WO2024109785A1 - 信号传输方法、装置及通信设备 - Google Patents

信号传输方法、装置及通信设备 Download PDF

Info

Publication number
WO2024109785A1
WO2024109785A1 PCT/CN2023/133103 CN2023133103W WO2024109785A1 WO 2024109785 A1 WO2024109785 A1 WO 2024109785A1 CN 2023133103 W CN2023133103 W CN 2023133103W WO 2024109785 A1 WO2024109785 A1 WO 2024109785A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
resource
domain
signal
target resource
Prior art date
Application number
PCT/CN2023/133103
Other languages
English (en)
French (fr)
Inventor
丁圣利
吴建明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024109785A1 publication Critical patent/WO2024109785A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a signal transmission method, device and communication equipment.
  • Perception capability refers to one or more devices with perception capabilities that can sense the direction, distance, speed and other information of target objects through the transmission and reception of wireless signals, or detect, track, identify, and image target objects, events or environments.
  • Perception capability refers to one or more devices with perception capabilities that can sense the direction, distance, speed and other information of target objects through the transmission and reception of wireless signals, or detect, track, identify, and image target objects, events or environments.
  • the traditional uniformly distributed perception signal resource configuration has the following problems: In order to meet perception requirements (such as resolution or maximum unambiguous measurement range), a large resource overhead of perception signals is required.
  • the embodiments of the present application provide a signal transmission method, apparatus and communication equipment, which can solve the problem of requiring a large resource overhead of perception signals in order to meet perception requirements in a synaesthesia integration scenario.
  • an embodiment of the present application provides a signal transmission method, including:
  • the first device receives parameter configuration information of a first signal, where the first signal is a synaesthesia integrated signal or a perception signal, and the parameter configuration information is used to indicate a resource pattern of the first signal;
  • the resource pattern of the first signal satisfies a first feature, and the first feature is:
  • the target resource includes M target resource units on the target domain, and the target resource corresponds to at least two resource intervals on the target domain, the target resource unit is a resource unit allocated to the first signal, M ⁇ 3, M is a positive integer; the resource interval is an interval between two adjacent target resource units in the target resource on the target domain;
  • the M target resource units on the target domain include N target resource unit groups, each target resource unit group includes two target resource units adjacent to each other on the target domain among the M target resource units, and an interval between two target resource units adjacent to each other on the target domain in each target resource unit group meets a maximum unambiguous measurement range requirement of a perception measurement amount corresponding to the target domain, wherein N is greater than or equal to a first preset value;
  • the interval between two target resource units adjacent in the target domain includes at least one of the following: an interval between two target resource units adjacent in the time domain; an interval between two target resource units adjacent in the frequency domain;
  • the perceptual measurement quantity corresponding to the target domain includes Doppler, speed, delay or distance.
  • the target domain includes at least one of a time domain and a frequency domain.
  • an embodiment of the present application provides a signal transmission method, including:
  • the second device sends parameter configuration information of a first signal, where the first signal is a synaesthesia integrated signal or a perception signal, and the parameter configuration information is used to indicate a resource pattern of the first signal;
  • the resource pattern of the first signal satisfies a first feature, and the first feature is:
  • the target resource includes M target resource units on the target domain, and the target resource corresponds to at least two resource intervals on the target domain, the target resource unit is a resource unit allocated to the first signal, M ⁇ 3, M is a positive integer; the resource interval is an interval between two adjacent target resource units in the target resource on the target domain;
  • the M target resource units on the target domain include N target resource unit groups, each target resource unit group includes two adjacent target resource units on the target domain among the M target resource units, and an interval between two adjacent target resource units on the target domain in each of the target resource unit groups meets a maximum unambiguous measurement range requirement of a perception measurement amount corresponding to the target domain, wherein N is greater than or equal to a first preset value;
  • the interval between two adjacent target resource units in the target domain includes at least one of the following: an interval between two adjacent target resource units in the time domain; an interval between two adjacent target resource units in the frequency domain;
  • the perceptual measurement quantity corresponding to the target domain includes Doppler, speed, delay or distance;
  • the target domain includes at least one of a time domain and a frequency domain.
  • an embodiment of the present application provides a signal transmission device, applied to a first device, including:
  • a first receiving module configured to receive parameter configuration information of a first signal, wherein the first signal is a synaesthesia integrated signal or a perception signal, and the parameter configuration information is used to indicate a resource pattern of the first signal;
  • the resource pattern of the first signal satisfies a first feature, and the first feature is:
  • the target resource includes M target resource units on the target domain, and the target resource corresponds to at least two resource intervals on the target domain, the target resource unit is a resource unit allocated to the first signal, M ⁇ 3, M is a positive integer; the resource interval is an interval between two adjacent target resource units in the target resource on the target domain;
  • the M target resource units on the target domain include N target resource unit groups, each target resource unit group includes two target resource units adjacent to each other on the target domain among the M target resource units, and an interval between two target resource units adjacent to each other on the target domain in each target resource unit group meets a maximum unambiguous measurement range requirement of a perception measurement amount corresponding to the target domain, wherein N is greater than or equal to a first preset value;
  • the interval between two target resource units adjacent in the target domain includes at least one of the following: an interval between two target resource units adjacent in the time domain; an interval between two target resource units adjacent in the frequency domain;
  • the perceptual measurement quantity corresponding to the target domain includes Doppler, speed, delay or distance.
  • the target domain includes at least one of a time domain and a frequency domain.
  • an embodiment of the present application provides a signal transmission device, applied to a second device, including:
  • a first sending module used to send parameter configuration information of a first signal, wherein the first signal is a synaesthesia integrated signal or is a perception signal, and the parameter configuration information is used to indicate a resource pattern of the first signal;
  • the resource pattern of the first signal satisfies a first feature, and the first feature is:
  • the target resource includes M target resource units on the target domain, and the target resource corresponds to at least two resource intervals on the target domain, the target resource unit is a resource unit allocated to the first signal, M ⁇ 3, M is a positive integer; the resource interval is an interval between two adjacent target resource units in the target resource on the target domain;
  • the M target resource units on the target domain include N target resource unit groups, each target resource unit group includes two adjacent target resource units on the target domain among the M target resource units, and an interval between two adjacent target resource units on the target domain in each of the target resource unit groups meets a maximum unambiguous measurement range requirement of a perception measurement amount corresponding to the target domain, wherein N is greater than or equal to a first preset value;
  • the interval between two adjacent target resource units in the target domain includes at least one of the following: an interval between two adjacent target resource units in the time domain; an interval between two adjacent target resource units in the frequency domain;
  • the perceptual measurement quantity corresponding to the target domain includes Doppler, speed, delay or distance;
  • the target domain includes at least one of a time domain and a frequency domain.
  • an embodiment of the present application provides a terminal (first device), which includes a processor and a memory, wherein the memory stores programs or instructions that can be run on the processor, and when the program or instructions are executed by the processor, the steps of the method described in the first aspect are implemented.
  • an embodiment of the present application provides a terminal (first device), including a processor and a communication interface, wherein the communication interface is used to receive parameter configuration information of a first signal, the first signal is a synaesthesia integration signal or a perception signal, and the parameter configuration information is used to indicate a resource pattern of the first signal;
  • the resource pattern of the first signal satisfies a first feature, and the first feature is:
  • the target resource includes M target resource units on the target domain, and the target resource corresponds to at least two resource intervals on the target domain, the target resource unit is a resource unit allocated to the first signal, M ⁇ 3, M is a positive integer; the resource interval is an interval between two adjacent target resource units in the target resource on the target domain;
  • the M target resource units on the target domain include N target resource unit groups, each target resource unit group includes two target resource units adjacent to each other on the target domain among the M target resource units, and an interval between two target resource units adjacent to each other on the target domain in each target resource unit group meets a maximum unambiguous measurement range requirement of a perception measurement amount corresponding to the target domain, wherein N is greater than or equal to a first preset value;
  • the interval between two target resource units adjacent in the target domain includes at least one of the following: an interval between two target resource units adjacent in the time domain; an interval between two target resource units adjacent in the frequency domain;
  • the perceptual measurement quantity corresponding to the target domain includes Doppler, speed, delay or distance.
  • the target domain includes at least one of a time domain and a frequency domain.
  • an embodiment of the present application provides a network side device (a first device or a second device), the network side device comprising a processor and a memory, the memory storing a program or instruction that can be run on the processor, the program When the program or instruction is executed by the processor, the steps of the method described in the first aspect or the second aspect are implemented.
  • an embodiment of the present application provides a network side device (a first device or a second device), including a processor and a communication interface, wherein the communication interface is used to receive or send parameter configuration information of a first signal, the first signal is a synaesthesia integrated signal or a perception signal, and the parameter configuration information is used to indicate a resource pattern of the first signal;
  • the resource pattern of the first signal satisfies a first feature, and the first feature is:
  • the target resource includes M target resource units on the target domain, and the target resource corresponds to at least two resource intervals on the target domain, the target resource unit is a resource unit allocated to the first signal, M ⁇ 3, M is a positive integer; the resource interval is an interval between two adjacent target resource units in the target resource on the target domain;
  • the M target resource units on the target domain include N target resource unit groups, each target resource unit group includes two target resource units adjacent to each other on the target domain among the M target resource units, and an interval between two target resource units adjacent to each other on the target domain in each target resource unit group meets a maximum unambiguous measurement range requirement of a perception measurement amount corresponding to the target domain, wherein N is greater than or equal to a first preset value;
  • the interval between two target resource units adjacent in the target domain includes at least one of the following: an interval between two target resource units adjacent in the time domain; an interval between two target resource units adjacent in the frequency domain;
  • the perceptual measurement quantity corresponding to the target domain includes Doppler, speed, delay or distance;
  • the target domain includes at least one of a time domain and a frequency domain.
  • an embodiment of the present application provides a signal transmission system, comprising: a first device and a second device, wherein the first device can be used to execute the steps of the method described in the first aspect, and the second device can be used to execute the steps of the method described in the second aspect.
  • an embodiment of the present application provides a readable storage medium, on which a program or instruction is stored.
  • the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method described in the second aspect are implemented.
  • an embodiment of the present application provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the method described in the first aspect, or to implement the method described in the second aspect.
  • an embodiment of the present application provides a computer program/program product, which is stored in a storage medium and is executed by at least one processor to implement the steps of the method described in the first aspect, or to implement the method described in the second aspect.
  • a first device receives parameter configuration information of a first signal, wherein the first signal is a synaesthesia integrated signal or a perception signal; a resource pattern of the first signal satisfies a first feature, wherein the first feature is: including a target resource, wherein the target resource includes M target resource units on a target domain, and the target resource corresponds to at least two resource intervals on the target domain, and the target resource unit is a resource unit allocated to the first signal; the M target resource units on the target domain include N target resource unit groups, and each target resource unit group includes the M target resource units in Two target resource units adjacent to each other in the target domain, and the interval between two target resource units adjacent to each other in the target domain in each target resource unit group meets the maximum unambiguous measurement range requirement of the perception measurement quantity corresponding to the target domain.
  • the resource interval of some target resource units adjacent to each other in the target domain can be set to meet the resolution requirement of the corresponding perception measurement quantity according to the perception requirement, and the resource interval of the remaining target resource units adjacent to each other in the target domain is greater than the resolution requirement of the corresponding perception measurement quantity, thereby reducing resource overhead on the premise that the first signal can meet the perception requirement.
  • FIG1 is a structural diagram of a communication system applicable to an embodiment of the present application.
  • FIG2 is a schematic diagram showing one of the flow charts of the signal transmission method according to an embodiment of the present application.
  • FIG3 is a schematic diagram showing a mapping relationship between a first signal and a resource set in an embodiment of the present application
  • FIG4 shows a second schematic diagram of a mapping relationship between a first signal and a resource set in an embodiment of the present application
  • FIG5 is a schematic diagram showing a comparison of resource overheads of a completely non-uniform signal of the present application and an equivalent uniformly distributed signal of the prior art
  • FIG6 shows one of the resource diagrams of the first signal in an embodiment of the present application
  • FIG7 shows a second schematic diagram of resources of the first signal in an embodiment of the present application.
  • FIG8 shows a third schematic diagram of resources of the first signal in an embodiment of the present application.
  • FIG9 is a schematic diagram showing one of the resources of the first signal of different ports in an embodiment of the present application.
  • FIG10 is a second schematic diagram showing resources of first signals of different ports in an embodiment of the present application.
  • FIG11 is a third schematic diagram showing resources of first signals of different ports in an embodiment of the present application.
  • FIG12 shows a fourth schematic diagram of resources of the first signal in an embodiment of the present application.
  • FIG13 is a fifth schematic diagram showing resources of the first signal in an embodiment of the present application.
  • FIG14 is a second flow chart of the signal transmission method according to an embodiment of the present application.
  • FIG15 is a third flow chart of the signal transmission method according to an embodiment of the present application.
  • FIG16 is a schematic diagram showing one of the modules of the signal transmission device according to an embodiment of the present application.
  • FIG17 is a second schematic diagram of a module of a signal transmission device according to an embodiment of the present application.
  • FIG18 is a block diagram showing a structure of a communication device according to an embodiment of the present application.
  • FIG19 is a block diagram showing a structure of a terminal according to an embodiment of the present application.
  • FIG20 shows one of the structural block diagrams of the network side device according to an embodiment of the present application.
  • FIG. 21 shows a second structural block diagram of the network side device according to an embodiment of the present application.
  • first, second, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents that the objects associated with each other are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR new radio
  • FIG1 shows a block diagram of a wireless communication system applicable to an embodiment of the present application.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 may be a mobile phone, a tablet computer, a laptop computer or a notebook computer, a personal digital assistant (PDA), a handheld computer, a netbook, an ultra-mobile personal computer (UMPC), a mobile Internet device (MID), an augmented reality (AR)/virtual reality (VR) device, a robot, a wearable device, a vehicle user equipment (VUE), a pedestrian terminal (PUE), a smart home (a home appliance with wireless communication function, such as a refrigerator, a television, a washing machine or furniture, etc.), a game console, a personal computer (PC), a teller machine or a self-service machine and other terminal side devices, and the wearable device includes: a smart watch, a smart bracelet, a smart headset, a smart glasses, smart jewelry (smart bracelet, smart bracelet, smart ring
  • the network side device 12 may include an access network device or a core network device, wherein the access network device may also be referred to as a radio access network device, a radio access network (RAN), a radio access network function or a radio access network unit.
  • the access network device may include a base station, a wireless local area network (WLAN) access point or a WiFi node, etc.
  • WLAN wireless local area network
  • the base station may be referred to as a node B, an evolved node B (eNB), an access point, a base transceiver station (BTS), a radio base station, a radio transceiver, a basic service set (BSS), an extended service set (ESS), a home node B, a home evolved node B, a transmission reception point (TRP) or some other suitable one in the field.
  • eNB evolved node B
  • BTS basic service set
  • ESS extended service set
  • TRP transmission reception point
  • the core network equipment may include but is not limited to at least one of the following: core network node, core network function, mobility management entity (Mobility Management Entity, MME), access mobility management function (Access and Mobility Management Function, AMF), session management function (Session Management Function, SMF), user plane function (User Plane Function, UPF), policy control function (Policy Control Function, PCF), policy and charging rules function unit (Policy and Charging Rules Function, PCRF), edge application service discovery function (Edge Application Server Discovery Function, EASDF), unified data management (Unified Data Management, UDM), unified data storage (Unified Data Repository, UDR), home user server (Home Subscriber Server, HSS), centralized network configuration (CNC), network storage function (Network Repository Function, NRF), network exposure function (Network Exposure Function, NEF), local NEF (Local NEF, or L-NEF), binding support function (Binding Support Function, BSF), application function (Application Function, AF), etc. It should be noted that in
  • Future B5G and 6G wireless communication systems are expected to provide a variety of high-precision sensing services, such as indoor positioning for robot navigation, Wi-Fi sensing for smart homes, and radar sensing for autonomous vehicles.
  • Sensing and communication systems are usually designed separately and occupy different frequency bands.
  • MIMO massive multiple input multiple output
  • communication signals in future wireless communication systems often have high resolution in both time and angle domains, which makes it possible to use communication signals to achieve high-precision sensing. Therefore, it is better to jointly design sensing and communication systems so that they can share the same frequency band and hardware to improve frequency efficiency and reduce hardware costs. This has prompted the research on Integrated Sensing And Communication (ISAC).
  • MIMO massive multiple input multiple output
  • ISAC will become a key technology for future wireless communication systems to support many important application scenarios.
  • autonomous vehicles will obtain a large amount of information from the network, including ultra-high-resolution maps and near-real-time information, to navigate and avoid upcoming traffic jams.
  • radar sensors in autonomous vehicles should be able to provide robust, high-resolution obstacle detection with centimeter-level resolution.
  • ISAC technology for autonomous vehicles offers the potential to achieve high data rate communications and high-resolution obstacle detection using the same hardware and spectrum resources.
  • Other applications of ISAC include Wi-Fi-based indoor positioning and activity recognition, communication and sensing for drones, Extended Reality (XR), radar and communication integration, etc. Each application has different requirements, limitations, and regulatory issues.
  • ISAC has attracted tremendous research interest and attention from both academia and industry. For example, there has been an increasing number of academic publications on ISAC recently, ranging from transceiver architecture design, ISAC waveform design, joint coding design, time-frequency-space signal processing, to experimental performance delay, prototype design, and field testing.
  • ISAC achieves low-cost integration of communication and perception functions by sharing hardware devices and defining functions with software.
  • the main features of this implementation are: first, unified and simplified architecture, second, reconfigurable and scalable functions, and third, improved efficiency and reduced costs.
  • the advantages of integrated communication and perception are mainly in three aspects: first, reduced equipment cost and size, second, improved spectrum utilization, and third, improved system performance.
  • Coexistence Communication and perception are two independent systems that will interfere with each other.
  • the main methods to resolve interference are: distance isolation, frequency band isolation, time division, MIMO technology, precoding, etc.
  • Co-operation Communication and perception share the same hardware platform and use shared information to improve common performance.
  • the power allocation between the two has a great impact on system performance.
  • the main problems are: low signal-to-noise ratio, mutual interference, and low throughput.
  • Co-design Communication and perception become a complete joint system, including joint signal design, waveform design, coding design, etc.
  • waveform design design
  • coding design etc.
  • OFDM orthogonal frequency division multiplexing
  • Radar Radio Detection and Ranging
  • radar detection targets not only measure the distance of the targets, but also measure the speed, azimuth, and pitch angle of the targets, as well as extract more information about the targets from the above information, including the size and shape of the targets.
  • Radar technology was originally used for military purposes to detect targets such as aircraft, missiles, vehicles, and ships. With the development of technology and the evolution of society, radar is increasingly used in civilian scenarios. A typical application is that weather radar measures the echoes of meteorological targets such as clouds and rain to determine the location and intensity of clouds and rain for weather forecasting. Furthermore, with the vigorous development of the electronic information industry, the Internet of Things, and communication technology, radar technology has begun to enter people's daily life. In use, it greatly improves the convenience and safety of work and life. For example, automotive radar provides early warning information to vehicle drivers by measuring the distance and relative speed between vehicles, between vehicles and surrounding objects, and between vehicles and pedestrians, greatly improving the safety level of road traffic.
  • the radar transceiver stations there are many ways to classify radars. According to the positional relationship between the radar transceiver stations, they can be divided into: single-station radar and dual-station radar, as shown in the figure below.
  • single-station radar the signal transmitter and receiver are integrated and share a common antenna; the advantage is that the target echo signal and the receiver local oscillator are naturally coherent, and signal processing is relatively convenient; the disadvantage is that signal transmission and reception cannot be carried out at the same time, and only a signal waveform with a certain duty cycle can be used, which brings about a blind spot in detection and requires the use of complex algorithms to make up for it; or the signal transmission and reception are carried out at the same time, and the transmission and reception are strictly isolated, but this is difficult to do for high-power military radars.
  • the signal transmitter and receiver are located in different positions; the advantage is that signal transmission and reception can be carried out at the same time, and continuous wave waveforms can be used for detection; the disadvantage is that it is difficult to achieve the same frequency and coherence between the receiver and the transmitter, and the signal processing is relatively complex.
  • radar technology can adopt single-station radar mode or dual-station radar mode.
  • the transmitting and receiving signals share the same antenna, and the receiving signal and the transmitting signal enter different RF processing links through the circulator; in this mode, a continuous wave signal waveform can be used to achieve detection without blind spots, provided that the receiving signal and the transmitting signal need to be well isolated, usually requiring an isolation of about 100dB to eliminate the flooding of the receiving signal by the leakage of the transmitting signal. Since the receiver of the single-station radar has all the information of the transmitting signal, it can process the signal through matched filtering (pulse compression) to obtain a higher signal processing gain.
  • synchronization signals Primary Synchronisation Signal (PSS)/Secondary Synchronisation Signal (SSS)
  • PSS Primary Synchronisation Signal
  • SSS Secondary Synchronisation Signal
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • the fuzzy graph of the signal waveform is no longer a pushpin shape, but a pinboard shape, the fuzziness of the delay and Doppler will increase, and the gain of the main lobe is much lower than that of the single-station radar mode, which reduces the measurement range of distance and speed.
  • the measurement range of distance and speed can meet the measurement requirements of common targets such as cars and pedestrians.
  • the measurement accuracy of the bistatic radar is related to the position of the transceiver site relative to the target, and it is necessary to select a suitable pair of transceiver sites to improve the detection performance.
  • Perception requirements include requirements for the resolution and/or maximum unambiguous measurement range of target parameters, including delay or distance, Doppler or velocity, and angle.
  • Resources are resources on the target domain corresponding to the target parameters.
  • the target domain and resources on the target domain include:
  • Time domain time resources, including: Orthogonal Frequency Division Multiplexing (OFDM) symbols, time slots, subframes, frames, etc.;
  • OFDM Orthogonal Frequency Division Multiplexing
  • Frequency domain frequency resources, including subcarriers, resource blocks (RBs), etc.
  • Airspace antenna or port resources.
  • the requirements for resource allocation based on perceived demand mainly include two aspects:
  • Resource span In the target domain, the span of resources of a perception frame from the minimum resource unit index to the maximum resource unit index, including: time length (time domain), bandwidth (frequency domain), and aperture (spatial dimension);
  • Resource unit spacing In the target domain, the spacing between adjacent target resource units in a perception frame in the target domain, including: the spacing between OFDM symbols allocated to the perception signal (time domain), the spacing between subcarriers allocated to the perception signal (frequency domain), and the spacing between antennas or ports allocated to the perception signal (spatial domain).
  • the impact of resource allocation on perception includes:
  • the span of resources determines the resolution of target parameters, including: the time span in the time domain determines the measurement resolution of Doppler or velocity, the bandwidth in the frequency domain determines the measurement resolution of delay or distance, and the aperture in the airspace determines the measurement resolution of angle;
  • the target resource unit interval determines the maximum unambiguous measurement range of the target parameter, including: the interval between OFDM symbols allocated to the perception signal in the time domain determines the maximum unambiguous measurement range of Doppler or speed, the interval between subcarriers allocated to the perception signal in the frequency domain determines the maximum unambiguous measurement range of delay or distance, and the interval between antennas or ports allocated to the perception signal in the spatial domain determines the maximum unambiguous measurement range of angle.
  • the following discusses the relationship between the resource configuration of perception signals and perception requirements, focusing on the resource configuration in the time domain and frequency domain.
  • B represents the signal bandwidth
  • the maximum unambiguous measurement range of the delay is given by:
  • ⁇ f is the interval between adjacent subcarriers allocated to the perception signal.
  • the Doppler resolution is given by:
  • T is the time length of a perception frame.
  • ⁇ t represents the interval between adjacent OFDM symbols allocated to the sensing signal.
  • the number of sensing resources required is:
  • the maximum unambiguous ranging range is 200m;
  • the ranging resolution is 0.2m;
  • the speed measurement range is -180km/h to 180km/h (capable of detecting speeding vehicles, both in approaching and moving away directions);
  • the speed measurement resolution is 0.2m/s (capable of distinguishing slowly walking pedestrians).
  • the corresponding sensing resource configuration requirements meet the following conditions:
  • the spacing ⁇ f between adjacent subcarriers allocated to the perception signal is ⁇ 1500kHz;
  • the time length of the perception frame T ⁇ 25ms
  • the interval ⁇ t between adjacent OFDM symbols allocated to the sensing signal is ⁇ 50 ⁇ s.
  • the overhead of time domain and frequency domain resources is relatively large. Further examine the proportion of the above-mentioned time-frequency domain resource overhead in the entire time-frequency domain. In the case of a 30GHz center frequency, considering that the subcarrier spacing is 120kHz, the time length of the OFDM symbol is 8.33 ⁇ s. In order to meet the above-mentioned resource configuration requirements, 1 subcarrier in every 12 subcarriers must be allocated to the perception signal, and 1 OFDM symbol in every 6 OFDM symbols must be allocated to the perception signal. In the scenario of multi-port perception, the proportion of perception resource overhead will be further increased.
  • an embodiment of the present application provides a signal transmission method, including:
  • Step 21 The first device receives parameter configuration information of a first signal, where the first signal is a synaesthesia integrated signal or a perception signal, and the parameter configuration information is used to indicate a resource pattern of the first signal;
  • the resource pattern of the first signal satisfies a first feature, and the first feature is:
  • the target resource includes M target resource units on the target domain, and the target resource corresponds to at least two resource intervals on the target domain, the target resource unit is a resource unit allocated to the first signal, M ⁇ 3, M is a positive integer; the resource interval is an interval between two adjacent target resource units in the target resource on the target domain;
  • the M target resource units on the target domain include N target resource unit groups, each target resource unit group includes two target resource units adjacent to each other on the target domain among the M target resource units, and an interval between two target resource units adjacent to each other on the target domain in each target resource unit group meets a maximum unambiguous measurement range requirement of a perception measurement amount corresponding to the target domain, wherein N is greater than or equal to a first preset value;
  • the interval between two target resource units adjacent in the target domain includes at least one of the following: an interval between two target resource units adjacent in the time domain; an interval between two target resource units adjacent in the frequency domain;
  • the perceptual measurement quantity corresponding to the target domain includes Doppler, speed, delay or distance.
  • the target domain includes at least one of a time domain and a frequency domain.
  • the above-mentioned target resource unit groups may or may not have intersections, for example, one target resource unit group includes the first target resource unit and the second target resource unit among M target resource units, and another target resource unit group includes the second target resource unit and the third target resource unit among the M target resource units.
  • the first preset value may be determined according to a maximum unambiguous measurement range requirement of the perceptual measurement quantity corresponding to the target domain.
  • the perception measurement quantity corresponding to the time domain includes Doppler or speed; and when the target domain is the frequency domain, the perception measurement quantity corresponding to the frequency domain includes delay or distance.
  • the first device obtains parameter configuration information of the first signal sent by the second device, the first device includes but is not limited to a terminal or a base station, and the second device includes but is not limited to a base station or a core network device.
  • the resource unit includes at least one of a time domain resource unit and a frequency domain resource unit, and the time domain resource unit includes However, it is not limited to OFDM symbols.
  • the frequency domain resource unit includes but is not limited to subcarriers. That is, the target resource unit can be at least one of a target OFDM symbol and a target subcarrier.
  • the OFDM symbol allocated to the first signal is called a target OFDM symbol
  • the subcarrier allocated to the first signal is called a target subcarrier.
  • a first device receives parameter configuration information of a first signal, the first signal is a synaesthesia integrated signal or a perception signal; the resource pattern of the first signal satisfies a first feature, the first feature being: including a target resource, the target resource includes M target resource units on the target domain, and the target resource corresponds to at least two resource intervals on the target domain, the target resource unit is a resource unit allocated to the first signal; the M target resource units on the target domain include N target resource unit groups, each target resource unit group includes two target resource units adjacent to each other on the target domain in the M target resource units, and the interval between the two target resource units adjacent to each other on the target domain in each target resource unit group meets the maximum unambiguous measurement range requirement of the perception measurement amount corresponding to the target domain.
  • the resource interval of some target resource units adjacent to each other on the target domain can be set to meet the resolution requirement of the corresponding perception measurement amount according to the perception requirement, and the resource interval of the remaining target resource units adjacent to each other on the target domain is greater than the resolution requirement of the corresponding perception measurement amount, thereby reducing resource overhead on the premise that the first signal can meet the perception requirement.
  • the target domain includes a time domain, and an interval between two target resource units adjacent in the time domain in each resource unit group meets a maximum unambiguous measurement range requirement of Doppler or speed.
  • the interval between two adjacent target resource units in the time domain in any target resource unit group is ⁇ T, it should satisfy: ⁇ T ⁇ 1/f d,max or ⁇ T ⁇ c/2f c v max , where f d,max represents the maximum unambiguous measurement value of Doppler, c represents the speed of light, f c represents the carrier center frequency, and v max represents the maximum unambiguous measurement value of the speed.
  • the Doppler maximum unambiguous measurement value or the velocity maximum unambiguous measurement value is determined according to a sensing requirement or sensing prior information, including one of the following:
  • the maximum unambiguous measurement value of Doppler or velocity mentioned above is consistent with the maximum Doppler of the target in the perception prior information or perception requirement. or maximum speed The relationship between them is: or
  • ⁇ T can have one or more values, and the number of target OFDM symbols corresponding to the N target resource unit groups should be no less than a preset number.
  • the values of the time intervals between adjacent target OFDM symbols in the M target OFDM symbols are arranged from small to large to include ⁇ T 1 , ⁇ T 2 , ⁇ T 3 , ... ⁇ T n ⁇ , and the corresponding numbers of target OFDM are ⁇ N 1 , N 2 , N 3 , ... N n ⁇ , respectively, then it should satisfy is not less than the preset value, where t is the subscript of the maximum value in the sequence ⁇ T 1 , ⁇ T 2 , ⁇ T 3 , ... ⁇ T n ⁇ that satisfies the condition ⁇ T ⁇ 1/f d,max or ⁇ T ⁇ c/2f c v max , that is, ⁇ T t satisfies the condition ⁇ T ⁇ 1/f d,max or ⁇ T ⁇ c/2f c
  • the target domain includes a frequency domain, and an interval between two adjacent target resource units in the frequency domain in each of the resource unit groups meets a maximum unambiguous measurement range requirement of a delay or a distance.
  • the interval between two adjacent target resource units in the frequency domain in any target resource unit group is ⁇ f, satisfying: ⁇ f ⁇ 1/ ⁇ max or ⁇ f ⁇ c/2R max , where ⁇ max represents the maximum unambiguous measurement value of the delay, c represents the speed of light, and R max represents the maximum unambiguous measurement value of the distance in the perception requirement.
  • ⁇ f may have one or more values, and the number of target subcarriers corresponding to the N target resource unit groups is not less than a preset number.
  • the resource span of the M target resource units in the target domain meets a resolution requirement of a perceptual measurement quantity corresponding to the target domain.
  • the target domain includes a time domain, and a resource span of the M target resource units in the time domain meets a Doppler or speed resolution requirement.
  • the resource span of the M target resource units in the time domain refers to the total duration T from the target OFDM symbol with the smallest index to the target OFDM symbol with the largest index in the time domain, which includes the time length occupied by the OFDM symbols that are not allocated to the first signal and are located between the target OFDM symbol with the smallest index and the target OFDM symbol with the largest index in the time domain.
  • the total duration T of the first signal (usually referred to as: perception frame length, or coherent processing time, which represents the length of the first signal in the time domain for performing a coherent signal processing and obtaining a perception measurement quantity or a perception result) satisfies: T ⁇ 1/ ⁇ fd or T ⁇ c/ 2fc ⁇ v , where ⁇ fd represents the Doppler resolution in the perception requirement, c represents the speed of light, fc represents the carrier center frequency, and ⁇ v represents the speed resolution in the perception requirement.
  • the target domain includes a frequency domain, and a resource span of the M target resource units in the frequency domain meets a resolution requirement of a delay or a distance.
  • the resource span of the M target resource units in the frequency domain refers to the total bandwidth B from the target subcarrier with the smallest index to the target subcarrier with the largest index in the frequency domain, which includes the bandwidth occupied by the subcarriers that are not allocated to the first signal and are located between the target subcarrier with the smallest index and the target subcarrier with the largest index in the frequency domain.
  • the total bandwidth B of the first signal is: B ⁇ 1/ ⁇ or B ⁇ c/2 ⁇ R, where ⁇ represents the delay resolution in the perception requirement, c represents the speed of light, and ⁇ R represents the distance resolution in the perception requirement.
  • the target domain includes a time domain, and a ratio of a first parameter of a first side lobe to a first parameter of a main lobe of a time domain signal sequence of the first signal in a first transform domain is less than a first preset threshold;
  • the target domain includes a frequency domain, and a ratio of a second parameter of a second side lobe to a second parameter of a main lobe of the frequency domain signal sequence of the first signal in a second transform domain is less than a second preset threshold;
  • the first transform domain is the Doppler domain
  • the first side lobe refers to the side lobe with the largest amplitude or power in the Doppler domain
  • the first parameter includes amplitude or power
  • the second transformation domain is a delay domain
  • the second side lobe refers to a side lobe with the largest amplitude or power in the delay domain
  • the second parameter includes amplitude or power
  • the parameter configuration information of the first signal in the embodiment of the present application can also be described as completely non-uniform signal configuration information, that is, The first signal performs a completely non-uniform signal configuration.
  • the first signal adopts the completely non-uniform signal configuration of the present application in the time domain, that is, the target OFDM symbol allocated to the first signal corresponds to at least two resource intervals, and the distribution of the first signal in the frequency domain is not limited here; in some embodiments, the subcarriers allocated to the first signal are arranged in a conventional uniform distribution in the frequency domain, for example, the kth subcarrier in each RB in the bandwidth part (Bandwidth Part, BWP) where the first signal is located is allocated to the first signal, where k is the subcarrier number in the RB.
  • BWP Bandwidth Part
  • the distribution of the first signal in the time domain adopts the scheme described in the present application.
  • the position of the OFDM symbol allocated to the first signal in the time domain is composed of: system frame number n f , half frame number, subframe number, time slot number or and the OFDM symbol number l within the time slot.
  • Feature T1 The M target OFDM symbols allocated to the first signal are non-uniformly distributed in the time domain, that is, the M target OFDM symbols correspond to at least two resource intervals in the time domain;
  • Feature T2 The total duration occupied by all OFDM symbols allocated to the first signal meets the Doppler or velocity resolution requirement
  • the M target OFDM symbols include N target OFDM symbol groups, each target OFDM symbol group includes two target OFDM symbols that are adjacent in the time domain among the M target OFDM symbols, and the interval between two target OFDM symbols that are adjacent in the time domain in each of the target OFDM symbol groups meets the maximum unambiguous measurement range requirement of the Doppler or speed corresponding to the time domain.
  • Feature T4 after the time domain signal sequence of the first signal is transformed into the Doppler domain, a ratio of a first parameter in the Doppler domain to a first parameter of the main lobe is less than a first preset threshold, and the first parameter includes amplitude or power.
  • the first signal is completely non-uniformly distributed in the frequency domain. It should be emphasized that what is considered here is the configuration of the first signal in the activated BWP. As for the distribution of the first signal in the time domain, there is no restriction here; in some embodiments, the OFDM symbols of the first signal are arranged in a conventional uniform distribution in the time domain, for example, in the case of satisfying The l 0th and/or l 1th OFDM symbol in the time slot is allocated to the first signal, wherein is the number of time slots contained in a system frame, nf is the system frame number, is the time slot number in the system frame, T offset is the time slot offset in the period, T CSI-RS is the period in time slots, l 0 and l 1 are the OFDM symbol numbers in the time slot.
  • the distribution of the first signal in the frequency domain adopts the scheme described in the present application. Specifically, the position of the target subcarrier allocated to the first signal in the frequency domain is represented by: RB number or The subcarrier number k within the RB is described.
  • Feature F1 The M target subcarriers allocated to the first signal are non-uniformly distributed in the frequency domain, that is, the M target subcarriers correspond to at least two resource intervals in the frequency domain;
  • Feature F2 The total bandwidth occupied by all subcarriers allocated to the first signal meets the resolution requirement of the delay or distance;
