WO2024111555A1 - 波長選択吸収フィルタ、液晶表示装置及び有機エレクトロルミネッセンス表示装置 - Google Patents

波長選択吸収フィルタ、液晶表示装置及び有機エレクトロルミネッセンス表示装置 Download PDF

Info

Publication number
WO2024111555A1
WO2024111555A1 PCT/JP2023/041655 JP2023041655W WO2024111555A1 WO 2024111555 A1 WO2024111555 A1 WO 2024111555A1 JP 2023041655 W JP2023041655 W JP 2023041655W WO 2024111555 A1 WO2024111555 A1 WO 2024111555A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
selective absorption
absorption filter
display device
present
Prior art date
Application number
PCT/JP2023/041655
Other languages
English (en)
French (fr)
Inventor
匡広 渥美
伸隆 深川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024111555A1 publication Critical patent/WO2024111555A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/16Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing hetero atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/006Preparation of organic pigments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters

Definitions

  • the present invention relates to a wavelength-selective absorption filter, a liquid crystal display device, and an organic electroluminescence display device.
  • OLED organic electroluminescence
  • liquid crystal display devices have come to be used as image display devices.
  • liquid crystal display devices are expanding year by year as space-saving image display devices with low power consumption. Because the liquid crystal panel that displays images is a non-emissive element that does not emit light, liquid crystal display devices are equipped with a backlight unit that is disposed behind the liquid crystal panel and supplies light to the liquid crystal panel.
  • An OLED display device is a device that displays images by utilizing the spontaneous emission of OLED (Organic Light Emitting Diodes) elements. Therefore, compared to various display devices such as liquid crystal display devices and plasma display devices, it has advantages such as a high contrast ratio, high color reproducibility, a wide viewing angle, high-speed response, and the possibility of being thin and lightweight. In addition to these advantages, OLED display devices are being actively researched and developed as next-generation display devices in terms of flexibility.
  • a technique of incorporating a wavelength-selective absorption filter as a component is known.
  • a white light emitting diode (LED) when used as a light source for a backlight unit, an attempt has been made to provide a wavelength selective absorption filter in order to block light of unnecessary wavelengths emitted from the white LED.
  • examples of a wide color reproduction range include OLEDs with three separate colors R (red), G (green), and B (blue), as well as liquid crystal displays using micro LEDs, mini LEDs, and quantum dot (QD) light sources, QD-OLEDs, etc. Attempts are being made to incorporate wavelength-selective absorption filters to further improve the color reproduction of these.
  • Patent Document 1 describes a color correction filter for a white organic electroluminescence light source, which contains a resin and 0.1 parts by mass or more of a dye having an absorption maximum wavelength in the range of 560 to 620 nm or 460 to 520 nm per 100 parts by mass of the resin, and has a water content of 0.5% by mass or less.
  • Patent Document 1 describes that the color correction filter for a white organic electroluminescence light source described above can further improve the color reproducibility of an organic EL display device using a white organic EL light source, and is also excellent in light resistance.
  • the color correction filter for a white organic electroluminescence light source (wavelength-selective absorption filter) described in Patent Document 1 has low adhesion between the substrate film (support) used for coating and forming the wavelength-selective absorption filter layer (color correction filter layer for a white organic EL light source), and therefore, when incorporating it into various display devices, a process of transferring the substrate film used in the coating and forming process to another substrate film or the like is required.
  • An object of the present invention is to provide a wavelength-selective absorption filter in which a base film and a wavelength-selective absorption filter layer in the wavelength-selective absorption filter exhibit excellent adhesion, and which can be used, for example, by incorporating the base film together with the filter into a display device.
  • Another object of the present invention is to provide a liquid crystal display device and an organic electroluminescence display device that include the above-mentioned wavelength-selective absorption filter.
  • a wavelength-selective absorption filter having a base film and a wavelength-selective absorption filter layer disposed in contact with the base film,
  • the wavelength-selective absorption filter wherein the wavelength-selective absorption filter layer comprises a resin containing a carboxy group, and 0.1 parts by mass or more of a dye having a main absorption wavelength band in the wavelength range of 460 to 520 nm per 100 parts by mass of the resin.
  • a liquid crystal display device comprising the wavelength-selective absorption filter according to any one of ⁇ 1> to ⁇ 3>.
  • ⁇ 5> ⁇ 4> An organic electroluminescence display device comprising the wavelength-selective absorption filter according to any one of ⁇ 1> to ⁇ 3>.
  • a numerical range expressed using "to” means a range including the numerical values before and after it as the lower limit and upper limit.
  • substituents, etc. when there are a plurality of substituents, linking groups, or structural units, etc., represented by a specific code or formula (hereinafter referred to as "substituents, etc.”), or when a plurality of substituents, etc., are specified at the same time, unless otherwise specified, the respective substituents, etc. may be the same or different from each other. The same applies to the definition of the number of substituents, etc.
  • the components constituting the wavelength-selective absorption filter layer may each be contained in the wavelength-selective absorption filter layer in one type or in two or more types.
  • the polymer may be either a chain polymerization polymer or a condensation polymerization polymer, and may be either a homopolymer or a copolymer. In addition, if it is a copolymer, it may be either a random polymer, a block polymer, or the like.
  • double bonds when double bonds are present in a molecule in the form of E or Z, they may be either one or a mixture thereof.
  • the composition includes not only a mixture in which the component concentrations are constant (each component is uniformly dispersed) but also a mixture in which the component concentrations vary within a range that does not impair the intended function.
  • (meth)acrylate refers to either or both of acrylate and methacrylate
  • (meth)acrylic acid refers to either or both of acrylic acid and methacrylic acid
  • (meth)acryloyl refers to either or both of acryloyl and methacryloyl.
  • the wavelength-selective absorption filter of the present invention exhibits excellent adhesion between the substrate film and the wavelength-selective absorption filter layer in the wavelength-selective absorption filter, and therefore the wavelength-selective absorption filter of the present invention can be used, for example, by being incorporated into a display device together with the substrate film. Furthermore, since the liquid crystal display device and organic electroluminescence display device of the present invention directly contain the wavelength-selective absorption filter of the present invention, in their production, there is no need to transfer the wavelength-selective absorption filter layer to another substrate film or the like and then incorporate it into the display device, resulting in good production (assembly) efficiency.
  • FIG. 1 is a schematic diagram showing an outline of one embodiment of a liquid crystal display device having a wavelength-selective absorption filter of the present invention.
  • the wavelength-selective absorption filter of the present invention (hereinafter also simply referred to as “the filter of the present invention”) is a wavelength-selective absorption filter having a base film and a wavelength-selective absorption filter layer arranged in contact with the base film, and the wavelength-selective absorption filter layer contains a resin containing a carboxy group and a dye having a main absorption wavelength band in the wavelength range of 460 to 520 nm in a specific ratio relative to the resin.
  • the filter of the present invention can be used, for example, as a film for effectively blocking light of unnecessary wavelengths (light in wavelength bands other than RGB, which will be described later) from a backlight light source of a liquid crystal display device, and as a film for effectively blocking light of unnecessary wavelengths (light in wavelength bands other than RGB, which will be described later) from a light emission source in an organic EL display device.
  • the dye contained in the wavelength selective absorption filter layer is a dye (hereinafter referred to as dye A) having a main absorption wavelength band in the wavelength range of 460 to 520 nm.
  • the wavelength-selective absorption filter layer may contain a dye other than the dye A, the details of which will be described later.
  • the dye A there are no particular limitations on the dye A, and various dyes can be used as long as they have a main absorption wavelength band in the wavelength range of 460 to 520 nm. Many of the dyes A exhibit fluorescence.
  • having a main absorption wavelength band in the wavelength range of XX to YY nm means that in the visible light absorption spectrum (wavelength range of 380 to 750 nm), a wavelength exhibiting an absorption maximum wavelength exists in the wavelength range of XX to YY nm. Therefore, if this wavelength is within the above wavelength range, the entire absorption band including this wavelength may be within the above wavelength range, or may extend beyond the above wavelength range.
  • the absorption maximum wavelength exhibiting the maximum absorbance exists within the wavelength range of XX to YY nm, and an absorption maximum wavelength other than the absorption maximum wavelength exhibiting the maximum absorbance (an absorption maximum wavelength exhibiting an absorbance that is not the highest) may exist outside the wavelength range of XX to YY nm.
  • the dye A examples include pyrrole methine (PM)-based dyes, rhodamine (RH)-based dyes, boron dipyrromethene (BODIPY)-based dyes, and squaraine (SQ)-based dyes.
  • PM pyrrole methine
  • RH rhodamine
  • BODIPY boron dipyrromethene
  • SQ squaraine
  • commercially available products such as FDB-007 (product name, merocyanine dye, manufactured by Yamada Chemical Industry Co., Ltd.) can also be preferably used as dye A.
  • dyes other than dye A may be appropriately contained within the range that does not impair the effects of the present invention.
  • dye A a squaraine dye is preferable, and a squaraine dye represented by the following general formula (1) is more preferable.
  • the cations are delocalized and multiple tautomer structures exist. Therefore, in the present invention, when at least one tautomer structure of a dye corresponds to each general formula, the dye is considered to be a dye represented by each general formula. Therefore, a dye represented by a specific general formula can be said to be a dye whose at least one tautomer structure can be represented by a specific general formula.
  • the dye represented by a general formula may have any tautomer structure as long as at least one of the tautomer structures corresponds to this general formula.
  • G represents a heterocyclic group which may have a substituent.
  • the dye represented by the above general formula (1) is the same as the squaraine dye represented by the general formula (1) described in paragraphs [0016] to [0024] of WO 2019/189463, and the preferred range is also the same. Therefore, for the definition and preferred range of each substituent in the general formula (1), unless otherwise specified, the description of each substituent of the dye represented by the general formula (1) described in paragraphs [0016] to [0024] of WO 2019/189463 can be applied as it is. This also applies to the dyes represented by any of the following general formulas (2) to (5).
  • the dyes represented by any of the following general formulas (2) to (5) are the same as the squaraine dyes represented by any of the general formulas (2) to (5) described in paragraphs [0025] to [0045] of WO 2019/189463, and the preferred ranges are also the same. Therefore, for the definition and preferred range of each substituent in the general formulas (2) to (5), unless otherwise specified, the descriptions regarding each substituent of the dye represented by any of the general formulas (2) to (5) described in paragraphs [0025] to [0045] of WO 2019/189463 can be applied as they are.
  • a preferred embodiment of the dye represented by the above general formula (1) is a dye represented by the following general formula (2):
  • A1 is the same as A in formula (1). Among them, a nitrogen-containing 5-membered heterocyclic group is preferable.
  • the dye represented by the above general formula (2) is preferably a dye represented by any one of the following general formulas (3), (4), and (5).
  • R 1 and R 2 each independently represent a hydrogen atom or a substituent and have the same meaning as R 1 and R 2 in formula (2) above, and the preferred range is also the same.
  • B 1 to B 4 each independently represent a carbon atom or a nitrogen atom and have the same meaning as B 1 to B 4 in formula (2) above, and the preferred ranges are also the same.
  • R 1 and R 2 each independently represent a hydrogen atom or a substituent and have the same meaning as R 1 and R 2 in formula (2) above, and the preferred range is also the same.
  • B 1 to B 4 each independently represent a carbon atom or a nitrogen atom and have the same meaning as B 1 to B 4 in formula (2) above, and the preferred ranges are also the same.
  • R 1 and R 2 each independently represent a hydrogen atom or a substituent and have the same meaning as R 1 and R 2 in formula (2) above, and the preferred range is also the same.
  • B 1 to B 4 each independently represent a carbon atom or a nitrogen atom and have the same meaning as B 1 to B 4 in formula (2) above, and the preferred ranges are also the same.
  • the squaraine dye when a squaraine dye is used as dye A, the squaraine dye may be any squaraine dye represented by any of the general formulas (1) to (5) and may be used without any particular limitation.
  • the squaraine dye include the compounds described in JP-A-2006-160618, WO-2004/005981, WO-2004/007447, Dyes and Pigment, 2001, 49, pp. 161-179, WO-2008/090757, WO-2005/121098, and JP-A-2008-275726.
  • a preferred embodiment of the dye represented by the above general formula (1) is a dye represented by the following general formula (6).
  • R3 and R4 each independently represent a hydrogen atom or a substituent and have the same meaning as R3 and R4 in formula (3), and the preferred meanings are also the same.
  • A2 is the same as A in the general formula (1). Among them, a nitrogen-containing 5-membered heterocyclic group is preferable.
  • the dye represented by the above general formula (6) is preferably a dye represented by any one of the following general formulas (7), (8), and (9).
  • R3 and R4 each independently represent a hydrogen atom or a substituent, and have the same meaning as R3 and R4 in the general formula (3), and the preferred range is also the same.
  • Two R3s and two R4s may be the same or different.
  • R3 and R4 each independently represent a hydrogen atom or a substituent and have the same meaning as R3 and R4 in formula (3) above, and the preferred range is also the same.
  • R5 and R6 each independently represent a hydrogen atom or a substituent and have the same meaning as R5 and R6 in formula (4), and the preferred range is also the same.
  • R3 and R4 each independently represent a hydrogen atom or a substituent and have the same meaning as R3 and R4 in formula (3) above, and the preferred range is also the same.
  • R7 and R8 each independently represent a hydrogen atom or a substituent and have the same meaning as R7 and R8 in formula (5), and the preferred range is also the same.
  • the squaraine dye when a squaraine dye is used as dye B, the squaraine dye may be any squaraine dye represented by any of the general formulas (6) to (9) and may be used without any particular limitation. Examples of such squaraine dyes include the compounds described in JP-A-2002-097383 and JP-A-2015-068945.
  • the content of the dye having a main absorption wavelength band in the wavelength range of 460 to 520 nm in the wavelength-selective absorption filter layer is, in total, 0.10 parts by mass or more, preferably 0.15 parts by mass or more, more preferably 0.20 parts by mass or more, even more preferably 0.25 parts by mass or more, and particularly preferably 0.30 parts by mass or more, relative to 100 parts by mass of the resin constituting the wavelength-selective absorption filter layer.
  • the content of dyes having a main absorption wavelength band in the wavelength range of 460 to 520 nm in the wavelength-selective absorption filter layer in total is usually 1 part by mass or less, preferably 0.60 parts by mass or less, and more preferably 0.45 parts by mass or less, per 100 parts by mass of the resin constituting the wavelength-selective absorption filter layer.
  • the total content of the dyes having a main absorption wavelength band in the wavelength range of 460 to 520 nm in the wavelength selective absorption filter layer is preferably 0.10 to 1 part by mass, more preferably 0.15 to 1 part by mass, even more preferably 0.20 to 0.60 parts by mass, particularly preferably 0.25 to 0.60 parts by mass, and of these, 0.30 to 0.45 parts by mass is preferred, relative to 100 parts by mass of the resin constituting the wavelength selective absorption filter layer.
  • the dye used in the present invention may be one or more fluorescent dyes (second embodiment dyes) whose main absorption wavelength bands are in wavelength bands other than RGB and whose main emission wavelength bands are in wavelength bands corresponding to the RGB wavelength bands.
  • wavelength bands other than RGB include wavelength bands of 430 nm or less (e.g., 380 nm to 430 nm), 480 nm to 510 nm, or 560 nm to 620 nm (preferably 610 nm or less).
  • RGB wavelength bands include wavelength bands of 430 nm to 480 nm, 510 nm to 580 nm (preferably less than 560 nm), or 610 nm or more (e.g., 610 nm to 650 nm, preferably more than 620 nm to 650 nm or less).
  • the main absorption wavelength band being in a wavelength band other than RGB means that in the visible light absorption spectrum (wavelength region 380 to 750 nm), the wavelength showing the highest absorbance (maximum absorbance) among the absorption maximum wavelengths is present in any of the wavelength bands other than RGB.
  • the main emission wavelength band being in a wavelength band corresponding to the RGB wavelength band means that in the visible light emission spectrum (wavelength region 380 to 750 nm), the wavelength showing the highest luminance (maximum luminance) among the maximum emission wavelengths is present in any of the RGB wavelength bands.
  • the dye of the second aspect is not particularly limited as long as it has the above-mentioned properties, but examples thereof include anthracene-based, anthraquinone-based, arylmethine-based, azo-based, azomethine-based, bimane-based, coumarin-based, 1,5-diazabicyclo[3.3.0]octadiene-based, diketopyrrole-based, naphthalenol imine-based, and the like.
  • fluorescent dyes of the thalenol-imine type include fluorescent dyes of the thalenol-imine type, naphthalimide type, perylene type, phenolphthalein type, pyrrole methine type, pyran type, pyrene type, porphycene type, porphyrin type, quinacridone type, rhodamine type, rubrene type, and stilbene type.
  • a combination of two or more fluorescent dyes selected from the perylene, azo, pyrrolmethine, pyran, and coumarin fluorescent dyes is used, and more preferably, a combination of two or more fluorescent dyes selected from the perylene, pyrrolmethine, pyran, and coumarin fluorescent dyes is used.
  • the wavelength-selective absorption filter layer contains a resin containing a carboxy group. That is, the wavelength selective absorption filter layer contains, as a matrix resin, a resin constituted by a polymer containing a carboxy group (hereinafter also referred to as a "carboxy group-containing polymer").
