WO2024012237A1 - 感知处理方法、装置、终端及设备 - Google Patents

感知处理方法、装置、终端及设备 Download PDF

Info

Publication number
WO2024012237A1
WO2024012237A1 PCT/CN2023/104335 CN2023104335W WO2024012237A1 WO 2024012237 A1 WO2024012237 A1 WO 2024012237A1 CN 2023104335 W CN2023104335 W CN 2023104335W WO 2024012237 A1 WO2024012237 A1 WO 2024012237A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
sensing node
signal
result
perception
Prior art date
Application number
PCT/CN2023/104335
Other languages
English (en)
French (fr)
Inventor
丁圣利
姜大洁
袁雁南
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024012237A1 publication Critical patent/WO2024012237A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • This application belongs to the technical field of communication perception integration, and specifically relates to a perception processing method, device, terminal and equipment.
  • Embodiments of the present application provide a perception processing method, device, terminal and equipment, which can solve the problem that when the sending and receiving of perception signals or communication perception integrated signals involves multiple devices in the process of perception measurement, there is a certain error in the perception measurement. resulting in less accurate perceptual measurements.
  • the first aspect provides a perception processing method, which includes:
  • the first device obtains a first perception result and a second perception result.
  • the first perception result is a measurement perception result obtained by performing perception measurement on a reference target based on the first signal.
  • the second perception result is a measurement perception result corresponding to the reference target. Reference perception results;
  • the first device determines a first parameter based on the first perception result and the second perception result, where the first parameter is used to represent a measurement error of the perception measurement;
  • the reference target is user equipment.
  • a perception processing device including:
  • the first acquisition module is used to obtain a first perception result and a second perception result.
  • the first perception result is a measurement perception result obtained by performing perception measurement on the reference target based on the first signal.
  • the second perception result is the corresponding sensing result.
  • a first processing module configured to determine a first parameter according to the first perception result and the second perception result, where the first parameter is used to represent the measurement error of the perception measurement;
  • the reference target is user equipment.
  • a perception processing method which includes:
  • the sensing node performs sensing measurement on the reference target based on the first signal
  • the measurement perception result corresponding to the perception measurement is used to determine the first parameter, and the first parameter is used to represent the measurement error of the perception measurement;
  • the reference target is user equipment.
  • a perception processing device including:
  • a second processing module configured to perform perceptual measurement on the reference target based on the first signal
  • the measurement perception result corresponding to the perception measurement is used to determine the first parameter, and the first parameter is used to represent the measurement error of the perception measurement;
  • the reference target is user equipment.
  • a terminal in a fifth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following implementations are implemented: The steps of the method described in three aspects.
  • a terminal including a processor and a communication interface, wherein the processor is configured to perform sensing measurements on a reference target based on the first signal;
  • the measurement perception result corresponding to the perception measurement is used to determine the first parameter, and the first parameter is used to represent the measurement error of the perception measurement;
  • the reference target is user equipment.
  • a network side device in a seventh aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor.
  • a network side device including a processor and a communication interface, wherein,
  • the processor is configured to obtain a first sensing result and a second sensing result, where the first sensing result is a measurement obtained by performing sensing measurement on a reference target based on the first signal. Perception result, the second perception result is a reference perception result corresponding to the reference target;
  • the reference target is user equipment
  • the processor is configured to detect a reference signal based on the first signal.
  • Target execution perceptual measurement the processor is configured to detect a reference signal based on the first signal.
  • the measurement perception result corresponding to the perception measurement is used to determine the first parameter, and the first parameter is used to represent the measurement error of the perception measurement;
  • the reference target is user equipment.
  • a ninth aspect provides a perception processing system, including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the perception processing method as described in the third aspect.
  • the network side device can be used to perform the steps of the first aspect. or the steps of the perception processing method described in the third aspect.
  • a server in a tenth aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. A step of.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented. The steps of the method as described in the third aspect.
  • a chip in a twelfth aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. method, or implement a method as described in the third aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement as described in the first aspect method, or steps for implementing the method described in the third aspect.
  • the perception is obtained by obtaining the measurement perception result obtained by performing perception measurement on the reference target based on the first signal, and the first parameter can be determined based on the measurement perception result and the reference perception result of the reference target, thereby obtaining the perception
  • the measurement error of the measurement can facilitate subsequent compensation of the perceptual measurement based on the measurement error, thereby improving the accuracy of the perceptual measurement.
  • Figure 1 is a block diagram of a wireless communication system according to an embodiment of the present application.
  • Figure 2 is one of the flow charts of the perception processing method according to the embodiment of the present application.
  • Figure 3 is a schematic diagram of the "time delay-Doppler" two-dimensional spectrum
  • Figure 4 is one of the scene schematic diagrams of the application of the method according to the embodiment of the present application.
