WO2024109641A1 - 信号传输方法、装置及通信设备 - Google Patents

信号传输方法、装置及通信设备 Download PDF

Info

Publication number
WO2024109641A1
WO2024109641A1 PCT/CN2023/132217 CN2023132217W WO2024109641A1 WO 2024109641 A1 WO2024109641 A1 WO 2024109641A1 CN 2023132217 W CN2023132217 W CN 2023132217W WO 2024109641 A1 WO2024109641 A1 WO 2024109641A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
resource
domain
signal
interval
Prior art date
Application number
PCT/CN2023/132217
Other languages
English (en)
French (fr)
Inventor
丁圣利
姜大洁
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024109641A1 publication Critical patent/WO2024109641A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a signal transmission method, device and communication equipment.
  • Perception capability refers to one or more devices with perception capabilities that can sense the direction, distance, speed and other information of target objects through the transmission and reception of wireless signals, or detect, track, identify, and image target objects, events or environments.
  • Perception capability refers to one or more devices with perception capabilities that can sense the direction, distance, speed and other information of target objects through the transmission and reception of wireless signals, or detect, track, identify, and image target objects, events or environments.
  • the traditional uniformly distributed perception signal resource configuration has the following problems: In order to meet perception requirements (such as resolution or maximum unambiguous measurement range), a large resource overhead of perception signals is required.
  • the embodiments of the present application provide a signal transmission method, apparatus and communication equipment, which can solve the problem of requiring a large resource overhead of perception signals in order to meet perception requirements in a synaesthesia integration scenario.
  • a signal transmission method comprising:
  • the first device receives parameter configuration information of a first signal, where the first signal is a synaesthesia integrated signal or a perception signal, and the parameter configuration information is used to indicate a resource pattern of the first signal;
  • the resource pattern of the first signal satisfies a first feature, and the first feature is:
  • the target resource includes M target resource units in a target domain, and the target resource corresponds to at least two first resource intervals in the target domain, the target resource unit is a resource unit allocated to the first signal, M ⁇ 3, M is a positive integer; the first resource interval is an interval between two adjacent target resource units in the target resource in the target domain, and the interval between two adjacent target resource units in the target domain includes at least one of the following: an interval between two adjacent target resource units in the time domain; an interval between two adjacent target resource units in the frequency domain;
  • the target resource is divided into K resource blocks in the target domain according to the first condition, K ⁇ 2, and K is a positive integer;
  • the first condition includes:
  • the distribution or position of the target resource units in the K resource blocks on the target domain is the same; and,
  • the K resource blocks correspond to at least two second resource intervals in the target domain
  • the second resource interval is the interval between two adjacent resource blocks in the target domain among the K resource blocks in the target domain, and the interval between the two adjacent resource blocks in the target domain includes at least one of the following: the interval between two adjacent resource blocks in the time domain; the interval between two adjacent resource blocks in the frequency domain;
  • the target domain includes at least one of a time domain and a frequency domain.
  • a signal transmission method comprising:
  • the second device sends parameter configuration information of a first signal, where the first signal is a synaesthesia integrated signal or a perception signal, and the parameter configuration information is used to indicate a resource pattern of the first signal;
  • the resource pattern of the first signal satisfies a first feature, and the first feature is:
  • the target resource includes M target resource units in a target domain, and the target resource corresponds to at least two first resource intervals in the target domain, the target resource unit is a resource unit allocated to the first signal, M ⁇ 3, M is a positive integer; the first resource interval is an interval between two adjacent target resource units in the target resource in the target domain, and the interval between two adjacent target resource units in the target domain includes at least one of the following: an interval between two adjacent target resource units in the time domain; an interval between two adjacent target resource units in the frequency domain;
  • the target resource is divided into K resource blocks in the target domain according to the first condition, K ⁇ 2, and K is a positive integer;
  • the first condition includes:
  • the distribution or position of the target resource units in the K resource blocks on the target domain is the same; and,
  • the K resource blocks correspond to at least two second resource intervals in the target domain
  • the second resource interval is the interval between two adjacent resource blocks in the target domain among the K resource blocks in the target domain, and the interval between the two adjacent resource blocks in the target domain includes at least one of the following: the interval between two adjacent resource blocks in the time domain; the interval between two adjacent resource blocks in the frequency domain;
  • the target domain includes at least one of a time domain and a frequency domain.
  • a signal transmission device which is applied to a first device and includes:
  • a first receiving module configured to receive parameter configuration information of a first signal, wherein the first signal is a synaesthesia integrated signal or a perception signal, and the parameter configuration information is used to indicate a resource pattern of the first signal;
  • the resource pattern of the first signal satisfies a first feature, and the first feature is:
  • the target resource includes M target resource units in a target domain, and the target resource corresponds to at least two first resource intervals in the target domain, the target resource unit is a resource unit allocated to the first signal, M ⁇ 3, M is a positive integer; the first resource interval is an interval between two adjacent target resource units in the target resource in the target domain, and the interval between two adjacent target resource units in the target domain includes at least one of the following: an interval between two adjacent target resource units in the time domain; an interval between two adjacent target resource units in the frequency domain;
  • the target resource is divided into K resource blocks in the target domain according to the first condition, K ⁇ 2, and K is a positive integer;
  • the first condition includes:
  • the distribution or position of the target resource units in the K resource blocks on the target domain is the same; and,
  • the K resource blocks correspond to at least two second resource intervals in the target domain
  • the second resource interval is the interval between two adjacent resource blocks in the K resource blocks on the target domain.
  • the interval between two adjacent resource blocks in the target domain includes at least one of the following: an interval between two adjacent resource blocks in the time domain; an interval between two adjacent resource blocks in the frequency domain;
  • the target domain includes at least one of a time domain and a frequency domain.
  • a signal transmission device which is applied to a second device, including:
  • a first sending module configured to send parameter configuration information of a first signal, where the first signal is a synaesthesia integrated signal or a perception signal, and the parameter configuration information is used to indicate a resource pattern of the first signal;
  • the resource pattern of the first signal satisfies a first feature, and the first feature is:
  • the target resource includes M target resource units in a target domain, and the target resource corresponds to at least two first resource intervals in the target domain, the target resource unit is a resource unit allocated to the first signal, M ⁇ 3, M is a positive integer; the first resource interval is an interval between two adjacent target resource units in the target resource in the target domain, and the interval between two adjacent target resource units in the target domain includes at least one of the following: an interval between two adjacent target resource units in the time domain; an interval between two adjacent target resource units in the frequency domain;
  • the target resource is divided into K resource blocks in the target domain according to the first condition, K ⁇ 2, and K is a positive integer;
  • the first condition includes:
  • the distribution or position of the target resource units in the K resource blocks on the target domain is the same; and,
  • the K resource blocks correspond to at least two second resource intervals in the target domain
  • the second resource interval is the interval between two adjacent resource blocks in the target domain among the K resource blocks in the target domain, and the interval between the two adjacent resource blocks in the target domain includes at least one of the following: the interval between two adjacent resource blocks in the time domain; the interval between two adjacent resource blocks in the frequency domain;
  • the target domain includes at least one of a time domain and a frequency domain.
  • a terminal which includes a processor and a memory, wherein the memory stores a program or instruction that can be executed on the processor, and when the program or instruction is executed by the processor, the steps of the method described in the first aspect are implemented.
  • a terminal including a processor and a communication interface, wherein the communication interface is used to receive parameter configuration information of a first signal, the first signal is a synaesthesia integration signal or a perception signal, and the parameter configuration information is used to indicate a resource pattern of the first signal;
  • the resource pattern of the first signal satisfies a first feature, and the first feature is:
  • the target resource includes M target resource units in a target domain, and the target resource corresponds to at least two first resource intervals in the target domain, the target resource unit is a resource unit allocated to the first signal, M ⁇ 3, M is a positive integer; the first resource interval is an interval between two adjacent target resource units in the target resource in the target domain, and the interval between two adjacent target resource units in the target domain includes at least one of the following: an interval between two adjacent target resource units in the time domain; an interval between two adjacent target resource units in the frequency domain;
  • the target resource is divided into K resource blocks in the target domain according to the first condition, K ⁇ 2, and K is a positive integer;
  • the first condition includes:
  • the distribution or position of the target resource units in the K resource blocks on the target domain is the same; and,
  • the K resource blocks correspond to at least two second resource intervals in the target domain
  • the second resource interval is the interval between two adjacent resource blocks in the target domain among the K resource blocks in the target domain, and the interval between the two adjacent resource blocks in the target domain includes at least one of the following: the interval between two adjacent resource blocks in the time domain; the interval between two adjacent resource blocks in the frequency domain;
  • the target domain includes at least one of a time domain and a frequency domain.
  • a network side device (a first device or a second device) which includes a processor and a memory, wherein the memory stores programs or instructions that can be run on the processor, and when the program or instructions are executed by the processor, the steps of the method described in the first aspect or the second aspect are implemented.
  • a network side device (a first device or a second device) including a processor and a communication interface, wherein the communication interface is used to receive or send parameter configuration information of a first signal, the first signal is a synaesthesia integrated signal or a perception signal, and the parameter configuration information is used to indicate a resource pattern of the first signal;
  • the resource pattern of the first signal satisfies a first feature, and the first feature is:
  • the target resource includes M target resource units in a target domain, and the target resource corresponds to at least two first resource intervals in the target domain, the target resource unit is a resource unit allocated to the first signal, M ⁇ 3, M is a positive integer; the first resource interval is an interval between two adjacent target resource units in the target resource in the target domain, and the interval between two adjacent target resource units in the target domain includes at least one of the following: an interval between two adjacent target resource units in the time domain; an interval between two adjacent target resource units in the frequency domain;
  • the target resource is divided into K resource blocks in the target domain according to the first condition, K ⁇ 2, and K is a positive integer;
  • the first condition includes:
  • the distribution or position of the target resource units in the K resource blocks on the target domain is the same; and,
  • the K resource blocks correspond to at least two second resource intervals in the target domain
  • the second resource interval is the interval between two adjacent resource blocks in the target domain among the K resource blocks in the target domain, and the interval between the two adjacent resource blocks in the target domain includes at least one of the following: the interval between two adjacent resource blocks in the time domain; the interval between two adjacent resource blocks in the frequency domain;
  • the target domain includes at least one of a time domain and a frequency domain.
  • a signal transmission system comprising: a first device and a second device, wherein the first device can be used to execute the steps of the method described in the first aspect, and the second device can be used to execute the steps of the method described in the second aspect.
  • a readable storage medium on which a program or instruction is stored.
  • the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method described in the second aspect are implemented.
  • a chip comprising a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run a program or instruction to implement the method described in the first aspect, or to implement the method described in the second aspect.
  • a computer program/program product is provided, wherein the computer program/program product is stored in In the storage medium, the computer program/program product is executed by at least one processor to implement the steps of the method described in the first aspect, or to implement the method described in the second aspect.
  • a first device receives parameter configuration information of a first signal, the first signal is a synaesthesia integrated signal or a perception signal, and the resource pattern of the first signal satisfies a first feature, the first feature being: including a target resource, the target resource including M target resource units in the target domain, and the target resource corresponding to at least two first resource intervals in the target domain; the target resource is divided into K resource blocks in the target domain according to a first condition; the first condition includes: the distribution or position of the target resource units in the K resource blocks in the target domain is the same; and the K resource blocks in the target domain correspond to at least two second resource intervals.
  • the resource interval (first resource interval or second resource interval) of some resource blocks or some target resource units in the target domain can be set according to the perception requirements as a resource interval that meets the resolution requirements of the corresponding perception measurement quantity, or other resource blocks or target resource units can be set with a larger resource interval in the target domain, thereby reducing resource overhead under the premise that the first signal can meet the perception requirements.
  • FIG1 is a structural diagram of a communication system to which an embodiment of the present application can be applied;
  • FIG2 is a schematic diagram showing one of the flow charts of the signal transmission method according to an embodiment of the present application.
  • FIG3 shows one of the resource schematic diagrams of the first signal in an embodiment of the present application
  • FIG4 is a schematic diagram showing a comparison of resource overheads of the non-periodic block signal of the present application and an existing equivalent uniformly distributed signal;
  • FIG5 shows a second schematic diagram of resources of the first signal in an embodiment of the present application
  • FIG6 shows a third schematic diagram of resources of the first signal in an embodiment of the present application.
  • FIG7 shows a fourth schematic diagram of resources of the first signal in an embodiment of the present application.
  • FIG8 shows a fifth schematic diagram of resources of the first signal in an embodiment of the present application.
  • FIG9 is a schematic diagram showing one of the resources of the first signal of different ports in an embodiment of the present application.
  • FIG10 is a second schematic diagram showing resources of first signals of different ports in an embodiment of the present application.
  • FIG11 is a third schematic diagram showing resources of first signals of different ports in an embodiment of the present application.
  • FIG12 is a second schematic flow chart of the signal transmission method according to an embodiment of the present application.
  • FIG13 is a schematic diagram showing one of the modules of the signal transmission device according to an embodiment of the present application.
  • FIG14 shows a second schematic diagram of a module of a signal transmission device according to an embodiment of the present application.
  • FIG15 is a block diagram showing a structure of a communication device according to an embodiment of the present application.
  • FIG16 is a block diagram showing a structure of a terminal according to an embodiment of the present application.
  • FIG17 shows one of the structural block diagrams of the network side device according to an embodiment of the present application.
  • FIG. 18 shows a second structural block diagram of the network side device according to an embodiment of the present application.
  • first, second, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents that the objects associated with each other are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR new radio
  • FIG1 shows a block diagram of a wireless communication system applicable to an embodiment of the present application.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 may be a mobile phone, a tablet computer, a laptop computer or a notebook computer, a personal digital assistant (PDA), a handheld computer, a netbook, an ultra-mobile personal computer (UMPC), a mobile Internet device (MID), an augmented reality (AR)/virtual reality (VR) device, a robot, a wearable device (Wearable Device), a vehicle user equipment (VUE), a pedestrian terminal (Pedestrian User Equipment, PUE), a smart home (a home appliance with wireless communication function, such as a refrigerator, a television, a washing machine or furniture, etc.), a game console, a personal computer (PC), a teller machine or a self-service machine and other terminal side devices, and the wearable device includes: a smart watch, a smart bracelet, a smart headset, a smart glasses, smart jewelry (
  • the network side device 12 may include access network equipment or core network equipment, wherein the access network equipment may also be referred to as wireless access network equipment, wireless access network (RAN), wireless access network function or wireless access network unit.
  • the access network equipment may include base stations, wireless local area network (WLAN) access points or WiFi nodes, etc.
  • the base stations may be referred to as node B, evolved node B (eNB), access nodes, etc.
  • base transceiver station Base Transceiver Station, BTS
  • radio base station radio transceiver
  • basic service set Basic Service Set, BSS
  • extended service set Extended Service Set, ESS
  • home B node home evolved B node
  • transmission reception point Transmission Reception Point, TRP
  • TRP Transmission Reception Point
  • the core network equipment may include but is not limited to at least one of the following: core network node, core network function, mobility management entity (Mobility Management Entity, MME), access mobility management function (Access and Mobility Management Function, AMF), session management function (Session Management Function, SMF), user plane function (User Plane Function, UPF), policy control function (Policy Control Function, PCF), policy and charging rules function unit (Policy and Charging Rules Function, PCRF), edge application service discovery function (Edge Application Server Discovery Function, EASDF), unified data management (Unified Data Management, UDM), unified data storage (Unified Data Repository, UDR), home user server (Home Subscriber Server, HSS), centralized network configuration (CNC), network storage function (Network Repository Function, NRF), network exposure function (Network Exposure Function, NEF), local NEF (Local NEF, or L-NEF), binding support function (Binding Support Function, BSF), application function (Application Function, AF), etc. It should be noted that in
  • Future B5G and 6G wireless communication systems are expected to provide a variety of high-precision sensing services, such as indoor positioning for robot navigation, Wi-Fi sensing for smart homes, and radar sensing for self-driving cars.
  • Sensing and communication systems are usually designed separately and occupy different frequency bands.
  • MIMO massive multiple input multiple output
  • communication signals in future wireless communication systems often have high resolution in both time and angle domains, which makes it possible to use communication signals to achieve high-precision sensing. Therefore, it is best to jointly design sensing and communication systems so that they can share the same frequency band and hardware to improve frequency efficiency and reduce hardware costs. This has prompted the study of Integrated Sensing And Communication (ISAC).
  • MIMO massive multiple input multiple output
  • ISAC will become a key technology in future wireless communication systems to support many important application scenarios.
  • autonomous vehicles will obtain a large amount of information from the network, including ultra-high-resolution maps and near-real-time information, to navigate and avoid upcoming traffic jams.
  • radar sensors in autonomous vehicles should be able to provide powerful, high-resolution obstacle detection capabilities with a resolution of centimeters.
  • ISAC technology for autonomous vehicles offers the possibility of high data rate communications and high resolution obstacle detection using the same hardware and spectrum resources.
  • Other applications of ISAC include Wi-Fi based indoor positioning and activity recognition, communication and sensing for drones, extended reality (XR), radar and communication integration, etc. Each application has different requirements, limitations and regulatory issues.
  • ISAC has attracted great research interest and attention from academia and industry. For example, there have been an increasing number of academic publications on ISAC recently, ranging from transceiver architecture design, from ISAC waveform design, joint coding design, time-frequency-space signal processing, to experimental performance delay, prototype design and field testing.
  • JSAC achieves low-cost integration of communication and perception functions by sharing hardware equipment and defining functions with software. Its main features are: first, unified and simplified architecture; second, reconfigurable and scalable functions; third, improved efficiency and reduced costs.
  • the advantages of integrated communication and perception are mainly in three aspects: first, reduced equipment cost and size; second, improved spectrum utilization; and third, improved system performance.
  • the academic community usually divides the development of JSAC into four stages: co-existence, co-operation, co-design and co-collaboration.
  • Coexistence Communication and perception are two independent systems that will interfere with each other.
  • the main methods to resolve interference are: distance isolation, frequency band isolation, time division, MIMO technology, precoding, etc.
  • Co-operation Communication and perception share the same hardware platform and use shared information to improve common performance.
  • the power allocation between the two has a great impact on system performance.
  • the main problems are: low signal-to-noise ratio, mutual interference, and low throughput.
  • Co-design Communication and perception become a complete joint system, including joint signal design, waveform design, coding design, etc.
  • waveform design design
  • coding design etc.
  • OFDM orthogonal frequency division multiplexing
  • Radar Radio Detection and Ranging
  • radar detection targets not only measure the distance of the targets, but also measure the speed, azimuth, and pitch angle of the targets, as well as extract more information about the targets from the above information, including the size and shape of the targets.
  • Radar technology was originally used for military purposes to detect targets such as aircraft, missiles, vehicles, and ships. With the development and evolution of society, radars are increasingly used in civilian scenarios. A typical application is that weather radars measure the echoes of meteorological targets such as clouds and rain to determine information about the location and intensity of clouds and rain for weather forecasting. Furthermore, with the vigorous development of the electronic information industry, the Internet of Things, and communication technology, radar technology has begun to enter people's daily life applications, greatly improving the convenience and safety of work and life. For example, automotive radars provide early warning information to vehicle drivers by measuring the distance and relative speed between vehicles, between vehicles and surrounding objects, and between vehicles and pedestrians, greatly improving the safety level of road traffic.
  • the radar transceiver sites there are many ways to classify radars. According to the positional relationship between the radar transceiver sites, they can be divided into: single-station radar and dual-station radar, as shown in the figure below.
  • single-station radars the signal transmitter and receiver are integrated and share a common antenna; the advantage is that the target echo signal and the receiver local oscillator are naturally coherent, and signal processing is relatively convenient; the disadvantage is that signal transmission and reception cannot be carried out at the same time, and only a signal waveform with a certain duty cycle can be used, which brings about a blind spot in detection and requires the use of complex algorithms to make up for it; or the signal transmission and reception are carried out at the same time, and the transmission and reception are strictly isolated, but this is difficult to do for high-power military radars.
  • the signal transmitter and receiver are located in different positions; the advantage is that signal transmission and reception can be carried out at the same time, and continuous wave waveforms can be used for detection; the disadvantage is that it is difficult to achieve the same frequency and coherence between the receiver and the transmitter, and the signal processing is relatively complex.
  • radar technology can adopt single-station radar mode or dual-station radar mode.