  • the carboxy group-containing polymer may further have an acid group other than the carboxy group.
  • the acid group other than the carboxy group include a phenolic hydroxyl group, a phosphoric acid group, and a sulfonic acid group.
  • the carboxy group-containing polymer is a copolymer
  • the polymer structure may be a random polymer or a regular polymer such as a block polymer.
  • the carboxy group-containing polymer preferably has a structural unit having a carboxy group.
  • structural units having a carboxy group include structural units derived from (meth)acrylic acid, crotonic acid, itaconic acid, maleic acid, or fumaric acid. Of these, structural units derived from (meth)acrylic acid are preferred.
  • the content of the structural unit having a carboxy group is preferably 1 to 100 mol%, more preferably 3 to 65 mol%, even more preferably 5 to 45 mol%, and particularly preferably 10 to 45 mol%, when the total of all structural units of the carboxy group-containing polymer is 100 mol%.
  • the structural unit having a carboxy group may be used alone or in combination of two or more kinds.
  • the carboxyl group-containing polymer preferably has a structural unit having an aromatic ring (preferably an aromatic hydrocarbon ring).
  • a structural unit derived from a (meth)acrylate having an aromatic ring specifically, benzyl (meth)acrylate, phenethyl (meth)acrylate, or phenoxyethyl (meth)acrylate, etc.
  • styrene may be mentioned.
  • the content of the structural unit having an aromatic ring is preferably 0 to 97 mol%, more preferably 0 to 95 mol%, and even more preferably 0 to 90 mol%, when the total of all structural units of the carboxy group-containing polymer is 100 mol%.
  • the aromatic ring-containing structural unit may use one type alone, or two or more types in combination.
  • the carboxyl group-containing polymer also preferably has a structural unit having an alicyclic structure.
  • alicyclic structures include a tricyclo[5.2.1.0 2,6 ]decane ring structure (also called tetrahydrodicyclopentadiene; the monovalent group is dicyclopentanyl), a tricyclo[5.2.1.0 2,6 ]decane-3-ene ring structure (also called 5,6-dihydrodicyclopentadiene; the monovalent group is dicyclopentenyl), an isobornane ring structure (the monovalent group is isobornyl), an adamantane ring structure (the monovalent group is adamantyl), and a cyclohexane ring structure (the monovalent group is cyclohexyl).
  • Examples of the structural unit having an alicyclic structure include structural units derived from (meth)acrylates having an alicyclic structure, specifically, structural units derived from dicyclopentanyl (meth)acrylate, dicyclopentenyl (meth)acrylate, isobornyl (meth)acrylate, adamantyl (meth)acrylate, cyclohexyl (meth)acrylate, etc.
  • the content of the structural unit having an alicyclic structure is preferably 0 to 97 mol%, more preferably 0 to 95 mol%, and even more preferably 0 to 90 mol%, when the total of all structural units of the carboxy group-containing polymer is 100 mol%.
  • the structural unit having an alicyclic structure may be used alone or in combination of two or more kinds.
  • the carboxyl group-containing polymer may have other structural units in addition to the above-mentioned structural units.
  • An example of the other structural unit is a structural unit derived from methyl (meth)acrylate.
  • the content of the other structural units in the carboxy group-containing polymer is preferably 0 to 70 mol%, more preferably 0 to 50 mol%, and even more preferably 0 to 20 mol%, when the total of all structural units of the carboxy group-containing polymer is 100 mol%.
  • the other structural units may be used alone or in combination of two or more kinds.
  • the carboxy group-containing polymer preferably has at least one of the above-mentioned structural units having an aromatic ring and structural units having an alicyclic structure in addition to the structural units having a carboxy group described above, and from the viewpoint of further improving the adhesion between the wavelength-selective absorption filter layer and the substrate film, it is more preferable that the polymer has at least the above-mentioned structural units having an alicyclic structure in addition to the structural units having a carboxy group described above.
  • the wavelength selective absorption filter layer may contain, in addition to the above-mentioned dye and matrix resin, a polarization enhancer, a discoloration inhibitor, a matting agent, a leveling agent, and the like.
  • the wavelength-selective absorption filter layer preferably contains a polarization enhancer, which quenches the fluorescence emitted by the dye, thereby improving the polarization degree of the polarizing plate that the organic EL display device has for the purpose of preventing reflection of external light, etc.
  • the polarization enhancer used in the present invention is preferably an electron-donating quencher or an electron-accepting quencher.
  • the electron-donating quencher used in the present invention donates an electron to the SOMO at the lower energy level of the two SOMOs of a dye in an excited state, and then accepts an electron from the SOMO at the higher energy level of the dye, thereby deactivating the excited dye to the ground state.
  • the electron-accepting quencher used in the present invention accepts an electron from the SOMO at the higher energy level of the two SOMOs of a dye in an excited state, and then donates an electron to the SOMO at the lower energy level of the dye, thereby deactivating the excited dye to the ground state.
  • the content of the polarization enhancer in the wavelength-selective absorption filter layer is preferably 0 to 6 mass %, more preferably 0.1 to 5 mass %, and even more preferably 0.3 to 4.5 mass %.
  • the polarization enhancer used in the present invention is preferably linked to a dye by a covalent bond, if necessary via a linking group, to form a polarization enhancer-containing dye.
  • Dyes of this type are also included in the squaraine dye of general formula (1) defined in the present invention.
  • the energy levels of the dye portion and the polarization enhancer portion of the dye with a built-in polarization enhancer of the present invention can be calculated in the same manner as the energy levels of the dye and the polarization enhancer described above.
  • two oxidation potentials are detected from the dye with a built-in polarization enhancer used in the present invention, and the value closest to the oxidation potential of the dye without a built-in polarization enhancer is taken as the oxidation potential of the dye portion, and the value furthest from it is taken as the oxidation potential of the polarization enhancer portion.
  • the dye with a built-in polarization enhancer for use in the present invention the descriptions of the dye with a built-in polarization enhancer described in paragraphs [0223] to [0234] of WO 2019/189463 and the descriptions of these specific examples can be applied as they are.
  • the content of the dye with built-in polarization enhancer in the wavelength-selective absorption filter layer is the content of the dye in the wavelength-selective absorption filter layer that has a main absorption wavelength band of 460 to 520 nm.
  • the content of the dye with built-in polarization enhancer may be 0.1 parts by mass or more per 100 parts by mass of the resin that constitutes the wavelength-selective absorption filter layer.
  • the wavelength-selective absorption filter layer preferably contains a discoloration inhibitor.
  • the discoloration inhibitor used in the present invention include the antioxidants described in paragraphs [0143] to [0165] of WO 2015/005398, the radical scavengers described in paragraphs [0166] to [0199] of the same, and the deterioration inhibitors described in paragraphs [0205] to [0206] of the same.
  • the anti-fading agent used in the present invention the compound represented by general formula (IV) and the compound represented by general formula [III] described in paragraphs [0237] to [0251] of WO 2019/189463 can be used.
  • the content of the anti-fading agent in the wavelength-selective absorption filter layer is preferably 0 to 5% by mass, more preferably 0 to 3% by mass, and even more preferably 0 to 2% by mass.
  • the wavelength selective absorption filter layer can be appropriately mixed with a leveling agent (surfactant).
  • a leveling agent surfactant
  • the leveling agent there can be mentioned compounds known in the art, and particularly preferred is a fluorine-containing surfactant.
  • the content of the leveling agent in the wavelength selective absorption filter layer is appropriately adjusted depending on the purpose.
  • the wavelength selective absorption filter layer may contain, in addition to the above components, low molecular weight plasticizers, oligomer plasticizers, retardation regulators, UV absorbers, deterioration inhibitors, peeling promoters, infrared absorbers, antioxidants, fillers, compatibilizers, etc.
  • the wavelength-selective absorption filter layer can be produced by a method of forming a coating layer on a substrate film by a conventional method (coating method), which can also be combined with appropriate stretching, to produce the filter of the present invention in which the wavelength-selective absorption filter layer is disposed in contact with the substrate film.
  • a solution of a material that forms a wavelength selective absorption filter layer is applied to a substrate film to form a coating layer.
  • the surface of the coating layer opposite to the surface in contact with the substrate film can be used by laminating another member via an adhesive layer in a post-process.
  • the substrate film in a state where the polymer solution or coating layer is laminated on the substrate film, the substrate film can be stretched as appropriate.
  • the solvent used in the solution of the filter material can be appropriately selected based on the following points: the ability to dissolve or disperse the filter material, the ease of forming a uniform surface during the coating and drying processes, the ability to ensure liquid preservation, the appropriate saturated vapor pressure, etc.
  • the timing of adding the dye to the filter material is not particularly limited as long as it is added at the time of film formation. For example, it may be added at the time of synthesis of the matrix resin, or it may be mixed with the filter material when preparing a coating solution for the filter material.
  • the substrate film used to form the wavelength selective absorption filter layer by a coating method or the like preferably has a thickness of 5 to 100 ⁇ m, more preferably 10 to 75 ⁇ m, and even more preferably 15 to 55 ⁇ m. If the thickness is equal to or greater than the above-mentioned preferred lower limit (e.g., 5 ⁇ m or more), sufficient mechanical strength is easily ensured, and failures such as curling, wrinkling, and buckling are unlikely to occur, which is preferable.
  • the thickness is equal to or greater than the above-mentioned preferred lower limit (e.g., 5 ⁇ m or more), sufficient mechanical strength is easily ensured, and failures such as curling, wrinkling, and buckling are unlikely to occur, which is preferable.
  • the thickness is equal to or less than the above-mentioned preferred upper limit (e.g., 100 ⁇ m or less)
  • the surface pressure applied to the multilayer film is easily adjusted to an appropriate range, and adhesion failure is unlikely to occur, which is preferable.
  • the surface energy of the base film is not particularly limited, but by adjusting the relationship between the surface energies of the filter material and coating solution and the surface energy of the surface of the base film on which the wavelength-selective absorption filter layer is formed, the adhesion (adhesive strength) between the wavelength-selective absorption filter layer and the base film can be adjusted. If the surface energy difference is reduced, the adhesive strength tends to increase, and if the surface energy difference is increased, the adhesive strength tends to decrease, and these can be set appropriately. In the present invention, it is preferable to reduce the surface energy difference.
  • the surface energy of the substrate film can be calculated from the contact angle values of water and methylene iodide by the Owens method.
  • a DM901 Kelowa Interface Science Co., Ltd., contact angle meter
  • the surface energy of the substrate film on the side on which the wavelength-selective absorption filter layer is formed is preferably 41.0 to 48.0 mN/m, more preferably 42.0 to 48.0 mN/m.
  • a surface energy of 41.0 mN/m or more is preferable because it enhances the uniformity of the thickness of the wavelength-selective absorption filter layer, and a surface energy of 48.0 mN/m or less is preferable from the viewpoint of the adhesion of the wavelength-selective absorption filter layer to the substrate film.
  • the surface unevenness of the base film is not particularly limited, but can be adjusted for the purpose of preventing adhesion failure, for example, when the wavelength-selective absorption filter (multilayer film) of the present invention is stored in a long roll form, depending on the relationship between the surface energy, hardness, and surface unevenness of the wavelength-selective absorption filter layer surface and the surface energy and hardness of the surface of the base film opposite to the side on which the wavelength-selective absorption filter layer is formed. Increasing the surface unevenness tends to suppress adhesion failure, while decreasing the surface unevenness tends to reduce the surface unevenness of the wavelength-selective absorption filter and reduce the haze of the wavelength-selective absorption filter, and can be set appropriately.
  • a film made of a commonly used material or a commonly used film can be used as appropriate.
  • Specific materials constituting the base film include polyester-based polymers such as polyethylene terephthalate, olefin-based polymers, cycloolefin-based polymers, (meth)acrylic polymers, cellulose-based polymers, polyamide-based polymers, and the like.
  • a surface treatment can be performed as appropriate. For example, corona treatment, room temperature plasma treatment, saponification treatment, and the like can be performed to increase the surface energy, and silicone treatment, fluorine treatment, olefin treatment, and the like can be performed to decrease the surface energy.
  • the peel force between the wavelength-selective absorption filter layer and the base film can be controlled by adjusting the filter material (the material that forms the wavelength-selective absorption filter layer), the material of the base film, the internal strain of the wavelength-selective absorption filter layer, etc.
  • the peel strength measured in a test in which the base film is peeled off in a 90° direction (90° peel test) according to JIS (Japanese Industrial Standards) Z-0237 (2022) under conditions of a measurement temperature of 25° C., a relative humidity of 60%, a load cell of 50 N, and a peel speed of 300 mm/min is preferably 1 N/25 mm or more, more preferably 5 N/25 mm or more, and even more preferably 8 N/25 mm or more, and it is particularly preferable that no peeling occurs under the above peeling conditions.
  • the thickness of the wavelength-selective absorption filter layer is preferably 1 to 18 ⁇ m, more preferably 1 to 12 ⁇ m, and more preferably 1 to 8 ⁇ m.
  • a membrane thickness of 1 to 18 ⁇ m means that the thickness of the filter is within the range of 1 to 18 ⁇ m no matter where it is measured. This also applies to membrane thicknesses of 1 to 12 ⁇ m and 1 to 8 ⁇ m.
  • the membrane thickness can be measured with an electronic micrometer manufactured by Anritsu Corporation or the like.
  • the wavelength selective absorption filter layer preferably has an absorbance at a wavelength of 500 nm of 0.05 to 4.0, more preferably 0.01 to 3.0, and even more preferably 0.1 to 2.0.
  • the absorbance of the wavelength selective absorption filter layer is adjusted to fall within the above range, into an organic EL display device or a liquid crystal display device, display performance with better color reproducibility can be obtained.
  • the absorbance of the wavelength selective absorption filter layer can be adjusted by the type and amount of dye added.
  • the moisture content of the wavelength selective absorption filter layer is preferably 0.5% by mass or less, and more preferably 0.3% by mass or less, regardless of the film thickness.
  • the "moisture content” is a value measured under conditions of 25° C. and a relative humidity of 80%.
  • the moisture content of the wavelength selective absorption filter layer can be measured using a sample having a thicker film thickness as necessary.
  • the moisture content is measured by the Karl Fischer method using a moisture meter and a sample drying device "CA-03" and “VA-05” (both manufactured by Mitsubishi Chemical Corporation), and the moisture content can be calculated by dividing the moisture content (g) by the sample mass (g, including the moisture content).
  • the wavelength selective absorption filter obtained as described above is preferably subjected to a hydrophilization treatment by a conventional method such as glow discharge treatment, corona discharge treatment, or alkaline saponification treatment, and corona discharge treatment is most preferably used. It is also preferable to apply the methods disclosed in JP-A-6-094915 or JP-A-6-118232.
  • the obtained wavelength-selective absorption filter may be subjected to a heat treatment process, a superheated steam contact process, an organic solvent contact process, etc., as necessary. Surface treatment may also be performed as appropriate.
  • the liquid crystal display device of the present invention includes the wavelength-selective absorption filter of the present invention.
  • the wavelength-selective absorption filter of the present invention may be used as at least one of a polarizing plate protective film and a pressure-sensitive adhesive layer as described below, and may be included in a backlight unit used in the liquid crystal display device.
  • the liquid crystal display device preferably includes a wavelength-selective absorption filter, a polarizing plate including a polarizer and a polarizing plate protective film, an adhesive layer, and a liquid crystal cell, and the polarizing plate is preferably attached to the liquid crystal cell via the adhesive layer.
  • the wavelength-selective absorption filter may also serve as the polarizing plate protective film or the adhesive layer.
  • the liquid crystal display device can be divided into a case where it includes a polarizing plate including a polarizer and a wavelength-selective absorption filter (polarizing plate protective film), an adhesive layer, and a liquid crystal cell, and a case where it includes a polarizing plate including a polarizer and a polarizing plate protective film, a wavelength-selective absorption filter (adhesive layer), and a liquid crystal cell.
  • FIG. 1 is a schematic diagram showing an example of a liquid crystal display device of the present invention.
  • the liquid crystal display device 10 comprises a liquid crystal cell having a liquid crystal layer 5 and an upper electrode substrate 3 and a lower electrode substrate 6 of the liquid crystal cell arranged above and below the liquid crystal layer 5, and an upper polarizing plate 1 and a lower polarizing plate 8 arranged on either side of the liquid crystal cell.
  • a color filter layer may be laminated on the upper electrode substrate 3 or the lower electrode substrate 6.
  • a backlight is arranged on the rear of the liquid crystal display device 10. The light source of the backlight can be one described above in the backlight unit.
  • the upper polarizing plate 1 and the lower polarizing plate 8 each have a structure in which a polarizer is sandwiched between two polarizing plate protective films, and it is preferable that in the liquid crystal display device 10, at least one of the polarizing plates is a polarizing plate that includes the wavelength-selective absorption filter of the present invention.
  • the liquid crystal cell and the polarizing plate may be bonded together via an adhesive layer (not shown).
  • the wavelength-selective absorption filter of the present invention may also serve as the adhesive layer.
  • the liquid crystal display device 10 includes a direct image viewing type, an image projection type, and an optical modulation type.
