less, per 100 parts by mass of the rubber component.
- the proportion of silica in the total amount of silica and carbon black is preferably 80% by mass or more and less than 100% by mass, and more preferably 90% by mass or more and less than 100% by mass.
- the filler may include inorganic fillers such as clay, talc, calcium carbonate, and aluminum hydroxide, in addition to silica and carbon black.
- the above-mentioned other fillers are preferably contained in the range where the ratio of silica in the filler is 70% by mass or more.
- the ratio of silica in the filler is more preferably 80% by mass or more, even more preferably 85% by mass or more, and even more preferably 90% by mass or more and less than 100% by mass.
- the tread rubber layer may contain a styrene-based thermoplastic elastomer (TPS).
- TPS thermoplastic elastomer
- the styrene-based thermoplastic elastomer (TPS) has a styrene-based polymer block (hard segment) and a conjugated diene-based polymer block (soft segment), and the styrene-based polymer portion forms a physical crosslink to become a crosslinking point, while the conjugated diene-based polymer block imparts rubber elasticity.
- the double bonds of the conjugated diene-based polymer block (soft segment) may be partially or completely hydrogenated.
- the styrene-based thermoplastic elastomer is thermoplastic, whereas the rubber component (preferably, diene-based rubber) is not thermoplastic. Therefore, in this specification, the styrene-based thermoplastic elastomer (TPS) is not included in the rubber component.
- the content of the styrene-based thermoplastic elastomer (TPS) is preferably in the range of 1 to 30 parts by mass per 100 parts by mass of the rubber component.
- the styrene-based thermoplastic elastomer may include styrene/butadiene/styrene (SBS) block copolymer, styrene/isoprene/styrene (SIS) block copolymer, styrene/butadiene/isoprene/styrene (SBIS) block copolymer, styrene/butadiene (SB) block copolymer, styrene/isoprene (SI) block copolymer, styrene/butadiene/isoprene (SBI) block copolymer, styrene/ethylene/butylene/styrene (SEBS) block copolymer, styrene/ethylene/propylene/styrene (SEPS) block copolymer, styrene/ethylene/ethylene/propylene/styrene (S
- the tread rubber layer may contain the above-mentioned rubber component, resin component, filler, styrene-based thermoplastic elastomer, and, if necessary, various components commonly used in the rubber industry, such as silane coupling agents, antioxidants, waxes, softeners, processing aids, stearic acid, zinc oxide (zinc oxide), vulcanization accelerators, vulcanizing agents, etc., appropriately selected within the range that does not impair the object of the present invention. Commercially available products can be suitably used as these compounding agents.
- the tread rubber layer contains silica
- a silane coupling agent in order to improve the effect of the silica.
- the silane coupling agent include bis(3-triethoxysilylpropyl)tetrasulfide, bis(3-triethoxysilylpropyl)trisulfide, bis(3-triethoxysilylpropyl)disulfide, bis(2-triethoxysilylethyl)tetrasulfide, bis(3-trimethoxysilylpropyl)tetrasulfide, bis(2-trimethoxysilylethyl)tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N,N-d
- wax examples include paraffin wax and microcrystalline wax.
- amount of the wax is preferably in the range of 0.1 to 5 parts by mass, and more preferably 1 to 4 parts by mass, per 100 parts by mass of the rubber component.
- the amount of zinc oxide (zinc white) is not particularly limited, but is preferably in the range of 0.1 to 10 parts by mass, and more preferably 1 to 8 parts by mass, per 100 parts by mass of the rubber component.
- the vulcanization accelerator may be a sulfenamide-based vulcanization accelerator, a guanidine-based vulcanization accelerator, a thiazole-based vulcanization accelerator, a thiuram-based vulcanization accelerator, a dithiocarbamate-based vulcanization accelerator, or the like. These vulcanization accelerators may be used alone or in combination of two or more. There are no particular limitations on the content of the vulcanization accelerator, and the content is preferably in the range of 0.1 to 5 parts by mass, and more preferably in the range of 0.2 to 4 parts by mass, per 100 parts by mass of the rubber component.
- the vulcanizing agent may be sulfur.
- the content of the vulcanizing agent is preferably in the range of 0.1 to 10 parts by mass, more preferably 1 to 4 parts by mass, in terms of sulfur content per 100 parts by mass of the rubber component.
- the method for producing the tread rubber layer is not particularly limited.
- the rubber composition for the tread rubber layer can be produced by blending various components appropriately selected as necessary with the above-mentioned rubber component, resin component, and filler, and kneading, heating, extruding, etc.
- the obtained rubber composition can be vulcanized to produce a vulcanized rubber.
- kneading there are no particular limitations on the conditions for the kneading, and the input volume of the kneading device, the rotation speed of the rotor, the ram pressure, the kneading temperature, the kneading time, the type of kneading device, and other conditions can be appropriately selected according to the purpose.
- kneading devices include Banbury mixers, intermixes, kneaders, rolls, and the like that are typically used for kneading rubber compositions.
- heat-in conditions there are no particular limitations on the heat-in conditions, and the heat-in temperature, heat-in time, heat-in equipment, and other conditions can be appropriately selected depending on the purpose.
- the heat-in equipment include a heat-in roll machine that is typically used for heat-in of rubber compositions.
- extrusion conditions there are no particular limitations on the extrusion conditions, and various conditions such as extrusion time, extrusion speed, extrusion equipment, and extrusion temperature can be appropriately selected depending on the purpose.
- extrusion equipment include extruders that are typically used for extruding rubber compositions.
- the extrusion temperature can be appropriately determined.
- Typical vulcanization equipment includes a mold vulcanizer that uses a mold used to vulcanize rubber compositions.
- the vulcanization temperature is, for example, about 100 to 190°C.
- the tire of the present embodiment includes a reinforcing layer including organic fiber cords on the tire radially inner side of the tread rubber layer.
- the reinforcing layer including the organic fiber cords may be, for example, any of the belt layers 6A, 6B and the belt reinforcing layers 7A, 7B of the tire 1 shown in Fig. 1, and is preferably the belt reinforcing layers 7A, 7B.
- the organic fiber cord of the reinforcing layer has an elastic modulus at 1-2% elongation of 4.0 to 30 mN/(dtex ⁇ %), preferably 5.0 mN/(dtex ⁇ %) or more, and more preferably 10 mN/(dtex ⁇ %) or less.
- the elastic modulus at 1-2% elongation is calculated by converting the gradient (N/%) between the load corresponding to 1% elongation and the load corresponding to 2% elongation in the load-elongation curve of the organic fiber cord into a value per dtex.
- the modulus of elasticity of the organic fiber cord at 1-2% elongation is lower than 4.0 mN/(dtex ⁇ %), the rigidity of the tread portion 4 of the tire 1 becomes insufficient, and the steering stability of the tire deteriorates.
- the modulus of elasticity of the organic fiber cord at 1-2% elongation exceeds 30 mN/(dtex ⁇ %), the rigidity of the reinforcing layer containing the organic fiber cord becomes too high, and the durability of the layer on the inner side of the reinforcing layer in the tire radial direction (for example, the belt 6 when the reinforcing layer containing the organic fiber cord is the belt reinforcing layer 7A, 7B) decreases.
- the tire of the present embodiment can improve wet braking performance and fuel economy without deteriorating the steering stability of the tire by combining a reinforcing layer containing an organic fiber cord having a modulus of elasticity of 4.0 to 30 mN/(dtex ⁇ %) at 1-2% elongation with the above-mentioned tread rubber layer 9.
- the elastic modulus of the organic fiber cord at 1-2% elongation is 5.0 mN/(dtex ⁇ %) or more, the steering stability of the tire is improved, and when it is 10 mN/(dtex ⁇ %) or less, the durability of the layer on the inner side in the tire radial direction of the reinforcing layer can be sufficiently ensured.
- the organic fiber cord of the reinforcing layer preferably has a breaking strength of 6.5 cN/dtex or more and an elongation at break of 10% or more.
- An organic fiber cord having a breaking strength of 6.5 cN/dtex or more and a breaking elongation of 10% or more has high strength at break and large elongation at break. Therefore, by applying an organic fiber cord having such physical properties to a reinforcing layer, the high-speed durability of the tire can be improved, and also the handling stability of the tire can be improved.
- the material of the organic fiber cord of the reinforcing layer is not particularly limited, but examples include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), nylons such as 6-nylon, 6,6-nylon, 4,6-nylon, and 4,10-nylon, and celluloses such as rayon and lyocell.
- PET polyethylene terephthalate
- PEN polyethylene naphthalate
- nylons such as 6-nylon, 6,6-nylon, 4,6-nylon, and 4,10-nylon
- celluloses such as rayon and lyocell.
- polyethylene terephthalate is preferred, that is, the organic fiber cords as the reinforcing material of the reinforcing layer are preferably cords made of polyethylene terephthalate (hereinafter sometimes simply referred to as "polyethylene terephthalate cords").
- Polyethylene terephthalate cords have higher rigidity than commonly used nylon cords, etc., and are excellent in improving the steering stability of tires. Therefore, tires using cords made of polyethylene terephthalate as the organic fiber cords of the reinforcing layer have further improved steering stability.
- the organic fiber cord of the reinforcing layer preferably has a modulus of elasticity of 6.0 mN/(dtex ⁇ %) or more at 7% elongation.
- the breaking strength, breaking elongation, and modulus of elasticity at 7% elongation of the organic fiber cord are values measured at room temperature (23°C).
- the physical properties of the organic fiber cord can be measured in accordance with JIS L 1013 "Testing methods for chemical fiber filament yarns.”
- the modulus of elasticity at 7% elongation is calculated by converting the slope (N/%) of the tangent at a point corresponding to 7% elongation on the load-elongation curve of the cord into a value per dtex.
- the slope of the tangent at a point corresponding to 7% elongation on the load-elongation curve refers to the slope of the tangent S at a point corresponding to 7% elongation on the load-elongation curve C of the cord as shown in Figure 2.
- Organic fiber cords with an elastic modulus of 6.0 mN/(dtex ⁇ %) or more at 7% elongation have high strength at break, large elongation at break, and a high elastic modulus at 7% elongation, so by applying organic fiber cords with such physical properties to the reinforcing layer and supplementing the rigidity of the belt layer, the handling stability of the tire can be improved.
- the organic fiber cord preferably has an elastic modulus of 2.5 mN/(dtex ⁇ %) or more when a load of 29.4 N is measured at 160° C.
- the elastic modulus when a load of 29.4 N is measured at 160° C. is calculated by converting the slope (N/%) of the tangent at a point corresponding to a load of 29.4 N on the load-elongation curve of the cord measured at 160° C. into a value per dtex.
- the elastic modulus is measured at 160°C because the temperature inside the tire rises as the tire runs at high speed, and the temperature of the belt reinforcing layer reaches 160°C when the tire breaks down at high speed.
- the elastic modulus of polyethylene terephthalate cords is significantly reduced at high temperatures compared to normal temperatures, and even if the cord is highly elastic at normal temperatures, if the cord cannot maintain a high elastic modulus at high temperatures, the cord cannot fully exhibit the reinforcing effect of the belt (the effect of improving durability against protruding input and the effect of suppressing the protrusion of the belt), so the elastic modulus at high temperatures is of great importance.
- the high-speed durability of the tire can be improved, and the amount of protrusion of the belt at high speed can be suppressed, thereby reducing the stress when the tire steps in and out, and improving the steering stability of the tire at high speed.
- the inventors adjusted the tension applied to the cord during the dip treatment to prepare organic fiber cords with various elastic moduli, covered the obtained dipped cords with coating rubber, applied them to the reinforcing layer, and examined the steering stability of the tire. As a result, they found that the steering stability of the tire was significantly improved when the elastic modulus of the cord at a load of 29.4 N measured at 160°C was in the range of 2.5 mN/(dtex ⁇ %) or more.
- the tension during adhesive treatment is set to 6.9 ⁇ 10 ⁇ 2 N/tex or more.
- the adhesive treatment is composed of dry treatment, hot treatment, normalizing treatment, etc., and is performed by appropriately adjusting the temperature and time in addition to the tension.
- the adhesive treatment may be performed by either one-bath treatment or two-bath treatment, but two-bath treatment is preferable, and it is preferable to apply a tension of 6.9 ⁇ 10 ⁇ 2 N/tex or more to the organic fiber cord during the two-bath hot treatment.
- the twist coefficient ⁇ of the organic fiber cord is 500 or more, the binding force of the filaments is strong and the adhesion is sufficient, and when it is 2500 or less, a sufficient elastic modulus can be exhibited to obtain the effect of improving durability against projection input and the effect of suppressing the belt from pushing out.
- the organic fiber cord preferably has a total fineness of 1000 to 3500 dtex. If the total fineness of the organic fiber cord is 1000 dtex or more, it can exhibit a sufficient elastic modulus to improve durability against protruding input and to suppress the belt from protruding out, and if it is 3500 dtex or less, it can be densely packed and sufficient rigidity per unit width can be ensured.
- the organic fiber cords in the belt layer 6B and the cords in the belt layer 6A may come into direct contact without the coating rubber being interposed.
- the diameter of the raw tire it is preferable to design the diameter of the raw tire to a certain size in advance and, for example, to appropriately adjust the tension when winding the cords covered with the coating rubber to form the reinforcing layer, to ensure a sufficient gauge between the cords of the belt layer 6B and the belt reinforcing layer 7A, or between the belt layer 6A and the belt layer 6B. Therefore, it is preferable that the elongation rate of the organic fiber cord in the tire after vulcanization is 2% or less relative to the original length of the cord before vulcanization.
- the raw materials for the organic fiber cord are not particularly limited, and may be synthetic or biological, or may be mechanically recycled by crushing, melting, and re-spinning PET products such as PET bottles, or may be chemically recycled by depolymerizing and repolymerizing PET products such as PET bottles.
- the form of the organic fiber cord is not particularly limited, and may be a single-twist structure or a twisted structure (such as a double-twist structure).
- a single-twist structure for example, raw yarns are pulled together and twisted in one direction to obtain a twisted yarn cord.
- a double-twist structure for example, raw yarns are first twisted, and then multiple such yarns are combined and then second twisted in the opposite direction to obtain a twisted yarn cord.
- the organic fiber cord (particularly, polyethylene terephthalate cord) is preferably treated with an adhesive composition containing a thermoplastic polymer (A), a heat-reactive water-based urethane resin (B) and an epoxy compound (C), or an adhesive composition containing these (A) to (C) plus a rubber latex (D), characterized in that the main chain of the thermoplastic polymer (A) has substantially no addition-reactive carbon-carbon double bonds and has at least one functional group having crosslinkability as a pendant group.
- an adhesive composition containing a thermoplastic polymer (A), a heat-reactive water-based urethane resin (B) and an epoxy compound (C), or an adhesive composition containing these (A) to (C) plus a rubber latex (D), characterized in that the main chain of the thermoplastic polymer (A) has substantially no addition-reactive carbon-carbon double bonds and has at least one functional group having crosslinkability as a pendant group.
- thermoplastic polymer (A) that has at least one functional group with crosslinking properties as a pendant group and does not substantially contain an addition-reactive carbon-carbon double bond in its main chain structure, a heat-reactive aqueous urethane resin (B), and an epoxy compound (C), adhesion to the coating rubber can be sufficiently ensured without hardening the cord, even at high temperatures of 180°C or higher.
- the main chain of the thermoplastic polymer (A) is mainly a linear structure, and the main chain is preferably, for example, an ethylenic addition polymer such as an acrylic polymer, a vinyl acetate polymer, or a vinyl acetate-ethylene polymer, or a urethane polymer.
- the thermoplastic polymer (A) is not limited to an ethylenic addition polymer or a urethane polymer as long as it has the function of suppressing the resin fluidity at high temperatures and ensuring the breaking strength of the resin by crosslinking the functional groups of the pendant groups.
- the functional group of the pendant group of the thermoplastic polymer (A) is preferably an oxazolin group, a bismaleimide group, a (blocked)isocyanate group, an aziridine group, a carbodiimide group, a hydrazino group, an epoxy group, an epithio group, or the like.
- thermoplastic polymer (A), heat-reactive water-based urethane resin (B), epoxy compound (C), and rubber latex (D) can be those described in Japanese Patent Application No. 2023-040157 and Japanese Patent Application No. 2023-030762, respectively.
- thermoplastic polymer (A), heat-reactive aqueous urethane resin (B), and epoxy compound (C) it is preferable to use a mixture (adhesive composition) of the thermoplastic polymer (A), heat-reactive aqueous urethane resin (B), and epoxy compound (C) as a one-bath treatment liquid, and to use a normal RFL resin liquid as a two-bath treatment liquid.
- the proportion (dry mass ratio) of the thermoplastic polymer (A) is preferably 2 to 75%
- the proportion (dry mass ratio) of the heat-reactive aqueous urethane resin (B) is preferably 15 to 87%
- the proportion (dry mass ratio) of the epoxy compound (C) is preferably 11 to 70%
- the proportion (dry mass ratio) of the rubber latex (D) is preferably 20% or less.
- dip treatment liquid that does not contain resorcinol and formalin as an adhesive composition for organic fiber cords.
- dip treatment liquids include a composition that contains a rubber latex (a) having an unsaturated diene, and one or more compounds (b) selected from a compound having a polyether skeleton structure and an amine functional group, a compound having an acrylamide structure, a polypeptide, a polylysine, and a carbodiimide.
- dip treatment liquids include a composition that contains, in addition to the rubber latex (a) having an unsaturated diene and the compound (b), one or more compounds selected from an aqueous compound (c) having a (thermally dissociable blocked) isocyanate group, a polyphenol (d), and a polyvalent metal salt (e).
- compositions that contain polyphenols (I) and aldehydes (II).
- such compositions may further contain at least one of an isocyanate compound (III) and a rubber latex (IV).
- the adhesive composition used to treat (coat) the organic fiber cord with an adhesive contains polyphenols (I) and aldehydes (II), so that good adhesive properties can be achieved even when resorcin is not used due to environmental considerations.
- the adhesive composition contains polyphenols (I) as a resin component, thereby improving adhesion to an organic fiber cord.
- the polyphenols (I) are typically water-soluble polyphenols, and are not particularly limited as long as they are polyphenols other than resorcin (resorcinol).
- the number of aromatic rings or the number of hydroxyl groups can be appropriately selected.
- the polyphenols (I) preferably have two or more hydroxyl groups, and more preferably have three or more hydroxyl groups.
- the polyphenol or polyphenol condensate is water-soluble in the adhesive composition (dip treatment liquid) containing moisture. This allows the polyphenols to be uniformly distributed in the adhesive composition, thereby realizing better adhesion.
- the polyphenols (I) are polyphenols containing multiple (two or more) aromatic rings, the aromatic rings each have two or three hydroxyl groups at the ortho, meta, or para positions.
- polyphenols (I) for example, those described as polyphenol compounds in WO2022/130879 can be used. These polyphenols (I) may be used alone or in combination of two or more.
- the adhesive composition contains aldehydes (II) as a resin component in addition to the polyphenols (I), and thus can achieve high adhesion together with the polyphenols (I).
- the aldehydes (II) are not particularly limited and can be appropriately selected according to the required performance. In this specification, the aldehydes (II) also include derivatives of aldehydes that are generated from aldehydes.
- the aldehydes (II) include, for example, monoaldehydes such as formaldehyde, acetaldehyde, butylaldehyde, acrolein, propionaldehyde, chloral, butylaldehyde, caproaldehyde, and allylaldehyde, aliphatic dialdehydes such as glyoxal, malonaldehyde, succinaldehyde, glutaraldehyde, and adipaldehyde, aldehydes having an aromatic ring, and dialdehyde starch. These aldehydes (II) may be used alone or in combination of two or more.
- the aldehydes (II) are preferably aldehydes having an aromatic ring or contain aldehydes having an aromatic ring. This is because better adhesion can be obtained.
- the aldehydes (II) are preferably free of formaldehyde.
- "free of formaldehyde” means, for example, that the formaldehyde content in the total mass of the aldehydes is less than 0.5 mass%.
- polyphenols (I) and aldehydes (II) are in a condensed state, and the mass ratio of polyphenols to aldehydes having aromatic rings (content of aldehydes having aromatic rings/content of polyphenols) is preferably 0.1 or more and 3 or less.
- the hardness and adhesiveness of the resin which is the product of the condensation reaction between polyphenols and aldehydes having aromatic rings, become more suitable.
- the mass ratio of polyphenols to aldehydes having aromatic rings in the adhesive composition is more preferably 0.25 or more, and more preferably 2.5 or less.
- the above mass ratio is the mass of the dried product (solid content ratio).
- the total content of the polyphenols (I) and the aldehydes (II) in the adhesive composition is preferably 3 to 30% by mass. In this case, better adhesion can be ensured without deteriorating workability, etc. From the same viewpoint, the total content of the polyphenols (I) and the aldehydes (II) in the adhesive composition is more preferably 5% by mass or more and more preferably 25% by mass or less. The total content is the mass of the dry matter (solid content ratio).
- the adhesive composition preferably further contains an isocyanate compound (III) in addition to the polyphenols (I) and aldehydes (II) described above.
- the adhesive composition can have a further improved adhesiveness due to a synergistic effect with the polyphenols (I) and the aldehydes (II).
- the isocyanate compound (III) is a compound that has the effect of promoting adhesion to the resin material (e.g., phenol/aldehyde resin obtained by condensing polyphenols (I) and aldehydes (II)) that is the adherend of the adhesive composition, and is a compound that has an isocyanate group as a polar functional group.
- the resin material e.g., phenol/aldehyde resin obtained by condensing polyphenols (I) and aldehydes (II)
- These isocyanate compounds (III) may be used alone or in combination of two or more types.
- the isocyanate compound (III) is not particularly limited, but from the viewpoint of further improving adhesion, it is preferable that the isocyanate compound (III) contains a (blocked) isocyanate group-containing aromatic compound.
- the adhesive composition contains a (blocked) isocyanate group-containing aromatic compound
- the (blocked) isocyanate group-containing aromatic compound is distributed in a position near the interface between the organic fiber cord and the adhesive composition, resulting in a further adhesion promoting effect, and this effect can further enhance the adhesion of the adhesive composition to the organic fiber cord.
- the content of the isocyanate compound (III) in the adhesive composition is not particularly limited, but from the viewpoint of more reliably ensuring excellent adhesion, it is preferably 5 to 65 mass %. From the same viewpoint, the content of the isocyanate compound (III) in the adhesive composition is more preferably 10 mass % or more and more preferably 45 mass % or less. The above content is the mass of the dry matter (solid content ratio).
- the adhesive composition may further contain substantially a rubber latex (IV) in addition to the polyphenols (I), aldehydes (II) and isocyanate compound (III) described above, which allows the adhesive composition to have higher adhesion to rubber members.
- the rubber latex (IV) is not particularly limited, and examples thereof include natural rubber (NR), as well as synthetic rubbers such as polyisoprene rubber (IR), styrene-butadiene copolymer rubber (SBR), polybutadiene rubber (BR), ethylene-propylene-diene rubber (EPDM), chloroprene rubber (CR), halogenated butyl rubber, acrylonitrile-butadiene rubber (NBR), and vinylpyridine-styrene-butadiene copolymer rubber (Vp). These rubber latexes (IV) may be used alone or in combination of two or more.
- synthetic rubbers such as polyisoprene rubber (IR), styrene-butadiene copolymer rubber (SBR), polybutadiene rubber (BR), ethylene-propylene-diene rubber (EPDM), chloroprene rubber (CR), halogenated butyl rubber, acrylonitrile-butadiene rubber (NBR), and
- the content of rubber latex (IV) in the adhesive composition is preferably 20% by mass or more, more preferably 25% by mass or more, and is preferably 70% by mass or less, more preferably 60% by mass or less.
- the method for producing the adhesive composition is not particularly limited, but examples thereof include a method of mixing raw materials such as polyphenols (I), aldehydes (II), and rubber latex (IV) and maturing them, or a method of mixing polyphenols (I) and aldehydes (II) and maturing them, and then adding rubber latex (IV) and maturing them.
- the method for producing the adhesive composition may be a method of adding rubber latex (IV), maturing them, and then adding the isocyanate compound (III).
- the reinforcing layer is preferably formed by treating the organic fiber cord with an adhesive, coating it with a coating rubber to form a narrow strip, and then winding it continuously in a spiral shape in the tire circumferential direction.
- the coating rubber is not particularly limited as long as it is a general rubber composition that can coat the organic fiber cord.
- the rubber component may be a diene rubber, and in particular, natural rubber or isoprene rubber is preferable.
- the natural rubber may be modified. In the case of modified natural rubber, it is preferable that the nitrogen content is, for example, 0.1 to 0.3 mass%. In addition, it is preferable that the modified natural rubber is one in which proteins have been removed by a centrifugation process, enzyme treatment, or urea treatment.
- the phosphorus content of the modified natural rubber is more than 200 ppm and not more than 900 ppm.
- the coating rubber may be blended with a filler such as carbon black as long as it does not affect the performance such as adhesion and durability of the coating rubber.
- the carbon black may be one or more selected from SRF, GPF, FEF, HAF, ISAF, and SAF class carbon black.
- the carbon black content in the coating rubber may be 40 to 70 parts by mass per 100 parts by mass of the rubber component.
- the carbon black may be recycled carbon black.
- the coating rubber may appropriately contain, for example, crosslinking chemicals such as vulcanization accelerators, sulfur, and zinc oxide; adhesion promoters such as cobalt compounds containing cobalt salts; antioxidants; oils; resins; and the like.
- crosslinking chemicals such as vulcanization accelerators, sulfur, and zinc oxide
- adhesion promoters such as cobalt compounds containing cobalt salts
- antioxidants include amine-based antioxidants such as 6PPD and bisphenol-based antioxidants such as o-MBp14. These antioxidants may be used alone or in combination of two or more.
- waste carbon black refers to carbon black recovered from raw materials that are waste materials that have been recycled.
- waste materials that have been recycled include rubber products (especially vulcanized rubber products) that contain carbon black, such as used rubber and used tires, and waste oil.
- Recycled carbon black is different from carbon black that is produced directly from raw materials such as petroleum and natural gas hydrocarbons, that is, carbon black that is not recycled. Note that “used” here does not only include carbon black that has actually been used and then discarded, but also carbon black that has been produced but discarded without actually being used.
- the tire of the present embodiment may be obtained by molding and then vulcanizing an unvulcanized rubber composition or an unvulcanized treat (a cord-rubber composite in which a cord is coated with rubber) or the like, depending on the type of tire to be applied, or may be obtained by molding and then vulcanizing a semi-vulcanized rubber that has been subjected to a pre-vulcanization process or the like instead of an unvulcanized rubber composition.
- the components of the tire of the present embodiment other than the tread rubber layer and the reinforcing layer containing the organic fiber cords are not particularly limited, and known components can be used.
- the tire of the present embodiment is preferably a pneumatic tire, and the gas filled into the pneumatic tire may be normal air or air with an adjusted oxygen partial pressure, or an inert gas such as nitrogen, argon, or helium.
- Tg Glass transition temperature
- the synthesized styrene-butadiene rubber was used as a sample, and a DSC curve was recorded using a TA Instruments DSC250 while heating from ⁇ 100° C. at 20° C./min under a helium flow of 50 mL/min. The peak top (inflection point) of the DSC differential curve was determined as the glass transition temperature.