  • Figure 5 is the second schematic diagram of the application scenario of the method according to the embodiment of the present application.
  • Figure 6 is the third schematic diagram of the application scenario of the method according to the embodiment of the present application.
  • Figure 7 is the second flow chart of the perception processing method according to the embodiment of the present application.
  • Figure 8 is one of the structural diagrams of the perception processing device according to the embodiment of the present application.
  • Figure 9 is the second structural diagram of the perception processing device according to the embodiment of the present application.
  • Figure 10 is a structural diagram of a communication device according to an embodiment of the present application.
  • Figure 11 is a structural diagram of a terminal according to an embodiment of the present application.
  • Figure 12 is a structural diagram of a network side device according to an embodiment of the present application.
  • Figure 13 is a structural diagram of another network-side device according to an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • MID mobile Internet Device
  • AR augmented reality
  • VR virtual reality
  • robots wearable devices
  • WUE Vehicle User Equipment
  • PUE Pedestrian User Equipment
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • game consoles personal computers (personal computer, PC), teller machine or self-service machine and other terminal-side devices.
  • Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets) bracelets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the network side device 12 may include access network equipment or core network equipment, where the access network
  • the device may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or a radio access network unit.
  • Access network equipment may include a base station, a Wireless Local Area Network (WLAN) access point or a Wireless Local Area Network (WiFi) node, etc.
  • the base station may be called a Node B or an Evolved Node B (Evolved Node B).
  • eNB access point
  • BTS Base Transceiver Station
  • BSS Basic Service Set
  • ESS Extended Service Set
  • home B node home evolved B node
  • TRP Transmitting Receiving Point
  • the base station is not limited to specific technical terms, and needs to be explained
  • only the base station in the NR system is used as an example for introduction, and the specific type of the base station is not limited.
  • Core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Service Discovery function (Edge Application Server Discovery Function, EASDF), Unified Data Management (UDM), Unified Data Repository (UDR), Home Subscriber Server (HSS), Centralized network configuration ( Centralized network configuration (CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (Local NEF, or L-NEF), Binding Support Function (Binding Support Function, BSF), application function (Application Function, AF), etc.
  • MME mobility management entities
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • PCF Policy Control Function
  • Sensing and communication systems are often designed separately and occupy different frequency bands.
  • communication signals in future wireless communication systems tend to have high resolution in both the time and angle domains, which makes it possible to utilize communication signals to achieve high-precision sensing. Therefore, it is best to jointly design sensing and communication systems so that they share the same frequency band and hardware to improve frequency efficiency and reduce hardware costs. This prompted research on ISAC.
  • ISAC will become a key technology in future wireless communication systems to support many important application scenarios.
  • autonomous vehicles will obtain a large amount of information from the network, including ultra-high-resolution maps and near-real-time information, to navigate and avoid upcoming traffic jams.
  • radar sensors in autonomous vehicles should be able to provide powerful, high-resolution obstacle detection with resolutions on the order of centimeters.
  • ISAC technology for autonomous vehicles offers the possibility to achieve high data rate communications and high-resolution obstacle detection using the same hardware and spectrum resources.
  • Other applications for ISAC include Wi-Fi-based room Internal positioning and activity recognition, UAV communication and sensing, Extended Reality (XR), radar and communication integration, etc.
  • JSAC achieves integrated low-cost implementation of dual functions of communication and perception through hardware device sharing and software-defined functions. Its main features are: first, unified and simplified architecture; second, reconfigurable and scalable functions; third, efficiency improvement and cost reduction. reduce.
  • the advantages of communication perception integration mainly include three aspects: first, reduced equipment cost and size, second, improved spectrum utilization, and third, improved system performance.
  • ISAC development of ISAC is divided into four stages: coexistence, co-operation, co-design and co-collaboration.
  • Coexistence Communication and perception are two separate systems. The two will interfere with each other.
  • the main methods to solve the interference are: distance isolation, frequency band isolation, time-division work, Multiple Input Multiple Output (MIMO) technology and prediction Coding etc.
  • MIMO Multiple Input Multiple Output
  • Co-operation Communication and perception share a hardware platform and use shared information to improve common performance.
  • the power allocation between the two has a greater impact on system performance.
  • Co-design Communication and perception become a complete joint system, including joint signal design, waveform design, coding design, etc.
  • linear frequency modulation waveforms In the early stage, there were linear frequency modulation waveforms, spread spectrum waveforms, etc., and later focused on Orthogonal Frequency Division Multiplexing technology (Orthogonal Frequency Division) Multiplexing, OFDM) waveforms, MIMO technology, etc.
  • OFDM Orthogonal Frequency Division Multiplexing
  • radar detection of targets not only measures the distance of the target, but also measures the speed, azimuth angle, and pitch angle of the target, and extracts more information about the target from the above information, including the size and shape of the target. wait.