  • the present invention is effective for an active matrix liquid crystal display device using three-terminal or two-terminal semiconductor elements such as TFT or MIM (Metal-Insulator-Metal).
  • TFT three-terminal or two-terminal semiconductor elements
  • MIM Metal-Insulator-Metal
  • the present invention is also effective for a passive matrix liquid crystal display device represented by the STN (Super Twisted Nematic) mode, which is called time-division driving.
  • STN Super Twisted Nematic
  • the polarizing plate of the liquid crystal display device may be a normal polarizing plate (a polarizing plate not including the wavelength-selective absorption filter of the present invention) or a polarizing plate including the light-absorbing filter of the present invention
  • the pressure-sensitive adhesive layer may be a normal pressure-sensitive adhesive layer (not including the wavelength-selective absorption filter of the present invention) or a pressure-sensitive adhesive layer including the wavelength-selective absorption filter of the present invention.
  • the IPS (In Plane Switching) mode liquid crystal display device described in paragraphs [0128] to [0136] of JP 2010-102296 A is preferable as the liquid crystal display device of the present invention, except that it uses the wavelength-selective absorption filter of the present invention.
  • the description of the IPS mode liquid crystal display device described in JP 2010-102296 A can be preferably applied to the liquid crystal display device of the present invention, except that it includes the wavelength-selective absorption filter of the present invention as described above.
  • the polarizing plate used in the present invention includes a polarizer and at least one polarizing plate protective film.
  • the polarizing plate used in the present invention preferably has a polarizer and polarizing plate protective films on both sides of the polarizer, and more preferably has the wavelength selective absorption filter of the present invention as a polarizing plate protective film on at least one side.
  • the polarizer may have a normal polarizing plate protective film on the side opposite to the side having the wavelength selective absorption filter of the present invention (polarizing plate protective film of the present invention).
  • the thickness of the polarizing plate protective film is usually preferably 5 to 120 ⁇ m, more preferably 10 to 100 ⁇ m.
  • a thinner film is preferable because it is less likely to cause display unevenness after aging at high temperature and high humidity when incorporated into a liquid crystal display device. On the other hand, if the film is too thin, it becomes difficult to transport the film stably during film production and polarizing plate production.
  • the wavelength-selective absorption filter of the present invention also serves as a polarizing plate protective film, it is preferable that the thickness of the wavelength-selective absorption filter satisfies the above range.
  • the polarizing plate used in the present invention preferably has a polarization degree of 99.950% or more, more preferably 99.970% or more, and most preferably 99.990% or more.
  • the degree of polarization of the polarizing plate is calculated from the crossed transmittance and parallel transmittance measured at wavelengths of 380 to 700 nm using an automatic polarizing film measuring device: VAP-7070 (product name, manufactured by JASCO Corporation) according to the following formula.
  • Polarization degree (%) [(parallel transmittance ⁇ cross transmittance)/(cross transmittance+parallel transmittance)] 1/2 ⁇ 100
  • the degree of polarization can be measured as follows. Two samples (5 cm x 5 cm) are prepared by attaching a polarizing plate to glass via an adhesive. The glass side of the sample is set facing the light source and the cross transmittance and parallel transmittance are measured.
  • the two samples are measured, and the average values are taken as the cross transmittance and parallel transmittance, respectively.
  • the polarizing plate protective film to be evaluated is usually placed and attached on the glass side.
  • the shape of the polarizing plate used in the present invention includes not only a polarizing plate in the form of a film piece cut into a size that can be directly incorporated into a liquid crystal display device, but also a polarizing plate produced in a long shape by continuous production and wound up into a roll (for example, a roll length of 2500 m or more or 3900 m or more).
  • the width of the polarizing plate is preferably 1470 mm or more.
  • the polarizing plate used in the present invention is composed of a polarizer and at least one polarizing plate protective film, and it is also preferable that a separate film is further laminated on one surface of the polarizing plate.
  • the separate film is used to protect the polarizing plate when it is shipped, during product inspection, etc.
  • the separate film is used to cover the adhesive layer that is attached to the liquid crystal plate, and is used on the side where the polarizing plate is attached to the liquid crystal plate.
  • a polarizer that can be used in the polarizing plate used in the present invention is preferably composed of polyvinyl alcohol (PVA) and dichroic molecules, but as described in JP-A-11-248937, a polyvinylene-based polarizer in which a polyene structure is generated by dehydrating and dechlorinating PVA or polyvinyl chloride and then oriented can also be used.
  • PVA polyvinyl alcohol
  • dichroic molecules but as described in JP-A-11-248937, a polyvinylene-based polarizer in which a polyene structure is generated by dehydrating and dechlorinating PVA or polyvinyl chloride and then oriented can also be used.
  • the thickness of the film of the polarizer before stretching is not particularly limited, but from the viewpoints of film retention stability and stretching uniformity, it is preferably 1 ⁇ m to 1 mm, and particularly preferably 5 to 200 ⁇ m. Furthermore, as described in JP-A-2002-236212, a thin PVA film may be used that generates a stress of 10 N or less when stretched 4 to 6 times in water.
  • the method for producing the polarizer is not particularly limited, but for example, it is preferable to form the polarizer by forming the PVA into a film and then introducing dichroic molecules into the film.
  • the PVA film can be produced by referring to the method described in [0213] to [0237] of JP2007-086748A, Japanese Patent No. 3342516, JP09-328593A, JP2001-302817A, JP2002-144401A, etc.
  • the polarizing plate used in the present invention is produced by adhering (laminating) at least one polarizing plate protective film (preferably the wavelength selective absorption filter of the present invention) to at least one surface of the above-mentioned polarizer. It is preferable to prepare the polarizing plate protective film by alkali treatment, and then laminating an aqueous solution of fully saponified polyvinyl alcohol to both sides of a polarizer prepared by immersing a polyvinyl alcohol film in an iodine solution and stretching the film.
  • Examples of the adhesive used to attach the treated surface of the polarizing plate protective film to the polarizer include polyvinyl alcohol-based adhesives such as polyvinyl alcohol and polyvinyl butyral, and vinyl latexes such as butyl acrylate.
  • the polarizing plate protective film is preferably attached to the polarizer so that the transmission axis of the polarizer and the slow axis of the polarizing plate protective film are substantially parallel, perpendicular or at 45° to each other.
  • the slow axis can be measured by various known methods, for example, using a birefringence meter (KOBRADH, manufactured by Oji Scientific Instruments).
  • being substantially parallel means that the direction of the principal refractive index nx of the polarizing plate protective film and the direction of the transmission axis of the polarizing plate intersect at an angle of ⁇ 5° or less, preferably at an angle of ⁇ 1° or less, and more preferably at an angle of ⁇ 0.5° or less.
  • the angle of intersection is within 1°, the polarization performance under crossed Nicols of the polarizing plate is unlikely to decrease, and light leakage is unlikely to occur, which is preferable.
  • the direction of the principal refractive index nx and the direction of the transmission axis being perpendicular or 45° means that the angle at which the direction of the principal refractive index nx and the direction of the transmission axis intersect is within a range of ⁇ 5° from the exact angle related to orthogonal and 45°, and the error from the exact angle is preferably within a range of ⁇ 1°, and more preferably within a range of ⁇ 0.5°.
  • the polarizing plate used in the present invention is also preferably used as a functionalized polarizing plate in combination with an optical film having a functional layer such as an antireflection film for improving the visibility of a display, a brightness enhancing film, a hard coat layer, a forward scattering layer, an antiglare layer, an antifouling layer, an antistatic layer, etc.
  • a functional layer such as an antireflection film for improving the visibility of a display, a brightness enhancing film, a hard coat layer, a forward scattering layer, an antiglare layer, an antifouling layer, an antistatic layer, etc.
  • Antireflection films, brightness enhancing films, other functional optical films, hard coat layers, forward scattering layers, and antiglare layers for functionalization are described in [0257] to [0276] of JP2007-086748A, and functionalized polarizing plates can be produced based on these descriptions.
  • the polarizing plate of the present invention may include the wavelength-selective absorption filter of the present invention, and preferably includes the wavelength-selective absorption filter of the present invention as a polarizing plate protective film on at least one surface of the polarizer, and more preferably includes the wavelength-selective absorption filter of the present invention as a polarizing plate protective film with the substrate film on the polarizer side.
  • the above description of the polarizing plate used in the present invention can be applied to the polarizing plate of the present invention, except that the polarizing plate includes the wavelength-selective absorption filter of the present invention.
  • the polarizing plate is preferably attached to the liquid crystal cell via an adhesive layer.
  • the wavelength-selective absorption filter of the present invention may also serve as the adhesive layer, and it is more preferable that the wavelength-selective absorption layer in the wavelength-selective absorption filter of the present invention also serves as the adhesive layer, and the substrate film is included so as to be on the polarizing plate side.
  • a normal adhesive layer can be used as the adhesive layer.
  • the adhesive layer is not particularly limited as long as it can bond the polarizing plate and the liquid crystal cell, but for example, acrylic, urethane, polyisobutylene, etc. are preferred.
  • this adhesive layer contains the above-mentioned dye and resin, and further contains a crosslinking agent, a coupling agent, etc. to impart adhesiveness.
  • the wavelength-selective absorption filter of the present invention also serves as a pressure-sensitive adhesive layer
  • the pressure-sensitive adhesive layer preferably contains the above-mentioned resin in an amount of 90 to 99.94 mass %, and more preferably 95 to 99.7 mass %.
  • the content of the dye is as described above.
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, but is preferably, for example, 1 to 50 ⁇ m, and more preferably 3 to 30 ⁇ m.
  • the liquid crystal cell is not particularly limited, and a conventional one can be used.
  • the organic electroluminescence display device of the present invention (also referred to as an organic EL (electroluminescence) display device or OLED (organic light emitting diode) display device, and in the present invention, also abbreviated as an OLED display device) includes the wavelength-selective absorption filter of the present invention.
  • OLED display device of the present invention includes the wavelength-selective absorption filter of the present invention, other configurations may be the same as those of commonly used OLED display devices without any particular limitations.
  • Examples of the configuration of the OLED display device of the present invention are not particularly limited, but include, for example, a display device including, in order from the side opposite to the outside light, glass, a layer including a TFT (thin film transistor), an OLED display element, a barrier film, a color filter, glass, an adhesive layer, the wavelength-selective absorption filter of the present invention, and a surface film.
  • the OLED display element has a structure in which an anode electrode, a light-emitting layer, and a cathode electrode are laminated in this order.
  • a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, and the like are included between the anode electrode and the cathode electrode.
  • the description in JP 2014-132522 A can also be referred to.
  • the color filter in addition to a normal color filter, a color filter having quantum dots laminated thereon can also be used. Instead of the glass, a resin film may be used.
  • the glass and adhesive layer provided on the external light side of the above-mentioned color filter can be omitted, and a configuration can be made that includes, in order from the opposite side to the external light, glass, a layer including a TFT (thin film transistor), an OLED display element, a barrier film, a color filter, the wavelength-selective absorption filter of the present invention (base film, wavelength-selective absorption filter layer), and a surface film.
  • TFT thin film transistor
  • the above-mentioned surface film can be omitted, and a configuration can be made that includes, in order from the opposite side to the external light, glass, a layer including a TFT (thin film transistor), an OLED display element, a barrier film, a color filter, glass, an adhesive layer, and the wavelength-selective absorption filter of the present invention (wavelength-selective absorption filter layer, base film).
  • the surface of the wavelength-selective absorption filter of the present invention facing the external light may be bonded to an optically functional film having an antireflection layer or the like via an adhesive layer.
  • the surface of the wavelength-selective absorption filter of the present invention facing the opposite side to the external light is preferably bonded to glass (substrate) via an adhesive layer.
  • the adhesive layer the descriptions relating to the adhesive layer and the formation method in the OLED display device described in [0239] to [0290] of WO 2021/132674 can be applied as they are.
  • the pressure-sensitive adhesive composition described in WO 2021/132674 preferably contains an ultraviolet absorber in terms of the light resistance of the wavelength selective absorption filter.
  • the wavelength-selective absorption filter of the present invention may be bonded to an optical functional film via an adhesive layer on the surface facing the external light side. Also, the wavelength-selective absorption filter of the present invention is preferably bonded to glass (substrate) via an adhesive layer on the surface facing the opposite side to the external light.
  • the method for forming the above-mentioned adhesive layer is not particularly limited, and examples thereof include a method in which an adhesive composition is applied to the wavelength-selective absorption filter of the present invention by ordinary means such as a bar coater, followed by drying and curing; and a method in which the adhesive composition is first applied to the surface of a release substrate, dried, and then the adhesive layer is transferred to the wavelength-selective absorption filter of the present invention using the release substrate, followed by aging and curing.
  • the release substrate is not particularly limited, and any release substrate can be used, and examples thereof include the substrate film in the above-mentioned method for producing the wavelength selective absorption filter of the present invention. Other conditions such as coating, drying, aging and curing can be appropriately adjusted based on conventional methods.
  • the materials used for the wavelength selective absorption filter are as follows: ⁇ Matrix resin> (Resin 1): Cyclohexyl methacrylate-methacrylic acid random copolymer, content of methacrylic acid structural units in all structural units of the polymer: 29 mol %, weight average molecular weight: 26,300. (Resin 2): Commercially available polystyrene resin (manufactured by PS Japan, product name: SGP-10, glass transition temperature (Tg) 100° C.).
  • Resin 3 A commercially available styrene-acrylic acid copolymer (manufactured by Toagosei Co., Ltd., product name: ARUFON UC-3920, content of acrylic acid constituent units in all constituent units of the polymer: 40 mol%)
  • Leveling Agent 1 A polymer surfactant composed of the following components was used as the leveling agent 1.
  • the ratio of each component is a molar ratio
  • t-Bu means a tert-butyl group.
  • Base film 1 A commercially available polyethylene terephthalate film, XD-510P (product name, film thickness 50 ⁇ m, manufactured by Toray Industries, Inc.) was used as the substrate film 1.
  • the wavelength selective absorption filter layer forming solution Ba-1 obtained was filtered through a filter paper (#63, manufactured by Toyo Roshi Kaisha) with an absolute filtration accuracy of 10 ⁇ m, and further filtered through a sintered metal filter (FH025, manufactured by Pall Corporation) with an absolute filtration accuracy of 2.5 ⁇ m.
  • the wavelength-selective absorption filter layer forming solution Ba-1 after the above-mentioned filtration treatment was applied to a substrate film 1 using a bar coater so that the film thickness after drying would be 1.5 ⁇ m, and the coating was dried at 100° C. to form a wavelength-selective absorption filter layer, thereby producing wavelength-selective absorption filter No. 101 of the present invention.
  • Wavelength-selective absorption filter No. 102 of the present invention and wavelength-selective absorption filter No. c201 of the comparative example were obtained in the same manner as in the production of wavelength-selective absorption filter No. 101, except that the matrix resin type was changed as shown in the table below.
  • the absorbance of the wavelength-selective absorption filter in the wavelength range of 400 nm to 800 nm was measured at 1 nm intervals using a UV3150 spectrophotometer (product name) manufactured by Shimadzu Corporation.
  • the absorbance difference between the absorbance at each wavelength of the wavelength-selective absorption filter and the absorbance of a wavelength-selective absorption filter (having the same matrix resin) that does not contain a dye was calculated, and the maximum value of this absorbance difference was defined as the absorption maximum value, and the wavelength showing this absorption maximum value was defined as the absorption maximum wavelength ( ⁇ max ).
  • a peel trigger (a cut made by a cutter knife) was made at the interface between the substrate film and the wavelength selective absorption filter layer, and the substrate film was fixed to one chuck using a Tensilon universal material testing machine RTF-1210 (manufactured by A&D Co., Ltd.), the glass substrate was held by the other chuck, and the substrate film was peeled in the 90° direction under the conditions of a measurement temperature of 25° C., a relative humidity of 60%, a load cell of 50 N, and a peeling speed of 300 mm/min.
  • the peel force between the wavelength selective absorption filter layer and the substrate film was measured. Based on this peel force, the adhesion was evaluated based on the following evaluation criteria.
  • Peeling occurred with a peeling force of 1 N/25 mm or more and less than 5 N/25 mm.
  • x Peeling occurred with a peeling force of less than 1 N/25 mm.
  • ⁇ max maximum absorption wavelength, expressed in nm.
  • Amount blended indicates the amount of dye blended relative to 100 parts by mass of matrix resin, and the unit is parts by mass. Thickness: The unit is ⁇ m. The adhesion evaluation of wavelength-selective absorption filter No. 101 as "good” indicates that it was not possible to peel the filter under the above-mentioned peeling conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optical Filters (AREA)