  • the transmitting and receiving signals share the same antenna, and the receiving signal and the transmitting signal enter different RF processing links through the circulator; in this mode, a continuous wave signal waveform can be used to achieve detection without blind spots, provided that the receiving signal and the transmitting signal need to be well isolated, usually requiring an isolation of about 100dB to eliminate the flooding of the receiving signal by the leakage of the transmitting signal. Since the receiver of the single-station radar has all the information of the transmitting signal, it can process the signal through matched filtering (pulse compression) to obtain a higher signal processing gain.
  • synchronization signals Primary Synchronization Signal (PSS)/Secondary Synchronization Signal (SSS)
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • the fuzzy graph of the signal waveform is no longer a pushpin shape, but a pinboard shape, the fuzziness of the delay and Doppler will increase, and the gain of the main lobe is much lower than that of the single-station radar mode, which reduces the measurement range of distance and speed.
  • the measurement range of distance and speed can meet the measurement requirements of common targets such as cars and pedestrians.
  • the measurement accuracy of the bistatic radar is related to the position of the transceiver site relative to the target, and it is necessary to select a suitable pair of transceiver sites to improve the detection performance.
  • Perception requirements include requirements for the resolution and/or maximum unambiguous measurement range of target parameters, including delay or distance, Doppler or velocity, and angle.
  • Resources are resources on the target domain corresponding to the target parameters.
  • the target domain and resources on the target domain include:
  • Time domain time resources, including: Orthogonal Frequency Division Multiplexing (OFDM) symbols, time slots, subframes, frames, etc.;
  • OFDM Orthogonal Frequency Division Multiplexing
  • Frequency domain frequency resources, including subcarriers, resource blocks (RBs), etc.
  • Airspace antenna or port resources.
  • the requirements for resource allocation based on perceived demand mainly include two aspects:
  • Resource span In the target domain, the span of resources of a perception frame from the minimum resource unit index to the maximum resource unit index, including: time length (time domain), bandwidth (frequency domain), and aperture (spatial dimension);
  • Resource unit spacing In the target domain, the spacing between adjacent target resource units in a perception frame in the target domain, including: the spacing between OFDM symbols allocated to the perception signal (time domain), the spacing between subcarriers allocated to the perception signal (frequency domain), and the spacing between antennas or ports allocated to the perception signal (spatial domain).
  • the impact of resource allocation on perception includes:
  • the span of resources determines the resolution of target parameters, including: the time span in the time domain determines the measurement resolution of Doppler or velocity, the bandwidth in the frequency domain determines the measurement resolution of delay or distance, and the aperture in the airspace determines the measurement resolution of angle;
  • the target resource unit interval determines the maximum unambiguous measurement range of the target parameter, including: the interval between OFDM symbols allocated to the perception signal in the time domain determines the maximum unambiguous measurement range of Doppler or speed, the interval between subcarriers allocated to the perception signal in the frequency domain determines the maximum unambiguous measurement range of delay or distance, and the interval between antennas or ports allocated to the perception signal in the spatial domain determines the maximum unambiguous measurement range of angle.
  • the following discusses the relationship between the resource configuration of perception signals and perception requirements, focusing on the resource configuration in the time domain and frequency domain.
  • B represents the signal bandwidth
  • the maximum unambiguous measurement range of the delay is given by:
  • ⁇ f is the interval between adjacent subcarriers allocated to the perception signal.
  • the Doppler resolution is given by:
  • T is the time length of a perception frame.
  • ⁇ t represents the interval between adjacent OFDM symbols allocated to the sensing signal.
  • the number of sensing resources required is:
  • the maximum unambiguous ranging range is 200m;
  • the ranging resolution is 0.2m;
  • the speed measurement range is -180km/h to 180km/h (capable of detecting speeding vehicles, both in approaching and moving away directions);
  • the speed measurement resolution is 0.2m/s (capable of distinguishing slowly walking pedestrians).
  • the corresponding sensing resource configuration requirements meet the following conditions:
  • the spacing ⁇ f between adjacent subcarriers allocated to the perception signal is ⁇ 1500kHz;
  • the time length of the perception frame T ⁇ 25ms
  • the interval ⁇ t between adjacent OFDM symbols allocated to the sensing signal is ⁇ 50 ⁇ s.
  • the overhead of time domain and frequency domain resources is relatively large. Further examine the proportion of the above-mentioned time-frequency domain resource overhead in the entire time-frequency domain. In the case of a 30GHz center frequency, considering that the subcarrier spacing is 120kHz, the time length of the OFDM symbol is 8.33 ⁇ s. In order to meet the above-mentioned resource configuration requirements, 1 subcarrier in every 12 subcarriers must be allocated to the perception signal, and 1 OFDM symbol in every 6 OFDM symbols must be allocated to the perception signal. In the scenario of multi-port perception, the proportion of perception resource overhead will be further increased.
  • CSI-RS Channel State Information-Reference Signal
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signals
  • an embodiment of the present application provides a signal transmission method, including:
  • Step 201 A first device receives parameter configuration information of a first signal, where the first signal is a synaesthesia integrated signal or a perception signal, and the parameter configuration information is used to indicate a resource pattern of the first signal;
  • the resource pattern of the first signal satisfies a first feature, and the first feature is:
  • the target resource includes M target resource units in a target domain, and the target resource corresponds to at least two first resource intervals in the target domain, the target resource unit is a resource unit allocated to the first signal, M ⁇ 3, M is a positive integer; the first resource interval is an interval between two adjacent target resource units in the target resource in the target domain, and the interval between two adjacent target resource units in the target domain includes at least one of the following: an interval between two adjacent target resource units in the time domain; an interval between two adjacent target resource units in the frequency domain;
  • the target resource is divided into K resource blocks in the target domain according to the first condition, K ⁇ 2, and K is a positive integer;
  • the first condition includes:
  • Condition 1 the distribution or position of the target resource units in the K resource blocks in the target domain is the same;
  • K resource blocks correspond to at least two second resource intervals in the target domain
  • the second resource interval is the interval between two adjacent resource blocks in the target domain among the K resource blocks in the target domain, and the interval between the two adjacent resource blocks in the target domain includes at least one of the following: the interval between two adjacent resource blocks in the time domain; the interval between two adjacent resource blocks in the frequency domain;
  • the above resource blocks may or may not overlap in the target domain.
  • the target domain includes at least one of a time domain and a frequency domain.
  • the first device receives parameter configuration information of the first signal sent by the second device, the first device includes but is not limited to a terminal or a base station, and the second device includes but is not limited to a base station or a core network device.
  • the resource allocated to the first signal in the target domain is the target resource.
  • the resource allocation unit in the target domain is the resource unit.
  • the resource unit included in the target resource is the target resource unit, that is, the resource allocated to the first signal.
  • the resource unit includes at least one of a time domain resource unit and a frequency domain resource unit, the time domain resource unit includes but is not limited to an OFDM symbol, and the frequency domain resource unit includes but is not limited to a subcarrier. That is, the target resource unit may be at least one of a target OFDM symbol and a target subcarrier.
  • a first device receives parameter configuration information of a first signal, the first signal is a synaesthesia integrated signal or a perception signal, and the resource pattern of the first signal satisfies a first feature, the first feature being: including a target resource, the target resource including M target resource units in the target domain, and the target resource corresponding to at least two first resource intervals in the target domain; the target resource is divided into K resource blocks in the target domain according to a first condition; the first condition includes: the distribution or position of the target resource units in the K resource blocks in the target domain is the same; and the K resource blocks in the target domain correspond to at least two second resource intervals.
  • the resource interval (first resource interval or second resource interval) of some resource blocks or some target resource units in the target domain can be set according to the perception requirements as a resource interval that meets the resolution requirements of the corresponding perception measurement quantity, or other resource blocks or target resource units can be set with a larger resource interval in the target domain, thereby reducing resource overhead under the premise that the first signal can meet the perception requirements.
  • the target resource satisfies at least one of the following:
  • Item 1 The total span of the target resource in the target domain meets the resolution requirement of the perception measurement amount corresponding to the target domain, wherein the total span of the target resource in the time domain is the total duration corresponding to the target resource in the time domain, and the total span of the target resource in the frequency domain is the total bandwidth corresponding to the target resource in the frequency domain;
  • the M target resource units on the target domain include N target resource unit groups, each target resource unit group includes two adjacent target resource units among the M target resource units on the target domain, and an interval between two adjacent target resource units on the target domain in each of the target resource unit groups meets a maximum unambiguous measurement range requirement of a perception measurement amount corresponding to the target domain;
  • N is greater than or equal to a first preset value
  • the perception measurement quantity corresponding to the target domain includes Doppler, speed, delay or distance.
  • the target resource satisfies the first and second items above, which can ensure that the target resource meets the perceived resolution and the maximum unambiguous measurement range.
  • the target domain includes a time domain, and the total span of the target resources in the time domain meets the resolution requirements of Doppler or speed.
  • the total span of the target resource in the time domain is the total duration T of the target resource in the time domain (i.e., time domain resource) (usually referred to as: perception frame length, or, coherent processing time, indicating the length of the first signal in the time domain for performing a coherent processing and obtaining a perception measurement or a perception result), satisfying: T ⁇ 1/ ⁇ f d or T ⁇ c/2f c ⁇ v, where ⁇ f d represents the Doppler resolution in the perception requirement, c represents the speed of light, f c represents the carrier center frequency, and ⁇ v represents the speed resolution in the perception requirement.
  • the target domain includes a frequency domain, and the total span of the target resources in the frequency domain meets the resolution requirements of the delay or distance.
  • the total span of the target resource in the frequency domain is the total span of the target resource in the frequency domain (i.e., the frequency domain resource).
  • Bandwidth B the total bandwidth B satisfies: B ⁇ 1/ ⁇ or B ⁇ c/2 ⁇ R, where ⁇ represents the delay resolution in the perception requirement, c represents the speed of light, and ⁇ R represents the distance resolution in the perception requirement.
  • the target domain includes a time domain, and two target resource units adjacent in the time domain in each target resource unit group meet a maximum unambiguous measurement range requirement for Doppler or speed.
  • the interval between two adjacent target resource units in the time domain in any target resource unit group is ⁇ T, it should satisfy: ⁇ T ⁇ 1/f d,max or ⁇ T ⁇ c/2f c v max , where f d,max represents the maximum unambiguous measurement value of Doppler, c represents the speed of light, f c represents the carrier center frequency, and v max represents the maximum unambiguous measurement value of the speed.
  • the Doppler maximum unambiguous measurement value or the velocity maximum unambiguous measurement value is determined according to a sensing requirement or sensing prior information, including one of the following:
  • the maximum unambiguous measurement value of Doppler or velocity mentioned above is consistent with the maximum Doppler of the target in the perception prior information or perception requirement. or maximum speed The relationship between them is: or
  • ⁇ T can have one or more values, and the number of target OFDM symbols corresponding to the N target resource unit groups should be no less than a preset number.
  • the values of the time intervals between adjacent target resource units in the M target resource units (target OFDM symbols) are arranged from small to large to include ⁇ T 1 , ⁇ T 2 , ⁇ T 3 , ... ⁇ T n ⁇ , and the corresponding numbers of target OFDM are ⁇ N 1 , N 2 , N 3 , ...
  • N n ⁇ N n ⁇ , respectively, then it should satisfy is not less than the preset value, where t is the subscript of the maximum value in the sequence ⁇ T 1 , ⁇ T 2 , ⁇ T 3 , ... ⁇ T n ⁇ that satisfies the condition ⁇ T ⁇ 1/f d,max or ⁇ T ⁇ c/2f c v max , that is, ⁇ T t satisfies the condition ⁇ T ⁇ 1/f d,max or ⁇ T ⁇ c/2f c v max while ⁇ T t+1 does not.
  • the target domain includes a frequency domain, and two target resource units adjacent in the frequency domain in each target resource unit group meet a maximum unambiguous measurement range requirement for a delay or a distance.
  • the interval between two adjacent target resource units in the frequency domain in any target resource unit group is ⁇ f, satisfying: ⁇ f ⁇ 1/ ⁇ max or ⁇ f ⁇ c/2R max , where ⁇ max represents the maximum unambiguous measurement value of the delay, c represents the speed of light, and R max represents the maximum unambiguous measurement value of the distance in the perception requirement.
  • ⁇ f may have one or more values, and the number of target subcarriers corresponding to the N target resource unit groups is not less than a preset number.
  • the parameter configuration information includes at least one of the following:
  • First indication information where the first indication information is used to indicate that the target domain includes a time domain and/or a frequency domain, for example, indicated by 1 bit, where bit 0 indicates the time domain and bit 1 indicates the frequency domain;
  • the second indication information is used to indicate location information of a target resource unit within each resource block of the target resource in the target domain;
  • the third indication information is used to indicate the starting position of each resource block of the target resource in the target domain.
  • the second indication information is a bitmap
  • the bitmap includes L bits, each bit corresponds to a resource unit; when the value corresponding to the bit is a first value, the resource unit corresponding to the bit is a target resource unit in the resource block, and when the value corresponding to the bit is a second value, the resource unit corresponding to the bit is not a target resource unit in the resource block, and L is a positive integer.
  • a bit of ‘1’ indicates that the corresponding resource unit is the target resource unit in the resource block
  • a bit of ‘0’ indicates that the corresponding resource unit is not the target resource unit in the resource block.
  • the third indication information includes one of the following:
  • Position sequence information the position sequence information includes K starting position information on the target domain, and the K starting position information corresponds one-to-one to K resource blocks; optionally, the starting position information can be the starting position offset information of each resource block relative to the starting position of the target resource.
  • A2 period information and offset sequence information, the period information is used to indicate the repetition period of the resource block in the target domain, the offset sequence information includes K offset information in the target domain, the K offset information correspond one-to-one to the K resource blocks, and each offset information is used to indicate the offset information of the starting position of the resource block in the target domain relative to the position indicated by the period information.
  • ⁇ m-1 P m-1 -(m-1)P;
  • the indication method corresponding to item A2 adds a value of period P to the parameter compared with the indication method corresponding to item A1, the number of bits occupied in parameter transmission is actually reduced.
  • the value is distributed within the span of the entire target resource, and the larger the value, the more bits are required; while when the indication method corresponding to item A2 is adopted, the values of period and offset are both smaller, and the number of bits required is less.
  • configuration parameter set given here is only one possible configuration parameter set; in specific implementations, other configuration parameter sets may also be used to implement signals that meet the above characteristics, which also fall within the protection scope of this application.
  • the granularity of the above parameter configuration may be at least one of the following:
  • the target domain is the time domain, and the granularity can be: preset time length (e.g. 1ms), OFDM symbol duration, time slot, Subframe, half frame, frame;
  • the target domain is the frequency domain: the granularity can be: preset frequency width (such as: 30kHz), subcarrier, RB, resource block group (Resource Block Group, RBG).
  • the parameter configuration information of the first signal in the embodiment of the present application can also be described as non-periodic block signal configuration information, that is, the first signal is a non-periodic block signal.
  • the total span of target resource units allocated to the first signal is 51 (a total of 51 from the first target resource unit to the last resource unit not allocated to the first signal in Figure 3); wherein there are a total of 15 target resource units allocated to the first signal, and are unevenly distributed and positioned at ⁇ 0, 2, 7, 10, 14, 16, 21, 24, 26, 31, 34, 40, 42, 47, 50 ⁇ , where the position of the target resource unit is relative to the starting position of the target resource.
  • the target resource units are non-uniformly distributed in the target domain.
  • the value of the target resource unit interval (i.e., the first resource interval) includes five cases of 2/3/4/5/6 resource units;
  • Feature 2 The total span L of the target resource meets the resolution requirement of the perceptual measurement quantity corresponding to the target domain.
  • Feature 3 There are a plurality of preset target resource unit groups, and the interval between two target resource units in a target resource unit group meets the maximum unambiguous measurement range requirement of the perception measurement quantity corresponding to the target domain.
  • the target resource allocated to the first signal can be divided into a plurality of resource blocks, as shown in “resource block 0”, “resource block 1”, “resource block 2” and “resource block 3” in the middle part of FIG. 3 , and the following conditions are met:
  • Feature 4a The distribution or position of the target resource units allocated to the first signal in each resource block is the same.
  • the number of target resource units in the target resources of each resource block (including: allocated to the first signal and not allocated to the first signal) is 13, and there are 4 target resource units allocated to the first signal, and their positions are ⁇ 0, 2, 7, 10 ⁇ , where the positions are relative to the starting positions of each resource block.
  • Feature 4b The resource blocks are non-uniformly distributed, that is, the value of the interval between the resource blocks exists in at least 2.
  • the interval between “resource block 0” and “resource block 1” is 14 target resource units
  • the interval between “resource block 1” and “resource block 2” is 10 target resource units
  • the interval between “resource block 2” and “resource block 3” is 16 target resource units.
  • the parameter configuration information of the first signal of the example shown in FIG3 includes at least one of the following:
  • a position indication (i.e., second indication information) of a target resource unit allocated to the first signal in each resource block, which is ⁇ 0, 2, 7, 10 ⁇ here;
  • Position indication of the starting position of each resource block ie, the third indication information:
  • the third indication information includes:
  • the offset sequence ⁇ 0 , ⁇ 1 , ⁇ 2 , ⁇ 3 ⁇ ⁇ 0, 1, -2, 1 ⁇ .
  • Figure 4 is a schematic diagram showing a comparison of resource overheads between the non-periodic block signal of the present application and an existing uniformly distributed signal that is equivalent in terms of resolution and maximum unambiguous measurement range performance.
  • the non-periodic block signal in Figure 4 may refer to the non-periodic block signal in Figure 3.
  • the solution of the embodiment of the present application can greatly reduce the occupation of time domain and/or frequency domain resources by the first signal while maintaining the maximum unambiguous measurement range and resolution performance of the perceived measurement amount unchanged, thereby achieving the effect of solving the overhead.
  • the non-periodic block signal configuration method proposed in the present application is used to configure the first signal in the time domain; and in the frequency domain, it is configured according to other configuration methods, for example, the traditional uniformly distributed first signal configuration is used in the frequency domain.
  • the configuration parameters of the first signal in the time domain described in this application include at least one of the following:
  • First indication information where the first indication information indicates that the target domain is a time domain, for example, represented by 1 bit, where the bit is ‘0’ indicating the time domain;
  • Second indication information a position indication of a target resource unit allocated to the first signal in each resource block of the target resource in the time domain;
  • the third indication information is ⁇ P 0 , P 1 , P 2 , P 3 ⁇ ; or the third indication information is: period P; offset sequence ⁇ 0 , ⁇ 1 , ⁇ 2 , ⁇ 3 ⁇ .
  • the configuration of the first signal includes not only the configuration in the time domain, but also the configuration in the frequency domain.
  • the configuration in the frequency domain adopts a traditional uniformly distributed configuration, including at least one of the following:
  • An indication that the target domain is the frequency domain, for example, indicated by 1 bit, where the bit is ‘1’ indicating the frequency domain;
  • the number of target subcarriers of the target resource in the frequency domain is the number of target subcarriers of the target resource in the frequency domain
  • the starting position of the target resource in the frequency domain is the starting position of the target resource in the frequency domain.
  • FIG5 A schematic diagram of this embodiment is shown in FIG5 , in which a grid in the time dimension represents a target resource unit in the time domain (e.g., an OFDM symbol), and a grid in the frequency dimension represents a target resource unit in the frequency domain (e.g., a subcarrier).
  • a grid in the time dimension represents a target resource unit in the time domain (e.g., an OFDM symbol)
  • a grid in the frequency dimension represents a target resource unit in the frequency domain (e.g., a subcarrier).
  • the configuration of the non-periodic block signal described in the present application is adopted in the time domain.
  • the distribution of the target resources in the time domain is the same as shown in FIG3 .
  • the configuration of the traditional uniformly distributed signal is adopted in the frequency domain, and the target resource unit interval in the frequency domain is 2 subcarriers.
  • the average value of the target OFDM symbol interval in the time domain is approximately 3.4 OFDM symbols, which is greater than the target OFDM symbol interval (2 OFDM symbols) required by the resolution of Doppler or velocity, thereby reducing the resource overhead of the first signal.
  • the non-periodic block signal configuration method proposed in the present application is used to configure the first signal in the frequency domain; and in the time domain, it is configured according to other configuration methods, for example, the traditional uniformly distributed first signal configuration is used in the time domain.
  • configuration parameters of the first signal described in the present invention include at least one of the following:
  • First indication information where the first indication information indicates that the target domain is the frequency domain, for example, represented by 1 bit, where the bit is ‘1’ indicating the frequency domain;
  • Second indication information a starting position of a target resource allocated to the first signal in the frequency domain
  • the third indication information is: ⁇ P 0 , P 1 , P 2 , P 3 ⁇ , or the third indication information is: period P; offset sequence ⁇ 0 , ⁇ 1 , ⁇ 2 , ⁇ 3 ⁇ .
  • the configuration of the first signal includes not only the configuration in the frequency domain, but also the configuration in the time domain.
  • the configuration in the time domain adopts a traditional uniformly distributed configuration, including at least one of the following:
  • An indication that the target domain is the time domain, for example, indicated by 1 bit, where the bit is ‘0’ indicating the time domain;
  • the starting position of the target resource in the time domain is the starting position of the target resource in the time domain.
  • FIG6 A schematic diagram of this embodiment is shown in FIG6 , in which a grid in the time dimension represents a target resource unit in the time domain (e.g., an OFDM symbol), and a grid in the frequency dimension represents a target resource unit in the frequency domain (e.g., a subcarrier).
  • a grid in the time dimension represents a target resource unit in the time domain (e.g., an OFDM symbol)
  • a grid in the frequency dimension represents a target resource unit in the frequency domain (e.g., a subcarrier).
  • the configuration of the non-periodic block signal described in the present application is adopted in the frequency domain.
  • the distribution of the target resources in the frequency domain is shown in FIG7.
  • the configuration of the traditional uniformly distributed signal is adopted in the time domain, and the target resource unit interval in the time domain is 3 OFDM symbols.
  • the average value of the target subcarrier spacing in the frequency domain is approximately 3 subcarrier spacing, which is larger than the target subcarrier spacing (2 subcarriers) required by the resolution of the delay or distance, thereby reducing the resource overhead of the first signal.
  • the non-periodic block signal configuration method proposed in the present invention is used to configure the first signal in both the time domain and the frequency domain.
  • the configuration parameters of the first signal described in this application include:
  • the time domain configuration parameters include at least one of the following:
  • First indication information where the first indication information indicates that the target domain is the time domain, for example, represented by 1 bit, and the bit is ‘0’ indicating the time domain;
  • the position indication (third indication information) of the starting position of each block of the target resource in the time domain is: ⁇ P 0 , P 1 , P 2 , P 3 ⁇ , or a period P; an offset sequence ⁇ 0 , ⁇ 1 , ⁇ 2 , ⁇ 3 ⁇ .
  • the frequency domain configuration parameters include at least one of the following:
  • First indication information where the first indication information indicates that the target domain is the frequency domain, for example, represented by 1 bit, where the bit is ‘1’ indicating the frequency domain;
  • a position indication (i.e., second indication information) of a target resource unit allocated to the first signal in each block of the target resource in the frequency domain;
  • a position indication (third indication information) of the starting position of each block of the target resource in the frequency domain is: ⁇ P 0 , P 1 , P 2 , P 3 ⁇ , or a period P; an offset sequence ⁇ 0 , ⁇ 1 , ⁇ 2 , ⁇ 3 ⁇ ;
  • FIG8 A schematic diagram of this embodiment is shown in FIG8 , in which a grid in the time dimension represents a target resource unit in the time domain (e.g., an OFDM symbol), and a grid in the frequency dimension represents a target resource unit in the frequency domain (e.g., a subcarrier).
  • a grid in the time dimension represents a target resource unit in the time domain (e.g., an OFDM symbol)
  • a grid in the frequency dimension represents a target resource unit in the frequency domain (e.g., a subcarrier).
  • the configuration of the non-periodic block signal described in the present application is adopted in the time domain and the frequency domain.
  • the distribution of the target resource unit in the time domain is shown in FIG3, and the distribution of the target resource unit in the frequency domain is shown in FIG7.
  • the average value of the target OFDM symbol interval in the time domain is approximately 3.4 OFDM symbols, which is larger than the target OFDM symbol interval (2 OFDM symbols) required by the resolution of Doppler or speed;
  • the average value of the target subcarrier interval in the frequency domain is approximately 3 subcarrier intervals, which is larger than the target subcarrier interval (2 subcarriers) required by the resolution of delay or distance, thereby reducing the resource overhead of the first signal.
  • the first signal is configured as a single port or multiple ports
  • resources of the first signal of different ports satisfy at least one of the following:
  • the first signals of different ports have the same resource pattern on the target domain, and the first signals of different ports are generated by The sequences are different; or, the resource patterns of the first signals of different ports on the target domain are the same, and the generation sequences used by the first signals of different ports are the same, and the orthogonal cover codes corresponding to different first signals are different.
  • the first signal may be configured as multiple ports, and the pattern relationship of the first signals of different ports may include the following situations:
  • the first signals of different ports are frequency-division multiplexed, that is, the first signals of different ports are distinguished by configuring different frequency domain offsets. For example, as shown in FIG9 , two ports are frequency-division multiplexed, the frequency domain offset of the first signal corresponding to port 1 is 0 subcarrier, and the frequency domain offset of the first signal corresponding to port 2 is 1 subcarrier. Port 1 and port 2 have the same total resource span and resource distribution in the frequency domain, that is, they have the same perceptual performance;
  • the first signals of different ports are time-division multiplexed, that is, the first signals of different ports are distinguished by configuring different time domain offsets. For example, as shown in FIG10 , two ports are time-division multiplexed, the time domain offset of the first signal corresponding to port 1 is 0 OFDM symbols, and the time domain offset of the first signal corresponding to port 2 is 1 OFDM symbol. Port 1 and port 2 have the same total resource span and time domain resource distribution in the time domain, that is, they have the same perceptual performance;
  • Case 3 The first signals of different ports use frequency division multiplexing and time division multiplexing, that is, the first signals of different ports are distinguished by configuring different frequency domain offsets and time domain offsets.
  • 4-port frequency division multiplexing and time division multiplexing FD2-TD2
  • the frequency domain offset of the first signal corresponding to port 1 is 0 subcarriers, and the time domain offset is 0 OFDM symbols
  • the frequency domain offset of the first signal corresponding to port 2 is 1 subcarrier
  • the time domain offset is 0 OFDM symbols
  • the frequency domain offset of the first signal corresponding to port 3 is 0 subcarriers
  • the time domain offset is 1 OFDM symbol
  • the frequency domain offset of the first signal corresponding to port 4 is 1 subcarrier
  • the time domain offset is 1 OFDM symbol.
  • Port 1, port 2, port 3 and port 4 have the same total resource span and resource distribution in the time domain and frequency domain, that is, they have the same perceptual performance;
  • Case 4 The first signals of different ports have the same pattern in the target domain, that is, they have the same time domain or frequency domain configuration parameters, but the generation sequences of the first signals used are different, that is, the generation parameters of the first signal sequence are related to the port number;
  • Case 5 The first signals of different ports have the same pattern in the target domain, that is, they have the same time domain or frequency domain configuration parameters, and the generation sequence of the first signals used is the same, but they are distinguished by different orthogonal covering codes (OCC) when mapped to time domain or frequency domain resources.
  • OCC orthogonal covering codes
  • the first signal mapping of port 2 adopts frequency domain orthogonal covering code (FD-OCC)
  • the first signal sequence of port 1 is c(m), which can be directly mapped to the frequency unit (such as RE) corresponding to a specified time unit (such as OFDM symbol), and the first signal sequence of port 2 can be c(m)*occ(m), where occ(m) is a FD-OCC sequence, which can be expressed as (1,-1,1,-1...,1,-1,1,-1), and then mapped to the same frequency unit as port 1.
  • FD-OCC frequency domain orthogonal covering code
  • the method of the embodiment of the present application further includes:
  • the first device sends capability information, where the capability information is used to indicate whether the first device has the capability to process the first signal that meets a first characteristic.
  • the capability information is used to indicate whether the first device has the capability of performing spectrum analysis operation on a non-uniform signal sequence.
  • the capability information described here includes not only conventional perceptual capability information but also the capability of spectrum analysis on non-uniform signal sequences.
  • Typical algorithms for spectrum analysis on non-uniform signal sequences include Non-Uniform Fast Fourier Transform (NUFFT), Multiple Signal Classification (MUSIC), etc.
  • the first device does not have the ability to perform spectral analysis on a non-uniform signal sequence, the block uniform signal described in the present application cannot be used; alternatively, the first device sends the obtained data corresponding to the first signal to a perception function network element (for example, a base station or a core network device), and the perception function network element performs spectral analysis operations on the non-uniform signal sequence.
  • a perception function network element for example, a base station or a core network device
  • the perception function network element performs spectral analysis operations on the non-uniform signal sequence.
  • the first device is not required to have the ability to perform spectral analysis operations on the non-uniform signal sequence.
  • the method of the embodiment of the present application further includes:
  • the first device performs a first operation on the first signal according to parameter configuration information of the first signal, where the first operation includes at least one of sending, receiving, and signal processing.
  • the method of the embodiment of the present application can greatly reduce the resource overhead of the perception signal while satisfying the perception resolution performance and the maximum unambiguous measurement range performance. At the same time, the method of the embodiment of the present application can conveniently combine the existing reference signal to realize the configuration of the perception signal, further reducing the resource overhead.
  • the embodiment of the present application further provides a signal transmission method, including:
  • Step 1201 The second device sends parameter configuration information of a first signal, where the first signal is a synaesthesia integrated signal or a perception signal, and the parameter configuration information is used to indicate a resource pattern of the first signal;
  • the resource pattern of the first signal satisfies a first feature, and the first feature is:
  • the target resource includes M target resource units in a target domain, and the target resource corresponds to at least two first resource intervals in the target domain, the target resource unit is a resource unit allocated to the first signal, M ⁇ 3, M is a positive integer; the first resource interval is an interval between two adjacent target resource units in the target resource in the target domain, and the interval between two adjacent target resource units in the target domain includes at least one of the following: an interval between two adjacent target resource units in the time domain; an interval between two adjacent target resource units in the frequency domain;
  • the target resource is divided into K resource blocks in the target domain according to the first condition, K ⁇ 2, and K is a positive integer;
  • the first condition includes:
  • the distribution or position of the target resource units in the K resource blocks on the target domain is the same; and,
  • the K resource blocks correspond to at least two second resource intervals in the target domain
  • the second resource interval is the interval between two adjacent resource blocks in the target domain among the K resource blocks in the target domain, and the interval between the two adjacent resource blocks in the target domain includes at least one of the following: the interval between two adjacent resource blocks in the time domain; the interval between two adjacent resource blocks in the frequency domain;
  • the target domain includes at least one of a time domain and a frequency domain.
  • the second device sends parameter configuration information of the first signal to the first device
  • the first device includes but is not limited to a terminal or a base station
  • the second device includes but is not limited to a base station or a core network device.
  • the second device sends parameter configuration information of the first signal
  • the first signal is a synaesthesia integrated signal or a perception signal
  • the resource pattern of the first signal meets the first feature
  • the first feature is: including the target Resources
  • the target resources include M target resource units in the target domain, and the target resources correspond to at least two first resource intervals in the target domain;
  • the target resources are divided into K resource blocks in the target domain according to a first condition;
  • the first condition includes: the distribution or position of the target resource units in the K resource blocks in the target domain are the same; and the K resource blocks in the target domain correspond to at least two second resource intervals.
  • the resource interval (first resource interval or second resource interval) of some resource blocks or some target resource units in the target domain can be set according to the perception requirements to meet the resolution requirements of the corresponding perception measurement quantity, or other resource blocks or target resource units can be set with a larger resource interval in the target domain, thereby reducing resource overhead on the premise that the first signal can meet the perception requirements.
  • parameter configuration information of the first signal sent by the second device side is the same as the parameter configuration information of the first signal obtained by the first device.
  • the parameter configuration information of the first signal has been described in detail in the method embodiment of the above-mentioned first device side and will not be repeated here.
  • the target resource satisfies at least one of the following:
  • the total span of the target resource in the target domain meets the resolution requirement of the perception measurement amount corresponding to the target domain, wherein the total span of the target resource in the time domain is the total duration corresponding to the target resource in the time domain, and the total span of the target resource in the frequency domain is the total bandwidth corresponding to the target resource in the frequency domain;
  • the M target resource units on the target domain include N target resource unit groups, each target resource unit group includes two adjacent target resource units among the M target resource units on the target domain, and an interval between two adjacent target resource units on the target domain in each of the target resource unit groups meets a maximum unambiguous measurement range requirement of a perception measurement amount corresponding to the target domain;
  • N is greater than or equal to a first preset value
  • the perception measurement quantity corresponding to the target domain includes Doppler, speed, delay or distance.
  • the target domain includes a time domain, and a total span of the target resources in the time domain meets a Doppler or speed resolution requirement.
  • the target domain includes a frequency domain, and a total span of the target resources in the frequency domain meets a resolution requirement of a delay or a distance.
  • the target domain includes a time domain, and two target resource units in each target resource unit group that are adjacent in the time domain meet a maximum unambiguous measurement range requirement of Doppler or velocity.
  • the target domain includes a frequency domain, and two target resource units in each target resource unit group that are adjacent in the frequency domain meet a maximum unambiguous measurement range requirement of a delay or a distance.
  • the parameter configuration information includes at least one of the following:
  • first indication information where the first indication information is used to indicate that the target domain is a time domain and/or a frequency domain
  • the second indication information is used to indicate position information of a target resource unit in each resource block of the target resource
  • the third indication information is used to indicate the starting position of each resource block of the target resource.
  • the second indication information is a bitmap, which includes L bits, each bit corresponding to a resource unit; when the value corresponding to the bit is a first value, the resource unit corresponding to the bit is a target resource unit in the resource block, and when the value corresponding to the bit is a second value, the resource unit corresponding to the bit is not the target resource unit in the resource block, and L is a positive integer.
  • the third indication information includes one of the following:
  • Position sequence information including K starting position information on the target domain, the K starting position information corresponding one-to-one to the K resource blocks;
  • Period information and offset sequence information the period information is used to indicate the repetition period of the resource block in the target domain
  • the offset sequence information includes K offset information in the target domain, the K offset information correspond to the K resource blocks one by one, and each offset information is used to indicate the offset information of the starting position of the resource block in the target domain relative to the position indicated by the period information.
  • the first signal is configured as a single port or multiple ports
  • resources of the first signal of different ports satisfy at least one of the following:
  • the first signals of different ports have the same resource pattern on the target domain, and the generation sequences used by the first signals of different ports are different; or, the first signals of different ports have the same resource pattern on the target domain, and the generation sequences used by the first signals of different ports are the same, and the orthogonal cover codes corresponding to different first signals are different.
  • the method of the embodiment of the present application further includes:
  • the second device obtains capability information sent by the first device, where the capability information is used to indicate whether the first device has the capability to process the first signal that meets the first characteristic.
  • the method of the embodiment of the present application further includes:
  • the second device performs a first operation on the first signal according to parameter configuration information of the first signal, where the first operation includes at least one of sending, receiving, and signal processing.
  • the second device sends parameter configuration information of the first signal
  • the first signal is a synaesthesia integrated signal or a perception signal
  • the resource pattern of the first signal satisfies the first feature
  • the first feature being: including a target resource, the target resource including M target resource units in the target domain, and the target resource corresponding to at least two first resource intervals in the target domain
  • the target resource is divided into K resource blocks in the target domain according to the first condition
  • the first condition includes: the distribution or position of the target resource units in the K resource blocks in the target domain is the same; and the K resource blocks in the target domain correspond to at least two second resource intervals.
  • the resource interval (first resource interval or second resource interval) of some resource blocks or some target resource units in the target domain can be set according to the perception requirements to meet the resolution requirements of the corresponding perception measurement quantity.
  • other resource blocks or target resource units can be set with a larger resource interval in the target domain, thereby reducing resource overhead under the premise that the first signal can meet the perception requirements.
  • the signal transmission method provided in the embodiment of the present application can be executed by a signal transmission device.
  • the signal transmission device provided in the embodiment of the present application is described by taking the signal transmission method executed by the signal transmission device as an example.
  • the embodiment of the present application further provides a signal transmission device 1300, which is applied to a first device and includes:
  • a first receiving module 1301 is used to receive parameter configuration information of a first signal, where the first signal is a synaesthesia integrated signal or a perception signal, and the parameter configuration information is used to indicate a resource pattern of the first signal;
  • the resource pattern of the first signal satisfies a first feature, and the first feature is:
  • the target resource includes M target resource units in a target domain, and the target resource corresponds to at least two first resource intervals in the target domain, the target resource unit is a resource unit allocated to the first signal, M ⁇ 3, M is a positive integer; the first resource interval is an interval between two adjacent target resource units in the target resource in the target domain, and the interval between two adjacent target resource units in the target domain includes at least one of the following: an interval between two adjacent target resource units in the time domain; an interval between two adjacent target resource units in the frequency domain;
  • the target resource is divided into K resource blocks in the target domain according to the first condition, K ⁇ 2, and K is a positive integer;
  • the first condition includes:
  • the distribution or position of the target resource units in the K resource blocks on the target domain is the same; and,
  • the K resource blocks correspond to at least two second resource intervals in the target domain
  • the second resource interval is the interval between two adjacent resource blocks in the target domain among the K resource blocks in the target domain, and the interval between the two adjacent resource blocks in the target domain includes at least one of the following: the interval between two adjacent resource blocks in the time domain; the interval between two adjacent resource blocks in the frequency domain;
  • the target domain includes at least one of a time domain and a frequency domain.
  • the target resource satisfies at least one of the following:
  • the total span of the target resource in the target domain meets the resolution requirement of the perception measurement amount corresponding to the target domain, wherein the total span of the target resource in the time domain is the total duration corresponding to the target resource in the time domain, and the total span of the target resource in the frequency domain is the total bandwidth corresponding to the target resource in the frequency domain;
  • the M target resource units on the target domain include N target resource unit groups, each target resource unit group includes two adjacent target resource units among the M target resource units on the target domain, and an interval between two adjacent target resource units on the target domain in each of the target resource unit groups meets a maximum unambiguous measurement range requirement of a perception measurement amount corresponding to the target domain;
  • N is greater than or equal to a first preset value
  • the perception measurement quantity corresponding to the target domain includes Doppler, speed, delay or distance.
  • the target domain includes a time domain, and a total span of the target resources in the time domain meets a Doppler or speed resolution requirement.
  • the target domain includes a frequency domain, and a total span of the target resources in the frequency domain meets a resolution requirement of a delay or a distance.
  • the target domain includes a time domain, and two target resource units in each target resource unit group that are adjacent in the time domain
  • the resource unit meets the maximum unambiguous measurement range requirement for Doppler or velocity.
  • the target domain includes a frequency domain, and two target resource units in each target resource unit group that are adjacent in the frequency domain meet a maximum unambiguous measurement range requirement of a delay or a distance.
  • the parameter configuration information includes at least one of the following:
  • first indication information where the first indication information is used to indicate that the target domain includes a time domain and/or a frequency domain
  • the second indication information is used to indicate location information of a target resource unit within each resource block of the target resource in the target domain;
  • the third indication information is used to indicate the starting position of each resource block of the target resource in the target domain.
  • the second indication information is a bitmap, which includes L bits, each bit corresponding to a resource unit; when the value corresponding to the bit is a first value, the resource unit corresponding to the bit is a target resource unit in the resource block, and when the value corresponding to the bit is a second value, the resource unit corresponding to the bit is not the target resource unit in the resource block, and L is a positive integer.
  • the third indication information includes one of the following:
  • Position sequence information including K starting position information on the target domain, the K starting position information corresponding one-to-one to the K resource blocks;
  • Period information and offset sequence information the period information is used to indicate the repetition period of the resource block in the target domain
  • the offset sequence information includes K offset information in the target domain, the K offset information correspond to the K resource blocks one by one, and each offset information is used to indicate the offset information of the starting position of the resource block in the target domain relative to the position indicated by the period information.
  • the first signal is configured as a single port or multiple ports
  • resources of the first signal of different ports satisfy at least one of the following:
  • the first signals of different ports have the same resource pattern on the target domain, and the generation sequences used by the first signals of different ports are different; or, the first signals of different ports have the same resource pattern on the target domain, and the generation sequences used by the first signals of different ports are the same, and the orthogonal cover codes corresponding to different first signals are different.
  • the device of the embodiment of the present application further includes:
  • the second sending module is used to send capability information, where the capability information is used to indicate whether the first device has the ability to process the first signal that meets the first characteristic.
  • the device of the embodiment of the present application further includes:
  • the first execution module is used to perform a first operation on the first signal according to parameter configuration information of the first signal, where the first operation includes at least one of sending, receiving and signal processing.
  • a first device receives parameter configuration information of a first signal, the first signal is a synaesthesia integrated signal or a perception signal, and the resource pattern of the first signal satisfies a first feature, the first feature being: including a target resource, the target resource including M target resource units in the target domain, and the target resource corresponding to at least two first resource intervals in the target domain; the target resource is divided into K resource blocks in the target domain according to a first condition; the first condition includes: the distribution or position of the target resource units in the K resource blocks in the target domain is the same; and the K resource blocks in the target domain correspond to at least two second resource intervals.
  • the resource interval (first resource interval or second resource interval) of some resource blocks or some target resource units in the target domain can be set according to the perception requirements as a resource interval that meets the resolution requirements of the corresponding perception measurement quantity, or other resource blocks or target resource units can be set with a larger resource interval in the target domain, thereby reducing resource overhead under the premise that the first signal can meet the perception requirements.
  • the embodiment of the present application further provides a signal transmission device 1400, which is applied to a second device and includes:
  • a first sending module 1401 is used to send parameter configuration information of a first signal, where the first signal is a synaesthesia integrated signal or a perception signal, and the parameter configuration information is used to indicate a resource pattern of the first signal;
  • the resource pattern of the first signal satisfies a first feature, and the first feature is:
  • the target resource includes M target resource units in a target domain, and the target resource corresponds to at least two first resource intervals in the target domain, the target resource unit is a resource unit allocated to the first signal, M ⁇ 3, M is a positive integer; the first resource interval is an interval between two adjacent target resource units in the target resource in the target domain, and the interval between two adjacent target resource units in the target domain includes at least one of the following: an interval between two adjacent target resource units in the time domain; an interval between two adjacent target resource units in the frequency domain;