  • the M target subcarriers include N target subcarrier groups, each target subcarrier group includes two target subcarriers that are adjacent in the frequency domain among the M target subcarriers, and the interval between two target subcarriers that are adjacent in the frequency domain in each of the target subcarrier groups meets the maximum unambiguous measurement range requirement of the Doppler or velocity corresponding to the frequency domain.
  • Feature F4 After the frequency domain signal sequence of the first signal is transformed to the delay domain, the ratio of the second parameter of the second sidelobe in the delay domain to the second parameter of the main lobe is less than a second preset threshold, and the second sidelobe refers to the sidelobe with the largest amplitude or power in the delay domain.
  • the distribution of the first signal in the time domain and the frequency domain adopts the scheme of the embodiment of the present application, and the target OFDM symbol allocated to the first signal satisfies the above characteristics T1-T4 in the time domain, wherein the position of the OFDM symbol allocated to the first signal in the time domain is composed of: system frame number n f , half frame number, subframe number, time slot number and OFDM symbol number l in the time slot.
  • the target subcarrier allocated to the first signal satisfies the above characteristics F1-F4 in the frequency domain, wherein the position of the target subcarrier allocated to the first signal in the frequency domain is represented by: RB number or The subcarrier number k within the RB is described.
  • the parameter configuration information includes resource configuration information of one or more resource sets, each of the resource sets includes at least one target resource unit, and the target resource is composed of the one or more resource sets.
  • the target OFDM symbol belonging to the first signal is divided into a plurality of resource sets, each resource set may overlap or not overlap in the time domain, and each resource set synthesizes a first signal satisfying the above characteristics T1 to T4 in the time domain.
  • the parameter configuration of the first signal is performed with the resource set as a component.
  • the target subcarriers belonging to the first signal are divided into several resource sets, and each resource set may overlap or not overlap in the frequency domain, and each resource set synthesizes the first signal satisfying the above characteristics F1 to F4 in the frequency domain.
  • the parameter configuration of the first signal is performed with the resource set as a component.
  • the ⁇ target OFDM symbol, target subcarrier ⁇ belonging to the first signal is divided into several resource sets, and each resource set may overlap or not overlap in the time domain and/or the frequency domain.
  • the first signal formed by each resource set satisfies the above characteristics T1 to T4 in the time domain and satisfies the above characteristics F1 to F4 in the frequency domain.
  • the parameter configuration of the first signal is performed with the resource set as a component.
  • the schematic diagram of the first signal composed of resource sets is shown in Figures 3 and 4.
  • the resource sets are used as components.
  • the first signal includes at least one resource set in the time domain or frequency domain.
  • the number of resource sets is greater than 1, the resource sets do not overlap in the target domain (as shown in Figure 3) or the resource sets overlap (as shown in Figure 4).
  • the resource configuration information of the one or more resource sets includes at least one of the following:
  • the first item the starting position of one or more resource sets on the target domain
  • the second item the span of one or more resource sets on the target domain
  • the third item resource intervals between target resource units within one or more resource sets;
  • Item 4 the number of target resource units within one or more resource sets
  • Item 5 density of target resource units within one or more resource sets
  • Item 6 the repetition period in the time domain of the time slot where the target resource unit in one or more resource sets is located;
  • Item 7 the location of the target resource unit within one or more resource sets within the time slot
  • Item 8 the repetition period of the resource block RB where the target resource unit in one or more resource sets is located in the frequency domain;
  • Item 9 The location of the RB where the target resource unit is located in one or more resource sets in the frequency domain;
  • Item 10 the location of the target resource unit in one or more resource sets within the RB;
  • Item 11 first indication information, where the first indication information is used to indicate that the target domain is a time domain and/or a frequency domain;
  • Item 12 second indication information, where the second indication information is used to indicate the location distribution of target resource units within one or more resource sets on the target domain;
  • the span of the resource set in the target domain refers to the span between the first resource unit and the last resource unit of the resource set in the target domain.
  • the target resource unit includes at least one of a target OFDM symbol and a target subcarrier.
  • the starting position of one or more resource sets in the target domain includes the starting position of one or more resource sets in the time domain and/or the starting position of one or more resource sets in the frequency domain.
  • the starting position of one or more resource sets in the time domain is indicated by at least one of a frame number, a half-frame number, a subframe number, a time slot number, and an OFDM symbol number, or the starting position of one or more resource sets in the time domain includes a time offset relative to the starting position of the first signal in the time domain, and the parameters of the time offset here include at least one of the number of frames, the number of half-frames, the number of subframes, the number of time slots, and the number of OFDM symbols.
  • the starting position of one or more resource sets in the frequency domain can be indicated by an offset relative to a preset reference point, and the preset reference point can be point A, Physical Resource Block (PRB) 0 of BWP, and the offset can be indicated by at least one of the following: the number of resource block groups (RBG), the number of RBs, and the number of resource elements (RE).
  • the starting position of one or more resource sets in the frequency domain may also be indicated by an offset relative to the starting position of the first signal in the frequency domain, and the offset may be indicated by at least one of the following: the number of RBGs, the number of RBs, and the number of REs.
  • the span of one or more resource sets in the target domain includes the resource span of one or more resource sets in the time domain and/or frequency domain.
  • the resource span of one or more resource sets in the time domain can be the span in the time domain between the OFDM symbol with the maximum index and the OFDM symbol with the minimum index in the resource set.
  • the resource span of one or more resource sets in the frequency domain can be the span in the frequency domain between the subcarrier with the maximum index and the carrier with the minimum index in the resource set.
  • the resource spacing between target resource units within one or more resource sets includes at least one of a target OFDM symbol spacing within one or more resource sets and a target subcarrier spacing within one or more resource sets.
  • the number of target resource units within one or more resource sets includes at least one of the number of target OFDM symbols and the number of target subcarriers within one or more resource sets.
  • the density of the target resource units within one or more resource sets includes at least one of the density of the target OFDM symbols and the density of the target subcarriers within one or more resource sets; wherein the density of the target OFDM symbols within one or more resource sets refers to the number of target OFDM symbols contained in a preset number of consecutive OFDM symbols in the time domain, or the number of target OFDM symbols contained in a preset number of consecutive OFDM symbols in the time domain.
  • the ratio of the number of OFDM symbols to the preset number For example, in the time domain, 2 symbols are allocated to the first signal in a time slot (14 symbols), then the density of the target OFDM symbol can be expressed as 2 or 1/7.
  • the density of target subcarriers within one or more resource sets refers to the number of target subcarriers contained in a preset number of subcarriers continuous in the frequency domain, or the ratio of the number of target subcarriers contained in a preset number of subcarriers continuous in the frequency domain to the preset number. For example: in the frequency domain, 2 subcarriers are allocated to the first signal in one RB (12 subcarriers), then the density of the target subcarriers can be expressed as 3 or 1/4.
  • the second indication information is used to indicate the position distribution of the target OFDM symbols within one or more resource sets in the time domain and/or to indicate the position distribution of the target subcarriers within one or more resource sets in the frequency domain.
  • the second indication information includes at least one of the following:
  • A1 a bitmap, the bitmap comprising L bits, each bit corresponding to a resource unit; when the value corresponding to the bit is a first value, the resource unit corresponding to the bit is a target resource unit allocated to the resource set; when the value corresponding to the bit is a second value, the resource unit corresponding to the bit is not a target resource unit allocated to the resource set, and L is a positive integer.
  • a bitmap may be used to indicate the position distribution of target resource units within one or more resource sets on a target domain, and a bit in the bitmap may be used to indicate whether the corresponding resource unit is a target resource unit allocated to the resource set. For example, if the bit is 1, it indicates that a certain resource unit is a target resource unit allocated to the resource set; if the bit is 0, it indicates that a certain resource unit is not a target resource unit allocated to the resource set.
  • Parameter information of the sub-block includes: at least one of the position distribution information of the target resource unit within the sub-block, the number X of sub-blocks, the repetition period of the sub-block and the starting position of the first sub-block among the X sub-blocks, where X is a positive integer.
  • the position of the target resource unit within the resource set is repeated with a certain period, and the resource set is periodically divided into a preset number of first sub-blocks, and the position distribution of the target resource units between each first sub-block is the same.
  • the parameter information of the above sub-blocks may include: the position distribution information of the target resource unit in the first sub-block (which can be indicated in the form of a bitmap), the number X of first sub-blocks, the repetition period of the first sub-blocks and at least one of the starting position of the first sub-block among the X first sub-blocks, where X is a positive integer.
  • the period in this implementation is not limited to the time dimension, but also includes the frequency dimension. For example, if a specific subcarrier distribution pattern is repeated every 10 RBs in the frequency dimension, the period of the frequency dimension is 10 RBs.
  • the resource set can be divided into a preset number of second sub-blocks, and the position distribution of the target resource units between each second sub-block is the same, but the starting position of each second sub-block is not periodic.
  • the parameter information of the above sub-block includes: the position distribution information of the target resource unit in the second sub-block (which can be indicated in the form of a bitmap), the number X of second sub-blocks and at least one of the starting positions of each second sub-block in the X second sub-blocks, where X is a positive integer.
  • the starting position of the second sub-block may be indicated in the following manner:
  • the starting position of each second sub-block is indicated by a period+offset method, that is, the starting position of each sub-block has a certain offset relative to a certain periodic position. At this time, the period and the offset can be used to indicate the starting position of each second sub-block.
  • A3 Parameter information of a target formula, wherein the target formula is a formula used to calculate the location information of a target resource unit within a resource set on a target domain, and the parameter information of the target parameter includes at least one of the type of the target formula, the formula parameters of the target formula, and a calculation result obtained according to the target formula, and the calculation result is used to indicate the location information.
  • time domain resources may be represented by a start and length indicator value (SLIV) method
  • frequency domain resources may be represented by a resource indication value (RIV) method.
  • the above period may be a period in the time domain or a period in the frequency domain.
  • the parameter configuration information also includes at least one of the following:
  • the first signal is at the starting position of the target domain
  • the resource span of the first signal in the target domain refers to the span between the first target resource unit and the last target resource unit of the at least two resource blocks in the target domain;
  • the starting position of the first signal in the target domain includes the starting position of the first signal in the time domain and/or frequency domain, wherein the starting position of the first signal in the time domain includes a time domain position indicated by at least one of a frame number, a half-frame number, a sub-frame number, a time slot number, and an OFDM symbol number, or includes a time offset relative to a preset reference signal, such as a time offset relative to a periodically transmitted synchronization signal block (Synchronization Signal Block, SSB), where the parameters of the time offset include: at least one of the number of frames, the number of half-frames, the number of sub-frames, the number of time slots, and the number of OFDM symbols.
  • SSB periodically transmitted synchronization Signal Block
  • the starting position of the first signal in the frequency domain includes an offset relative to a preset reference point, and the preset reference point includes one of the following: pointA, PRB0 of the activated BWP, and the frequency shift can be represented by at least one of the number of resource block groups (RBG), the number of RBs, and the number of REs.
  • RBG resource block groups
  • the resource span of the first signal in the target domain includes the resource span of the first signal in the time domain and/or the resource span of the first signal in the frequency domain, wherein the resource span of the first signal in the time domain is the time span between the OFDM symbol with the maximum index and the OFDM symbol with the minimum index allocated to the first signal in the time domain, and the resource span of the first signal in the frequency domain is the time span between the subcarrier with the maximum index and the subcarrier with the minimum index allocated to the first signal in the frequency domain.
  • the resource span of the first signal in the time domain, the span of the resource set in the time domain, the target OFDM symbol interval, and the granularity of the position of the target OFDM symbol in the time domain may be at least one of the following: a preset time length (e.g., 1 ms), an OFDM symbol duration, a time slot, a subframe, a half frame, or a frame;
  • the granularity of the position of the time slot where the target subcarrier is located in the frequency domain can be at least one of the following: a preset frequency width (such as 30kHz), a subcarrier, an RB, or an RBG.
  • the configuration parameters of the existing NR reference signal are used as an example to implement the parameter configuration of the first signal, or the configuration parameters of the existing NR reference signal are slightly extended to implement the parameter configuration of the first signal.
  • the parameter configuration information of the first signal includes at least one of the following:
  • the first item time domain configuration parameters
  • the second item is the frequency domain configuration parameters
  • the time domain configuration parameters include at least one of the following:
  • RRC radio resource control
  • MAC CE media access control control element
  • DCI downlink control information
  • a resource set is required to start at time slot n in the time domain, there are two methods: one is to reconfigure the RRC, and the other is to activate (i.e., activate) a new resource set through MAC CE or DCI.
  • B3 the repetition period of the time slot where the target OFDM symbol in each resource set of the first signal is located, in time slots;
  • B4 the position of the target OFDM symbol in each resource set of the first signal in the time slot; for example, represented by 1 0 or 1 0 and 1 1 ;
  • the positions of the target OFDM symbols in the time domain in different resource sets in the time slots where they are located may be the same or different, and the numbers of the target OFDM symbols in the time slots where the target OFDM symbols in the time domain in different resource sets are located may also be the same or different;
  • each resource set of the first signal in the time domain is indicated by RRC configuration, or MAC CE, DCI signaling, or a combination of MAC CE and DCI signaling;
  • a resource set is required to end at time slot n
  • B6 The repetition period of the first signal in the time domain, that is, the time interval between two adjacent transmissions and receptions of the first signal to perform the perception process; this parameter reflects the refresh time or refresh frequency of the perception.
  • the frequency domain configuration parameters include at least one of the following:
  • C3 the repetition period of the target subcarrier in each resource set of the first signal in the frequency domain in the RB where it is located, in units of RB or RBG;
  • C4 the position of the target subcarrier of the first signal in each resource set in the frequency domain within the RB; for example, represented by a bitmap;
  • C5 the position of the RB where the target subcarrier is located in each resource set of the first signal in the frequency domain; for example, represented by a bitmap, where one byte (bit) of the bitmap represents one RB or one RBG;
  • C6 The bandwidth occupied by each resource set of the first signal in the frequency domain: that is, the bandwidth or number of RBs corresponding to all subcarriers included between the target subcarrier with the smallest index and the target subcarrier with the largest index within each resource set, or the bandwidth corresponding to all RBs or RBGs included between the RB or RBG where the target subcarrier with the smallest index is located and the RB or RBG where the target subcarrier with the largest index is located within each resource set;
  • the expression can be: a preset bandwidth (for example: 100MHz), or the number of RB/RBGs.
  • FIG5 is a schematic diagram showing a comparison of resource overheads of a completely non-uniform signal of the present application and an existing uniformly distributed signal that is equivalent in terms of resolution and maximum unambiguous measurement range performance.
  • the completely non-uniform signal in FIG5 can refer to the completely non-uniform signal in FIG4.
  • the completely non-uniform signal proposed in this application can occupy less time domain and/or frequency domain resources in many cases, that is, it can save overhead;
  • resource set 1, resource set 2, and resource set 3 may be different reference signals, for example: resource set 1 is CSI-RS, resource set 2 is positioning reference signal (Positioning Reference Signal, PRS), and resource set 3 is phase tracking reference signal (Phase-Tracking Reference Signal, PTRS) or demodulation reference signal (Demodulation Reference Signal, DMRS).
  • resource set 1 is CSI-RS
  • resource set 2 is positioning reference signal (Positioning Reference Signal, PRS)
  • resource set 3 is phase tracking reference signal (Phase-Tracking Reference Signal, PTRS) or demodulation reference signal (Demodulation Reference Signal, DMRS).
  • the first signal composed of resource set 1, resource set 2, and resource set 3 can meet the conditions of feature 1 (T1 or F1) to feature 3 (T3 or F3), then there is no need to configure additional reference signals to achieve perception that meets the perception requirements; or, resource set 1, resource set 2, and resource set 3 partially meet features 1 to 3, and only a small amount of additional reference signals need to be configured to achieve perception that meets the perception requirements.
  • the first signal is configured in the time domain using the completely non-uniform signal configuration method proposed in the present application; and in the frequency domain, it is configured according to other configuration methods, for example, the traditional uniformly distributed first signal configuration is adopted in the frequency domain.
  • the configuration parameters of the first signal of the present application in the time domain include at least one of the following:
  • the first indication information is used to indicate that the target domain is the time domain, for example, indicated by 1 bit, and bit 0 indicates the time domain;
  • the span of one or more resource sets in the time domain is the span of one or more resource sets in the time domain
  • the position of the target OFDM symbol within one or more resource sets within the time slot is the position of the target OFDM symbol within one or more resource sets within the time slot.
  • the location distribution indication of the target OFDM symbols within one or more resource sets (ie, the second indication information) is provided.
  • the configuration of the first signal includes not only the configuration in the time domain, but also the configuration in the frequency domain.
  • the configuration in the frequency domain adopts a traditional uniformly distributed configuration, including at least one of the following:
  • An indication that the target domain is the frequency domain, for example, indicated by 1 bit, where the bit is ‘1’ indicating the frequency domain;
  • the number of target subcarriers included in the target resource in the frequency domain is the number of target subcarriers included in the target resource in the frequency domain
  • the target subcarrier density of the target resource in the frequency domain is the target subcarrier density of the target resource in the frequency domain.
  • FIG6 A schematic diagram of this embodiment is shown in FIG6 , in which a grid in the time dimension represents a target resource unit in the time domain (e.g., an OFDM symbol), and a grid in the frequency dimension represents a target resource unit in the frequency domain (e.g., a subcarrier).
  • a grid in the time dimension represents a target resource unit in the time domain (e.g., an OFDM symbol)
  • a grid in the frequency dimension represents a target resource unit in the frequency domain (e.g., a subcarrier).
  • the configuration of the completely non-uniform signal described in the present application is adopted in the time domain.
  • the target OFDM symbols are non-uniformly distributed in the time domain, and their positions are ⁇ 0, 2, 6, 9, 14, 16, 21, 24, 26, 32, 35, 39, 44, 46, 53, 55, 60 ⁇ , where the position of the target OFDM symbol is relative to the starting position of the target resource in the time domain, and the granularity is the OFDM symbol.
  • the configuration of the traditional uniformly distributed signal is adopted in the frequency domain, and the target resource unit interval in the frequency domain is 2 subcarriers.
  • the average value of the target OFDM symbol interval in the time domain is about 3.8 OFDM symbols, which is greater than the target OFDM symbol interval (2 OFDM symbols) required by the resolution of Doppler or velocity, thereby reducing the resource overhead of the first signal.
  • the first signal is configured in the frequency domain using the completely non-uniform signal configuration method proposed in the present application; and configured in the time domain according to other configuration methods, for example, a traditional uniformly distributed first signal configuration is used in the time domain.
  • the configuration of the first signal in the frequency domain described in the present application includes at least one of the following:
  • First indication information where the first indication information indicates that the target domain is the frequency domain, for example, indicated by 1 bit, where bit 1 indicates the frequency domain;
  • the position of the target subcarrier within one or more resource sets within the time slot is the position of the target subcarrier within one or more resource sets within the time slot.
  • the position distribution indication of the target subcarriers within one or more resource sets (ie, the second indication information) is provided.
  • the configuration of the first signal includes not only the configuration in the frequency domain, but also the configuration in the time domain.
  • the configuration in the time domain adopts a traditional uniformly distributed configuration, including at least one of the following:
  • An indication that the target domain is the time domain, for example, indicated by 1 bit, where the bit is ‘0’ indicating the time domain;
  • the number of target OFDM symbols included in the target resource in the time domain is the number of target OFDM symbols included in the target resource in the time domain
  • Target OFDM symbol density for target resources in the time domain is
  • FIG7 A schematic diagram of this embodiment is shown in FIG7 , in which a grid in the time dimension represents a target resource unit in the time domain (e.g., an OFDM symbol), and a grid in the frequency dimension represents a target resource unit in the frequency domain (e.g., a subcarrier).
  • a grid in the time dimension represents a target resource unit in the time domain (e.g., an OFDM symbol)
  • a grid in the frequency dimension represents a target resource unit in the frequency domain (e.g., a subcarrier).
  • the configuration of the completely non-uniform signal described in this application is adopted in the frequency domain.
  • the target subcarriers are non-uniformly distributed in the frequency domain, and their positions are ⁇ 0, 2, 5, 8, 10, 13, 18, 22, 24, 30, 33, 38, 40, 44 ⁇ , where the position of the target subcarrier is relative to the starting position of the target resource in the frequency domain, and the granularity is the subcarrier.
  • the traditional uniformly distributed signal configuration is adopted in the time domain, and the target OFDM symbol interval in the time domain is 3 OFDM symbols.
  • the average value of the target subcarrier interval in the frequency domain is approximately 3.2 subcarrier intervals, which is larger than the target subcarrier interval (2 subcarriers) required by the resolution of the delay or distance, thereby reducing the resource overhead of the first signal.
  • the first signal is configured in both the time domain and the frequency domain using the completely non-uniform signal configuration method proposed in the present application.
  • the parameter configuration information of the first signal described in this application includes:
  • the time domain configuration parameters include at least one of the following:
  • First indication information where the first indication information indicates that the target domain is a time domain, for example, indicated by 1 bit, where bit 0 indicates the time domain;
  • the span of one or more resource sets in the time domain is the span of one or more resource sets in the time domain
  • the position of the target OFDM symbol within one or more resource sets within the time slot is the position of the target OFDM symbol within one or more resource sets within the time slot.
  • the location distribution indication of the target OFDM symbols within one or more resource sets (ie, the second indication information) is provided.
  • the frequency domain configuration parameters include at least one of the following:
  • First indication information where the first indication information indicates that the target domain is the frequency domain, for example, indicated by 1 bit, where bit 1 indicates the frequency domain;
  • the position of the target subcarrier within one or more resource sets within the time slot is the position of the target subcarrier within one or more resource sets within the time slot.
  • the position distribution indication of the target subcarriers within one or more resource sets (ie, the second indication information) is provided.
  • FIG8 A schematic diagram of this embodiment is shown in FIG8 , in which a grid in the time dimension represents a target resource unit in the time domain (e.g., an OFDM symbol), and a grid in the frequency dimension represents a target resource unit in the frequency domain (e.g., a subcarrier).
  • a grid in the time dimension represents a target resource unit in the time domain (e.g., an OFDM symbol)
  • a grid in the frequency dimension represents a target resource unit in the frequency domain (e.g., a subcarrier).
  • the configuration of the completely non-uniform signal described in this application is adopted in the time domain and frequency domain.
  • the target OFDM symbols are non-uniformly distributed, and their positions are ⁇ 0, 2, 6, 9, 14, 16, 21, 24, 26, 32, 35, 39, 44, 46, 53, 55, 60 ⁇ , where the position of the target OFDM is relative to the starting position of the target resource in the time domain, and the granularity is OFDM symbol.
  • the target subcarriers are non-uniformly distributed, and their positions are ⁇ 0, 2, 5, 8, 10, 13, 18, 22, 24, 30, 33, 38, 40, 44 ⁇ , where the position of the target subcarrier is relative to the starting position of the target resource in the frequency domain, and the granularity is subcarrier.
  • the average value of the target OFDM symbol interval in the time domain is approximately 3.8 OFDM symbols, which is larger than the OFDM symbol interval required for Doppler or velocity resolution (2 OFDM symbols); the average value of the target subcarrier interval in the frequency domain is approximately 3.2 subcarrier interval, which is larger than the target subcarrier interval required for delay or distance resolution (2 subcarriers), reducing the resource overhead of the first signal.
  • the first signal is configured as a single port or multiple ports
  • resources of the first signal of different ports satisfy at least one of the following:
  • the first signals of different ports have the same resource pattern on the target domain, and the generation sequences used by the first signals of different ports are different; or, the first signals of different ports have the same resource pattern on the target domain, and the generation sequences used by the first signals of different ports are the same, and the orthogonal cover codes corresponding to different first signals are different.
  • the first signal may be configured as multiple ports, and the pattern relationship of the first signals of different ports may include the following situations:
  • the first signals of different ports are frequency-division multiplexed, that is, the first signals of different ports are distinguished by configuring different frequency domain offsets. For example, as shown in FIG9 , two ports are frequency-division multiplexed, the frequency domain offset of the first signal corresponding to port 1 is 0 subcarrier, and the frequency domain offset of the first signal corresponding to port 2 is 1 subcarrier. Port 1 and port 2 have the same resource span and resource distribution in the frequency domain, that is, they have the same perceptual performance;
  • the first signals of different ports are time-division multiplexed, that is, the first signals of different ports are distinguished by configuring different time domain offsets. For example, as shown in FIG10 , 2 ports are time-division multiplexed, the time domain offset of the first signal corresponding to port 1 is 0 OFDM symbols, and the time domain offset of the first signal corresponding to port 2 is 1 OFDM symbol. Port 1 and port 2 have the same resource span and time domain resource distribution in the time domain, that is, they have the same perceptual performance;
  • Case 3 The first signals of different ports use frequency division multiplexing and time division multiplexing, that is, the first signals of different ports are distinguished by configuring different frequency domain offsets and time domain offsets.
  • 4-port frequency division multiplexing and time division multiplexing FD2-TD2
  • the frequency domain offset of the first signal corresponding to port 1 is 0 subcarriers, and the time domain offset is 0 OFDM symbols
  • the frequency domain offset of the first signal corresponding to port 2 is 1 subcarrier
  • the time domain offset is 0 OFDM symbols
  • the frequency domain offset of the first signal corresponding to port 3 is 0 subcarriers
  • the time domain offset is 1 OFDM symbol
  • the frequency domain offset of the first signal corresponding to port 4 is 1 subcarrier
  • the time domain offset is 1 OFDM symbol.
  • Port 1, port 2, port 3 and port 4 have the same resource span and resource distribution in the time domain and frequency domain, that is, they have the same perceptual performance;
  • Case 4 The first signals of different ports have the same pattern in the target domain, that is, they have the same time domain or frequency domain configuration parameters, but the generation sequences of the first signals used are different, that is, the generation parameters of the first signal sequence are related to the port number;
  • Case 5 The first signals of different ports have the same pattern in the target domain, that is, they have the same time domain or frequency domain configuration parameters, and the generation sequence of the first signals used is the same, but they are distinguished by different orthogonal covering codes (OCC) when mapped to time domain or frequency domain resources.
  • OCC orthogonal covering codes
  • the first signal mapping of port 2 adopts frequency domain orthogonal covering code (FD-OCC)
  • the first signal sequence of port 1 is c(m), which can be directly mapped to the frequency unit (such as RE) corresponding to a specified time unit (such as OFDM symbol), and the first signal sequence of port 2 can be c(m)*occ(m), where occ(m) is a FD-OCC sequence, which can be expressed as (1,-1,1,-1...,1,-1,1,-1), and then mapped to the same frequency unit as port 1.
  • FD-OCC frequency domain orthogonal covering code
  • the following takes the first signal as the NR reference signal CSI-RS as an example to illustrate the method of the embodiment of the present application.
  • other reference signals such as the demodulation reference signal (Demodulation Reference Signal, DMRS), the phase tracking reference Other reference signals or synchronization signals such as Phase-Tracking Reference Signal (PTRS), Positioning Reference Signal (PRS), and Synchronization Signal Block (SSB) also fall within the protection scope of this application.
  • the completely non-uniform signal described in the present application is used in the time domain.
  • the distribution of the first signal in the frequency domain there is no limitation here; in some embodiments, the subcarriers allocated to the first signal are arranged in a conventional uniform distribution in the frequency domain (i.e., comb distribution), for example, the kth subcarrier in each RB in the BWP where the first signal is located is allocated to the first signal, where k is the subcarrier number in the RB.
  • the completely non-uniform signal described in the present application is used in the time domain.
  • the first signal includes 3 resource sets: the repetition period of resource set 1 in the time domain is 5 time slots, and the 8th (numbered from 0) OFDM symbol in the time slot is the OFDM symbol allocated to the first signal, the repetition period of resource set 2 in the time domain is 9 time slots, and the 4th and 11th (numbered from 0) OFDM symbols in the time slot are the OFDM symbols allocated to the first signal, and the repetition period of resource set 3 in the time domain is 15 time slots, and the 8th (numbered from 0) OFDM symbol in the time slot is the OFDM symbol allocated to the first signal.
  • a typical scenario of this configuration is, for example: for the communication function, the CSI-RS in one time slot appears on one OFDM symbol, and the repetition period of the CSI-RS is configured to be 5 time slots (i.e., the case shown in resource set 1), which can meet the requirements; and for a certain perception scenario (here, the measurement of Doppler or speed), the maximum unambiguous measurement range of Doppler or speed requires that the OFDM symbol interval of the CSI-RS is no more than the length of one time slot. If a CSI-RS configuration that meets the perception requirements is used in all time slots, it will bring about a large additional overhead. By adopting the method described in this application, it is only necessary to supplement a part of the CSI-RS configuration in addition to the CSI-RS configuration overhead required for the communication function, and the additional overhead brought is small while being able to meet the perception requirements.
  • the parameter configuration information used to describe the first signal that meets the above characteristics includes the following contents:
  • the starting position of the first signal in the time domain is the index of the first time slot occupied by the first signal in the time domain, expressed as Where nf is the system frame number, is the number of time slots contained in a system frame, is the time slot number within a system frame;
  • the starting position of each resource set of the first signal in the time domain is the index of the first time slot of each resource set of the first signal in the time domain, expressed as a time slot offset relative to the starting position of the first signal in the time domain, expressed in time slots as T offset , which can be configured by CSI-ResourcePeriodicityAndOffset or CSI-RS-Resource-Mobility->slotConfig;
  • the configuration parameters of the first signal do not include the starting position of at least part of the resource sets, and instead, the start of the corresponding resource set in the time domain is indicated through RRC configuration, or MAC CE, DCI signaling, or a combination of MAC CE and DCI signaling;
  • the repetition period of each resource set of the first signal in the time domain is the repetition period of the time slot containing the target OFDM symbol in each resource set of the first signal in the time domain, which is expressed as T CSI-RS in units of time slots and can be expressed by CSI-ResourcePeriodicityAndOffset or CSI-RS-Resource-Mobility->slotConfig configuration;
  • the index of the target OFDM symbol in the time slot containing the target OFDM symbol in each resource set of the first signal for example, expressed as 1 0 (when there is only one target OFDM symbol) or 1 0 and 1 1 (when there are two target OFDM symbols, which is the case in this embodiment), which can be configured by firstOFDMSymbolInTimeDomain and/or firstOFDMSymbolInTimeDomain2 in CSI-ResourceMapping;
  • each resource set of the first signal in the time domain is indicated by RRC configuration, or MAC CE, DCI signaling, or a combination of MAC CE and DCI signaling to indicate the end of the corresponding resource set;
  • Beam Identifier All resource sets belonging to the same first signal should be associated with the same beam, that is, all resource sets have a Quasi Co-Location (QCL) relationship, which can be configured by tci-StatesToAddModList.
  • QCL Quasi Co-Location
  • Each resource set can be configured as a QCL, or each resource set can be configured as a QCL with the same other signal (such as SSB).
  • Resource set list a list of IDs of all resource sets belonging to the same first signal, used to inform the receiver of the first signal which resource sets belong to the corresponding first signal.
  • the completely non-uniform signal described in the present application is used in the frequency domain.
  • the OFDM symbols assigned to the first signal are arranged in a conventional uniform distribution in the time domain (i.e., comb distribution), for example, the lth OFDM symbol of the first time slot in every 4 time slots is assigned to the first signal, where l is the OFDM symbol number in the time slot.
  • the first signal includes four resource sets: the repetition period of resource set 1 in the frequency domain is 1 RB, and the sixth subcarrier (numbered from 0) in each RB is allocated to the first signal, the repetition period of resource set 2 in the frequency domain is 5 RBs, and the third subcarrier (numbered from 0) in each RB is allocated to the first signal, the repetition period of resource set 3 in the frequency domain is 7 RBs, and the ninth subcarrier (numbered from 0) in each RB is allocated to the first signal, and the repetition period of resource set 4 in the frequency domain is 9 RBs, and the third subcarrier (numbered from 0) in each RB is allocated to the first signal.
  • a typical scenario for this configuration is that for a certain perception scenario (here, the measurement of delay or distance), the target subcarriers need to be distributed more densely in the frequency domain. For example, if the traditional uniform distribution (comb distribution) is adopted, 3 subcarriers are required to be allocated to the first signal in each RB. However, for communication capabilities, CSI-RS may have 1 subcarrier in each RB to meet the requirements of the communication function, that is, the case of resource set 1 in Figure 13. Through the configuration method of the present application, a small number of subcarriers are added to the first signal to meet the needs of the perception function without adding too much additional resource overhead.
  • the parameter configuration information of the first signal in this embodiment considers the following configuration method, and the parameter configuration information used to describe the first signal that meets the above characteristics includes at least one of the following contents:
  • the starting position of the first signal in the frequency domain is the RB with the smallest index occupied by the first signal in the frequency domain, which can be configured using CSI-frequencyOccupation->startingRB, where startingRB is the starting RB;
  • the starting position of each resource set of the first signal in the frequency domain is the RB with the minimum index of each resource set of the first signal in the frequency domain, which can be configured by CSI-frequencyOccupation->startingRB;
  • the density of the target subcarriers in each resource set of the first signal in the frequency domain can be configured by CSI-RS-ResourceMapping->density;
  • the position of the target subcarrier in each resource set of the first signal in the RB in which it is located can be configured by CSI-RS-ResourceMapping->frequencyDomainAllocation;
  • the bandwidth occupied by each resource set of the first signal in the frequency domain is configured by CSI-frequencyOccupation->nrofRBs, where nrofRBs is the number of RBs;
  • Beam ID All resource sets belonging to the same first signal should be associated with the same beam, that is, all resource sets have a QCL relationship, which can be configured by tci-StatesToAddModList.
  • Each resource set can be configured as QCL, or each resource set can be configured as QCL with the same other signal (such as SSB);
  • Resource set list a list of IDs of all resource sets belonging to the same first signal, used to inform the receiver of the first signal which resource sets belong to the corresponding first signal.
  • the completely non-uniform signal of the present application is used in both the time domain and the frequency domain. If the first signal includes M resource sets in the time domain and N resource sets in the frequency domain, the first signal includes a total of M*N resource sets.
  • the configuration parameters of each resource set in the time domain are the same as those in the second embodiment, and the configuration parameters in the frequency domain are the same as those in the first embodiment.
  • the above scheme of the embodiment of the present application can very conveniently combine the existing reference signal to implement the resource configuration of the first signal, significantly reducing the overhead of the time domain resources of the first signal.
  • the method of the embodiment of the present application further includes:
  • the first device sends capability information, where the capability information is used to indicate whether the first device has the capability to process the first signal that meets a first characteristic.
  • the capability information is used to indicate whether the first device has the capability of performing spectrum analysis operation on a non-uniform signal sequence.
  • the use of the above-mentioned completely non-uniform signal requires that the receiving end of the first signal can perform spectrum analysis operations on the non-uniform signal sequence. Therefore, the capability information described here needs to include the spectrum analysis operation capability of the non-uniform signal sequence in addition to the conventional perception capability information.
  • Typical algorithms for performing spectrum analysis on non-uniform signal sequences include Non-Uniform Fast Fourier Transform (NUFFT), Multiple Signal Classification (MUSIC), etc.
  • the first device does not have the ability to perform spectral analysis on a non-uniform signal sequence, the completely non-uniform signal described in the present application cannot be used; alternatively, the first device sends the acquired data corresponding to the first signal to a perception function network element (for example, a base station or a core network device), and the perception function network element performs spectral analysis operations on the non-uniform signal sequence.
  • a perception function network element for example, a base station or a core network device
  • the perception function network element performs spectral analysis operations on the non-uniform signal sequence.
  • the first device is not required to have the ability to perform spectral analysis operations on the non-uniform signal sequence.
  • the method of the embodiment of the present application further includes:
  • a first operation is performed on the first signal according to parameter configuration information of the first signal, where the first operation includes at least one of sending, receiving, and signal processing.
  • the method of the embodiment of the present application further includes:
  • the first device obtains an activation instruction for the one or more resource sets, where the activation instruction is used to instruct the first device to perform a first operation on a first signal corresponding to the one or more resource sets, where the first operation includes at least one of sending, receiving, and signal processing.
  • the above activation signaling is obtained through RRC signaling, MAC CE or DCI.
  • the method further comprises:
  • the first device obtains a deactivation instruction for the one or more resource sets, and the deactivation instruction is used to instruct the first device to stop performing a first operation on a first signal corresponding to the at least one or more resource sets, and the first operation includes at least one of sending, receiving and signal processing.
  • the above deactivation signaling is obtained through RRC signaling, MAC CE or DCI.
  • CSI-RS as an example (also applicable to other NR reference signals (such as DMRS, sounding reference signal (Sounding Reference Signal, SRS)), as shown in FIG14, the following steps may be specifically included:
  • Step 1 The first device (e.g., User Equipment (UE)) reports capability information.
  • UE User Equipment
  • the capability information includes at least one of the following:
  • the UE has the ability to perform spectrum analysis on non-uniform signal sequences.
  • Step 2 A perception function network element (for example, a base station or a core network device, the perception function network element being the second device) obtains first information from an initiator of the perception service, where the first information includes at least one of the following:
  • A1 Perception prior information, including at least one of the following:
  • a priori information about the motion parameters of the perceived object such as the speed range and acceleration range of the perceived object
  • A2 Perceived demand information, including at least one of the following:
  • Perception service type classified by type or specific to a certain service, such as imaging, positioning or trajectory tracking, motion recognition, ranging/speed measurement, etc.
  • Perception target area refers to the location area where the perception object may exist, or the location area where imaging or environmental reconstruction is required;
  • Perception object type The perception objects are classified according to their possible motion characteristics. Each perception object type contains information such as the motion speed, motion acceleration, and typical Rich Communication Suite (RCS) of typical perception objects.
  • RCS Rich Communication Suite
  • Performance indicators for sensing target areas or objects including at least one of the following:
  • Perception resolution (further divided into: distance/delay resolution, angle resolution, velocity/Doppler resolution, imaging resolution), etc.
  • Perception accuracy (further divided into: distance/delay accuracy, angle accuracy, speed/Doppler accuracy, positioning accuracy, etc.);
  • Perception range (further divided into: distance/delay range, speed/Doppler range, angle range, imaging range, etc.);
  • Perception latency (the time interval from the sending of the perception signal to the acquisition of the perception result, or the time interval from the initiation of the perception demand to the acquisition of the perception result);
  • Perception update rate (the time interval between two consecutive perception operations and the acquisition of perception results);
  • Detection probability the probability of correctly detecting the perceived object when it exists
  • False alarm probability the probability of erroneously detecting a perceived target when the perceived object does not exist
  • Step 3 The perception function network element (i.e., the above-mentioned second device, for example, a base station or a core network device) configures the parameters of the first signal based on the first information and the capability information of the first device, and obtains the configuration parameters of the resource set of the first signal that satisfies the time domain characteristics T1 ⁇ T5 and/or frequency domain characteristics F1 ⁇ F5.
  • the perception function network element i.e., the above-mentioned second device, for example, a base station or a core network device
  • the resource set of the first signal mentioned here includes: the resource set included in the first signal when performing the perception task and the resource set included in the first signal after switching, where the latter may also be absent.
  • Step 4 The perception function network element (eg, a base station or a core network device) sends the configuration parameters of the resource set of the first signal to the first device (eg, a UE) through RRC reconfiguration (RRCReconfiguration).
  • the first device eg, a UE
  • RRC reconfiguration RRCReconfiguration
  • This step 4 can be achieved by:
  • the configuration parameters of the resource sets of first signals of different types or identifiers may be agreed upon in the protocol, or may be notified to the first device in advance (for example, indicating the configuration parameters of first signals of different types or identifiers in the target domain through RRC signaling, indicating the configuration type or identifier of the first signal through layer 1 signaling, layer 2 signaling, or layer 1 and layer 2 combined signaling).
  • Step 5 The first device replies to the perception function network element through RRC reconfiguration completion (RRCReonfigurationComplete) to confirm the correct reception of the configuration parameters of the resource set of the first signal.
  • RRC reconfiguration completion RRCReonfigurationComplete
  • Step 6 The perception function network element sends an activation instruction for all or part of the resource set of the first signal to the first device through RRC signaling, or MAC CE, or DCI, and the first device performs the first operation on the first signal.
  • the activation instruction is used to indicate at least one of the following:
  • the start of a periodic, semipersistent, or aperiodic resource set is indicated by RRCReconfiguration configuration; in this case, the first device needs to reply RRCReonfigurationComplete to the perception function network element (step 6a in the figure);
  • the start of a semipersistent resource set and/or an execution of an aperiodic resource set is indicated by MAC CE and/or DCI.
  • This process may be performed multiple times, for example, using multiple signaling to respectively activate resource sets at multiple different time domain starting positions.
  • Step 7 The perception function network element sends a deactivation instruction of all or part of the resource set of the first signal to the first device through RRC signaling, or MAC CE, or DCI, and the first device stops the first operation of all or part of the resource set signal.
  • the deactivation instruction is used to indicate at least one of the following:
  • the end of the periodic resource set is indicated by RRCReconfiguration configuration; in this case, the first device needs to reply RRCReonfigurationComplete to the perception function network element (step 7a in the figure);
  • the end of the semipersistent resource set is indicated by MAC CE and/or DCI.
  • This process may be performed multiple times, for example, using multiple signaling to respectively perform deactivation of resource sets at multiple different time domain end positions.
  • the method of the embodiment of the present application can greatly reduce the resource overhead of the perception signal while satisfying the perception resolution performance and the maximum unambiguous measurement range performance. At the same time, the method of the embodiment of the present application can conveniently combine the existing reference signal to realize the configuration of the perception signal, further reducing the resource overhead.
  • the embodiment of the present application further provides a signal transmission method, including:
  • Step 1501 The second device sends parameter configuration information of a first signal, where the first signal is a synaesthesia integrated signal or a perception signal, and the parameter configuration information is used to indicate a resource pattern of the first signal;
  • the resource pattern of the first signal satisfies a first feature, and the first feature is:
  • the target resource includes M target resource units on the target domain, and the target resource corresponds to at least two resource intervals on the target domain, the target resource unit is a resource unit allocated to the first signal, M ⁇ 3, M is a positive integer; the resource interval is an interval between two adjacent target resource units in the target resource on the target domain;
  • the M target resource units on the target domain include N target resource unit groups, each target resource unit group includes two adjacent target resource units on the target domain among the M target resource units, and an interval between two adjacent target resource units on the target domain in each of the target resource unit groups meets a maximum unambiguous measurement range requirement of a perception measurement amount corresponding to the target domain, wherein N is greater than or equal to a first preset value;
  • the interval between two adjacent target resource units in the target domain includes at least one of the following: an interval between two adjacent target resource units in the time domain; an interval between two adjacent target resource units in the frequency domain;
  • the perceptual measurement quantity corresponding to the target domain includes Doppler, speed, delay or distance;
  • the target domain includes at least one of a time domain and a frequency domain.
  • the second device sends parameter configuration information of the first signal to the first device
  • the first device includes but is not limited to a terminal or a base station
  • the second device includes but is not limited to a base station or a core network device.
  • the method of the embodiment of the present application further includes:
  • the second device obtains capability information sent by the first device, where the capability information is used to indicate whether the first device has the capability to process the first signal that meets the first characteristic.
  • the parameter configuration information includes resource configuration information of one or more resource sets, each of the resource sets includes at least one target resource unit, and the one or more resource sets are used to constitute the M target resource units.
  • the method of the embodiment of the present application further includes:
  • the second device performs a first operation on the first signal according to parameter configuration information of the first signal, where the first operation includes at least one of sending, receiving, and signal processing.
  • the method of the embodiment of the present application further includes:
  • the second device sends an activation instruction for the one or more resource sets, where the activation instruction is used to instruct the first device to perform a first operation on a first signal corresponding to the one or more resource sets, where the first operation includes at least one of sending, receiving and signal processing.
  • the method of the embodiment of the present application further includes:
  • the second device sends a deactivation instruction for the one or more resource sets, and the deactivation instruction is used to instruct the first device to stop performing a first operation on a first signal corresponding to the at least one or more resource sets, and the first operation includes at least one of sending, receiving and signal processing.
  • the second device sends parameter configuration information of the first signal
  • the first signal is a synaesthesia integrated signal or a perception signal
  • the resource pattern of the first signal satisfies the first feature, the first feature being: including a target resource, the target resource includes M target resource units on the target domain, and the target resource corresponds to at least two resource intervals on the target domain, the target resource unit is a resource unit allocated to the first signal
  • the M target resource units on the target domain include N target resource unit groups, each target resource unit group includes two target resource units adjacent to each other on the target domain in the M target resource units, and the interval between the two target resource units adjacent to each other on the target domain in each target resource unit group meets the maximum unambiguous measurement range requirement of the perception measurement amount corresponding to the target domain.
  • the resource interval of some target resource units adjacent to each other on the target domain can be set according to the perception requirements to meet the resolution requirements of the corresponding perception measurement amount, and the resource interval of the remaining target resource units adjacent to each other on the target domain is greater than the resolution requirements of the corresponding perception measurement amount.
  • Resource overhead is reduced under the premise that the first signal can meet the perception requirements.
  • the signal transmission method provided in the embodiment of the present application can be executed by a signal transmission device.
  • the signal transmission device provided in the embodiment of the present application is described by taking the signal transmission method executed by the signal transmission device as an example.
  • the embodiment of the present application further provides a signal transmission device 1600, which is applied to a first device and includes:
  • a first receiving module 1601 is used to receive parameter configuration information of a first signal, where the first signal is a synaesthesia integration signal or a perception signal, and the parameter configuration information is used to indicate a resource pattern of the first signal;
  • the resource pattern of the first signal satisfies a first feature, and the first feature is:
  • the target resource includes M target resource units on the target domain, and the target resource corresponds to at least two resource intervals on the target domain, the target resource unit is a resource unit allocated to the first signal, M ⁇ 3, M is a positive integer; the resource interval is an interval between two adjacent target resource units in the target resource on the target domain;
  • the M target resource units on the target domain include N target resource unit groups, each target resource unit group includes two target resource units adjacent to each other on the target domain among the M target resource units, and the interval between the two target resource units adjacent to each other on the target domain in each target resource unit group satisfies the perception measurement quantity corresponding to the target domain.
  • the maximum unambiguous measurement range requirement is N, where N is greater than or equal to a first preset value;
  • the interval between two target resource units adjacent in the target domain includes at least one of the following: an interval between two target resource units adjacent in the time domain; an interval between two target resource units adjacent in the frequency domain;
  • the perceptual measurement quantity corresponding to the target domain includes Doppler, speed, delay or distance.
  • the target domain includes at least one of a time domain and a frequency domain.
  • the target domain includes a time domain, and an interval between two target resource units adjacent in the time domain in each resource unit group meets a maximum unambiguous measurement range requirement of Doppler or speed.
  • the target domain includes a frequency domain, and an interval between two adjacent target resource units in the frequency domain in each of the resource unit groups meets a maximum unambiguous measurement range requirement of a delay or a distance.
  • the resource span of the M target resource units in the target domain meets a resolution requirement of a perceptual measurement quantity corresponding to the target domain.
  • the target domain includes a time domain, and a resource span of the M target resource units in the time domain meets a Doppler or speed resolution requirement.
  • the target domain includes a frequency domain, and a resource span of M target resource units in the frequency domain meets a resolution requirement of a delay or a distance.
  • the target domain includes a time domain, and a ratio of a first parameter of a first side lobe to a first parameter of a main lobe of a time domain signal sequence of the first signal in a first transform domain is less than a first preset threshold;
  • the target domain includes a frequency domain, and a ratio of a second parameter of a second side lobe to a second parameter of a main lobe of the frequency domain signal sequence of the first signal in a second transform domain is less than a second preset threshold;
  • the first transform domain is the Doppler domain
  • the first side lobe refers to the side lobe with the largest amplitude or power in the Doppler domain
  • the first parameter includes amplitude or power
  • the second transformation domain is a delay domain
  • the second side lobe refers to a side lobe with the largest amplitude or power in the delay domain
  • the second parameter includes amplitude or power
  • the parameter configuration information includes resource configuration information of one or more resource sets, each of the resource sets includes at least one target resource unit, and the target resource is composed of the one or more resource sets.
  • the resource configuration information of the one or more resource sets includes at least one of the following:
  • first indication information where the first indication information is used to indicate that the target domain is the time domain and/or the frequency domain;
  • second indication information where the second indication information is used to indicate the location distribution of target resource units within one or more resource sets on the target domain
  • the span of the resource set in the target domain refers to the span between the first resource unit and the last resource unit of the resource set in the target domain.
  • the parameter configuration information also includes at least one of the following:
  • the first signal is at the starting position of the target domain
  • the resource span of the first signal in the target domain refers to the span between the first target resource unit and the last target resource unit of the at least two resource blocks in the target domain.
  • the second indication information includes at least one of the following:
  • a bitmap comprising L bits, each bit corresponding to a resource unit; when the value corresponding to the bit is a first value, the resource unit corresponding to the bit is a target resource unit allocated to the resource set, and when the value corresponding to the bit is a second value, the resource unit corresponding to the bit is not a target resource unit allocated to the resource set, and L is a positive integer;
  • Parameter information of the sub-block including: at least one of the position distribution information of the target resource unit in the sub-block, the number X of sub-blocks, the repetition period of the sub-blocks and the starting position of the first sub-block among the X sub-blocks, where X is a positive integer;
  • Parameter information of a target formula wherein the target formula is a formula used to calculate the location information of a target resource unit within a resource set on a target domain, the parameter information of the target parameter includes at least one of the type of the target formula, the formula parameters of the target formula, and a calculation result obtained according to the target formula, and the calculation result is used to indicate the location information.
  • the first signal is configured as a single port or multiple ports
  • resources of the first signal of different ports satisfy at least one of the following:
  • the first signals of different ports have the same resource pattern on the target domain, and the generation sequences used by the first signals of different ports are different; or, the first signals of different ports have the same resource pattern on the target domain, and the generation sequences used by the first signals of different ports are the same, and the orthogonal cover codes corresponding to different first signals are different.
  • the device of the embodiment of the present application further includes:
  • the second sending module is used to send capability information, where the capability information is used to indicate whether the first device has the ability to process the first signal that meets the first characteristic.
  • the device of the embodiment of the present application further includes:
  • the first execution module is used to perform a first operation on the first signal according to parameter configuration information of the first signal, where the first operation includes at least one of sending, receiving and signal processing.
  • the device of the embodiment of the present application further includes:
  • the second acquisition module is used to obtain an activation instruction for the one or more resource sets, and the activation instruction is used to instruct the first device to perform a first operation on a first signal corresponding to the one or more resource sets, and the first operation includes at least one of sending, receiving and signal processing.
  • the device of the embodiment of the present application further includes:
  • a third acquisition module is used to obtain a deactivation instruction for the one or more resource sets, wherein the deactivation instruction is used to instruct the first device to stop performing a first operation on a first signal corresponding to the at least one or more resource sets, wherein the first operation includes at least one of sending, receiving and signal processing.
  • the first device receives parameter configuration information of the first signal, the first signal is a synaesthesia integrated signal or a perception signal; the resource pattern of the first signal satisfies the first feature, the first feature being: including a target resource, the target resource includes M target resource units on the target domain, and the target resource corresponds to at least two resource intervals on the target domain, the target resource unit is a resource unit allocated to the first signal; the M target resource units on the target domain include N target resource unit groups, each target resource unit group includes two target resource units adjacent to each other in the target domain among the M target resource units, and the interval between the two target resource units adjacent to each other in the target domain in each target resource unit group meets the maximum unambiguous measurement range requirement of the perception measurement amount corresponding to the target domain.
  • the resource interval of some target resource units adjacent to each other in the target domain can be set according to the perception requirements to meet the resolution requirements of the corresponding perception measurement amount, and the resource interval of the remaining target resource units adjacent to each other in the target domain is greater than the resolution requirements of the corresponding perception measurement amount.
  • Resource overhead is reduced under the premise that the first signal can meet the perception requirements.
  • the embodiment of the present application further provides a signal transmission device 1700, which is applied to a second device and includes:
  • a first sending module 1701 is used to send parameter configuration information of a first signal, where the first signal is a synaesthesia integrated signal or a perception signal, and the parameter configuration information is used to indicate a resource pattern of the first signal;
  • the resource pattern of the first signal satisfies a first feature, and the first feature is:
  • the target resource includes M target resource units on the target domain, and the target resource corresponds to at least two resource intervals on the target domain, the target resource unit is a resource unit allocated to the first signal, M ⁇ 3, M is a positive integer; the resource interval is an interval between two adjacent target resource units in the target resource on the target domain;
  • the M target resource units on the target domain include N target resource unit groups, each target resource unit group includes two adjacent target resource units on the target domain among the M target resource units, and an interval between two adjacent target resource units on the target domain in each of the target resource unit groups meets a maximum unambiguous measurement range requirement of a perception measurement amount corresponding to the target domain, wherein N is greater than or equal to a first preset value;
  • the interval between two adjacent target resource units in the target domain includes at least one of the following: an interval between two adjacent target resource units in the time domain; an interval between two adjacent target resource units in the frequency domain;
  • the perceptual measurement quantity corresponding to the target domain includes Doppler, speed, delay or distance;
  • the target domain includes at least one of a time domain and a frequency domain.
  • the device of the embodiment of the present application further includes:
  • the first acquisition module is used to acquire capability information sent by a first device, where the capability information is used to indicate whether the first device has the capability to process the first signal that meets a first characteristic.
  • the parameter configuration information includes resource configuration information of one or more resource sets, each of the resource sets includes at least one target resource unit, and the one or more resource sets are used to constitute the M target resource units.
  • the device of the embodiment of the present application further includes:
  • the second execution module is used to perform a first operation on the first signal according to the parameter configuration information of the first signal, where the first operation includes at least one of sending, receiving and signal processing.
  • the device of the embodiment of the present application further includes:
  • the third sending module is used to send an activation instruction for the one or more resource sets, wherein the activation instruction is used to instruct the first device to perform a first operation on a first signal corresponding to the one or more resource sets, and the first operation includes at least one of sending, receiving and signal processing.
  • the device of the embodiment of the present application further includes:
  • a fourth sending module is used to send a deactivation instruction for the one or more resource sets, wherein the deactivation instruction is used to instruct the first device to stop performing a first operation on a first signal corresponding to the at least one or more resource sets, wherein the first operation includes at least one of sending, receiving and signal processing.
  • the second device sends parameter configuration information of the first signal
  • the first signal is a synaesthesia integrated signal or a perception signal
  • the resource pattern of the first signal satisfies the first feature
  • the first feature is: including target resources, the target resources include M target resource units on the target domain, and the target resources correspond to at least two resource intervals on the target domain, and the target resource unit is a resource unit allocated to the first signal
  • the M target resource units on the target domain include N target resource unit groups, each target resource unit group includes two target resource units adjacent to each other in the target domain among the M target resource units, and the interval between the two target resource units adjacent to each other in the target domain in each target resource unit group meets the maximum unambiguous measurement range requirement of the perception measurement amount corresponding to the target domain.
  • the resource interval of some target resource units adjacent to each other in the target domain can be set according to the perception requirements to meet the resolution requirements of the corresponding perception measurement amount, and the resource interval of the remaining target resource units adjacent to each other in the target domain is greater than the resolution requirements of the corresponding perception measurement amount.
  • Resource overhead is reduced under the premise that the first signal can meet the perception requirements.
  • the signal transmission device 1700 in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or a component in an electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal, or may be other devices other than a terminal.
  • the terminal may include but is not limited to the types of terminals 11 listed above.
  • Type, other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., and the embodiments of the present application are not specifically limited.
  • the signal transmission device 1700 provided in the embodiment of the present application can implement the various processes implemented by the method embodiments of Figures 2 to 15 and achieve the same technical effects. To avoid repetition, they will not be described here.
  • an embodiment of the present application further provides a communication device 1800, including a processor 1801 and a memory 1802, wherein the memory 1802 stores a program or instruction that can be run on the processor 1801.
  • the communication device 1800 is a terminal
  • the program or instruction is executed by the processor 1801 to implement the various steps of the signal transmission method embodiment executed by the first device, and the same technical effect can be achieved.
  • the communication device 1800 is a network side device
  • the program or instruction is executed by the processor 1801 to implement the various steps of the signal transmission method embodiment executed by the first device or the second device, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application further provides a terminal, including a processor and a communication interface, the communication interface is used to receive parameter configuration information of a first signal, the first signal is a synaesthesia integration signal or a perception signal, and the parameter configuration information is used to indicate a resource pattern of the first signal;
  • the resource pattern of the first signal satisfies a first feature, and the first feature is:
  • the target resource includes M target resource units on the target domain, and the target resource corresponds to at least two resource intervals on the target domain, the target resource unit is a resource unit allocated to the first signal, M ⁇ 3, M is a positive integer; the resource interval is an interval between two adjacent target resource units in the target resource on the target domain;
  • the M target resource units on the target domain include N target resource unit groups, each target resource unit group includes two target resource units adjacent to each other on the target domain among the M target resource units, and an interval between two target resource units adjacent to each other on the target domain in each target resource unit group meets a maximum unambiguous measurement range requirement of a perception measurement amount corresponding to the target domain, wherein N is greater than or equal to a first preset value;
  • the interval between two target resource units adjacent in the target domain includes at least one of the following: an interval between two target resource units adjacent in the time domain; an interval between two target resource units adjacent in the frequency domain;
  • the perceptual measurement quantity corresponding to the target domain includes Doppler, speed, delay or distance.
  • the target domain includes at least one of a time domain and a frequency domain.
  • This terminal embodiment corresponds to the first device side method embodiment described above, and each implementation process and implementation method of the method embodiment described above can be applied to this terminal embodiment and can achieve the same technical effect.
  • FIG19 is a schematic diagram of the hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1900 includes but is not limited to: a radio frequency unit 1901, a network module 1902, an audio output unit 1903, an input unit 1904, a sensor 1905, a display unit 1906, a user input unit 1907, an interface unit 1908, a memory 1909 and at least some of the components of the processor 1910.
  • the terminal 1900 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 1910 through a power management system, so that the power management system can manage charging, discharging, and power consumption.
  • a power source such as a battery
  • the present invention may include more or fewer components than those shown in the figure, or some components may be combined, or the components may be arranged differently, which will not be described in detail here.
  • the input unit 1904 may include a graphics processing unit (GPU) 19041 and a microphone 19042, and the graphics processor 19041 processes the image data of the static picture or video obtained by the image capture device (such as a camera) in the video capture mode or the image capture mode.
  • the display unit 1906 may include a display panel 19061, and the display panel 19061 may be configured in the form of a liquid crystal display, an organic light emitting diode, etc.
  • the user input unit 1907 includes a touch panel 19071 and at least one of other input devices 19072.
  • the touch panel 19071 is also called a touch screen.
  • the touch panel 19071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 19072 may include, but are not limited to, a physical keyboard, function keys (such as a volume control key, a switch key, etc.), a trackball, a mouse, and a joystick, which will not be repeated here.
  • the RF unit 1901 can transmit the data to the processor 1910 for processing; in addition, the RF unit 1901 can send uplink data to the network side device.
  • the RF unit 1901 includes but is not limited to an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • the memory 1909 can be used to store software programs or instructions and various data.
  • the memory 1909 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
  • the memory 1909 may include a volatile memory or a non-volatile memory, or the memory 1909 may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a double data rate synchronous dynamic random access memory (DDRSDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous link dynamic random access memory (SLDRAM) and a direct memory bus random access memory (DRRAM).
  • the memory 1909 in the embodiment of the present application includes but is not limited to these and any other suitable types of memory.
  • the processor 1910 may include one or more processing units; optionally, the processor 1910 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to an operating system, a user interface, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It is understandable that the modem processor may not be integrated into the processor 1910.
  • the radio frequency unit 1901 is used to receive parameter configuration information of a first signal, where the first signal is a synaesthesia integrated signal or a perception signal, and the parameter configuration information is used to indicate a resource pattern of the first signal;
  • the resource pattern of the first signal satisfies a first feature, and the first feature is:
  • the target resource includes M target resource units in the target domain, and the target resource At least two resource intervals correspond to the target domain, the target resource unit is a resource unit allocated to the first signal, M ⁇ 3, M is a positive integer; the resource interval is an interval between two adjacent target resource units in the target resource in the target domain;
  • the M target resource units on the target domain include N target resource unit groups, each target resource unit group includes two target resource units adjacent to each other on the target domain among the M target resource units, and an interval between two target resource units adjacent to each other on the target domain in each target resource unit group meets a maximum unambiguous measurement range requirement of a perception measurement amount corresponding to the target domain, wherein N is greater than or equal to a first preset value;
  • the interval between two target resource units adjacent in the target domain includes at least one of the following: an interval between two target resource units adjacent in the time domain; an interval between two target resource units adjacent in the frequency domain;
  • the perceptual measurement quantity corresponding to the target domain includes Doppler, speed, delay or distance.
  • the target domain includes at least one of a time domain and a frequency domain.
  • the target domain includes a time domain, and an interval between two target resource units adjacent in the time domain in each resource unit group meets a maximum unambiguous measurement range requirement of Doppler or speed.
  • the target domain includes a frequency domain, and an interval between two adjacent target resource units in the frequency domain in each of the resource unit groups meets a maximum unambiguous measurement range requirement of a delay or a distance.
  • the resource span of the M target resource units in the target domain meets a resolution requirement of a perceptual measurement quantity corresponding to the target domain.
  • the target domain includes a time domain, and a resource span of the M target resource units in the time domain meets a Doppler or speed resolution requirement.
  • the target domain includes a frequency domain, and a resource span of M target resource units in the frequency domain meets a resolution requirement of a delay or a distance.
  • the target domain includes a time domain, and a ratio of a first parameter of a first side lobe to a first parameter of a main lobe of a time domain signal sequence of the first signal in a first transform domain is less than a first preset threshold;
  • the target domain includes a frequency domain, and a ratio of a second parameter of a second side lobe to a second parameter of a main lobe of the frequency domain signal sequence of the first signal in a second transform domain is less than a second preset threshold;
  • the first transform domain is the Doppler domain
  • the first side lobe refers to the side lobe with the largest amplitude or power in the Doppler domain
  • the first parameter includes amplitude or power
  • the second transformation domain is a delay domain
  • the second side lobe refers to a side lobe with the largest amplitude or power in the delay domain
  • the second parameter includes amplitude or power
  • the parameter configuration information includes resource configuration information of one or more resource sets, each of the resource sets includes at least one target resource unit, and the target resource is composed of the one or more resource sets.
  • the resource configuration information of the one or more resource sets includes at least one of the following:
  • first indication information where the first indication information is used to indicate that the target domain is the time domain and/or the frequency domain;
  • second indication information where the second indication information is used to indicate the location distribution of target resource units within one or more resource sets on the target domain
  • the span of the resource set in the target domain refers to the span between the first resource unit and the last resource unit of the resource set in the target domain.
  • the parameter configuration information also includes at least one of the following:
  • the first signal is at the starting position of the target domain
  • the resource span of the first signal in the target domain refers to the span between the first target resource unit and the last target resource unit of the at least two resource blocks in the target domain.
  • the second indication information includes at least one of the following:
  • a bitmap comprising L bits, each bit corresponding to a resource unit; when the value corresponding to the bit is a first value, the resource unit corresponding to the bit is a target resource unit allocated to the resource set, and when the value corresponding to the bit is a second value, the resource unit corresponding to the bit is not a target resource unit allocated to the resource set, and L is a positive integer;
  • Parameter information of the sub-block including: at least one of the position distribution information of the target resource unit in the sub-block, the number X of sub-blocks, the repetition period of the sub-blocks and the starting position of the first sub-block among the X sub-blocks, where X is a positive integer;
  • Parameter information of a target formula wherein the target formula is a formula used to calculate the location information of a target resource unit within a resource set on a target domain, the parameter information of the target parameter includes at least one of the type of the target formula, the formula parameters of the target formula, and a calculation result obtained according to the target formula, and the calculation result is used to indicate the location information.
  • the first signal is configured as a single port or multiple ports
  • resources of the first signal of different ports satisfy at least one of the following:
  • the first signals of different ports have the same resource pattern on the target domain, and the first signals of different ports are generated by The sequences are different; or, the resource patterns of the first signals of different ports on the target domain are the same, and the generation sequences used by the first signals of different ports are the same, and the orthogonal cover codes corresponding to different first signals are different.
  • the radio frequency unit 1901 is further configured to:
  • Send capability information where the capability information is used to indicate whether the first device has the ability to process the first signal that meets the first characteristic.
  • the radio frequency unit 1901 is further configured to:
  • a first operation is performed on the first signal according to parameter configuration information of the first signal, where the first operation includes at least one of sending, receiving, and signal processing.
  • the radio frequency unit 1901 is further configured to:
  • an activation instruction for the one or more resource sets wherein the activation instruction is used to instruct the first device to perform a first operation on a first signal corresponding to the one or more resource sets, wherein the first operation includes at least one of sending, receiving, and signal processing.
  • the radio frequency unit 1901 is further configured to:
  • the deactivation instruction is used to instruct the first device to stop performing a first operation on a first signal corresponding to the at least one or more resource sets, wherein the first operation includes at least one of sending, receiving, and signal processing.
  • a first device receives parameter configuration information of a first signal, the first signal being a synaesthesia integrated signal or a perception signal; a resource pattern of the first signal satisfies a first feature, the first feature being: including a target resource, the target resource including M target resource units on the target domain, and the target resource corresponding to at least two resource intervals on the target domain, the target resource unit being a resource unit allocated to the first signal; the M target resource units on the target domain including N target resource unit groups, each target resource unit group including two target resource units adjacent to each other on the target domain in the M target resource units, and the interval between the two target resource units adjacent to each other on the target domain in each target resource unit group meets the maximum unambiguous measurement range requirement of the perception measurement amount corresponding to the target domain.
  • the resource interval of some target resource units adjacent to each other on the target domain can be set to meet the resolution requirement of the corresponding perception measurement amount according to the perception requirement, and the resource interval of the remaining target resource units adjacent to each other on the target domain is greater than the resolution requirement of the corresponding perception measurement amount, thereby reducing resource overhead on the premise that the first signal can meet the perception requirement.
  • the embodiment of the present application further provides a network side device, including a processor and a communication interface, the communication interface is used to receive or send parameter configuration information of a first signal, the first signal is a synaesthesia integration signal or a perception signal, and the parameter configuration information is used to indicate a resource pattern of the first signal;
  • the resource pattern of the first signal satisfies a first feature, and the first feature is:
  • the target resource includes M target resource units on the target domain, and the target resource corresponds to at least two resource intervals on the target domain, the target resource unit is a resource unit allocated to the first signal, M ⁇ 3, M is a positive integer; the resource interval is an interval between two adjacent target resource units in the target resource on the target domain;
  • the M target resource units on the target domain include N target resource unit groups, each target resource unit group includes two target resource units adjacent to each other on the target domain among the M target resource units, and an interval between two target resource units adjacent to each other on the target domain in each target resource unit group meets a maximum unambiguous measurement range requirement of a perception measurement amount corresponding to the target domain, wherein N is greater than or equal to a first preset value;
  • the interval between two target resource units adjacent in the target domain includes at least one of the following: an interval between two target resource units adjacent in the time domain; an interval between two target resource units adjacent in the frequency domain;
  • the perceptual measurement quantity corresponding to the target domain includes Doppler, speed, delay or distance.
  • the target domain includes at least one of a time domain and a frequency domain.
  • the network side device embodiment corresponds to the first device or the second device method embodiment, and each implementation process and implementation method of the method embodiment can be applied to the network side device embodiment and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 2000 includes: an antenna 201, a radio frequency device 202, a baseband device 203, a processor 204 and a memory 205.
  • the antenna 201 is connected to the radio frequency device 202.
  • the radio frequency device 202 receives information through the antenna 201 and sends the received information to the baseband device 203 for processing.
  • the baseband device 203 processes the information to be sent and sends it to the radio frequency device 202.
  • the radio frequency device 202 processes the received information and sends it out through the antenna 201.
  • the method executed by the first device or the second device in the above embodiments may be implemented in the baseband device 203, which includes a baseband processor.
  • the baseband device 203 may include, for example, at least one baseband board, on which a plurality of chips are arranged, as shown in FIG20 , wherein one of the chips is, for example, a baseband processor, which is connected to the memory 205 through a bus interface to call a program in the memory 205 and execute the network device operations shown in the above method embodiment.
  • the network side device may also include a network interface 206, which is, for example, a common public radio interface (CPRI).
  • a network interface 206 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 2000 of the embodiment of the present application also includes: instructions or programs stored in the memory 205 and executable on the processor 204.
  • the processor 204 calls the instructions or programs in the memory 205 to execute the methods executed by the modules shown in Figures 16 or 17 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application further provides a network side device.
  • the network side device 2100 includes: a processor 2101, a network interface 2102, and a memory 2103.
  • the network interface 2102 is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 2100 of the embodiment of the present application also includes: instructions or programs stored in the memory 2103 and executable on the processor 2101.
  • the processor 2101 calls the instructions or programs in the memory 2103 to execute the methods executed by the modules shown in Figures 16 or 17 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
  • a program or instruction is stored.
  • the various processes of the above-mentioned signal transmission method embodiment are implemented and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes Computer-readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes of the above-mentioned signal transmission method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • the embodiments of the present application further provide a computer program/program product, which is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the various processes of the above-mentioned signal transmission method embodiment and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a signal transmission system, including: a first device and a second device, wherein the first device can be used to execute the steps of the signal transmission method executed by the first device as described above, and the second device can be used to execute the steps of the signal transmission method executed by the second device as described above.
  • the technical solution of the present application can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, a magnetic disk, or an optical disk), and includes a number of instructions for enabling a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as ROM/RAM, a magnetic disk, or an optical disk
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信号传输方法、装置及通信设备,本申请实施例的信号传输方法包括:第一设备接收第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,第一信号的资源图样满足第一特征,所述第一特征为:包括目标资源,所述目标资源在目标域上包括M个目标资源单元,目标资源在目标域上对应至少两种资源间隔,所述目标资源单元为分配给所述第一信号的资源单元;在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括M个目标资源单元中在目标域上相邻的两个目标资源单元,且每个目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求。