Abstract

基材フィルムと、この基材フィルムに接して配される波長選択吸収フィルタ層とを有する波長選択吸収フィルタであって、 上記波長選択吸収フィルタ層が、カルボキシ基を含有する樹脂と、上記樹脂100質量部に対し、波長460~520nmに主吸収波長帯域を有する色素0.1質量部以上とを含む、波長選択吸収フィルタ、及びこのフィルタを含む液晶表示装置及び有機エレクトロルミネッセンス表示装置。

Description

波長選択吸収フィルタ、液晶表示装置及び有機エレクトロルミネッセンス表示装置
 本発明は、波長選択吸収フィルタ、液晶表示装置及び有機エレクトロルミネッセンス表示装置に関する。
 画像表示装置としては、有機エレクトロルミネッセンス(OLED)表示装置及び液晶表示装置等が近年用いられている。
 液晶表示装置は、消費電力の小さい省スペースの画像表示装置として年々その用途が広がっている。液晶表示装置は、画像を表示する液晶パネル自体は発光をしない非発光型素子であるため、液晶パネルの背面に配置され、液晶パネルに光を供給するバックライトユニットを備えている。
 OLED表示装置は、OLED(Organic Light Emitting Diodes)素子の自発光を利用して画像を表示する装置である。そのため、液晶表示装置及びプラズマ表示装置等の各種表示装置に比べて、高コントラスト比、高い色再現性、広い視野角、高速応答性、及び、薄型軽量化が可能であること等の利点を有する。これらの利点に加え、フレキシブル性の点からも、次世代の表示装置として、活発に研究開発が行われている。
 画像表示装置の開発においては、波長選択吸収フィルタを構成として組み込む技術が知られている。
 例えば、液晶表示装置では、バックライトユニット用の光源として白色発光ダイオード(LED)を用いた場合に、白色LEDから発せられる不要な波長の光を遮断するため、波長選択吸収フィルタを設ける試みがなされている。また、OLED表示装置では、外光反射を抑制する観点から、波長選択吸収フィルタを設ける試みがなされている。
 また、近年では、OLED素子、マイクロLED(Light Emitting Diodes)素子又はミニLED素子等の自発光を利用したディスプレイに、明所でのコントラスト低下の抑制と色再現改良を目的として波長選択吸収フィルタを設ける試みもなされている。
 特に色再現改良に関しては、色再現域の広い方式としてR(赤)、G(緑)、B(青)3色塗り分け方式のOLED、また、マイクロLED、ミニLED、量子ドット(QD)光源を用いた液晶表示装置、QD-OLEDなどが挙げられる。これらの色再現性をさらに上げるために波長選択吸収フィルタを組み込む試みがなされている。
 波長選択吸収フィルタとして、例えば、特許文献1には、樹脂と、この樹脂100質量部に対し、吸収極大波長が560~620nm又は460~520nmの範囲にある色素0.1質量部以上とを含み、含水率が0.5質量%以下である白色有機エレクトロルミネッセンス光源用色補正フィルタが記載されている。特許文献1に記載の上記白色有機エレクトロルミネッセンス光源用色補正フィルタによれば、白色有機EL光源を用いた有機EL表示装置の色再現性をより高めることができ、耐光性にも優れることが記載されている。
国際公開第2019/189463号
 しかし、上記特許文献1に記載の白色有機エレクトロルミネッセンス光源用色補正フィルタ(波長選択吸収フィルタ)は、波長選択吸収フィルタ層(白色有機EL光源用色補正フィルタ層)を塗布形成するために用いる基材フィルム(支持体)と波長選択吸収フィルタ層(白色有機EL光源用色補正フィルタ層)との密着性が低いため、各種表示装置に組み込む際には、上記塗布形成工程で用いた基材フィルムから他の基材フィルムなどへ転写する工程が必要であった。
 本発明は、波長選択吸収フィルタにおける基材フィルムと波長選択吸収フィルタ層とが優れた密着性を示し、例えば、基材フィルムごと表示装置に組み込んで使用することを可能とする波長選択吸収フィルタを提供することを課題とする。
 また、本発明は、上記波長選択吸収フィルタを含む、液晶表示装置及び有機エレクトロルミネッセンス表示装置を提供することを課題とする。
 本発明者らは上記課題に鑑み鋭意検討した結果、波長選択吸収フィルタ層を構成する樹脂としてカルボキシ基を含有するポリマーを用いること、すなわち、波長選択吸収フィルタ層中にカルボキシ基を含有する樹脂を含有させることにより、波長選択吸収フィルタ層と基材フィルムとの優れた密着性を得られることを見出した。
 すなわち、上記の課題は以下の手段により解決された。
<1>
 基材フィルムと、この基材フィルムに接して配される波長選択吸収フィルタ層とを有する波長選択吸収フィルタであって、
 上記波長選択吸収フィルタ層が、カルボキシ基を含有する樹脂と、上記樹脂100質量部に対し、波長460~520nmに主吸収波長帯域を有する色素0.1質量部以上とを含む、波長選択吸収フィルタ。
<2>
 上記色素が、下記一般式(1)で表されるスクアライン系色素である、<1>に記載の波長選択吸収フィルタ。
Figure JPOXMLDOC01-appb-C000002
 一般式(1)中、A及びBは、各々独立して、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基又は-CH=Gを示す。Gは置換基を有していてもよい複素環基を示す。
<3>
 上記波長選択吸収フィルタと上記基材フィルムとの剥離力が1N/25mm以上である、<1>又は<2>に記載の波長選択吸収フィルタ。
<4>
 <1>~<3>のいずれか1つに記載の波長選択吸収フィルタを含む、液晶表示装置。
<5>
 <1>~<3>のいずれか1つに記載の波長選択吸収フィルタを含む、有機エレクトロルミネッセンス表示装置。
 本発明において、「~」を用いて表される数値範囲は、その前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本発明において、特定の符号又は式で表示された置換基、連結基又は構成単位等(以下、置換基等という。)が複数あるとき、又は複数の置換基等を同時に規定するときには、特段の断りがない限り、それぞれの置換基等は互いに同一でも異なっていてもよい。このことは、置換基等の数の規定についても同様である。また、複数の置換基等が近接するとき(特に、隣接するとき)には、特段の断りがない限り、それらが互いに連結して環を形成してもよい。また、環、例えば脂肪族環、芳香族環、ヘテロ環はさらに縮環して縮合環を形成していてもよい。
 本発明において、特段の断りがない限り、波長選択吸収フィルタ層を構成する成分(カルボキシ基を含有する樹脂、波長460~520nmに主吸収波長帯域を有する色素、及び、その他の適宜含有していてもよい成分等)は、それぞれ、波長選択吸収フィルタ層中に1種含有されていてもよく、2種以上含有されていてもよい。
 本発明において、ポリマーは、連鎖重合ポリマー及び縮重合ポリマーのいずれであってもよく、ホモポリマー及びコポリマーのいずれであってもよい。また、コポリマーである場合には、ランダムポリマー、ブロックポリマー等のいずれであってもよい。
 本発明において、特段の断りがない限り、二重結合については、分子内にE型及びZ型が存在する場合、そのいずれであっても、またこれらの混合物であってもよい。
 本発明において、組成物とは、成分濃度が一定である(各成分が均一に分散している)混合物に加えて、目的とする機能を損なわない範囲で成分濃度が変動している混合物を包含する。
 本発明において、「(メタ)アクリレート」はアクリレート及びメタクリレートのいずれか一方又は両方を表し、「(メタ)アクリル酸」はアクリル酸及びメタクリル酸のいずれか一方又は両方を表し、「(メタ)アクリロイル」はアクリロイル及びメタクリロイルのいずれか一方又は両方を表す。
 本発明の波長選択吸収フィルタは、波長選択吸収フィルタにおける基材フィルムと波長選択吸収フィルタ層とが優れた密着性を示す。このため、本発明の波長選択吸収フィルタは、例えば、基材フィルムごと表示装置に組み込んで使用することができる。
 また、本発明の液晶表示装置及び有機エレクトロルミネッセンス表示装置は、本発明の波長選択吸収フィルタをそのまま含むため、その製造において、波長選択吸収フィルタ層を他の基材フィルムなどへ転写した後に表示装置に組み込む必要がなく、製造(組み立て)効率がよい。
図1は、本発明の波長選択吸収フィルタを有する液晶表示装置の一実施形態の概略を示す模式図である。
〔波長選択吸収フィルタ〕
 本発明の波長選択吸収フィルタ(以下、単に「本発明のフィルタ」とも称す。)は、基材フィルムと、上記基材フィルムに接して配される波長選択吸収フィルタ層とを有する波長選択吸収フィルタであって、上記波長選択吸収フィルタ層が、カルボキシ基を含有する樹脂と、波長460~520nmに主吸収波長帯域を有する色素をこの樹脂に対して特定の割合で含む。
 本発明のフィルタは、例えば、液晶表示装置のバックライト光源からの不要な波長の光(後述するRGB以外の波長帯域の光)を効果的に遮断するための膜として、また、有機EL表示装置における発光源からの不要な波長の光(後述するRGB以外の波長帯域の光)を効果的に遮断するための膜として使用することができる。
[波長選択吸収フィルタ層]
<色素>
 上記波長選択吸収フィルタ層が含有する色素は、波長460~520nmに主吸収波長帯域を有する色素(以下、色素Aという。)である。
 詳細は後述するが、上記波長選択吸収フィルタ層は上記色素A以外の色素を含有することもできる。
 色素Aは、波長460~520nmに主吸収波長帯域を有するものであれば特に制限されず、各種色素を用いることができる。この色素Aは、蛍光を示すものが多い。
 本発明において、波長XX~YYnmに主吸収波長帯域を有するとは、可視光吸収スペクトル(波長領域380~750nm)において、吸収極大波長を示す波長が波長領域XX~YYnmに存在することを意味する。したがって、この波長が上記波長領域内にあれば、この波長を含む吸収帯域全体が上記波長領域内にあってもよく、上記波長領域外まで広がっていてもよい。また、吸収極大波長が複数存在する場合、最大吸光度を示す吸収極大波長が波長領域XX~YYnm内に存在していればよく、最大吸光度を示す吸収極大波長以外の吸収極大波長(最高ではない吸光度を示す吸収極大波長)が波長領域XX~YYnm外に存在していてもよい。
 色素Aの具体例としては、例えば、ピロールメチン(pyrrole methine、PM)系、ローダミン(rhodamine、RH)系、ボロンジピロメテン(boron dipyrromethene、BODIPY)系及びスクアライン(squaraine、SQ)系等の各色素が挙げられる。
 例えば、FDB-007(商品名、メロシアニン系色素、山田化学工業社製)等の市販品も色素Aとして好ましく用いることができる。
 なお、本発明の効果を損なわない範囲内で、色素A以外の色素を適宜含有してもよい。
 これらの中でも、色素Aとしては、スクアライン系色素が好ましく、下記一般式(1)で表されるスクアライン系色素がより好ましい。
 本発明において、下記各一般式で表される色素において、カチオンは非局在化して存在しており、複数の互変異性体構造が存在する。そのため、本発明において、ある色素の少なくとも1つの互変異性体構造が各一般式に当てはまる場合、この色素は各一般式で表される色素とする。したがって、特定の一般式で表される色素とは、その少なくとも1つの互変異性体構造を特定の一般式で表すことができる色素ということもできる。本発明において、一般式で表される色素は、その互変異性体構造の少なくとも1つがこの一般式に当てはまる限り、どのような互変異性体構造をとるものでもよい。
Figure JPOXMLDOC01-appb-C000003
 一般式(1)中、A及びBは、各々独立して、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、又は-CH=Gを示す。Gは置換基を有していてもよい複素環基を示す。
 なお、上記一般式(1)で表される色素は、国際公開第2019/189463号の段落[0016]~[0024]に記載の一般式(1)で表されるスクアライン系色素と同じであり、好ましい範囲も同じである。そのため、一般式(1)中の各置換基の定義及び好ましい範囲については、特段の断りのない限り、国際公開第2019/189463号の段落[0016]~[0024]に記載の一般式(1)で表される色素の各置換基に関する記載をそれぞれそのまま適用することができる。
 このことは、以降の一般式(2)~(5)のいずれかで表される色素についても同様である。すなわち、以降の一般式(2)~(5)のいずれかで表される色素は、国際公開第2019/189463号の段落[0025]~[0045]に記載の一般式(2)~(5)のいずれかで表されるスクアライン系色素と同じであり、好ましい範囲も同じである。そのため、一般式(2)~(5)中の各置換基の定義及び好ましい範囲については、特段の断りのない限り、国際公開第2019/189463号の段落[0025]~[0045]に記載の一般式(2)~(5)のいずれかで表される色素の各置換基に関する記載をそれぞれそのまま適用することができる。
 上記一般式(1)で表される色素の好ましい1実施形態として、下記一般式(2)で表される色素が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 一般式(2)中、Aは、一般式(1)中のAと同様である。中でも、含窒素5員環である複素環基が好ましい。
 上記一般式(2)で表される色素は、下記一般式(3)、一般式(4)及び一般式(5)のいずれかで表される色素であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
 一般式(3)において、R及びRは、各々独立に、水素原子又は置換基を表し、上記一般式(2)におけるR及びRと同義であり、好ましい範囲も同じである。
 一般式(3)において、B~Bは、各々独立に、炭素原子又は窒素原子を表し、上記一般式(2)におけるB~Bと同義であり、好ましい範囲も同じである。
Figure JPOXMLDOC01-appb-C000006
 一般式(4)において、R及びRは、各々独立に、水素原子又は置換基を表し、上記一般式(2)におけるR及びRと同義であり、好ましい範囲も同じである。
 一般式(4)において、B~Bは、各々独立に、炭素原子又は窒素原子を表し、上記一般式(2)におけるB~Bと同義であり、好ましい範囲も同じである。
Figure JPOXMLDOC01-appb-C000007
 一般式(5)において、R及びRは、各々独立に、水素原子又は置換基を表し、上記一般式(2)におけるR及びRと同義であり、好ましい範囲も同じである。
 一般式(5)において、B~Bは、各々独立に、炭素原子又は窒素原子を表し、上記一般式(2)におけるB~Bと同義であり、好ましい範囲も同じである。
 本発明においては、色素Aとしてスクアライン系色素を用いる場合、スクアライン系色素としては、一般式(1)~(5)のいずれかで表されるスクアライン色素であれば、特に制限なく使用することができる。その例として、例えば、特開2006-160618号公報、国際公開第2004/005981号、国際公開第2004/007447号、Dyes and Pigment,2001,49,p.161-179、国際公開第2008/090757号、国際公開第2005/121098号、特開2008-275726号公報に記載の化合物を挙げられる。
 一般式(1)~(5)のいずれかで表される色素の具体例としては、国際公開第2019/189463号の段落[0047]~[0055]に記載の一般式(1)~(5)のいずれかで表される色素の具体例の記載をそのまま適用することができる。
 上記一般式(1)で表される色素の好ましい1実施形態として、下記一般式(6)で表される色素が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 一般式(6)中、R及びRは、各々独立に、水素原子又は置換基を表し、上記一般式(3)におけるR及びRと同義であり、好ましいものも同じである。
 一般式(6)中、Aは、一般式(1)中のAと同様である。中でも、含窒素5員環である複素環基が好ましい。
 上記一般式(6)で表される色素は、下記一般式(7)、一般式(8)及び一般式(9)のいずれかで表される色素であることが好ましい。
Figure JPOXMLDOC01-appb-C000009
 一般式(7)において、R及びRは、各々独立に、水素原子又は置換基を表し、上記一般式(3)におけるR及びRと同義であり、好ましい範囲も同じである。2つのR及び2つRは、それぞれ、同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000010
 一般式(8)において、R及びRは、各々独立に、水素原子又は置換基を表し、上記一般式(3)におけるR及びRと同義であり、好ましい範囲も同じである。
 一般式(8)において、R及びRは、各々独立に、水素原子又は置換基を表し、上記一般式(4)におけるR及びRと同義であり、好ましい範囲も同じである。
Figure JPOXMLDOC01-appb-C000011
 一般式(9)において、R及びRは、各々独立に、水素原子又は置換基を表し、上記一般式(3)におけるR及びRと同義であり、好ましい範囲も同じである。
 一般式(9)において、R及びRは、各々独立に、水素原子又は置換基を表し、上記一般式(5)におけるR及びRと同義であり、好ましい範囲も同じである。
 本発明においては、色素Bとしてスクアライン系色素を用いる場合、スクアライン系色素としては、一般式(6)~(9)のいずれかで表されるスクアライン系色素であれば、特に制限なく使用することができる。その例として、例えば特開2002-097383号公報及び特開2015-068945号公報に記載の化合物を挙げることができる。
 また、一般式(6)~(9)のいずれかで表される色素の具体例としては、国際公開第2019/189463号の段落[0067]~[0070]に記載の一般式(6)~(9)のいずれかで表される色素の具体例の記載をそのまま適用することができる。
 上記波長選択吸収フィルタ層中の、波長460~520nmに主吸収波長帯域を有する色素の含有量は、合計で、上記波長選択吸収フィルタ層を構成する樹脂100質量部に対し、0.10質量部以上であり、0.15質量部以上が好ましく、0.20質量部以上がより好ましく、0.25質量部以上が更に好ましく、0.30質量部以上が特に好ましい。
 また、上記波長選択吸収フィルタ層中の、波長460~520nmに主吸収波長帯域を有する色素の含有量は、合計で、上記波長選択吸収フィルタ層を構成する樹脂100質量部に対し、通常は1質量部以下であり、0.60質量部以下が好ましく、0.45質量部以下がより好ましい。
 すなわち、上記波長選択吸収フィルタ層中の、波長460~520nmに主吸収波長帯域を有する色素の含有量は、合計で、上記波長選択吸収フィルタ層を構成する樹脂100質量部に対し、0.10~1質量部が好ましく、0.15~1質量部がより好ましく、0.20~0.60質量部が更に好ましく、0.25~0.60質量部が特に好ましく、なかでも0.30~0.45質量部が好ましい。。
 本発明に用いる色素としては、上記色素Aに加え、主吸収波長帯域がRGB以外の波長帯域にあり、かつ、主発光波長帯域がRGBの波長帯域に該当する波長帯域にある蛍光色素の1種、又は2種以上(第二態様の色素)を併用してもよい。
 本発明において、RGB以外の波長帯域としては、例えば、430nm以下(例えば、380nm~430nm)、480nm~510nm又は560nm~620nm(好ましくは610nm以下)の各波長帯域が挙げられる。また、RGBの波長帯域としては、例えば、430nm~480nm、510nm~580nm(好ましくは560nm未満)又は610nm以上(例えば、610nm~650nm、好ましくは620nmを超え650nm以下)の各波長帯域が挙げられる。