  • the target resource is divided into K resource blocks in the target domain according to the first condition, K ⁇ 2, and K is a positive integer;
  • the first condition includes:
  • the distribution or position of the target resource units in the K resource blocks on the target domain is the same; and,
  • the K resource blocks correspond to at least two second resource intervals in the target domain
  • the second resource interval is the interval between two adjacent resource blocks in the target domain among the K resource blocks in the target domain, and the interval between the two adjacent resource blocks in the target domain includes at least one of the following: the interval between two adjacent resource blocks in the time domain; the interval between two adjacent resource blocks in the frequency domain;
  • the target domain includes at least one of a time domain and a frequency domain.
  • the target resource satisfies at least one of the following:
  • the total span of the target resource in the target domain meets the resolution requirement of the perception measurement amount corresponding to the target domain, wherein the total span of the target resource in the time domain is the total duration corresponding to the target resource in the time domain, and the total span of the target resource in the frequency domain is the total bandwidth corresponding to the target resource in the frequency domain;
  • the M target resource units on the target domain include N target resource unit groups, each target resource unit group includes two adjacent target resource units among the M target resource units on the target domain, and the interval between the two adjacent target resource units on the target domain in each of the target resource unit groups satisfies the perception measurement corresponding to the target domain.
  • the maximum unambiguous measurement range requirement of the quantity
  • N is greater than or equal to a first preset value
  • the perception measurement quantity corresponding to the target domain includes Doppler, speed, delay or distance.
  • the target domain includes a time domain, and a total span of the target resources in the time domain meets a Doppler or speed resolution requirement.
  • the target domain includes a frequency domain, and a total span of the target resources in the frequency domain meets a resolution requirement of a delay or a distance.
  • the target domain includes a time domain, and two target resource units in each target resource unit group that are adjacent in the time domain meet a maximum unambiguous measurement range requirement of Doppler or velocity.
  • the target domain includes a frequency domain, and two target resource units in each target resource unit group that are adjacent in the frequency domain meet a maximum unambiguous measurement range requirement of a delay or a distance.
  • the parameter configuration information includes at least one of the following:
  • first indication information where the first indication information is used to indicate that the target domain is a time domain and/or a frequency domain
  • the second indication information is used to indicate position information of a target resource unit in each resource block of the target resource
  • the third indication information is used to indicate the starting position of each resource block of the target resource.
  • the second indication information is a bitmap, which includes L bits, each bit corresponding to a resource unit; when the value corresponding to the bit is a first value, the resource unit corresponding to the bit is a target resource unit in the resource block, and when the value corresponding to the bit is a second value, the resource unit corresponding to the bit is not the target resource unit in the resource block, and L is a positive integer.
  • the third indication information includes one of the following:
  • Position sequence information comprising K starting position information on the target domain, the K starting position information corresponding one-to-one to the K resource blocks;
  • Period information and offset sequence information the period information is used to indicate the repetition period of the resource block in the target domain
  • the offset sequence information includes K offset information in the target domain, the K offset information correspond to the K resource blocks one by one, and each offset information is used to indicate the offset information of the starting position of the resource block in the target domain relative to the position indicated by the period information.
  • the first signal is configured as a single port or multiple ports
  • resources of the first signal of different ports satisfy at least one of the following:
  • the first signals of different ports have the same resource pattern on the target domain, and the first signals of different ports use different generation sequences; or the first signals of different ports have the same resource pattern on the target domain, and the first signals of different ports use different generation sequences.
  • the generation sequences used by the first signals are the same, and different first signals correspond to different orthogonal cover codes.
  • the device of the embodiment of the present application further includes:
  • the first acquisition module is used to acquire capability information sent by a first device, where the capability information is used to indicate whether the first device has the capability to process the first signal that meets a first characteristic.
  • the device of the embodiment of the present application further includes:
  • the second execution module is used to perform a first operation on the first signal according to the parameter configuration information of the first signal, where the first operation includes at least one of sending, receiving and signal processing.
  • the second device sends parameter configuration information of the first signal
  • the first signal is a synaesthesia integrated signal or a perception signal
  • the resource pattern of the first signal satisfies the first feature
  • the first feature being: including a target resource, the target resource including M target resource units in the target domain, and the target resource corresponding to at least two first resource intervals in the target domain
  • the target resource is divided into K resource blocks in the target domain according to the first condition
  • the first condition includes: the distribution or position of the target resource units in the K resource blocks in the target domain is the same; and the K resource blocks in the target domain correspond to at least two second resource intervals.
  • the resource interval (first resource interval or second resource interval) of some resource blocks or some target resource units in the target domain can be set according to the perception requirements to meet the resolution requirements of the corresponding perception measurement quantity.
  • other resource blocks or target resource units can be set with a larger resource interval in the target domain, thereby reducing resource overhead under the premise that the first signal can meet the perception requirements.
  • the signal transmission device in the embodiment of the present application can be an electronic device, such as an electronic device with an operating system, or a component in an electronic device, such as an integrated circuit or a chip.
  • the electronic device can be a terminal, or it can be other devices other than a terminal.
  • the terminal can include but is not limited to the types of terminal 11 listed above, and other devices can be servers, network attached storage (NAS), etc., which are not specifically limited in the embodiment of the present application.
  • the signal transmission device provided in the embodiment of the present application can implement the various processes implemented by the method embodiments of Figures 2 to 12 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • an embodiment of the present application further provides a communication device 1500, including a processor 1501 and a memory 1502, wherein the memory 1502 stores a program or instruction that can be run on the processor 1501.
  • the communication device 1500 is a terminal
  • the program or instruction is executed by the processor 1501 to implement the various steps of the method embodiment executed by the first device, and the same technical effect can be achieved.
  • the communication device 1500 is a network side device
  • the program or instruction is executed by the processor 1501 to implement the various steps of the method embodiment executed by the first device or the second device, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application further provides a terminal, including a processor and a communication interface, the communication interface is used to receive parameter configuration information of a first signal, the first signal is a synaesthesia integration signal or a perception signal, and the parameter configuration information is used to indicate a resource pattern of the first signal;
  • the resource pattern of the first signal satisfies a first feature, and the first feature is:
  • the target resource includes M target resource units in the target domain, and the target resource At least two first resource intervals correspond to the target domain, the target resource unit is a resource unit allocated to the first signal, M ⁇ 3, M is a positive integer; the first resource interval is an interval between two adjacent target resource units in the target resource in the target domain, and the interval between two adjacent target resource units in the target domain includes at least one of the following: an interval between two adjacent target resource units in the time domain; an interval between two adjacent target resource units in the frequency domain;
  • the target resource is divided into K resource blocks in the target domain according to the first condition, K ⁇ 2, and K is a positive integer;
  • the first condition includes:
  • the distribution or position of the target resource units in the K resource blocks on the target domain is the same; and,
  • the K resource blocks correspond to at least two second resource intervals in the target domain
  • the second resource interval is the interval between two adjacent resource blocks in the target domain among the K resource blocks in the target domain, and the interval between the two adjacent resource blocks in the target domain includes at least one of the following: the interval between two adjacent resource blocks in the time domain; the interval between two adjacent resource blocks in the frequency domain;
  • the target domain includes at least one of a time domain and a frequency domain.
  • This terminal embodiment corresponds to the above-mentioned terminal side method embodiment, and each implementation process and implementation method of the above-mentioned method embodiment can be applied to this terminal embodiment and can achieve the same technical effect.
  • Figure 16 is a schematic diagram of the hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1600 includes but is not limited to: a radio frequency unit 1601, a network module 1602, an audio output unit 1603, an input unit 1604, a sensor 1605, a display unit 1606, a user input unit 1607, an interface unit 1608, a memory 1609 and at least some of the components of the processor 1610.
  • the terminal 1600 may also include a power source (such as a battery) for supplying power to each component, and the power source may be logically connected to the processor 1610 through a power management system, so as to implement functions such as managing charging, discharging, and power consumption management through the power management system.
  • a power source such as a battery
  • the terminal structure shown in FIG16 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange components differently, which will not be described in detail here.
  • the input unit 1604 may include a graphics processing unit (GPU) 16041 and a microphone 16042, and the GPU 16041 processes the image data of the static picture or video obtained by the image capture device (such as a camera) in the video capture mode or the image capture mode.
  • the display unit 1606 may include a display panel 16061, and the display panel 16061 may be configured in the form of a liquid crystal display, an organic light emitting diode, etc.
  • the user input unit 1607 includes a touch panel 16071 and at least one of other input devices 16072.
  • the touch panel 16071 is also called a touch screen.
  • the touch panel 16071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 16072 may include, but are not limited to, a physical keyboard, function keys (such as a volume control key, a switch key, etc.), a trackball, a mouse, and a joystick, which will not be repeated here.
  • the RF unit 1601 can transmit the data to the processor 1610 for processing; in addition, the RF unit 1601 can send uplink data to the network side device.
  • the RF unit 1601 includes but is not limited to an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • the memory 1609 may be used to store software programs or instructions and various data.
  • the memory 1609 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, Applications or instructions required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
  • the memory 1609 may include a volatile memory or a non-volatile memory, or the memory 1609 may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a double data rate synchronous dynamic random access memory (DDRSDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous link dynamic random access memory (SLDRAM) and a direct memory bus random access memory (DRRAM).
  • the memory 1609 in the embodiment of the present application includes but is not limited to these and any other suitable types of memory.
  • the processor 1610 may include one or more processing units; optionally, the processor 1610 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to an operating system, a user interface, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It is understandable that the modem processor may not be integrated into the processor 1610.
  • the radio frequency unit 1601 is used to receive parameter configuration information of a first signal, where the first signal is a synaesthesia integrated signal or a perception signal, and the parameter configuration information is used to indicate a resource pattern of the first signal;
  • the resource pattern of the first signal satisfies a first feature, and the first feature is:
  • the target resource includes M target resource units in a target domain, and the target resource corresponds to at least two first resource intervals in the target domain, the target resource unit is a resource unit allocated to the first signal, M ⁇ 3, M is a positive integer; the first resource interval is an interval between two adjacent target resource units in the target resource in the target domain, and the interval between two adjacent target resource units in the target domain includes at least one of the following: an interval between two adjacent target resource units in the time domain; an interval between two adjacent target resource units in the frequency domain;
  • the target resource is divided into K resource blocks in the target domain according to the first condition, K ⁇ 2, and K is a positive integer;
  • the first condition includes:
  • the distribution or position of the target resource units in the K resource blocks on the target domain is the same; and,
  • the K resource blocks correspond to at least two second resource intervals in the target domain
  • the second resource interval is the interval between two adjacent resource blocks in the target domain among the K resource blocks in the target domain, and the interval between the two adjacent resource blocks in the target domain includes at least one of the following: the interval between two adjacent resource blocks in the time domain; the interval between two adjacent resource blocks in the frequency domain;
  • the target domain includes at least one of a time domain and a frequency domain.
  • the target resource satisfies at least one of the following:
  • the total span of the target resource in the target domain meets the resolution requirement of the perception measurement quantity corresponding to the target domain, wherein the total span of the target resource in the time domain is the total duration corresponding to the target resource in the time domain, and the target The total span of the resource in the frequency domain is the total bandwidth corresponding to the target resource in the frequency domain;
  • the M target resource units on the target domain include N target resource unit groups, each target resource unit group includes two adjacent target resource units among the M target resource units on the target domain, and an interval between two adjacent target resource units on the target domain in each of the target resource unit groups meets a maximum unambiguous measurement range requirement of a perception measurement amount corresponding to the target domain;
  • N is greater than or equal to a first preset value
  • the perception measurement quantity corresponding to the target domain includes Doppler, speed, delay or distance.
  • the target domain includes a time domain, and a total span of the target resources in the time domain meets a Doppler or speed resolution requirement.
  • the target domain includes a frequency domain, and a total span of the target resources in the frequency domain meets a resolution requirement of a delay or a distance.
  • the target domain includes a time domain, and two target resource units in each target resource unit group that are adjacent in the time domain meet a maximum unambiguous measurement range requirement of Doppler or velocity.
  • the target domain includes a frequency domain, and two target resource units in each target resource unit group that are adjacent in the frequency domain meet a maximum unambiguous measurement range requirement of a delay or a distance.
  • the parameter configuration information includes at least one of the following:
  • first indication information where the first indication information is used to indicate that the target domain includes a time domain and/or a frequency domain
  • the second indication information is used to indicate location information of a target resource unit within each resource block of the target resource in the target domain;
  • the third indication information is used to indicate the starting position of each resource block of the target resource in the target domain.
  • the second indication information is a bitmap, which includes L bits, each bit corresponding to a resource unit; when the value corresponding to the bit is a first value, the resource unit corresponding to the bit is a target resource unit in the resource block, and when the value corresponding to the bit is a second value, the resource unit corresponding to the bit is not the target resource unit in the resource block, and L is a positive integer.
  • the third indication information includes one of the following:
  • Position sequence information including K starting position information on the target domain, the K starting position information corresponding one-to-one to the K resource blocks;
  • Period information and offset sequence information the period information is used to indicate the repetition period of the resource block in the target domain
  • the offset sequence information includes K offset information in the target domain, the K offset information correspond to the K resource blocks one by one, and each offset information is used to indicate the offset information of the starting position of the resource block in the target domain relative to the position indicated by the period information.
  • the first signal is configured as a single port or multiple ports
  • the resources of the first signal of different ports satisfy at least the following: One:
  • the first signals of different ports have the same resource pattern on the target domain, and the generation sequences used by the first signals of different ports are different; or, the first signals of different ports have the same resource pattern on the target domain, and the generation sequences used by the first signals of different ports are the same, and the orthogonal cover codes corresponding to different first signals are different.
  • the radio frequency unit 1601 is further configured to:
  • Send capability information where the capability information is used to indicate whether the first device has the ability to process the first signal that meets the first characteristic.
  • the radio frequency unit 1601 is further configured to:
  • a first operation is performed on the first signal according to parameter configuration information of the first signal, where the first operation includes at least one of sending, receiving, and signal processing.
  • a first device receives parameter configuration information of a first signal, the first signal is a synaesthesia integrated signal or a perception signal, and the resource pattern of the first signal satisfies a first feature, the first feature being: including a target resource, the target resource including M target resource units in the target domain, and the target resource corresponding to at least two first resource intervals in the target domain; the target resource is divided into K resource blocks in the target domain according to a first condition; the first condition includes: the distribution or position of the target resource units in the K resource blocks in the target domain is the same; and the K resource blocks in the target domain correspond to at least two second resource intervals.
  • the resource interval (first resource interval or second resource interval) of some resource blocks or some target resource units in the target domain can be set according to the perception requirements as a resource interval that meets the resolution requirements of the corresponding perception measurement quantity, or other resource blocks or target resource units can be set with a larger resource interval in the target domain, thereby reducing resource overhead under the premise that the first signal can meet the perception requirements.
  • the embodiment of the present application further provides a network side device, including a processor and a communication interface, the communication interface is used to receive or send parameter configuration information of a first signal, the first signal is a synaesthesia integration signal or a perception signal, and the parameter configuration information is used to indicate a resource pattern of the first signal;
  • the resource pattern of the first signal satisfies a first feature, and the first feature is:
  • the target resource includes M target resource units in a target domain, and the target resource corresponds to at least two first resource intervals in the target domain, the target resource unit is a resource unit allocated to the first signal, M ⁇ 3, M is a positive integer; the first resource interval is an interval between two adjacent target resource units in the target resource in the target domain, and the interval between two adjacent target resource units in the target domain includes at least one of the following: an interval between two adjacent target resource units in the time domain; an interval between two adjacent target resource units in the frequency domain;
  • the target resource is divided into K resource blocks in the target domain according to the first condition, K ⁇ 2, and K is a positive integer;
  • the first condition includes:
  • the distribution or position of the target resource units in the K resource blocks on the target domain is the same; and,
  • the K resource blocks correspond to at least two second resource intervals in the target domain
  • the second resource interval is the interval between two adjacent resource blocks in the target domain among the K resource blocks in the target domain, and the interval between the two adjacent resource blocks in the target domain includes at least one of the following: the interval between two adjacent resource blocks in the time domain; the interval between two adjacent resource blocks in the frequency domain;
  • the target domain includes at least one of a time domain and a frequency domain.
  • the network side device embodiment corresponds to the above network side device method embodiment, and each implementation process and implementation method of the above method embodiment can be applied to the network side device embodiment and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1700 includes: an antenna 171, a radio frequency device 172, a baseband device 173, a processor 174 and a memory 175.
  • the antenna 171 is connected to the radio frequency device 172.
  • the radio frequency device 172 receives information through the antenna 171 and sends the received information to the baseband device 173 for processing.
  • the baseband device 173 processes the information to be sent and sends it to the radio frequency device 172.
  • the radio frequency device 172 processes the received information and sends it out through the antenna 171.
  • the method executed by the first device or the second device in the above embodiments may be implemented in the baseband device 173, which includes a baseband processor.
  • the baseband device 173 may include, for example, at least one baseband board, on which a plurality of chips are arranged, as shown in FIG17 , wherein one of the chips is, for example, a baseband processor, which is connected to the memory 175 through a bus interface to call a program in the memory 175 to execute the operation of the first device or the second device shown in the above method embodiment.
  • the network side device may also include a network interface 176, which is, for example, a common public radio interface (CPRI).
  • a network interface 176 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1700 of the embodiment of the present application also includes: instructions or programs stored in the memory 175 and executable on the processor 174.
  • the processor 174 calls the instructions or programs in the memory 175 to execute the methods executed by the modules shown in Figures 13 or 14 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application further provides a network side device.
  • the network side device 1800 includes: a processor 1801, a network interface 1802, and a memory 1803.
  • the network interface 1802 is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1800 of the embodiment of the present application also includes: instructions or programs stored in the memory 1803 and executable on the processor 1801.
  • the processor 1801 calls the instructions or programs in the memory 1803 to execute the methods executed by the modules shown in Figures 13 or 14 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
  • a program or instruction is stored.
  • the various processes of the above-mentioned signal transmission method embodiment are implemented and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
  • the present application also provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run a program or instruction to implement each of the above signal transmission method embodiments.
  • the process is the same and can achieve the same technical effect. To avoid repetition, it will not be described here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • the embodiments of the present application further provide a computer program/program product, which is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the various processes of the above-mentioned signal transmission method embodiment and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a signal transmission system, including: a first device and a second device, wherein the first device can be used to execute the steps of the signal transmission method executed by the first device as described above, and the second device can be used to execute the steps of the signal transmission method executed by the second device as described above.
  • the technical solution of the present application can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, a magnetic disk, or an optical disk), and includes a number of instructions for enabling a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as ROM/RAM, a magnetic disk, or an optical disk
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信号传输方法、装置及通信设备,本申请实施例的方法包括:第一设备接收第一信号的参数配置信息,第一信号的资源图样满足第一特征,第一特征为:包括目标资源,目标资源在目标域上包括M个目标资源单元,目标资源在目标域上对应至少两种第一资源间隔,目标资源单元为分配给第一信号的资源单元;第一资源间隔为目标资源中在目标域上相邻两个目标资源单元的间隔;目标资源在目标域上按照第一条件划分为K个资源分块;第一条件包括:在目标域上K个资源分块内的目标资源单元的分布或位置相同;以及在目标域上K个资源分块对应至少两个第二资源间隔;第二资源间隔是在目标域上K个资源分块中相邻两个资源分块在目标域上的间隔。