- Bound styrene content The synthesized styrene-butadiene rubber was used as a sample, and 100 mg of the sample was diluted with chloroform to 100 mL and dissolved to prepare a measurement sample. The bound styrene content (mass%) relative to 100 mass% of the sample was measured based on the amount of absorption of ultraviolet light by the phenyl group of styrene at a wavelength (near 254 nm).
- the measurement device used was a spectrophotometer "UV-2450" manufactured by Shimadzu Corporation.
- the softening point and weight average molecular weight of the resin component were measured by the following methods.
- the SP value (solubility parameter) of the resin component was calculated according to the Fedors method.
- Rubber compositions of Examples and Comparative Examples were prepared by blending and kneading each component according to the formulation shown in Table 1. The blending amounts of natural rubber, SBR, and resin components in each Example and Comparative Example are as shown in Table 3.
- Nylon cord Cord made of 6,6-nylon *11
- PET cord Cord made of polyethylene terephthalate
- the steering stability index is the sum of the improvement range of the calculated value of the storage modulus (E'), the improvement range of the index of the rigidity of the organic fiber cord alone, and 100, and here, when each calculated value and index is lower than the standard, the improvement range is a negative value.
- the rubber physical properties are lower in rigidity than in Comparative Example 1, but because the mass ratio of resin component/natural rubber is 0.5 or more and the elastic modulus of the organic fiber cord in the reinforcing layer is 4.0 to 30 mN/(dtex ⁇ %) at 1-2% elongation, the tire performance is improved in terms of handling stability, and at the same time, the wet braking performance and fuel economy are excellent.
- Comparative Example 2 the mass ratio of resin component to natural rubber is less than 0.5, so that although the driving stability is improved, the wet braking performance is deteriorated.
- Comparative Example 3 although the mass ratio of resin component to natural rubber is 0.5 or more, the elastic modulus of the organic fiber cord in the reinforcing layer at 1-2% elongation is outside the range of 4.0 to 30 mN/(dtex ⁇ %). Therefore, although the tire has excellent fuel economy, the wet braking performance and handling stability are not improved.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tires In General (AREA)
Abstract
本発明の課題は、操縦安定性を悪化させることなく、ウェット制動性と、低燃費性とを向上させたタイヤを提供することであり、その解決手段は、トレッド部(4)の最表面に位置するトレッドゴム層(9)と、そのタイヤ径方向内側に位置し、有機繊維コードを含む補強層と、を具え、前記トレッドゴム層(9)は、ゴム成分と樹脂成分と充填剤を含み、前記ゴム成分が、イソプレン骨格ゴムとスチレン-ブタジエンゴムを含み、前記スチレン-ブタジエンゴムの少なくとも一種は、ガラス転移温度が-40℃未満であり、前記樹脂成分は、前記イソプレン骨格ゴムとのSP値の差が1.40(cal/cm3)1/2以下であり、前記トレッドゴム層(9)は、式:樹脂成分/イソプレン骨格ゴムの質量比率≧0.5を満たし、前記有機繊維コードは、1-2%伸長時の弾性率が4.0~30mN/(dtex・%)であることを特徴とする、タイヤ(1)である。
Description
本発明は、タイヤに関するものである。
従来、車両の安全性を向上させる見地から、湿潤路面での制動性(以下、「ウェット制動性」と略称する。)を向上させるために、種々の検討がなされている。例えば、下記特許文献1には、天然ゴムを70質量%以上含むゴム成分に対して、熱可塑性樹脂と、シリカを含む充填剤を配合してなるゴム組成物を、タイヤのトレッドゴムに適用することで、乾燥路面及び湿潤路面の双方に対するタイヤの制動性が向上することが開示されている。
一方、昨今の環境問題への関心の高まりに伴う世界的な二酸化炭素排出規制の動きに関連して、自動車の低燃費化に対する要求が強まりつつある。このような要求に対応するため、タイヤ性能についても、低燃費性の向上(転がり抵抗の低減)が求められている。
一方、昨今の環境問題への関心の高まりに伴う世界的な二酸化炭素排出規制の動きに関連して、自動車の低燃費化に対する要求が強まりつつある。このような要求に対応するため、タイヤ性能についても、低燃費性の向上(転がり抵抗の低減)が求められている。
しかしながら、本発明者らが検討したところ、上記特許文献1に記載の技術によれば、タイヤのウェット制動性を向上させることができるものの、軟化成分である樹脂(熱可塑性樹脂)が添加されることにより、トレッドゴムの剛性が低下し、タイヤの操縦安定性が悪化することが分かった。
そこで、本発明は、上記従来技術の問題を解決し、操縦安定性を悪化させることなく、ウェット制動性と、低燃費性とを向上させたタイヤを提供することを課題とする。
上記課題を解決する本発明のタイヤの要旨構成は、以下の通りである。
[1] トレッド部の最表面に位置するトレッドゴム層と、該トレッドゴム層のタイヤ径方向内側に位置し、有機繊維コードを含む補強層と、を具えるタイヤであって、
前記トレッドゴム層は、ゴム成分と、樹脂成分と、充填剤と、を含み、
前記ゴム成分が、イソプレン骨格ゴムと、スチレン-ブタジエンゴムと、を含み、
前記スチレン-ブタジエンゴムの少なくとも一種は、ガラス転移温度が-40℃未満であり、
前記樹脂成分は、前記イソプレン骨格ゴムとのSP値の差が1.40(cal/cm3)1/2以下であり、
前記トレッドゴム層は、下記の式(1):
前記樹脂成分/前記イソプレン骨格ゴムの質量比率≧0.5 ・・・ (1)
を満たし、
前記補強層の有機繊維コードは、1-2%伸長時の弾性率が4.0~30mN/(dtex・%)であることを特徴とする、タイヤ。
前記トレッドゴム層は、ゴム成分と、樹脂成分と、充填剤と、を含み、
前記ゴム成分が、イソプレン骨格ゴムと、スチレン-ブタジエンゴムと、を含み、
前記スチレン-ブタジエンゴムの少なくとも一種は、ガラス転移温度が-40℃未満であり、
前記樹脂成分は、前記イソプレン骨格ゴムとのSP値の差が1.40(cal/cm3)1/2以下であり、
前記トレッドゴム層は、下記の式(1):
前記樹脂成分/前記イソプレン骨格ゴムの質量比率≧0.5 ・・・ (1)
を満たし、
前記補強層の有機繊維コードは、1-2%伸長時の弾性率が4.0~30mN/(dtex・%)であることを特徴とする、タイヤ。
[2] 前記樹脂成分は、軟化点が110℃より高く、ポリスチレン換算の重量平均分子量が200~1600g/molである、[1]に記載のタイヤ。
[3] 前記樹脂成分が、水添C5系樹脂、水添C5-C9系樹脂、水添ジシクロペンタジエン系樹脂、及び水添テルペン系樹脂からなる群より選択される少なくとも1種である、[1]又は[2]に記載のタイヤ。
[4] 前記スチレン-ブタジエンゴムが、窒素原子を含む官能基とアルコキシ基とを有する変性剤で変性されている、[1]~[3]のいずれか一つに記載のタイヤ。
[5] 前記有機繊維コードは、切断強度が6.5cN/dtex以上、切断伸度が10%以上である、[1]~[4]のいずれか一つに記載のタイヤ。
[6] 前記有機繊維コードは、ポリエチレンテレフタレートからなるコードである、[1]~[5]のいずれか一つに記載のタイヤ。
[7] 前記有機繊維コードは、7%伸長時の弾性率が6.0mN/(dtex・%)以上である、[1]~[6]のいずれか一つに記載のタイヤ。
本発明によれば、操縦安定性を悪化させることなく、ウェット制動性と、低燃費性とを向上させたタイヤを提供することができる。
以下に、本発明のタイヤを、その実施形態に基づき、詳細に例示説明する。
<定義>
本明細書に記載されている化合物は、部分的に、又は全てが化石資源由来であってもよく、植物資源等の生物資源由来であってもよく、使用済タイヤ等の再生資源由来であってもよい。また、化石資源、生物資源、再生資源のいずれか2つ以上の混合物由来であってもよい。
本明細書に記載されている化合物は、部分的に、又は全てが化石資源由来であってもよく、植物資源等の生物資源由来であってもよく、使用済タイヤ等の再生資源由来であってもよい。また、化石資源、生物資源、再生資源のいずれか2つ以上の混合物由来であってもよい。
本明細書において、イソプレン骨格ゴム、スチレン-ブタジエンゴムのガラス転移温度については、ISO 22768:2006に従い、所定の温度範囲で昇温しながらDSC曲線を記録し、DSC微分曲線のピークトップ(Inflection point)をガラス転移温度とする。
本明細書において、イソプレン骨格ゴム、スチレン-ブタジエンゴム及び樹脂成分のSP値(溶解度パラメータ)は、Fedors法に従って、算出する。
本明細書において、樹脂成分の軟化点は、JIS-K2207-1996(環球法)に準拠して測定する。
本明細書において、樹脂成分の重量平均分子量は、ゲル透過クロマトグラフィー(GPC)により測定し、ポリスチレン換算の値を算出する。
本明細書において、前記有機繊維コードの1-2%伸長時の弾性率、切断強度、切断伸度は、室温(23℃)で測定した値である。また、有機繊維コードの諸物性は、JIS L 1013「化学繊維フィラメント糸試験方法」に従って測定する。
<タイヤ>
本実施形態のタイヤは、トレッド部の最表面に位置するトレッドゴム層と、該トレッドゴム層のタイヤ径方向内側に位置し、有機繊維コードを含む補強層と、を具える。そして、本実施形態のタイヤにおいて、前記トレッドゴム層は、ゴム成分と、樹脂成分と、充填剤と、を含み、前記ゴム成分が、イソプレン骨格ゴムと、スチレン-ブタジエンゴムと、を含み、前記スチレン-ブタジエンゴムの少なくとも一種は、ガラス転移温度が-40℃未満であり、前記樹脂成分は、前記イソプレン骨格ゴムとのSP値の差が1.40(cal/cm3)1/2以下であり、前記トレッドゴム層は、下記の式(1):
前記樹脂成分/前記イソプレン骨格ゴムの質量比率≧0.5 ・・・ (1)
を満たし、前記補強層の有機繊維コードは、1-2%伸長時の弾性率が4.0~30mN/(dtex・%)であることを特徴とする。
本実施形態のタイヤは、トレッド部の最表面に位置するトレッドゴム層と、該トレッドゴム層のタイヤ径方向内側に位置し、有機繊維コードを含む補強層と、を具える。そして、本実施形態のタイヤにおいて、前記トレッドゴム層は、ゴム成分と、樹脂成分と、充填剤と、を含み、前記ゴム成分が、イソプレン骨格ゴムと、スチレン-ブタジエンゴムと、を含み、前記スチレン-ブタジエンゴムの少なくとも一種は、ガラス転移温度が-40℃未満であり、前記樹脂成分は、前記イソプレン骨格ゴムとのSP値の差が1.40(cal/cm3)1/2以下であり、前記トレッドゴム層は、下記の式(1):
前記樹脂成分/前記イソプレン骨格ゴムの質量比率≧0.5 ・・・ (1)
を満たし、前記補強層の有機繊維コードは、1-2%伸長時の弾性率が4.0~30mN/(dtex・%)であることを特徴とする。
本実施形態のタイヤは、トレッドゴム層が、イソプレン骨格ゴムとのSP値の差が1.40(cal/cm3)1/2以下である樹脂成分を含むことで、ウェット制動性が向上している。
但し、前記トレッドゴム層に樹脂成分を含ませるだけでは、タイヤの低燃費性が低下する。これに対し、トレッドゴム層にガラス転移温度が-40℃未満のスチレン-ブタジエンゴムを含ませることで、前記充填剤の分散性を改良して、タイヤの低燃費性を補完する。また、前記トレッドゴム層がイソプレン骨格ゴムを含有することで、破壊強度を高めることができ、その結果、タイヤの転がり抵抗を小さくして、低燃費性を向上させることができる。
更に、トレッドゴム層における、前記樹脂成分/前記イソプレン骨格ゴムの質量比率を0.5以上とすることで、タイヤのウェット制動性を更に向上させることができる。
一方、軟化成分である樹脂成分をトレッドゴム層に含ませると、トレッドゴム層の剛性が低下することで、タイヤの操縦安定性が悪化する。これに対して、本実施形態のタイヤにおいては、トレッドゴム層のタイヤ径方向内側に、1-2%伸長時の弾性率が4.0~30mN/(dtex・%)である有機繊維コードを含む補強層を配設することで、タイヤのトレッド部の剛性を向上させて、タイヤの操縦安定性の悪化を抑制する。
従って、本実施形態のタイヤは、操縦安定性を悪化させることなく、ウェット制動性と、低燃費性とが向上している。
但し、前記トレッドゴム層に樹脂成分を含ませるだけでは、タイヤの低燃費性が低下する。これに対し、トレッドゴム層にガラス転移温度が-40℃未満のスチレン-ブタジエンゴムを含ませることで、前記充填剤の分散性を改良して、タイヤの低燃費性を補完する。また、前記トレッドゴム層がイソプレン骨格ゴムを含有することで、破壊強度を高めることができ、その結果、タイヤの転がり抵抗を小さくして、低燃費性を向上させることができる。
更に、トレッドゴム層における、前記樹脂成分/前記イソプレン骨格ゴムの質量比率を0.5以上とすることで、タイヤのウェット制動性を更に向上させることができる。
一方、軟化成分である樹脂成分をトレッドゴム層に含ませると、トレッドゴム層の剛性が低下することで、タイヤの操縦安定性が悪化する。これに対して、本実施形態のタイヤにおいては、トレッドゴム層のタイヤ径方向内側に、1-2%伸長時の弾性率が4.0~30mN/(dtex・%)である有機繊維コードを含む補強層を配設することで、タイヤのトレッド部の剛性を向上させて、タイヤの操縦安定性の悪化を抑制する。
従って、本実施形態のタイヤは、操縦安定性を悪化させることなく、ウェット制動性と、低燃費性とが向上している。
以下に、本発明のタイヤの一実施態様を図面に基づき、詳細に説明する。
図1は、本発明のタイヤの一実施態様の断面図である。図1に示すタイヤ1は、一対のビード部2及び一対のサイドウォール部3と、両サイドウォール部3に連なるトレッド部4と、を有し、前記一対のビード部2間にトロイド状に延在して、これら各部2,3,4を補強するカーカス5と、該カーカス5のクラウン部のタイヤ径方向外側に配置されたベルト6と、該ベルト6のタイヤ径方向外側でベルト6の全体を覆うように配置したベルト補強層(「キャップ層」とも呼ばれる。)7Aと、該ベルト補強層7Aの両端部のみを覆うように配置した一対のベルト補強層(「レイヤー層」とも呼ばれる。)7Bと、を具える。
図1は、本発明のタイヤの一実施態様の断面図である。図1に示すタイヤ1は、一対のビード部2及び一対のサイドウォール部3と、両サイドウォール部3に連なるトレッド部4と、を有し、前記一対のビード部2間にトロイド状に延在して、これら各部2,3,4を補強するカーカス5と、該カーカス5のクラウン部のタイヤ径方向外側に配置されたベルト6と、該ベルト6のタイヤ径方向外側でベルト6の全体を覆うように配置したベルト補強層(「キャップ層」とも呼ばれる。)7Aと、該ベルト補強層7Aの両端部のみを覆うように配置した一対のベルト補強層(「レイヤー層」とも呼ばれる。)7Bと、を具える。
図1に示すタイヤ1のカーカス5は、平行に配列された複数のコードをコーティングゴムで被覆してなるカーカスプライ1枚から構成され、また、該カーカス5は、上記ビード部2に夫々埋設されたビードコア8間にトロイド状に延びる本体部と、各ビードコア8の周りでタイヤ幅方向内側から外側に向けて径方向外方に巻上げた折り返し部とからなるが、本発明のタイヤにおいて、カーカス5のプライ数及び構造は、これに限られるものではない。
また、図1に示すタイヤ1のベルト6は、2枚のベルト層6A,6Bからなるが、本発明のタイヤにおいて、ベルト6を構成するベルト層の枚数はこれに限られるものではなく、ベルト層の枚数は、3枚以上であってもよい。ここで、ベルト層6A,6Bは、通常、タイヤ赤道面に対して傾斜して延びる金属コード又は有機繊維コード(好ましくは、スチールコード)のゴム引き層からなり、2枚のベルト層6A,6Bは、該ベルト層を構成するコードが互いにタイヤ赤道面を挟んで交差するように積層されてベルト6を構成する。
また、図1に示すタイヤ1において、ベルト補強層7A,7Bは、タイヤ周方向に対し実質的に平行(例えば、タイヤ周方向に対する角度が0~5°)に配列した有機繊維コード(補強材)をコーティングゴムで被覆してなる。該ベルト補強層7A,7Bは、有機繊維コードをコーティングゴムで被覆して準備した幅狭のストリップをタイヤ周方向に連続して螺旋状に巻回して形成されている。この場合、タイヤ周方向にジョイント部がないため、タイヤのユニフォミティーが良好となり、また、ジョイント部がないため、ジョイント部への歪集中も防止できる。
なお、図1に示すタイヤ1は、ベルト補強層7A,7Bを具えるが、ベルト補強層7A及びベルト補強層7Bのいずれか一方又は両方が省略されたタイヤも、本発明のタイヤの一実施態様である。また、図1に示すタイヤ1においては、ベルト補強層7A,7Bはそれぞれ一層であるが、二層以上であってもよい。
なお、図1に示すタイヤ1は、ベルト補強層7A,7Bを具えるが、ベルト補強層7A及びベルト補強層7Bのいずれか一方又は両方が省略されたタイヤも、本発明のタイヤの一実施態様である。また、図1に示すタイヤ1においては、ベルト補強層7A,7Bはそれぞれ一層であるが、二層以上であってもよい。
また、図1に示すタイヤ1は、トレッド部4の最表面に位置するトレッドゴム層9を具え、該トレッドゴム層9は、以下に詳細に述べるように、ゴム成分と樹脂成分と充填剤とを含み、ゴム成分がイソプレン骨格ゴムとスチレン-ブタジエンゴムとを含み、スチレン-ブタジエンゴムの少なくとも一種はガラス転移温度が-40℃未満であり、樹脂成分はイソプレン骨格ゴムとのSP値の差が1.40(cal/cm3)1/2以下であり、更に、該トレッドゴム9層は、上記の式(1)を満たす。
なお、本発明のタイヤは、トレッド部の最表面に位置するトレッドゴム層と、該トレッドゴム層のタイヤ径方向内側に位置し、有機繊維コードを含む補強層と、を具えていればよく、種々の変更を加えることができる。例えば、図1に示すタイヤ1のトレッドゴム層9を、最表面側に位置するキャップゴムと、そのタイヤ径方向内側に位置するベースゴムに分割することも可能である。
ここで、前記有機繊維コードを含む補強層は、トレッドゴム層9のタイヤ径方向内側に位置する限り特に限定されず、例えば、図1に示すタイヤ1のベルト層6A,6B、ベルト補強層7A,7Bのいずれであってもよい。一好適実施形態においては、有機繊維コードを含む補強層は、図1に示すタイヤ1のベルト層6B(即ち、ベルト6を構成するベルト層の内、タイヤ径方向最も外側の層)、ベルト補強層7A,7Bの少なくともいずれかに用いることが好ましく、ベルト補強層7A,7Bの少なくとも一方に用いることが更に好ましく、ベルト補強層7A,7Bの両方に用いることがより一層好ましい。
<<トレッドゴム層>>
本実施形態のタイヤにおいて、前記トレッドゴム層は、ゴム成分と、樹脂成分と、充填剤と、を含む。該トレッドゴム層は、例えば、ゴム成分と、樹脂成分と、充填剤と、を含むゴム組成物から作製することができる。
本実施形態のタイヤにおいて、前記トレッドゴム層は、ゴム成分と、樹脂成分と、充填剤と、を含む。該トレッドゴム層は、例えば、ゴム成分と、樹脂成分と、充填剤と、を含むゴム組成物から作製することができる。
(ゴム成分)
前記ゴム成分は、イソプレン骨格ゴムと、スチレン-ブタジエンゴムと、を含み、更に他のゴム成分を含んでもよい。
前記ゴム成分は、イソプレン骨格ゴムと、スチレン-ブタジエンゴムと、を含み、更に他のゴム成分を含んでもよい。
-イソプレン骨格ゴム-
前記イソプレン骨格ゴムは、イソプレン単位を主たる骨格とするゴムであり、具体的には、天然ゴム(NR)、合成イソプレンゴム(IR)等が挙られる。
ゴム成分がイソプレン骨格ゴムを含有することで、トレッドゴム層の破壊強度を高めることができる。その結果、該トレッドゴム層を具えるタイヤの転がり抵抗を小さくして、低燃費性を向上させることができ、また、タイヤの耐摩耗性を向上させることもできる。
前記イソプレン骨格ゴムは、イソプレン単位を主たる骨格とするゴムであり、具体的には、天然ゴム(NR)、合成イソプレンゴム(IR)等が挙られる。
ゴム成分がイソプレン骨格ゴムを含有することで、トレッドゴム層の破壊強度を高めることができる。その結果、該トレッドゴム層を具えるタイヤの転がり抵抗を小さくして、低燃費性を向上させることができ、また、タイヤの耐摩耗性を向上させることもできる。
前記イソプレン骨格ゴムの含有量は、前記ゴム成分100質量部中、1~80質量部であることが好ましく、1~40質量部であることが更に好ましい。イソプレン骨格ゴムの含有量が、ゴム成分100質量部中、1~80質量部の場合、タイヤの低燃費性とウェット制動性とを更に向上させることができる。また、イソプレン骨格ゴムの含有量が、ゴム成分100質量部中、1~40質量部の場合、タイヤの低燃費性とウェット制動性とをより一層向上させることができる。また、イソプレン骨格ゴムの配合効果をより大きくする観点からは、イソプレン骨格ゴムの含有量は、前記ゴム成分100質量部中、10質量部以上が更に好ましい。
-スチレン-ブタジエンゴム-
前記トレッドゴム層のゴム成分は、スチレン-ブタジエンゴム(SBR)を含み、該スチレン-ブタジエンゴム(SBR)の少なくとも一種は、ガラス転移温度が-40℃未満であり、好ましくは-45℃以下、更に好ましくは-50℃以下であり、また、好ましくは-90℃より高い。少なくとも一種のスチレン-ブタジエンゴムのガラス転移温度が-40℃未満であると、タイヤの低燃費性と耐摩耗性とを十分に向上させることができる。また、ガラス転移温度が-90℃より高いスチレン-ブタジエンゴムは、合成し易い。
なお、前記トレッドゴム層のゴム成分は、ガラス転移温度が-40℃以上のスチレン-ブタジエンゴムを含んでもよい。
前記トレッドゴム層のゴム成分は、スチレン-ブタジエンゴム(SBR)を含み、該スチレン-ブタジエンゴム(SBR)の少なくとも一種は、ガラス転移温度が-40℃未満であり、好ましくは-45℃以下、更に好ましくは-50℃以下であり、また、好ましくは-90℃より高い。少なくとも一種のスチレン-ブタジエンゴムのガラス転移温度が-40℃未満であると、タイヤの低燃費性と耐摩耗性とを十分に向上させることができる。また、ガラス転移温度が-90℃より高いスチレン-ブタジエンゴムは、合成し易い。
なお、前記トレッドゴム層のゴム成分は、ガラス転移温度が-40℃以上のスチレン-ブタジエンゴムを含んでもよい。
前記スチレン-ブタジエンゴムの含有量は、前記ゴム成分100質量部中、20~99質量部であることが好ましく、30~99質量部であることがより好ましく、40~99質量部であることがより好ましく、50~99質量部であることがより好ましく、60~99質量部であることが更に好ましい。スチレン-ブタジエンゴムの含有量が、ゴム成分100質量部中、60~99質量部の場合、タイヤの低燃費性とウェット制動性とを更に向上させることができる。
前記イソプレン骨格ゴムと前記スチレン-ブタジエンゴムとのSP値の差は、0.3(cal/cm3)1/2以上であることが好ましく、0.35(cal/cm3)1/2以上であることが更に好ましい。イソプレン骨格ゴムとスチレン-ブタジエンゴムとのSP値の差が0.3(cal/cm3)1/2以上の場合、イソプレン骨格ゴムとスチレン-ブタジエンゴムとが非相溶になり易い。
前記スチレン-ブタジエンゴムは、結合スチレン量が15質量%未満であることが好ましい。スチレン-ブタジエンゴムの結合スチレン量とは、スチレン-ブタジエンゴムに含まれるスチレン単位の割合を意味する。スチレン-ブタジエンゴムの結合スチレン量が15質量%未満である場合、ガラス転移温度が低くなり易い。スチレン-ブタジエンゴムの結合スチレン量は、14質量%以下であることがより好ましく、13質量%以下であることがより好ましく、12質量%以下であることが更に好ましい。また、スチレン-ブタジエンゴムの結合スチレン量は、タイヤの耐摩耗性の観点から、5質量%以上であることが好ましく、7質量%以上であることがより好ましく、8質量%以上であることが更に好ましい。
前記スチレン-ブタジエンゴムの結合スチレン量は、スチレン-ブタジエンゴムの重合に用いる単量体の量、重合度等により調整することができる。
前記スチレン-ブタジエンゴムの結合スチレン量は、スチレン-ブタジエンゴムの重合に用いる単量体の量、重合度等により調整することができる。
前記スチレン-ブタジエンゴムは、窒素原子を含む官能基とアルコキシ基とを有する変性剤で変性されていることが好ましい。スチレン-ブタジエンゴムが窒素原子を含む官能基とアルコキシ基とを有する変性剤で変性されている場合、タイヤのウェット制動性と、低燃費性と、耐摩耗性とのバランスが向上し、特には、低燃費性と耐摩耗性を更に向上させることができる。
前記窒素原子を含む官能基とアルコキシ基とを有する変性剤とは、少なくとも1つの窒素原子を含む官能基と少なくとも1つのアルコキシ基を有する変性剤の総称である。
窒素原子を含む官能基は、下記から選択されることが好ましい。
第一アミノ基、加水分解可能な保護基で保護された第一アミノ基、第一アミンのオニウム塩残基、イソシアネート基、チオイソシアネート基、イミン基、イミン残基、アミド基、加水分解可能な保護基で保護された第二アミノ基、環状第二アミノ基、環状第二アミンのオニウム塩残基、非環状第二アミノ基、非環状第二アミンのオニウム塩残基、イソシアヌル酸トリエステル残基、環状第三アミノ基、非環状第三アミノ基、ニトリル基、ピリジン残基、環状第三アミンのオニウム塩残基及び非環状第三アミンのオニウム塩残基からなる群から選択される官能基を有し、直鎖、分枝、脂環若しくは芳香族環を含む炭素数1~30の1価の炭化水素基、又は酸素原子、硫黄原子及びリン原子から選ばれる少なくとも1種のヘテロ原子を含んでいても良い、直鎖、分枝、脂環又は芳香族環を含む炭素数1~30の1価の炭化水素基である。