 本発明において、主吸収波長帯域がRGB以外の波長帯域にあるとは、可視光吸収スペクトル(波長領域380~750nm)において、吸収極大波長のうち最も高い吸光度(最大吸光度)を示す波長がRGB以外の波長帯域のいずれかに存在することを意味する。また、主発光波長帯域がRGBの波長帯域に該当する波長帯域にあるとは、可視光発光スペクトル(波長領域380~750nm)において、極大発光波長のうち最も高い発光度(最大発光度)を示す波長がRGBの波長帯域のいずれかに存在することを意味する。
 上記の第二態様の色素としては、上記特性を有する限り特に制限されないが、例えば、アントラセン(anthracene)系、アントラキノン(anthraquinone)系、アリールメチン(arylmethine)系、アゾ(azo)系、アゾメチン(azomethine)系、ビマン(bimane)系、クマリン(coumarin)系、1,5-ジアザビシクロ[3.3.0]オクタジエン(1,5-diazabicyclo[3.3.0]octadiene)系、ジケトピロール(diketo-pyrrole)系、ナフタレノールイミン(naphthalenol-imine)系、ナフタルイミド(naphthalimide)系、ペリレン(perylene)系、フェノールフタレイン(phenolphthalein)系、ピロールメチン(pyrrole methine)系、パイラン(pyran)系、パイレン(pyrene)系、ポルフィセン(porphycene)系、ポルフィリン(porphyrin)系、キナクリドン(quinacridone)系、ローダミン(rhodamine)系、ルブリン(rubrene)系及びスチルベン(stilbene)系の各蛍光色素が挙げられる。
 好ましくは、ペリレン系、アゾ系、ピロールメチン系、パイラン系及びクマリン系の各蛍光色素のうちの2種以上の蛍光色素の組み合わせが挙げられ、より好ましくは、ペリレン系、ピロールメチン系、パイラン系及びクマリン系の各蛍光色素のうちの2種以上の蛍光色素の組み合わせが挙げられる。
<樹脂>
 上記波長選択吸収フィルタ層は、カルボキシ基を含有する樹脂を含有する。
 すなわち、上記波長選択吸収フィルタ層は、カルボキシ基を含有するポリマー(以下、「カルボキシ基含有ポリマー」とも称す。)により構成される樹脂をマトリックス樹脂として含有する。
(カルボキシ基含有ポリマー)
 カルボキシ基含有ポリマーは、カルボキシ基以外の酸基を更に有してもよい。カルボキシ基以外の酸基としては、例えば、フェノール性水酸基、リン酸基、及びスルホン酸基が挙げられる。
 カルボキシ基含有ポリマーが共重合体である場合、ポリマーの構造はランダムポリマーでもよく、ブロック等の規則性ポリマーであってもよい。
≪カルボキシ基を有する構成単位≫
 カルボキシ基含有ポリマーは、カルボキシ基を有する構成単位を有することが好ましい。
 カルボキシ基を有する構成単位としては、例えば、(メタ)アクリル酸、クロトン酸、イタコン酸、マレイン酸、又は、フマル酸に由来する構成単位が挙げられる。なかでも、(メタ)アクリル酸に由来する構成単位が好ましい。
 カルボキシ基含有ポリマー中、カルボキシ基を有する構成単位の含有量は、カルボキシ基含有ポリマーの全構成単位の合計を100モル%とした際に、1~100モル%が好ましく、3~65モル%がより好ましく、5~45モル%が更に好ましく、10~45モル%が特に好ましい。
 カルボキシ基を有する構成単位は、一種単独で使用してもよく、二種以上を併用してもよい。
≪芳香環を有する構成単位≫
 カルボキシ基含有ポリマーは、上述の構成単位以外に、芳香環(好ましくは芳香族炭化水素環)を有する構成単位を有することも好ましい。例えば、芳香環を有する(メタ)アクリレート(具体的には、ベンジル(メタ)アクリレート、フェネチル(メタ)アクリレート、又は、フェノキシエチル(メタ)アクリレート等)、スチレンに由来する構成単位が挙げられる。
 カルボキシ基含有ポリマー中、芳香環を有する構成単位の含有量は、カルボキシ基含有ポリマーの全構成単位の合計を100モル%とした際に、0~97モル%が好ましく、0~95モル%がより好ましく、0~90モル%が更に好ましい。
 芳香環を有する構成単位は、一種単独で使用してもよく、二種以上を併用してもよい。
≪脂環式構造を有する構成単位≫
 カルボキシ基含有ポリマーは、上述の構成単位以外に、脂環式構造を有する構成単位を有することも好ましい。
 脂環式構造としては、例えば、トリシクロ[5.2.1.02,6]デカン環構造(テトラヒドロジシクロペンタジエンとも称す。1価の基はジシクロペンタニル)、トリシクロ[5.2.1.02,6]デカン-3-エン環構造(5,6-ジヒドロジシクロペンタジエンとも称す。1価の基はジシクロペンテニル)、イソボルナン環構造(1価の基はイソボルニル)、アダマンタン環構造(1価の基はアダマンチル)、及びシクロヘキサン環構造(1価の基はシクロヘキシル)が挙げられる。
 脂環式構造を有する構成単位としては、例えば、脂環式構造を有する(メタ)アクリレートに由来する構成単位が挙げられる。具体的には、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、又は、シクロヘキシル(メタ)アクリレート等に由来する構成単位が挙げられる。
 カルボキシ基含有ポリマー中、脂環式構造を有する構成単位の含有量は、カルボキシ基含有ポリマーの全構成単位の合計を100モル%とした際に、0~97モル%が好ましく、0~95モル%がより好ましく、0~90モル%が更に好ましい。
 脂環式構造を有する構成単位は、一種単独で使用してもよく、二種以上を併用してもよい。
≪その他の構成単位≫
 カルボキシ基含有ポリマーは、上述の構成単位以外に、その他の構成単位を有していてもよい。
 上記その他の構成単位としては、例えば、メチル(メタ)アクリレートに由来する構成単位が挙げられる。
 カルボキシ基含有ポリマー中、その他の構成単位の含有量は、カルボキシ基含有ポリマーの全構成単位の合計を100モル%とした際に、0~70モル%が好ましく、0~50モル%がより好ましく、0~20モル%が更に好ましい。
 その他の構成単位は、一種単独で使用してもよく、二種以上を併用してもよい。
 なかでも、カルボキシ基含有ポリマーは、上述のカルボキシ基を有する構成単位に加えて、上述の芳香環を有する構成単位及び脂環式構造を有する構成単位のうちの少なくとも1種を有することが好ましく、波長選択吸収フィルタ層と基材フィルムとの間の密着性をより向上させる観点から、上述のカルボキシ基を有する構成単位に加えて、上述の脂環式構造を有する構成単位を少なくとも有することがより好ましい。
<その他の成分>
 上記波長選択吸収フィルタ層は、上述した色素とマトリックス樹脂に加え、偏光度向上剤、褪色防止剤、マット剤、レベリング剤等を含んでもよい。
(偏光度向上剤)
 上記波長選択吸収フィルタ層は偏光度向上剤を含有することが好ましい。偏光度向上剤により色素が発する蛍光を消光することにより、有機EL表示装置が、外光の映り込み防止等を目的として有する偏光板の偏光度を向上させることができる。
 本発明に用いる偏光度向上剤は、電子供与型消光剤、又は電子受容型消光剤であることが好ましい。
 本発明に用いる電子供与型消光剤は、励起状態の色素の二つのSOMOのうちの低エネルギー準位のSOMOに電子を供与したのち、色素の高エネルギー準位のSOMOから電子を受け取ることにより、励起状態の色素を基底状態に失活させるものである。
 本発明に用いる電子受容型消光剤は、励起状態の色素の二つのSOMOのうちの高エネルギー準位のSOMOから電子を受けとったのち、色素の低エネルギー準位のSOMOに電子を供与することにより、励起状態の色素を基底状態に失活させるものである。
 本発明に用いる電子供与型消光剤及び電子受容型消光剤としては、国際公開第2019/189463号の段落[0104]~[0220]に記載の電子供与型消光剤及び電子受容型消光剤に係る記載及びこれらの具体例の記載をそのまま適用することができる。
 上記波長選択吸収フィルタ層中の偏光度向上剤の含有量は、好ましくは0~6質量%であり、0.1~5質量%がより好ましく、0.3~4.5質量%がさらに好ましい。偏光度向上剤の添加量を上記上限値以下に制御することにより、上記波長選択吸収フィルタ層の変色等の副作用を起こすことなく、偏光度を向上させることができる。
(偏光度向上剤内蔵型色素)
 本発明に用いる偏光度向上剤は、必要により連結基を介して、共有結合により色素と連結して、偏光度向上剤内蔵型色素を形成していることも好ましい。このような形態の色素も、本発明で規定する一般式(1)のスクアライン系色素に含まれる。
 本発明の偏光度向上剤内蔵型色素の、色素部および偏光度向上剤部のエネルギー準位は、前述の色素及び偏光度向上剤のエネルギー準位の算出方法と同様の方法で算出することができる。なお、電位の測定において、本発明に用いる偏光度向上剤内蔵型色素からは二つの酸化電位が検出されるが、偏光度向上剤を内蔵しない色素における酸化電位に近い値を色素部の酸化電位、遠い値を偏光度向上剤部の酸化電位とする。
 本発明に用いる偏光度向上剤内蔵型色素の具体例としては、国際公開第2019/189463号の段落[0223]~[0234]に記載の偏光度向上剤内蔵型色素に係る記載及びこれらの具体例の記載をそのまま適用することができる。
 偏光度向上剤内蔵型色素を用いる場合、上記波長選択吸収フィルタ層中の偏光度向上剤内蔵型色素の含有量を、上記波長選択吸収フィルタ層中の、波長460~520nmに主吸収波長帯域を有する色素の含有量とする。この偏光度向上剤内蔵型色素の含有量が、上記波長選択吸収フィルタ層を構成する樹脂100質量部に対し、0.1質量部以上であればよい。
(褪色防止剤)
 上記波長選択吸収フィルタ層は褪色防止剤を含有することが好ましい。本発明に用いる褪色防止剤としては、国際公開第2015/005398号の段落[0143]~[0165]に記載の酸化防止剤、同[0166]~[0199]に記載のラジカル捕捉剤、及び同[0205]~[0206]に記載の劣化防止剤を用いることができる。
 また、本発明に用いる褪色防止剤としては、国際公開第2019/189463号の段落[0237]~[0251]に記載の一般式(IV)で表される化合物及び一般式[III]で表される化合物を用いることができる。
 上記波長選択吸収フィルタ層中の褪色防止剤の含有量は、好ましくは0~5質量%であり、より好ましくは0~3質量%、さらに好ましくは0~2質量%である。褪色防止剤の添加量を上記上限値以下に制御することにより、上記波長選択吸収フィルタ層の変色等の副作用を起こすことなく、色素の堅牢性を向上することができる。
(レベリング剤)
 上記波長選択吸収フィルタ層には、レベリング剤(界面活性剤)を適宜混合することができる。レベリング剤としては、従来公知の化合物が挙げられるが、特に含フッ素界面活性剤が好ましい。具体的には、例えば特開2001-330725号公報明細書中の段落番号[0028]~[0056]記載の化合物が挙げられ、特開2001-330725号公報明細書中の段落番号[0054]に記載の式(IV)で表されるコポリマーにおけるフッ素置換アルキル基を有する構成単位と、(メタ)アクリル酸アルキルエステル由来の構成単位とからなるコポリマーも好ましく挙げられる。
 上記波長選択吸収フィルタ層中のレベリング剤の含有量は目的に応じて適宜に調整される。
 上記波長選択吸収フィルタ層は、上記各成分に加え、低分子可塑剤、オリゴマー系可塑剤、レタデーション調整剤、紫外線吸収剤、劣化防止剤、剥離促進剤、赤外線吸収剤、酸化防止剤、フィラー、相溶化剤等を含有してもよい。
[基材フィルム]
 本発明のフィルタにおける基材フィルムについては、以降の波長選択吸収フィルタの製造方法に係る記載において説明する。
<波長選択吸収フィルタの製造方法>
 上記波長選択吸収フィルタ層は、基材フィルム上に常法によりコーティング層を形成する方法(コーティング法)で作製することができ、適宜延伸を組み合わせることもできる。これにより、基材フィルム上に、波長選択吸収フィルタ層が接して配されてなる、本発明のフィルタを作製することができる。
(コーティング法)
 コーティング法では、基材フィルムに波長選択吸収フィルタ層を形成する材料(以下、「フィルタ材料」とも称す。)の溶液を塗布し、コーティング層を形成する。コーティング層の基材フィルムと接する面と反対側の面には、後工程で接着層を介して他の部材を積層させて用いることができる。なお、基材フィルムにポリマー溶液又はコーティング層が積層された状態で、適宜基材フィルムごと延伸することができる。
 フィルタ材料の溶液に用いられる溶媒は、フィルタ材料を溶解又は分散可能であること、塗布工程、乾燥工程において均一な面状となり易いこと、液保存性が確保できること、適度な飽和蒸気圧を有すること、等の観点で適宜選択することができる。
-色素の添加-
 フィルタ材料に上記色素を添加するタイミングは、製膜される時点で添加されていれば特に限定されない。例えば、マトリックス樹脂の合成時点で添加してもよいし、フィルタ材料のコーティング液調製時にフィルタ材料と混合してもよい。
-基材フィルム-
 上記波長選択吸収フィルタ層を、コーティング法等で形成させるために用いられる基材フィルムは、膜厚が5~100μmであることが好ましく、10~75μmがより好ましく、15~55μmがさらに好ましい。膜厚が上記好ましい下限値以上(例えば5μm以上)であると、十分な機械強度を確保しやすく、カール、シワ、座屈等の故障が生じにくいため、好ましい。また、膜厚が上記好ましい上限値以下(例えば100μm以下)であると、上記波長選択吸収フィルタ層と基材フィルムとを含む複層フィルムを、例えば長尺のロール形態で保管する場合に、複層フィルムにかかる面圧を適正な範囲に調整しやすく、接着の故障が生じにくいため、好ましい。
 基材フィルムの表面エネルギーは、特に限定されることはないが、フィルタ材料及びコーティング溶液の表面エネルギーと、基材フィルムの波長選択吸収フィルタ層を形成させる側の表面の表面エネルギーとの関係性を調整することによって、波長選択吸収フィルタ層と基材フィルムとの間の密着性(接着力)を調整することができる。表面エネルギー差を小さくすれば、接着力が上昇する傾向にあり、表面エネルギー差を大きくすれば、接着力が低下する傾向にあり、適宜設定することができる。本発明では表面エネルギー差を小さくすることが好ましい。
 水及びヨウ化メチレンの接触角値からOwensの方法を用いて、基材フィルムの表面エネルギーを計算することが出来る。接触角の測定には、例えば、DM901(協和界面科学社製、接触角計)を用いることができる。
 基材フィルムの波長選択吸収フィルタ層を形成する側の表面エネルギーは、41.0~48.0mN/mであることが好ましく、42.0~48.0mN/mであることがより好ましい。表面エネルギーが41.0mN/m以上であると、波長選択吸収フィルタ層の厚みの均一性を高められるため好ましく、48.0mN/m以下であると、波長選択吸収フィルタ層の、基材フィルムとの密着性の観点から好ましい。
 また、基材フィルムの表面凹凸は、特に限定されることはないが、波長選択吸収フィルタ層表面の表面エネルギー、硬度、表面凹凸と、基材フィルムの波長選択吸収フィルタ層を形成させる側とは反対側の表面の表面エネルギー、硬度との関係性に応じて、例えば本発明の波長選択吸収フィルタ(複層フィルム)を長尺のロール形態で保管する場合の接着故障を防ぐ目的で調整することができる。表面凹凸を大きくすれば、接着故障を抑制する傾向にあり、表面凹凸を小さくすれば、波長選択吸収フィルタの表面凹凸が減少し、波長選択吸収フィルタのヘイズが小さくなる傾向にあり、適宜設定することができる。
 このような基材フィルムとしては、常用の素材を用いたフィルム、又は常用のフィルムを適宜使用することができる。基材フィルムを構成する具体的な材料としては、ポリエチレンテレフタレート等のポリエステル系ポリマー、オレフィン系ポリマー、シクロオレフィン系ポリマー、(メタ)アクリル系ポリマー、セルロース系ポリマー、ポリアミド系ポリマー等を挙げることができる。また、基材フィルムの表面性を調整する目的で、適宜表面処理を行うことができる。表面エネルギーを上昇させるには、例えば、コロナ処理、常温プラズマ処理、鹸化処理等を行うことができ、表面エネルギーを低下させるには、シリコーン処理、フッ素処理、オレフィン処理等を行うことができる。
-波長選択吸収フィルタ層と基材フィルムとの剥離力-
 上記波長選択吸収フィルタ層を、コーティング法で形成させる場合、上記波長選択吸収フィルタ層と基材フィルムとの間の剥離力は、フィルタ材料(波長選択吸収フィルタ層を形成する材料)、基材フィルムの材料、波長選択吸収フィルタ層の内部歪み等を調整して制御することができる。
 本発明において、JIS(日本産業規格) Z-0237(2022)に従い、基材フィルムを90°方向に剥がす試験(90度剥離試験)により、測定温度25℃、相対湿度60%、ロードセル50N、剥離速度300mm/分の条件で測定される剥離力は、1N/25mm以上が好ましく、5N/25mm以上がより好ましく、8N/25mm以上が更に好ましく、上記剥離条件では剥離しないことが特に好ましい。1N/25mm以上であれば、本発明のフィルタを有機EL表示装置又は液晶表示装置にそのまま組み込んで使用する際に、表示装置の製造工程及び/又は使用中における密着不良を防ぐことができる。
 なお、剥離試験の詳細については、後述の実施例に記載の通りである。
 また、上記剥離条件では剥離しないとは、上記波長選択吸収フィルタ層と基材フィルムとの間で剥がれず、剥離試験を行うために波長選択吸収フィルタ層をガラス基板と貼合するために用いた粘着剤の部分で剥がれたり、波長選択吸収フィルタそのものが破断したりすることを意味する。
<波長選択吸収フィルタ層の膜厚>
 上記波長選択吸収フィルタ層の膜厚は、1~18μmが好ましく、1~12μmが好ましく、1~8μmがより好ましい。このような膜厚の波長選択吸収フィルタ層に所定濃度で色素を添加することにより、色素が発する蛍光をより抑えることができる。また、消光剤及び/又は褪色防止剤の効果も発現しやすい。
 本発明において膜厚が1~18μmであるとは、フィルタの厚さを、どの部位で測っても1~18μmの範囲内にあることを意味する。このことは、膜厚1~12μm、1~8μmについても同様である。膜厚は、アンリツ社製等の電子マイクロメーターにより測定することができる。
<波長選択吸収フィルタ層の吸光度>
 上記波長選択吸収フィルタ層は、波長500nmにおける吸光度は0.05以上4.0以下が好ましい。さらに好ましくは、0.01以上3.0以下であり、0.1以上2.0以下であることがより好ましい。
 上記波長選択吸収フィルタ層の吸光度を上記範囲に調節した本発明のフィルタを有機EL表示装置又は液晶表示装置に組み込むことにより、より色再現性のよい表示性能が得られる。
 上記波長選択吸収フィルタ層の吸光度は、色素の種類及び添加量により調整することができる。
<波長選択吸収フィルタ層の含水率>
 上記波長選択吸収フィルタ層の含水率は、耐久性の観点から、膜厚のいかんに関わらず0.5質量%以下であることが好ましく、0.3質量%以下であることがより好ましい。本発明において「含水率」は、25℃、相対湿度80%の条件において測定される値である。
 本明細書において、上記波長選択吸収フィルタ層の含水率は、必要に応じて膜厚を厚くした試料を用いて測定することができる。試料を24時間以上調湿した後に、水分測定器、試料乾燥装置“CA-03”及び“VA-05”(共に三菱化学社製)にてカールフィッシャー法で測定し、水分量(g)を試料質量(g、水分量を含む)で除して算出できる。
<波長選択吸収フィルタの処理>
 上記のようにして得られた波長選択吸収フィルタには常法によりグロー放電処理、コロナ放電処理、又は、アルカリ鹸化処理などにより親水化処理を施すことが好ましく、コロナ放電処理が最も好ましく用いられる。特開平6-094915号公報、又は同6-118232号公報などに開示されている方法などを適用することも好ましい。
 なお、得られた波長選択吸収フィルタには、必要に応じて、熱処理工程、過熱水蒸気接触工程、有機溶媒接触工程などを実施することができる。また、適宜に表面処理を実施してもよい。
[液晶表示装置]
 本発明の液晶表示装置は、本発明の波長選択吸収フィルタを含む。
 本発明の液晶表示装置において、本発明の波長選択吸収フィルタは、後述のとおり偏光板保護フィルム及び粘着剤層の少なくともいずれかとして使用されてもよく、液晶表示装置に用いるバックライトユニットに含まれていてもよい。