Description

信号传输方法、装置及通信设备
相关申请的交叉引用
本申请主张在2022年11月24日在中国提交的中国专利申请No.202211486094.9的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种信号传输方法、装置及通信设备。
背景技术
未来移动通信系统例如超五代(Beyond 5th Generation,B5G)系统或第6代(6th Generation,6G)系统除了具备通信能力外,还将具备感知能力。感知能力,即具备感知能力的一个或多个设备,能够通过无线信号的发送和接收,来感知目标物体的方位、距离、速度等信息,或者对目标物体、事件或环境等进行检测、跟踪、识别、成像等。在通感一体化场景中,采用传统的均匀分布的感知信号资源配置存在以下问题:为了满足感知需求(如分辨率或最大不模糊测量范围),需要较大的感知信号的资源开销。
发明内容
本申请实施例提供一种信号传输方法、装置及通信设备,能够解决通感一体化场景中,为了满足感知需求,需要较大的感知信号的资源开销的问题。
第一方面,本申请实施例提供了一种信号传输方法,包括:
第一设备接收第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔;
所述在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括所述M个目标资源单元中在目标域上相邻的两个目标资源单元,且每个所述目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求,其中,N大于或等于第一预设数值;
其中,所述在目标域上相邻的两个目标资源单元的间隔包括以下至少一项:在时域上相邻的两个目标资源单元的间隔;在频域上相邻的两个目标资源单元的间隔;
所述目标域对应的感知测量量包括多普勒、速度、时延或距离。
其中,所述目标域包括时域和频域中的至少一项。
第二方面,本申请实施例提供了一种信号传输方法,包括:
第二设备发送第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔;
所述在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括所述M个目标资源单元中在目标域上的相邻的两个目标资源单元,且每个所述目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求,其中,N大于或等于第一预设数值;
其中,所述在目标域上相邻的两个目标资源单元的间隔包括以下至少一项:在时域上相邻的两个目标资源单元的间隔;在频域上相邻两个目标资源单元的间隔;
所述目标域对应的感知测量量包括多普勒、速度、时延或距离;
其中,所述目标域包括时域和频域中的至少一项。
第三方面,本申请实施例提供了一种信号传输装置,应用于第一设备,包括:
第一接收模块,用于接收第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔;
所述在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括所述M个目标资源单元中在目标域上相邻的两个目标资源单元,且每个所述目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求,其中,N大于或等于第一预设数值;
其中,所述在目标域上相邻的两个目标资源单元的间隔包括以下至少一项:在时域上相邻的两个目标资源单元的间隔;在频域上相邻的两个目标资源单元的间隔;
所述目标域对应的感知测量量包括多普勒、速度、时延或距离。
其中,所述目标域包括时域和频域中的至少一项。
第四方面,本申请实施例提供了一种信号传输装置,应用于第二设备,包括:
第一发送模块,用于发送第一信号的参数配置信息,所述第一信号为通感一体化信号 或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔;
所述在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括所述M个目标资源单元中在目标域上的相邻的两个目标资源单元,且每个所述目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求,其中,N大于或等于第一预设数值;
其中,所述在目标域上相邻的两个目标资源单元的间隔包括以下至少一项:在时域上相邻的两个目标资源单元的间隔;在频域上相邻两个目标资源单元的间隔;
所述目标域对应的感知测量量包括多普勒、速度、时延或距离;
其中,所述目标域包括时域和频域中的至少一项。
第五方面,本申请实施例提供了一种终端(第一设备),该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,本申请实施例提供了一种终端(第一设备),包括处理器及通信接口,其中,所述通信接口用于接收第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔;
所述在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括所述M个目标资源单元中在目标域上相邻的两个目标资源单元,且每个所述目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求,其中,N大于或等于第一预设数值;
其中,所述在目标域上相邻的两个目标资源单元的间隔包括以下至少一项:在时域上相邻的两个目标资源单元的间隔;在频域上相邻的两个目标资源单元的间隔;
所述目标域对应的感知测量量包括多普勒、速度、时延或距离。
其中,所述目标域包括时域和频域中的至少一项。
第七方面,本申请实施例提供了一种网络侧设备(第一设备或第二设备),该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程 序或指令被所述处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第八方面,本申请实施例提供了一种网络侧设备(第一设备或第二设备),包括处理器及通信接口,其中,所述通信接口用于接收或发送第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔;
所述在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括所述M个目标资源单元中在目标域上相邻的两个目标资源单元,且每个所述目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求,其中,N大于或等于第一预设数值;
其中,所述在目标域上相邻的两个目标资源单元的间隔包括以下至少一项:在时域上相邻的两个目标资源单元的间隔;在频域上相邻的两个目标资源单元的间隔;
所述目标域对应的感知测量量包括多普勒、速度、时延或距离;
其中,所述目标域包括时域和频域中的至少一项。
第九方面,本申请实施例提供了一种信号传输系统,包括:第一设备及第二设备,所述第一设备可用于执行如第一方面所述的方法的步骤,所述第二设备可用于执行如第二方面所述的方法的步骤。
第十方面,本申请实施例提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十一方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第十二方面,本申请实施例提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或实现如第二方面所述的方法。
在本申请实施例中,第一设备接收第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号;第一信号的资源图样满足第一特征,第一特征为:包括目标资源,目标资源在目标域上包括M个目标资源单元,且目标资源在目标域上对应至少两种资源间隔,所述目标资源单元为分配给所述第一信号的资源单元;在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括M个目标资源单元中在 目标域上相邻的两个目标资源单元,且每个目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求。由于M个目标资源单元在目标域上对应至少两种资源间隔,在通感一体化场景中,可以根据感知需求设置部分在目标域上相邻的目标资源单元的资源间隔为满足对应的感知测量量的分辨率要求的资源间隔、而剩余部分在目标域上相邻的目标资源单元的资源间隔则大于对应的感知测量量的分辨率要求的资源间隔,从而在第一信号能够满足感知需求的前提下降低资源开销。
附图说明
图1表示本申请实施例可应用的一种通信系统的结构图;
图2表示本申请实施例的信号传输方法的流程示意图之一;
图3表示本申请实施例中第一信号与资源集的映射关系示意图之一;
图4表示本申请实施例中第一信号与资源集的映射关系示意图之二;
图5表示采用本申请的完全非均匀信号和现有的等效的均匀分布信号的资源开销对比示意图;
图6表示本申请实施例中第一信号的资源示意图之一;
图7表示本申请实施例中第一信号的资源示意图之二;
图8表示本申请实施例中第一信号的资源示意图之三;
图9表示本申请实施例中不同端口的第一信号的资源示意图之一;
图10表示本申请实施例中不同端口的第一信号的资源示意图之二;
图11表示本申请实施例中不同端口的第一信号的资源示意图之三;
图12表示本申请实施例中第一信号的资源示意图之四;
图13表示本申请实施例中第一信号的资源示意图之五;
图14表示本申请实施例的信号传输方法的流程示意图之二;
图15表示本申请实施例的信号传输方法的流程示意图之三;
图16表示本申请实施例的信号传输装置的模块示意图之一;
图17表示本申请实施例的信号传输装置的模块示意图之二;
图18表示本申请实施例的通信设备的结构框图;
图19表示本申请实施例的终端的结构框图;
图20表示本申请实施例的网络侧设备的结构框图之一;
图21表示本申请实施例的网络侧设备的结构框图之二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施 例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所述领域中其他某个合适的 术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
为使本领域技术人员能够更好地理解本申请实施例,先进行如下说明。
一、通信感知一体化或通感一体化。
未来B5G和6G无线通信系统有望提供各种高精度的传感服务,如机器人导航的室内定位、智能家居的Wi-Fi传感和自动驾驶汽车的雷达传感。传感和通信系统通常是单独设计的,并占用不同的频段。然后,由于毫米波和大规模多输入多输出(Multiple Input Multiple Output,MIMO)技术的广泛部署,未来无线通信系统中的通信信号往往在时域和角度域都具有高分辨率,这使得利用通信信号实现高精度传感成为可能。因此,最好是联合设计传感和通信系统,使它们能够共享同一频段和硬件,以提高频率效率并降低硬件成本。这促使了对通信和感知一体化(Integrated Sensing And Communication,ISAC)的研究。ISAC将成为未来无线通信系统的一项关键技术,以支持许多重要的应用场景。例如,在未来的自动驾驶车辆网络中,自动驾驶车辆将从网络中获得大量的信息,包括超高分辨率的地图和接近实时的信息,以进行导航和避免即将到来的交通拥堵。在同样的情况下,自动驾驶车辆中的雷达传感器应该能够提供强大的、高分辨率的障碍物探测功能,分辨率在厘米量级。用于自动驾驶车辆的ISAC技术提供了使用相同硬件和频谱资源实现高数据率通信和高分辨率障碍物探测的可能。ISAC的其他应用包括基于Wi-Fi的室内定位和活动识别、无人驾驶飞机的通信和传感、扩展现实(Extended Reality,XR)、雷达和通信一体化等。每个应用都有不同的要求、限制和监管问题。ISAC已经引起了学术界和工业界巨大的研究兴趣和关注。例如,最近有越来越多的关于ISAC的学术出版物,从收发机架构设计、ISAC波形设计、联合编码设计、时-频-空信号处理,到实验性能延时、原型设计和现场测试。
ISAC通过硬件设备共用和软件定义功能的方式获得通信和感知双功能的一体化低成 本实现,特点主要有:一是架构统一且简化,二是功能可重构可扩展,三是效率提升、成本降低。通信感知一体化的优势主要有三个方面:一是设备成本降低、尺寸减小,二是频谱利用率提升,三是系统性能提升。
学术界通常将ISAC的发展划分为四个阶段:共存、共运行、共设计和共同协作。
共存:通信和感知是两个相互分立的系统,两者会相互干扰,解决干扰的主要方法是:距离隔离、频段隔离、时分工作,MIMO技术、预编码等。
共运行:通信和感知共用硬件平台,利用共有信息提升共同的性能,二者之间的功率分配对系统性能影响较大,主要问题是:低信噪比、相互干扰、低吞吐率。
共设计:通信和感知成为一个完全的联合系统,包括联合信号设计、波形设计、编码设计等,前期有线性调频波形、扩频波形等,后来聚焦到正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)波形、MIMO技术等。
共同协作:多个通信感知一体化节点相互协作实现公共目标。例如,通过通信数据传输共享雷达探测信息,典型场景有驾驶辅助系统、雷达辅助通信等。
目前,根据5G通信系统架构进行技术升级而有望实现的典型通信感知一体化的场景如表1所示。
表1
二、雷达技术。
雷达(Radio Detection and Ranging,Radar),意思是“无线电探测和测距”,即通过发射无线电波并接收目标反射回波的方式发现目标并测定目标距离。随着雷达技术的发展,雷达探测目标不仅是测量目标的距离,还包括测量目标的速度、方位角、俯仰角,以及从以上信息中提取出更多有关目标的信息,包括目标的尺寸和形状等。
雷达技术最初用于军事用途,用来探测飞机、导弹、车辆、舰艇等目标。随着技术的发展和社会的演进,雷达越来越多用于民用场景,典型应用是气象雷达通过测量云雨等气象目标的回波来测定关于云雨的位置、强度等信息用来进行天气的预报。进一步地,随着电子信息产业、物联网、通信技术等的蓬勃发展,雷达技术开始进入到人们的日常生活应 用中,大大提高了工作和生活的便利性、安全性等。例如,汽车雷达通过测量车辆之间、车辆与周边环境物之间、车辆与行人之间等的距离和相对速度对车辆的驾驶提供预警信息,极大地提高了道路交通的安全水平。
在技术层面上,雷达有很多分类方式。按照雷达收发站点之间的位置关系可以分为:单站雷达和双站雷达,如下图所示。对于单站雷达,信号发射机与接收机一体、共用天线;优点是目标回波信号与接收机本振之间天然是相干的、信号处理较为方便;缺点是信号收发不能同时进行,只能采用具有一定占空比的信号波形,从而带来探测的盲区,需要采用复杂的算法来弥补;或者收发信号同时进行,收发之间严格隔离,但是对于大功率的军用雷达来说很难做到。对于双站雷达,信号发射机与接收机位于不同的位置;优点是信号收发能够同时进行,可以采用连续波波形进行探测;缺点是接收机与发射机之间很难实现同频和相干,信号处理较为复杂。
在通感一体化无线感知应用中,雷达技术可以采用单站雷达模式,也可以采用双站雷达模式。
在单站雷达模式下,收发信号共用天线,接收信号与发射信号通过环形器进入不同的射频处理链路;在这种模式下,可以采用连续波信号波形实现无盲区的探测,前提是接收信号与发射信号需要很好的隔离,通常需要100dB左右的隔离度,以消除发射信号泄露对接收信号的淹没。由于单站雷达的接收机具有发射信号的全部信息,从而可以通过匹配滤波(脉冲压缩)的方式进行信号处理,获得较高的信号处理增益。
在双站雷达模式下,不存在收发信号的隔离问题,极大地简化的硬件的复杂度。由于雷达信号处理建立在已知信息的基础上,在5G NR通感一体化应用中,可以利用同步信号(主同步信号(Primary Synchronisation Signal,PSS)/辅同步信号(Secondary Synchronisation Signal,SSS))、参考信号(解调参考信号(Demodulation Reference Signal,DMRS)/信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)等)等已知信息进行雷达信号处理。但是,由于同步信号、参考信号等的周期性,信号波形的模糊图不再是图钉形,而是钉板形,时延和多普勒的模糊程度会增大、且主瓣的增益相较单站雷达模式降低了许多,降低了距离和速度的测量范围。通过恰当的参数集设计,距离和速度的测量范围能够满足汽车、行人等常见目标的测量需求。此外,双站雷达的测量精度与收发站点相对目标的位置有关,需要选择合适的收发站点对来提高探测性能。
三、传统的均匀分布感知信号。
考察在给定感知需求的条件下,感知信号的资源配置的需求。
感知需求包括对于目标参数的分辨率和/或最大不模糊测量范围的要求。目标参数包括:时延或距离、多普勒或速度、角度。
资源为与目标参数对应的目标域上的资源。目标域和目标域上的资源包括:
1、时域:时间资源,包括:正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号、时隙、子帧、帧等;
2、频域:频率资源,包括:子载波,资源块(Resource Block,RB)等;
3、空域:天线或端口资源。
感知需求对资源配置的需求主要包括两个方面:
1、资源的跨度:在目标域上,一个感知帧的资源从最小资源单元索引到最大资源单元索引之间的跨度,包括:时间长度(时域)、带宽(频域)、孔径(空间维度);
2、资源单元间隔:在目标域上,一个感知帧之内在目标域上相邻的目标资源单元之间的间隔,包括:分配给感知信号的OFDM符号之间的间隔(时域)、分配给感知信号的子载波之间的间隔(频域)、分配给感知信号的天线或端口之间的间隔(空域)。
资源配置对感知的影响包括:
1、资源的跨度决定目标参数的分辨率,包括:时域上的时间跨度决定了多普勒或者速度的测量分辨率、频域上的带宽决定了时延或距离的测量分辨率、空域上的孔径决定了角度的测量分辨率;
2、目标资源单元间隔决定了目标参数的最大不模糊测量范围,包括:时域上分配给感知信号的OFDM符号之间的间隔决定了多普勒或速度的最大不模糊测量范围、频域上分配给感知信号的子载波之间的间隔决定了时延或距离的最大不模糊测量范围、空域上分配给感知信号的天线或端口之间的间隔决定了角度的最大不模糊测量范围。
下面以时域和频域的资源配置为重点讨论感知信号的资源配置与感知需求之间的关系。
1、时延/距离;
通过电磁波进行感知时直接得到的是时延信息,距离是由时延换算得到的,因此这里主要讨论时延与感知信号的资源配置之间的关系。
时延的分辨率由下式给出:
其中,B表示信号带宽。
时延的最大不模糊测量范围由下式给出:
其中,Δf为分配给感知信号的相邻子载波之间的间隔。
2、多普勒/速度
通过电磁波进行感知时直接得到的是多普勒信息,速度是由多普勒换算得到的,因此这里主要讨论多普勒与感知信号的资源配置之间的关系。
多普勒的分辨率由下式给出:
其中,T为一个感知帧的时间长度。
多普勒的最大不模糊测量范围由下式给出:
其中,Δt表示分配给感知信号的相邻OFDM符号之间的间隔。
根据上述分析,当给定感知需求中的时延和多普勒的分辨率和最大不模糊测量范围,即给定Δτ、τmax、Δfd和fd,max之后,需要的感知资源的数量为:
1、子载波的数量
OFDM符号的数量
下面结合一个典型场景来说明感知信号对于感知资源(子载波和OFDM符号)的需求。考虑交通监测的场景:
最大不模糊测距范围为200m;
测距分辨率为0.2m;
测速范围为-180km/h~180km/h(能够检测超速行驶的车辆,包括接近和远离两个方向);
测速分辨率为0.2m/s(能够分辨缓慢行走的行人)。
考虑载波中心频率为30GHz的毫米波频段,对应的感知资源的配置需求满足以下条件:
带宽B≥750MHz;
分配给感知信号的相邻子载波之间的间隔Δf≤1500kHz;
感知帧的时间长度T≥25ms;
分配给感知信号的相邻OFDM符号之间的间隔Δt≤50μs。
综合上述分析,在这里给出的交通监测场景下,需要的感知资源的数量为:
子载波的数量Nscs≥500;
OFDM符号的数量Nsymbol≥500。
可以看出,为了满足上述交通监测场景的感知需求,时域和频域资源的开销较大。进一步考察上述时频域资源开销在整个时频域的占比。在30GHz中心频率的情况下,考虑子载波间隔为120kHz,则OFDM符号的时间长度为8.33μs。为了满足上述的资源配置要求,需要每12个子载波中有1个子载波分配给所述的感知信号、每6个OFDM符号中有1个OFDM符号分配给所述的感知信号。在多端口感知的场景下,感知资源的开销占比则会进一步增大。
在通感一体化场景中,采用传统的均匀分布的感知信号资源配置存在以下三方面的问题:
第一,为了满足感知需求(分辨率和最大不模糊测量范围),需要较大的感知信号的 资源开销;
第二,在通信系统中,由于存在各种通信参考信号(如:CSI-RS、DMRS、相位跟踪参考信号(Phase-Tracking Reference Signal,PTRS)等)占据了大量的时频域网格,在很多情况下无法在时频域找到连续大跨度(大带宽、大时宽)的均匀分布的时频域资源网格来满足感知需求;
第三,如何结合现有的各种通信参考信号进行感知,以降低感知信号的时频域资源的开销。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的信号传输方法进行详细地说明。
如图2所示,本申请实施例提供了一种信号传输方法,包括:
步骤21:第一设备接收第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔;
所述在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括所述M个目标资源单元中在目标域上相邻的两个目标资源单元,且每个所述目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求,其中,N大于或等于第一预设数值;
其中,所述在目标域上相邻的两个目标资源单元的间隔包括以下至少一项:在时域上相邻的两个目标资源单元的间隔;在频域上相邻的两个目标资源单元的间隔;
所述目标域对应的感知测量量包括多普勒、速度、时延或距离。
其中,所述目标域包括时域和频域中的至少一项。
可选地,上述目标资源单元组之间可以有交集,也可以没有交集,例如一个目标资源单元组包括M个目标资源单元中的第一个目标资源单元和第二个目标资源单元,另一个目标资源单元包括M个目标资源单元中的第二个目标资源单元和第三个目标资源单元。
作为一种可能的实现方式,上述第一预设数值可以根据目标域对应的感知测量量的最大不模糊测量范围要求确定。
可选地,在上述目标域为时域的情况下,时域对应的感知测量量包括多普勒或速度,在上述目标域为频域的情况下,频域对应的感知测量量包括时延或距离。
本步骤中,第一设备获取第二设备发送的第一信号的参数配置信息,该第一设备包括但不限于终端或基站,该第二设备包括但不限于基站或核心网设备。
上述资源单元包括时域资源单元和频域资源单元中的至少一项,该时域资源单元包括 但不限于OFDM符号,该频域资源单元包括但不限于子载波。即上述目标资源单元可以是目标OFDM符号和目标子载波中的至少一项。将分配给第一信号的OFDM符号称为目标OFDM符号,将分配给第一信号的子载波称为目标子载波。
本申请实施例中,第一设备接收第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号;第一信号的资源图样满足第一特征,第一特征为:包括目标资源,目标资源在目标域上包括M个目标资源单元,且目标资源在目标域上对应至少两种资源间隔,所述目标资源单元为分配给所述第一信号的资源单元;在目标域上的所述M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括所述M个目标资源单元中在目标域上相邻的两个目标资源单元,且每个目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求。由于所述M个目标资源单元在目标域上对应至少两种资源间隔,在通感一体化场景中,可以根据感知需求设置部分在目标域上相邻的目标资源单元的资源间隔为满足对应的感知测量量的分辨率要求的资源间隔、而剩余部分在目标域上相邻的目标资源单元的资源间隔则大于对应的感知测量量的分辨率要求的资源间隔,从而在第一信号能够满足感知需求的前提下降低资源开销。
可选地,所述目标域包括时域,每个所述资源单元组中在时域上相邻的两个目标资源单元的间隔满足多普勒或速度的最大不模糊测量范围要求。
在本申请的一实施例中,假设任意一个目标资源单元组中在时域上相邻的两个目标资源单元的间隔为ΔT,则应满足:ΔT≤1/fd,max或ΔT≤c/2fcvmax,其中fd,max表示多普勒的最大不模糊测量值、c表示光速、fc表示载波中心频率、vmax表示速度的最大不模糊测量值。
所述多普勒最大不模糊测量值或速度最大不模糊测量值根据感知需求或感知先验信息确定,包括以下之一:
当已知多普勒或速度的方向时,上述的多普勒或速度的最大不模糊测量值与感知先验信息或感知需求中目标的最大多普勒或最大速度之间的关系为:
当未知多普勒或速度的方向时,上述的多普勒或速度的最大不模糊测量值与感知先验信息或感知需求中目标的最大多普勒或最大速度之间的关系为:
需要说明的是,ΔT可以有一种或多种取值,所述N个目标资源单元组对应的目标OFDM符号的数量应不少于预设数量。例如,所述M个目标OFDM符号中相邻的目标OFDM符号之间的时间间隔的数值的取值从小到大排列包括{ΔT1,ΔT2,ΔT3,…ΔTn},对应的目标OFDM的数量分别为{N1,N2,N3,…Nn},则应满足不小于所述的预设数值,其中t为{ΔT1,ΔT2,ΔT3,…ΔTn}序列中满足ΔT≤1/fd,max或ΔT≤c/2fcvmax条件的最大值的下标,即有:ΔTt满足ΔT≤1/fd,max或ΔT≤c/2fcvmax条件而ΔTt+1则不满足。
可选地,所述目标域包括频域,每个所述资源单元组中在频域上相邻的两个目标资源单元的间隔满足时延或距离的最大不模糊测量范围要求。
在本申请的一实施例中,假设任意一个目标资源单元组中在频域上相邻的两个目标资源单元的间隔为Δf,满足:Δf≤1/τmax或Δf≤c/2Rmax,其中τmax表示时延的最大不模糊测量值、c表示光速、Rmax表示感知需求中距离的最大不模糊测量值。
类似的,Δf可以有一种或多种取值,所述N个目标资源单元组对应的目标子载波的数量不少于预设数量。
可选地,所述在目标域上的M个目标资源单元资源跨度满足目标域对应的感知测量量的分辨率要求。
可选地,所述目标域包括时域,在时域上的所述M个目标资源单元资源跨度满足多普勒或速度的分辨率要求。
在时域上的所述M个目标资源单元资源跨度是指,在时域上从最小索引的目标OFDM符号到最大索引的目标OFDM符号之间的总时长T,这其中包括了在时域上位于最小索引的目标OFDM符号和最大索引的目标OFDM符号之间的未分配给所述第一信号的OFDM符号所占据的时间长度。
所述第一信号的总时长T(通常被称为:感知帧长度,或者,相干处理时间,表示进行一次相干信号处理、获取感知测量量或感知结果的第一信号在时域上的长度),满足:T≥1/Δfd或T≥c/2fcΔv,其中Δfd表示感知需求中的多普勒分辨率、c表示光速、fc表示载波中心频率、Δv表示感知需求中的速度分辨率。
可选地,所述目标域包括频域,在频域上的所述M个目标资源单元资源跨度满足时延或距离的分辨率要求。
在频域上的所述M个目标资源单元资源跨度是指,在频域上从最小索引的目标子载波到最大索引的目标子载波之间的总带宽B,这其中包括了在频域上位于最小索引的目标子载波和最大索引的目标子载波之间的未分配给所述第一信号的子载波所占据的带宽。
所述第一信号的总带宽B,有:B≥1/Δτ或B≥c/2ΔR,其中Δτ表示感知需求中的时延分辨率、c表示光速、ΔR表示感知需求中的距离分辨率。
可选地,所述目标域包括时域,所述第一信号的时域信号序列在第一变换域上的第一副瓣的第一参数与主瓣的第一参数的比值小于第一预设门限;
和/或,所述目标域包括频域,所述第一信号的频域信号序列在第二变换域上的第二副瓣的第二参数与主瓣的第二参数的比值小于第二预设门限;
其中,所述第一变换域为多普勒域,所述第一副瓣是指多普勒域上幅度或功率最大的副瓣,所述第一参数包括幅度或功率;
所述第二变换域为时延域,所述第二副瓣是指时延域上幅度或功率最大的副瓣,所述第二参数包括幅度或功率。
本申请实施例中第一信号的参数配置信息也可描述为完全非均匀信号配置信息,即对 第一信号进行完全非均匀信号配置。
下面结合具体实施例来对上述第一信号的资源配置进行详细说明。
在本申请的一实施例中,第一信号在时域采用本申请的完全非均匀信号配置,即分配给第一信号的目标OFDM符号对应至少两种资源间隔,第一信号在频域上的分布情况,这里不做限制;在一些实施例中,分配第一信号的子载波在频域上以常规的均匀分布排列,例如,在第一信号所在的带宽部分(Bandwidth Part,BWP)内每个RB中的第k个子载波被分配给第一信号,其中k为RB内的子载波编号。
第一信号在时域上的分布采用本申请所述的方案,具体地,分配给第一信号的OFDM符号在时域上的位置由:系统帧号nf、半帧号、子帧号、时隙号和时隙内的OFDM符号编号l描述。
第一信号在时域上具有如下特征:
特征T1:分配给第一信号的M个目标OFDM符号在时域上非均匀分布,即M个目标OFDM符号在时域上对应至少两种资源间隔;
特征T2:分配给第一信号的全部OFDM符号所占据的总时长满足多普勒或速度的分辨率要求;
特征T3:所述M个目标OFDM符号包括N个目标OFDM符号组,每个目标OFDM符号组包括所述M个目标OFDM符号中在时域上相邻的两个目标OFDM符号,且每个所述目标OFDM符号组中在时域上相邻的两个目标OFDM符号的间隔满足时域对应的多普勒或速度的最大不模糊测量范围要求。
特征T4:第一信号的时域信号序列变换到多普勒域后在多普勒域上的第一参数与主瓣的第一参数的比值小于第一预设门限,所述第一参数包括幅度或功率。
在本申请的一实施例中,第一信号在频域采用完全非均匀分布,需要强调的是,这里考虑的是第一信号在激活BWP中的配置。至于第一信号在时域上的分布情况,这里不做限制;在一些实施例中,分布配第一信号的OFDM符号在时域上以常规的均匀分布排列,例如,在满足的时隙中的第l0和/或l1个OFDM符号被分配给第一信号,其中为一个系统帧中包含的时隙数、nf为系统帧号、为系统帧内的时隙号、Toffset为周期内的时隙偏移、TCSI-RS为以时隙为单位的周期、l0和l1为时隙内的OFDM符号编号。
第一信号在频域上的分布采用本申请所述的方案,具体地,分配给第一信号的目标子载波在频域上的位置由:RB编号RB内的子载波编号k描述。
第一信号在频域上具有如下特征:
特征F1:分配给第一信号的M个目标子载波在频域上非均匀分布,即M个目标子载波在频域上对应至少两种资源间隔;
特征F2:分配给第一信号的全部子载波所占据的总带宽满足所述时延或距离的分辨率要求;
特征F3:所述M个目标子载波包括N个目标子载波组,每个目标子载波组包括所述M个目标子载波中在频域上相邻的两个目标子载波,且每个所述目标子载波组中在频域上相邻的两个目标子载波的间隔满足频域对应的多普勒或速度的最大不模糊测量范围要求。
特征F4:所述第一信号的频域信号序列变换到时延域上后在时延域上的第二副瓣的第二参数与主瓣的第二参数的比值小于第二预设门限,所述第二副瓣是指时延域上幅度或功率最大的副瓣。
在本申请的一实施例中,第一信号在时域和频域上的分布均采用本申请实施例的方案,分配给第一信号的目标OFDM符号在时域上满足上述特征T1-T4,其中分配给第一信号的OFDM符号在时域上的位置由:系统帧号nf、半帧号、子帧号、时隙号和时隙内的OFDM符号编号l描述。同时,分配给第一信号的目标子载波在频域上述满足上述特征F1-F4,其中,其中分配个第一信号的目标子载波在频域上的位置由:RB编号RB内的子载波编号k描述。
可选地,所述参数配置信息包括一个或多个资源集的资源配置信息,每个所述资源集包括至少一个目标资源单元,所述目标资源由所述一个或多个资源集构成。
对于上述目标域为时域的情况,属于第一信号的目标OFDM符号被划分成若干个资源集,各个资源集之间在时域上可以有重叠、或者不重叠,各个资源集在时域上合成满足上述特征T1~特征T4的第一信号。第一信号的参数配置以资源集为组成部分来进行。
对于上述目标域为频域的情况,属于第一信号的目标子载波被划分成若干个资源集,各个资源集之间在频域上可以有重叠、或者不重叠,各个资源集在频域上合成满足上述特征F1~特征F4的第一信号。第一信号的参数配置以资源集为组成部分来进行。
对于上述目标域包括时域和频域的情况,属于第一信号的{目标OFDM符号,目标子载波}被划分成若干个资源集,各个资源集之间在时域和/或频域上可以有重叠、或者不重叠。各个资源集合成的第一信号在时域上满足上述特征T1~T4、在频域上满足上述特征F1~特征F4。第一信号的参数配置以资源集为组成部分来进行。
由资源集构成第一信号的示意图如图3和图4所示。在对第一信号进行满足上述特征T1~特征T3或特征F1~特征F3的参数配置时,以资源集为组成部分来进行。第一信号在时域或频域上包括至少一个资源集,在资源集的数量大于1时,在目标域上资源集之间不重叠(如图3所示)或资源集重叠(如图4所示)。