Description

信号传输方法、装置及通信设备
相关申请的交叉引用
本申请主张在2022年11月24日在中国提交的中国专利申请No.202211486592.3的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种信号传输方法、装置及通信设备。
背景技术
未来移动通信系统例如超五代(Beyond 5G,B5G)系统或第六代移动通信技术(6th Generation Mobile Networks,6G)系统除了具备通信能力外,还将具备感知能力。感知能力,即具备感知能力的一个或多个设备,能够通过无线信号的发送和接收,来感知目标物体的方位、距离、速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别、成像等。在通感一体化场景中,采用传统的均匀分布的感知信号资源配置存在以下问题:为了满足感知需求(如分辨率或最大不模糊测量范围),需要较大的感知信号的资源开销。
发明内容
本申请实施例提供一种信号传输方法、装置及通信设备,能够解决通感一体化场景中,为了满足感知需求,需要较大的感知信号的资源开销的问题。
第一方面,提供了一种信号传输方法,包括:
第一设备接收第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种第一资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述第一资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔,所述在目标域上相邻两个目标资源单元的间隔包括以下至少一项:在时域上相邻两个目标资源单元的间隔;在频域上相邻两个目标资源单元的间隔;
所述目标资源在目标域上按照第一条件划分为K个资源分块,K≥2,且K为正整数;
其中,所述第一条件包括:
在目标域上K个资源分块内的目标资源单元的分布或位置相同;以及,
在目标域上K个资源分块对应至少两个第二资源间隔;
其中,所述第二资源间隔是所述在目标域上K个资源分块中相邻两个资源分块在目标域上的间隔,所述相邻两个资源分块在目标域上的间隔包括以下至少一项:相邻两个资源分块在时域上的间隔;相邻两个资源分块在频域上的间隔;
其中,所述目标域包括时域和频域中的至少一项。
第二方面,提供了一种信号传输方法,包括:
第二设备发送第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种第一资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述第一资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔,所述在目标域上相邻两个目标资源单元的间隔包括以下至少一项:在时域上相邻两个目标资源单元的间隔;在频域上相邻两个目标资源单元的间隔;
所述目标资源在目标域上按照第一条件划分为K个资源分块,K≥2,且K为正整数;
其中,所述第一条件包括:
在目标域上K个资源分块内的目标资源单元的分布或位置相同;以及,
在目标域上K个资源分块对应至少两个第二资源间隔;
其中,所述第二资源间隔是所述在目标域上K个资源分块中相邻两个资源分块在目标域上的间隔,所述相邻两个资源分块在目标域上的间隔包括以下至少一项:相邻两个资源分块在时域上的间隔;相邻两个资源分块在频域上的间隔;
其中,所述目标域包括时域和频域中的至少一项。
第三方面,提供了一种信号传输装置,应用于第一设备,包括:
第一接收模块,用于接收第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种第一资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述第一资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔,所述在目标域上相邻两个目标资源单元的间隔包括以下至少一项:在时域上相邻两个目标资源单元的间隔;在频域上相邻两个目标资源单元的间隔;
所述目标资源在目标域上按照第一条件划分为K个资源分块,K≥2,且K为正整数;
其中,所述第一条件包括:
在目标域上K个资源分块内的目标资源单元的分布或位置相同;以及,
在目标域上K个资源分块对应至少两个第二资源间隔;
其中,所述第二资源间隔是所述在目标域上K个资源分块中相邻两个资源分块在目标 域上的间隔,所述相邻两个资源分块在目标域上的间隔包括以下至少一项:相邻两个资源分块在时域上的间隔;相邻两个资源分块在频域上的间隔;
其中,所述目标域包括时域和频域中的至少一项。
第四方面,提供了一种信号传输装置,应用于第二设备,包括:
第一发送模块,用于发送第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种第一资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述第一资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔,所述在目标域上相邻两个目标资源单元的间隔包括以下至少一项:在时域上相邻两个目标资源单元的间隔;在频域上相邻两个目标资源单元的间隔;
所述目标资源在目标域上按照第一条件划分为K个资源分块,K≥2,且K为正整数;
其中,所述第一条件包括:
在目标域上K个资源分块内的目标资源单元的分布或位置相同;以及,
在目标域上K个资源分块对应至少两个第二资源间隔;
其中,所述第二资源间隔是所述在目标域上K个资源分块中相邻两个资源分块在目标域上的间隔,所述相邻两个资源分块在目标域上的间隔包括以下至少一项:相邻两个资源分块在时域上的间隔;相邻两个资源分块在频域上的间隔;
其中,所述目标域包括时域和频域中的至少一项。
第五方面,提供了一种终端(第一设备),该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端(第一设备),包括处理器及通信接口,其中,所述通信接口用于接收第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种第一资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述第一资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔,所述在目标域上相邻两个目标资源单元的间隔包括以下至少一项:在时域上相邻两个目标资源单元的间隔;在频域上相邻两个目标资源单元的间隔;
所述目标资源在目标域上按照第一条件划分为K个资源分块,K≥2,且K为正整数;
其中,所述第一条件包括:
在目标域上K个资源分块内的目标资源单元的分布或位置相同;以及,
在目标域上K个资源分块对应至少两个第二资源间隔;
其中,所述第二资源间隔是所述在目标域上K个资源分块中相邻两个资源分块在目标域上的间隔,所述相邻两个资源分块在目标域上的间隔包括以下至少一项:相邻两个资源分块在时域上的间隔;相邻两个资源分块在频域上的间隔;
其中,所述目标域包括时域和频域中的至少一项。
第七方面,提供了一种网络侧设备(第一设备或第二设备),该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第八方面,提供了一种网络侧设备(第一设备或第二设备),包括处理器及通信接口,其中,所述通信接口用于接收或发送第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种第一资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述第一资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔,所述在目标域上相邻两个目标资源单元的间隔包括以下至少一项:在时域上相邻两个目标资源单元的间隔;在频域上相邻两个目标资源单元的间隔;
所述目标资源在目标域上按照第一条件划分为K个资源分块,K≥2,且K为正整数;
其中,所述第一条件包括:
在目标域上K个资源分块内的目标资源单元的分布或位置相同;以及,
在目标域上K个资源分块对应至少两个第二资源间隔;
其中,所述第二资源间隔是所述在目标域上K个资源分块中相邻两个资源分块在目标域上的间隔,所述相邻两个资源分块在目标域上的间隔包括以下至少一项:相邻两个资源分块在时域上的间隔;相邻两个资源分块在频域上的间隔;
其中,所述目标域包括时域和频域中的至少一项。
第九方面,提供了一种信号传输系统,包括:第一设备及第二设备,所述第一设备可用于执行如第一方面所述的方法的步骤,所述第二设备可用于执行如第二方面所述的方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在 存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法。
在本申请实施例中,第一设备接收第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,第一信号的资源图样满足第一特征,所述第一特征为:包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种第一资源间隔;所述目标资源在目标域上按照第一条件划分为K个资源分块;所述第一条件包括:在目标域上K个资源分块内的目标资源单元的分布或位置相同;以及在目标域上K个资源分块对应至少两个第二资源间隔。在通感一体化场景中,可根据感知需求设置其中部分资源分块或部分目标资源单元在目标域上的资源间隔(第一资源间隔或第二资源间隔)为满足对应的感知测量量的分辨率要求的资源间隔,或者,而其他资源分块或目标资源单元在目标域上可设置较大的资源间隔,从而在第一信号能够满足感知需求的前提下降低资源开销。
附图说明
图1表示本申请实施例可应用的一种通信系统的结构图;
图2表示本申请实施例的信号传输方法的流程示意图之一;
图3表示本申请实施例中第一信号的资源示意图之一;
图4表示采用本申请的非周期分块信号和现有的等效的均匀分布信号的资源开销对比示意图;
图5表示本申请实施例中第一信号的资源示意图之二;
图6表示本申请实施例中第一信号的资源示意图之三;
图7表示本申请实施例中第一信号的资源示意图之四;
图8表示本申请实施例中第一信号的资源示意图之五;
图9表示本申请实施例中不同端口的第一信号的资源示意图之一;
图10表示本申请实施例中不同端口的第一信号的资源示意图之二;
图11表示本申请实施例中不同端口的第一信号的资源示意图之三;
图12表示本申请实施例的信号传输方法的流程示意图之二;
图13表示本申请实施例的信号传输装置的模块示意图之一;
图14表示本申请实施例的信号传输装置的模块示意图之二;
图15表示本申请实施例的通信设备的结构框图;
图16表示本申请实施例的终端的结构框图;
图17表示本申请实施例的网络侧设备的结构框图之一;
图18表示本申请实施例的网络侧设备的结构框图之二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Networks,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接 入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
为使本领域技术人员能够更好地理解本申请实施例,先进行如下说明。
一、通信感知一体化或通感一体化。
未来B5G和6G无线通信系统有望提供各种高精度的传感服务,如机器人导航的室内定位、智能家居的Wi-Fi传感和自动驾驶汽车的雷达传感。传感和通信系统通常是单独设计的,并占用不同的频段。然后,由于毫米波和大规模多输入多输出(Multiple Input Multiple Output,MIMO)技术的广泛部署,未来无线通信系统中的通信信号往往在时域和角度域都具有高分辨率,这使得利用通信信号实现高精度传感成为可能。因此,最好是联合设计传感和通信系统,使它们能够共享同一频段和硬件,以提高频率效率并降低硬件成本。这促使了对通信和感知一体化(Integrated Sensing And Communication,ISAC)的研究。ISAC将成为未来无线通信系统的一项关键技术,以支持许多重要的应用场景。例如,在未来的自动驾驶车辆网络中,自动驾驶车辆将从网络中获得大量的信息,包括超高分辨率的地图和接近实时的信息,以进行导航和避免即将到来的交通拥堵。在同样的情况下,自动驾驶车辆中的雷达传感器应该能够提供强大的、高分辨率的障碍物探测功能,分辨率在厘米量级。用于自动驾驶车辆的ISAC技术提供了使用相同硬件和频谱资源实现高数据率通信和高分辨率障碍物探测的可能。ISAC的其他应用包括基于Wi-Fi的室内定位和活动识别、无人驾驶飞机的通信和传感、扩展现实(Extended Reality,XR)、雷达和通信一体化等。每个应用都有不同的要求、限制和监管问题。ISAC已经引起了学术界和工业界巨大的研究兴趣和关注。例如,最近有越来越多的关于ISAC的学术出版物,从收发机架构设计、 ISAC波形设计、联合编码设计、时-频-空信号处理,到实验性能延时、原型设计和现场测试。
JSAC通过硬件设备共用和软件定义功能的方式获得通信和感知双功能的一体化低成本实现,特点主要有:一是架构统一且简化,二是功能可重构可扩展,三是效率提升、成本降低。通信感知一体化的优势主要有三个方面:一是设备成本降低、尺寸减小,二是频谱利用率提升,三是系统性能提升。
学术界通常将JSAC的发展划分为四个阶段:共存、共运行、共设计和共同协作。
共存:通信和感知是两个相互分立的系统,两者会相互干扰,解决干扰的主要方法是:距离隔离、频段隔离、时分工作,MIMO技术、预编码等。
共运行:通信和感知共用硬件平台,利用共有信息提升共同的性能,二者之间的功率分配对系统性能影响较大,主要问题是:低信噪比、相互干扰、低吞吐率。
共设计:通信和感知成为一个完全的联合系统,包括联合信号设计、波形设计、编码设计等,前期有线性调频波形、扩频波形等,后来聚焦到正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)波形、MIMO技术等。
共同协作:多个通信感知一体化节点相互协作实现公共目标。例如,通过通信数据传输共享雷达探测信息,典型场景有驾驶辅助系统、雷达辅助通信等。
目前,根据5G通信系统架构进行技术升级而有望实现的典型通信感知一体化的场景如表1所示。
表1
二、雷达技术。
雷达(Radio Detection and Ranging,Radar),意思是“无线电探测和测距”,即通过发射无线电波并接收目标反射回波的方式发现目标并测定目标距离。随着雷达技术的发展,雷达探测目标不仅是测量目标的距离,还包括测量目标的速度、方位角、俯仰角,以及从以上信息中提取出更多有关目标的信息,包括目标的尺寸和形状等。
雷达技术最初用于军事用途,用来探测飞机、导弹、车辆、舰艇等目标。随着技术的 发展和社会的演进,雷达越来越多用于民用场景,典型应用是气象雷达通过测量云雨等气象目标的回波来测定关于云雨的位置、强度等信息用来进行天气的预报。进一步地,随着电子信息产业、物联网、通信技术等的蓬勃发展,雷达技术开始进入到人们的日常生活应用中,大大提高了工作和生活的便利性、安全性等。例如,汽车雷达通过测量车辆之间、车辆与周边环境物之间、车辆与行人之间等的距离和相对速度对车辆的驾驶提供预警信息,极大地提高了道路交通的安全水平。
在技术层面上,雷达有很多分类方式。按照雷达收发站点之间的位置关系可以分为:单站雷达和双站雷达,如下图所示。对于单站雷达,信号发射机与接收机一体、共用天线;优点是目标回波信号与接收机本振之间天然是相干的、信号处理较为方便;缺点是信号收发不能同时进行,只能采用具有一定占空比的信号波形,从而带来探测的盲区,需要采用复杂的算法来弥补;或者收发信号同时进行,收发之间严格隔离,但是对于大功率的军用雷达来说很难做到。对于双站雷达,信号发射机与接收机位于不同的位置;优点是信号收发能够同时进行,可以采用连续波波形进行探测;缺点是接收机与发射机之间很难实现同频和相干,信号处理较为复杂。
在通感一体化无线感知应用中,雷达技术可以采用单站雷达模式,也可以采用双站雷达模式。
在单站雷达模式下,收发信号共用天线,接收信号与发射信号通过环形器进入不同的射频处理链路;在这种模式下,可以采用连续波信号波形实现无盲区的探测,前提是接收信号与发射信号需要很好的隔离,通常需要100dB左右的隔离度,以消除发射信号泄露对接收信号的淹没。由于单站雷达的接收机具有发射信号的全部信息,从而可以通过匹配滤波(脉冲压缩)的方式进行信号处理,获得较高的信号处理增益。
在双站雷达模式下,不存在收发信号的隔离问题,极大地简化的硬件的复杂度。由于雷达信号处理建立在已知信息的基础上,在5G NR通感一体化应用中,可以利用同步信号(主同步信号(Primary Synchronization Signal,PSS)/辅同步信号(Secondary Synchronization Signal,SSS))、参考信号(解调参考信号(Demodulation Reference Signal,DMRS)/信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)等)等已知信息进行雷达信号处理。但是,由于同步信号、参考信号等的周期性,信号波形的模糊图不再是图钉形,而是钉板形,时延和多普勒的模糊程度会增大、且主瓣的增益相较单站雷达模式降低了许多,降低了距离和速度的测量范围。通过恰当的参数集设计,距离和速度的测量范围能够满足汽车、行人等常见目标的测量需求。此外,双站雷达的测量精度与收发站点相对目标的位置有关,需要选择合适的收发站点对来提高探测性能。
三、传统的均匀分布感知信号。
考察在给定感知需求的条件下,感知信号的资源配置的需求。
感知需求包括对于目标参数的分辨率和/或最大不模糊测量范围的要求。目标参数包括:时延或距离、多普勒或速度、角度。
资源为与目标参数对应的目标域上的资源。目标域和目标域上的资源包括:
1、时域:时间资源,包括:正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号、时隙、子帧、帧等;
2、频域:频率资源,包括:子载波,资源块(Resource Block,RB)等;
3、空域:天线或端口资源。
感知需求对资源配置的需求主要包括两个方面:
1、资源的跨度:在目标域上,一个感知帧的资源从最小资源单元索引到最大资源单元索引之间的跨度,包括:时间长度(时域)、带宽(频域)、孔径(空间维度);
2、资源单元间隔:在目标域上,一个感知帧之内在目标域上相邻的目标资源单元之间的间隔,包括:分配给感知信号的OFDM符号之间的间隔(时域)、分配给感知信号的子载波之间的间隔(频域)、分配给感知信号的天线或端口之间的间隔(空域)。
资源配置对感知的影响包括:
1、资源的跨度决定目标参数的分辨率,包括:时域上的时间跨度决定了多普勒或者速度的测量分辨率、频域上的带宽决定了时延或距离的测量分辨率、空域上的孔径决定了角度的测量分辨率;
2、目标资源单元间隔决定了目标参数的最大不模糊测量范围,包括:时域上分配给感知信号的OFDM符号之间的间隔决定了多普勒或速度的最大不模糊测量范围、频域上分配给感知信号的子载波之间的间隔决定了时延或距离的最大不模糊测量范围、空域上分配给感知信号的天线或端口之间的间隔决定了角度的最大不模糊测量范围。
下面以时域和频域的资源配置为重点讨论感知信号的资源配置与感知需求之间的关系。
1、时延/距离;
通过电磁波进行感知时直接得到的是时延信息,距离是由时延换算得到的,因此这里主要讨论时延与感知信号的资源配置之间的关系。
时延的分辨率由下式给出:
其中,B表示信号带宽。
时延的最大不模糊测量范围由下式给出:
其中,Δf为分配给感知信号的相邻子载波之间的间隔。
2、多普勒/速度
通过电磁波进行感知时直接得到的是多普勒信息,速度是由多普勒换算得到的,因此这里主要讨论多普勒与感知信号的资源配置之间的关系。
多普勒的分辨率由下式给出:
其中,T为一个感知帧的时间长度。
多普勒的最大不模糊测量范围由下式给出:
其中,Δt表示分配给感知信号的相邻OFDM符号之间的间隔。
根据上述分析,当给定感知需求中的时延和多普勒的分辨率和最大不模糊测量范围,即给定Δτ、τmax、Δfd和fd,max之后,需要的感知资源的数量为:
1、子载波的数量
OFDM符号的数量
下面结合一个典型场景来说明感知信号对于感知资源(子载波和OFDM符号)的需求。考虑交通监测的场景:
最大不模糊测距范围为200m;
测距分辨率为0.2m;
测速范围为-180km/h~180km/h(能够检测超速行驶的车辆,包括接近和远离两个方向);
测速分辨率为0.2m/s(能够分辨缓慢行走的行人)。
考虑载波中心频率为30GHz的毫米波频段,对应的感知资源的配置需求满足以下条件:
带宽B≥750MHz;
分配给感知信号的相邻子载波之间的间隔Δf≤1500kHz;
感知帧的时间长度T≥25ms;
分配给感知信号的相邻OFDM符号之间的间隔Δt≤50μs。
综合上述分析,在这里给出的交通监测场景下,需要的感知资源的数量为:
子载波的数量Nscs≥500;
OFDM符号的数量Nsymbol≥500。
可以看出,为了满足上述交通监测场景的感知需求,时域和频域资源的开销较大。进一步考察上述时频域资源开销在整个时频域的占比。在30GHz中心频率的情况下,考虑子载波间隔为120kHz,则OFDM符号的时间长度为8.33μs。为了满足上述的资源配置要求,需要每12个子载波中有1个子载波分配给所述的感知信号、每6个OFDM符号中有1个OFDM符号分配给所述的感知信号。在多端口感知的场景下,感知资源的开销占比则会进一步增大。
在通感一体化场景中,采用传统的均匀分布的感知信号资源配置存在以下三方面的问题:
第一,为了满足感知需求(分辨率和最大不模糊测量范围),需要较大的感知信号的资源开销;
第二,在通信系统中,由于存在各种通信参考信号(如:信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)、解调参考信号(Demodulation Reference Signal,DMRS)、相位跟踪参考信号(Phase Tracking Reference Signals,PTRS)等)占据了大量的时频域网格,在很多情况下无法在时频域找到连续大跨度(大带宽、大时宽)的均匀分布的时频域资源网格来满足感知需求;
第三,如何结合现有的各种通信参考信号进行感知,以降低感知信号的时频域资源的开销。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的信号传输方法进行详细地说明。
如图2所示,本申请实施例提供了一种信号传输方法,包括:
步骤201:第一设备接收第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种第一资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述第一资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔,所述在目标域上相邻两个目标资源单元的间隔包括以下至少一项:在时域上相邻两个目标资源单元的间隔;在频域上相邻两个目标资源单元的间隔;
所述目标资源在目标域上按照第一条件划分为K个资源分块,K≥2,且K为正整数;
其中,所述第一条件包括:
条件1:在目标域上K个资源分块内的目标资源单元的分布或位置相同;以及,
条件2:在目标域上K个资源分块对应至少两个第二资源间隔;
其中,所述第二资源间隔是所述在目标域上K个资源分块中相邻两个资源分块在目标域上的间隔,所述相邻两个资源分块在目标域上的间隔包括以下至少一项:相邻两个资源分块在时域上的间隔;相邻两个资源分块在频域上的间隔;
上述资源分块在目标域上可以重叠也可以不重叠。
其中,所述目标域包括时域和频域中的至少一项。
本步骤中,第一设备接收第二设备发送的第一信号的参数配置信息,该第一设备包括但不限于终端或基站,该第二设备包括但不限于基站或核心网设备。
本申请实施例中,在目标域上分配给所述第一信号的资源为目标资源。在目标域上资源的分配单元为资源单元。目标资源中包含的资源单元为目标资源单元,即为分配给第一 信号的资源单元。资源单元包括时域资源单元和频域资源单元中的至少一项,该时域资源单元包括但不限于OFDM符号,该频域资源单元包括但不限于子载波。即上述目标资源单元可以是目标OFDM符号和目标子载波中的至少一项。
本申请实施例中,第一设备接收第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,第一信号的资源图样满足第一特征,所述第一特征为:包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种第一资源间隔;所述目标资源在目标域上按照第一条件划分为K个资源分块;所述第一条件包括:在目标域上K个资源分块内的目标资源单元的分布或位置相同;以及在目标域上K个资源分块对应至少两个第二资源间隔。在通感一体化场景中,可根据感知需求设置其中部分资源分块或部分目标资源单元在目标域上的资源间隔(第一资源间隔或第二资源间隔)为满足对应的感知测量量的分辨率要求的资源间隔,或者,而其他资源分块或目标资源单元在目标域上可设置较大的资源间隔,从而在第一信号能够满足感知需求的前提下降低资源开销。
可选地,所述目标资源满足以下至少一项:
第一项:所述目标资源在目标域上的总跨度满足所述目标域对应的感知测量量的分辨率要求,其中,所述目标资源在时域上的总跨度为所述目标资源在时域上对应的总时长,所述目标资源在频域上的总跨度为所述目标资源在频域上对应的总带宽;
第二项:所述在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括所述在目标域上的M个目标资源单元中相邻的两个目标资源单元,且每个所述目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求;
其中,N大于或等于第一预设数值,所述目标域对应的感知测量量包括多普勒、速度、时延或距离。
这里,目标资源满足上述第一项和第二项,能够保证目标资源满足感知的分辨率和最大不模糊测量范围。
可选地,对于上述第一项,在本申请的一实现方式中,所述目标域包括时域,所述目标资源在时域上的总跨度满足多普勒或速度的分辨率要求。
该实现方式中,目标资源在时域上的总跨度是目标资源在时域(即,时域资源)的总时长T(通常被称为:感知帧长度,或者,相干处理时间,表示进行一次相干处理、获取感知测量量或感知结果的第一信号在时域上的长度),满足:T≥1/Δfd或T≥c/2fcΔv,其中Δfd表示感知需求中的多普勒分辨率、c表示光速、fc表示载波中心频率、Δv表示感知需求中的速度分辨率。
在本申请的一实现方式中,所述目标域包括频域,所述目标资源在频域上的总跨度满足时延或距离的分辨率要求。
该实现方式中,目标资源在频域上的总跨度是目标资源在频域(即,频域资源)的总 带宽B,该总带宽B满足:B≥1/Δτ或B≥c/2ΔR,其中Δτ表示感知需求中的时延分辨率、c表示光速、ΔR表示感知需求中的距离分辨率。
可选地,对于上述第二项,在本申请的一实现方式中,所述目标域包括时域,每个所述目标资源单元组中在时域上相邻的两个目标资源单元满足多普勒或速度的最大不模糊测量范围要求。
在本申请的一实施例中,假设任意一个目标资源单元组中在时域上相邻的两个目标资源单元的间隔为ΔT,则应满足:ΔT≤1/fd,max或ΔT≤c/2fcvmax,其中fd,max表示多普勒的最大不模糊测量值、c表示光速、fc表示载波中心频率、vmax表示速度的最大不模糊测量值。
所述多普勒最大不模糊测量值或速度最大不模糊测量值根据感知需求或感知先验信息确定,包括以下之一:
当已知多普勒或速度的方向时,上述的多普勒或速度的最大不模糊测量值与感知先验信息或感知需求中目标的最大多普勒或最大速度之间的关系为:
当未知多普勒或速度的方向时,上述的多普勒或速度的最大不模糊测量值与感知先验信息或感知需求中目标的最大多普勒或最大速度之间的关系为:
需要说明的是,ΔT可以有一种或多种取值,所述N个目标资源单元组对应的目标OFDM符号的数量应不少于预设数量。例如,所述M个目标资源单元(目标OFDM符号)中相邻的目标资源单元之间的时间间隔的数值的取值从小到大排列包括{ΔT1,ΔT2,ΔT3,…ΔTn},对应的目标OFDM的数量分别为{N1,N2,N3,…Nn},则应满足不小于所述的预设数值,其中t为{ΔT1,ΔT2,ΔT3,…ΔTn}序列中满足ΔT≤1/fd,max或ΔT≤c/2fcvmax条件的最大值的下标,即有:ΔTt满足ΔT≤1/fd,max或ΔT≤c/2fcvmax条件而ΔTt+1则不满足。
在本申请的一实现方式中,所述目标域包括频域,每个所述目标资源单元组中在频域上相邻的两个目标资源单元满足时延或距离的最大不模糊测量范围要求。
假设任意一个目标资源单元组中在频域上相邻的两个目标资源单元的间隔为Δf,满足:Δf≤1/τmax或Δf≤c/2Rmax,其中τmax表示时延的最大不模糊测量值、c表示光速、Rmax表示感知需求中距离的最大不模糊测量值。
类似的,Δf可以有一种或多种取值,所述N个目标资源单元组对应的目标子载波的数量不少于预设数量。
可选地,所述参数配置信息包括以下至少一项:
第一指示信息,所述第一指示信息用于指示所述目标域包括时域和/或频域,例如,用1个比特指示,比特0表示时域、比特1表示频域;
目标资源在目标域上的起始位置;
第二指示信息,所述第二指示信息用于指示目标资源在目标域上的各个资源分块之内目标资源单元的位置信息;
第三指示信息,所述第三指示信息用于指示目标资源在目标域上的各个资源分块的起始位置。
可选地,所述第二指示信息为位图,所述位图包括L个比特,每个所述比特对应一个资源单元;在所述比特对应的值为第一值的情况下,所述比特对应的资源单元为资源分块中的目标资源单元,在所述比特对应的值为第二值的情况下,所述比特对应的资源单元不是资源分块中的目标资源单元,L为正整数。例如,以比特(bit)为‘1’表示对应的资源单元是资源分块中的目标资源单元、bit为‘0’表示对应的资源单元不是资源分块中的目标资源单元。
可选地,所述第三指示信息包括以下其中一项:
A1:位置序列信息,所述位置序列信息包括在目标域上的K个起始位置信息,所述K个起始位置信息与K个资源分块一一对应;可选地,该起始位置信息可以是各个资源分块的起始位置相对于目标资源的起始位置偏移信息。
A2:周期信息和偏移序列信息,所述周期信息用于指示资源分块在目标域上的重复周期,所述偏移序列信息包括在目标域上的K个偏移信息,所述K个偏移信息与K个资源分块一一对应,每个所述偏移信息用于指示在目标域上的资源分块的起始位置相对于所述周期信息指示的位置的偏移信息。