  • Radar technology was originally used for military purposes to detect aircraft, missiles, vehicles, ships and other targets. With the development of technology and the evolution of society, radar is increasingly used in civilian scenarios. A typical application is that weather radar measures the echoes of meteorological targets such as clouds and rain to determine the location, intensity and other information about clouds and rain for weather forecasting. Furthermore, with the vigorous development of the electronic information industry, Internet of Things, communication technology, etc., radar technology has begun to enter people's daily life applications, greatly improving the convenience and safety of work and life. For example, automotive radar provides early warning information for vehicle driving by measuring the distance and relative speed between vehicles, between vehicles and surrounding objects, and between vehicles and pedestrians, which greatly improves the safety level of road traffic.
  • radar is classified in many ways. According to the positional relationship between radar transceiver sites, it can be divided into: single-station radar and dual-station radar, as shown in the figure below.
  • single-station radar the signal transmitter and receiver are integrated and share an antenna; the advantage is that the target echo signal and the local oscillator of the receiver are naturally coherent, and signal processing is more convenient; the disadvantage is that signal transmission and reception cannot be performed at the same time, and can only be Signal waveforms with a certain duty cycle lead to blind spots in detection, which require complex algorithms to compensate; or signals can be sent and received at the same time, with strict isolation between sending and receiving, but this is difficult to achieve for high-power military radars.
  • the signal transmitter and receiver are located at different locations; the advantage is that signal transmission and reception can be carried out at the same time, and continuous wave waveforms can be used for detection; the disadvantage is that it is difficult to achieve synchronization between the receiver and transmitter Frequency and coherence, signal processing is more complex.
  • radar technology can adopt single-station radar mode or dual-station radar mode.
  • the transmitting and receiving signals share the same antenna, and the receiving and transmitting signals enter different radio frequency processing links through the circulator; in this mode, the continuous wave signal waveform can be used to achieve detection without blind zones, provided that the receiving signal It needs good isolation from the transmitting signal, usually about 100dB, to eliminate the leakage of the transmitting signal from flooding the receiving signal. Since the single-station radar receiver has all the information of the transmitted signal, it can perform signal processing through matched filtering (pulse compression) to obtain higher signal processing gain.
  • the dual-station radar mode there is no isolation problem of sending and receiving signals, which greatly simplifies the complexity of the hardware. Since radar signal processing is based on known information, in 5G NR synaesthetic integration applications, known information such as synchronization signals and reference signals can be used for radar signal processing. However, due to the periodicity of synchronization signals, reference signals, etc., the blur diagram of the signal waveform is no longer a pushpin shape, but a nail plate shape. The degree of delay and Doppler ambiguity will increase, and the gain of the main lobe will be relatively small. The single-station radar mode is much slower, reducing the range of distance and speed measurements. Through appropriate parameter set design, the measurement range of distance and speed can meet the measurement needs of common targets such as cars and pedestrians. In addition, the measurement accuracy of dual-station radar is related to the position of the transceiver site relative to the target, and it is necessary to select an appropriate transceiver site pair to improve detection performance.
  • a perception processing method includes:
  • Step 201 The first device obtains a first perception result and a second perception result.
  • the first perception result is a measurement perception result obtained by performing perception measurement on a reference target based on a first signal.
  • the second perception result is a measurement perception result corresponding to the Reference perception results of the reference target;
  • the reference target is user equipment.
  • the reference target refers to a target whose reference perception results are known.
  • the first signal is sent by the sending end device of the perceptual measurement, is reflected by the user equipment serving as the reference target, and is received by the receiving end device of the perceptual measurement.
  • the second perception result is a perception result corresponding to the reference target that is more accurate than the first perception result.
  • the second perception result may be a perception result obtained by any other method except the first signal. Therefore, in this step, the first device obtains the first sensing result and the second sensing result corresponding to the reference target to perform the next step.
  • Step 202 The first device determines a first parameter based on the first sensing result and the second sensing result, where the first parameter is used to represent the measurement error of the sensing measurement.
  • the first device determines a first parameter that can represent the measurement error of the perception measurement based on the first perception result and the second perception result obtained in step 201, so that the transmitter and receiver of the subsequent perception measurement can Based on the first parameter, the terminal can perform more accurate perception measurement of the sensing object with unknown sensing results, thereby improving the accuracy of the sensing measurement.
  • the first device performs steps 201 and 202 to perform sensing measurements on the reference target based on the first signal.
  • the first perception result obtained is measured, and the first parameter can be determined based on the first perception result and the second perception result of the reference target, thereby obtaining the measurement error of the perception measurement, which can facilitate the subsequent perception based on the measurement error. Measurements are compensated to improve the accuracy of perceptual measurements.