可选地,所述一个或多个资源集的资源配置信息包括以下至少一项:
第一项:一个或多个资源集在目标域上的起始位置;
第二项:一个或多个资源集在目标域上的跨度;
第三项:一个或多个资源集之内的目标资源单元之间的资源间隔;
第四项:一个或多个资源集之内的目标资源单元的数量;
第五项:一个或多个资源集之内的目标资源单元的密度;
第六项:一个或多个资源集之内的目标资源单元所在时隙在时域的重复周期;
第七项:一个或多个资源集之内的目标资源单元在所在时隙内的位置;
第八项:一个或多个资源集之内的目标资源单元所在资源块RB在频域的重复周期;
第九项:一个或多个资源集之内的目标资源单元所在RB在频域的位置;
第十项:一个或多个资源集之内的目标资源单元在所在RB内的位置;
第十一项:第一指示信息,所述第一指示信息用于指示目标域为时域和/或频域;
第十二项:第二指示信息,所述第二指示信息用于指示一个或多个资源集之内的目标资源单元在目标域上的位置分布;
其中,所述资源集在目标域上的跨度是指所述资源集在目标域上的第一个资源单元至最后一个资源单元之间的跨度。
可选地,上述目标资源单元包括目标OFDM符号和目标子载波中的至少一项。
可选地,对于上述第一项,一个或多个资源集在目标域上的起始位置包括一个或多个资源集在时域上的起始位置和/或一个或多个资源集在频域上的起始位置。其中,一个或多个资源集在时域上的起始位置由帧号、半帧号、子帧号、时隙号、OFDM符号编号中至少之一指示,或者,一个或多个资源集在时域上的起始位置包括相对第一信号在时域的起始位置的时间偏移,这里的时间偏移的参数包括:帧数、半帧数、子帧数、时隙数、OFDM符号数中的至少一项。一个或多个资源集在频域上的起始位置可以通过相对预设参考点的偏移进行指示,该预设参考点可以是点(point)A、BWP的物理资源块(Physical Resource Block,PRB)0,该偏移可通过以下至少一项指示:资源块组(Resource block group,RBG)数、RB数、资源单元(Resource element,RE)数。一个或多个资源集在频域上的起始位置还可以通过相对第一信号在频域上的起始位置的偏移来进行指示,该偏移可通过以下至少一项指示:RBG数、RB数、RE数。
对于上述第二项,一个或多个资源集在目标域上的跨度包括一个或多个资源集在时域和/或频域上的资源跨度。其中,一个或多个资源集在时域上的资源跨度可以是资源集内的最大索引的OFDM符号和最小索引的OFDM符号之间在时域上的跨度。一个或多个资源集在频域上的资源跨度可以是资源集内的最大索引的子载波和最小索引的载波之间在频域上的跨度。
对于上述第三项,一个或多个资源集之内的目标资源单元之间的资源间隔包括一个或多个资源集之内的目标OFDM符号间隔和一个或多个资源集之内的目标子载波间隔中的至少一项。
对于上述第四项:一个或多个资源集之内的目标资源单元的数量包括一个或多个资源集之内的目标OFDM符号的数量和目标子载波的数量中的至少一项。
对于上述第五项:一个或多个资源集之内的目标资源单元的密度包括一个或多个资源集之内的目标OFDM符号的密度和目标子载波的密度中的至少一项;其中,一个或多个资源集之内的目标OFDM符号的密度是指在时域上连续的预设数量个OFDM符号内包含的目标OFDM符号的数量,或,在时域上连续的预设数量个OFDM符号内包含的目标 OFDM符号的数量与所述的预设数量之比。例如,在时域上,一个时隙(14个符号)内有2个符号分配给所述第一信号,那么所述的目标OFDM符号的密度可以表示为2或者1/7。
一个或多个资源集之内的目标子载波的密度是指在频域上连续的预设数量个子载波内包含的目标子载波的数量,或,在频域上连续的预设数量个子载波内包含的目标子载波的数量与所述的预设数量之比。例如:在频域上,一个RB(12个子载波)内有2个子载波分配给所述第一信号,那么所述的目标子载波的密度可以表示为3或者1/4。
对于上述第十二项,第二指示信息用于指示一个或多个资源集之内的目标OFDM符号在时域上的位置分布和/或用于指示一个或多个资源集之内的目标子载波在频域上的位置分布。
可选地,所述第二指示信息包括以下至少一项:
A1:位图,所述位图包括L个比特,每个所述比特对应一个资源单元;在所述比特对应的值为第一值的情况下,所述比特对应的资源单元为分配给所述资源集的目标资源单元,在所述比特对应的值为第二值的情况下,所述比特对应的资源单元不是分配给所述资源集的目标资源单元,L为正整数。
本申请实施例中,可通过位图(bitmap)方式来指示一个或多个资源集之内的目标资源单元在目标域上的位置分布,用位图中的一个比特来指示对应的资源单元是否为分配给资源集的目标资源单元,例如,该比特为1,,表示某个资源单元为分配给资源集的目标资源单元,该比特为0,表示某个资源单元不是分配给资源集的目标资源单元。
A2:子分块的参数信息,所述子分块的参数信息包括:所述子分块内目标资源单元的位置分布信息、子分块的数量X、子分块的重复周期和X个子分块中的第一个子分块的起始位置中的至少一项,X为正整数。
在本申请的一实现方式中,资源集之内的目标资源单元的位置以一定的周期重复,将所述资源集周期性地划分为预设数量的第一子分块,各个第一子分块之间目标资源单元的位置分布相同,则上述子分块的参数信息可包括:所述第一子分块内目标资源单元的位置分布信息(可以用位图的方式指示)、第一子分块的数量X、第一子分块的重复周期和X个第一子分块中的第一个子分块的起始位置中的至少一项,X为正整数。
需要说明的是,该实现方式中的周期不限于时间维度,也包括频率维度,例如,在频率维度上每10个RB重复出现特定的子载波分布的图样则频率维度的周期为10个RB。
在本申请的一实现方式中,所述资源集可被划分为预设数量的第二子分块,各个第二子分块之间目标资源单元的位置分布相同,但是各个第二子分块的起始位置不是周期性的,则上述子分块的参数信息包括:所述第二子分块内目标资源单元的位置分布信息(可以用位图的方式指示)、第二子分块的数量X和X个第二子分块中每个第二子分块的起始位置中的至少一项,X为正整数。
其中,第二子分块的起始位置可以用如下方式进行指示:
直接指示各个第二子分块的起始位置;
通过周期+偏移的方式指示各个第二子分块的起始位置,即各个子分块的起始位置相对于某个周期性位置有一定的偏移,此时可用所述周期和所述偏移来指示各个第二子分块的起始位置。
A3:目标公式的参数信息,所述目标公式为用于计算资源集内的目标资源单元在目标域上的位置信息的公式,所述目标参数的参数信息包括目标公式的类型、目标公式的公式参数和根据所述目标公式得到的计算结果中的至少一项,所述计算结果用于指示所述位置信息。
在本申请的一些实施例中,可以通过起始和长度指示值(Start and length Indicator Value,SLIV)的方法来表示时域资源,而通过资源指示值(Resource indication value,RIV)的方法来表示频域资源。
需要说明的是,上述周期可以是时域上的周期,也可以是频域上的周期。
可选地,所述参数配置信息还包括以下至少一项:
第一信号在目标域的起始位置;
第一信号在目标域上的资源跨度;
第一信号在时域的重复周期;
其中,所述第一信号在目标域上的资源跨度是指所述至少两个资源块在目标域的第一个目标资源单元至最后一个目标资源单元之间的跨度;
其中,第一信号在目标域的起始位置包括第一信号在时域和/或频域的起始位置,其中,第一信号在时域的起始位置包括由帧号、半帧号、子帧号、时隙号、OFDM符号编号中的至少一项指示的时域位置或者包括相对预设参考信号的时间偏移,例如相对周期发送的同步信号块(Synchronization Signal Block,SSB)的时间偏移,这里的时间偏移的参数包括:帧数、半帧数、子帧数、时隙数、OFDM符号数中的至少一项。第一信号在频域的起始位置包括相对预设参考点的偏移,该预设参考点包括以下其中一项:pointA、激活BWP的PRB0,该频移可以通过资源块组(Resource Block Group,RBG)数、RB数、RE数中的至少一项表示。
第一信号在目标域上的资源跨度包括第一信号在时域上的资源跨度和/或第一信号在频域上的资源跨度,其中,第一信号在时域上的资源跨度为时域上分配给第一信号的最大索引的OFDM符号和最小索引的OFDM符号之间的时间跨度,第一信号在频域上的资源跨度为频域上分配给第一信号的最大索引的子载波和最小索引的子载波之间的时间跨度。
需要说明的是,上述参数配置信息仅是一种可能的配置参数集,在具体实施中也可能采用其他配置参数集实现满足上述特征1~特征5的信号,也属于本申请保护的范畴。
所述第一信号在时域上的资源跨度、所述资源集在时域上的跨度、所述目标OFDM符号间隔、所述目标OFDM符号在时域的位置的颗粒度,可以是以下至少之一:预设时间长度(如:1ms)、OFDM符号时长、时隙、子帧、半帧、帧;
所述第一信号在频域上的资源跨度、所述资源集在频域上的跨度、所述目标子载波间 隔、所述目标子载波所在时隙在频域的位置的颗粒度,可以是以下至少之一:预设频率宽度(如:30kHz)、子载波、RB、RBG。
在本申请的一实施例中,以现有NR参考信号(例如CSI-RS)的配置参数来实现第一信号的参数配置为例进行说明,或者,在现有NR参考信号的配置参数稍加扩展来实现第一信号的参数配置为例进行说明。具体的,第一信号的参数配置信息包括以下至少一项:
第一项:时域配置参数;
第二项,频域配置参数;
其中,时域配置参数包括以下至少一项:
B1:第一信号在时域上的起始位置;
B2:第一信号的各个资源集在时域上的起始位置;通过无线资源控制(Radio Resource Control,RRC)配置、或媒体接入控制控制单元(Message Authentication Code Control Element,MAC CE)、下行控制信息(Downlink Control Information,DCI)信令、或MAC CE和DCI的组合信令来指示对应资源集的在时域上的起始;
例如:如果要求某个资源集在时域上的起始位置为时隙n,方法有两种;一种是,通过重新RRC配置的方法,另一种是,通过MAC CE或DCI来激活(即,activation)新的资源集;
B3:第一信号的各个资源集之内的目标OFDM符号所在时隙的重复周期,单位为时隙;
B4:第一信号的各个资源集之内的目标OFDM符号在所在时隙内的位置;例如,用l0或用l0和l1表示;
注意:不同资源集之内在时域上的目标OFDM符号在所在时隙内的位置可以相同、也可以不同,不同资源集之内在时域上的目标OFDM符号所在时隙内的目标OFDM符号的数量也可以相同、或者不同;
B5:第一信号的各个资源集在时域上的结束位置:通过RRC配置、或MAC CE、DCI信令、或MAC CE和DCI的组合信令来指示对应资源集的结束;
例如:如果要求某个资源集在时隙n结束,方法有两种;一种是,通过重新RRC配置的方法,另一种是,通过MAC CE或DCI来去激活(即,deactivation)相应的资源集(Resource Set);
B6:第一信号在时域的重复周期,即相邻两次收发第一信号执行感知过程之间的时间间隔;该参数即体现了感知的刷新时间或者刷新频率。
其中,频域配置参数包括以下至少一项:
C1:第一信号在频域上的起始位置;
C2:第一信号的各个资源集在频域上的起始位置;
C3:第一信号的各个资源集之内的目标子载波在所在RB在频域的重复周期,单位为RB或RBG;
C4:第一信号在频域上的各个资源集之内的目标子载波在所在RB内的位置;例如,用bitmap表示;
C5:第一信号的各个资源集之内目标子载波所在RB在频域上的位置;例如,用bitmap表示、bitmap的一个字节(bit)表示一个RB或一个RBG;
C6:第一信号在频域上的各个资源集占用的带宽:即为各个资源集之内的最小索引的目标子载波到最大索引的目标子载波之间所包括的全部子载波对应的带宽或RB数,或者,各个资源集之内的最小索引的目标子载波所在的RB或RBG到最大索引的目标子载波所在的RB或RBG之间所包括的全部RB或RBG对应的带宽;表示方式可以是:预设的带宽(例如:100MHz),或RB/RBG数。
图5为采用本申请的完全非均匀信号与在分辨率和最大不模糊测量范围性能方面等效的现有的均匀分布信号的资源开销对比示意图。具体的,图5中的完全非均匀信号可参考图4中的完全非均匀信号。本申请实施例的好处体现在以下两个方面:
第一方面:在具有相同的分辨率和最大不模糊测量范围性能的前提下,本申请提出的完全非均匀信号在很多情况下能够占用更少的时域和/或频域资源,即能够节约开销;
第二方面:本申请能够充分利用为通信功能配置的参考信号、尽可能少地为感知功能配置额外的参考信号;如图4所示,资源集1、资源集2、资源集3可能是不同的参考信号,例如:资源集1是CSI-RS、资源集2是定位参考信号(Positioning Reference Signal,PRS)、资源集3是相位跟踪参考信号(Phase-Tracking Reference Signal,PTRS)或解调参考信号(Demodulation Reference Signal,DMRS)。如果由资源集1、资源集2和资源集3组成的第一信号能够满足特征1(T1或F1)~特征3(T3或F3)的条件,则无需额外配置参考信号即可实现满足感知需求的感知;或者,资源集1、资源集2和资源集3部分满足特征1~特征3,只需额外配置少量的参考信号即可实现满足感知需求的感知。
下面结合具体实施例来对本申请的方法进行详细说明。
在本申请的一实施例中,在时域采用本申请提出的完全非均匀信号配置方法进行第一信号的配置;而在频域根据其他配置方法进行配置,例如在频域采用传统的均匀分布的第一信号的配置。
在此种情况下,本申请的第一信号在时域上的配置参数,包括以下至少一项:
第一指示信息,用于指示目标域为时域,例如用1个比特指示,比特0表示时域;
第一信号在时域的起始位置;
第一信号在时域上的总跨度;
一个或多个资源集在时域上的起始位置;
一个或多个资源集在时域上的跨度;
一个或多个资源集之内的目标OFDM符号在时域上的位置;
一个或多个资源集之内的目标OFDM符号间隔;
一个或多个资源集之内的目标OFDM符号的数量;
一个或多个资源集之内的目标OFDM符号的密度;
一个或多个资源集之内的目标OFDM符号所在时隙在时域的重复周期;
一个或多个资源集之内的目标OFDM符号在所在时隙内的位置。
一个或多个资源集之内的目标OFDM符号的位置分布指示(即第二指示信息)。
第一信号的配置除包括上述在时域上的配置以外,还需要包括在频域上的配置。在本实施例中,在频域上的配置采用传统的均匀分布的配置,包括以下至少一项:
目标域为频域的指示,例如用1个比特指示,该比特为‘1’表示频域;
目标资源在频域上的起始位置;
在频域上目标资源的总跨度;
在频域上目标资源的目标子载波间隔;
在频域上目标资源包含的目标子载波的数量;
在频域上目标资源的目标子载波密度。
本实施例的一个示意图如图6所示,图6中在时间维度的一格表示时域的目标资源单元(例如,OFDM符号)、在频率维度的一格表示频域的目标资源单元(例如,子载波),。应该认识到该示意图仅用于方便对于本实施例的技术方案的理解,并不代表本实施例的信号配置局限于图6中所示。
在图6中,在时域采用本申请所述的完全非均匀信号的配置。目标OFDM符号在时域非均匀分布、其位置为{0,2,6,9,14,16,21,24,26,32,35,39,44,46,53,55,60},这里的目标OFDM符号的位置是相对于目标资源在时域的起始位置,颗粒度是OFDM符号。另一方面,在频域上采用传统的均匀分布信号的配置,在频域目标资源单元间隔为2个子载波。在图6的示例中,在时域上目标OFDM符号间隔的平均值约为3.8个OFDM符号,大于多普勒或速度的分辨率要求的目标OFDM符号间隔(2个OFDM符号),降低了第一信号的资源开销。
在本申请的一实施例中,在频域采用本申请提出的完全非均匀信号配置方法进行第一信号的配置;而在时域根据其他配置方法进行配置,例如在时域采用传统的均匀分布的第一信号的配置。
在此种情况下,本申请所述的第一信号在频域的配置包括以下至少一项:
第一指示信息,所述第一指示信息指示目标域为频域,例如用1个比特指示,比特1表示频域;
第一信号在频域的起始位置;
第一信号在频域上的资源跨度;
一个或多个资源集在频域上的起始位置;
一个或多个资源集在频域上的跨度;
一个或多个资源集之内的目标子载波在频域上的位置;
一个或多个资源集之内的目标子载波间隔;
一个或多个资源集之内的目标子载波的数量;
一个或多个资源集之内的目标子载波的密度;
一个或多个资源集之内的目标子载波所在RB在频域的重复周期;
一个或多个资源集之内的目标子载波在所在时隙内的位置。
一个或多个资源集之内目标子载波的位置分布指示(即第二指示信息)。
第一信号的配置除包括上述在频域上的配置以外,还需要包括在时域上的配置。在本实施例中,在时域上的配置采用传统的均匀分布的配置,包括以下至少一项:
目标域为时域的指示,例如用1个比特指示,该比特为‘0’表示时域;
目标资源在时域上的起始位置;
在时域上目标资源的资源跨度;
在时域上目标资源的目标OFDM符号间隔;
在时域上目标资源包含的目标OFDM符号的数量;
在时域上目标资源的目标OFDM符号密度。
本实施例的一个示意图如图7所示,图7中在时间维度的一格表示时域的目标资源单元(例如,OFDM符号)、在频率维度的一格表示频域的目标资源单元(例如,子载波);。应该认识到该示意图仅用于方便对于本实施例的技术方案的理解,并不代表本实施例的信号配置局限于图中所示。
在图7中,在频域采用本申请所述的完全非均匀信号的配置。目标子载波在频域非均匀分布、其位置为{0,2,5,8,10,13,18,22,24,30,33,38,40,44},这里的目标子载波的位置是相对于目标资源在频域的起始位置、颗粒度是子载波。另一方面,在时域上采用传统的均匀分布信号的配置,在时域目标OFDM符号间隔为3个OFDM符号。在图7的示例中,在频域上目标子载波间隔的平均值约为3.2个子载波间隔,大于时延或距离的分辨率要求的目标子载波间隔(2个子载波),降低了第一信号的资源开销。
在本申请的一实施例中,同时在时域和频域采用本申请提出的完全非均匀信号配置方法进行第一信号的配置。
在此种情况下,本申请所述的第一信号的参数配置信息包括:
时域配置参数;
频域配置参数;
其中,时域配置参数包括以下至少一项:
第一指示信息,所述第一指示信息指示目标域为时域,例如用1个比特指示,比特0表示时域;
第一信号在时域的起始位置;
第一信号在时域上的资源跨度;
一个或多个资源集在时域上的起始位置;
一个或多个资源集在时域上的跨度;
一个或多个资源集之内的目标OFDM符号在时域上的位置;
一个或多个资源集之内的目标OFDM符号间隔;
一个或多个资源集之内的目标OFDM符号的数量;
一个或多个资源集之内的目标OFDM符号的密度;
一个或多个资源集之内的目标OFDM符号所在时隙在时域的重复周期;
一个或多个资源集之内的目标OFDM符号在所在时隙内的位置。
一个或多个资源集之内的目标OFDM符号的位置分布指示(即第二指示信息)。
其中,频域配置参数包括以下至少一项:
第一指示信息,所述第一指示信息指示目标域为频域,例如用1个比特指示,比特1表示频域;
第一信号在频域的起始位置;
第一信号在频域上的资源跨度;
一个或多个资源集在频域上的起始位置;
一个或多个资源集在频域上的跨度;
一个或多个资源集之内的目标子载波在频域上的位置;
一个或多个资源集之内的目标子载波间隔;
一个或多个资源集之内的目标子载波的数量;
一个或多个资源集之内的目标子载波的密度;
一个或多个资源集之内的目标子载波所在RB在频域的重复周期;
一个或多个资源集之内的目标子载波在所在时隙内的位置。
一个或多个资源集之内目标子载波的位置分布指示(即第二指示信息)。
本实施例的一个示意图如图8所示,图8中在时间维度的一格表示时域的目标资源单元(例如,OFDM符号)、在频率维度的一格表示频域的目标资源单元(例如,子载波)。应该认识到该示意图仅用于方便对于本实施例的技术方案的理解,并不代表本实施例的信号配置局限于图中所示。
在图8中,在时域和频域采用本申请所述的完全非均匀信号的配置。在时域上,目标OFDM符号非均匀分布、其位置为{0,2,6,9,14,16,21,24,26,32,35,39,44,46,53,55,60},这里的目标OFDM的位置的是相对于目标资源在时域的起始位置、颗粒度是OFDM符号。在频域上,目标子载波非均匀分布、其位置为{0,2,5,8,10,13,18,22,24,30,33,38,40,44},这里的目标子载波的位置是相对于目标资源在频域的起始位置、颗粒度是子载波。在图8的示例中,在时域上目标OFDM符号间隔的平均值约为3.8个OFDM符号,大于多普勒或速度的分辨率要求的OFDM符号间隔(2个OFDM符号);在频域上目标子载波间隔的平均值约为3.2个子载波间隔,大于时延或距离的分辨率要求的目标子载波间隔(2个子载波),降低了第一信号的资源开销。
可选地,所述第一信号被配置为单端口或多端口;
在所述第一信号被配置为多端口的情况下,不同端口的第一信号的资源满足以下至少一项:
频分复用;
时分复用;
不同端口的第一信号在目标域上的资源图样相同,且不同端口的第一信号采用的生成序列不同;或者,不同端口的第一信号在目标域上的资源图样相同,且不同端口的第一信号采用的生成序列相同,且不同的第一信号对应的正交覆盖码不同。
本申请实施例中,第一信号可以被配置为多端口,不同端口的第一信号的图样关系可以包括以下情况:
情况1:不同端口的第一信号采用频分复用,即通过配置不同频域偏移量区分不同端口的第一信号,例如图9所示,2端口频分复用,端口1对应的第一信号频域偏移量为0个子载波,端口2对应的第一信号频域偏移量为1个子载波,端口1和端口2在频域上的资源跨度、资源分布都相同,即具有相同的感知性能;
情况2:不同端口的第一信号采用时分复用,即通过配置不同时域偏移量区分不同端口的第一信号,例如图10所示,2端口时分复用,端口1对应的第一信号时域偏移量为0个OFDM符号,端口2对应的第一信号时域偏移量为1个OFDM符号,端口1和端口2在时域上的资源跨度、时域资源分布相同,即具有相同的感知性能;
情况3:不同端口的第一信号采用频分复用和时分复用,即通过配置不同频域偏移量和时域偏移量区分不同端口的第一信号,例如图11所示,4端口频分复用和时分复用(FD2-TD2):端口1对应的第一信号频域偏移量为0个子载波、时域偏移量为0个OFDM符号,端口2对应的第一信号频域偏移量为1个子载波、时域偏移量为0个OFDM符号,端口3对应的第一信号频域偏移量为0个子载波、时域偏移量为1个OFDM符号,端口4对应的第一信号频域偏移量为1个子载波,时域偏移量为1个OFDM符号,端口1、端口2、端口3和端口4在时域和频域上的资源跨度、资源分布都相同,即具有相同的感知性能;
情况4:不同端口的第一信号在目标域上的图样相同,即具有相同的时域或频域配置参数,但所采用的第一信号的生成序列不同,即第一信号序列的生成参数与端口序号相关;
情况5:不同端口的第一信号在目标域上的图样相同,即具有相同的时域或频域配置参数,且采用的第一信号的生成序列相同,但在映射到时域或频域资源时通过不同的正交覆盖码(Orthogonal Covering Code,OCC)区分,例如2端口第一信号映射采用频域正交覆盖码(Frequency domain orthogonal covering code,FD-OCC)时,端口1的第一信号序列为c(m),可直接映射到某指定时间单元(例如OFDM符号)对应的频率单元(例如RE)上,端口2的第一信号序列可为c(m)*occ(m),occ(m)为FD-OCC序列,可表示为(1,-1,1,-1…,1,-1,1,-1),之后映射到与端口1相同的频率单元。
下面以第一信号为NR参考信号CSI-RS为例对本申请实施例的方法进行说明,当然其他参考信号例如,解调参考信号(Demodulation Reference Signal,DMRS)、相位跟踪参 考信号(Phase-Tracking Reference Signal,PTRS)、定位参考信号(Positioning Reference Signal,PRS)、同步信号块(Synchronization Signal Block,SSB)等其他参考信号或同步信号等也属于本申请的保护范围。
在本申请的第一实施例中,在时域上采用本申请所述的完全非均匀信号。至于第一信号在频域上的分布情况,这里不做限制;在一些实施例中,分配给第一信号的子载波在频域上以常规的均匀分布排列(即,梳状分布),例如,在第一信号所在的BWP内每个RB中的第k个子载波被分配给第一信号,其中k为RB内的子载波编号。
如图12所示,在时域上采用本申请所述的完全非均匀信号。图12中所示的情况中,第一信号包括3个资源集:资源集1在时域上的重复周期是5个时隙、时隙内的第8个(从0开始编号)OFDM符号为分配给第一信号的OFDM符号,资源集2在时域上的重复周期是9个时隙、时隙内的第4和第11个(从0开始编号)OFDM符号为分配给第一信号的OFDM符号,资源集3在时域上的重复周期为15个时隙、时隙内的第8个(从0开始编号)OFDM符号为分配给第一信号的OFDM符号。
此种配置的典型场景是,例如:对于通信功能,一个时隙内的CSI-RS出现在1个OFDM符号上、CSI-RS的重复周期配置为5个时隙(即,资源集1所示的情况),即能够满足需求;而对于某个感知场景(在这里是多普勒或者速度的测量),多普勒或速度的最大不模糊测量范围要求CSI-RS的OFDM符号间隔不大于1个时隙时长。如果在全部时隙上采用满足感知需求的CSI-RS配置,则会带来较大的额外开销。采用本申请所述的方法,只需在通信功能所需的CSI-RS配置开销以外额外补充一部分CSI-RS配置即可,在能够满足感知需求的前提下带来的额外开销较小。
容易理解的是,本实施例所示的配置仅为一种示例。现有协议中CSI-RS并不能支持图12中示意的周期为9个时隙和15个时隙,本实施例所给出的参数仅为方便示意。
在本实施例中,用来描述满足上述特征的第一信号的参数配置信息包括以下内容:
(1)第一信号在时域上的起始位置,为第一信号在时域上占据的第一个时隙的索引,表示为其中nf为系统帧号、为一个系统帧内包含的时隙数、为一个系统帧内的时隙号;
(2)第一信号的各个资源集在时域上的起始位置,为第一信号的各个资源集在时域上的第一个时隙的索引,表示为相对于第一信号在时域上起始位置的时隙偏移,以时隙为单位表示为Toffset,可以由CSI-ResourcePeriodicityAndOffset或CSI-RS-Resource-Mobility->slotConfig配置;
或者,第一信号的配置参数中不包括至少部分资源集的起始位置,取而代之的是,通过RRC配置、或MAC CE、DCI信令、或MAC CE和DCI的组合信令来指示对应资源集的在时域上的起始;
(3)第一信号的各个资源集在时域上的重复周期,为第一信号的各个资源集之内在时域上包含有目标OFDM符号的时隙的重复周期,以时隙为单位表示为TCSI-RS,可以由 CSI-ResourcePeriodicityAndOffset或CSI-RS-Resource-Mobility->slotConfig配置;
(4)第一信号的各个资源集之内包含有目标OFDM符号的时隙之内、目标OFDM符号的索引,例如:以OFDM符号为单位表示为l0(只有一个目标OFDM符号时)、或l0和l1(有2个目标OFDM符号时,本实施例属于此种情况),可以由CSI-ResourceMapping中的firstOFDMSymbolInTimeDomain和/或firstOFDMSymbolInTimeDomain2配置;
(5)第一信号的各个资源集在时域上的结束位置,通过RRC配置、或MAC CE、DCI信令、或MAC CE和DCI的组合信令来指示对应资源集的结束;
(6)波束标识符(Identifier,ID):属于同一个第一信号的所有资源集应被关联到同一波束中,即所有资源集之间具有准共址(Quasi Co-Location,QCL)关系,可以由tci-StatesToAddModList进行配置,可以将各个资源集之间配置成QCL、或者将各个资源集与同一个其他信号(如SSB)配置成QCL;
(7)资源集列表:属于同一个第一信号的所有资源集的ID的列表,用于通知第一信号的接收端哪些资源集属于对应的第一信号。
在本申请的第二实施例中,在频域上采用本申请所述的完全非均匀信号。至于第一信号在时域上的分布情况,这里不做限制;在一些实施例中,分配给第一信号的OFDM符号在时域上以常规的均匀分布排列(即,梳状分布),例如,在每4个时隙中第一个时隙的第l个OFDM符号被分配给第一信号,其中l为时隙内的OFDM符号编号。
图13中所示意的情况中,第一信号包括4个资源集:资源集1在频域上的重复周期是1个RB、每个RB内第6个(从0开始编号)子载波被分配给第一信号,资源集2在频域上的重复周期是5个RB、每个RB内第3个(从0开始编号)子载波被分配给第一信号,资源集3在频域上的重复周期是7个RB、每个RB内第9个(从0开始编号)子载波被分配给第一信号,资源集4在频域上的重复周期是9个RB、每个RB内第3个(从0开始编号)子载波被分配给第一信号.
此种配置的典型场景是,对于某个感知场景(在这里是时延或者距离的测量),需要目标子载波在频域上较为密度地分布,例如,如果采用传统的均匀分布(梳状分布)需要每个RB有3个子载波被分配给第一信号。然而,可能对于通信通能来说,CSI-RS在每个RB有1个子载波即能够满足通信功能的要求,即示意图13中资源集1的情况。通过本申请的配置方法,新增少量的子载波配置给第一信号,即可满足感知功能的需求,同时不额外新增过多的资源开销。
容易理解的是,本实施例所示的配置仅为一种示例。现有协议中并不能支持CSI-RS的频域周期为5个RB、7个RB和9个RB,本实施例所给出的参数仅为方便示意。
本实施例所述第一信号的参数配置信息,考虑以下配置方法,用来描述满足上述特征的第一信号的参数配置信息包括以下内容至少之一:
(1)第一信号在频域上的起始位置,为第一信号在频域上占据的最小索引的RB,可以用CSI-frequencyOccupation->startingRB进行配置,startingRB为起始RB;
(2)第一信号的各个资源集在频域上的起始位置,为第一信号的各个资源集在频域上的最小索引的RB,可以由CSI-frequencyOccupation->startingRB进行配置;
(3)第一信号的各个资源集之内目标子载波在频域上的密度,即1个RB中目标子载波的数量,可以由CSI-RS-ResourceMapping->density进行配置;
(4)第一信号的各个资源集之内目标子载波在所在的RB中的位置,可以由CSI-RS-ResourceMapping->frequencyDomainAllocation进行配置;
(5)第一信号的各个资源集在频域占用的带宽,CSI-frequencyOccupation->nrofRBs进行配置,nrofRBs为RB数;
(6)波束ID:属于同一个第一信号的所有资源集应被关联到同一波束中,即所有资源集之间具有QCL关系,可以由tci-StatesToAddModList进行配置,可以将各个资源集之间配置成QCL、或者将各个资源集与同一个其他信号(如SSB)配置成QCL;
(7)资源集列表:属于同一个第一信号的所有资源集的ID的列表,用于通知第一信号的接收端哪些资源集属于对应的第一信号。
在本申请的第三实施例中,在时域和频域都采用本申请的完全非均匀信号,如果第一信号在时域包括M个资源集、在频域包括N个资源集,则第一信号一共包括M*N个资源集。每个资源集在时域的配置参数同第二实施例、在频域的配置参数同第一实施例。
本申请实施例的上述方案,能够非常便捷地结合现有的参考信号来实现第一信号的资源配置,显著降低了第一信号的时域资源的开销。
可选地,本申请实施例的方法,还包括:
所述第一设备发送能力信息,所述能力信息用于指示所述第一设备是否具备对满足第一特征的所述第一信号进行处理的能力。
可选地,所述能力信息为用于指示所述第一设备是否具备对非均匀信号序列进行谱分析运算的能力。
本申请实施例中,采用上述完全非均匀信号需要第一信号的接收端能够对非均匀信号序列进行谱分析运算,因此这里所述的能力信息除包括常规的感知能力信息之外,还需要包括对非均匀信号序列的谱分析运算能力。典型的对非均匀信号序列进行谱分析的算法包括非均匀快速傅里叶变换(Non-Uniform Fast Fourier Transform,NUFFT)、多重信号分类(MUltiple SIgnal Classification,MUSIC)等。
如果第一设备不具备对非均匀信号序列进行谱分析的能力,则不能采用本申请所述的完全非均匀信号;或者,第一设备将获得的对应第一信号的数据发送至感知功能网元(例如,基站或核心网设备)由感知功能网元执行非均匀信号序列的谱分析运算,此时不要求第一设备具备对非均匀信号序列的谱分析运算能力。
可选地,本申请实施例的方法,还包括:
根据所述第一信号的参数配置信息,对所述第一信号执行第一操作,所述第一操作包括发送、接收和信号处理中的至少一项。
可选地,本申请实施例的方法,还包括:
所述第一设备获取所述一个或多个资源集的激活指令,所述激活指令用于指示第一设备对所述一个或多个资源集对应的第一信号执行第一操作,所述第一操作包括发送、接收和信号处理中的至少一项。
可选地,上述激活信令通过RRC信令、MAC CE或DCI获取。
可选地,所述方法还包括:
所述第一设备获取所述一个或多个资源集的去激活指令,所述去激活指令用于指示所述第一设备停止对所述至少一个或多个资源集对应的第一信号执行第一操作,所述第一操作包括发送、接收和信号处理中的至少一项。
可选地,上述去激活信令通过RRC信令、MAC CE或DCI获取。