Δm-1=Pm-1-(m-1)P;
则所述的周期+偏移序列信息的指示方式的参数为:
周期P;
偏移序列{Δ012,…,Δm-1}。
上述A2项对应的指示方式与A1项对应的指示方式相比虽然在参数中增加了一个周期P的数值,但是实际上在参数传输中占用的比特数是减少了的。原因为:在A1项对应的指示方式中,其中的数值在整个目标资源的跨度内分布、其数值较大需要的比特数较多;而采用A2项对应的指示方式时,其中的周期和偏移的数值均较小、需要的比特数较少。
需要说明的是,这里给出的配置参数集只是一种可能的配置参数集;在具体实施中也可能采用其他配置参数集实现满足上述特征的信号,也属于本申请的保护范畴。
可选地,上述参数配置的颗粒度可以是以下至少之一:
目标域为时域,颗粒度可以是:预设时间长度(如:1ms)、OFDM符号时长、时隙、 子帧、半帧、帧;
目标域为频域:颗粒度可以是:预设频率宽度(如:30kHz)、子载波、RB、资源块组(Resource Block Group,RBG)。
本申请实施例中第一信号的参数配置信息也可描述为非周期分块信号配置信息,即对第一信号为非周期分块信号。
在本申请的一实施例中,分配给所述第一信号的目标资源单元的总跨度是51(图3中第一个目标资源单元至最后一个未分配给第一信号的资源单元之间一共51个);其中分配给所述第一信号的目标资源单元一共15个,并且是非均匀分布、位置为{0,2,7,10,14,16,21,24,26,31,34,40,42,47,50},这里目标资源单元的位置是相对于目标资源的起始位置的。
第一信号的参数配置具有如下特征:
特征1:目标资源单元在目标域上非均匀分布。图3示意的情况中目标资源单元间隔(即第一资源间隔)的数值有2/3/4/5/6个资源单元共五种情况;
特征2:目标资源的总跨度L满足所述目标域对应的感知测量量的分辨率要求。
特征3:存在不少预设数量的目标资源单元组,目标资源单元组中的两个目标资源单元之间的间隔满足所述目标域对应的感知测量量的最大不模糊测量范围要求。
特征4:在目标域上,分配给所述第一信号的目标资源能够被划分成若干个资源分块,见图3的中间部分的“资源分块0”、“资源分块1”、“资源分块2”和“资源分块3”所示,并且满足如下条件:
特征4a:每个资源分块内分配给所述第一信号的目标资源单元的分布或者位置相同。图3所述的情况中,每个资源分块的目标资源(包括:分配给所述第一信号和未分配给所述第一信号)内的目标资源单元的数量是13,有4个目标资源单元是分配给所述第一信号的、其位置为{0,2,7,10},这里的位置是相对于各个资源分块的起始位置。
特征4b:资源分分块与资源分分块之间非均匀分布,即,资源分分块与资源分分块之间的间隔的数值至少存在2中。图3中所示的情况,“资源分块0”与“资源分块1”之间的间隔是14个目标资源单元、“资源分块1”与“资源分块2”之间的间隔是10个目标资源单元、“资源分块2”与“资源分块3”之间的间隔是16个目标资源单元。
同时需要注意的是,图3中资源分块1与资源分块2之间有重叠的目标资源单元。
图3中所示的示例的第一信号的参数配置信息包括以下至少一项:
第一指示信息;
目标资源的起始位置;
各个资源分块中分配给所述第一信号的目标资源单元的位置指示(即第二指示信息),这里是{0,2,7,10};
各个资源分块的起始位置的位置指示(即第三指示信息):
该第三指示信息可以表示为{P0,P1,P2,P3}={0,14,24,40};
或者,该第三指示信息包括:
周期P=13;
偏移序列{Δ0123}={0,1,-2,1}。
图4为采用本申请的非周期分块信号与在分辨率和最大不模糊测量范围性能方面等效的现有的均匀分布信号的资源开销对比示意图。具体的,图4中的非周期分块信号可参考图3中的非周期分块信号。等效的均匀分布信号的配置具有如下特征:在目标域(时域或频域)上的总跨度为L,满足所述目标域对应的感知测量量的分辨率要求;目标资源单元间隔l=2,满足所述目标域对应的感知测量量的最大不模糊测量量范围。
通过图4可以看出,本申请的非周期分块信号所占用的目标资源单元数显著小于等效的均匀分布信号所占用的目标资源单元数,因此,本申请实施例的方案,能够在保持感知测量量的最大不模糊测量范围和分辨率性能不变的前提下,大大减少第一信号对时域和/或频域资源的占用,能够达到解决开销的作用。
在本申请的一实施例中,在时域采用本申请提出的非周期分块信号配置方法进行第一信号的配置;而在频域根据其他配置方法进行配置,例如在频域采用传统的均匀分布的第一信号的配置。
在此种情况下,本申请所述的第一信号在时域的配置参数包括以下至少一项:
第一指示信息,第一指示信息指示目标域为时域,例如用1个比特表示,该比特为‘0’表示时域;
在时域上分配给所述第一信号的目标资源的起始位置;
第二指示信息:在时域上目标资源的各个资源分块中分配给所述第一信号的目标资源单元的位置指示;
第三指示信息,该第三指示信息为{P0,P1,P2,P3};或者第三指示信息为:周期P;偏移序列{Δ0123}。
第一信号的配置除包括上述在时域上的配置以外,还需要包括在频域上的配置。在本实施例中,在频域上的配置采用传统的均匀分布的配置,包括以下至少一项:
目标域为频域的指示,例如用1个比特指示,该比特为‘1’表示频域;
在频域上目标资源的总跨度;
在频域上目标资源的目标子载波间隔;
在频域上目标资源的目标子载波的数量;
在频域上目标资源的目标子载波密度;
在频域上目标资源的起始位置。
本实施例的一个示意图如图5所示,图5中在时间维度的一格表示时域的目标资源单元(例如,OFDM符号)、在频率维度的一格表示频域的目标资源单元(例如,子载波)。应该认识到该示意图仅用于方便对于本实施例的技术方案的理解,并不代表本实施例的信号配置局限于图中所示。
在图5中,在时域采用本申请所述的非周期分块信号的配置。目标资源在时域的分布同图3所示。另一方面,在频域上采用传统的均匀分布信号的配置,在频域目标资源单元间隔为2个子载波。在图5的示例中,在时域上目标OFDM符号间隔的平均值约为3.4个OFDM符号,大于多普勒或速度的分辨率要求的目标OFDM符号间隔(2个OFDM符号),降低了第一信号的资源开销。
在本申请的一实施例中,在频域采用本申请提出的非周期分块信号配置方法进行第一信号的配置;而在时域根据其他配置方法进行配置,例如在时域采用传统的均匀分布的第一信号的配置。
在此种情况下,本发明所述的第一信号的配置参数包括以下至少一项:
第一指示信息,所述第一指示信息指示目标域为频域,例如用1个比特表示,该比特为‘1’表示频域;
第二指示信息:在频域上分配给所述第一信号的目标资源的起始位置;
在频域上目标资源的各个分块中分配给所述第一信号的目标资源单元的位置指示;
第三指示信息,该第三指示信息为:{P0,P1,P2,P3},或者,该第三指示信息为:周期P;偏移序列{Δ0123}。
第一信号的配置除包括上述在频域上的配置以外,还需要包括在时域上的配置。在本实施例中,在时域上的配置采用传统的均匀分布的配置,包括以下至少一项:
目标域为时域的指示,例如用1个比特指示,该比特为‘0’表示时域;
在时域上目标资源的总跨度;
在时域上目标资源的目标OFDM符号间隔;
在时域上目标资源的目标OFDM符号的数量;
在时域上目标资源的目标OFDM符号密度;
在时域上目标资源的的起始位置。
本实施例的一个示意图如图6所示,图6中在时间维度的一格表示时域的目标资源单元(例如,OFDM符号)、在频率维度的一格表示频域的目标资源单元(例如,子载波);。应该认识到该示意图仅用于方便对于本实施例的技术方案的理解,并不代表本实施例的信号配置局限于图中所示。
在示意图6中,在频域采用本申请所述的非周期分块信号的配置。目标资源在频域的分布如图7所示。另一方面,在时域上采用传统的均匀分布信号的配置,在时域目标资源单元间隔为3个OFDM符号。在图6的示例中,在频域上目标子载波间隔的平均值约为3个子载波间隔,大于时延或距离的分辨率要求的目标子载波间隔(2个子载波),降低了第一信号的资源开销。
在本申请的一实施例中,同时在时域和频域采用本发明提出的非周期分块信号配置方法进行第一信号的配置。
在此种情况下,本申请所述的第一信号的配置参数包括:
时域配置参数;
频域配置参数;
其中,时域配置参数包括以下至少一项:
第一指示信息,所示第一指示信息指示目标域为时域示,例如用1个比特表示,该比特为‘0’表示时域;
在时域上分配给所述第一信号的目标资源的起始位置;
在时域上目标资源的各个分块中分配给所述第一信号的目标资源单元的位置指示(第二指示信息);
在时域上目标资源的各个分块的起始位置的位置指示(第三指示信息),该第三指示信息为:{P0,P1,P2,P3},或者为周期P;偏移序列{Δ0123}。
其中,频域配置参数,包括以下至少一项:
第一指示信息,该第一指示信息指示目标域为频域,例如用1个比特表示,该比特为‘1’表示频域;
在频域上分配给所述第一信号的目标资源的起始位置;
在频域上目标资源的各个分块中分配给所述第一信号的目标资源单元的位置指示(即第二指示信息);
在频域上目标资源的各个分块的起始位置的位置指示(第三指示信息),该第三指示信息为:{P0,P1,P2,P3},或者为周期P;偏移序列{Δ0123};
本实施例的一个示意图如图8所示,图8中在时间维度的一格表示时域的目标资源单元(例如,OFDM符号)、在频率维度的一格表示频域的目标资源单元(例如,子载波)。应该认识到该示意图仅用于方便对于本实施例的技术方案的理解,并不代表本实施例的信号配置局限于图中所示。
在示意图8中,在时域和频域采用本申请所述的非周期分块信号的配置。在时域上目标资源单元的分布见图3所示、在频域上的目标资源单元的分布如图7所示。在图8的示例中,在时域上目标OFDM符号间隔的平均值约为3.4个OFDM符号,大于多普勒或速度的分辨率要求的目标OFDM符号间隔(2个OFDM符号);在频域上目标子载波间隔的平均值约为3个子载波间隔,大于时延或距离的分辨率要求的目标子载波间隔(2个子载波),降低了第一信号的资源开销。
可选地,本申请实施例中,所述第一信号被配置为单端口或多端口;
在所述第一信号被配置为多端口的情况下,不同端口的第一信号的资源满足以下至少一项:
频分复用;
时分复用;
不同端口的第一信号在目标域上的资源图样相同,且不同端口的第一信号采用的生成 序列不同;或者,不同端口的第一信号在目标域上的资源图样相同,且不同端口的第一信号采用的生成序列相同,且不同的第一信号对应的正交覆盖码不同。
本申请实施例中,第一信号可以被配置为多端口,不同端口的第一信号的图样关系可以包括以下情况:
情况1:不同端口的第一信号采用频分复用,即通过配置不同频域偏移量区分不同端口的第一信号,例如图9所示,2端口频分复用,端口1对应的第一信号频域偏移量为0个子载波,端口2对应的第一信号频域偏移量为1个子载波,端口1和端口2在频域上的资源总跨度、资源分布都相同,即具有相同的感知性能;
情况2:不同端口的第一信号采用时分复用,即通过配置不同时域偏移量区分不同端口的第一信号,例如图10所示,2端口时分复用,端口1对应的第一信号时域偏移量为0个OFDM符号,端口2对应的第一信号时域偏移量为1个OFDM符号,端口1和端口2在时域上的资源总跨度、时域资源分布相同,即具有相同的感知性能;
情况3:不同端口的第一信号采用频分复用和时分复用,即通过配置不同频域偏移量和时域偏移量区分不同端口的第一信号,例如图11所示,4端口频分复用和时分复用(FD2-TD2):端口1对应的第一信号频域偏移量为0个子载波、时域偏移量为0个OFDM符号,端口2对应的第一信号频域偏移量为1个子载波、时域偏移量为0个OFDM符号,端口3对应的第一信号频域偏移量为0个子载波、时域偏移量为1个OFDM符号,端口4对应的第一信号频域偏移量为1个子载波,时域偏移量为1个OFDM符号,端口1、端口2、端口3和端口4在时域和频域上的资源总跨度、资源分布都相同,即具有相同的感知性能;
情况4:不同端口的第一信号在目标域上的图样相同,即具有相同的时域或频域配置参数,但所采用的第一信号的生成序列不同,即第一信号序列的生成参数与端口序号相关;
情况5:不同端口的第一信号在目标域上的图样相同,即具有相同的时域或频域配置参数,且采用的第一信号的生成序列相同,但在映射到时域或频域资源时通过不同的正交覆盖码(Orthogonal Covering Code,OCC)区分,例如2端口第一信号映射采用频域正交覆盖码(Frequency domain orthogonal covering code,FD-OCC)时,端口1的第一信号序列为c(m),可直接映射到某指定时间单元(例如OFDM符号)对应的频率单元(例如RE)上,端口2的第一信号序列可为c(m)*occ(m),occ(m)为FD-OCC序列,可表示为(1,-1,1,-1…,1,-1,1,-1),之后映射到与端口1相同的频率单元。
可选地,本申请实施例的方法,还包括:
所述第一设备发送能力信息,所述能力信息用于指示所述第一设备是否具备对满足第一特征的所述第一信号进行处理的能力。
可选地,所述能力信息为用于指示所述第一设备是否具备对非均匀信号序列进行谱分析运算的能力。
本申请实施例中,采用上述分块均匀信号需要第一信号的接收端能够对非均匀信号序 列进行谱分析运算,因此这里所述的能力信息除包括常规的感知能力信息之外,还需要包括对非均匀信号序列的谱分析运算能力。典型的对非均匀信号序列进行谱分析的算法包括非均匀快速傅里叶变换(Non-Uniform Fast Fourier Transform,NUFFT)、多重信号分类(MUltiple SIgnal Classification,MUSIC)等。
如果第一设备不具备对非均匀信号序列进行谱分析的能力,则不能采用本申请所述的分块均匀信号;或者,第一设备将获得的对应第一信号的数据发送至感知功能网元(例如,基站或核心网设备)由感知功能网元执行非均匀信号序列的谱分析运算,此时不要求第一设备具备对非均匀信号序列的谱分析运算能力。
可选地,本申请实施例的方法还包括:
所述第一设备根据所述第一信号的参数配置信息,对所述第一信号执行第一操作,所述第一操作包括发送、接收和信号处理中的至少一项。
本申请实施例的方法,能够在满足感知的分辨率性能和最大不模糊测量范围性能的前提下,大大降低感知信号的资源开销,同时,本申请实施例的方法能够方便地结合现有参考信号来实现感知信号的配置,进一步降低了资源开销。
如图12所示,本申请实施例还提供了一种信号传输方法,包括:
步骤1201:第二设备发送第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种第一资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述第一资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔,所述在目标域上相邻两个目标资源单元的间隔包括以下至少一项:在时域上相邻两个目标资源单元的间隔;在频域上相邻两个目标资源单元的间隔;
所述目标资源在目标域上按照第一条件划分为K个资源分块,K≥2,且K为正整数;
其中,所述第一条件包括:
在目标域上K个资源分块内的目标资源单元的分布或位置相同;以及,
在目标域上K个资源分块对应至少两个第二资源间隔;
其中,所述第二资源间隔是所述在目标域上K个资源分块中相邻两个资源分块在目标域上的间隔,所述相邻两个资源分块在目标域上的间隔包括以下至少一项:相邻两个资源分块在时域上的间隔;相邻两个资源分块在频域上的间隔;
其中,所述目标域包括时域和频域中的至少一项。
本步骤中,第二设备向第一设备发送第一信号的参数配置信息,该第一设备包括但不限于终端或基站,该第二设备包括但不限于基站或核心网设备。
本申请实施例中,第二设备发送第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,第一信号的资源图样满足第一特征,所述第一特征为:包括目标 资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种第一资源间隔;所述目标资源在目标域上按照第一条件划分为K个资源分块;所述第一条件包括:在目标域上K个资源分块内的目标资源单元的分布或位置相同;以及在目标域上K个资源分块对应至少两个第二资源间隔。在通感一体化场景中,可根据感知需求设置其中部分资源分块或部分目标资源单元在目标域上的资源间隔(第一资源间隔或第二资源间隔)为满足对应的感知测量量的分辨率要求的资源间隔,或者,而其他资源分块或目标资源单元在目标域上可设置较大的资源间隔,从而在第一信号能够满足感知需求的前提下降低资源开销。
需要说明的是,第二设备侧发送的第一信号的参数配置信息与第一设备获取的第一信号的参数配置信息相同,该第一信号的参数配置信息已在上述第一设备侧的方法实施例中进行详细描述,此处不再赘述。
可选地,所述目标资源满足以下至少一项:
所述目标资源在目标域上的总跨度满足所述目标域对应的感知测量量的分辨率要求,其中,所述目标资源在时域上的总跨度为所述目标资源在时域上对应的总时长,所述目标资源在频域上的总跨度为所述目标资源在频域上对应的总带宽;
所述在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括所述在目标域上的M个目标资源单元中相邻的两个目标资源单元,且每个所述目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求;
其中,N大于或等于第一预设数值,所述目标域对应的感知测量量包括多普勒、速度、时延或距离。
可选地,所述目标域包括时域,所述目标资源在时域上的总跨度满足多普勒或速度的分辨率要求。
可选地,所述目标域包括频域,所述目标资源在频域上的总跨度满足时延或距离的分辨率要求。
可选地,所述目标域包括时域,每个所述目标资源单元组中在时域上相邻的两个目标资源单元满足多普勒或速度的最大不模糊测量范围要求。
可选地,所述目标域包括频域,每个所述目标资源单元组中在频域上相邻的两个目标资源单元满足时延或距离的最大不模糊测量范围要求。
可选地,所述参数配置信息包括以下至少一项:
第一指示信息,所述第一指示信息用于指示所述目标域为时域和/或频域;
目标资源的起始位置;
第二指示信息,所述第二指示信息用于指示目标资源的各个资源分块中目标资源单元的位置信息;
第三指示信息,所述第三指示信息用于指示目标资源的各个资源分块的起始位置。
可选地,所述第二指示信息为位图,所述位图包括L个比特,每个所述比特对应一个资源单元;在所述比特对应的值为第一值的情况下,所述比特对应的资源单元为资源分块中的目标资源单元,在所述比特对应的值为第二值的情况下,所述比特对应的资源单元不是资源分块中的目标资源单元,L为正整数。
可选地,所述第三指示信息包括以下其中一项:
位置序列信息,所述位置序列信息包括在目标域上的K个起始位置信息,所述K个起始位置信息与K个资源分块一一对应;
周期信息和偏移序列信息,所述周期信息用于指示资源分块在目标域上的重复周期,所述偏移序列信息包括在目标域上的K个偏移信息,所述K个偏移信息与K个资源分块一一对应,每个所述偏移信息用于指示在目标域上的资源分块的起始位置相对于所述周期信息所指示的位置的偏移信息。
可选地,所述第一信号被配置为单端口或多端口;
在所述第一信号被配置为多端口的情况下,不同端口的第一信号的资源满足以下至少一项:
频分复用;
时分复用;
不同端口的第一信号在目标域上的资源图样相同,且不同端口的第一信号采用的生成序列不同;或者,不同端口的第一信号在目标域上的资源图样相同,且不同端口的第一信号采用的生成序列相同,且不同的第一信号对应的正交覆盖码不同。
可选地,本申请实施例的方法,还包括:
所述第二设备获取第一设备发送的能力信息,所述能力信息用于指示所述第一设备是否具备对满足第一特征的所述第一信号进行处理的能力。
可选地,本申请实施例的方法,还包括:
所述第二设备根据所述第一信号的参数配置信息,对所述第一信号执行第一操作,所述第一操作包括发送、接收和信号处理中的至少一项。
本申请实施例中,第二设备发送第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,第一信号的资源图样满足第一特征,所述第一特征为:包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种第一资源间隔;所述目标资源在目标域上按照第一条件划分为K个资源分块;所述第一条件包括:在目标域上K个资源分块内的目标资源单元的分布或位置相同;以及在目标域上K个资源分块对应至少两个第二资源间隔。在通感一体化场景中,可根据感知需求设置其中部分资源分块或部分目标资源单元在目标域上的资源间隔(第一资源间隔或第二资源间隔)为满足对应的感知测量量的分辨率要求的资源间隔,或者,而其他资源分块或目标资源单元在目标域上可设置较大的资源间隔,从而在第一信号能够满足感知需求的前提下降低资源开销。
本申请实施例提供的信号传输方法,执行主体可以为信号传输装置。本申请实施例中以信号传输装置执行信号传输方法为例,说明本申请实施例提供的信号传输装置。
如图13所示,本申请实施例还提供了一种信号传输装置1300,应用于第一设备,包括:
第一接收模块1301,用于接收第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种第一资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述第一资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔,所述在目标域上相邻两个目标资源单元的间隔包括以下至少一项:在时域上相邻两个目标资源单元的间隔;在频域上相邻两个目标资源单元的间隔;
所述目标资源在目标域上按照第一条件划分为K个资源分块,K≥2,且K为正整数;
其中,所述第一条件包括:
在目标域上K个资源分块内的目标资源单元的分布或位置相同;以及,
在目标域上K个资源分块对应至少两个第二资源间隔;
其中,所述第二资源间隔是所述在目标域上K个资源分块中相邻两个资源分块在目标域上的间隔,所述相邻两个资源分块在目标域上的间隔包括以下至少一项:相邻两个资源分块在时域上的间隔;相邻两个资源分块在频域上的间隔;
其中,所述目标域包括时域和频域中的至少一项。
可选地,所述目标资源满足以下至少一项:
所述目标资源在目标域上的总跨度满足所述目标域对应的感知测量量的分辨率要求,其中,所述目标资源在时域上的总跨度为所述目标资源在时域上对应的总时长,所述目标资源在频域上的总跨度为所述目标资源在频域上对应的总带宽;
所述在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括所述在目标域上的M个目标资源单元中相邻的两个目标资源单元,且每个所述目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求;
其中,N大于或等于第一预设数值,所述目标域对应的感知测量量包括多普勒、速度、时延或距离。
可选地,所述目标域包括时域,所述目标资源在时域上的总跨度满足多普勒或速度的分辨率要求。
可选地,所述目标域包括频域,所述目标资源在频域上的总跨度满足时延或距离的分辨率要求。
可选地,所述目标域包括时域,每个所述目标资源单元组中在时域上相邻的两个目标 资源单元满足多普勒或速度的最大不模糊测量范围要求。
可选地,所述目标域包括频域,每个所述目标资源单元组中在频域上相邻的两个目标资源单元满足时延或距离的最大不模糊测量范围要求。
可选地,所述参数配置信息包括以下至少一项:
第一指示信息,所述第一指示信息用于指示所述目标域包括时域和/或频域;
目标资源在目标域上的起始位置;
第二指示信息,所述第二指示信息用于指示目标资源在目标域上的各个资源分块之内目标资源单元的位置信息;
第三指示信息,所述第三指示信息用于指示目标资源在目标域上的各个资源分块的起始位置。
可选地,所述第二指示信息为位图,所述位图包括L个比特,每个所述比特对应一个资源单元;在所述比特对应的值为第一值的情况下,所述比特对应的资源单元为资源分块中的目标资源单元,在所述比特对应的值为第二值的情况下,所述比特对应的资源单元不是资源分块中的目标资源单元,L为正整数。
可选地,所述第三指示信息包括以下其中一项:
位置序列信息,所述位置序列信息包括在目标域上的K个起始位置信息,所述K个起始位置信息与K个资源分块一一对应;
周期信息和偏移序列信息,所述周期信息用于指示资源分块在目标域上的重复周期,所述偏移序列信息包括在目标域上的K个偏移信息,所述K个偏移信息与K个资源分块一一对应,每个所述偏移信息用于指示在目标域上的资源分块的起始位置相对于所述周期信息所指示的位置的偏移信息。
可选地,所述第一信号被配置为单端口或多端口;
在所述第一信号被配置为多端口的情况下,不同端口的第一信号的资源满足以下至少一项:
频分复用;
时分复用;
不同端口的第一信号在目标域上的资源图样相同,且不同端口的第一信号采用的生成序列不同;或者,不同端口的第一信号在目标域上的资源图样相同,且不同端口的第一信号采用的生成序列相同,且不同的第一信号对应的正交覆盖码不同。
可选地,本申请实施例的装置,还包括:
第二发送模块,用于发送能力信息,所述能力信息用于指示所述第一设备是否具备对满足第一特征的所述第一信号进行处理的能力。
可选地,本申请实施例的装置,还包括:
第一执行模块,用于根据所述第一信号的参数配置信息,对所述第一信号执行第一操作,所述第一操作包括发送、接收和信号处理中的至少一项。
本申请实施例中,第一设备接收第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,第一信号的资源图样满足第一特征,所述第一特征为:包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种第一资源间隔;所述目标资源在目标域上按照第一条件划分为K个资源分块;所述第一条件包括:在目标域上K个资源分块内的目标资源单元的分布或位置相同;以及在目标域上K个资源分块对应至少两个第二资源间隔。在通感一体化场景中,可根据感知需求设置其中部分资源分块或部分目标资源单元在目标域上的资源间隔(第一资源间隔或第二资源间隔)为满足对应的感知测量量的分辨率要求的资源间隔,或者,而其他资源分块或目标资源单元在目标域上可设置较大的资源间隔,从而在第一信号能够满足感知需求的前提下降低资源开销。
如图14所示,本申请实施例还提供了一种信号传输装置1400,应用于第二设备,包括:
第一发送模块1401,用于发送第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种第一资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述第一资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔,所述在目标域上相邻两个目标资源单元的间隔包括以下至少一项:在时域上相邻两个目标资源单元的间隔;在频域上相邻两个目标资源单元的间隔;
所述目标资源在目标域上按照第一条件划分为K个资源分块,K≥2,且K为正整数;
其中,所述第一条件包括:
在目标域上K个资源分块内的目标资源单元的分布或位置相同;以及,
在目标域上K个资源分块对应至少两个第二资源间隔;
其中,所述第二资源间隔是所述在目标域上K个资源分块中相邻两个资源分块在目标域上的间隔,所述相邻两个资源分块在目标域上的间隔包括以下至少一项:相邻两个资源分块在时域上的间隔;相邻两个资源分块在频域上的间隔;
其中,所述目标域包括时域和频域中的至少一项。
可选地,所述目标资源满足以下至少一项:
所述目标资源在目标域上的总跨度满足所述目标域对应的感知测量量的分辨率要求,其中,所述目标资源在时域上的总跨度为所述目标资源在时域上对应的总时长,所述目标资源在频域上的总跨度为所述目标资源在频域上对应的总带宽;
所述在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括所述在目标域上的M个目标资源单元中相邻的两个目标资源单元,且每个所述目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量 量的最大不模糊测量范围要求;
其中,N大于或等于第一预设数值,所述目标域对应的感知测量量包括多普勒、速度、时延或距离。
可选地,所述目标域包括时域,所述目标资源在时域上的总跨度满足多普勒或速度的分辨率要求。
可选地,所述目标域包括频域,所述目标资源在频域上的总跨度满足时延或距离的分辨率要求。
可选地,所述目标域包括时域,每个所述目标资源单元组中在时域上相邻的两个目标资源单元满足多普勒或速度的最大不模糊测量范围要求。
可选地,所述目标域包括频域,每个所述目标资源单元组中在频域上相邻的两个目标资源单元满足时延或距离的最大不模糊测量范围要求。
可选地,所述参数配置信息包括以下至少一项:
第一指示信息,所述第一指示信息用于指示所述目标域为时域和/或频域;
目标资源的起始位置;
第二指示信息,所述第二指示信息用于指示目标资源的各个资源分块中目标资源单元的位置信息;
第三指示信息,所述第三指示信息用于指示目标资源的各个资源分块的起始位置。
可选地,所述第二指示信息为位图,所述位图包括L个比特,每个所述比特对应一个资源单元;在所述比特对应的值为第一值的情况下,所述比特对应的资源单元为资源分块中的目标资源单元,在所述比特对应的值为第二值的情况下,所述比特对应的资源单元不是资源分块中的目标资源单元,L为正整数。
可选地,所述第三指示信息包括以下其中一项:
位置序列信息,所述位置序列信息包括在目标域上的K个起始位置信息,所述K个起始位置信息与K个资源分块一一对应;
周期信息和偏移序列信息,所述周期信息用于指示资源分块在目标域上的重复周期,所述偏移序列信息包括在目标域上的K个偏移信息,所述K个偏移信息与K个资源分块一一对应,每个所述偏移信息用于指示在目标域上的资源分块的起始位置相对于所述周期信息所指示的位置的偏移信息。
可选地,所述第一信号被配置为单端口或多端口;
在所述第一信号被配置为多端口的情况下,不同端口的第一信号的资源满足以下至少一项:
频分复用;
时分复用;
不同端口的第一信号在目标域上的资源图样相同,且不同端口的第一信号采用的生成序列不同;或者,不同端口的第一信号在目标域上的资源图样相同,且不同端口的第一信 号采用的生成序列相同,且不同的第一信号对应的正交覆盖码不同。
可选地,本申请实施例的装置,还包括:
第一获取模块,用于获取第一设备发送的能力信息,所述能力信息用于指示所述第一设备是否具备对满足第一特征的所述第一信号进行处理的能力。
可选地,本申请实施例的装置,还包括:
第二执行模块,用于根据所述第一信号的参数配置信息,对所述第一信号执行第一操作,所述第一操作包括发送、接收和信号处理中的至少一项。
本申请实施例中,第二设备发送第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,第一信号的资源图样满足第一特征,所述第一特征为:包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种第一资源间隔;所述目标资源在目标域上按照第一条件划分为K个资源分块;所述第一条件包括:在目标域上K个资源分块内的目标资源单元的分布或位置相同;以及在目标域上K个资源分块对应至少两个第二资源间隔。在通感一体化场景中,可根据感知需求设置其中部分资源分块或部分目标资源单元在目标域上的资源间隔(第一资源间隔或第二资源间隔)为满足对应的感知测量量的分辨率要求的资源间隔,或者,而其他资源分块或目标资源单元在目标域上可设置较大的资源间隔,从而在第一信号能够满足感知需求的前提下降低资源开销。
本申请实施例中的信号传输装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的信号传输装置能够实现图2至图12的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图15所示,本申请实施例还提供一种通信设备1500,包括处理器1501和存储器1502,存储器1502上存储有可在所述处理器1501上运行的程序或指令,例如,该通信设备1500为终端时,该程序或指令被处理器1501执行时实现上述第一设备执行的方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1500为网络侧设备时,该程序或指令被处理器1501执行时实现上述第一设备或第二设备执行的方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,通信接口用于接收第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源 在目标域上对应至少两种第一资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述第一资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔,所述在目标域上相邻两个目标资源单元的间隔包括以下至少一项:在时域上相邻两个目标资源单元的间隔;在频域上相邻两个目标资源单元的间隔;
所述目标资源在目标域上按照第一条件划分为K个资源分块,K≥2,且K为正整数;
其中,所述第一条件包括:
在目标域上K个资源分块内的目标资源单元的分布或位置相同;以及,
在目标域上K个资源分块对应至少两个第二资源间隔;
其中,所述第二资源间隔是所述在目标域上K个资源分块中相邻两个资源分块在目标域上的间隔,所述相邻两个资源分块在目标域上的间隔包括以下至少一项:相邻两个资源分块在时域上的间隔;相邻两个资源分块在频域上的间隔;
其中,所述目标域包括时域和频域中的至少一项。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图16为实现本申请实施例的一种终端的硬件结构示意图。
该终端1600包括但不限于:射频单元1601、网络模块1602、音频输出单元1603、输入单元1604、传感器1605、显示单元1606、用户输入单元1607、接口单元1608、存储器1609以及处理器1610等中的至少部分部件。
本领域技术人员可以理解,终端1600还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图16中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1604可以包括图形处理单元(Graphics Processing Unit,GPU)16041和麦克风16042,GPU16041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1606可包括显示面板16061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板16061。用户输入单元1607包括触控面板16071以及其他输入设备16072中的至少一种。触控面板16071,也称为触摸屏。触控面板16071可包括触摸检测装置和触摸控制器两个部分。其他输入设备16072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1601接收来自网络侧设备的下行数据后,可以传输给处理器1610进行处理;另外,射频单元1601可以向网络侧设备发送上行数据。通常,射频单元1601包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1609可用于存储软件程序或指令以及各种数据。存储器1609可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、 至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1609可以包括易失性存储器或非易失性存储器,或者,存储器1609可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1609包括但不限于这些和任意其它适合类型的存储器。
处理器1610可包括一个或多个处理单元;可选的,处理器1610集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1610中。
其中,射频单元1601,用于接收第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种第一资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述第一资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔,所述在目标域上相邻两个目标资源单元的间隔包括以下至少一项:在时域上相邻两个目标资源单元的间隔;在频域上相邻两个目标资源单元的间隔;
所述目标资源在目标域上按照第一条件划分为K个资源分块,K≥2,且K为正整数;
其中,所述第一条件包括:
在目标域上K个资源分块内的目标资源单元的分布或位置相同;以及,
在目标域上K个资源分块对应至少两个第二资源间隔;
其中,所述第二资源间隔是所述在目标域上K个资源分块中相邻两个资源分块在目标域上的间隔,所述相邻两个资源分块在目标域上的间隔包括以下至少一项:相邻两个资源分块在时域上的间隔;相邻两个资源分块在频域上的间隔;
其中,所述目标域包括时域和频域中的至少一项。
可选地,所述目标资源满足以下至少一项:
所述目标资源在目标域上的总跨度满足所述目标域对应的感知测量量的分辨率要求,其中,所述目标资源在时域上的总跨度为所述目标资源在时域上对应的总时长,所述目标 资源在频域上的总跨度为所述目标资源在频域上对应的总带宽;
所述在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括所述在目标域上的M个目标资源单元中相邻的两个目标资源单元,且每个所述目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求;
其中,N大于或等于第一预设数值,所述目标域对应的感知测量量包括多普勒、速度、时延或距离。
可选地,所述目标域包括时域,所述目标资源在时域上的总跨度满足多普勒或速度的分辨率要求。
可选地,所述目标域包括频域,所述目标资源在频域上的总跨度满足时延或距离的分辨率要求。
可选地,所述目标域包括时域,每个所述目标资源单元组中在时域上相邻的两个目标资源单元满足多普勒或速度的最大不模糊测量范围要求。
可选地,所述目标域包括频域,每个所述目标资源单元组中在频域上相邻的两个目标资源单元满足时延或距离的最大不模糊测量范围要求。
可选地,所述参数配置信息包括以下至少一项:
第一指示信息,所述第一指示信息用于指示所述目标域包括时域和/或频域;
目标资源在目标域上的起始位置;
第二指示信息,所述第二指示信息用于指示目标资源在目标域上的各个资源分块之内目标资源单元的位置信息;
第三指示信息,所述第三指示信息用于指示目标资源在目标域上的各个资源分块的起始位置。
可选地,所述第二指示信息为位图,所述位图包括L个比特,每个所述比特对应一个资源单元;在所述比特对应的值为第一值的情况下,所述比特对应的资源单元为资源分块中的目标资源单元,在所述比特对应的值为第二值的情况下,所述比特对应的资源单元不是资源分块中的目标资源单元,L为正整数。
可选地,所述第三指示信息包括以下其中一项:
位置序列信息,所述位置序列信息包括在目标域上的K个起始位置信息,所述K个起始位置信息与K个资源分块一一对应;
周期信息和偏移序列信息,所述周期信息用于指示资源分块在目标域上的重复周期,所述偏移序列信息包括在目标域上的K个偏移信息,所述K个偏移信息与K个资源分块一一对应,每个所述偏移信息用于指示在目标域上的资源分块的起始位置相对于所述周期信息所指示的位置的偏移信息。
可选地,所述第一信号被配置为单端口或多端口;
在所述第一信号被配置为多端口的情况下,不同端口的第一信号的资源满足以下至少 一项:
频分复用;
时分复用;
不同端口的第一信号在目标域上的资源图样相同,且不同端口的第一信号采用的生成序列不同;或者,不同端口的第一信号在目标域上的资源图样相同,且不同端口的第一信号采用的生成序列相同,且不同的第一信号对应的正交覆盖码不同。
可选地,射频单元1601,还用于:
发送能力信息,所述能力信息用于指示所述第一设备是否具备对满足第一特征的所述第一信号进行处理的能力。
可选地,射频单元1601,还用于:
根据所述第一信号的参数配置信息,对所述第一信号执行第一操作,所述第一操作包括发送、接收和信号处理中的至少一项。
本申请实施例中,第一设备接收第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,第一信号的资源图样满足第一特征,所述第一特征为:包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种第一资源间隔;所述目标资源在目标域上按照第一条件划分为K个资源分块;所述第一条件包括:在目标域上K个资源分块内的目标资源单元的分布或位置相同;以及在目标域上K个资源分块对应至少两个第二资源间隔。在通感一体化场景中,可根据感知需求设置其中部分资源分块或部分目标资源单元在目标域上的资源间隔(第一资源间隔或第二资源间隔)为满足对应的感知测量量的分辨率要求的资源间隔,或者,而其他资源分块或目标资源单元在目标域上可设置较大的资源间隔,从而在第一信号能够满足感知需求的前提下降低资源开销。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,通信接口用于接收或发送第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种第一资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述第一资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔,所述在目标域上相邻两个目标资源单元的间隔包括以下至少一项:在时域上相邻两个目标资源单元的间隔;在频域上相邻两个目标资源单元的间隔;
所述目标资源在目标域上按照第一条件划分为K个资源分块,K≥2,且K为正整数;
其中,所述第一条件包括:
在目标域上K个资源分块内的目标资源单元的分布或位置相同;以及,
在目标域上K个资源分块对应至少两个第二资源间隔;
其中,所述第二资源间隔是所述在目标域上K个资源分块中相邻两个资源分块在目标域上的间隔,所述相邻两个资源分块在目标域上的间隔包括以下至少一项:相邻两个资源分块在时域上的间隔;相邻两个资源分块在频域上的间隔;
其中,所述目标域包括时域和频域中的至少一项。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图17所示,该网络侧设备1700包括:天线171、射频装置172、基带装置173、处理器174和存储器175。天线171与射频装置172连接。在上行方向上,射频装置172通过天线171接收信息,将接收的信息发送给基带装置173进行处理。在下行方向上,基带装置173对要发送的信息进行处理,并发送给射频装置172,射频装置172对收到的信息进行处理后经过天线171发送出去。
以上实施例中第一设备或第二设备执行的方法可以在基带装置173中实现,该基带装置173包括基带处理器。
基带装置173例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图17所示,其中一个芯片例如为基带处理器,通过总线接口与存储器175连接,以调用存储器175中的程序,执行以上方法实施例中所示的第一设备或第二设备的操作。
该网络侧设备还可以包括网络接口176,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备1700还包括:存储在存储器175上并可在处理器174上运行的指令或程序,处理器174调用存储器175中的指令或程序执行图13或14所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
具体地,本申请实施例还提供了一种网络侧设备。如图18所示,该网络侧设备1800包括:处理器1801、网络接口1802和存储器1803。其中,网络接口1802例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备1800还包括:存储在存储器1803上并可在处理器1801上运行的指令或程序,处理器1801调用存储器1803中的指令或程序执行图13或14所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述信号传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述信号传输方法实施例的各个 过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述信号传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种信号传输系统,包括:第一设备及第二设备,所述第一设备可用于执行如上所述的第一设备执行的信号传输方法的步骤,所述第二设备可用于执行如上所述的第二设备执行的信号传输方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (30)