前記窒素原子を含む官能基とアルコキシ基とを有する変性剤とは、少なくとも1つの窒素原子を含む官能基と少なくとも1つのアルコキシ基を有する変性剤の総称である。
窒素原子を含む官能基は、下記から選択されることが好ましい。
第一アミノ基、加水分解可能な保護基で保護された第一アミノ基、第一アミンのオニウム塩残基、イソシアネート基、チオイソシアネート基、イミン基、イミン残基、アミド基、加水分解可能な保護基で保護された第二アミノ基、環状第二アミノ基、環状第二アミンのオニウム塩残基、非環状第二アミノ基、非環状第二アミンのオニウム塩残基、イソシアヌル酸トリエステル残基、環状第三アミノ基、非環状第三アミノ基、ニトリル基、ピリジン残基、環状第三アミンのオニウム塩残基及び非環状第三アミンのオニウム塩残基からなる群から選択される官能基を有し、直鎖、分枝、脂環若しくは芳香族環を含む炭素数1~30の1価の炭化水素基、又は酸素原子、硫黄原子及びリン原子から選ばれる少なくとも1種のヘテロ原子を含んでいても良い、直鎖、分枝、脂環又は芳香族環を含む炭素数1~30の1価の炭化水素基である。
--第1の好適態様の変性スチレン-ブタジエンゴム--
前記スチレン-ブタジエンゴム(SBR)は、アミノアルコキシシラン化合物で変性されていることが好ましく、充填剤に対して高い親和性を有する観点から、末端がアミノアルコキシシラン化合物で変性されていることが更に好ましい。スチレン-ブタジエンゴムの末端がアミノアルコキシシラン化合物で変性されている場合、変性スチレン-ブタジエンゴムと充填剤(特には、シリカ)との相互作用が特に大きくなる。
前記スチレン-ブタジエンゴム(SBR)は、アミノアルコキシシラン化合物で変性されていることが好ましく、充填剤に対して高い親和性を有する観点から、末端がアミノアルコキシシラン化合物で変性されていることが更に好ましい。スチレン-ブタジエンゴムの末端がアミノアルコキシシラン化合物で変性されている場合、変性スチレン-ブタジエンゴムと充填剤(特には、シリカ)との相互作用が特に大きくなる。
前記スチレン-ブタジエンゴムの変性箇所は、上述のように分子末端であってもよいが、主鎖であってもよい。
分子末端が変性されたスチレン-ブタジエンゴムは、例えば、国際公開第2003/046020号、特開2007-217562号公報に記載の方法に従って、活性末端を有するスチレン-ブタジエン共重合体の末端に、種々の変性剤を反応させることで製造できる。
一好適態様においては、該分子末端が変性されたスチレン-ブタジエンゴムは、国際公開第2003/046020号、特開2007-217562号公報に記載の方法に従って、シス-1,4結合量が75%以上の活性末端を有するスチレン-ブタジエン共重合体の末端に、アミノアルコキシシラン化合物を反応させた後、多価アルコールのカルボン酸部分エステルと反応させて安定化を行うことで製造することができる。
分子末端が変性されたスチレン-ブタジエンゴムは、例えば、国際公開第2003/046020号、特開2007-217562号公報に記載の方法に従って、活性末端を有するスチレン-ブタジエン共重合体の末端に、種々の変性剤を反応させることで製造できる。
一好適態様においては、該分子末端が変性されたスチレン-ブタジエンゴムは、国際公開第2003/046020号、特開2007-217562号公報に記載の方法に従って、シス-1,4結合量が75%以上の活性末端を有するスチレン-ブタジエン共重合体の末端に、アミノアルコキシシラン化合物を反応させた後、多価アルコールのカルボン酸部分エステルと反応させて安定化を行うことで製造することができる。
前記多価アルコールのカルボン酸部分エステルとは、多価アルコールとカルボン酸とのエステルであり、かつ水酸基を一つ以上有する部分エステルを意味する。具体的には、炭素数4以上の糖類又は変性糖類と脂肪酸とのエステルが好ましく用いられる。このエステルは、更に好ましくは、(1)多価アルコールの脂肪酸部分エステル、特に炭素数10~20の飽和高級脂肪酸又は不飽和高級脂肪酸と多価アルコールとの部分エステル(モノエステル、ジエステル、トリエステルのいずれでもよい)、(2)多価カルボン酸と高級アルコールの部分エステルを、多価アルコールに1~3個結合させたエステル化合物等が挙げられる。
部分エステルの原料に用いられる多価アルコールとしては、好ましくは少なくとも三つの水酸基を有する炭素数5又は6の糖類(水素添加されていても、水素添加されていなくてもよい)、グリコールやポリヒドロキシ化合物等が用いられる。また、原料脂肪酸としては、好ましくは炭素数10~20の飽和又は不飽和脂肪酸であり、例えば、ステアリン酸、ラウリン酸、パルミチン酸が用いられる。
多価アルコールの脂肪酸部分エステルの中では、ソルビタン脂肪酸エステルが好ましく、具体的には、ソルビタンモノラウリン酸エステル、ソルビタンモノパルミチン酸エステル、ソルビタンモノステアリン酸エステル、ソルビタントリステアリン酸エステル、ソルビタンモノオレイン酸エステル、ソルビタントリオレイン酸エステル等が挙げられる。
部分エステルの原料に用いられる多価アルコールとしては、好ましくは少なくとも三つの水酸基を有する炭素数5又は6の糖類(水素添加されていても、水素添加されていなくてもよい)、グリコールやポリヒドロキシ化合物等が用いられる。また、原料脂肪酸としては、好ましくは炭素数10~20の飽和又は不飽和脂肪酸であり、例えば、ステアリン酸、ラウリン酸、パルミチン酸が用いられる。
多価アルコールの脂肪酸部分エステルの中では、ソルビタン脂肪酸エステルが好ましく、具体的には、ソルビタンモノラウリン酸エステル、ソルビタンモノパルミチン酸エステル、ソルビタンモノステアリン酸エステル、ソルビタントリステアリン酸エステル、ソルビタンモノオレイン酸エステル、ソルビタントリオレイン酸エステル等が挙げられる。
上記アミノアルコキシシラン化合物としては、特に限定されないが、下記一般式(i)で表されるアミノアルコキシシラン化合物が好ましい。
R11 a-Si-(OR12)4-a ・・・ (i)
R11 a-Si-(OR12)4-a ・・・ (i)
一般式(i)中、R11及びR12は、それぞれ独立に炭素数1~20の一価の脂肪族炭化水素基又は炭素数6~18の一価の芳香族炭化水素基を示し、R11及びR12の少なくとも1つはアミノ基で置換されており、aは0~2の整数であり、OR12が複数ある場合、各OR12は互いに同一でも異なっていてもよく、また、分子中には活性プロトンは含まれない。
一般式(ii)中、n1+n2+n3+n4=4(但し、n2は1~4の整数であり、n1、n3およびn4は0~3の整数である)である。
A1は、飽和環状3級アミン化合物残基、不飽和環状3級アミン化合物残基、ケチミン残基、ニトリル基、(チオ)イソシアナート基、イソシアヌル酸トリヒドロカルビルエステル基、ニトリル基、ピリジン基、(チオ)ケトン基、アミド基、並びに加水分解性基を有する第一若しくは第二アミノ基の中から選択される少なくとも1種の官能基である。n4が2以上の場合には、A1は、同一でも異なっていてもよく、A1は、Siと結合して環状構造を形成する二価の基であってもよい。
R21は、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、n1が2以上の場合には同一でも異なっていてもよい。
R22は、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、いずれも窒素原子及び/又はケイ素原子を含有していてもよい。n2が2以上の場合には、R22は、互いに同一若しくは異なっていてもよいし、或いは、一緒になって環を形成してもよい。
R23は、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基、炭素数6~18の一価の芳香族炭化水素基又はハロゲン原子であり、n3が2以上の場合には同一でも異なっていてもよい。
R24は、炭素数1~20の二価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の二価の芳香族炭化水素基であり、n4が2以上の場合には同一でも異なっていてもよい。
加水分解性基を有する第一若しくは第二アミノ基における加水分解性基としては、トリメチルシリル基又はtert-ブチルジメチルシリル基が好ましく、トリメチルシリル基が特に好ましい。
A1は、飽和環状3級アミン化合物残基、不飽和環状3級アミン化合物残基、ケチミン残基、ニトリル基、(チオ)イソシアナート基、イソシアヌル酸トリヒドロカルビルエステル基、ニトリル基、ピリジン基、(チオ)ケトン基、アミド基、並びに加水分解性基を有する第一若しくは第二アミノ基の中から選択される少なくとも1種の官能基である。n4が2以上の場合には、A1は、同一でも異なっていてもよく、A1は、Siと結合して環状構造を形成する二価の基であってもよい。
R21は、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、n1が2以上の場合には同一でも異なっていてもよい。
R22は、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、いずれも窒素原子及び/又はケイ素原子を含有していてもよい。n2が2以上の場合には、R22は、互いに同一若しくは異なっていてもよいし、或いは、一緒になって環を形成してもよい。
R23は、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基、炭素数6~18の一価の芳香族炭化水素基又はハロゲン原子であり、n3が2以上の場合には同一でも異なっていてもよい。
R24は、炭素数1~20の二価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の二価の芳香族炭化水素基であり、n4が2以上の場合には同一でも異なっていてもよい。
加水分解性基を有する第一若しくは第二アミノ基における加水分解性基としては、トリメチルシリル基又はtert-ブチルジメチルシリル基が好ましく、トリメチルシリル基が特に好ましい。
一般式(iii)中、p1+p2+p3=2(但し、p2は1~2の整数であり、p1およびp3は0~1の整数である)である。
A2は、NRa(Raは、一価の炭化水素基、加水分解性基又は含窒素有機基である)である。
R25は、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基である。
R26は、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基、炭素数6~18の一価の芳香族炭化水素基又は含窒素有機基であり、いずれも窒素原子及び/又はケイ素原子を含有していてもよい。p2が2の場合には、R26は、互いに同一でも異なっていてもよいし、或いは、一緒になって環を形成していてもよい。
R27は、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基、炭素数6~18の一価の芳香族炭化水素基又はハロゲン原子である。
R28は、炭素数1~20の二価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の二価の芳香族炭化水素基である。
加水分解性基としては、トリメチルシリル基又はtert-ブチルジメチルシリル基が好ましく、トリメチルシリル基が特に好ましい。
A2は、NRa(Raは、一価の炭化水素基、加水分解性基又は含窒素有機基である)である。
R25は、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基である。
R26は、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基、炭素数6~18の一価の芳香族炭化水素基又は含窒素有機基であり、いずれも窒素原子及び/又はケイ素原子を含有していてもよい。p2が2の場合には、R26は、互いに同一でも異なっていてもよいし、或いは、一緒になって環を形成していてもよい。
R27は、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基、炭素数6~18の一価の芳香族炭化水素基又はハロゲン原子である。
R28は、炭素数1~20の二価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の二価の芳香族炭化水素基である。
加水分解性基としては、トリメチルシリル基又はtert-ブチルジメチルシリル基が好ましく、トリメチルシリル基が特に好ましい。
一般式(iv)中、q1+q2=3(但し、q1は0~2の整数であり、q2は1~3の整数である)である。
R31は、炭素数1~20の二価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の二価の芳香族炭化水素基である。
R32及びR33は、それぞれ独立して、加水分解性基、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基である。
R34は、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、q1が2の場合には同一でも異なっていてもよい。
R35は、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、q2が2以上の場合には同一でも異なっていてもよい。
R31は、炭素数1~20の二価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の二価の芳香族炭化水素基である。
R32及びR33は、それぞれ独立して、加水分解性基、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基である。
R34は、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、q1が2の場合には同一でも異なっていてもよい。
R35は、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、q2が2以上の場合には同一でも異なっていてもよい。
一般式(v)中、r1+r2=3(但し、r1は1~3の整数であり、r2は0~2の整数である)である。
R36は、炭素数1~20の二価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の二価の芳香族炭化水素基である。
R37は、ジメチルアミノメチル基、ジメチルアミノエチル基、ジエチルアミノメチル基、ジエチルアミノエチル基、メチルシリル(メチル)アミノメチル基、メチルシリル(メチル)アミノエチル基、メチルシリル(エチル)アミノメチル基、メチルシリル(エチル)アミノエチル基、ジメチルシリルアミノメチル基、ジメチルシリルアミノエチル基、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、r1が2以上の場合には同一でも異なっていてもよい。
R38は、炭素数1~20のヒドロカルビルオキシ基、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、r2が2の場合には同一でも異なっていてもよい。
一般式(v)で表されるアミノアルコキシシラン化合物の具体例としては、N-(1,3-ジメチルブチリデン)-3-トリエトキシシリル-1-プロパンアミンが挙げられる。
R36は、炭素数1~20の二価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の二価の芳香族炭化水素基である。
R37は、ジメチルアミノメチル基、ジメチルアミノエチル基、ジエチルアミノメチル基、ジエチルアミノエチル基、メチルシリル(メチル)アミノメチル基、メチルシリル(メチル)アミノエチル基、メチルシリル(エチル)アミノメチル基、メチルシリル(エチル)アミノエチル基、ジメチルシリルアミノメチル基、ジメチルシリルアミノエチル基、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、r1が2以上の場合には同一でも異なっていてもよい。
R38は、炭素数1~20のヒドロカルビルオキシ基、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、r2が2の場合には同一でも異なっていてもよい。
一般式(v)で表されるアミノアルコキシシラン化合物の具体例としては、N-(1,3-ジメチルブチリデン)-3-トリエトキシシリル-1-プロパンアミンが挙げられる。
一般式(vi)中、R40は、トリメチルシリル基、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基である。
R41は、炭素数1~20のヒドロカルビルオキシ基、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基である。
R42は、炭素数1~20の二価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の二価の芳香族炭化水素基である。
ここで、TMSは、トリメチルシリル基を示す(以下、同じ。)。
R41は、炭素数1~20のヒドロカルビルオキシ基、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基である。
R42は、炭素数1~20の二価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の二価の芳香族炭化水素基である。
ここで、TMSは、トリメチルシリル基を示す(以下、同じ。)。
一般式(vii)中、R43及びR44は、それぞれ独立して炭素数1~20の二価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の二価の芳香族炭化水素基である。
R45は、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、各R45は、同一でも異なっていてもよい。
R45は、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であり、各R45は、同一でも異なっていてもよい。
一般式(viii)中、s1+s2は3である(但し、s1は0~2の整数であり、s2は1~3の整数である)。
R46は、炭素数1~20の二価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の二価の芳香族炭化水素基である。
R47及びR48は、それぞれ独立して炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基である。複数のR47又はR48は、同一でも異なっていてもよい。
R46は、炭素数1~20の二価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の二価の芳香族炭化水素基である。
R47及びR48は、それぞれ独立して炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基である。複数のR47又はR48は、同一でも異なっていてもよい。
一般式(ix)中、Xは、ハロゲン原子である。
R49は、炭素数1~20の二価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の二価の芳香族炭化水素基である。
R50及びR51は、それぞれ独立して加水分解性基、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であるか、或いは、R50及びR51は結合して二価の有機基を形成している。
R52及びR53は、それぞれ独立してハロゲン原子、ヒドロカルビルオキシ基、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基である。
R50及びR51としては、加水分解性基が好ましく、加水分解性基として、トリメチルシリル基、tert-ブチルジメチルシリル基が好ましく、トリメチルシリル基が特に好ましい。
R49は、炭素数1~20の二価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の二価の芳香族炭化水素基である。
R50及びR51は、それぞれ独立して加水分解性基、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基であるか、或いは、R50及びR51は結合して二価の有機基を形成している。
R52及びR53は、それぞれ独立してハロゲン原子、ヒドロカルビルオキシ基、炭素数1~20の一価の脂肪族若しくは脂環式炭化水素基又は炭素数6~18の一価の芳香族炭化水素基である。
R50及びR51としては、加水分解性基が好ましく、加水分解性基として、トリメチルシリル基、tert-ブチルジメチルシリル基が好ましく、トリメチルシリル基が特に好ましい。
上記一般式(ii)で表されるアミノアルコキシシラン化合物は、下記一般式(x)、下記一般式(xi)、下記一般式(xii)又は下記一般式(xiii)で表されるアミノアルコキシシラン化合物であることも好ましい。
一般式(x)~(xiii)中、記号U、Vは、それぞれ0~2且つU+V=2を満たす整数である。
一般式(x)~(xiii)中のR54~92は、同一でも異なっていてもよく、炭素数1~20の一価若しくは二価の脂肪族又は脂環式炭化水素基、或いは炭素数6~18の一価若しくは二価の芳香族炭化水素基である。
一般式(xiii)中のα及びβは、0~5の整数である。
一般式(x)~(xiii)中のR54~92は、同一でも異なっていてもよく、炭素数1~20の一価若しくは二価の脂肪族又は脂環式炭化水素基、或いは炭素数6~18の一価若しくは二価の芳香族炭化水素基である。
一般式(xiii)中のα及びβは、0~5の整数である。
一般式(x)、一般式(xi)、一般式(xii)を満たす化合物の中でも、特に、N1,N1,N7,N7-テトラメチル-4-((トリメトキシシリル)メチル)へプタン-1,7-ジアミン、2-((ヘキシル-ジメトキシシリル)メチル)-N1,N1,N3,N3-2-ペンタメチルプロパン-1,3-ジアミン、N1-(3-(ジメチルアミノ)プロピル)-N3,N3-ジメチル-N1-(3-(トリメトキシシリル)プロピル)プロパン-1,3-ジアミン、4-(3-(ジメチルアミノ)プロピル)-N1,N1,N7,N7-テトラメチル-4-((トリメトキシシリル)メチル)へプタン-1,7-ジアミンが好ましい。
また、一般式(xiii)を満たす化合物の中でも、特に、N,N-ジメチル-2-(3-(ジメトキシメチルシリル)プロポキシ)エタンアミン、N,N-ビス(トリメチルシリル)-2-(3-(トリメトキシシリル)プロポキシ)エタンアミン、N,N-ジメチル-2-(3-(トリメトキシシリル)プロポキシ)エタンアミン、N,N-ジメチル-3-(3-(トリメトキシシリル)プロポキシ)プロパン-1-アミンが好ましい。
また、一般式(xiii)を満たす化合物の中でも、特に、N,N-ジメチル-2-(3-(ジメトキシメチルシリル)プロポキシ)エタンアミン、N,N-ビス(トリメチルシリル)-2-(3-(トリメトキシシリル)プロポキシ)エタンアミン、N,N-ジメチル-2-(3-(トリメトキシシリル)プロポキシ)エタンアミン、N,N-ジメチル-3-(3-(トリメトキシシリル)プロポキシ)プロパン-1-アミンが好ましい。
--第2の好適態様の変性スチレン-ブタジエンゴム--
前記スチレン-ブタジエンゴム(SBR)は、下記一般式(I)で表されるカップリング剤によって変性されていることも好ましい。この場合、タイヤの低燃費性と耐摩耗性を更に向上させることができる。
前記スチレン-ブタジエンゴム(SBR)は、下記一般式(I)で表されるカップリング剤によって変性されていることも好ましい。この場合、タイヤの低燃費性と耐摩耗性を更に向上させることができる。
上記一般式(I)中、R1、R2及びR3は、それぞれ独立して単結合又は炭素数1~20のアルキレン基を示す。
R4、R5、R6、R7及びR9は、それぞれ独立して炭素数1~20のアルキル基を示す。
R8及びR11は、それぞれ独立して炭素数1~20のアルキレン基を示す。
R10は、炭素数1~20の、アルキル基又はトリアルキルシリル基を示す。
mは、1~3の整数を示し、pは、1又は2を示す。
R1~R11、m及びpは、複数存在する場合、それぞれ独立している。
i、j及びkは、それぞれ独立して0~6の整数を示す。但し、(i+j+k)は、3~10の整数である。
Aは、炭素数1~20の、炭化水素基、又は、酸素原子、窒素原子、ケイ素原子、硫黄原子及びリン原子からなる群から選択される少なくとも一種の原子を有し、活性水素を有しない有機基を示す。
ここで、一般式(I)中、Aが示す炭化水素基は、飽和、不飽和、脂肪族、及び芳香族の炭化水素基を包含する。活性水素を有しない有機基としては、例えば、水酸基(-OH)、第2級アミノ基(>NH)、第1級アミノ基(-NH2)、スルフヒドリル基(-SH)等の活性水素を有する官能基、を有しない有機基が挙げられる。
R4、R5、R6、R7及びR9は、それぞれ独立して炭素数1~20のアルキル基を示す。
R8及びR11は、それぞれ独立して炭素数1~20のアルキレン基を示す。
R10は、炭素数1~20の、アルキル基又はトリアルキルシリル基を示す。
mは、1~3の整数を示し、pは、1又は2を示す。
R1~R11、m及びpは、複数存在する場合、それぞれ独立している。
i、j及びkは、それぞれ独立して0~6の整数を示す。但し、(i+j+k)は、3~10の整数である。
Aは、炭素数1~20の、炭化水素基、又は、酸素原子、窒素原子、ケイ素原子、硫黄原子及びリン原子からなる群から選択される少なくとも一種の原子を有し、活性水素を有しない有機基を示す。
ここで、一般式(I)中、Aが示す炭化水素基は、飽和、不飽和、脂肪族、及び芳香族の炭化水素基を包含する。活性水素を有しない有機基としては、例えば、水酸基(-OH)、第2級アミノ基(>NH)、第1級アミノ基(-NH2)、スルフヒドリル基(-SH)等の活性水素を有する官能基、を有しない有機基が挙げられる。
上記一般式(I)で表されるカップリング剤によって変性されたスチレン-ブタジエンゴムは、重量平均分子量(Mw)が20×104~300×104であって、該変性スチレン-ブタジエンゴムの総量に対して、分子量が200×104~500×104である変性スチレン-ブタジエンゴムを、0.25~30質量%含み、収縮因子(g’)が0.64未満であることが好ましい。
一般に、分岐を有する重合体は、同一の絶対分子量である直鎖状の重合体と比較した場合に、分子の大きさが小さくなる傾向にあり、前記収縮因子(g’)は、想定上同一の絶対分子量である直鎖状重合体に対する、分子の占める大きさの比率の指標である。即ち、重合体の分岐度が大きくなれば、収縮因子(g’)は小さくなる傾向にある。本実施形態では、分子の大きさの指標として固有粘度を用い、直鎖状の重合体は、固有粘度[η]=-3.883M0.771の関係式に従うものとして用いる。変性スチレン-ブタジエンゴムの各絶対分子量のときの収縮因子(g’)を算出し、絶対分子量が100×104~200×104のときの収縮因子(g’)の平均値を、その変性スチレン-ブタジエンゴムの収縮因子(g’)とする。ここで、「分岐」とは、1つの重合体に対して、他の重合体が直接又は間接的に結合することにより形成されるものである。また、「分岐度」は、1の分岐に対して、直接又は間接的に互いに結合している重合体の数である。例えば、後述するカップリング残基を介して間接的に、後述の5つのスチレン-ブタジエン共重合体鎖が互いに結合している場合には、分岐度は5である。なお、カップリング残基とは、スチレン-ブタジエン共重合体鎖に結合される、変性スチレン-ブタジエンゴムの構成単位であり、例えば、後述するスチレン-ブタジエン共重合体とカップリング剤とを反応させることによって生じる、カップリング剤由来の構造単位である。また、スチレン-ブタジエン共重合体鎖は、変性スチレン-ブタジエンゴムの構成単位であり、例えば、後述するスチレン-ブタジエン共重合体とカップリング剤とを反応させることによって生じる、スチレン-ブタジエン共重合体由来の構造単位である。