在本申请一实施例中,以CSI-RS为例(也适用于采用其他NR参考信号(例如DMRS、探测参考信号(Sounding Reference Signal,SRS)等)),如图14所示,可具体包括以下步骤:
步骤1:第一设备(例如:用户设备(User Equipment,UE))上报能力信息。
该能力信息包括以下至少一项:
UE的感知能力信息。
UE是否具备对非均匀信号序列进行谱分析运算的能力。
步骤2:感知功能网元(例如,基站或核心网设备,该感知功能网元即为上述第二设备)从感知业务的发起方获取第一信息,所述第一信息包括以下至少一项:
A1:感知先验信息,包括以下至少一项:
感知目标区域的空间范围信息;
感知对象的空位置的先验信息;
感知对象的运动参数先验信息,例如:感知对象的运动速度范围、加速度范围等;
A2:感知需求信息,包括以下至少一项:
(1)感知业务类型:按类型划分或具体到某项业务,例如:成像、定位或轨迹追踪、动作识别、测距/测速等;
(2)感知目标区域:是指感知对象可能存在位置区域,或者,需要进行成像或环境重构的位置区域;
(3)感知对象类型:针对感知对象可能的运动特性对感知对象进行分类,每个感知对象类型中包含了典型感知对象的运动速度、运动加速度、典型富媒体通讯套件(Rich Communication Suite,RCS)等信息;
(4)感知服务质量(Quality of Service,QoS):对感知目标区域或感知对象进行感知的性能指标,包括以下至少一项:
感知分辨率(进一步可分为:距离/时延分辨率、角度分辨率、速度/多普勒分辨率、成像分辨率)等;
感知精度(进一步可分为:距离/时延精度、角度精度、速度/多普勒精度、定位精度等);
感知范围(进一步可分为:距离/时延范围、速度/多普勒范围、角度范围、成像范围等);
感知时延(从感知信号发送到获得感知结果的时间间隔,或,从感知需求发起到获取感知结果的时间间隔);
感知更新速率(相邻两次执行感知并获得感知结果的时间间隔);
检测概率(在感知对象存在的情况下被正确检测出来的概率);
虚警概率(在感知对象不存在的情况下错误检测出感知目标的概率);
可感知的最大目标个数。
步骤3:感知功能网元(即上述第二设备,例如,基站或核心网设备)根据第一信息,结合第一设备的能力信息等,进行第一信号的参数配置,得到满足的时域特征T1~T5和/或频域特征F1~F5的第一信号的资源集的配置参数。
需要说明的是,这里所述的第一信号的资源集包括:在执行感知任务时第一信号所包含的资源集和用于切换后第一信号所包含的资源集,其中后者也可以没有。
步骤4:感知功能网元(例如,基站或核心网设备)通过RRC重配置(RRCReconfiguration)将第一信号的资源集的配置参数发送给第一设备(例如,UE)。
该步骤4可以通过以下方式实现:
向第一设备发送所述第一信号的资源集的配置参数;
向第一设备通知所述第一信号的资源集的配置参数的类型或标识,不同类型或标识的第一信号的资源集的配置参数可以是协议中约定好的,也可以是提前通知第一设备的(例如通过RRC信令指示不同类型或标识的第一信号在目标域的配置参数,通过层1信令、或层2信令、或层1和层2组合信令指示第一信号的配置类型或标识)。
步骤5:第一设备通过RRC重配置完成(RRCReonfigurationComplete)向感知功能网元回复信息,以确认所述第一信号的资源集的配置参数的正确接收。
步骤6:感知功能网元通过RRC信令、或MAC CE、或DCI向第一设备发送第一信号的全部或部分资源集的激活指令,第一设备对第一信号执行第一操作。
所述激活指令用于指示以下至少一项:
通过RRCReconfiguration配置来指示周期性的(periodic)、半持续性的(semipersistent)、非周期性的(aperiodic)资源集的开始;此种情况下第一设备需向感知功能网元回复RRCReonfigurationComplete(图中的步骤6a);
通过MAC CE和/或DCI来指示semipersistent资源集的开始和/或aperiodic资源集的一次执行。
此过程可能执行多次,例如,用多个信令分别执行多个不同时域起始位置的资源集的激活。
步骤7:感知功能网元通过RRC信令、或MAC CE、或DCI向第一设备发送第一信号的全部或部分资源集的去激活指令,第一设备停止全部或部分资源集信号的第一操作。
所述去激活指令用于指示以下至少一项:
通过RRCReconfiguration配置来指示periodic资源集的结束;此种情况下第一设备需向感知功能网元回复RRCReonfigurationComplete(图中的步骤7a);
通过MAC CE和/或DCI来指示semipersistent资源集的结束。
此过程可能执行多次,例如,用多个信令分别执行多个不同时域结束位置的资源集的去激活。
本申请实施例的方法,能够在满足感知的分辨率性能和最大不模糊测量范围性能的前提下,大大降低感知信号的资源开销,同时,本申请实施例的方法能够方便地结合现有参考信号来实现感知信号的配置,进一步降低了资源开销。
如图15所示,本申请实施例还提供了信号传输方法,包括:
步骤1501:第二设备发送第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔;
所述在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括所述M个目标资源单元中在目标域上的相邻的两个目标资源单元,且每个所述目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求,其中,N大于或等于第一预设数值;
其中,所述在目标域上相邻的两个目标资源单元的间隔包括以下至少一项:在时域上相邻的两个目标资源单元的间隔;在频域上相邻两个目标资源单元的间隔;
所述目标域对应的感知测量量包括多普勒、速度、时延或距离;
其中,所述目标域包括时域和频域中的至少一项。
本申请实施例中,第二设备向第一设备发送第一信号的参数配置信息,该第一设备包括但不限于终端或基站,该第二设备包括但不限于基站或核心网设备。
可选地,本申请实施例的方法还包括:
所述第二设备获取第一设备发送的能力信息,所述能力信息用于指示所述第一设备是否具备对满足第一特征的所述第一信号进行处理的能力。
可选地,所述参数配置信息包括一个或多个资源集的资源配置信息,每个所述资源集包括至少一个目标资源单元,所述一个或多个资源集用于构成所述M个目标资源单元。
可选地,本申请实施例的方法,还包括:
所述第二设备根据所述第一信号的参数配置信息,对所述第一信号执行第一操作,所述第一操作包括发送、接收和信号处理中的至少一项。
可选地,本申请实施例的方法,还包括:
所述第二设备发送所述一个或多个资源集的激活指令,所述激活指令用于指示第一设备对所述一个或多个资源集对应的第一信号执行第一操作,所述第一操作包括发送、接收和信号处理中的至少一项。
可选地,本申请实施例的方法,还包括:
所述第二设备发送所述一个或多个资源集的去激活指令,所述去激活指令用于指示所述第一设备停止对所述至少一个或多个资源集对应的第一信号执行第一操作,所述第一操作包括发送、接收和信号处理中的至少一项。
本申请实施例中,第二设备发送第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号;第一信号的资源图样满足第一特征,第一特征为:包括目标资源,目标资源在目标域上包括M个目标资源单元,且目标资源在目标域上对应至少两种资源间隔,所述目标资源单元为分配给所述第一信号的资源单元;在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括M个目标资源单元中在目标域上相邻的两个目标资源单元,且每个目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求。由于M个目标资源单元在目标域上对应至少两种资源间隔,在通感一体化场景中,可以根据感知需求设置部分在目标域上相邻的目标资源单元的资源间隔为满足对应的感知测量量的分辨率要求的资源间隔、而剩余部分在目标域上相邻的目标资源单元的资源间隔则大于对应的感知测量量的分辨率要求的资源间隔,从而在第一信号能够满足感知需求的前提下降低资源开销。
本申请实施例提供的信号传输方法,执行主体可以为信号传输装置。本申请实施例中以信号传输装置执行信号传输方法为例,说明本申请实施例提供的信号传输装置。
如图16所示,本申请实施例还提供了一种信号传输装置1600,应用于第一设备,包括:
第一接收模块1601,用于接收第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔;
所述在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括所述M个目标资源单元中在目标域上相邻的两个目标资源单元,且每个所述目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量 的最大不模糊测量范围要求,其中,N大于或等于第一预设数值;
其中,所述在目标域上相邻的两个目标资源单元的间隔包括以下至少一项:在时域上相邻的两个目标资源单元的间隔;在频域上相邻的两个目标资源单元的间隔;
所述目标域对应的感知测量量包括多普勒、速度、时延或距离。
其中,所述目标域包括时域和频域中的至少一项。
可选地,所述目标域包括时域,每个所述资源单元组中在时域上相邻的两个目标资源单元的间隔满足多普勒或速度的最大不模糊测量范围要求。
可选地,所述目标域包括频域,每个所述资源单元组中在频域上相邻的两个目标资源单元的间隔满足时延或距离的最大不模糊测量范围要求。
可选地,所述在目标域上的M个目标资源单元资源跨度满足目标域对应的感知测量量的分辨率要求。
可选地,所述目标域包括时域,在时域上的M个目标资源单元资源跨度满足多普勒或速度的分辨率要求。
可选地,所述目标域包括频域,在频域上的M个目标资源单元资源跨度满足时延或距离的分辨率要求。
可选地,所述目标域包括时域,所述第一信号的时域信号序列在第一变换域上的第一副瓣的第一参数与主瓣的第一参数的比值小于第一预设门限;
和/或,所述目标域包括频域,所述第一信号的频域信号序列在第二变换域上的第二副瓣的第二参数与主瓣的第二参数的比值小于第二预设门限;
其中,所述第一变换域为多普勒域,所述第一副瓣是指多普勒域上幅度或功率最大的副瓣,所述第一参数包括幅度或功率;
所述第二变换域为时延域,所述第二副瓣是指时延域上幅度或功率最大的副瓣,所述第二参数包括幅度或功率。
可选地,所述参数配置信息包括一个或多个资源集的资源配置信息,每个所述资源集包括至少一个目标资源单元,所述目标资源由所述一个或多个资源集构成。
可选地,所述一个或多个资源集的资源配置信息包括以下至少一项:
一个或多个资源集在目标域上的起始位置;
一个或多个资源集在目标域上的跨度;
一个或多个资源集之内的目标资源单元之间的资源间隔;
一个或多个资源集之内的目标资源单元的数量;
一个或多个资源集之内的目标资源单元的密度;
一个或多个资源集之内的目标资源单元所在时隙在时域的重复周期;
一个或多个资源集之内的目标资源单元在所在时隙内的位置;
一个或多个资源集之内的目标资源单元所在资源块RB在频域的重复周期;
一个或多个资源集之内的目标资源单元所在RB在频域的位置;
一个或多个资源集之内的目标资源单元在所在RB内的位置;
第一指示信息,所述第一指示信息用于指示目标域为时域和/或频域;
第二指示信息,所述第二指示信息用于指示一个或多个资源集之内的目标资源单元在目标域上的位置分布;
其中,所述资源集在目标域上的跨度是指所述资源集在目标域上的第一个资源单元至最后一个资源单元之间的跨度。
可选地,所述参数配置信息还包括以下至少一项:
第一信号在目标域的起始位置;
第一信号在目标域上的资源跨度;
第一信号在时域的重复周期;
其中,所述第一信号在目标域上的资源跨度是指所述至少两个资源块在目标域的第一个目标资源单元至最后一个目标资源单元之间的跨度。
可选地,所述第二指示信息包括以下至少一项:
位图,所述位图包括L个比特,每个所述比特对应一个资源单元;在所述比特对应的值为第一值的情况下,所述比特对应的资源单元为分配给所述资源集的目标资源单元,在所述比特对应的值为第二值的情况下,所述比特对应的资源单元不是分配给所述资源集的目标资源单元,L为正整数;
子分块的参数信息,所述子分块的参数信息包括:所述子分块内目标资源单元的位置分布信息、子分块的数量X、子分块的重复周期和X个子分块中的第一个子分块的起始位置中的至少一项,X为正整数;
目标公式的参数信息,所述目标公式为用于计算资源集内的目标资源单元在目标域上的位置信息的公式,所述目标参数的参数信息包括目标公式的类型、目标公式的公式参数和根据所述目标公式得到的计算结果中的至少一项,所述计算结果用于指示所述位置信息。
可选地,所述第一信号被配置为单端口或多端口;
在所述第一信号被配置为多端口的情况下,不同端口的第一信号的资源满足以下至少一项:
频分复用;
时分复用;
不同端口的第一信号在目标域上的资源图样相同,且不同端口的第一信号采用的生成序列不同;或者,不同端口的第一信号在目标域上的资源图样相同,且不同端口的第一信号采用的生成序列相同,且不同的第一信号对应的正交覆盖码不同。
可选地,本申请实施例的装置,还包括:
第二发送模块,用于发送能力信息,所述能力信息用于指示所述第一设备是否具备对满足第一特征的所述第一信号进行处理的能力。
可选地,本申请实施例的装置,还包括:
第一执行模块,用于根据所述第一信号的参数配置信息,对所述第一信号执行第一操作,所述第一操作包括发送、接收和信号处理中的至少一项。
可选地,本申请实施例的装置,还包括:
第二获取模块,用于获取所述一个或多个资源集的激活指令,所述激活指令用于指示第一设备对所述一个或多个资源集对应的第一信号执行第一操作,所述第一操作包括发送、接收和信号处理中的至少一项。
可选地,本申请实施例的装置,还包括:
第三获取模块,用于获取所述一个或多个资源集的去激活指令,所述去激活指令用于指示所述第一设备停止对所述至少一个或多个资源集对应的第一信号执行第一操作,所述第一操作包括发送、接收和信号处理中的至少一项。
本申请实施例的装置,第一设备接收第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号;第一信号的资源图样满足第一特征,第一特征为:包括目标资源,目标资源在目标域上包括M个目标资源单元,且目标资源在目标域上对应至少两种资源间隔,所述目标资源单元为分配给所述第一信号的资源单元;在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括M个目标资源单元中在目标域上相邻的两个目标资源单元,且每个目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求。由于M个目标资源单元在目标域上对应至少两种资源间隔,在通感一体化场景中,可以根据感知需求设置部分在目标域上相邻的目标资源单元的资源间隔为满足对应的感知测量量的分辨率要求的资源间隔、而剩余部分在目标域上相邻的目标资源单元的资源间隔则大于对应的感知测量量的分辨率要求的资源间隔,从而在第一信号能够满足感知需求的前提下降低资源开销。
如图17所示,本申请实施例还提供了一种信号传输装置1700,应用于第二设备,包括:
第一发送模块1701,用于发送第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔;
所述在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括所述M个目标资源单元中在目标域上的相邻的两个目标资源单元,且每个所述目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求,其中,N大于或等于第一预设数值;
其中,所述在目标域上相邻的两个目标资源单元的间隔包括以下至少一项:在时域上相邻的两个目标资源单元的间隔;在频域上相邻两个目标资源单元的间隔;
所述目标域对应的感知测量量包括多普勒、速度、时延或距离;
其中,所述目标域包括时域和频域中的至少一项。
可选地,本申请实施例的装置,还包括:
第一获取模块,用于获取第一设备发送的能力信息,所述能力信息用于指示所述第一设备是否具备对满足第一特征的所述第一信号进行处理的能力。
可选地,所述参数配置信息包括一个或多个资源集的资源配置信息,每个所述资源集包括至少一个目标资源单元,所述一个或多个资源集用于构成所述M个目标资源单元。
可选地,本申请实施例的装置,还包括:
第二执行模块,用于根据所述第一信号的参数配置信息,对所述第一信号执行第一操作,所述第一操作包括发送、接收和信号处理中的至少一项。
可选地,本申请实施例的装置,还包括:
第三发送模块,用于发送所述一个或多个资源集的激活指令,所述激活指令用于指示第一设备对所述一个或多个资源集对应的第一信号执行第一操作,所述第一操作包括发送、接收和信号处理中的至少一项。
可选地,本申请实施例的装置,还包括:
第四发送模块,用于发送所述一个或多个资源集的去激活指令,所述去激活指令用于指示所述第一设备停止对所述至少一个或多个资源集对应的第一信号执行第一操作,所述第一操作包括发送、接收和信号处理中的至少一项。
本申请实施例的装置,第二设备发送第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号;第一信号的资源图样满足第一特征,第一特征为:包括目标资源,目标资源在目标域上包括M个目标资源单元,且目标资源在目标域上对应至少两种资源间隔,所述目标资源单元为分配给所述第一信号的资源单元;在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括M个目标资源单元中在目标域上相邻的两个目标资源单元,且每个目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求。由于M个目标资源单元在目标域上对应至少两种资源间隔,在通感一体化场景中,可以根据感知需求设置部分在目标域上相邻的目标资源单元的资源间隔为满足对应的感知测量量的分辨率要求的资源间隔、而剩余部分在目标域上相邻的目标资源单元的资源间隔则大于对应的感知测量量的分辨率要求的资源间隔,从而在第一信号能够满足感知需求的前提下降低资源开销。
本申请实施例中的信号传输装置1700可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类 型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的信号传输装置1700能够实现图2至图15的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图18所示,本申请实施例还提供一种通信设备1800,包括处理器1801和存储器1802,存储器1802上存储有可在所述处理器1801上运行的程序或指令,例如,该通信设备1800为终端时,该程序或指令被处理器1801执行时实现上述第一设备执行的信号传输方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1800为网络侧设备时,该程序或指令被处理器1801执行时实现上述第一设备或第二设备执行的信号传输方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,通信接口用于接收第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔;
所述在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括所述M个目标资源单元中在目标域上相邻的两个目标资源单元,且每个所述目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求,其中,N大于或等于第一预设数值;
其中,所述在目标域上相邻的两个目标资源单元的间隔包括以下至少一项:在时域上相邻的两个目标资源单元的间隔;在频域上相邻的两个目标资源单元的间隔;
所述目标域对应的感知测量量包括多普勒、速度、时延或距离。
其中,所述目标域包括时域和频域中的至少一项。该终端实施例与上述第一设备侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图19为实现本申请实施例的一种终端的硬件结构示意图。
该终端1900包括但不限于:射频单元1901、网络模块1902、音频输出单元1903、输入单元1904、传感器1905、显示单元1906、用户输入单元1907、接口单元1908、存储器1909以及处理器1910等中的至少部分部件。
本领域技术人员可以理解,终端1900还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1910逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图19中示出的终端结构并不构成对终端的限定,终端 可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1904可以包括图形处理单元(Graphics Processing Unit,GPU)19041和麦克风19042,图形处理器19041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1906可包括显示面板19061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板19061。用户输入单元1907包括触控面板19071以及其他输入设备19072中的至少一种。触控面板19071,也称为触摸屏。触控面板19071可包括触摸检测装置和触摸控制器两个部分。其他输入设备19072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1901接收来自网络侧设备的下行数据后,可以传输给处理器1910进行处理;另外,射频单元1901可以向网络侧设备发送上行数据。通常,射频单元1901包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1909可用于存储软件程序或指令以及各种数据。存储器1909可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1909可以包括易失性存储器或非易失性存储器,或者,存储器1909可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1909包括但不限于这些和任意其它适合类型的存储器。
处理器1910可包括一个或多个处理单元;可选的,处理器1910集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1910中。
其中,射频单元1901,用于接收第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源 在目标域上对应至少两种资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔;
所述在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括所述M个目标资源单元中在目标域上相邻的两个目标资源单元,且每个所述目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求,其中,N大于或等于第一预设数值;
其中,所述在目标域上相邻的两个目标资源单元的间隔包括以下至少一项:在时域上相邻的两个目标资源单元的间隔;在频域上相邻的两个目标资源单元的间隔;
所述目标域对应的感知测量量包括多普勒、速度、时延或距离。
其中,所述目标域包括时域和频域中的至少一项。
可选地,所述目标域包括时域,每个所述资源单元组中在时域上相邻的两个目标资源单元的间隔满足多普勒或速度的最大不模糊测量范围要求。
可选地,所述目标域包括频域,每个所述资源单元组中在频域上相邻的两个目标资源单元的间隔满足时延或距离的最大不模糊测量范围要求。
可选地,所述在目标域上的M个目标资源单元资源跨度满足目标域对应的感知测量量的分辨率要求。
可选地,所述目标域包括时域,在时域上的M个目标资源单元资源跨度满足多普勒或速度的分辨率要求。
可选地,所述目标域包括频域,在频域上的M个目标资源单元资源跨度满足时延或距离的分辨率要求。
可选地,所述目标域包括时域,所述第一信号的时域信号序列在第一变换域上的第一副瓣的第一参数与主瓣的第一参数的比值小于第一预设门限;
和/或,所述目标域包括频域,所述第一信号的频域信号序列在第二变换域上的第二副瓣的第二参数与主瓣的第二参数的比值小于第二预设门限;
其中,所述第一变换域为多普勒域,所述第一副瓣是指多普勒域上幅度或功率最大的副瓣,所述第一参数包括幅度或功率;
所述第二变换域为时延域,所述第二副瓣是指时延域上幅度或功率最大的副瓣,所述第二参数包括幅度或功率。
可选地,所述参数配置信息包括一个或多个资源集的资源配置信息,每个所述资源集包括至少一个目标资源单元,所述目标资源由所述一个或多个资源集构成。
可选地,所述一个或多个资源集的资源配置信息包括以下至少一项:
一个或多个资源集在目标域上的起始位置;
一个或多个资源集在目标域上的跨度;
一个或多个资源集之内的目标资源单元之间的资源间隔;
一个或多个资源集之内的目标资源单元的数量;
一个或多个资源集之内的目标资源单元的密度;
一个或多个资源集之内的目标资源单元所在时隙在时域的重复周期;
一个或多个资源集之内的目标资源单元在所在时隙内的位置;
一个或多个资源集之内的目标资源单元所在资源块RB在频域的重复周期;
一个或多个资源集之内的目标资源单元所在RB在频域的位置;
一个或多个资源集之内的目标资源单元在所在RB内的位置;
第一指示信息,所述第一指示信息用于指示目标域为时域和/或频域;
第二指示信息,所述第二指示信息用于指示一个或多个资源集之内的目标资源单元在目标域上的位置分布;
其中,所述资源集在目标域上的跨度是指所述资源集在目标域上的第一个资源单元至最后一个资源单元之间的跨度。
可选地,所述参数配置信息还包括以下至少一项:
第一信号在目标域的起始位置;
第一信号在目标域上的资源跨度;
第一信号在时域的重复周期;
其中,所述第一信号在目标域上的资源跨度是指所述至少两个资源块在目标域的第一个目标资源单元至最后一个目标资源单元之间的跨度。
可选地,所述第二指示信息包括以下至少一项:
位图,所述位图包括L个比特,每个所述比特对应一个资源单元;在所述比特对应的值为第一值的情况下,所述比特对应的资源单元为分配给所述资源集的目标资源单元,在所述比特对应的值为第二值的情况下,所述比特对应的资源单元不是分配给所述资源集的目标资源单元,L为正整数;
子分块的参数信息,所述子分块的参数信息包括:所述子分块内目标资源单元的位置分布信息、子分块的数量X、子分块的重复周期和X个子分块中的第一个子分块的起始位置中的至少一项,X为正整数;
目标公式的参数信息,所述目标公式为用于计算资源集内的目标资源单元在目标域上的位置信息的公式,所述目标参数的参数信息包括目标公式的类型、目标公式的公式参数和根据所述目标公式得到的计算结果中的至少一项,所述计算结果用于指示所述位置信息。
可选地,所述第一信号被配置为单端口或多端口;
在所述第一信号被配置为多端口的情况下,不同端口的第一信号的资源满足以下至少一项:
频分复用;
时分复用;
不同端口的第一信号在目标域上的资源图样相同,且不同端口的第一信号采用的生成 序列不同;或者,不同端口的第一信号在目标域上的资源图样相同,且不同端口的第一信号采用的生成序列相同,且不同的第一信号对应的正交覆盖码不同。
可选地,射频单元1901,还用于:
发送能力信息,所述能力信息用于指示所述第一设备是否具备对满足第一特征的所述第一信号进行处理的能力。
可选地,射频单元1901,还用于:
根据所述第一信号的参数配置信息,对所述第一信号执行第一操作,所述第一操作包括发送、接收和信号处理中的至少一项。
可选地,射频单元1901,还用于:
获取所述一个或多个资源集的激活指令,所述激活指令用于指示第一设备对所述一个或多个资源集对应的第一信号执行第一操作,所述第一操作包括发送、接收和信号处理中的至少一项。
可选地,射频单元1901,还用于:
获取所述一个或多个资源集的去激活指令,所述去激活指令用于指示所述第一设备停止对所述至少一个或多个资源集对应的第一信号执行第一操作,所述第一操作包括发送、接收和信号处理中的至少一项。
本申请实施例中,第一设备接收第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号;第一信号的资源图样满足第一特征,第一特征为:包括目标资源,目标资源在目标域上包括M个目标资源单元,且目标资源在目标域上对应至少两种资源间隔,所述目标资源单元为分配给所述第一信号的资源单元;在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括M个目标资源单元中在目标域上相邻的两个目标资源单元,且每个目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求。由于M个目标资源单元在目标域上对应至少两种资源间隔,在通感一体化场景中,可以根据感知需求设置部分在目标域上相邻的目标资源单元的资源间隔为满足对应的感知测量量的分辨率要求的资源间隔、而剩余部分在目标域上相邻的目标资源单元的资源间隔则大于对应的感知测量量的分辨率要求的资源间隔,从而在第一信号能够满足感知需求的前提下降低资源开销。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,通信接口用于接收或发送第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔;
所述在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括所述M个目标资源单元中在目标域上相邻的两个目标资源单元,且每个所述目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求,其中,N大于或等于第一预设数值;
其中,所述在目标域上相邻的两个目标资源单元的间隔包括以下至少一项:在时域上相邻的两个目标资源单元的间隔;在频域上相邻的两个目标资源单元的间隔;
所述目标域对应的感知测量量包括多普勒、速度、时延或距离。
其中,所述目标域包括时域和频域中的至少一项。该网络侧设备实施例与上述第一设备或第二设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图20所示,该网络侧设备2000包括:天线201、射频装置202、基带装置203、处理器204和存储器205。天线201与射频装置202连接。在上行方向上,射频装置202通过天线201接收信息,将接收的信息发送给基带装置203进行处理。在下行方向上,基带装置203对要发送的信息进行处理,并发送给射频装置202,射频装置202对收到的信息进行处理后经过天线201发送出去。
以上实施例中第一设备或第二设备执行的方法可以在基带装置203中实现,该基带装置203包括基带处理器。
基带装置203例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图20所示,其中一个芯片例如为基带处理器,通过总线接口与存储器205连接,以调用存储器205中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口206,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备2000还包括:存储在存储器205上并可在处理器204上运行的指令或程序,处理器204调用存储器205中的指令或程序执行图16或17所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
具体地,本申请实施例还提供了一种网络侧设备。如图21所示,该网络侧设备2100包括:处理器2101、网络接口2102和存储器2103。其中,网络接口2102例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备2100还包括:存储在存储器2103上并可在处理器2101上运行的指令或程序,处理器2101调用存储器2103中的指令或程序执行图16或17所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述信号传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括 计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述信号传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述信号传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种信号传输系统,包括:第一设备及第二设备设备,所述第一设备可用于执行如上所述的第一设备执行的信号传输方法的步骤,所述第二设备可用于执行如上所述的第二设备执行的信号传输方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (30)