  1. 一种信号传输方法,包括:
    第一设备接收第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
    其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
    包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种第一资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述第一资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔,所述在目标域上相邻两个目标资源单元的间隔包括以下至少一项:在时域上相邻两个目标资源单元的间隔;在频域上相邻两个目标资源单元的间隔;
    所述目标资源在目标域上按照第一条件划分为K个资源分块,K≥2,且K为正整数;
    其中,所述第一条件包括:
    在目标域上K个资源分块内的目标资源单元的分布或位置相同;以及,
    在目标域上K个资源分块对应至少两个第二资源间隔;
    其中,所述第二资源间隔是所述在目标域上K个资源分块中相邻两个资源分块在目标域上的间隔,所述相邻两个资源分块在目标域上的间隔包括以下至少一项:相邻两个资源分块在时域上的间隔;相邻两个资源分块在频域上的间隔;
    其中,所述目标域包括时域和频域中的至少一项。
  2. 根据权利要求1所述的方法,其中,所述目标资源满足以下至少一项:
    所述目标资源在目标域上的总跨度满足所述目标域对应的感知测量量的分辨率要求,其中,所述目标资源在时域上的总跨度为所述目标资源在时域上对应的总时长,所述目标资源在频域上的总跨度为所述目标资源在频域上对应的总带宽;
    所述在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括所述在目标域上的M个目标资源单元中相邻的两个目标资源单元,且每个所述目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求;
    其中,N大于或等于第一预设数值,所述目标域对应的感知测量量包括多普勒、速度、时延或距离。
  3. 根据权利要求2所述的方法,其中,所述目标域包括时域,所述目标资源在时域上的总跨度满足多普勒或速度的分辨率要求。
  4. 根据权利要求2所述的方法,其中,所述目标域包括频域,所述目标资源在频域上的总跨度满足时延或距离的分辨率要求。
  5. 根据权利要求2所述的方法,其中,所述目标域包括时域,每个所述目标资源单元组中在时域上相邻的两个目标资源单元满足多普勒或速度的最大不模糊测量范围要求。
  6. 根据权利要求2所述的方法,其中,所述目标域包括频域,每个所述目标资源单元组中在频域上相邻的两个目标资源单元满足时延或距离的最大不模糊测量范围要求。
  7. 根据权利要求1至6任一项所述的方法,其中,所述参数配置信息包括以下至少一项:
    第一指示信息,所述第一指示信息用于指示所述目标域包括时域和/或频域;
    目标资源在目标域上的起始位置;
    第二指示信息,所述第二指示信息用于指示目标资源在目标域上的各个资源分块之内目标资源单元的位置信息;
    第三指示信息,所述第三指示信息用于指示目标资源在目标域上的各个资源分块的起始位置。
  8. 根据权利要求7所述的方法,其中,所述第二指示信息为位图,所述位图包括L个比特,每个所述比特对应一个资源单元;在所述比特对应的值为第一值的情况下,所述比特对应的资源单元为资源分块中的目标资源单元,在所述比特对应的值为第二值的情况下,所述比特对应的资源单元不是资源分块中的目标资源单元,L为正整数。
  9. 根据权利要求7或8所述的方法,其中,所述第三指示信息包括以下其中一项:
    位置序列信息,所述位置序列信息包括在目标域上的K个起始位置信息,所述K个起始位置信息与K个资源分块一一对应;
    周期信息和偏移序列信息,所述周期信息用于指示资源分块在目标域上的重复周期,所述偏移序列信息包括在目标域上的K个偏移信息,所述K个偏移信息与K个资源分块一一对应,每个所述偏移信息用于指示在目标域上的资源分块的起始位置相对于所述周期信息所指示的位置的偏移信息。
  10. 根据权利要求1至9任一项所述的方法,其中,所述第一信号被配置为单端口或多端口;
    在所述第一信号被配置为多端口的情况下,不同端口的第一信号的资源满足以下至少一项:
    频分复用;
    时分复用;
    不同端口的第一信号在目标域上的资源图样相同,且不同端口的第一信号采用的生成序列不同;或者,不同端口的第一信号在目标域上的资源图样相同,且不同端口的第一信号采用的生成序列相同,且不同的第一信号对应的正交覆盖码不同。
  11. 根据权利要求1至10任一项所述的方法,其中,所述方法还包括:
    所述第一设备发送能力信息,所述能力信息用于指示所述第一设备是否具备对满足第一特征的所述第一信号进行处理的能力。
  12. 根据权利要求1所述的方法,其中,还包括:
    所述第一设备根据所述第一信号的参数配置信息,对所述第一信号执行第一操作,所 述第一操作包括发送、接收和信号处理中的至少一项。
  13. 一种信号传输方法,包括:
    第二设备发送第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
    其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
    包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种第一资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述第一资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔,所述在目标域上相邻两个目标资源单元的间隔包括以下至少一项:在时域上相邻两个目标资源单元的间隔;在频域上相邻两个目标资源单元的间隔;
    所述目标资源在目标域上按照第一条件划分为K个资源分块,K≥2,且K为正整数;
    其中,所述第一条件包括:
    在目标域上K个资源分块内的目标资源单元的分布或位置相同;以及,
    在目标域上K个资源分块对应至少两个第二资源间隔;
    其中,所述第二资源间隔是所述在目标域上K个资源分块中相邻两个资源分块在目标域上的间隔,所述相邻两个资源分块在目标域上的间隔包括以下至少一项:相邻两个资源分块在时域上的间隔;相邻两个资源分块在频域上的间隔;
    其中,所述目标域包括时域和频域中的至少一项。
  14. 根据权利要求13所述的方法,其中,所述目标资源满足以下至少一项:
    所述目标资源在目标域上的总跨度满足所述目标域对应的感知测量量的分辨率要求,其中,所述目标资源在时域上的总跨度为所述目标资源在时域上对应的总时长,所述目标资源在频域上的总跨度为所述目标资源在频域上对应的总带宽;
    所述在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括所述在目标域上的M个目标资源单元中相邻的两个目标资源单元,且每个所述目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求;
    其中,N大于或等于第一预设数值,所述目标域对应的感知测量量包括多普勒、速度、时延或距离。
  15. 根据权利要求14所述的方法,其中,所述目标域包括时域,所述目标资源在时域上的总跨度满足多普勒或速度的分辨率要求。
  16. 根据权利要求14所述的方法,其中,所述目标域包括频域,所述目标资源在频域上的总跨度满足时延或距离的分辨率要求。
  17. 根据权利要求14所述的方法,其中,所述目标域包括时域,每个所述目标资源单元组中在时域上相邻的两个目标资源单元满足多普勒或速度的最大不模糊测量范围要求。
  18. 根据权利要求14所述的方法,其中,所述目标域包括频域,每个所述目标资源单元组中在频域上相邻的两个目标资源单元满足时延或距离的最大不模糊测量范围要求。
  19. 根据权利要求13至18任一项所述的方法,其中,所述参数配置信息包括以下至少一项:
    第一指示信息,所述第一指示信息用于指示所述目标域为时域和/或频域;
    目标资源的起始位置;
    第二指示信息,所述第二指示信息用于指示目标资源的各个资源分块中目标资源单元的位置信息;
    第三指示信息,所述第三指示信息用于指示目标资源的各个资源分块的起始位置。
  20. 根据权利要求19所述的方法,其中,所述第二指示信息为位图,所述位图包括L个比特,每个所述比特对应一个资源单元;在所述比特对应的值为第一值的情况下,所述比特对应的资源单元为资源分块中的目标资源单元,在所述比特对应的值为第二值的情况下,所述比特对应的资源单元不是资源分块中的目标资源单元,L为正整数。
  21. 根据权利要求19或20所述的方法,其中,所述第三指示信息包括以下其中一项:
    位置序列信息,所述位置序列信息包括在目标域上的K个起始位置信息,所述K个起始位置信息与K个资源分块一一对应;
    周期信息和偏移序列信息,所述周期信息用于指示资源分块在目标域上的重复周期,所述偏移序列信息包括在目标域上的K个偏移信息,所述K个偏移信息与K个资源分块一一对应,每个所述偏移信息用于指示在目标域上的资源分块的起始位置相对于所述周期信息所指示的位置的偏移信息。
  22. 根据权利要求13至21任一项所述的方法,其中,所述第一信号被配置为单端口或多端口;
    在所述第一信号被配置为多端口的情况下,不同端口的第一信号的资源满足以下至少一项:
    频分复用;
    时分复用;
    不同端口的第一信号在目标域上的资源图样相同,且不同端口的第一信号采用的生成序列不同;或者,不同端口的第一信号在目标域上的资源图样相同,且不同端口的第一信号采用的生成序列相同,且不同的第一信号对应的正交覆盖码不同。
  23. 根据权利要求13所述的方法,其中,还包括:
    所述第二设备获取第一设备发送的能力信息,所述能力信息用于指示所述第一设备是否具备对满足第一特征的所述第一信号进行处理的能力。
  24. 根据权利要求13所述的方法,其中,还包括:
    所述第二设备根据所述第一信号的参数配置信息,对所述第一信号执行第一操作,所述第一操作包括发送、接收和信号处理中的至少一项。
  25. 一种信号传输装置,应用于第一设备,包括:
    第一接收模块,用于接收第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
    其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
    包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种第一资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述第一资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔,所述在目标域上相邻两个目标资源单元的间隔包括以下至少一项:在时域上相邻两个目标资源单元的间隔;在频域上相邻两个目标资源单元的间隔;
    所述目标资源在目标域上按照第一条件划分为K个资源分块,K≥2,且K为正整数;
    其中,所述第一条件包括:
    在目标域上K个资源分块内的目标资源单元的分布或位置相同;以及,
    在目标域上K个资源分块对应至少两个第二资源间隔;
    其中,所述第二资源间隔是所述在目标域上K个资源分块中相邻两个资源分块在目标域上的间隔,所述相邻两个资源分块在目标域上的间隔包括以下至少一项:相邻两个资源分块在时域上的间隔;相邻两个资源分块在频域上的间隔;
    其中,所述目标域包括时域和频域中的至少一项。
  26. 根据权利要求25所述的装置,其中,所述目标资源满足以下至少一项:
    所述目标资源在目标域上的总跨度满足所述目标域对应的感知测量量的分辨率要求,其中,所述目标资源在时域上的总跨度为所述目标资源在时域上对应的总时长,所述目标资源在频域上的总跨度为所述目标资源在频域上对应的总带宽;
    所述在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括所述在目标域上的M个目标资源单元中相邻的两个目标资源单元,且每个所述目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求;
    其中,N大于或等于第一预设数值,所述目标域对应的感知测量量包括多普勒、速度、时延或距离。
  27. 一种信号传输装置,应用于第二设备,包括:
    第一发送模块,用于发送第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
    其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
    包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种第一资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述第一资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔,所述在目标域上相邻两个目标资源单元的间隔包括以下至少一项:在 时域上相邻两个目标资源单元的间隔;在频域上相邻两个目标资源单元的间隔;
    所述目标资源在目标域上按照第一条件划分为K个资源分块,K≥2,且K为正整数;
    其中,所述第一条件包括:
    在目标域上K个资源分块内的目标资源单元的分布或位置相同;以及,
    在目标域上K个资源分块对应至少两个第二资源间隔;
    其中,所述第二资源间隔是所述在目标域上K个资源分块中相邻两个资源分块在目标域上的间隔,所述相邻两个资源分块在目标域上的间隔包括以下至少一项:相邻两个资源分块在时域上的间隔;相邻两个资源分块在频域上的间隔;
    其中,所述目标域包括时域和频域中的至少一项。
  28. 根据权利要求27所述的装置,其中,所述目标资源满足以下至少一项:
    所述目标资源在目标域上的总跨度满足所述目标域对应的感知测量量的分辨率要求,其中,所述目标资源在时域上的总跨度为所述目标资源在时域上对应的总时长,所述目标资源在频域上的总跨度为所述目标资源在频域上对应的总带宽;
    所述在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括所述在目标域上的M个目标资源单元中相邻的两个目标资源单元,且每个所述目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求;
    其中,N大于或等于第一预设数值,所述目标域对应的感知测量量包括多普勒、速度、时延或距离。
  29. 一种通信设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至12任一项所述的信号传输方法的步骤,或者,实现如权利要求13至24任一项所述的信号传输方法的步骤。
  30. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至12任一项所述的信号传输方法的步骤,或者实现如权利要求13至24任一项所述的信号传输方法的步骤。
PCT/CN2023/132217 2022-11-24 2023-11-17 信号传输方法、装置及通信设备 WO2024109641A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211486592.3 2022-11-24
CN202211486592.3A CN118075903A (zh) 2022-11-24 2022-11-24 信号传输方法、装置及通信设备