前記収縮因子(g’)は、好ましくは0.64未満であり、より好ましくは0.63以下であり、より好ましくは0.60以下であり、更に好ましくは0.59以下であり、より一層好ましくは0.57以下である。また、収縮因子(g’)の下限は、特に限定されず、検出限界値以下であってもよいが、好ましくは0.30以上であり、より好ましくは0.33以上であり、更に好ましくは0.35以上であり、より一層好ましくは0.45以上である。収縮因子(g’)がこの範囲である変性スチレン-ブタジエンゴムを使用することで、トレッドゴム層に用いるゴム組成物の加工性が向上する。
収縮因子(g’)は分岐度に依存する傾向にあるため、例えば、分岐度を指標として収縮因子(g’)を制御することができる。具体的には、分岐度が6である変性スチレン-ブタジエンゴムとした場合には、その収縮因子(g’)は0.59以上0.63以下となる傾向にあり、分岐度が8である変性スチレン-ブタジエンゴムとした場合には、その収縮因子(g’)は0.45以上0.59以下となる傾向にある。
前記収縮因子(g’)は、好ましくは0.64未満であり、より好ましくは0.63以下であり、より好ましくは0.60以下であり、更に好ましくは0.59以下であり、より一層好ましくは0.57以下である。また、収縮因子(g’)の下限は、特に限定されず、検出限界値以下であってもよいが、好ましくは0.30以上であり、より好ましくは0.33以上であり、更に好ましくは0.35以上であり、より一層好ましくは0.45以上である。収縮因子(g’)がこの範囲である変性スチレン-ブタジエンゴムを使用することで、トレッドゴム層に用いるゴム組成物の加工性が向上する。
収縮因子(g’)は分岐度に依存する傾向にあるため、例えば、分岐度を指標として収縮因子(g’)を制御することができる。具体的には、分岐度が6である変性スチレン-ブタジエンゴムとした場合には、その収縮因子(g’)は0.59以上0.63以下となる傾向にあり、分岐度が8である変性スチレン-ブタジエンゴムとした場合には、その収縮因子(g’)は0.45以上0.59以下となる傾向にある。
上記一般式(I)で表されるカップリング剤によって変性されたスチレン-ブタジエンゴムは、分岐を有し、分岐度が5以上であることが好ましい。また、変性スチレン-ブタジエンゴムは、1以上のカップリング残基と、該カップリング残基に対して結合するスチレン-ブタジエン共重合体鎖とを有し、更に、上記分岐が、1の当該カップリング残基に対して5以上の当該スチレン-ブタジエン共重合体鎖が結合している分岐を含むことがより好ましい。分岐度が5以上であること、及び、分岐が、1のカップリング残基に対して5以上のスチレン-ブタジエン共重合体鎖が結合している分岐を含むよう、変性スチレン-ブタジエンゴムの構造を特定することにより、より確実に収縮因子(g’)を0.64未満にすることができる。なお、1のカップリング残基に対して結合しているスチレン-ブタジエン共重合体鎖の数は、収縮因子(g’)の値から確認することができる。
また、前記変性スチレン-ブタジエンゴムは、分岐を有し、分岐度が6以上であることがより好ましい。また、変性スチレン-ブタジエンゴムは、1以上のカップリング残基と、該カップリング残基に対して結合するスチレン-ブタジエン共重合体鎖とを有し、更に、上記分岐が、1の当該カップリング残基に対して6以上の当該スチレン-ブタジエン共重合体鎖が結合している分岐を含むことが、更に好ましい。分岐度が6以上であること、及び、分岐が、1のカップリング残基に対して6以上のスチレン-ブタジエン共重合体鎖が結合している分岐を含むよう、変性スチレン-ブタジエンゴムの構造を特定することにより、収縮因子(g’)を0.63以下にすることができる。
更に、前記変性スチレン-ブタジエンゴムは、分岐を有し、分岐度が7以上であることが更に好ましく、分岐度が8以上であることがより一層好ましい。分岐度の上限は、特に限定されないが、18以下であることが好ましい。また、変性スチレン-ブタジエンゴムは、1以上のカップリング残基と、該カップリング残基に対して結合するスチレン-ブタジエン共重合体鎖とを有し、更に、上記分岐が、1の当該カップリング残基に対して7以上の当該スチレン-ブタジエン共重合体鎖が結合している分岐を含むことが、より一層好ましく、1の当該カップリング残基に対して8以上の当該スチレン-ブタジエン共重合体鎖が結合している分岐を含むことが、特に好ましい。分岐度が8以上であること、及び、分岐が、1のカップリング残基に対して8以上のスチレン-ブタジエン共重合体鎖が結合している分岐を含むよう、変性スチレン-ブタジエンゴムの構造を特定することにより、収縮因子(g’)を0.59以下にすることができる。
また、前記変性スチレン-ブタジエンゴムは、分岐を有し、分岐度が6以上であることがより好ましい。また、変性スチレン-ブタジエンゴムは、1以上のカップリング残基と、該カップリング残基に対して結合するスチレン-ブタジエン共重合体鎖とを有し、更に、上記分岐が、1の当該カップリング残基に対して6以上の当該スチレン-ブタジエン共重合体鎖が結合している分岐を含むことが、更に好ましい。分岐度が6以上であること、及び、分岐が、1のカップリング残基に対して6以上のスチレン-ブタジエン共重合体鎖が結合している分岐を含むよう、変性スチレン-ブタジエンゴムの構造を特定することにより、収縮因子(g’)を0.63以下にすることができる。
更に、前記変性スチレン-ブタジエンゴムは、分岐を有し、分岐度が7以上であることが更に好ましく、分岐度が8以上であることがより一層好ましい。分岐度の上限は、特に限定されないが、18以下であることが好ましい。また、変性スチレン-ブタジエンゴムは、1以上のカップリング残基と、該カップリング残基に対して結合するスチレン-ブタジエン共重合体鎖とを有し、更に、上記分岐が、1の当該カップリング残基に対して7以上の当該スチレン-ブタジエン共重合体鎖が結合している分岐を含むことが、より一層好ましく、1の当該カップリング残基に対して8以上の当該スチレン-ブタジエン共重合体鎖が結合している分岐を含むことが、特に好ましい。分岐度が8以上であること、及び、分岐が、1のカップリング残基に対して8以上のスチレン-ブタジエン共重合体鎖が結合している分岐を含むよう、変性スチレン-ブタジエンゴムの構造を特定することにより、収縮因子(g’)を0.59以下にすることができる。
前記スチレン-ブタジエン共重合体鎖は、少なくともその1つの末端が、それぞれカップリング残基が有するケイ素原子と結合していることが好ましい。この場合、複数のスチレン-ブタジエン共重合体鎖の末端が、1のケイ素原子と結合していてもよい。また、スチレン-ブタジエン共重合体鎖の末端と炭素数1~20のアルコキシ基又は水酸基とが、一つのケイ素原子に結合し、その結果として、その1つのケイ素原子が炭素数1~20のアルコキシシリル基又はシラノール基を構成していてもよい。
前記変性スチレン-ブタジエンゴムは、伸展油を加えた油展ゴムとすることができる。該変性スチレン-ブタジエンゴムは、非油展であっても、油展であってもよいが、耐摩耗性の観点から、100℃で測定されるムーニー粘度が、20以上100以下であることが好ましく、30以上80以下であることがより好ましい。
前記変性スチレン-ブタジエンゴムの重量平均分子量(Mw)は、好ましくは20×104以上300×104以下であり、より好ましくは50×104以上であり、より好ましくは64×104以上であり、更に好ましくは80×104以上である。また、上記重量平均分子量は、好ましくは250×104以下であり、更に好ましくは180×104以下であり、より好ましくは150×104以下である。重量平均分子量が20×104以上であると、トレッドゴム層の低ロス性と耐摩耗性を十分に向上させることができる。また、重量平均分子量が300×104以下であると、トレッドゴム層に用いるゴム組成物の加工性が向上する。
前記変性スチレン-ブタジエンゴムは、該変性スチレン-ブタジエンゴムの総量(100質量%)に対して、分子量が200×104以上500×104以下である変性スチレン-ブタジエンゴム(以下、「特定の高分子量成分」ともいう。)を、0.25質量%以上30質量%以下含むことが好ましい。該特定の高分子量成分の含有量が0.25質量%以上30質量%以下の場合、トレッドゴム層の低ロス性と耐摩耗性を十分に向上させることができる。前記変性スチレン-ブタジエンゴムは、前記特定の高分子量成分を、好ましくは1.0質量%以上含み、より好ましくは1.4質量%以上含み、更に好ましくは1.75質量%以上含み、より一層好ましくは2.0質量%以上含み、特に好ましくは2.15質量%以上含み、極めて好ましくは2.5質量%以上含む。また、変性スチレン-ブタジエンゴムは、前記特定の高分子量成分を、好ましくは28質量%以下含み、より好ましくは25質量%以下含み、更に好ましくは20質量%以下含み、より一層好ましくは18質量%以下含む。
なお、本明細書において、ゴム成分の「分子量」とは、GPC(ゲルパーミエーションクロマトグラフィー)によって得られる、標準ポリスチレン換算分子量である。特定の高分子量成分の含有量がこのような範囲にある変性スチレン-ブタジエンゴムを得るためには、後述する重合工程と反応工程とにおける反応条件を制御することが好ましい。例えば、重合工程においては、後述する有機モノリチウム化合物の重合開始剤としての使用量を調整すればよい。また、重合工程において、連続式、及び回分式のいずれの重合様式においても、滞留時間分布を有する方法を用いる、即ち、成長反応の時間分布を広げるとよい。
なお、本明細書において、ゴム成分の「分子量」とは、GPC(ゲルパーミエーションクロマトグラフィー)によって得られる、標準ポリスチレン換算分子量である。特定の高分子量成分の含有量がこのような範囲にある変性スチレン-ブタジエンゴムを得るためには、後述する重合工程と反応工程とにおける反応条件を制御することが好ましい。例えば、重合工程においては、後述する有機モノリチウム化合物の重合開始剤としての使用量を調整すればよい。また、重合工程において、連続式、及び回分式のいずれの重合様式においても、滞留時間分布を有する方法を用いる、即ち、成長反応の時間分布を広げるとよい。
前記変性スチレン-ブタジエンゴムにおいては、数平均分子量(Mn)に対する重量平均分子量(Mw)の比で表される分子量分布(Mw/Mn)は、1.6以上3.0以下が好ましい。変性スチレン-ブタジエンゴムの分子量分布がこの範囲であれば、トレッドゴム層に用いるゴム組成物の加工性が良好となる。
前記変性スチレン-ブタジエンゴムの製造方法は、特に限定されるものではないが、有機モノリチウム化合物を重合開始剤として用い、ブタジエンとスチレンを共重合して、スチレン-ブタジエン共重合体を得る重合工程と、該スチレン-ブタジエン共重合体の活性末端に対して、5官能以上の反応性化合物(以下、「カップリング剤」ともいう。)を反応させる反応工程と、を有することが好ましい。
前記重合工程は、リビングアニオン重合反応による成長反応による重合が好ましく、これにより、活性末端を有するスチレン-ブタジエン共重合体を得ることができ、高変性率の変性スチレン-ブタジエンゴムを得ることができる。
前記スチレン-ブタジエン共重合体は、1,3-ブタジエンとスチレンを共重合して得られる。
前記スチレン-ブタジエン共重合体は、1,3-ブタジエンとスチレンを共重合して得られる。
前記有機モノリチウム化合物の重合開始剤としての使用量は、目標とするスチレン-ブタジエン共重合体又は変性スチレン-ブタジエンゴムの分子量によって決めることが好ましい。重合開始剤の使用量に対する、1,3-ブタジエン、スチレン等の単量体の使用量が重合度に関係し、即ち、数平均分子量及び/又は重量平均分子量に関係する。従って、分子量を増大させるためには、重合開始剤を減らす方向に調整するとよく、分子量を低下させるためには、重合開始剤量を増やす方向に調整するとよい。
前記有機モノリチウム化合物は、工業的入手の容易さ及び重合反応のコントロールの容易さの観点から、好ましくは、アルキルリチウム化合物である。この場合、重合開始末端にアルキル基を有する、スチレン-ブタジエン共重合体が得られる。アルキルリチウム化合物としては、例えば、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、n-ヘキシルリチウム、ベンジルリチウム、フェニルリチウム、及びスチルベンリチウムが挙げられる。アルキルリチウム化合物としては、工業的入手の容易さ及び重合反応のコントロールの容易さの観点から、n-ブチルリチウム、及びsec-ブチルリチウムが好ましい。これらの有機モノリチウム化合物は、1種単独で用いてもよいし、2種以上を併用してもよい。
前記有機モノリチウム化合物は、工業的入手の容易さ及び重合反応のコントロールの容易さの観点から、好ましくは、アルキルリチウム化合物である。この場合、重合開始末端にアルキル基を有する、スチレン-ブタジエン共重合体が得られる。アルキルリチウム化合物としては、例えば、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、n-ヘキシルリチウム、ベンジルリチウム、フェニルリチウム、及びスチルベンリチウムが挙げられる。アルキルリチウム化合物としては、工業的入手の容易さ及び重合反応のコントロールの容易さの観点から、n-ブチルリチウム、及びsec-ブチルリチウムが好ましい。これらの有機モノリチウム化合物は、1種単独で用いてもよいし、2種以上を併用してもよい。
前記重合工程において、重合反応様式としては、例えば、回分式、連続式の重合反応様式が挙げられる。連続式においては、1個又は2個以上の連結された反応器を用いることができる。連続式の反応器は、例えば、撹拌機付きの槽型、管型のものが用いられる。連続式においては、好ましくは、連続的に単量体、不活性溶媒、及び重合開始剤が反応器にフィードされ、該反応器内で重合体を含む重合体溶液が得られ、連続的に重合体溶液が排出される。回分式の反応器は、例えば、攪拌機付の槽型のものが用いられる。回分式においては、好ましくは、単量体、不活性溶媒、及び重合開始剤がフィードされ、必要により単量体が重合中に連続的又は断続的に追加され、該反応器内で重合体を含む重合体溶液が得られ、重合終了後に重合体溶液が排出される。本実施形態において、高い割合で活性末端を有するスチレン-ブタジエン共重合体を得るには、重合体を連続的に排出し、短時間で次の反応に供することが可能な、連続式が好ましい。
前記重合工程は、不活性溶媒中で重合することが好ましい。溶媒としては、例えば、飽和炭化水素、芳香族炭化水素等の炭化水素系溶媒が挙げられる。具体的な炭化水素系溶媒としては、以下のものに限定されないが、例えば、ブタン、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン、メチルシクロヘキサン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素及びそれらの混合物からなる炭化水素が挙げられる。重合反応に供する前に、不純物であるアレン類、及びアセチレン類を有機金属化合物で処理することで、高濃度の活性末端を有するスチレン-ブタジエン共重合体が得られる傾向にあり、高い変性率の変性スチレン-ブタジエンゴムが得られる傾向にあるため好ましい。
前記重合工程においては、極性化合物を添加してもよい。極性化合物を添加することで、スチレンを1,3-ブタジエンとランダムに共重合させることができ、また、極性化合物は、1,3-ブタジエン部のミクロ構造を制御するためのビニル化剤としても用いることができる傾向にある。
前記極性化合物としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、ジメトキシベンゼン、2,2-ビス(2-オキソラニル)プロパン等のエーテル類;テトラメチルエチレンジアミン、ジピペリジノエタン、トリメチルアミン、トリエチルアミン、ピリジン、キヌクリジン等の第3級アミン化合物;カリウム-tert-アミラート、カリウム-tert-ブチラート、ナトリウム-tert-ブチラート、ナトリウムアミラート等のアルカリ金属アルコキシド化合物;トリフェニルホスフィン等のホスフィン化合物等を用いることができる。これらの極性化合物は、1種単独で用いてもよいし、2種以上を併用してもよい。
前記極性化合物としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、ジメトキシベンゼン、2,2-ビス(2-オキソラニル)プロパン等のエーテル類;テトラメチルエチレンジアミン、ジピペリジノエタン、トリメチルアミン、トリエチルアミン、ピリジン、キヌクリジン等の第3級アミン化合物;カリウム-tert-アミラート、カリウム-tert-ブチラート、ナトリウム-tert-ブチラート、ナトリウムアミラート等のアルカリ金属アルコキシド化合物;トリフェニルホスフィン等のホスフィン化合物等を用いることができる。これらの極性化合物は、1種単独で用いてもよいし、2種以上を併用してもよい。
前記重合工程において、重合温度は、生産性の観点から、0℃以上であることが好ましく、120℃以下であることが更に好ましく、50℃以上100℃以下であることが特に好ましい。このような範囲にあることで、重合終了後の活性末端に対するカップリング剤の反応量を充分に確保することができる傾向にある。
前記スチレン-ブタジエン共重合体又は変性スチレン-ブタジエンゴム中の結合ブタジエン量は、特に限定されないが、40質量%以上100質量%以下であることが好ましく、55質量%以上80質量%以下であることがより好ましい。
また、前記スチレン-ブタジエン共重合体又は変性スチレン-ブタジエンゴム中の結合スチレン量は、特に限定されないが、0質量%超60質量%以下であることが好ましく、20質量%以上45質量%以下であることがより好ましい。
前記結合ブタジエン量及び結合スチレン量が上記範囲であると、トレッドゴム層の低ロス性と耐摩耗性とを更に向上させることができる。
なお、結合スチレン量は、フェニル基の紫外吸光によって測定でき、ここから結合ブタジエン量も求めることができる。
また、前記スチレン-ブタジエン共重合体又は変性スチレン-ブタジエンゴム中の結合スチレン量は、特に限定されないが、0質量%超60質量%以下であることが好ましく、20質量%以上45質量%以下であることがより好ましい。
前記結合ブタジエン量及び結合スチレン量が上記範囲であると、トレッドゴム層の低ロス性と耐摩耗性とを更に向上させることができる。
なお、結合スチレン量は、フェニル基の紫外吸光によって測定でき、ここから結合ブタジエン量も求めることができる。
前記スチレン-ブタジエン共重合体又は変性スチレン-ブタジエンゴムにおいて、ブタジエン結合単位中のビニル結合量は、特に限定されないが、10モル%以上75モル%以下であることが好ましく、20モル%以上65モル%以下であることがより好ましい。ビニル結合量が上記範囲であると、トレッドゴム層の低ロス性と耐摩耗性とを更に向上させることができる。
なお、変性スチレン-ブタジエンゴムについては、ハンプトンの方法[R.R.Hampton,Analytical Chemistry,21,923(1949)]により、ブタジエン結合単位中のビニル結合量(1,2-結合量)を求めることができる。
なお、変性スチレン-ブタジエンゴムについては、ハンプトンの方法[R.R.Hampton,Analytical Chemistry,21,923(1949)]により、ブタジエン結合単位中のビニル結合量(1,2-結合量)を求めることができる。
上記一般式(I)で表されるカップリング剤が有するアルコキシシリル基は、例えば、スチレン-ブタジエン共重合体が有する活性末端と反応して、アルコキシリチウムが解離し、スチレン-ブタジエン共重合体鎖の末端とカップリング残基のケイ素との結合を形成する傾向にある。カップリング剤1分子が有するSiORの総数から、反応により減じたSiOR数を差し引いた値が、カップリング残基が有するアルコキシシリル基の数となる。また、カップリング剤が有するアザシラサイクル基は、>N-Li結合及びスチレン-ブタジエン共重合体末端とカップリング残基のケイ素との結合を形成する。なお、>N-Li結合は、仕上げ時の水等により容易に>NH及びLiOHとなる傾向にある。また、カップリング剤において、未反応で残存したアルコキシシリル基は、仕上げ時の水等により容易にシラノール(Si-OH基)となり得る傾向にある。
前記反応工程における反応温度は、好ましくはスチレン-ブタジエン共重合体の重合温度と同様の温度であり、より好ましくは0℃以上120℃以下であり、更に好ましくは50℃以上100℃以下である。また、重合工程後からカップリング剤が添加されるまでの温度変化は、好ましくは10℃以下であり、より好ましくは5℃以下である。
前記反応工程における反応時間は、好ましくは10秒以上であり、より好ましくは30秒以上である。重合工程の終了時から反応工程の開始時までの時間は、カップリング率の観点から、より短い方が好ましいが、より好ましくは5分以内である。
反応工程における混合は、機械的な攪拌、スタティックミキサーによる攪拌等のいずれでもよい。重合工程が連続式である場合は、反応工程も連続式であることが好ましい。反応工程における反応器は、例えば、撹拌機付きの槽型、管型のものが用いられる。カップリング剤は、不活性溶媒により希釈して反応器に連続的に供給してもよい。重合工程が回分式の場合は、重合反応器にカップリング剤を投入する方法でも、別の反応器に移送して反応工程を行ってもよい。
前記反応工程における反応時間は、好ましくは10秒以上であり、より好ましくは30秒以上である。重合工程の終了時から反応工程の開始時までの時間は、カップリング率の観点から、より短い方が好ましいが、より好ましくは5分以内である。
反応工程における混合は、機械的な攪拌、スタティックミキサーによる攪拌等のいずれでもよい。重合工程が連続式である場合は、反応工程も連続式であることが好ましい。反応工程における反応器は、例えば、撹拌機付きの槽型、管型のものが用いられる。カップリング剤は、不活性溶媒により希釈して反応器に連続的に供給してもよい。重合工程が回分式の場合は、重合反応器にカップリング剤を投入する方法でも、別の反応器に移送して反応工程を行ってもよい。
前記一般式(I)において、Aは、好ましくは下記一般式(II)~(V)のいずれかで表される。Aが一般式(II)~(V)のいずれかで表されるものであることにより、より優れた性能を有する変性スチレン-ブタジエンゴムを得ることができる。
前記一般式(II)~(V)中のB1、B2、B4、B5に関して、炭素数1~20の炭化水素基としては、炭素数1~20のアルキレン基等が挙げられる。
好ましくは、前記一般式(I)において、Aは、前記一般式(II)又は(III)で表され、kは、0を示す。
より好ましくは、前記一般式(I)において、Aは、前記一般式(II)又は(III)で表され、kは、0を示し、前記一般式(II)又は(III)において、aは、2~10の整数を示す。
より一層好ましくは、前記一般式(I)において、Aは、前記一般式(II)で表され、kは、0を示し、前記一般式(II)において、aは、2~10の整数を示す。
かかるカップリング剤としては、例えば、ビス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]アミン、トリス(3-トリメトキシシリルプロピル)アミン、トリス(3-トリエトキシシリルプロピル)アミン、トリス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、テトラキス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-ビスアミノメチルシクロヘキサン、トリス(3-トリメトキシシリルプロピル)-メチル-1,3-プロパンジアミン、ビス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリスメトキシシリルプロピル)-メチル-1,3-プロパンジアミン等が挙げられ、これらの中でも、テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-ビスアミノメチルシクロヘキサンが特に好ましい。
より好ましくは、前記一般式(I)において、Aは、前記一般式(II)又は(III)で表され、kは、0を示し、前記一般式(II)又は(III)において、aは、2~10の整数を示す。
より一層好ましくは、前記一般式(I)において、Aは、前記一般式(II)で表され、kは、0を示し、前記一般式(II)において、aは、2~10の整数を示す。
かかるカップリング剤としては、例えば、ビス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]アミン、トリス(3-トリメトキシシリルプロピル)アミン、トリス(3-トリエトキシシリルプロピル)アミン、トリス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、テトラキス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-ビスアミノメチルシクロヘキサン、トリス(3-トリメトキシシリルプロピル)-メチル-1,3-プロパンジアミン、ビス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリスメトキシシリルプロピル)-メチル-1,3-プロパンジアミン等が挙げられ、これらの中でも、テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-ビスアミノメチルシクロヘキサンが特に好ましい。
前記カップリング剤としての一般式(I)で表される化合物の添加量は、スチレン-ブタジエン共重合体のモル数対カップリング剤のモル数が、所望の化学量論的比率で反応させるよう調整することができ、そのことにより所望の分岐度が達成される傾向にある。具体的な重合開始剤のモル数は、カップリング剤のモル数に対して、好ましくは5.0倍モル以上、より好ましくは6.0倍モル以上であることが好ましい。この場合、一般式(I)において、カップリング剤の官能基数((m-1)×i+p×j+k)は、5~10の整数であることが好ましく、6~10の整数であることがより好ましい。
前記特定の高分子成分を有する変性スチレン-ブタジエンゴムを得るためには、スチレン-ブタジエン共重合体の分子量分布(Mw/Mn)を、好ましくは1.5以上2.5以下、より好ましくは1.8以上2.2以下とするとよい。また、得られる変性スチレン-ブタジエンゴムは、GPCによる分子量曲線が一山のピークが検出されるものであることが好ましい。
前記変性スチレン-ブタジエンゴムのGPCによるピーク分子量をMp1、スチレン-ブタジエン共重合体のピーク分子量をMp2とした場合、以下の式が成り立つことが好ましい。
(Mp1/Mp2)<1.8×10-12×(Mp2-120×104)2+2
Mp2は、20×104以上80×104以下、Mp1は30×104以上150×104以下がより好ましい。Mp1及びMp2は、後述する実施例に記載の方法により求める。
前記変性スチレン-ブタジエンゴムのGPCによるピーク分子量をMp1、スチレン-ブタジエン共重合体のピーク分子量をMp2とした場合、以下の式が成り立つことが好ましい。
(Mp1/Mp2)<1.8×10-12×(Mp2-120×104)2+2
Mp2は、20×104以上80×104以下、Mp1は30×104以上150×104以下がより好ましい。Mp1及びMp2は、後述する実施例に記載の方法により求める。
前記変性スチレン-ブタジエンゴムの変性率は、好ましくは30質量%以上、より好ましくは50質量%以上、更に好ましくは70質量%以上である。変性率が30質量%以上であることで、トレッドゴム層の低ロス性と耐摩耗性とを更に向上させることができる。
前記反応工程の後、共重合体溶液に、必要に応じて、失活剤、中和剤等を添加してもよい。失活剤としては、以下のものに限定されないが、例えば、水;メタノール、エタノール、イソプロパノール等のアルコール等が挙げられる。中和剤としては、以下のものに限定されないが、例えば、ステアリン酸、オレイン酸、バーサチック酸(炭素数9~11個で、10個を中心とする、分岐の多いカルボン酸混合物)等のカルボン酸;無機酸の水溶液、炭酸ガス等が挙げられる。
また、前記変性スチレン-ブタジエンゴムは、重合後のゲル生成を防止する観点、及び加工時の安定性を向上させる観点から、例えば、2,6-ジ-tert-ブチル-4-ヒドロキシトルエン(BHT)、n-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェノール)プロピネート、2-メチル-4,6-ビス[(オクチルチオ)メチル]フェノール等の酸化防止剤を添加することが好ましい。