  1. 一种信号传输方法,包括:
    第一设备接收第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
    其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
    包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔;
    所述在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括所述M个目标资源单元中在目标域上相邻的两个目标资源单元,且每个所述目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求,其中,N大于或等于第一预设数值;
    其中,所述在目标域上相邻的两个目标资源单元的间隔包括以下至少一项:在时域上相邻的两个目标资源单元的间隔;在频域上相邻的两个目标资源单元的间隔;
    所述目标域对应的感知测量量包括多普勒、速度、时延或距离;
    其中,所述目标域包括时域和频域中的至少一项。
  2. 根据权利要求1所述的方法,其中,
    所述目标域包括时域,每个所述资源单元组中在时域上相邻的两个目标资源单元的间隔满足多普勒或速度的最大不模糊测量范围要求。
  3. 根据权利要求1或2所述的方法,其中,
    所述目标域包括频域,每个所述资源单元组中在频域上相邻的两个目标资源单元的间隔满足时延或距离的最大不模糊测量范围要求。
  4. 根据权利要求1至3任一项所述的方法,其中,所述在目标域上的M个目标资源单元资源跨度满足目标域对应的感知测量量的分辨率要求。
  5. 根据权利要求4所述的方法,其中,所述目标域包括时域,在时域上的M个目标资源单元资源跨度满足多普勒或速度的分辨率要求。
  6. 根据权利要求4所述的方法,其中,所述目标域包括频域,在频域上的M个目标资源单元资源跨度满足时延或距离的分辨率要求。
  7. 根据权利要求1至6任一项所述的方法,其中,所述目标域包括时域,所述第一信号的时域信号序列在第一变换域上的第一副瓣的第一参数与主瓣的第一参数的比值小于第一预设门限;
    和/或,所述目标域包括频域,所述第一信号的频域信号序列在第二变换域上的第二副瓣的第二参数与主瓣的第二参数的比值小于第二预设门限;
    其中,所述第一变换域为多普勒域,所述第一副瓣是指多普勒域上幅度或功率最大的副瓣,所述第一参数包括幅度或功率;
    所述第二变换域为时延域,所述第二副瓣是指时延域上幅度或功率最大的副瓣,所述第二参数包括幅度或功率。
  8. 根据权利要求1至7任一项所述的方法,其中,所述参数配置信息包括一个或多个资源集的资源配置信息,每个所述资源集包括至少一个目标资源单元,所述目标资源由所述一个或多个资源集构成。
  9. 根据权利要求8所述的方法,其中,所述一个或多个资源集的资源配置信息包括以下至少一项:
    一个或多个资源集在目标域上的起始位置;
    一个或多个资源集在目标域上的跨度;
    一个或多个资源集之内的目标资源单元之间的资源间隔;
    一个或多个资源集之内的目标资源单元的数量;
    一个或多个资源集之内的目标资源单元的密度;
    一个或多个资源集之内的目标资源单元所在时隙在时域的重复周期;
    一个或多个资源集之内的目标资源单元在所在时隙内的位置;
    一个或多个资源集之内的目标资源单元所在资源块RB在频域的重复周期;
    一个或多个资源集之内的目标资源单元所在RB在频域的位置;
    一个或多个资源集之内的目标资源单元在所在RB内的位置;
    第一指示信息,所述第一指示信息用于指示目标域为时域和/或频域;
    第二指示信息,所述第二指示信息用于指示一个或多个资源集之内的目标资源单元在目标域上的位置分布;
    其中,所述资源集在目标域上的跨度是指所述资源集在目标域上的第一个资源单元至最后一个资源单元之间的跨度。
  10. 根据权利要求8或9所述的方法,其中,所述参数配置信息还包括以下至少一项:
    第一信号在目标域的起始位置;
    第一信号在目标域上的资源跨度;
    第一信号在时域的重复周期;
    其中,所述第一信号在目标域上的资源跨度是指所述至少两个资源块在目标域的第一个目标资源单元至最后一个目标资源单元之间的跨度。
  11. 根据权利要求9所述的方法,其中,所述第二指示信息包括以下至少一项:
    位图,所述位图包括L个比特,每个所述比特对应一个资源单元;在所述比特对应的值为第一值的情况下,所述比特对应的资源单元为分配给所述资源集的目标资源单元,在所述比特对应的值为第二值的情况下,所述比特对应的资源单元不是分配给所述资源集的目标资源单元,L为正整数;
    子分块的参数信息,所述子分块的参数信息包括:所述子分块内目标资源单元的位置分布信息、子分块的数量X、子分块的重复周期和X个子分块中的第一个子分块的起始位置中的至少一项,X为正整数;
    目标公式的参数信息,所述目标公式为用于计算资源集内的目标资源单元在目标域上的位置信息的公式,所述目标参数的参数信息包括目标公式的类型、目标公式的公式参数和根据所述目标公式得到的计算结果中的至少一项,所述计算结果用于指示所述位置信息。
  12. 根据权利要求8至11任一项所述的方法,还包括:
    所述第一设备获取所述一个或多个资源集的激活指令,所述激活指令用于指示第一设备对所述一个或多个资源集对应的第一信号执行第一操作,所述第一操作包括发送、接收和信号处理中的至少一项。
  13. 根据权利要求8至12任一项所述的方法,还包括:
    所述第一设备获取所述一个或多个资源集的去激活指令,所述去激活指令用于指示所述第一设备停止对所述至少一个或多个资源集对应的第一信号执行第一操作,所述第一操作包括发送、接收和信号处理中的至少一项。
  14. 根据权利要求1至13任一项所述的方法,其中,所述第一信号被配置为单端口或多端口;
    在所述第一信号被配置为多端口的情况下,不同端口的第一信号的资源满足以下至少一项:
    频分复用;
    时分复用;
    不同端口的第一信号在目标域上的资源图样相同,且不同端口的第一信号采用的生成序列不同;或者,不同端口的第一信号在目标域上的资源图样相同,且不同端口的第一信号采用的生成序列相同,且不同的第一信号对应的正交覆盖码不同。
  15. 根据权利要求1至14任一项所述的方法,所述方法还包括:
    所述第一设备发送能力信息,所述能力信息用于指示所述第一设备是否具备对满足第一特征的所述第一信号进行处理的能力。
  16. 根据权利要求1所述的方法,还包括:
    所述第一设备根据所述第一信号的参数配置信息,对所述第一信号执行第一操作,所述第一操作包括发送、接收和信号处理中的至少一项。
  17. 一种信号传输方法,包括:
    第二设备发送第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
    其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
    包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种资源间隔,所述目标资源单元为分配给所述第一信号的资源单元, M≥3,M为正整数;所述资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔;
    所述在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括所述M个目标资源单元中在目标域上的相邻的两个目标资源单元,且每个所述目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求,其中,N大于或等于第一预设数值;
    其中,所述在目标域上相邻的两个目标资源单元的间隔包括以下至少一项:在时域上相邻的两个目标资源单元的间隔;在频域上相邻两个目标资源单元的间隔;
    所述目标域对应的感知测量量包括多普勒、速度、时延或距离;
    其中,所述目标域包括时域和频域中的至少一项。
  18. 根据权利要求17所述的方法,还包括:
    所述第二设备获取第一设备发送的能力信息,所述能力信息用于指示所述第一设备是否具备对满足第一特征的所述第一信号进行处理的能力。
  19. 根据权利要求17至18任一项所述的方法,还包括:
    所述第二设备根据所述第一信号的参数配置信息,对所述第一信号执行第一操作,所述第一操作包括发送、接收和信号处理中的至少一项。
  20. 根据权利要求17至19任一项所述的方法,其中,所述参数配置信息包括一个或多个资源集的资源配置信息,每个所述资源集包括至少一个目标资源单元,所述一个或多个资源集用于构成所述M个目标资源单元。
  21. 根据权利要求20所述的方法,还包括:
    所述第二设备发送所述一个或多个资源集的激活指令,所述激活指令用于指示第一设备对所述一个或多个资源集对应的第一信号执行第一操作,所述第一操作包括发送、接收和信号处理中的至少一项。
  22. 根据权利要求20或21所述的方法,还包括:
    所述第二设备发送所述一个或多个资源集的去激活指令,所述去激活指令用于指示第一设备停止对所述至少一个或多个资源集对应的第一信号执行第一操作,所述第一操作包括发送、接收和信号处理中的至少一项。
  23. 一种信号传输装置,应用于第一设备,所述信号传输装置包括:
    第一接收模块,用于接收第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
    其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
    包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔;
    所述在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括所述M个目标资源单元中在目标域上相邻的两个目标资源单元,且每个所述目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求,其中,N大于或等于第一预设数值;
    其中,所述在目标域上相邻的两个目标资源单元的间隔包括以下至少一项:在时域上相邻的两个目标资源单元的间隔;在频域上相邻的两个目标资源单元的间隔;
    所述目标域对应的感知测量量包括多普勒、速度、时延或距离;
    其中,所述目标域包括时域和频域中的至少一项。
  24. 根据权利要求23所述的装置,其中,
    所述目标域包括时域,每个所述资源单元组中在时域上相邻的两个目标资源单元的间隔满足多普勒或速度的最大不模糊测量范围要求。
  25. 根据权利要求23或24所述的装置,其中,
    所述目标域包括频域,每个所述资源单元组中在频域上相邻的两个目标资源单元的间隔满足时延或距离的最大不模糊测量范围要求。
  26. 一种信号传输装置,应用于第二设备,所述信号传输装置包括:
    第一发送模块,用于发送第一信号的参数配置信息,所述第一信号为通感一体化信号或者为感知信号,所述参数配置信息用于指示所述第一信号的资源图样;
    其中,所述第一信号的资源图样满足第一特征,所述第一特征为:
    包括目标资源,所述目标资源在目标域上包括M个目标资源单元,且所述目标资源在目标域上对应至少两种资源间隔,所述目标资源单元为分配给所述第一信号的资源单元,M≥3,M为正整数;所述资源间隔为所述目标资源中在目标域上相邻两个目标资源单元的间隔;
    所述在目标域上的M个目标资源单元包括N个目标资源单元组,每个目标资源单元组包括所述M个目标资源单元中在目标域上的相邻的两个目标资源单元,且每个所述目标资源单元组中在目标域上相邻的两个目标资源单元的间隔满足目标域对应的感知测量量的最大不模糊测量范围要求,其中,N大于或等于第一预设数值;
    其中,所述在目标域上相邻的两个目标资源单元的间隔包括以下至少一项:在时域上相邻的两个目标资源单元的间隔;在频域上相邻两个目标资源单元的间隔;
    所述目标域对应的感知测量量包括多普勒、速度、时延或距离;
    其中,所述目标域包括时域和频域中的至少一项。
  27. 根据权利要求26所述的装置,还包括:
    第一获取模块,用于获取第一设备发送的能力信息,所述能力信息用于指示所述第一设备是否具备对满足第一特征的所述第一信号进行处理的能力。
  28. 根据权利要求26或27所述的装置,其中,所述参数配置信息包括一个或多个资源集的资源配置信息,每个所述资源集包括至少一个目标资源单元,所述一个或多个资源 集用于构成所述M个目标资源单元。
  29. 一种通信设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至16任一项所述的信号传输方法的步骤,或者,实现如权利要求17至22任一项所述的信号传输方法的步骤。
  30. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至16任一项所述的信号传输方法的步骤,或者实现如权利要求17至22任一项所述的信号传输方法的步骤。
PCT/CN2023/133103 2022-11-24 2023-11-22 信号传输方法、装置及通信设备 WO2024109785A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211486094.9A CN118075901A (zh) 2022-11-24 2022-11-24 信号传输方法、装置及通信设备
CN202211486094.9 2022-11-24