 液晶表示装置は、波長選択吸収フィルタと、偏光子及び偏光板保護フィルムを含む偏光板と、粘着剤層と、液晶セルとを含むことが好ましく、偏光板は粘着剤層を介して液晶セルに張り合わされていることが好ましい。この液晶表示装置において、波長選択吸収フィルタは、偏光板保護フィルム又は粘着剤層を兼ねていてもよい。すなわち、液晶表示装置は、偏光子及び波長選択吸収フィルタ(偏光板保護フィルム)を含む偏光板と、粘着剤層と、液晶セルとを含む場合と、偏光子及び偏光板保護フィルムを含む偏光板と、波長選択吸収フィルタ(粘着剤層)と、液晶セルとを含む場合とに分けられる。
 図1は、本発明の液晶表示装置の例を示す概略図である。図1において、液晶表示装置10は、液晶層5とこの上下に配置された液晶セルの上側電極基板3及び液晶セルの下側電極基板6とを有する液晶セル、液晶セルの両側に配置された上側偏光板1及び下側偏光板8からなる。上側電極基板3又は下側電極基板6にカラーフィルター層が積層されていてもよい。上記液晶表示装置10の背面にはバックライトを配置する。バックライトの光源としては、前述のバックライトユニットにおいて説明したものを使用することができる。
 上側偏光板1及び下側偏光板8は、それぞれ2枚の偏光板保護フィルムで偏光子を挟むように積層した構成を有しており、液晶表示装置10は、少なくとも一方の偏光板が本発明の波長選択吸収フィルタを含む偏光板であることが好ましい。
 また、液晶表示装置10において、上記液晶セルと偏光板(上側偏光板1及び/又は下側偏光板8)とが粘着剤層(図示せず)を介して張り合わされていてもよい。この場合、本発明の波長選択吸収フィルタは、前述の粘着剤層を兼ねていてもよい。
 液晶表示装置10には、画像直視型、画像投影型又は光変調型が含まれる。TFT又はMIM(Metal-Insulator-Metal)のような3端子又は2端子半導体素子を用いたアクティブマトリックス液晶表示装置が本発明は有効である。もちろん時分割駆動と呼ばれるSTN(Super Twisted Nematic)モードに代表されるパッシブマトリックス液晶表示装置でも有効である。
 本発明の波長選択吸収フィルタがバックライトユニットに含まれている場合には、液晶表示装置の偏光板は、通常の偏光板(本発明の波長選択吸収フィルタを含まない偏光板)でもよく、本発明の光吸収フィルタを含む偏光板でもよい。また、粘着剤層は、通常の粘着剤層(本発明の波長選択吸収フィルタでないもの)でもよく、本発明の波長選択吸収フィルタによる粘着剤層でもよい。
 特開2010-102296号公報の段落[0128]~[0136]に記載のIPS(In Plane Switching)モードの液晶表示装置は、本発明の波長選択吸収フィルタを用いる以外は、本発明の液晶表示装置として好ましい。すなわち、本発明の液晶表示装置としては、上述のようにして本発明の波長選択吸収フィルタを含む点以外は、特開2010-102296号公報に記載のIPSモードの液晶表示装置の記載を好ましく適用することができる。
<偏光板>
 本発明に用いる偏光板は、偏光子、及び少なくとも1枚の偏光板保護フィルムを含む。
 本発明に用いる偏光板は、偏光子と、偏光子の両面に偏光板保護フィルムを有するものであることが好ましく、少なくとも一方の面に、本発明の波長選択吸収フィルタを偏光板保護フィルムとして含むことがより好ましい。偏光子の、本発明の波長選択吸収フィルタ(本発明の偏光板保護フィルム)を有する面とは反対の面には、通常の偏光板保護フィルムを有してもよい。
 偏光板保護フィルムの膜厚は、通常、5~120μmが好ましく、10~100μmがより好ましい。薄いフィルムの方が液晶表示装置に組み込んだ際に高温高湿経時後の表示ムラが発生しにくく好ましい。一方、薄すぎるとフィルム製造及び偏光板作製時に安定に搬送させることが難しくなる。本発明の波長選択吸収フィルタが偏光板保護フィルムを兼ねる場合には、波長選択吸収フィルタの厚さが上記範囲を満たすことが好ましい。
-偏光板の性能-
 本発明に用いる偏光板は、偏光度99.950%以上であることが好ましく、より好ましい範囲としては99.970%以上であり、最も好ましくは99.990%以上である。
 本発明において、偏光板の偏光度は、自動偏光フィルム測定装置:VAP-7070(商品名、日本分光社製)を用いて、波長380~700nmで測定した直交透過率及び平行透過率から以下の式により算出する。
 偏光度(%)=[(平行透過率-直交透過率)/(直交透過率+平行透過率)]1/2×100
 偏光度は、次のようにして測定できる。粘着剤を介してガラスの上に偏光板を貼り付けたサンプル(5cm×5cm)を2つ作製する。直交透過率及び平行透過率は、このサンプルのガラスの側を光源に向けてセットして、測定する。2つのサンプルについて測定し、その平均値を、それぞれ、直交透過率及び平行透過率とする。偏光板保護フィルムの偏光度に与える影響を調べる場合には、通常、評価対象とする偏光板保護フィルムをガラス側に配置して貼り付ける。
 本発明に用いる偏光板のその他の好ましい光学特性等については特開2007-086748号公報の[0238]~[0255]に記載されており、これらの特性を満たすことが好ましい。
-形状、構成-
 本発明に用いる偏光板の形状は、液晶表示装置にそのまま組み込むことが可能な大きさに切断されたフィルム片の態様の偏光板のみならず、連続生産により、長尺状に作製され、ロール状に巻き上げられた態様(例えば、ロール長2500m以上又は3900m以上の態様)の偏光板も含まれる。大画面液晶表示装置用とするためには、偏光板の幅は1470mm以上とすることが好ましい。
 本発明に用いる偏光板は、偏光子及び少なくとも1枚の偏光板保護フィルムで構成されているが、更に偏光板の一方の面の表面にセパレートフィルムを貼合して構成されることも好ましい。
 セパレートフィルムは偏光板出荷時、製品検査時等において偏光板を保護する目的で用いられる。セパレートフィルムは液晶板へ貼合する接着層をカバーする目的で用いられ、偏光板を液晶板へ貼合する面側に用いられる。
(偏光子)
 本発明に用いる偏光板に用いられる偏光子について説明する。
 本発明に用いる偏光板に用いることができる偏光子としては、ポリビニルアルコール(PVA)と二色性分子から構成することが好ましいが、特開平11-248937号公報に記載されているようにPVA、ポリ塩化ビニルを脱水、脱塩素することによりポリエン構造を生成し、これを配向させたポリビニレン系偏光子も使用することができる。
-偏光子の膜厚-
 偏光子の延伸前のフィルム膜厚は特に限定されないが、フィルム保持の安定性、延伸の均質性の観点から、1μm~1mmが好ましく、5~200μmが特に好ましい。また、特開2002-236212号に記載されているように、水中において4~6倍の延伸を行った時に発生する応力が10N以下となるような薄いPVAフィルムを使用してもよい。
-偏光子の製造方法-
 偏光子の製造方法としては、特に制限はないが、例えば、上記PVAをフィルム化した後、二色性分子を導入して偏光子を構成することが好ましい。PVAフィルムの製造は、特開2007-086748号公報の[0213]~[0237]に記載の方法、特許第3342516号明細書、特開平09-328593号公報、特開2001-302817号公報、特開2002-144401号公報等を参考にして行うことができる。
(偏光子と偏光板保護フィルムの積層方法)
 本発明に用いる偏光板は、上記偏光子の少なくとも一方の面に、少なくとも1枚の偏光板保護フィルム(好ましくは、本発明の波長選択吸収フィルタ)を接着(積層)して製造される。
 偏光板保護フィルムをアルカリ処理し、ポリビニルアルコールフィルムを沃素溶液中に浸漬延伸して作製した偏光子の両面に、完全ケン化ポリビニルアルコール水溶液を用いて貼り合わせる方法により作製することが好ましい。
 上記偏光板保護フィルムの処理面と偏光子を貼り合わせるのに使用される接着剤としては、例えば、ポリビニルアルコール、ポリビニルブチラール等のポリビニルアルコール系接着剤、ブチルアクリレート等のビニル系ラテックス等が挙げられる。
 本発明に用いる偏光板において、偏光板保護フィルムの上記偏光子への貼り合せ方は、偏光子の透過軸と上記偏光板保護フィルムの遅相軸が実質的に平行、直交又は45°となるように貼り合せることが好ましい。
 遅相軸の測定は、公知の種々の方法で測定することができ、例えば、複屈折計(KOBRADH、王子計測機器社製)を用いて行うことができる。
 ここで、実質的に平行であるとは、偏光板保護フィルムの主屈折率nxの方向と偏光板の透過軸の方向とが、そのずれが±5°以内の角度で交わっていることをいい、±1°以内の角度で交わっていることが好ましく、±0.5°以内の角度で交わっていることがより好ましい。交わる角度が1°以内であれば、偏光板クロスニコル下での偏光度性能が低下しにくく、光抜けが生じにくく好ましい。
 実質的に直行又は45°であることについても同様であり、主屈折率nxの方向と透過軸の方向とが直交又は45°となるとは、主屈折率nxの方向と透過軸の方向との交わる角度が、直交及び45°に関する厳密な角度から±5°の範囲内であることを意味し、厳密な角度との誤差は、±1°の範囲内が好ましく、±0.5°の範囲内がより好ましい。
(偏光板の機能化)
 本発明に用いる偏光板は、ディスプレイの視認性向上のための反射防止フィルム、輝度向上フィルム、ハードコート層、前方散乱層、アンチグレア(防眩)層、防汚層、帯電防止層等の機能層を有する光学フィルムと複合した機能化偏光板としても好ましく使用される。機能化のための反射防止フィルム、輝度向上フィルム、他の機能性光学フィルム、ハードコート層、前方散乱層、アンチグレア層については、特開2007-086748号公報の[0257]~[0276]に記載され、これらの記載を基に機能化した偏光板を作製することができる。
 本発明の偏光板は、本発明の波長選択吸収フィルタを含んでいればよく、偏光子の少なくとも一方の面に、本発明の波長選択吸収フィルタを偏光板保護フィルムとして含むことが好ましく、本発明の波長選択吸収フィルタを偏光板保護フィルムとして、基材フィルムが偏光子側になるようにして含むことがより好ましい。
 本発明の偏光板としては、本発明の波長選択吸収フィルタを含む点以外については、上述の本発明に用いる偏光板に係る記載を適用することができる。
<粘着剤層>
 本発明の液晶表示装置において、偏光板は粘着剤層を介して液晶セルと貼り合わされていることが好ましい。本発明の波長選択吸収フィルタは上記粘着剤層を兼ねていてもよく、本発明の波長選択吸収フィルタにおける波長選択吸収層が上記粘着剤層を兼ね、基材フィルムが偏光板側になるようにして含むことがより好ましい。本発明の波長選択吸収フィルタが粘着剤層を兼ねていない場合には、粘着剤層は通常の粘着剤層を用いることができる。
 粘着剤層としては、偏光板と液晶セルとを貼り合せることができる限り特に限定されないが、例えば、アクリル系、ウレタン系、ポリイソブチレン等が好ましい。
 本発明の波長選択吸収フィルタが粘着剤層を兼ねる場合、この粘着剤層は、上記色素と上記樹脂とを含み、さらに架橋剤、カップリグ剤等を含有して粘着性を付与されている。
 本発明の波長選択吸収フィルタが粘着剤層を兼ねる場合、粘着剤層は上記樹脂を90~99.94質量%含むことが好ましく、95~99.7質量%含むことがより好ましい。色素の含有量は、上述したとおりである。
 粘着剤層の厚さは、特に限定されないが、例えば、1~50μmが好ましく、3~30μmがより好ましい。
<液晶セル>
 液晶セルは、特に限定されず、通常のものを使用することができる。
[OLED表示装置]
 本発明の有機エレクトロルミネッセンス表示装置(有機EL(electroluminescence)表示装置またはOLED(Organic Light Emitting Diode)表示装置と称され、本発明においては、OLED表示装置とも略す。)は、本発明の波長選択吸収フィルタを含む。
 本発明のOLED表示装置としては、本発明の波長選択吸収フィルタを含む限り、その他の構成としては、通常用いられているOLED表示装置の構成を特に制限なく用いることができる。本発明のOLED表示装置の構成例としては、特に制限されないが、例えば、外光に対して反対側から順に、ガラス、TFT(薄膜トランジスタ)を含む層、OLED表示素子、バリアフィルム、カラーフィルター、ガラス、粘着剤層、本発明の波長選択吸収フィルタ及び表面フィルムを含む表示装置が挙げられる。
 上記OLED表示素子は、アノード電極、発光層及びカソード電極の順に積層した構成を有する。アノード電極及びカソード電極の間には、発光層の他に、ホール注入層、ホール輸送層、電子輸送層及び電子注入層等を含んでいる。この他、例えば、特開2014-132522号公報の記載も参照することができる。
 また、上記カラーフィルターとしては、通常のカラーフィルターに加え、量子ドットを積層したカラーフィルターを使用することもできる。
 上記ガラスに代えて、樹脂フィルムを採用することもできる。
 本発明においては、本発明の波長選択吸収フィルタをそのまま含むことができるため、上述のカラーファイルターの外光側に設けられるガラス及び粘着材層を省略し、外光に対して反対側から順に、ガラス、TFT(薄膜トランジスタ)を含む層、OLED表示素子、バリアフィルム、カラーフィルター、本発明の波長選択吸収フィルタ(基材フィルム、波長選択吸収フィルタ層)及び表面フィルムを含む構成とすることができる。また、上述の表面フィルムを省略し、外光に対して反対側から順に、ガラス、TFT(薄膜トランジスタ)を含む層、OLED表示素子、バリアフィルム、カラーフィルター、ガラス、粘着剤層及び本発明の波長選択吸収フィルタ(波長選択吸収フィルタ層、基材フィルム)を含む構成とすることもできる。
<粘着剤層>
 本発明のOLED表示装置において、本発明の波長選択吸収フィルタの外光側の面は粘着剤層を介して反射防止層等を有する光機能性フィルムと貼り合わされていてもよい。また、本発明の波長選択吸収フィルタの、外光とは反対側に位置する面は、粘着剤層を介してガラス(基材)と貼り合わされていることが好ましい。
 上記粘着剤層としては、国際公開第2021/132674号の[0239]~[0290]に記載のOLED表示装置における粘着剤層及び形成方法に係る記載をそのまま適用することができる。
 なお、国際公開第2021/132674号に記載の粘着剤組成物は、波長選択吸収フィルタの耐光性の点から紫外線吸収剤を含有することが好ましい。
<基材>
 本発明のOLED表示装置において、本発明の波長選択吸収フィルタは、外光側に位置する面において、粘着剤層を介して光機能性フィルムと貼り合わされていてもよい。また、本発明の波長選択吸収フィルタは、外光とは反対側に位置する面において、粘着剤層を介してガラス(基材)と貼り合わされていることが好ましい。
 上記粘着剤層を形成する方法は特に限定されず、例えば、本発明の波長選択吸収フィルタにバーコーターなどの通常の手段で粘着剤組成物を塗布し、乾燥及び硬化させる方法;粘着剤組成物をまず、剥離性基材の表面に塗布、乾燥した後、剥離性基材を用いて粘着剤層を本発明の波長選択吸収フィルタに転写し、熟成、硬化させる方法などが用いられる。
 剥離性基材としては、特に制限されず、任意の剥離性基材を使用することができ、例えば上述の本発明の波長選択吸収フィルタの製造方法における基材フィルムが挙げられる。
 その他、塗布、乾燥、熟成及び硬化の条件についても、常法に基づき、適宜調整することができる。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。したがって、本発明の範囲は以下に示す実施例に限定されるものではない。
[波長選択吸収フィルタの作製]
 波長選択吸収フィルタに用いた材料を次に示す。
<マトリックス樹脂>
(樹脂1):
 シクロヘキシルメタクリレート-メタクリル酸ランダム共重合体、ポリマーの全構成単位に占めるメタクリル酸構成単位の含有量29モル%、重量平均分子量26300。
(樹脂2):
 市販のポリスチレン樹脂(PSジャパン社製、商品名:SGP-10、ガラス転移温度(Tg) 100℃)。
(樹脂3):
 市販のスチレン-アクリル酸共重合体(東亞合成社製、商品名:ARUFON UC-3920、ポリマーの全構成単位に占めるアクリル酸構成単位の含有量40モル%)
<色素>
 下記構造の色素化合物A(色素A)を用いた。
Figure JPOXMLDOC01-appb-C000012
<レベリング剤1>
 下記構成成分で構成されるポリマー界面活性剤をレベリング剤1として用いた。下記構造式中、各構成成分の割合はモル比であり、t-Buはtert-ブチル基を意味する。
Figure JPOXMLDOC01-appb-C000013
<基材フィルム>
(基材フィルム1)
 市販のポリエチレンテレフタレートフィルム、XD-510P(商品名、膜厚50μm、東レ社製)を基材フィルム1として用いた。
<波長選択吸収フィルタNo.101の作製>
(樹脂溶液の調製)
 各成分を下記に示す組成で混合し、波長選択吸収フィルタ層形成液(組成物)Ba-1を調製した。
――――――――――――――――――――――――――――――――――
波長選択吸収フィルタ層形成液Ba-1の組成
――――――――――――――――――――――――――――――――――
 樹脂1                   100質量部
 色素A                   3.3質量部
 レベリング剤1             0.083質量部
 メチルエチルケトン(溶媒)         584質量部
――――――――――――――――――――――――――――――――――
 続いて、得られた波長選択吸収フィルタ層形成液Ba-1を絶対濾過精度10μmの濾紙(#63、東洋濾紙社製)で濾過し、さらに絶対濾過精度2.5μmの金属焼結フィルター(FH025、ポール社製)にて濾過した。
(波長選択吸収フィルタの作製)
 上記濾過処理後の波長選択吸収フィルタ層形成液Ba-1を、基材フィルム1上に、乾燥後の膜厚が1.5μmとなるようにバーコーターを用いて塗布し、100℃で乾燥して波長選択吸収フィルタ層を形成し、本発明の波長選択吸収フィルタNo.101を作製した。
<波長選択吸収フィルタNo.102及びc201の作製>
 下表に示すようにマトリックス樹脂種を変更したこと以外は、波長選択吸収フィルタNo.101の作製と同様にして、本発明の波長選択吸収フィルタNo.102及び比較例の波長選択吸収フィルタNo.c201を得た。
[波長選択吸収フィルタの評価]
 以下の方法により、本発明及び比較例の波長選択吸収フィルタの吸収極大波長を測定し、剥離力の測定により密着性を評価した。結果を下表にまとめて示す。
-波長選択吸収フィルタの吸収極大波長の測定-
 島津製作所社製のUV3150分光光度計(商品名)により波長選択吸収フィルタの、400nmから800nmの波長範囲における吸光度を、1nmごとに測定した。波長選択吸収フィルタの各波長における吸光度と、色素を含有しない、波長選択吸収フィルタ(マトリックス樹脂は同じもの)の吸光度との吸光度差を算出し、この吸光度差の最大値を吸収極大値とし、この吸収極大値を示す波長を吸収極大波長(λmax)とした。
(密着性)
 JIS(日本産業規格) Z-0237(2022)に従い、下記のようにして90度剥離試験を行った。
 具体的には、波長選択吸収フィルタを幅25mm、長さ150mmのサイズに切り出し、波長選択吸収フィルタの波長選択吸収フィルタ層側を粘着剤シート(綜研化学社製、商品名:STT-125CK)を介してガラス基板に貼合した。基材フィルムと波長選択吸収フィルタ層との界面に剥離のきっかけ(カッターナイフによる切り込み)を入れて、テンシロン万能材料試験機RTF-1210(エー・アンド・デイ社製)を用いて、基材フィルムを片方のチャックに固定し、もう片方のチャックにガラス基板を把持して、測定温度25℃、相対湿度60%、ロードセル50N、剥離速度300mm/分の条件で、基材フィルムを90°方向に剥がしたときの、波長選択吸収フィルタ層と基材フィルムとの間の剥離力、すなわち、20mm剥離した位置から50mm剥離した位置までの剥離力の平均値(平均剥離力)を測定した。この剥離力をもとに、下記評価基準に基づき密着性を評価した。
 