また、前記変性スチレン-ブタジエンゴムは、重合後のゲル生成を防止する観点、及び加工時の安定性を向上させる観点から、例えば、2,6-ジ-tert-ブチル-4-ヒドロキシトルエン(BHT)、n-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェノール)プロピネート、2-メチル-4,6-ビス[(オクチルチオ)メチル]フェノール等の酸化防止剤を添加することが好ましい。
前記変性スチレン-ブタジエンゴムを、重合体溶液から取得する方法としては、公知の方法を用いることができる。その方法として、例えば、スチームストリッピング等で溶媒を分離した後、重合体を濾別し、更にそれを脱水及び乾燥して重合体を取得する方法、フラッシングタンクで濃縮し、更にベント押出し機等で脱揮する方法、ドラムドライヤー等で直接脱揮する方法が挙げられる。
一般式(VI)中、Dは、スチレン-ブタジエン共重合体鎖を示し、該スチレン-ブタジエン共重合体鎖の重量平均分子量は、10×104~100×104であることが好ましい。該スチレン-ブタジエン共重合体鎖は、変性スチレン-ブタジエンゴムの構成単位であり、例えば、スチレン-ブタジエン共重合体とカップリング剤とを反応させることによって生じる、スチレン-ブタジエン共重合体由来の構造単位である。
R12、R13及びR14は、各々独立に、単結合又は炭素数1~20のアルキレン基を示す。
R15及びR18は、各々独立に、炭素数1~20のアルキル基を示す。
R16、R19、及びR20は、各々独立に、水素原子又は炭素数1~20のアルキル基を示す。
R17及びR21は、各々独立に、炭素数1~20のアルキレン基を示す。
R22は、水素原子又は炭素数1~20のアルキル基を示す。
m及びxは、1~3の整数を示し、x≦mであり、pは、1又は2を示し、yは1~3の整数を示し、y≦(p+1)であり、zは、1又は2の整数を示す。
それぞれ複数存在する場合のD、R12~R22、m、p、x、y、及びzは、各々独立しており、同じであっても異なっていてもよい。
また、iは、0~6の整数を示し、jは0~6の整数を示し、kは0~6の整数を示し、(i+j+k)は3~10の整数であり、((x×i)+(y×j)+(z×k))は、5~30の整数である。
Aは、炭素数1~20の炭化水素基、又は、酸素原子、窒素原子、ケイ素原子、硫黄原子、及びリン原子からなる群より選ばれる少なくとも1種の原子を有し、かつ、活性水素を有しない有機基を示す。Aが示す炭化水素基は、飽和、不飽和、脂肪族、及び芳香族の炭化水素基を包含する。上記活性水素を有しない有機基としては、例えば、水酸基(-OH)、第2級アミノ基(>NH)、第1級アミノ基(-NH2)、スルフヒドリル基(-SH)等の活性水素を有する官能基、を有しない有機基が挙げられる。
R12、R13及びR14は、各々独立に、単結合又は炭素数1~20のアルキレン基を示す。
R15及びR18は、各々独立に、炭素数1~20のアルキル基を示す。
R16、R19、及びR20は、各々独立に、水素原子又は炭素数1~20のアルキル基を示す。
R17及びR21は、各々独立に、炭素数1~20のアルキレン基を示す。
R22は、水素原子又は炭素数1~20のアルキル基を示す。
m及びxは、1~3の整数を示し、x≦mであり、pは、1又は2を示し、yは1~3の整数を示し、y≦(p+1)であり、zは、1又は2の整数を示す。
それぞれ複数存在する場合のD、R12~R22、m、p、x、y、及びzは、各々独立しており、同じであっても異なっていてもよい。
また、iは、0~6の整数を示し、jは0~6の整数を示し、kは0~6の整数を示し、(i+j+k)は3~10の整数であり、((x×i)+(y×j)+(z×k))は、5~30の整数である。
Aは、炭素数1~20の炭化水素基、又は、酸素原子、窒素原子、ケイ素原子、硫黄原子、及びリン原子からなる群より選ばれる少なくとも1種の原子を有し、かつ、活性水素を有しない有機基を示す。Aが示す炭化水素基は、飽和、不飽和、脂肪族、及び芳香族の炭化水素基を包含する。上記活性水素を有しない有機基としては、例えば、水酸基(-OH)、第2級アミノ基(>NH)、第1級アミノ基(-NH2)、スルフヒドリル基(-SH)等の活性水素を有する官能基、を有しない有機基が挙げられる。
上記一般式(VI)において、Aは、上記一般式(II)~(V)のいずれかで表されることが好ましい。Aが一般式(II)~(V)のいずれかで表されるものであることにより、トレッドゴム層の低ロス性と耐摩耗性とを更に向上させることができる。
--第3の好適態様の変性スチレン-ブタジエンゴム--
前記スチレン-ブタジエンゴム(SBR)は、少なくとも一方の末端が以下の一般式(1)で表される化合物(アルコキシシラン)を含む変性剤で変性されていることも好ましい。
前記スチレン-ブタジエンゴム(SBR)は、少なくとも一方の末端が以下の一般式(1)で表される化合物(アルコキシシラン)を含む変性剤で変性されていることも好ましい。
前記ゴム成分として、充填剤親和性作用基であるオリゴシロキサン及び3級アミノ基を含む上記一般式(1)で表される化合物を含む変性剤で変性したスチレン-ブタジエンゴムを用いることによって、シリカ等の充填剤の分散性を高めることができる。その結果、トレッドゴム層に用いるゴム組成物中での、充填剤の分散性が改善されることから、低ロス性が大きく改善され、タイヤの転がり抵抗を低減でき、低燃費性を向上させることができる。
上記一般式(1)において、R1~R8は、それぞれ独立して、炭素数1~20のアルキル基であり;L1及びL2は、それぞれ独立して、炭素数1~20のアルキレン基であり;nは、2~4の整数である。
具体的には、式(1)において、R1~R4は、それぞれ独立して置換又は非置換の炭素数1~20のアルキル基であってもよく、前記R1~R4が置換される場合、それぞれ独立して炭素数1~10のアルキル基、炭素数3~10のシクロアルキル基、炭素数1~10のアルコキシ基、炭素数4~10のシクロアルコキシ基、炭素数6~12のアリール基、炭素数6~12のアリールオキシ基、炭素数2~12のアルカノイルオキシ基(Ra-COO-、ここで、Raは炭素数1~9のアルキル基である)、炭素数7~13のアラルキルオキシ基、炭素数7~13のアリールアルキル基、及び、炭素数7~13のアルキルアリール基からなる群から選択される1つ以上の置換基で置換され得る。
より具体的には、前記R1~R4は、置換又は非置換の炭素数1~10のアルキル基であってもよく、さらに具体的には、前記R1~R4は、それぞれ独立して置換又は非置換の、炭素数1~6のアルキル基であってもよい。
より具体的には、前記R1~R4は、置換又は非置換の炭素数1~10のアルキル基であってもよく、さらに具体的には、前記R1~R4は、それぞれ独立して置換又は非置換の、炭素数1~6のアルキル基であってもよい。
また、式(1)において、R5~R8は、それぞれ独立して置換又は非置換の炭素数1~20のアルキル基であり、具体的には、置換又は非置換の炭素数1~10のアルキル基、さらに具体的には、置換又は非置換の炭素数1~6のアルキル基であってもよく、置換される場合、先にR1~R4で説明したような置換基で置換され得る。
なお、前記R5~R8がアルキル基ではなく、加水分解可能な置換基の場合、N-R5R6及びN-R7R8の結合が水分存在下でN-Hに加水分解され、重合体の加工性に悪影響を及ぼし得る。
なお、前記R5~R8がアルキル基ではなく、加水分解可能な置換基の場合、N-R5R6及びN-R7R8の結合が水分存在下でN-Hに加水分解され、重合体の加工性に悪影響を及ぼし得る。
より具体的には、前記式(1)で表される化合物において、R1~R4は、メチル基又はエチル基であり、R5~R8は、炭素数1~10のアルキル基とすることができる。
前記式(1)で表される化合物中のアミノ基、即ち、N-R5R6及びN-R7R8は、3級アミノ基であることが好ましい。前記3級アミノ基は、式(1)で表される化合物が変性剤として用いられた際、更に優れた加工性を有するようにする。
なお、前記R5~R8にアミノ基を保護するための保護基が結合するか、又は、水素が結合する場合には、前記式(1)で表される化合物による効果の具現が難しい可能性がある。水素が結合する場合、変性過程で陰イオンが水素と反応して反応性を失うようになって変性反応自体が不可能となり、保護基が結合する場合、変性反応が行われるが、重合体末端に結合した状態で後加工時に加水分解によって脱保護されて1級又は2級アミノ基になり、脱保護された1級又は2級アミノ基は、その後の配合時に配合物の高粘度化を引き起こし、加工性低下の原因になるおそれがある。
なお、前記R5~R8にアミノ基を保護するための保護基が結合するか、又は、水素が結合する場合には、前記式(1)で表される化合物による効果の具現が難しい可能性がある。水素が結合する場合、変性過程で陰イオンが水素と反応して反応性を失うようになって変性反応自体が不可能となり、保護基が結合する場合、変性反応が行われるが、重合体末端に結合した状態で後加工時に加水分解によって脱保護されて1級又は2級アミノ基になり、脱保護された1級又は2級アミノ基は、その後の配合時に配合物の高粘度化を引き起こし、加工性低下の原因になるおそれがある。
また、前記式(1)で表される化合物中のL1及びL2は、それぞれ独立して置換又は非置換の炭素数1~20のアルキレン基である。
より具体的には、L1及びL2は、それぞれ独立して炭素数1~10のアルキレン基、更に具体的には、メチレン基、エチレン基又はプロピレン基のような炭素数1~6のアルキレン基とすることができる。
より具体的には、L1及びL2は、それぞれ独立して炭素数1~10のアルキレン基、更に具体的には、メチレン基、エチレン基又はプロピレン基のような炭素数1~6のアルキレン基とすることができる。
前記式(1)で表される化合物中のL1及びL2については、分子内のSi原子とN原子との間の距離が近い程、より優れた効果を奏する。但し、SiがNと直接結合する場合、後の処理工程中にSiとNとの間の結合が切れるおそれがあり、この際に発生した2級アミノ基は、後処理中に水により流失する可能性が高く、製造される変性スチレン-ブタジエンゴムでは、シリカ等の充填剤との結合を促進するアミノ基による充填剤との結合が難しく、その結果、充填剤の分散性の向上効果が低下することがある。このようにSiとNとの間の結合の長さによる改善効果を考慮すると、前記L1及びL2は、それぞれ独立して、メチレン基、エチレン基又はプロピレン基のような炭素数1~3のアルキレン基であることが更に好ましく、より具体的には、プロピレン基とすることができる。また、L1及びL2は、先にR1~R4で説明したような置換基で置換され得る。
前記式(1)で表される化合物は、アルコキシシラン構造がスチレン-ブタジエン共重合体の活性末端と結合する一方、Si-O-Si構造及び末端に結合した3つ以上のアミノ基が、シリカ等の充填剤に対して親和力を示すことによって、従来の分子内に一つのアミノ基を含む変性剤と比較して、充填剤と変性スチレン-ブタジエンゴムとの結合を促進させることができる。また、前記スチレン-ブタジエン共重合体の活性末端の結合程度が均一で、カップリング前後に分子量分布の変化を観察すると、カップリング後にも前に比べて分子量分布が大きくならずに一定である。そのため、変性スチレン-ブタジエンゴム自体の物性低下がなく、トレッドゴム層に用いるゴム組成物内の充填剤の凝集を防ぎ、充填剤の分散性を高めることができるため、該ゴム組成物の加工性を向上させることができ、更には、タイヤの低燃費性とウェット制動性をバランスよく改善することが可能となる。
前記反応スキームにおいて、R1~R8、L1及びL2、及びnは、上述した式(1)で定義されたものと同様であり、R’及びR”は、前記縮合反応に影響を及ぼさない任意の置換基である。例えば、前記R’及びR”は、それぞれ独立してR1~R4のいずれか1つと同一のものとすることができる。
前記反応スキームの反応は、酸の存在下で進行し、該酸は一般に縮合反応に用いられるものであれば、制限なしに用いることができる。当業者は、前記反応が進められる反応器の種類、出発物質、反応温度等の多様な工程変数に合わせて、最適な酸を選択することができる。
なお、前記式(1)で表される化合物を含む変性剤によって変性されたスチレン-ブタジエンゴムは、1.1~3.0の狭い分子量分布(Mw/Mn、「多分散指数(PDI)」ともいう。)を有するものとすることができる。前記変性スチレン-ブタジエンゴムの分子量分布が3.0を超えるか、1.1未満の場合、トレッドゴム層の引張特性及び粘弾性が低下するおそれがある。前記変性スチレン-ブタジエンゴムの分子量分布の制御による、引張特性及び粘弾性改善の効果の顕著性を考慮すると、前記変性スチレン-ブタジエンゴムの分子量分布は、1.3~2.0の範囲が好ましい。なお、前記変性スチレン-ブタジエンゴムは、前記変性剤を用いることによって、変性前のスチレン-ブタジエン共重合体の分子量分布と類似する。
前記変性スチレン-ブタジエンゴムの分子量分布は、重量平均分子量(Mw)対数平均分子量(Mn)の比(Mw/Mn)から計算され得る。このとき、前記数平均分子量(Mn)は、n個の重合体分子の分子量を測定し、これら分子量の総合を求めてnで割って計算した個別の重合体分子量の共通平均であり、前記重量平均分子量(Mw)は、高分子組成物の分子量分布を表す。全体分子量の平均は、モル当たりグラム(g/mol)で表すことができる。
また、前記重量平均分子量及び数平均分子量は、それぞれゲル透過型クロマトグラフィ(GPC)で分析されるポリスチレン換算分子量である。
また、前記重量平均分子量及び数平均分子量は、それぞれゲル透過型クロマトグラフィ(GPC)で分析されるポリスチレン換算分子量である。
また、前記変性スチレン-ブタジエンゴムは、上記した分子量分布の条件を満たしていると同時に、数平均分子量(Mn)が50,000g/mol~2,000,000g/molであり、より具体的には、200,000g/mol~800,000g/molとすることができる。前記変性スチレン-ブタジエンゴムは、重量平均分子量(Mw)が100,000g/mol~4,000,000g/molであり、より具体的には、300,000g/mol~1,500,000g/molとすることができる。
前記変性スチレン-ブタジエンゴムの重量平均分子量(Mw)が100,000g/mol未満であるか、又は数平均分子量(Mn)が50,000g/mol未満の場合、トレッドゴム層の引張特性が低下するおそれがある。また、重量平均分子量(Mw)が4,000,000g/molを超えているか、数平均分子量(Mn)が2,000,000g/molを超える場合には、変性スチレン-ブタジエンゴムの加工性の低下によりトレッドゴム層に用いるゴム組成物の作業性が悪化し、混練が困難となり、また、トレッドゴム層の物性を十分に向上させることが難しくなることがある。
より具体的には、前記変性スチレン-ブタジエンゴムは、前記分子量分布とともに、重量平均分子量(Mw)及び数平均分子量(Mn)の条件を同時に満たしている場合には、トレッドゴム層用のゴム組成物の粘弾性と加工性をバランスよく改善させることができる。
前記変性スチレン-ブタジエンゴムの重量平均分子量(Mw)が100,000g/mol未満であるか、又は数平均分子量(Mn)が50,000g/mol未満の場合、トレッドゴム層の引張特性が低下するおそれがある。また、重量平均分子量(Mw)が4,000,000g/molを超えているか、数平均分子量(Mn)が2,000,000g/molを超える場合には、変性スチレン-ブタジエンゴムの加工性の低下によりトレッドゴム層に用いるゴム組成物の作業性が悪化し、混練が困難となり、また、トレッドゴム層の物性を十分に向上させることが難しくなることがある。
より具体的には、前記変性スチレン-ブタジエンゴムは、前記分子量分布とともに、重量平均分子量(Mw)及び数平均分子量(Mn)の条件を同時に満たしている場合には、トレッドゴム層用のゴム組成物の粘弾性と加工性をバランスよく改善させることができる。
前記変性スチレン-ブタジエンゴムは、ブタジエン部分のビニル結合量が5%以上であることが好ましく、10%以上であることが更に好ましく、また、60%以下であることが好ましい。ブタジエン部分のビニル結合量を上記の範囲にすることで、ガラス転移温度を適切な範囲に調整できる。
前記変性スチレン-ブタジエンゴムは、100℃でのムーニー粘度(MV)が、40~140、具体的には60~100であってもよい。前記範囲のムーニー粘度を有する場合、より優れた加工性を示すことができる。
前記ムーニー粘度は、ムーニー粘度計、例えば、Monsanto社のMV2000Eで、100℃、ローター速度2±0.02rpmで、大ローターを使って測定することができる。このとき用いられた試料は、室温(23±3℃)で30分以上放置した後、27±3gを採取して、ダイキャビティの内部に満たしておき、プラテンを作動させて測定することができる。
前記ムーニー粘度は、ムーニー粘度計、例えば、Monsanto社のMV2000Eで、100℃、ローター速度2±0.02rpmで、大ローターを使って測定することができる。このとき用いられた試料は、室温(23±3℃)で30分以上放置した後、27±3gを採取して、ダイキャビティの内部に満たしておき、プラテンを作動させて測定することができる。
前記変性スチレン-ブタジエンゴムは、上述したように、一方の末端が上記一般式(1)で表される化合物を含む変性剤によって変性されることが好ましいが、他方の末端が下記一般式(2)で表される化合物を含む変性剤によって更に変性されていることが好ましい。変性スチレン-ブタジエンゴムの両末端が変性されていることで、トレッドゴム層用のゴム組成物中の充填剤の分散性が更に向上し、タイヤの低燃費性とウェット制動性とをより高いレベルで両立できる。
上記一般式(2)において、R9~R11は、互いに独立して、水素;炭素数1~30のアルキル基;炭素数2~30のアルケニル基;炭素数2~30のアルキニル基;炭素数1~30のヘテロアルキル基、炭素数2~30のヘテロアルケニル基;炭素数2~30のヘテロアルキニル基;炭素数5~30のシクロアルキル基;炭素数6~30のアリール基;又は炭素数3~30の複素環基である。
また、式(2)において、R12は、単結合;置換基で置換又は非置換の炭素数1~20のアルキレン基;置換基で置換又は非置換の炭素数5~20のシクロアルキレン基;又は置換基で置換又は非置換の炭素数5~20のアリーレン基であり、ここで、上記置換基は、炭素数1~10のアルキル基、炭素数5~10のシクロアルキル基、又は炭素数6~20のアリール基である。
また、式(2)において、R13は、炭素数1~30のアルキル基;炭素数2~30のアルケニル基;炭素数2~30のアルキニル基;炭素数1~30のヘテロアルキル基;炭素数2~30のヘテロアルケニル基;炭素数2~30のヘテロアルキニル基;炭素数5~30のシクロアルキル基;炭素数6~30のアリール基;炭素数3~30の複素環基;又は下記一般式(2a)若しくは一般式(2b)で表される作用基であり、mは1~5の整数であり、R13のうち少なくとも1つは、下記一般式(2a)若しくは一般式(2b)で表される作用基であり、mが2~5の整数の場合、複数のR13は、互いに同一であっても、異なってもよい。
また、式(2)において、R12は、単結合;置換基で置換又は非置換の炭素数1~20のアルキレン基;置換基で置換又は非置換の炭素数5~20のシクロアルキレン基;又は置換基で置換又は非置換の炭素数5~20のアリーレン基であり、ここで、上記置換基は、炭素数1~10のアルキル基、炭素数5~10のシクロアルキル基、又は炭素数6~20のアリール基である。
また、式(2)において、R13は、炭素数1~30のアルキル基;炭素数2~30のアルケニル基;炭素数2~30のアルキニル基;炭素数1~30のヘテロアルキル基;炭素数2~30のヘテロアルケニル基;炭素数2~30のヘテロアルキニル基;炭素数5~30のシクロアルキル基;炭素数6~30のアリール基;炭素数3~30の複素環基;又は下記一般式(2a)若しくは一般式(2b)で表される作用基であり、mは1~5の整数であり、R13のうち少なくとも1つは、下記一般式(2a)若しくは一般式(2b)で表される作用基であり、mが2~5の整数の場合、複数のR13は、互いに同一であっても、異なってもよい。
上記一般式(2a)において、R14は、置換基で置換又は非置換の炭素数1~20のアルキレン基;置換基で置換又は非置換の炭素数5~20のシクロアルキレン基;又は置換基で置換又は非置換の炭素数6~20のアリーレン基であり、ここで、上記置換基は、炭素数1~10のアルキル基、炭素数5~10のシクロアルキル基、又は炭素数6~20のアリール基である。
また、式(2a)において、R15及びR16は、互いに独立に、炭素数1~10のアルキル基、炭素数5~10のシクロアルキル基、又は炭素数6~20のアリール基で置換又は非置換の炭素数1~20のアルキレン基である。
また、式(2a)において、R17は、水素;炭素数1~30のアルキル基;炭素数2~30のアルケニル基;炭素数2~30のアルキニル基;炭素数1~30のヘテロアルキル基;炭素数2~30のヘテロアルケニル基;炭素数2~30のヘテロアルキニル基;炭素数5~30のシクロアルキル基;炭素数6~30のアリール基;炭素数3~30の複素環基であり、Xは、N、O又はS原子であり、但し、XがO又はSである場合、R17は存在しない。
また、式(2a)において、R15及びR16は、互いに独立に、炭素数1~10のアルキル基、炭素数5~10のシクロアルキル基、又は炭素数6~20のアリール基で置換又は非置換の炭素数1~20のアルキレン基である。
また、式(2a)において、R17は、水素;炭素数1~30のアルキル基;炭素数2~30のアルケニル基;炭素数2~30のアルキニル基;炭素数1~30のヘテロアルキル基;炭素数2~30のヘテロアルケニル基;炭素数2~30のヘテロアルキニル基;炭素数5~30のシクロアルキル基;炭素数6~30のアリール基;炭素数3~30の複素環基であり、Xは、N、O又はS原子であり、但し、XがO又はSである場合、R17は存在しない。
上記一般式(2b)において、R18は、置換基で置換又は非置換の炭素数1~20のアルキレン基;置換基で置換又は非置換の炭素数5~20のシクロアルキレン基;又は置換基で置換又は非置換の炭素数6~20のアリーレン基であり、ここで、上記置換基は、炭素数1~10のアルキル基、炭素数5~10のシクロアルキル基、又は炭素数6~20のアリール基である。
また、式(2b)において、R19及びR20は、互いに独立に、炭素数1~30のアルキル基;炭素数2~30のアルケニル基;炭素数2~30のアルキニル基;炭素数1~30のヘテロアルキル基;炭素数2~30のヘテロアルケニル基;炭素数2~30のヘテロアルキニル基;炭素数5~30のシクロアルキル基;炭素数6~30のアリール基;炭素数3~30の複素環基である。
また、式(2b)において、R19及びR20は、互いに独立に、炭素数1~30のアルキル基;炭素数2~30のアルケニル基;炭素数2~30のアルキニル基;炭素数1~30のヘテロアルキル基;炭素数2~30のヘテロアルケニル基;炭素数2~30のヘテロアルキニル基;炭素数5~30のシクロアルキル基;炭素数6~30のアリール基;炭素数3~30の複素環基である。
また、上記一般式(2)で表される化合物において、R9~R11は、互いに独立に、水素;炭素数1~10のアルキル基;炭素数2~10のアルケニル基;又は炭素数2~10のアルキニル基であり、R12は、単結合;又は非置換の炭素数1~10のアルキレン基であり、R13は、炭素数1~10のアルキル基;炭素数2~10のアルケニル基;炭素数2~10のアルキニル基;又は上記一般式(2a)又は一般式(2b)で表される作用基であり、上記一般式(2a)において、R14は、非置換の炭素数1~10のアルキレン基であり、R15及びR16は、互いに独立に非置換の炭素数1~10のアルキレン基であり、R17は、炭素数1~10のアルキル基;炭素数5~20のシクロアルキル基;炭素数6~20のアリール基;又は炭素数3~20の複素環基であり、上記一般式(2b)において、R18は、非置換の炭素数1~10のアルキレン基であり、R19及びR20は、互いに独立に炭素数1~10のアルキル基;炭素数5~20のシクロアルキル基;炭素数6~20のアリール基;又は炭素数3~20の複素環基であってもよい。
なお、前記スチレン-ブタジエン共重合体を、上記一般式(2)で表される化合物を含む変性剤によって変性させる場合には、式(2)で表される化合物を含む変性剤を、変性開始剤として用いる。
具体的には、例えば、炭化水素溶媒中で、式(2)で表される化合物を含む変性剤の存在下にて、ブタジエン単量体及びスチレン単量体を重合させることで、式(2)で表される化合物由来の変性基を、前記スチレン-ブタジエン共重体に付与することができる。
具体的には、例えば、炭化水素溶媒中で、式(2)で表される化合物を含む変性剤の存在下にて、ブタジエン単量体及びスチレン単量体を重合させることで、式(2)で表される化合物由来の変性基を、前記スチレン-ブタジエン共重体に付与することができる。
-他のゴム-
前記ゴム成分は、更に他のゴムを含んでもよく、ゴム成分100質量部中、他のゴムの含有量は、35質量部以下が好ましい。かかる他のゴムとしては、ブタジエンゴム(BR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム、エチレン-プロピレンゴム(EPR,EPDM)、フッ素ゴム、シリコーンゴム、ウレタンゴム等が挙げられる。これらの中でも、ブタジエンゴム(BR)、クロロプレンゴム(CR)等のジエン系ゴムが好ましく、ブタジエンゴム(BR)が更に好ましい。
また、ブタジエンゴム(BR)としては、ハイシスポリブタジエンが好ましく、ここで、ハイシスポリブタジエンは、シス-1,4結合含量が90質量%以上であることが好ましい。なお、ゴム成分がブタジエンゴムを含む場合、ブタジエンゴムの含有量は、ゴム成分100質量部中、1~35質量部の範囲が好ましい。
前記ゴム成分は、更に他のゴムを含んでもよく、ゴム成分100質量部中、他のゴムの含有量は、35質量部以下が好ましい。かかる他のゴムとしては、ブタジエンゴム(BR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム、エチレン-プロピレンゴム(EPR,EPDM)、フッ素ゴム、シリコーンゴム、ウレタンゴム等が挙げられる。これらの中でも、ブタジエンゴム(BR)、クロロプレンゴム(CR)等のジエン系ゴムが好ましく、ブタジエンゴム(BR)が更に好ましい。
また、ブタジエンゴム(BR)としては、ハイシスポリブタジエンが好ましく、ここで、ハイシスポリブタジエンは、シス-1,4結合含量が90質量%以上であることが好ましい。なお、ゴム成分がブタジエンゴムを含む場合、ブタジエンゴムの含有量は、ゴム成分100質量部中、1~35質量部の範囲が好ましい。
(樹脂成分)
前記トレッドゴム層は、樹脂成分を含む。該樹脂成分は、前記イソプレン骨格ゴムとのSP値の差が1.40(cal/cm3)1/2以下である。また、前記トレッドゴム層は、下記の式(1):
前記樹脂成分/前記イソプレン骨格ゴムの質量比率≧0.5 ・・・ (1)
を満たす。
前記トレッドゴム層は、樹脂成分を含む。該樹脂成分は、前記イソプレン骨格ゴムとのSP値の差が1.40(cal/cm3)1/2以下である。また、前記トレッドゴム層は、下記の式(1):
前記樹脂成分/前記イソプレン骨格ゴムの質量比率≧0.5 ・・・ (1)
を満たす。
前記樹脂成分と、前記イソプレン骨格ゴムとのSP値の差が1.40(cal/cm3)1/2以下であることで、樹脂成分のイソプレン骨格ゴムに対する相溶性が高くなり、ゴム成分の運動性が制御され、低温領域のヒステリシスロス(tanδ)を向上させることができるため、タイヤのウェット制動性が向上する。なお、樹脂成分とイソプレン骨格ゴムとのSP値の差は、相溶性をより向上させる観点から、1.35(cal/cm3)1/2以下であることが好ましく、0.50(cal/cm3)1/2以下であることがより好ましく、0.45(cal/cm3)1/2以下であることがより好ましく、0.3(cal/cm3)1/2以下であることがより好ましく、0.25(cal/cm3)1/2以下であることが更に好ましい。樹脂成分とイソプレン骨格ゴムとのSP値の差が0.50(cal/cm3)1/2以下であると、樹脂成分とイソプレン骨格ゴムとの相溶性がより向上し、タイヤのウェット制動性が更に向上する。
また、前記樹脂成分と前記イソプレン骨格ゴムの質量比率[樹脂成分/イソプレン骨格ゴムの質量比率]が、0.5以上であることで、タイヤのウェット制動性を更に向上させることができる。なお、樹脂成分とイソプレン骨格ゴムの質量比率[樹脂成分/イソプレン骨格ゴムの質量比率]は、0.65以上が好ましく、0.7以上がより好ましく、0.8以上がより好ましく、また、2.0以下が好ましく、1.9以下がより好ましく、1.8以下であることが更に好ましい。