Publications (1)

Publication Number Publication Date
WO2024109785A1 true WO2024109785A1 (zh) 2024-05-30

Family

ID=91097906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/133103 WO2024109785A1 (zh) 2022-11-24 2023-11-22 信号传输方法、装置及通信设备

Country Status (2)

Country Link
CN (1) CN118075901A (zh)
WO (1) WO2024109785A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107889205A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 上行功率控制方法及装置
CN113630225A (zh) * 2021-06-28 2021-11-09 中国信息通信研究院 一种边链路感知信号发送方法和设备
WO2022110923A1 (zh) * 2020-11-28 2022-06-02 华为技术有限公司 用于感知和通信的方法和装置
CN114584267A (zh) * 2020-12-02 2022-06-03 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114980290A (zh) * 2022-07-14 2022-08-30 中国电信股份有限公司 小区节能方法、装置、电子设备和计算机可读存储介质
WO2022199647A1 (zh) * 2021-03-25 2022-09-29 华为技术有限公司 通信方法以及通信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107889205A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 上行功率控制方法及装置
WO2022110923A1 (zh) * 2020-11-28 2022-06-02 华为技术有限公司 用于感知和通信的方法和装置
CN114584267A (zh) * 2020-12-02 2022-06-03 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2022199647A1 (zh) * 2021-03-25 2022-09-29 华为技术有限公司 通信方法以及通信装置
CN113630225A (zh) * 2021-06-28 2021-11-09 中国信息通信研究院 一种边链路感知信号发送方法和设备
CN114980290A (zh) * 2022-07-14 2022-08-30 中国电信股份有限公司 小区节能方法、装置、电子设备和计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHINA TELECOM: "New SID on integrating sensing with communication in NR", 3GPP DRAFT; RP-213099, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20211206 - 20211217, 29 November 2021 (2021-11-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052097210 *

Also Published As

Publication number Publication date
CN118075901A (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
CN115442756B (zh) 消息传输方法、信号发送方法、装置及通信设备
US20230246668A1 (en) Radar signal for use in mobile communication equipment
US20240357319A1 (en) Method for Determining Sensing Signal Period, Communication Device, and Non-Transitory Storage Medium
US20240340949A1 (en) Sensing method and apparatus and communication device
US20240337726A1 (en) Sensing method and apparatus, sensing configuration method and apparatus, and a communication device
WO2023174345A1 (zh) 感知处理方法、装置、通信设备及可读存储介质
WO2024109785A1 (zh) 信号传输方法、装置及通信设备
WO2024109640A1 (zh) 信号传输方法、装置及通信设备
WO2024109784A1 (zh) 信号传输方法、装置及通信设备
WO2024109641A1 (zh) 信号传输方法、装置及通信设备
CN116981078A (zh) 信号配置和自适应方法、装置及相关设备
WO2024131756A1 (zh) 信号配置方法、装置、通信设备及可读存储介质
WO2024012253A1 (zh) 感知处理方法、装置、终端、网络侧设备及可读存储介质
WO2024131764A1 (zh) 信号配置方法、装置及设备
WO2023231867A1 (zh) 感知方式切换方法、装置及通信设备
WO2024208069A1 (zh) 信息发送方法、信息接收方法、装置及通信设备
WO2024012252A1 (zh) 感知处理方法、装置、终端、网络侧设备及可读存储介质
WO2024046195A1 (zh) 感知信号处理方法、装置及通信设备
WO2024208205A1 (zh) 感知能力的上报方法、接收方法、装置、通信设备及介质
WO2024012237A1 (zh) 感知处理方法、装置、终端及设备
WO2024099152A1 (zh) 信息传输方法、装置及通信设备
EP4456612A1 (en) Transmission power determination method and apparatus, and device
WO2023226826A1 (zh) 感知方法、装置及通信设备
WO2023131315A1 (zh) 无线感知方法、装置、设备及存储介质
WO2024131691A1 (zh) 感知处理方法、装置、通信设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23893875

Country of ref document: EP

Kind code of ref document: A1