 - 評価基準 - 
○:5N/25mm以上の剥離力で剥離したか、または上記剥離条件では剥離することができなかった(波長選択吸収フィルタ層と基材フィルムとの間で剥がれず、波長選択吸収フィルタ層とガラス基板との貼合に用いた粘着剤の部分で剥がれるか、波長選択吸収フィルタそのものが破断した)。
△:1N/25mm以上5N/25mm未満の剥離力で剥離した。
×:1N/25mm未満の剥離力で剥離した。
Figure JPOXMLDOC01-appb-T000014
(表の注)
 λmax:吸収極大波長を示し、単位はnmである。
 配合量:マトリックス樹脂100質量部に対する色素の配合量を示し、単位は質量部である。
 厚み:単位はμmである。
 なお、波長選択吸収フィルタNo.101の密着性評価「〇」は、上述の剥離条件では剥離することができなかったことを示す。
 表1に示されるように、カルボキシ基を含有する樹脂1を用いた波長選択吸収フィルタNo.101では剥離が生じず、カルボキシ基を含有する樹脂3を用いた波長選択吸収フィルタNo.102では、1N/25mm以上5N/25mm未満の剥離力により剥離が生じたのに対し、カルボキシ基を含有しない樹脂2を用いた波長選択吸収フィルタNo.c201では1N/25mm未満の弱い剥離力で剥離した。カルボキシ基を含有するポリマーにより構成される樹脂をマトリックス樹脂として使用することにより、波長選択吸収フィルタ層と基材フィルム(支持体)との密着性を高められることがわかる。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2022年11月21日に日本国で特許出願された特願2022-185624に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。