前記樹脂成分の含有量は、前記ゴム成分100質量部に対して1質量部以上50質量部未満であることが好ましい。トレッドゴム層中の樹脂成分の含有量が、ゴム成分100質量部に対し1質量部以上であると、樹脂成分による効果が十分に発現し、また、50質量部未満であると、タイヤから樹脂成分が析出し難く、樹脂成分による効果を十分に発現できる。トレッドゴム層中の樹脂成分の含有量は、樹脂成分による効果をより高める観点から、ゴム成分100質量部に対して、5質量部以上であることが好ましく、7質量部以上であることがより好ましく、9質量部以上であることがより好ましく、15質量部以上であることがより好ましく、17質量部以上であることが更に好ましい。また、タイヤからの樹脂成分の析出を抑制し、タイヤ外観の低下を抑制する観点から、トレッドゴム層中の樹脂成分の含有量は、ゴム成分100質量部に対して、45質量部以下であることがより好ましく、40質量部以下であることが更に好ましい。
前記樹脂成分は、少なくとも部分的に水素添加されていることが好ましい。樹脂成分が、少なくとも部分的に水素添加されていることで、イソプレン骨格ゴムに対する相溶性が更に高くなり、ゴム成分の運動性が更に制御され、低温領域のヒステリシスロス(tanδ)を更に向上させることができるため、タイヤのウェット制動性が更に向上する。
前記樹脂成分は、軟化点が110℃より高く、ポリスチレン換算の重量平均分子量が200~1600g/molであることが好ましい。かかる樹脂成分を含むトレッドゴム層をタイヤに適用することで、タイヤの耐摩耗性を向上させることができる。
前記樹脂成分の軟化点が110℃より高いと、トレッドゴム層を十分に補強でき、タイヤの耐摩耗性を更に向上させることができる。樹脂成分の軟化点は、タイヤの耐摩耗性の観点から、116℃以上であることがより好ましく、120℃以上であることがより好ましく、123℃以上であることがより好ましく、127℃以上であることが更に好ましい。また、樹脂成分の軟化点は、加工性の観点から、160℃以下であることが好ましく、150℃以下であることがより好ましく、145℃以下であることがより好ましく、141℃以下であることがより好ましく、136℃以下であることが更に好ましい。
前記樹脂成分のポリスチレン換算の重量平均分子量が200g/mol以上であると、タイヤから樹脂成分が析出し難く、樹脂成分による効果を十分に発現することができ、また、1600g/mol以下であると、樹脂成分がゴム成分と相溶し易い。
タイヤからの樹脂成分の析出を抑制し、タイヤ外観の低下を抑制する観点から、樹脂成分のポリスチレン換算の重量平均分子量は、500g/mol以上であることが好ましく、550g/mol以上であることがより好ましく、600g/mol以上であることがより好ましく、650g/mol以上であることがより好ましく、700g/mol以上であることが更に好ましい。また、ゴム成分への樹脂成分の相溶性を高め、樹脂成分による効果をより高める観点から、樹脂成分のポリスチレン換算の重量平均分子量は、1570g/mol以下であることがより好ましく、1530g/mol以下であることがより好ましく、1500g/mol以下であることがより好ましく、1470g/mol以下であることがより好ましく、1430g/mol以下であることがより好ましく、1400g/mol以下であることがより好ましく、1370g/mol以下であることがより好ましく、1330g/mol以下であることがより好ましく、1300g/mol以下であることがより好ましく、1200g/mol以下であることがより好ましく、1100g/mol以下であることがより好ましく、1000g/mol以下であることがより好ましく、950g/mol以下であることが更に好ましい。
タイヤからの樹脂成分の析出を抑制し、タイヤ外観の低下を抑制する観点から、樹脂成分のポリスチレン換算の重量平均分子量は、500g/mol以上であることが好ましく、550g/mol以上であることがより好ましく、600g/mol以上であることがより好ましく、650g/mol以上であることがより好ましく、700g/mol以上であることが更に好ましい。また、ゴム成分への樹脂成分の相溶性を高め、樹脂成分による効果をより高める観点から、樹脂成分のポリスチレン換算の重量平均分子量は、1570g/mol以下であることがより好ましく、1530g/mol以下であることがより好ましく、1500g/mol以下であることがより好ましく、1470g/mol以下であることがより好ましく、1430g/mol以下であることがより好ましく、1400g/mol以下であることがより好ましく、1370g/mol以下であることがより好ましく、1330g/mol以下であることがより好ましく、1300g/mol以下であることがより好ましく、1200g/mol以下であることがより好ましく、1100g/mol以下であることがより好ましく、1000g/mol以下であることがより好ましく、950g/mol以下であることが更に好ましい。
前記樹脂成分のポリスチレン換算の重量平均分子量(MwHR)(単位はg/mol)に対する樹脂成分の軟化点(TsHR)(単位は℃)の比(TsHR/MwHR)は、0.07以上であることが好ましく、0.083以上であることがより好ましく、0.095以上であることがより好ましく、0.104以上であることがより好ましく、0.125以上であることがより好ましく、0.135以上であることがより好ましく、0.14以上であることがより好ましく、0.141以上であることが更に好ましい。また、該比(TsHR/MwHR)は、0.25以下であることが好ましく、0.24以下であることが好ましく、0.23以下であることが好ましく、0.19以下であることが好ましく、0.18以下であることがより好ましく、0.17以下であることが更に好ましい。
前記樹脂成分としては、C5系樹脂、C5-C9系樹脂、C9系樹脂、テルペン系樹脂、ジシクロペンタジエン系樹脂、テルペン-芳香族化合物系樹脂等が挙げられ、これら樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
また、上述の、少なくとも部分的に水素添加されている樹脂成分とは、樹脂を還元水素化して得られる樹脂を意味する。水素添加されている樹脂成分の原料となる樹脂としては、C5系樹脂、C5-C9系樹脂、C9系樹脂、テルペン系樹脂、ジシクロペンタジエン系樹脂、テルペン-芳香族化合物系樹脂等が挙げられ、これら樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
また、上述の、少なくとも部分的に水素添加されている樹脂成分とは、樹脂を還元水素化して得られる樹脂を意味する。水素添加されている樹脂成分の原料となる樹脂としては、C5系樹脂、C5-C9系樹脂、C9系樹脂、テルペン系樹脂、ジシクロペンタジエン系樹脂、テルペン-芳香族化合物系樹脂等が挙げられ、これら樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
前記C5系樹脂としては、石油化学工業のナフサの熱分解によって得られるC5留分を(共)重合して得られる脂肪族系石油樹脂が挙げられる。
C5留分には、通常1-ペンテン、2-ペンテン、2-メチル-1-ブテン、2-メチル-2-ブテン、3-メチル-1-ブテン等のオレフィン系炭化水素、2-メチル-1,3-ブタジエン、1,2-ペンタジエン、1,3-ペンタジエン、3-メチル-1,2-ブタジエン等のジオレフィン系炭化水素等が含まれる。なお、C5系樹脂は、市販品を利用することができる。
C5留分には、通常1-ペンテン、2-ペンテン、2-メチル-1-ブテン、2-メチル-2-ブテン、3-メチル-1-ブテン等のオレフィン系炭化水素、2-メチル-1,3-ブタジエン、1,2-ペンタジエン、1,3-ペンタジエン、3-メチル-1,2-ブタジエン等のジオレフィン系炭化水素等が含まれる。なお、C5系樹脂は、市販品を利用することができる。
前記C5-C9系樹脂とは、C5-C9系合成石油樹脂を指し、C5-C9系樹脂としては、例えば、石油由来のC5-C11留分を、AlCl3、BF3等のフリーデルクラフツ触媒を用いて重合して得られる固体重合体が挙げられ、より具体的には、スチレン、ビニルトルエン、α-メチルスチレン、インデン等を主成分とする共重合体等が挙げられる。
C5-C9系樹脂としては、C9以上の成分の少ない樹脂が、ゴム成分との相溶性の観点から好ましい。ここで、「C9以上の成分が少ない」とは、樹脂全量中のC9以上の成分が50質量%未満、好ましくは40質量%以下であることを言うものとする。C5-C9系樹脂は、市販品を利用することができる。
C5-C9系樹脂としては、C9以上の成分の少ない樹脂が、ゴム成分との相溶性の観点から好ましい。ここで、「C9以上の成分が少ない」とは、樹脂全量中のC9以上の成分が50質量%未満、好ましくは40質量%以下であることを言うものとする。C5-C9系樹脂は、市販品を利用することができる。
前記C9系樹脂とは、C9系合成石油樹脂を指し、例えばAlCl3やBF3等のフリーデルクラフツ型触媒を用い、C9留分を重合して得られる固体重合体を指す。
C9系樹脂としては、例えば、インデン、α-メチルスチレン、ビニルトルエン等を主成分とする共重合体等が挙げられる。
C9系樹脂としては、例えば、インデン、α-メチルスチレン、ビニルトルエン等を主成分とする共重合体等が挙げられる。
前記テルペン系樹脂は、松属の木からロジンを得る際に同時に得られるテレビン油、或いはこれから分離した重合成分を配合し、フリーデルクラフツ型触媒を用いて重合して得られる固体状の樹脂であり、β-ピネン樹脂、α-ピネン樹脂等がある。また、テルペン-芳香族化合物系樹脂としては、代表例としてテルペン-フェノール樹脂を挙げることができる。このテルペン-フェノール樹脂は、テルペン類と種々のフェノール類とを、フリーデルクラフツ型触媒を用いて反応させたり、或いは更にホルマリンで縮合する方法で得ることができる。原料のテルペン類としては特に制限はなく、α-ピネンやリモネン等のモノテルペン炭化水素が好ましく、α-ピネンを含むものがより好ましく、特にα-ピネンであることが好ましい。なお、骨格中にスチレン等を含んでいてもよい。
前記ジシクロペンタジエン系樹脂は、例えばAlCl3やBF3等のフリーデルクラフツ型触媒等を用い、ジシクロペンタジエンを重合して得られる樹脂を指す。
また、水素添加されている樹脂成分の原料となる樹脂は、例えば、C5留分とジシクロペンタジエン(DCPD)とを共重合した樹脂(C5-DCPD系樹脂)を含んでいてもよい。
ここで、樹脂全量中のジシクロペンタジエン由来成分が50質量%以上の場合、C5-DCPD系樹脂はジシクロペンタジエン系樹脂に含まれるものとする。樹脂全量中のジシクロペンタジエン由来成分が50質量%未満の場合、C5-DCPD系樹脂はC5系樹脂に含まれるものとする。更に第三成分等が少量含まれる場合でも同様である。
ここで、樹脂全量中のジシクロペンタジエン由来成分が50質量%以上の場合、C5-DCPD系樹脂はジシクロペンタジエン系樹脂に含まれるものとする。樹脂全量中のジシクロペンタジエン由来成分が50質量%未満の場合、C5-DCPD系樹脂はC5系樹脂に含まれるものとする。更に第三成分等が少量含まれる場合でも同様である。
前記ゴム成分と樹脂成分との相溶性を高める観点から、樹脂成分は、水添C5系樹脂、水添C5-C9系樹脂、水添ジシクロペンタジエン系樹脂(水添DCPD系樹脂)、及び水添テルペン系樹脂からなる群より選択される少なくとも1種であることが好ましく、水添C5系樹脂及び水添C5-C9系樹脂からなる群より選択される少なくとも1種であることがより好ましく、水添C5系樹脂であることが更に好ましい。また、少なくともモノマーに水添DCPD構造又は水添された環状構造を有する樹脂であることが好ましい。前記樹脂成分が、水添C5系樹脂、水添C5-C9系樹脂、水添ジシクロペンタジエン系樹脂、及び水添テルペン系樹脂からなる群より選択される少なくとも1種であると、トレッドゴム層を具えるタイヤのウェット制動性をより向上させ、また、低燃費性を更に向上させることができる。
(充填剤)
前記トレッドゴム層は、充填剤を含む。充填剤を含むことで、トレッドゴム層の補強性が向上する。
前記トレッドゴム層中の充填剤の含有量は、前記ゴム成分100質量部に対して40~125質量部の範囲が好ましい。トレッドゴム層中の充填剤の含有量が、ゴム成分100質量部に対し、40質量部以上であると、トレッドゴム層の補強が十分であり、タイヤの耐摩耗性を更に向上させることができ、また、125質量部以下であると、トレッドゴム層の弾性率が高くなり過ぎず、タイヤのウェット制動性が更に向上する。タイヤの転がり抵抗をより低くする観点(低燃費性を向上させる観点)から、トレッドゴム層中の充填剤の含有量は、ゴム成分100質量部に対し、45質量部以上であることがより好ましく、50質量部以上であることがより好ましく、55質量部以上であることが更に好ましい。また、タイヤのウェット制動性を向上させる観点から、トレッドゴム層中の充填剤の含有量は、ゴム成分100質量部に対し、105質量部以下であることがより好ましく、100質量部以下であることがより好ましく、95質量部以下であることが更に好ましい。
前記トレッドゴム層は、充填剤を含む。充填剤を含むことで、トレッドゴム層の補強性が向上する。
前記トレッドゴム層中の充填剤の含有量は、前記ゴム成分100質量部に対して40~125質量部の範囲が好ましい。トレッドゴム層中の充填剤の含有量が、ゴム成分100質量部に対し、40質量部以上であると、トレッドゴム層の補強が十分であり、タイヤの耐摩耗性を更に向上させることができ、また、125質量部以下であると、トレッドゴム層の弾性率が高くなり過ぎず、タイヤのウェット制動性が更に向上する。タイヤの転がり抵抗をより低くする観点(低燃費性を向上させる観点)から、トレッドゴム層中の充填剤の含有量は、ゴム成分100質量部に対し、45質量部以上であることがより好ましく、50質量部以上であることがより好ましく、55質量部以上であることが更に好ましい。また、タイヤのウェット制動性を向上させる観点から、トレッドゴム層中の充填剤の含有量は、ゴム成分100質量部に対し、105質量部以下であることがより好ましく、100質量部以下であることがより好ましく、95質量部以下であることが更に好ましい。
-シリカ-
前記充填剤は、シリカを含有することが好ましく、窒素吸着比表面積(BET法)が80m2/g以上330m2/g未満であるシリカを含有することが更に好ましい。シリカの窒素吸着比表面積(BET法)が80m2/g以上であると、タイヤを十分に補強でき、タイヤの転がり抵抗を更に低くすることができる。また、シリカの窒素吸着比表面積(BET法)が330m2/g未満であると、トレッドゴム層の弾性率が高くなり過ぎず、タイヤのウェット制動性が更に向上する。転がり抵抗をより低くし、タイヤの耐摩耗性を更に向上させる観点から、シリカの窒素吸着比表面積(BET法)は、110m2/g以上であることが好ましく、130m2/g以上であることが好ましく、150m2/g以上であることが好ましく、180m2/g以上であることが更に好ましい。また、タイヤのウェット制動性をより向上させる観点から、シリカの窒素吸着比表面積(BET法)は、300m2/g以下であることが好ましく、280m2/g以下であることがより好ましく、270m2/g以下であることが更に好ましい。
前記充填剤は、シリカを含有することが好ましく、窒素吸着比表面積(BET法)が80m2/g以上330m2/g未満であるシリカを含有することが更に好ましい。シリカの窒素吸着比表面積(BET法)が80m2/g以上であると、タイヤを十分に補強でき、タイヤの転がり抵抗を更に低くすることができる。また、シリカの窒素吸着比表面積(BET法)が330m2/g未満であると、トレッドゴム層の弾性率が高くなり過ぎず、タイヤのウェット制動性が更に向上する。転がり抵抗をより低くし、タイヤの耐摩耗性を更に向上させる観点から、シリカの窒素吸着比表面積(BET法)は、110m2/g以上であることが好ましく、130m2/g以上であることが好ましく、150m2/g以上であることが好ましく、180m2/g以上であることが更に好ましい。また、タイヤのウェット制動性をより向上させる観点から、シリカの窒素吸着比表面積(BET法)は、300m2/g以下であることが好ましく、280m2/g以下であることがより好ましく、270m2/g以下であることが更に好ましい。
前記シリカとしては、例えば、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウム等が挙げられ、これらの中でも、湿式シリカが好ましい。これらシリカは、一種単独で使用してもよいし、二種以上を併用してもよい。
前記シリカとしては、植物由来のシリカも好ましい。前記植物由来のシリカとしては、環境負荷低減の観点から、ケイ酸植物由来のシリカが好ましい。該ケイ酸植物は、例えば、コケ類、シダ類、トクサ類、ウリ科、イラクサ科、イネ科の植物等に存在する。これら植物の中でも、イネ科植物が好ましく、即ち、前記植物由来のシリカとしては、イネ科植物由来のシリカが好ましい。イネ科植物由来のシリカは、タイヤ製造工場の近隣で原料を現地調達できるため、輸送や保管のエネルギー及びコストを低減でき、種々の観点から、環境面で好ましい。
また、該イネ科植物としては、イネ、笹、サトウキビ等が挙げられ、これらの中でも、イネが好ましい。該イネは、食用に広く栽培されているため、広い地域で現地調達可能であり、また、イネの籾殻は、産業廃棄物として多量に発生することから量を確保し易い。従って、入手容易性の観点から、植物由来のシリカとしては、籾殻由来のシリカ(以下、「籾殻シリカ」とも呼ぶ。)が特に好ましい。該籾殻シリカを用いることで、産業廃棄物となる籾殻を有効活用でき、また、タイヤ製造工場の近隣で原料を現地調達できるため、輸送や保管のエネルギー及びコストを低減でき、種々の観点から、環境面で好ましい。前記籾殻シリカは、籾殻を加熱により炭化して得られる籾殻炭の粉末でもよいし、籾殻を燃料としてバイオマスボイラーで燃焼させた際に発生する籾殻灰をアルカリで抽出してケイ酸アルカリ水溶液を調製し、該ケイ酸アルカリ水溶液を用いて湿式法で製造した沈降シリカでもよい。前記籾殻炭の製法は、特に限定されず、公知の種々の方法を用いることができ、例えば、窯を用いて籾殻を蒸し焼きにすることで熱分解させて籾殻炭を得ることができる。このようにして得られる籾殻炭を公知の粉砕機(例えば、ボールミル)を用いて粉砕し、所定の粒径範囲に選別し分級することで、籾殻炭の粉末を得ることができる。また、前記籾殻由来の沈降シリカは、特開2019-38728号公報に記載の方法等で製造できる。
また、該イネ科植物としては、イネ、笹、サトウキビ等が挙げられ、これらの中でも、イネが好ましい。該イネは、食用に広く栽培されているため、広い地域で現地調達可能であり、また、イネの籾殻は、産業廃棄物として多量に発生することから量を確保し易い。従って、入手容易性の観点から、植物由来のシリカとしては、籾殻由来のシリカ(以下、「籾殻シリカ」とも呼ぶ。)が特に好ましい。該籾殻シリカを用いることで、産業廃棄物となる籾殻を有効活用でき、また、タイヤ製造工場の近隣で原料を現地調達できるため、輸送や保管のエネルギー及びコストを低減でき、種々の観点から、環境面で好ましい。前記籾殻シリカは、籾殻を加熱により炭化して得られる籾殻炭の粉末でもよいし、籾殻を燃料としてバイオマスボイラーで燃焼させた際に発生する籾殻灰をアルカリで抽出してケイ酸アルカリ水溶液を調製し、該ケイ酸アルカリ水溶液を用いて湿式法で製造した沈降シリカでもよい。前記籾殻炭の製法は、特に限定されず、公知の種々の方法を用いることができ、例えば、窯を用いて籾殻を蒸し焼きにすることで熱分解させて籾殻炭を得ることができる。このようにして得られる籾殻炭を公知の粉砕機(例えば、ボールミル)を用いて粉砕し、所定の粒径範囲に選別し分級することで、籾殻炭の粉末を得ることができる。また、前記籾殻由来の沈降シリカは、特開2019-38728号公報に記載の方法等で製造できる。
前記トレッドゴム層中のシリカの含有量は、トレッドゴム層の機械的強度を向上させ、タイヤの耐摩耗性を更に向上させる観点から、ゴム成分100質量部に対して、40質量部以上であることが好ましく、45質量部以上であることがより好ましく、50質量部以上であることがより好ましく、55質量部以上であることが更に好ましい。また、タイヤのウェット制動性をより向上させる観点から、トレッドゴム層中のシリカの含有量は、ゴム成分100質量部に対して、125質量部以下であることが好ましく、105質量部以下であることがより好ましく、100質量部以下であることがより好ましく、95質量部以下であることが更に好ましい。
-カーボンブラック-
前記充填剤は、カーボンブラックを含むことも好ましい。該カーボンブラックは、トレッドゴム層を補強して、タイヤの耐摩耗性を向上させることができる。
カーボンブラックとしては、特に限定されるものではなく、例えば、GPF、FEF、HAF、ISAF、及びSAFグレードのカーボンブラックが挙げられる。これらカーボンブラックは、一種単独で使用してもよいし、二種以上を併用してもよい。また、カーボンブラックは、再生カーボンブラックでもよい。
前記充填剤は、カーボンブラックを含むことも好ましい。該カーボンブラックは、トレッドゴム層を補強して、タイヤの耐摩耗性を向上させることができる。
カーボンブラックとしては、特に限定されるものではなく、例えば、GPF、FEF、HAF、ISAF、及びSAFグレードのカーボンブラックが挙げられる。これらカーボンブラックは、一種単独で使用してもよいし、二種以上を併用してもよい。また、カーボンブラックは、再生カーボンブラックでもよい。
本明細書において 、「再生カーボンブラック」とは、リサイクルに供された廃棄物である原材料から回収して得られるカーボンブラックを指す。上記リサイクルに供された廃棄物としては、使用済ゴム及び使用済タイヤに代表される、カーボンブラックを含むゴム製品(特には、加硫ゴム製品)、廃油等が挙げられる。「再生カーボンブラック」は、石油や天然ガスなどの炭化水素を原材料から直接製造されるカーボンブラック、すなわち、リサイクル品ではないカーボンブラックとは異なる。なお、ここでの「使用済」とは、実際に使用された後で廃棄されたものだけではなく、製造されたものの実際には使用されずに廃棄されたものも含む。
前記トレッドゴム層中のカーボンブラックの含有量は、トレッドゴム層及びそれを適用したタイヤの耐摩耗性を向上させる観点から、ゴム成分100質量部に対して、1質量部以上であることが好ましく、3質量部以上であることがより好ましく、5質量部以上であることが更に好ましい。また、トレッドゴム層の作製に用いるゴム組成物の作業性の観点から、トレッドゴム層(トレッドゴム層用のゴム組成物)中のカーボンブラックの含有量は、ゴム成分100質量部に対して、20質量部以下であることが好ましく、15質量部以下であることがより好ましい。
充填剤がシリカとカーボンブラックを含む場合、シリカとカーボンブラックの総量中のシリカの割合は、80質量%以上100質量%未満であることが好ましく、90質量%以上100質量%未満であることが更に好ましい。シリカの割合が80質量%以上であることで、トレッドゴム層の機械的強度が向上し、タイヤの転がり抵抗をより低くすることができる。
充填剤がシリカとカーボンブラックを含む場合、シリカとカーボンブラックの総量中のシリカの割合は、80質量%以上100質量%未満であることが好ましく、90質量%以上100質量%未満であることが更に好ましい。シリカの割合が80質量%以上であることで、トレッドゴム層の機械的強度が向上し、タイヤの転がり抵抗をより低くすることができる。
-その他の充填剤-
前記充填剤は、シリカ、カーボンブラック以外に、例えば、クレー、タルク、炭酸カルシウム、水酸化アルミニウム等の無機充填剤を含んでいてもよい。
上述のその他の充填剤は、充填剤中のシリカの割合が70質量%以上である範囲で、含まれることが好ましい。充填剤中のシリカの割合が70質量%以上であることで、トレッドゴム層の機械的強度が向上し、タイヤの転がり抵抗をより低くすることができる。充填剤中のシリカの割合は、より好ましくは80質量%以上であり、更に好ましくは85質量%以上であり、より一層好ましくは90質量%以上100質量%未満である。
前記充填剤は、シリカ、カーボンブラック以外に、例えば、クレー、タルク、炭酸カルシウム、水酸化アルミニウム等の無機充填剤を含んでいてもよい。
上述のその他の充填剤は、充填剤中のシリカの割合が70質量%以上である範囲で、含まれることが好ましい。充填剤中のシリカの割合が70質量%以上であることで、トレッドゴム層の機械的強度が向上し、タイヤの転がり抵抗をより低くすることができる。充填剤中のシリカの割合は、より好ましくは80質量%以上であり、更に好ましくは85質量%以上であり、より一層好ましくは90質量%以上100質量%未満である。
(スチレン系熱可塑性エラストマー)
前記トレッドゴム層は、スチレン系熱可塑性エラストマー(TPS)を含んでもよい。該スチレン系熱可塑性エラストマー(TPS)は、スチレン系重合体ブロック(ハードセグメント)と、共役ジエン系重合体ブロック(ソフトセグメント)とを有し、スチレン系重合体部分が物理架橋を形成して橋かけ点となり、一方、共役ジエン系重合体ブロックがゴム弾性を付与する。共役ジエン系重合体ブロック(ソフトセグメント)の二重結合は、一部又は全部が水素化されていてもよい。
なお、スチレン系熱可塑性エラストマー(TPS)は、熱可塑性である一方、前記ゴム成分(好ましくは、ジエン系ゴム)は、熱可塑性ではない。そのため、本明細書においては、スチレン系熱可塑性エラストマー(TPS)は、前記ゴム成分に含めないものとする。スチレン系熱可塑性エラストマー(TPS)の含有量は、前記ゴム成分100質量部に対して1~30質量部の範囲が好ましい。
前記トレッドゴム層は、スチレン系熱可塑性エラストマー(TPS)を含んでもよい。該スチレン系熱可塑性エラストマー(TPS)は、スチレン系重合体ブロック(ハードセグメント)と、共役ジエン系重合体ブロック(ソフトセグメント)とを有し、スチレン系重合体部分が物理架橋を形成して橋かけ点となり、一方、共役ジエン系重合体ブロックがゴム弾性を付与する。共役ジエン系重合体ブロック(ソフトセグメント)の二重結合は、一部又は全部が水素化されていてもよい。
なお、スチレン系熱可塑性エラストマー(TPS)は、熱可塑性である一方、前記ゴム成分(好ましくは、ジエン系ゴム)は、熱可塑性ではない。そのため、本明細書においては、スチレン系熱可塑性エラストマー(TPS)は、前記ゴム成分に含めないものとする。スチレン系熱可塑性エラストマー(TPS)の含有量は、前記ゴム成分100質量部に対して1~30質量部の範囲が好ましい。
前記スチレン系熱可塑性エラストマー(TPS)としては、スチレン/ブタジエン/スチレン(SBS)ブロック共重合体、スチレン/イソプレン/スチレン(SIS)ブロック共重合体、スチレン/ブタジエン/イソプレン/スチレン(SBIS)ブロック共重合体、スチレン/ブタジエン(SB)ブロック共重合体、スチレン/イソプレン(SI)ブロック共重合体、スチレン/ブタジエン/イソプレン(SBI)ブロック共重合体、スチレン/エチレン/ブチレン/スチレン(SEBS)ブロック共重合体、スチレン/エチレン/プロピレン/スチレン(SEPS)ブロック共重合体、スチレン/エチレン/エチレン/プロピレン/スチレン(SEEPS)ブロック共重合体、スチレン/エチレン/ブチレン(SEB)ブロック共重合体、スチレン/エチレン/プロピレン(SEP)ブロック共重合体、スチレン/エチレン/エチレン/プロピレン(SEEP)ブロック共重合体等が挙げられる。
(その他)
前記トレッドゴム層は、既述のゴム成分、樹脂成分、充填剤、スチレン系熱可塑性エラストマー、並びに、必要に応じて、ゴム工業界で通常使用される各種成分、例えば、シランカップリング剤、老化防止剤、ワックス、軟化剤、加工助剤、ステアリン酸、酸化亜鉛(亜鉛華)、加硫促進剤、加硫剤等を、本発明の目的を害しない範囲内で適宜選択して含有していてもよい。これら配合剤としては、市販品を好適に使用することができる。
前記トレッドゴム層は、既述のゴム成分、樹脂成分、充填剤、スチレン系熱可塑性エラストマー、並びに、必要に応じて、ゴム工業界で通常使用される各種成分、例えば、シランカップリング剤、老化防止剤、ワックス、軟化剤、加工助剤、ステアリン酸、酸化亜鉛(亜鉛華)、加硫促進剤、加硫剤等を、本発明の目的を害しない範囲内で適宜選択して含有していてもよい。これら配合剤としては、市販品を好適に使用することができる。