Publications (1)

Publication Number Publication Date
WO2024109641A1 true WO2024109641A1 (zh) 2024-05-30

Family

ID=91102784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/132217 WO2024109641A1 (zh) 2022-11-24 2023-11-17 信号传输方法、装置及通信设备

Country Status (2)

Country Link
CN (1) CN118075903A (zh)
WO (1) WO2024109641A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017028747A1 (zh) * 2015-08-14 2017-02-23 中兴通讯股份有限公司 一种无线资源选择方法及终端设备
US20210076367A1 (en) * 2019-09-09 2021-03-11 Huawei Technologies Co., Ltd. Systems and methods for configuring sensing signals in a wireless communication network
WO2021178941A1 (en) * 2020-03-06 2021-09-10 Idac Holdings, Inc. Methods, architectures, apparatuses and systems directed to wireless transmit/receive unit (wtru) initiated active sensing
US20220256519A1 (en) * 2021-02-04 2022-08-11 Samsung Electronics Co., Ltd. Sensing in wireless communications system
CN115379569A (zh) * 2021-05-20 2022-11-22 华为技术有限公司 一种通信方法及通信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017028747A1 (zh) * 2015-08-14 2017-02-23 中兴通讯股份有限公司 一种无线资源选择方法及终端设备
CN106470485A (zh) * 2015-08-14 2017-03-01 中兴通讯股份有限公司 一种无线资源选择方法及终端设备
US20210076367A1 (en) * 2019-09-09 2021-03-11 Huawei Technologies Co., Ltd. Systems and methods for configuring sensing signals in a wireless communication network
WO2021178941A1 (en) * 2020-03-06 2021-09-10 Idac Holdings, Inc. Methods, architectures, apparatuses and systems directed to wireless transmit/receive unit (wtru) initiated active sensing
US20220256519A1 (en) * 2021-02-04 2022-08-11 Samsung Electronics Co., Ltd. Sensing in wireless communications system
CN115379569A (zh) * 2021-05-20 2022-11-22 华为技术有限公司 一种通信方法及通信装置

Also Published As

Publication number Publication date
CN118075903A (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
WO2023088298A1 (zh) 感知信号检测方法、感知信号检测处理方法及相关设备
WO2023088299A1 (zh) 感知信号传输处理方法、装置及相关设备
WO2024109641A1 (zh) 信号传输方法、装置及通信设备
WO2023116590A1 (zh) 感知、感知配置方法、装置及通信设备
WO2023109755A1 (zh) 感知方法、装置及通信设备
WO2023116589A1 (zh) 无线感知的参数确定方法、装置及设备
WO2022253238A1 (zh) 消息传输方法、信号发送方法、装置及通信设备
WO2024109785A1 (zh) 信号传输方法、装置及通信设备
WO2024109640A1 (zh) 信号传输方法、装置及通信设备
WO2024109784A1 (zh) 信号传输方法、装置及通信设备
CN116419144A (zh) 感知信号周期的确定方法、装置、通信设备及存储介质
CN115811737A (zh) 感知信号传输处理方法、装置、电子设备及可读存储介质
WO2024131756A1 (zh) 信号配置方法、装置、通信设备及可读存储介质
WO2024012366A1 (zh) 感知处理方法、装置、终端及设备
WO2024012253A1 (zh) 感知处理方法、装置、终端、网络侧设备及可读存储介质
WO2024012237A1 (zh) 感知处理方法、装置、终端及设备
Shatov et al. On Integrated Cooperative Radio Sensing for Spatial Electromagnetic Analysis in 6G
WO2024012252A1 (zh) 感知处理方法、装置、终端、网络侧设备及可读存储介质
WO2023174332A1 (zh) 感知处理方法、装置、通信设备及可读存储介质
WO2024099152A1 (zh) 信息传输方法、装置及通信设备
WO2024120359A1 (zh) 信息处理、传输方法及通信设备
WO2024046195A1 (zh) 感知信号处理方法、装置及通信设备
WO2024131764A1 (zh) 信号配置方法、装置及设备
WO2023226826A1 (zh) 感知方法、装置及通信设备
WO2023193787A1 (zh) 感知模糊化处理方法、装置、设备及存储介质