Claims (5)

  1.  基材フィルムと、前記基材フィルムに接して配される波長選択吸収フィルタ層とを有する波長選択吸収フィルタであって、
     前記波長選択吸収フィルタ層が、カルボキシ基を含有する樹脂と、前記樹脂100質量部に対し、波長460~520nmに主吸収波長帯域を有する色素0.1質量部以上とを含む、波長選択吸収フィルタ。
  2.  前記色素が、下記一般式(1)で表されるスクアライン系色素である、請求項1に記載の波長選択吸収フィルタ。
    Figure JPOXMLDOC01-appb-C000001
     一般式(1)中、A及びBは、各々独立して、置換基を有していてもよいアリール基、置換基を有していてもよい複素環基、又は-CH=Gを示す。Gは置換基を有していてもよい複素環基を示す。
  3.  前記波長選択吸収フィルタ層と前記基材フィルムとの剥離力が1N/25mm以上である、請求項1に記載の波長選択吸収フィルタ。
  4.  請求項1~3のいずれか1項に記載の波長選択吸収フィルタを含む、液晶表示装置。
  5.  請求項1~3のいずれか1項に記載の波長選択吸収フィルタを含む、有機エレクトロルミネッセンス表示装置。
PCT/JP2023/041655 2022-11-21 2023-11-20 波長選択吸収フィルタ、液晶表示装置及び有機エレクトロルミネッセンス表示装置 WO2024111555A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-185624 2022-11-21
JP2022185624 2022-11-21

Publications (1)

Publication Number Publication Date
WO2024111555A1 true WO2024111555A1 (ja) 2024-05-30

Family

ID=91195676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041655 WO2024111555A1 (ja) 2022-11-21 2023-11-20 波長選択吸収フィルタ、液晶表示装置及び有機エレクトロルミネッセンス表示装置

Country Status (1)

Country Link
WO (1) WO2024111555A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016153836A (ja) * 2015-02-20 2016-08-25 富士フイルム株式会社 感光性組成物、硬化膜の製造方法、硬化膜、タッチパネル、タッチパネル表示装置、液晶表示装置、及び、有機el表示装置
JP2018188623A (ja) * 2017-04-28 2018-11-29 日本化薬株式会社 反応性ポリカルボン酸化合物、それを用いた活性エネルギー線硬化型樹脂組成物、その硬化物及びその用途
JP2019001998A (ja) * 2017-06-19 2019-01-10 日本化薬株式会社 反応性ポリカルボン酸化合物、それを用いた活性エネルギー線硬化型樹脂組成物、その硬化物及びその用途
KR20190111637A (ko) * 2018-03-23 2019-10-02 동우 화인켐 주식회사 감광성 수지 조성물
WO2019189463A1 (ja) * 2018-03-29 2019-10-03 富士フイルム株式会社 白色有機エレクトロルミネッセンス光源用色補正フィルタ、及び有機エレクトロルミネッセンス表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016153836A (ja) * 2015-02-20 2016-08-25 富士フイルム株式会社 感光性組成物、硬化膜の製造方法、硬化膜、タッチパネル、タッチパネル表示装置、液晶表示装置、及び、有機el表示装置
JP2018188623A (ja) * 2017-04-28 2018-11-29 日本化薬株式会社 反応性ポリカルボン酸化合物、それを用いた活性エネルギー線硬化型樹脂組成物、その硬化物及びその用途
JP2019001998A (ja) * 2017-06-19 2019-01-10 日本化薬株式会社 反応性ポリカルボン酸化合物、それを用いた活性エネルギー線硬化型樹脂組成物、その硬化物及びその用途
KR20190111637A (ko) * 2018-03-23 2019-10-02 동우 화인켐 주식회사 감광성 수지 조성물
WO2019189463A1 (ja) * 2018-03-29 2019-10-03 富士フイルム株式会社 白色有機エレクトロルミネッセンス光源用色補正フィルタ、及び有機エレクトロルミネッセンス表示装置

Similar Documents

Publication Publication Date Title
US9937689B2 (en) Polarizing film, method for manufacture thereof, optical film, and image display device
JP5231157B2 (ja) 偏光板、その製造方法、光学フィルムおよび画像表示装置
TWI556021B (zh) 偏光板、畫像顯示裝置、及畫像顯示裝置之亮處對比之改善方法
JP4603572B2 (ja) 偏光板用接着剤、偏光板、その製造方法、光学フィルムおよび画像表示装置
US20130293949A1 (en) Adhesive composition curable with active energy ray, polarizing plate, optical film, and image display device
US10656459B2 (en) Color polarizing film, antireflective film, and display device
JP4527012B2 (ja) 粘着剤付き光学フィルムおよび画像表示装置
WO2006018984A1 (ja) 保護フィルム付位相差板、その製造方法、保護フィルム付粘着型位相差板および保護フィルム付粘着型光学素材
KR20070097518A (ko) 편광판, 그 제조 방법, 광학 필름 및 그것을 이용한 화상표시 장치
JP6348291B2 (ja) 偏光板及び表示装置
JP2004264333A (ja) 粘着型光学補償層付偏光板および画像表示装置
JP2005222013A (ja) 偏光板の製造方法、偏光板、光学フィルムおよび画像表示装置
JP5167083B2 (ja) 偏光板、その製造方法、光学フィルムおよび画像表示装置
KR100882169B1 (ko) 편광판의 제조 방법, 편광판, 광학 필름 및 화상 표시 장치
JPWO2005109050A1 (ja) 偏光子保護フィルム、偏光板および画像表示装置
JP2008129258A (ja) 偏光板の製造方法、偏光板、光学フィルムおよび画像表示装置
JP2005326531A (ja) 保護フィルム付き偏光板、その製造方法及びそれを用いた画像表示装置
JP2006221158A (ja) 偏光板、その製造方法、光学フィルムおよびそれを用いた画像表示装置
KR100724323B1 (ko) 점착제 부착 광학 필름 및 화상 표시 장치
WO2004061805A1 (ja) 画像表示装置の製造方法、画像表示装置および粘着型光学フィルム
TW201718266A (zh) 光學薄膜及其製造方法
JP2004177781A (ja) 楕円偏光板および画像表示装置
KR20090005770A (ko) 편광판 및 이를 포함하는 표시장치
WO2024111555A1 (ja) 波長選択吸収フィルタ、液晶表示装置及び有機エレクトロルミネッセンス表示装置
KR20070041672A (ko) 점착제 부착 광학 필름 및 화상 표시 장치