前記トレッドゴム層がシリカを含む場合、該シリカの効果を向上させるために、シランカップリング剤を含むことが好ましい。該シランカップリング剤としては、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、3-メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾリルテトラスルフィド等が挙げられる。該シランカップリング剤の含有量は、前記シリカ100質量部に対して2~20質量部の範囲が好ましく、5~15質量部の範囲が更に好ましい。
前記老化防止剤としては、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン(6C)、2,2,4-トリメチル-1,2-ジヒドロキノリン重合体(TMDQ)、6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリン(AW)、N,N’-ジフェニル-p-フェニレンジアミン(DPPD)等が挙げられる。該老化防止剤の含有量は、特に制限はなく、前記ゴム成分100質量部に対して、0.1~5質量部の範囲が好ましく、1~4質量部がより好ましい。
前記ワックスとしては、例えば、パラフィンワックス、マイクロクリスタリンワックス等が挙げられる。該ワックスの含有量は、特に制限はなく、前記ゴム成分100質量部に対して、0.1~5質量部の範囲が好ましく、1~4質量部がより好ましい。
前記酸化亜鉛(亜鉛華)の含有量は、特に制限はなく、前記ゴム成分100質量部に対して、0.1~10質量部の範囲が好ましく、1~8質量部がより好ましい。
前記加硫促進剤としては、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤、チアゾール系加硫促進剤、チウラム系加硫促進剤、ジチオカルバミン酸塩系加硫促進剤等が挙げられる。これら加硫促進剤は、1種単独で使用してもよく、2種以上を併用してもよい。該加硫促進剤の含有量は、特に制限はなく、前記ゴム成分100質量部に対して、0.1~5質量部の範囲が好ましく、0.2~4質量部の範囲が更に好ましい。
前記加硫剤としては、硫黄等が挙げられる。該加硫剤の含有量は、前記ゴム成分100質量部に対して、硫黄分として0.1~10質量部の範囲が好ましく、1~4質量部の範囲が更に好ましい。
(トレッドゴム層の製造方法)
前記トレッドゴム層の製造方法は、特に限定されるものではない。例えば、既述のゴム成分、樹脂成分及び充填剤に、必要に応じて適宜選択した各種成分を配合して、混練り、熱入れ、押出等することによりトレッドゴム層用のゴム組成物を製造することができる。また、得られたゴム組成物を加硫することで、加硫ゴムとすることができる。
前記トレッドゴム層の製造方法は、特に限定されるものではない。例えば、既述のゴム成分、樹脂成分及び充填剤に、必要に応じて適宜選択した各種成分を配合して、混練り、熱入れ、押出等することによりトレッドゴム層用のゴム組成物を製造することができる。また、得られたゴム組成物を加硫することで、加硫ゴムとすることができる。
前記混練りの条件としては、特に制限はなく、混練り装置の投入体積やローターの回転速度、ラム圧等、及び混練り温度や混練り時間、混練り装置の種類等の諸条件について目的に応じて適宜に選択することができる。混練り装置としては、通常、ゴム組成物の混練りに用いるバンバリーミキサーやインターミックス、ニーダー、ロール等が挙げられる。
前記熱入れの条件についても、特に制限はなく、熱入れ温度や熱入れ時間、熱入れ装置等の諸条件について目的に応じて適宜に選択することができる。該熱入れ装置としては、通常、ゴム組成物の熱入れに用いる熱入れロール機等が挙げられる。
前記押出の条件についても、特に制限はなく、押出時間や押出速度、押出装置、押出温度等の諸条件について目的に応じて適宜に選択することができる。押出装置としては、通常、ゴム組成物の押出に用いる押出機等が挙げられる。押出温度は、適宜に決定することができる。
前記加硫を行う装置や方式、条件等については、特に制限はなく、目的に応じて適宜に選択することができる。加硫を行う装置としては、通常、ゴム組成物の加硫に用いる金型による成形加硫機等が挙げられる。加硫の条件として、その温度は、例えば100~190℃程度である。
<<有機繊維コードを含む補強層>>
本実施形態のタイヤは、上述したトレッドゴム層のタイヤ径方向内側に、有機繊維コードを含む補強層を具える。ここで、該有機繊維コードを含む補強層は、例えば、図1に示すタイヤ1のベルト層6A,6B、ベルト補強層7A,7Bのいずれであってもよく、好ましくはベルト補強層7A,7Bである。
本実施形態のタイヤは、上述したトレッドゴム層のタイヤ径方向内側に、有機繊維コードを含む補強層を具える。ここで、該有機繊維コードを含む補強層は、例えば、図1に示すタイヤ1のベルト層6A,6B、ベルト補強層7A,7Bのいずれであってもよく、好ましくはベルト補強層7A,7Bである。
前記補強層の有機繊維コードは、1-2%伸長時の弾性率が4.0~30mN/(dtex・%)であり、5.0mN/(dtex・%)以上であることが好ましく、また、10mN/(dtex・%)以下であることが好ましい。
ここで、1-2%伸長時の弾性率は、有機繊維コードの荷重-伸び曲線における伸び1%に対応する荷重と伸び2%に対応する荷重との傾き(N/%)を、1dtex当りの値に換算することで算出される。
前記有機繊維コードの1-2%伸長時の弾性率が4.0mN/(dtex・%)よりも低いと、タイヤ1のトレッド部4の剛性が不十分となり、タイヤの操縦安定性が悪化する。一方、有機繊維コードの1-2%伸長時の弾性率が30mN/(dtex・%)を超えると、該有機繊維コードを含む補強層の剛性が高過ぎて、該補強層のタイヤ径方向内側の層(例えば、有機繊維コードを含む補強層がベルト補強層7A,7Bである場合は、ベルト6)の耐久性が低下する。これに対して、本実施形態のタイヤは、1-2%伸長時の弾性率が4.0~30mN/(dtex・%)である有機繊維コードを含む補強層を、上述したトレッドゴム層9と組み合わせることで、タイヤの操縦安定性を悪化させることなく、ウェット制動性と、低燃費性とを向上させることができる。また、前記有機繊維コードの1-2%伸長時の弾性率が5.0mN/(dtex・%)以上であると、タイヤの操縦安定性が向上し、また、10mN/(dtex・%)以下であると、補強層のタイヤ径方向内側の層の耐久性を十分に確保できる。
ここで、1-2%伸長時の弾性率は、有機繊維コードの荷重-伸び曲線における伸び1%に対応する荷重と伸び2%に対応する荷重との傾き(N/%)を、1dtex当りの値に換算することで算出される。
前記有機繊維コードの1-2%伸長時の弾性率が4.0mN/(dtex・%)よりも低いと、タイヤ1のトレッド部4の剛性が不十分となり、タイヤの操縦安定性が悪化する。一方、有機繊維コードの1-2%伸長時の弾性率が30mN/(dtex・%)を超えると、該有機繊維コードを含む補強層の剛性が高過ぎて、該補強層のタイヤ径方向内側の層(例えば、有機繊維コードを含む補強層がベルト補強層7A,7Bである場合は、ベルト6)の耐久性が低下する。これに対して、本実施形態のタイヤは、1-2%伸長時の弾性率が4.0~30mN/(dtex・%)である有機繊維コードを含む補強層を、上述したトレッドゴム層9と組み合わせることで、タイヤの操縦安定性を悪化させることなく、ウェット制動性と、低燃費性とを向上させることができる。また、前記有機繊維コードの1-2%伸長時の弾性率が5.0mN/(dtex・%)以上であると、タイヤの操縦安定性が向上し、また、10mN/(dtex・%)以下であると、補強層のタイヤ径方向内側の層の耐久性を十分に確保できる。
前記補強層の有機繊維コードは、切断強度が6.5cN/dtex以上、切断伸度が10%以上であることが好ましい。
切断強度が6.5cN/dtex以上、切断伸度が10%以上の有機繊維コードは、切断時の強度が高く、切断時の伸びが大きいため、かかる物性の有機繊維コードを補強層に適用することによって、タイヤの高速耐久性を向上させることができ、また、タイヤの操縦安定性を向上させることができる。
切断強度が6.5cN/dtex以上、切断伸度が10%以上の有機繊維コードは、切断時の強度が高く、切断時の伸びが大きいため、かかる物性の有機繊維コードを補強層に適用することによって、タイヤの高速耐久性を向上させることができ、また、タイヤの操縦安定性を向上させることができる。
前記補強層の有機繊維コードの材質としては、特に限定されないが、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、6-ナイロン、6,6-ナイロン、4,6-ナイロン、4,10-ナイロン等のナイロン、レーヨン、リヨセル等のセルロースが挙げられる。これらの中でも、ポリエチレンテレフタレートが好ましく、即ち、補強層の補強材としての有機繊維コードは、ポリエチレンテレフタレートからなるコード(以下、単に「ポリエチレンテレフタレートコード」と呼ぶことがある。)であることが好ましい。ポリエチレンテレフタレートコードは、一般的に用いられているナイロンコード等に比べて剛性が高く、タイヤの操縦安定性の向上効果に優れる。そのため、補強層の有機繊維コードにポリエチレンテレフタレートからなるコードを用いたタイヤは、操縦安定性が更に向上している。
前記補強層の有機繊維コードは、7%伸長時の弾性率が6.0mN/(dtex・%)以上であることが好ましい。ここで、有機繊維コードの切断強度、切断伸度、7%伸長時の弾性率は、室温(23℃)で測定した値である。また、有機繊維コードの諸物性は、JIS L 1013「化学繊維フィラメント糸試験方法」に従って測定できる。7%伸長時の弾性率は、コードの荷重-伸び曲線の伸び7%に対応する点における接線の傾き(N/%)を、1dtex当りの値に換算することで算出される。荷重-伸び曲線の伸び7%に対応する点における接線の傾きとは 、図2に示すようなコードの荷重-伸び曲線Cの伸び7%に相当する点における接線Sの傾きを意味する。7%伸長時の弾性率が6.0mN/(dtex・%)以上の有機繊維コードは、 切断時の強度が高く、切断時の伸びが大きく、7%伸長時の弾性率も高いため、かかる物性の有機繊維コードを補強層に適用して、ベルト層の剛性を補うことで、タイヤの操縦安定性を向上させることができる。
前記有機繊維コードは、160℃で測定した29.4N荷重時の弾性率が2.5mN/(dtex・%)以上であることが好ましい。ここで、160℃で測定した29.4N荷重時の弾性率は、160℃で測定したコードの荷重-伸び曲線の荷重29.4Nに対応する点における接線の傾き(N/%)を、1dtex当りの値に換算することで算出される。
なお、弾性率を160℃で測定するのは、タイヤ内部の温度は高速走行するに従って上昇し、高速走行でタイヤ故障が起こる時点では、ベルト補強層の温度が160℃に達しているからである。特に、ポリエチレンテレフタレートコードは、常温時に比べ高温時での弾性率の低下が大きく、常温で高弾性なコードであっても、高温時に高い弾性率を維持できなければ、十分なベルトの補強効果(突起入力に対する耐久性の向上効果及びベルトの迫り出し抑制効果)を発現できないため、高温時の弾性率が重要な意義を持つ。160℃で測定した29.4N荷重時のコードの弾性率を2.5mN/(dtex・%)以上にすることで、タイヤの高速耐久性を向上させることができ、また、高速走行時のベルトの迫り出し量を抑制でき、タイヤの踏み込み・踏み出し時の応力を低減して、高速走行時のタイヤの操縦安定性が向上する。
なお、弾性率を160℃で測定するのは、タイヤ内部の温度は高速走行するに従って上昇し、高速走行でタイヤ故障が起こる時点では、ベルト補強層の温度が160℃に達しているからである。特に、ポリエチレンテレフタレートコードは、常温時に比べ高温時での弾性率の低下が大きく、常温で高弾性なコードであっても、高温時に高い弾性率を維持できなければ、十分なベルトの補強効果(突起入力に対する耐久性の向上効果及びベルトの迫り出し抑制効果)を発現できないため、高温時の弾性率が重要な意義を持つ。160℃で測定した29.4N荷重時のコードの弾性率を2.5mN/(dtex・%)以上にすることで、タイヤの高速耐久性を向上させることができ、また、高速走行時のベルトの迫り出し量を抑制でき、タイヤの踏み込み・踏み出し時の応力を低減して、高速走行時のタイヤの操縦安定性が向上する。
前記有機繊維コードの160℃での弾性率を向上させるためには、高張力下でディップ処理を行うことが好ましい。本発明者らは、ディップ処理時のコードにかかる張力を調整し、種々の弾性率の有機繊維コードを作製し、得られたディップコードをコーティングゴムで被覆し、補強層に適用して、タイヤの操縦安定性を検討した結果、コードの160℃で測定した29.4N荷重時の弾性率が2.5mN/(dtex・%)以上の範囲で、タイヤの操縦安定性の向上が顕著になることを見出した。
ここで、有機繊維コードを十分に高弾性化するためには、接着剤処理を行う際の張力を6.9×10-2N/tex以上にすることが好ましい。但し、有機繊維コードの高弾性化方法は、これに限られるものではなく、有機繊維コードの低撚り化等、他の方法であってもよい。前記接着剤処理は、ドライ処理、ホット処理、ノルマライズ処理等から構成され、張力以外に温度及び時間を適宜調節して行う。本発明においては、1浴処理、2浴処理のいずれで接着剤処理を行ってもよいが、2浴処理で行うことが好ましく、6.9×10-2N/tex以上の張力を2浴のホット処理時に有機繊維コードにかけることが好ましい。
前記有機繊維コードは、下記の式(2):
α=T×D1/2 ・・・ (2)
[式中、αは撚り係数で、Tは撚り数(回/100mm)、Dはコードの総繊度(dtex)を示す]で表される撚り係数αが500~2500であることが好ましい。該有機繊維コードの撚り係数αが500以上であると、フィラメントの拘束力が強くなり、接着が十分となり、2500以下であると、突起入力に対する耐久性の向上効果及びベルトの迫り出し抑制効果を得るのに十分な弾性率が発揮できる。
α=T×D1/2 ・・・ (2)
[式中、αは撚り係数で、Tは撚り数(回/100mm)、Dはコードの総繊度(dtex)を示す]で表される撚り係数αが500~2500であることが好ましい。該有機繊維コードの撚り係数αが500以上であると、フィラメントの拘束力が強くなり、接着が十分となり、2500以下であると、突起入力に対する耐久性の向上効果及びベルトの迫り出し抑制効果を得るのに十分な弾性率が発揮できる。
また、前記有機繊維コードは、総繊度が1000~3500dtexであることが好ましい。該有機繊維コードの総繊度が1000dtex以上であると、突起入力に対する耐久性の向上効果及びベルトの迫り出し抑制効果を得るのに十分な弾性率が発揮でき、3500dtex以下であると、打ち込みを密にでき、単位幅当りの剛性を十分に確保できる。
なお、生タイヤは、加硫時にタイヤ径方向に数%拡張するため、補強層に用いる有機繊維コードの弾性率が高いと、加硫成形時にタイヤの拡張に追随できず、例えば、図1において、有機繊維コードをベルト補強層7A,7Bに用いた場合は、ベルト補強層7A中の有機繊維コードと、ベルト6を構成するベルト層の最外層(図1中のベルト層6B)中のコードとがコーティングゴムを介さずに直接接触してしまう可能性があり、また、有機繊維コードをベルト6を構成するベルト層の最外層(図1中のベルト層6B)に用いた場合は、ベルト層6B中の有機繊維コードと、ベルト層6A中のコードとがコーティングゴムを介さずに直接接触してしまう可能性がある。そのため、予め生タイヤの径をある程度の大きさに設計すると共に、例えば、コーティングゴムで被覆したコードを巻回して補強層を形成する際の張力を適宜調節する等して、ベルト層6Bとベルト補強層7A、或いは、ベルト層6Aとベルト層6Bのコード間のゲージを十分に確保することが好ましい。そこで、前記有機繊維コードは、加硫前のコード原長に対する加硫後のタイヤ中でのコードの伸び率が2%以下であることが好ましい。2%以下のコード伸び率でタイヤを成形することで、有機繊維コードをベルト補強層7Aに使用する場合は、有機繊維コードとベルト層6Bとの接触を抑制でき、また、有機繊維コードをベルト層6Bに使用する場合は、有機繊維コードとベルト層6Aとの接触を抑制でき、いずれの場合も、走行中にベルト端でセパレーションが起こることを抑制できる。
前記有機繊維コードの原材料は、特に限定されず、合成品由来でもよいし、生物由来でもよいし、ペットボトル等のPET製品を粉砕、溶融、再紡糸してなるメカニカルリサイクル由来でもよいし、ペットボトル等のPET製品を解重合し、再重合してなるケミカルリサイクル由来でもよい。
また、前記有機繊維コードの形態は、特に限定されず、片撚り構造でもよいし、撚り合わせ構造(双撚り構造等)でもよい。片撚り構造である場合、例えば、原糸を引き揃えて、一方の方向に撚りをかけることで、撚糸コードとして得ることができる。また、双撚り構造である場合、例えば、原糸に下撚りをかけ、次いでこれを複数合わせて、逆方向に上撚りをかけることで、撚糸コードとして得ることができる。
前記有機繊維コード(特には、ポリエチレンテレフタレートコード)には、熱可塑性重合体(A)、熱反応型水性ウレタン樹脂(B)及びエポキシ化合物(C)を含む接着剤組成物、又はこれら(A)~(C)に加えゴムラテックス(D)を含む接着剤組成物であって、前記熱可塑性重合体(A)の主鎖が付加反応性のある炭素-炭素二重結合を実質的に有せず、ペンダント基として架橋性を有する官能基を少なくとも1つ有することを特徴とする接着剤組成物で接着剤処理することが好ましい。該接着剤組成物で接着剤処理することで、有機繊維コードの高温下でのコーティングゴムとの接着性を向上させることができる。
従来、有機繊維コード(特には、ポリエチレンテレフタレートコード)の接着剤処理としては、エポキシ又はイソシアネートをコード表面に塗布し、その上にレゾルシンとホルムアルデヒドとラテックスとを混合してなる樹脂(以下、RFL樹脂と称す)で処理する、所謂2浴処理が行われている。しかしながら、このような手段では1浴に用いる樹脂が非常に固くなり、コードヘの歪み入力が増大し、コード疲労性が低下することがある。また、このような樹脂は、常温では充分なコード-コーティングゴム間接着力を発現させることができるが、130℃以上の高温下では極端に接着力が低下することがある。これに対し、ペンダント基として架橋性を有する官能基を少なくとも1つ有し、付加反応性のある炭素-炭素二重結合を主鎖構造に実質的に含有しない熱可塑性重合体(A)と熱反応型水性ウレタン樹脂(B)とエポキシ化合物(C)の混在した1浴混合液を用いることで、コードを硬化させることなく且つ180℃以上の高温下でもコーティングゴムとの接着を充分に確保することができる。
前記熱可塑性重合体(A)の主鎖は、直鎖状構造を主体とし、該主鎖としては、例えば、アクリル系重合体、酢酸ビニル系重合体、酢酸ビニル・エチレン系重合体等のエチレン性付加重合体、又はウレタン系高分子重合体が好ましい。但し、熱可塑性重合体(A)は、ペンダント基の官能基が架橋することにより、高温下での樹脂流動性を抑制し、樹脂の破壊強力を確保するという機能を有していればよく、エチレン性付加重合体及びウレタン系高分子重合体に限定されるものではない。
また、前記熱可塑性重合体(A)のペンダント基の官能基としてはオキソザリン基、ビスマレイミド基、(ブロックド)イソシアネート基、アジリジン基、カルボジイミド基、ヒドラジノ基、エポキシ基、エピチオ基等が好ましい。
なお、上述した熱可塑性重合体(A)、熱反応型水性ウレタン樹脂(B)、エポキシ化合物(C)、及びゴムラテックス(D)については、それぞれ、特願2023-040157に記載されたもの、特願2023-030762に記載されたものを用いることができる。
前記有機繊維コード(特には、ポリエチレンテレフタレートコード)の接着剤処理においては、前記熱可塑性重合体(A)、熱反応型水性ウレタン樹脂(B)、及びエポキシ化合物(C)の3種の混合液(接着剤組成物)を1浴処理液として用い、2浴処理液としては通常のRFL樹脂の液を用いるのが好ましい。また、上記接着剤処理においては、前記熱可塑性重合体(A)、熱反応型水性ウレタン樹脂(B)、エポキシ化合物(C)、及びゴムラテックス(D)の混合液(接着剤組成物)を用いて1浴のみで処理することも可能である。
なお、上記接着剤組成物において、熱可塑性重合体(A)の割合(乾燥質量比率)は、2~75%であることが好ましく、熱反応型水性ウレタン樹脂(B)の割合(乾燥質量比率)は、15~87%であることが好ましく、エポキシ化合物(C)の割合(乾燥質量比率)は、11~70%であることが好ましく、ゴムラテックス(D)の割合(乾燥質量比率)は、20%以下であることが好ましい。
一方で、環境保護の観点からは、有機繊維コードの接着剤組成物として、レゾルシン及びホルマリンを含有しないディップ処理液を用いることが好ましい。このようなディップ処理液としては、例えば、不飽和ジエンを有するゴムラテックス(a)と、ポリエーテルからなる骨格構造及びアミン官能基を含有する化合物、アクリルアミド構造を有する化合物、ポリペプチド、ポリリジン、及びカルボジイミドから選択される1種以上の化合物(b)と、を含有する組成物が挙げられる。また、このようなディップ処理液としては、例えば、上記不飽和ジエンを有するゴムラテックス(a)及び化合物(b)に加えて、更に、(熱解離性ブロックド)イソシアネート基を有する水性化合物(c)、ポリフェノール(d)、及び、多価金属塩(e)から選択される1種以上を含有する組成物が挙げられる。
そのほか、レゾルシン及びホルマリンを含有しないディップ処理液としては、ポリフェノール類(I)及びアルデヒド類(II)を含有する組成物も挙げられる。また、かかる組成物は、ポリフェノール類(I)及びアルデヒド類(II)に加えて、イソシアネート化合物(III)及びゴムラテックス(IV)の少なくともいずれかを更に含有してもよい。
前記有機繊維コードを接着剤処理する(コーティングする)接着剤組成物が、ポリフェノール類(I)及びアルデヒド類(II)を含有することで、環境への負荷を考慮してレゾルシンを用いない場合であっても、良好な接着性を発現することができる。
〔ポリフェノール類(I)〕
前記接着剤組成物が、樹脂成分としてポリフェノール類(I)を含有することで、有機繊維コードとの接着性を高めることができる。ここで、ポリフェノール類(I)は、典型的には水溶性のポリフェノール類であり、レゾルシン(レゾルシノール)以外のポリフェノールであれば、特に限定されない。ポリフェノール類(I)において、芳香環の数、又は水酸基の数は、適宜選択することができる。
前記接着剤組成物が、樹脂成分としてポリフェノール類(I)を含有することで、有機繊維コードとの接着性を高めることができる。ここで、ポリフェノール類(I)は、典型的には水溶性のポリフェノール類であり、レゾルシン(レゾルシノール)以外のポリフェノールであれば、特に限定されない。ポリフェノール類(I)において、芳香環の数、又は水酸基の数は、適宜選択することができる。
前記ポリフェノール類(I)は、より優れた接着性を実現する観点からは、2つ以上の水酸基を有することが好ましく、3つ以上の水酸基を有することがより好ましい。前記ポリフェノール類が3つ以上の水酸基を有することにより、水分を含む接着剤組成物(ディップ処理液)にポリフェノール又はポリフェノールの縮合物が水溶する。これによって、ポリフェノール類は、接着剤組成物内に均一に分布できるので、より優れた接着性を実現できる。更に、ポリフェノール類(I)が、複数個(2個以上)の芳香環を含むポリフェノールである場合、それらの芳香環では、各々、2個又は3個の水酸基がオルト位、メタ位又はパラ位に存在する。
前記ポリフェノール類(I)としては、例えば、WO2022/130879においてポリフェノール化合物として記載されたものを用いることができる。これらポリフェノール類(I)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
〔アルデヒド類(II)〕
前記接着剤組成物が、上述したポリフェノール類(I)に加えて、樹脂成分としてアルデヒド類(II)を含有することで、上述したポリフェノール類(I)と共に高い接着性を実現できる。ここで、アルデヒド類(II)は、特に限定されず、要求される性能に応じて、適宜選択することができる。なお、本明細書において、アルデヒド類(II)には、アルデヒド類が発生源であるアルデヒド類の誘導体も含まれる。
前記接着剤組成物が、上述したポリフェノール類(I)に加えて、樹脂成分としてアルデヒド類(II)を含有することで、上述したポリフェノール類(I)と共に高い接着性を実現できる。ここで、アルデヒド類(II)は、特に限定されず、要求される性能に応じて、適宜選択することができる。なお、本明細書において、アルデヒド類(II)には、アルデヒド類が発生源であるアルデヒド類の誘導体も含まれる。
前記アルデヒド類(II)として、例えば、ホルムアルデヒド、アセトアルデヒド、ブチルアルデヒド、アクロレイン、プロピオンアルデヒド、クロラール、ブチルアルデヒド、カプロアルデヒド、アリルアルデヒド等のモノアルデヒド、或いは、グリオキザール、マロンアルデヒド、スクシンアルデヒド、グルタルアルデヒド、アジポアルデヒド等の脂肪族ジアルデヒド類、芳香環を有するアルデヒド、ジアルデヒドデンプン等が挙げられる。これらアルデヒド類(II)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
前記アルデヒド類(II)は、芳香環を有するアルデヒド類である又は芳香環を有するアルデヒド類を含むことが好ましい。より優れた接着性を得ることができるためである。また、前記アルデヒド類(II)は、ホルムアルデヒドを含まないことが好ましい。ここで、「ホルムアルデヒドを含まない」とは、例えば、アルデヒド類の総質量中の、ホルムアルデヒドの含有量が0.5質量%未満であることを意味する。
前記接着剤組成物では、ポリフェノール類(I)及びアルデヒド類(II)が縮合された状態であり、ポリフェノール類と芳香環を有するアルデヒド類との質量比(芳香環を有するアルデヒド類の含有量/ポリフェノール類の含有量)が、0.1以上3以下であることが好ましい。この場合、ポリフェノール類と芳香環を有するアルデヒド類との間で起こる縮合反応の生成物である樹脂の硬度、接着性がより適したものになるからである。同様の観点から、前記接着剤組成物における、ポリフェノール類と芳香環を有するアルデヒド類との質量比(芳香環を有するアルデヒド類の含有量/ポリフェノール類の含有量)は、0.25以上であることがより好ましく、また、2.5以下であることがより好ましい。
なお、上記質量比は、乾燥物の質量(固形分比)である。
なお、上記質量比は、乾燥物の質量(固形分比)である。
また、前記接着剤組成物における、ポリフェノール類(I)及びアルデヒド類(II)の合計含有量は、3~30質量%であることが好ましい。この場合、作業性等を悪化させることなく、より優れた接着性を確保できるためである。同様の観点から、前記接着剤組成物における、ポリフェノール類(I)及びアルデヒド類(II)の合計含有量は、5質量%以上であることがより好ましく、また、25質量%以下であることがより好ましい。
なお、上記合計含有量は、乾燥物の質量(固形分比)である。
なお、上記合計含有量は、乾燥物の質量(固形分比)である。
〔イソシアネート化合物(III)〕
前記接着剤組成物は、上述したポリフェノール類(I)及びアルデヒド類(II)に加えて、イソシアネート化合物(III)を更に含有することが好ましい。この場合、ポリフェノール類(I)及びアルデヒド類(II)との相乗効果によって、接着剤組成物の接着性を一層高めることができる。
前記接着剤組成物は、上述したポリフェノール類(I)及びアルデヒド類(II)に加えて、イソシアネート化合物(III)を更に含有することが好ましい。この場合、ポリフェノール類(I)及びアルデヒド類(II)との相乗効果によって、接着剤組成物の接着性を一層高めることができる。
ここで、イソシアネート化合物(III)は、接着剤組成物の被着体である樹脂材料(例えば、ポリフェノール類(I)及びアルデヒド類(II)を縮合させたフェノール/アルデヒド樹脂)への接着を促進させる作用を有する化合物であって、極性官能基としてイソシアネート基を有する化合物である。これらイソシアネート化合物(III)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
前記イソシアネート化合物(III)は、特に限定はされないが、接着性をより向上できる観点から、(ブロックド)イソシアネート基含有芳香族化合物を含むことが好ましい。前記接着剤組成物が(ブロックド)イソシアネート基含有芳香族化合物を含有することによって、有機繊維コードと接着剤組成物との界面近傍の位置に(ブロックド)イソシアネート基含有芳香族化合物が分布する結果、一層の接着性促進効果が得られ、この効果により、接着剤組成物の、有機繊維コードとの接着性がより高度化し得る。
前記(ブロックド)イソシアネート基含有芳香族化合物については、特願2023-040157に記載されたもの、特願2023-030762に記載されたものを用いることができる。
前記接着剤組成物における、イソシアネート化合物(III)の含有量は、特に限定はされないが、より確実に優れた接着性を確保する観点から、5~65質量%であることが好ましい。同様の観点から、前記接着剤組成物におけるイソシアネート化合物(III)の含有量は、10質量%以上であることがより好ましく、また、45質量%以下であることがより好ましい。
なお、上記含有量は、乾燥物の質量(固形分比)である。
なお、上記含有量は、乾燥物の質量(固形分比)である。
〔ゴムラテックス(IV)〕
前記接着剤組成物は、上述したポリフェノール類(I)、アルデヒド類(II)及びイソシアネート化合物(III)に加えて、実質的にはゴムラテックス(IV)を更に含有することができる。これによって、接着剤組成物は、ゴム部材との接着性をより高めることができる。
前記接着剤組成物は、上述したポリフェノール類(I)、アルデヒド類(II)及びイソシアネート化合物(III)に加えて、実質的にはゴムラテックス(IV)を更に含有することができる。これによって、接着剤組成物は、ゴム部材との接着性をより高めることができる。
ここで、ゴムラテックス(IV)としては、特に限定はされず、天然ゴム(NR)の他、ポリイソプレンゴム(IR)、スチレン-ブタジエン共重合体ゴム(SBR)、ポリブタジエンゴム(BR)、エチレン-プロピレン-ジエンゴム(EPDM)、クロロプレンゴム(CR)、ハロゲン化ブチルゴム、アクリロニリトル-ブタジエンゴム(NBR)、又はビニルピリジン-スチレン-ブタジエン共重合体ゴム(Vp)等の合成ゴムが挙げられる。これらゴムラテックス(IV)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
前記ゴムラテックス(IV)を含有する接着剤組成物を調製するに際しては、イソシアネート化合物(III)を配合する前に、ゴムラテックス(IV)をフェノール類(I)及びアルデヒド類(II)と混合させることが好ましい。
前記接着剤組成物における、ゴムラテックス(IV)の含有量は、20質量%以上であることが好ましく、25質量%以上であることがより好ましく、また、70質量%以下であることが好ましく、60質量%以下であることがより好ましい。
なお、前記接着剤組成物の製造方法は、特に限定はされないが、例えば、ポリフェノール類(I)、アルデヒド類(II)、及びゴムラテックス(IV)等の原材料を混合し、熟成する方法、又は、ポリフェノール類(I)とアルデヒド類(II)とを混合して熟成した後に、ゴムラテックス(IV)を更に加えて熟成する方法、等が挙げられる。前記接着剤組成物の製造方法は、原材料にイソシアネート化合物(III)が含まれる場合、ゴムラテックス(IV)を加え、熟成した後に、イソシアネート化合物(III)を加える方法であってもよい。
前記補強層は、前記有機繊維コードを接着剤処理した後、コーティングゴムで被覆して幅狭のストリップとした後、タイヤ周方向に連続して螺旋状に巻回して形成することが好ましい。ここで、コーティングゴムとしては、有機繊維コードを被覆できる一般的なゴム組成物であれば特に限定がない。ゴム成分としては、ジエン系ゴムが挙げられ、特には天然ゴム又はイソプレンゴムが好ましい。天然ゴムは、改質されたものであってもよい。改質天然ゴムの場合、例えば窒素含有量が0.1~0.3質量%の改質天然ゴムであることが好ましい。また、前記改質天然ゴムが、遠心分離プロセス、酵素処理又は尿素処理によってたんぱく質が除去されたものであることが好ましい。また、前記改質天然ゴムのリン含有量が、200ppmを超え、900ppm以下であることが好ましい。また、該コーティングゴムには、コーティングゴムとしての接着性や耐久性等の性能に影響しない範囲であれば、カーボンブラック等の充填剤を配合してもよい。該カーボンブラックとしては、例えばSRF、GPF、FEF、HAF、ISAF、SAFクラスのカーボンブラックから選ぶ1種以上を配合してもよい。また、コーティングゴムにおけるカーボンブラックの含有量は、ゴム成分100質量部に対して40~70質量部とすることができる。カーボンブラックは、再生カーボンブラックでもよい。また、コーティングゴムは、上述した成分以外に、例えば、加硫促進剤、硫黄、亜鉛華等の架橋系薬品;コバルト塩を含むコバルト化合物等の接着促進剤;老化防止剤;オイル;樹脂;等を適宜含有することができる。老化防止剤としては、6PPD等のアミン系老化防止剤、o-MBp14等のビスフェノール系老化防止剤などが挙げられ、これら老化防止剤は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
本明細書において 、「再生カーボンブラック」とは、リサイクルに供された廃棄物である原材料から回収して得られるカーボンブラックを指す。上記リサイクルに供された廃棄物としては、使用済ゴム及び使用済タイヤに代表される、カーボンブラックを含むゴム製品(特には、加硫ゴム製品)、廃油等が挙げられる。「再生カーボンブラック」は、石油や天然ガスなどの炭化水素を原材料から直接製造されるカーボンブラック、すなわち、リサイクル品ではないカーボンブラックとは異なる。なお、ここでの「使用済」とは、実際に使用された後で廃棄されたものだけではなく、製造されたものの実際には使用されずに廃棄されたものも含む。
<タイヤの製造方法>
本実施形態のタイヤは、適用するタイヤの種類に応じ、未加硫のゴム組成物や、未加硫のトリート(コードをゴムで被覆したコード-ゴム複合体)等を用いて成形後に加硫して得てもよく、或いは、未加硫のゴム組成物の代わりに予備加硫工程等を経た半加硫ゴムを用いて成形後、さらに本加硫して得てもよい。
なお、本実施形態のタイヤのトレッドゴム層及び有機繊維コードを含む補強層以外の部材は、特に限定されず、公知の部材を使用することができる。
また、本実施形態のタイヤは、好ましくは空気入りタイヤであり、空気入りタイヤに充填する気体としては、通常の或いは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。
本実施形態のタイヤは、適用するタイヤの種類に応じ、未加硫のゴム組成物や、未加硫のトリート(コードをゴムで被覆したコード-ゴム複合体)等を用いて成形後に加硫して得てもよく、或いは、未加硫のゴム組成物の代わりに予備加硫工程等を経た半加硫ゴムを用いて成形後、さらに本加硫して得てもよい。
なお、本実施形態のタイヤのトレッドゴム層及び有機繊維コードを含む補強層以外の部材は、特に限定されず、公知の部材を使用することができる。
また、本実施形態のタイヤは、好ましくは空気入りタイヤであり、空気入りタイヤに充填する気体としては、通常の或いは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
<ゴム成分の分析方法>
スチレン-ブタジエンゴムのガラス転移温度(Tg)及び結合スチレン量は、以下の方法で測定した。また、天然ゴム(イソプレン骨格ゴム)及びスチレン-ブタジエンゴムのSP値(溶解度パラメータ)は、Fedors法に従って、算出した。
スチレン-ブタジエンゴムのガラス転移温度(Tg)及び結合スチレン量は、以下の方法で測定した。また、天然ゴム(イソプレン骨格ゴム)及びスチレン-ブタジエンゴムのSP値(溶解度パラメータ)は、Fedors法に従って、算出した。
(1)ガラス転移温度(Tg)
合成したスチレン-ブタジエンゴムを試料として、TAインスツルメンツ社製DSC250を用い、ヘリウム50mL/分の流通下、-100℃から20℃/分で昇温しながらDSC曲線を記録し、DSC微分曲線のピークトップ(Inflection point)をガラス転移温度とした。
合成したスチレン-ブタジエンゴムを試料として、TAインスツルメンツ社製DSC250を用い、ヘリウム50mL/分の流通下、-100℃から20℃/分で昇温しながらDSC曲線を記録し、DSC微分曲線のピークトップ(Inflection point)をガラス転移温度とした。
(2)結合スチレン量
合成したスチレン-ブタジエンゴムを試料として、試料100mgを、クロロホルムで100mLにメスアップし、溶解して測定サンプルとした。スチレンのフェニル基による紫外線吸収波長(254nm付近)の吸収量により、試料100質量%に対しての結合スチレン量(質量%)を測定した。なお、測定装置として、島津製作所社製の分光光度計「UV-2450」を用いた。
合成したスチレン-ブタジエンゴムを試料として、試料100mgを、クロロホルムで100mLにメスアップし、溶解して測定サンプルとした。スチレンのフェニル基による紫外線吸収波長(254nm付近)の吸収量により、試料100質量%に対しての結合スチレン量(質量%)を測定した。なお、測定装置として、島津製作所社製の分光光度計「UV-2450」を用いた。
<樹脂成分の分析方法>
樹脂成分の軟化点、重量平均分子量は、以下の方法で測定した。また、樹脂成分のSP値(溶解度パラメータ)は、Fedors法に従って、算出した。
樹脂成分の軟化点、重量平均分子量は、以下の方法で測定した。また、樹脂成分のSP値(溶解度パラメータ)は、Fedors法に従って、算出した。
(3)軟化点
樹脂成分の軟化点は、JIS-K2207-1996(環球法)に準拠して測定した。
樹脂成分の軟化点は、JIS-K2207-1996(環球法)に準拠して測定した。
(4)重量平均分子量
以下の条件で、ゲル透過クロマトグラフィー(GPC)により、樹脂成分の平均分子量を測定し、ポリスチレン換算の重量平均分子量を算出した。
・カラム温度:40℃
・注入量:50μL
・キャリアー及び流速:テトラヒドロフラン 0.6mL/min
・サンプル調製:樹脂成分約2.5mgをテトラヒドロフラン10mLに溶解
以下の条件で、ゲル透過クロマトグラフィー(GPC)により、樹脂成分の平均分子量を測定し、ポリスチレン換算の重量平均分子量を算出した。
・カラム温度:40℃
・注入量:50μL
・キャリアー及び流速:テトラヒドロフラン 0.6mL/min
・サンプル調製:樹脂成分約2.5mgをテトラヒドロフラン10mLに溶解
<ゴム組成物の調製>
表1に示す配合処方に従って、各成分を配合して混練し、実施例及び比較例のゴム組成物を調製した。なお、各実施例及び比較例における天然ゴム、SBR及び樹脂成分の配合量は、表3に示す通りである。
表1に示す配合処方に従って、各成分を配合して混練し、実施例及び比較例のゴム組成物を調製した。なお、各実施例及び比較例における天然ゴム、SBR及び樹脂成分の配合量は、表3に示す通りである。
*1 天然ゴム: TSR#20、Tg=-56℃、SP値=8.20(cal/cm3)1/2
*2 SBR: 下記の方法で合成したヒドロカルビルオキシシラン化合物変性スチレン-ブタジエンゴム、結合スチレン量=10質量%、Tg=-65℃、SP値=8.65(cal/cm3)1/2
*3 充填剤: シリカ、東ソーシリカ株式会社製、商品名「ニップシールAQ」
*4 樹脂成分: 水添C5系樹脂、Eastman社製、商品名「登録商標Impera E1780」、軟化点=130℃、重量平均分子量(Mw)=909g/mol、SP値=8.35(cal/cm3)1/2
*5 シランカップリング剤: エボニックデグッサ社製、商品名「Si75」
*6 老化防止剤: 大内新興化学工業株式会社製、商品名「ノクラック6C」
*7 ワックス: 日本精蝋株式会社製、商品名「オゾエース0701」
*8 加硫促進剤A: 大内新興化学工業株式会社製、商品名「ノクセラーDM-P」
*9 加硫促進剤B: 三新化学工業株式会社製、商品名「サンセラーNS-G」
*2 SBR: 下記の方法で合成したヒドロカルビルオキシシラン化合物変性スチレン-ブタジエンゴム、結合スチレン量=10質量%、Tg=-65℃、SP値=8.65(cal/cm3)1/2
*3 充填剤: シリカ、東ソーシリカ株式会社製、商品名「ニップシールAQ」
*4 樹脂成分: 水添C5系樹脂、Eastman社製、商品名「登録商標Impera E1780」、軟化点=130℃、重量平均分子量(Mw)=909g/mol、SP値=8.35(cal/cm3)1/2
*5 シランカップリング剤: エボニックデグッサ社製、商品名「Si75」
*6 老化防止剤: 大内新興化学工業株式会社製、商品名「ノクラック6C」
*7 ワックス: 日本精蝋株式会社製、商品名「オゾエース0701」
*8 加硫促進剤A: 大内新興化学工業株式会社製、商品名「ノクセラーDM-P」
*9 加硫促進剤B: 三新化学工業株式会社製、商品名「サンセラーNS-G」
<SBR(*2)の合成方法>
乾燥し、窒素置換した800mLの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン67.5g及びスチレン7.5gになるように加え、2,2-ジテトラヒドロフリルプロパン0.6mmolを加え、0.8mmolのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率がほぼ100%となった重合反応系に対し、変性剤としてN,N-ビス(トリメチルシリル)-3-[ジエトキシ(メチル)シリル]プロピルアミンを0.72mmol添加し、50℃で30分間変性反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液2mLを加えて反応を停止させ、常法に従い乾燥してSBR(変性SBR)を得た。
得られたSBR(変性SBR)のミクロ構造を測定した結果、結合スチレン量が10質量%であり、また、ガラス転移温度(Tg)は、-65℃であった。
乾燥し、窒素置換した800mLの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液及びスチレンのシクロヘキサン溶液を、1,3-ブタジエン67.5g及びスチレン7.5gになるように加え、2,2-ジテトラヒドロフリルプロパン0.6mmolを加え、0.8mmolのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率がほぼ100%となった重合反応系に対し、変性剤としてN,N-ビス(トリメチルシリル)-3-[ジエトキシ(メチル)シリル]プロピルアミンを0.72mmol添加し、50℃で30分間変性反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液2mLを加えて反応を停止させ、常法に従い乾燥してSBR(変性SBR)を得た。
得られたSBR(変性SBR)のミクロ構造を測定した結果、結合スチレン量が10質量%であり、また、ガラス転移温度(Tg)は、-65℃であった。
<有機繊維コードを含む補強層の評価>
表2に示す仕様及び構造の有機繊維コードを準備し、コード単体の剛性を算出した。
表2に示す仕様及び構造の有機繊維コードを準備し、コード単体の剛性を算出した。
(5)コード単体の剛性の算出
ナイロンコードの1-2%伸長時の弾性率を100として、指数表示して、コード単体の剛性を算出した。
ナイロンコードの1-2%伸長時の弾性率を100として、指数表示して、コード単体の剛性を算出した。
*10 ナイロンコード: 6,6-ナイロンからなるコード
*11 PETコード: ポリエチレンテレフタレートからなるコード
*11 PETコード: ポリエチレンテレフタレートからなるコード
<加硫ゴムの作製及び評価>
得られた実施例及び比較例のゴム組成物を加硫し、加硫ゴム試験片を得た。得られた加硫ゴム試験片に対して、以下の方法で、ウェット制動性、低燃費性、操縦安定性を評価した。結果を表3に示す。
得られた実施例及び比較例のゴム組成物を加硫し、加硫ゴム試験片を得た。得られた加硫ゴム試験片に対して、以下の方法で、ウェット制動性、低燃費性、操縦安定性を評価した。結果を表3に示す。
(6)ウェット制動性の評価
ポータブル・フリクション・テスターを用いて、湿潤アスファルト路面に対する試験片の摩擦係数を測定した。評価結果は、比較例1の摩擦係数を100として、指数表示した。指数値が大きい程、摩擦係数が大きく、ウェット制動性に優れることを示す。
ポータブル・フリクション・テスターを用いて、湿潤アスファルト路面に対する試験片の摩擦係数を測定した。評価結果は、比較例1の摩擦係数を100として、指数表示した。指数値が大きい程、摩擦係数が大きく、ウェット制動性に優れることを示す。
(7)低燃費性の評価
試験片の損失正接(tanδ)を、粘弾性測定装置(レオメトリックス社製)を用いて、温度50℃、歪1%、周波数52Hzの条件で測定した。評価結果は、比較例1のtanδの逆数を100として、指数表示した。指数値が大きい程、tanδが小さく、低燃費性に優れることを示す。
試験片の損失正接(tanδ)を、粘弾性測定装置(レオメトリックス社製)を用いて、温度50℃、歪1%、周波数52Hzの条件で測定した。評価結果は、比較例1のtanδの逆数を100として、指数表示した。指数値が大きい程、tanδが小さく、低燃費性に優れることを示す。
(8)操縦安定性の評価
試験片の貯蔵弾性率(E’)を、粘弾性測定装置(レオメトリックス社製)を用いて、温度30℃、歪1%、周波数52Hzの条件で測定した。評価結果は、比較例1の貯蔵弾性率(E’)を100として、算出する。得られた貯蔵弾性率(E’)の算出値と、有機繊維コード単体の剛性の指数から、下記式:
操縦安定性の指数=貯蔵弾性率(E’)の算出値+有機繊維コード単体の剛性の指数-100
に従って、操縦安定性の指数を算出する。該操縦安定性の指数は、換言すると、貯蔵弾性率(E’)の算出値の向上幅と、有機繊維コード単体の剛性の指数の向上幅と、100との合計であり、ここで、各算出値及び指数が基準に対して低下している場合は、向上幅は、負の値となる。操縦安定性の指数値が大きい程、操縦安定性に優れることを示す。
試験片の貯蔵弾性率(E’)を、粘弾性測定装置(レオメトリックス社製)を用いて、温度30℃、歪1%、周波数52Hzの条件で測定した。評価結果は、比較例1の貯蔵弾性率(E’)を100として、算出する。得られた貯蔵弾性率(E’)の算出値と、有機繊維コード単体の剛性の指数から、下記式:
操縦安定性の指数=貯蔵弾性率(E’)の算出値+有機繊維コード単体の剛性の指数-100
に従って、操縦安定性の指数を算出する。該操縦安定性の指数は、換言すると、貯蔵弾性率(E’)の算出値の向上幅と、有機繊維コード単体の剛性の指数の向上幅と、100との合計であり、ここで、各算出値及び指数が基準に対して低下している場合は、向上幅は、負の値となる。操縦安定性の指数値が大きい程、操縦安定性に優れることを示す。
*1、*2、*4 表1に同じ
*10、*11 表2に同じ
*10、*11 表2に同じ
本発明に従う実施例1及び実施例2は、比較例1に比べて、ゴム物性としては剛性が低下しているものの、樹脂成分/天然ゴムの質量比率が0.5以上で且つ補強層の有機繊維コードの1-2%伸長時の弾性率が4.0~30mN/(dtex・%)であることで、タイヤ性能としては操縦安定性が向上しており、同時にウェット制動性及び低燃費性が優れている。
一方、比較例2は、樹脂成分/天然ゴムの質量比率が0.5未満であるので、操縦安定性は向上するものの、ウェット制動性が低下する。
また、比較例3は、樹脂成分/天然ゴムの質量比率が0.5以上であるものの、補強層の有機繊維コードの1-2%伸長時の弾性率が4.0~30mN/(dtex・%)の範囲外であるため、低燃費性に優れるものの、ウェット制動性及び操縦安定性は向上しない。
また、比較例3は、樹脂成分/天然ゴムの質量比率が0.5以上であるものの、補強層の有機繊維コードの1-2%伸長時の弾性率が4.0~30mN/(dtex・%)の範囲外であるため、低燃費性に優れるものの、ウェット制動性及び操縦安定性は向上しない。
1:タイヤ、 2:ビード部、 3:サイドウォール部、 4:トレッド部、 5:カーカス、 6:ベルト、 6A,6B:ベルト層、 7A,7B:ベルト補強層、 8:ビードコア、 9:トレッドゴム層、 C:コードの荷重-伸び曲線、 S:コードの荷重-伸び曲線の伸び7%に対応する点における接線
Claims (7)
- トレッド部の最表面に位置するトレッドゴム層と、該トレッドゴム層のタイヤ径方向内側に位置し、有機繊維コードを含む補強層と、を具えるタイヤであって、
前記トレッドゴム層は、ゴム成分と、樹脂成分と、充填剤と、を含み、
前記ゴム成分が、イソプレン骨格ゴムと、スチレン-ブタジエンゴムと、を含み、
前記スチレン-ブタジエンゴムの少なくとも一種は、ガラス転移温度が-40℃未満であり、
前記樹脂成分は、前記イソプレン骨格ゴムとのSP値の差が1.40(cal/cm3)1/2以下であり、
前記トレッドゴム層は、下記の式(1):
前記樹脂成分/前記イソプレン骨格ゴムの質量比率≧0.5 ・・・ (1)
を満たし、
前記補強層の有機繊維コードは、1-2%伸長時の弾性率が4.0~30mN/(dtex・%)であることを特徴とする、タイヤ。 - 前記樹脂成分は、軟化点が110℃より高く、ポリスチレン換算の重量平均分子量が200~1600g/molである、請求項1に記載のタイヤ。
- 前記樹脂成分が、水添C5系樹脂、水添C5-C9系樹脂、水添ジシクロペンタジエン系樹脂、及び水添テルペン系樹脂からなる群より選択される少なくとも1種である、請求項1に記載のタイヤ。
- 前記スチレン-ブタジエンゴムが、窒素原子を含む官能基とアルコキシ基とを有する変性剤で変性されている、請求項1に記載のタイヤ。
- 前記有機繊維コードは、切断強度が6.5cN/dtex以上、切断伸度が10%以上である、請求項1に記載のタイヤ。
- 前記有機繊維コードは、ポリエチレンテレフタレートからなるコードである、請求項1に記載のタイヤ。
- 前記有機繊維コードは、7%伸長時の弾性率が6.0mN/(dtex・%)以上である、請求項1に記載のタイヤ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-188761 | 2022-11-25 | ||
JP2022188761 | 2022-11-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024111651A1 true WO2024111651A1 (ja) | 2024-05-30 |
Family
ID=91196115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/042077 WO2024111651A1 (ja) | 2022-11-25 | 2023-11-22 | タイヤ |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024111651A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003146014A (ja) * | 2001-11-12 | 2003-05-21 | Yokohama Rubber Co Ltd:The | 空気入りラジアルタイヤ |
JP2005330319A (ja) * | 2004-05-18 | 2005-12-02 | Yokohama Rubber Co Ltd:The | ゴム組成物及びその製造方法 |
WO2016171020A1 (ja) * | 2015-04-21 | 2016-10-27 | 住友ゴム工業株式会社 | タイヤ外層用ゴム組成物及び空気入りタイヤ |
JP2017019461A (ja) * | 2015-07-14 | 2017-01-26 | 東洋ゴム工業株式会社 | 空気入りタイヤ |
WO2017018386A1 (ja) * | 2015-07-30 | 2017-02-02 | 住友ゴム工業株式会社 | ゴム組成物 |
JP2019131648A (ja) * | 2018-01-29 | 2019-08-08 | 住友ゴム工業株式会社 | タイヤ用ゴム組成物およびタイヤ |
WO2021205874A1 (ja) * | 2020-04-10 | 2021-10-14 | 横浜ゴム株式会社 | 空気入りタイヤ |
-
2023
- 2023-11-22 WO PCT/JP2023/042077 patent/WO2024111651A1/ja unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003146014A (ja) * | 2001-11-12 | 2003-05-21 | Yokohama Rubber Co Ltd:The | 空気入りラジアルタイヤ |
JP2005330319A (ja) * | 2004-05-18 | 2005-12-02 | Yokohama Rubber Co Ltd:The | ゴム組成物及びその製造方法 |
WO2016171020A1 (ja) * | 2015-04-21 | 2016-10-27 | 住友ゴム工業株式会社 | タイヤ外層用ゴム組成物及び空気入りタイヤ |
JP2017019461A (ja) * | 2015-07-14 | 2017-01-26 | 東洋ゴム工業株式会社 | 空気入りタイヤ |
WO2017018386A1 (ja) * | 2015-07-30 | 2017-02-02 | 住友ゴム工業株式会社 | ゴム組成物 |
JP2019131648A (ja) * | 2018-01-29 | 2019-08-08 | 住友ゴム工業株式会社 | タイヤ用ゴム組成物およびタイヤ |
WO2021205874A1 (ja) * | 2020-04-10 | 2021-10-14 | 横浜ゴム株式会社 | 空気入りタイヤ |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2424910C2 (ru) | Автомобильная шина | |
JP5448445B2 (ja) | 空気入りタイヤ | |
JP2019182983A (ja) | ゴム組成物 | |
JP2010132168A (ja) | 空気入りタイヤ | |
WO2019117266A1 (ja) | ゴム組成物及びタイヤ | |
JP2010149632A (ja) | 空気入りタイヤ | |
JP2010070119A (ja) | 空気入りタイヤ | |
KR20230079269A (ko) | 가교용 고무 조성물, 타이어용 고무 조성물, 타이어의 사이드 월용 성형체, 시트, 타이어의 사이드 월의 제조 방법, 타이어의 사이드 월 | |
JP5363803B2 (ja) | 空気入りタイヤ | |
US20240270945A1 (en) | TIRE RUBBER COMPOSITION, TREAD RUBBER, and TIRE | |
WO2024111651A1 (ja) | タイヤ | |
US20240287293A1 (en) | Tire rubber composition, tread rubber, and tire | |
WO2019117093A1 (ja) | ゴム組成物及びタイヤ | |
WO2024111598A1 (ja) | 空気入りタイヤ | |
WO2024111600A1 (ja) | タイヤ | |
WO2024111650A1 (ja) | タイヤ | |
JP7158988B2 (ja) | タイヤ | |
WO2024111139A1 (ja) | タイヤ | |
WO2024111138A1 (ja) | タイヤ | |
JP7496295B2 (ja) | ゴム組成物及びタイヤ | |
WO2024111599A1 (ja) | タイヤ用ゴム組成物、トレッドゴム及びタイヤ | |
WO2024111601A1 (ja) | タイヤ用ゴム組成物、トレッドゴム及びタイヤ | |
EP4335661A1 (en) | Tire | |
EP4385756A1 (en) | Tire | |
EP4349904A1 (en) | Rubber composition for tire, tread rubber, and tire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23894655 Country of ref document: EP Kind code of ref document: A1 |