  • the reference target in this application It is user equipment (User Equipment, UE).
  • the UE can have the following requirements:
  • the UE is a mobile terminal
  • the location information of the UE can be obtained through positioning methods.
  • the positioning methods include: NR positioning, Wi-Fi positioning, GPS positioning, etc.;
  • the UE is also equipped with a sensor that can measure the motion state of the UE; for example: the UE is equipped with a gyroscope that can measure the motion speed, acceleration, motion direction, etc. of the UE;
  • the UE has communication capabilities.
  • the first device may be a sensing function network element; or, when at least one of the sending end device and the receiving end device of the first signal is a base station, the first device may also be a base station. It may be the base station; alternatively, the first device may be a server.
  • the sensing function network element refers to the network function node in the core network and/or the radio access network (Radio Access Network, RAN) that is responsible for at least one function such as sensing request processing, sensing resource scheduling, sensing information interaction, and sensing data processing.
  • RAN Radio Access Network
  • the sensing function network element refers to the network function node in the core network and/or the radio access network (Radio Access Network, RAN) that is responsible for at least one function such as sensing request processing, sensing resource scheduling, sensing information interaction, and sensing data processing.
  • the first sensing result includes at least one of the following: time delay, Doppler and angle;
  • the second sensing result includes at least one of the following: time delay, Doppler and angle.
  • the method before step 201, the method further includes:
  • the first device obtains first information of a target sensing node.
  • the target sensing node includes at least one of a first sensing node and a second sensing node.
  • the first sensing node and the second sensing node are used to Perform perceptual measurements on a reference target based on the first signal;
  • the first device determines whether to estimate the measurement error of the sensing measurement according to the first information of the target sensing node.
  • the first device can further determine whether to estimate the measurement error of the sensing measurement based on the first information, that is, whether it is necessary to perform the above-mentioned Steps 201-202.
  • the first information includes at least one of the following:
  • Information related to the frequency source of the target sensing node such as whether the frequency sources of the first sensing node and the second sensing node originate from the same frequency source;
  • Clock-related information of the target sensing node such as whether the clocks of the first sensing node and the second sensing node originate from the same clock
  • Methods related to frequency source synchronization of the target sensing node such as whether the first sensing node or the second sensing node has Have software and hardware capabilities for frequency source synchronization;
  • Methods related to clock synchronization of the target sensing node such as whether the first sensing node or the second sensing node has the software and hardware capabilities for clock synchronization;
  • Information related to the deviation of the frequency source of the target sensing node such as the stability of the frequency source between the first sensing node and the second sensing node and the range of frequency deviation obtained thereby;
  • Information related to the deviation of the clock of the target sensing node such as the stability of the frequency source between the first sensing node and the second sensing node and the range of clock deviation obtained thereby;
  • Information related to the phase deviation between the antennas of the sensing node corresponding to the receiving end of the first signal in the sensing measurement process such as an indicator of the phase deviation between the antennas, or the calibration of the phase deviation between the antennas Condition.
  • one of the first sensing node and the second sensing node is the sending end device of the first signal
  • the other of the first sensing node and the second sensing node is the receiving end device of the first signal.
  • Both the first sensing node and the second sensing node may be one or more devices.
  • the first device obtaining the first information of the target sensing node includes any of the following:
  • the first device sends first signaling to a target sensing node, and receives the first information from the target sensing node based on the first signaling;
  • the first device obtains the first information from a first network side device.
  • the first device may send the first signaling to the first sensing node and/or the second sensing node, and the first sensing node and/or the second sensing node that receives the first signaling will send the first signaling to the first device. Reply to the first message.
  • the first device may also access the first network side device to obtain the first information.
  • the first network side device stores the first information of the first sensing node and/or the second sensing node.
  • the first signaling satisfies at least one of the following:
  • the first signaling is signaling sent during the process of selecting a sensing node, or the first signaling is signaling sent after the target sensing node is determined;
  • the first signaling is signaling dedicated to querying the first information.
  • the method further includes:
  • the first device acquires second information
  • the first device determines the reference target based on the second information
  • the second information includes at least one of the following:
  • the location information of the target sensing node is the location information of the target sensing node
  • Capability information of candidate reference targets within a preset spatial range is
  • the candidate reference target is the UE.
  • the first device selects at least one of the plurality of candidate reference targets as a reference target based on the second information.
  • the preset spatial range is determined based on at least one of: location information of the target sensing node, capability information of the target sensing node, and sensing prior information.
  • the first device obtaining the second information includes:
  • the first device performs:
  • the first network function is accessed, or the report of the target sensing node and/or the candidate reference target is received. Location information; wherein the first network function stores device location information;
  • the location information is obtained by accessing a second network function; wherein the second network function is a positioning-related network function.
  • the location information of the target sensing node and/or the candidate reference target may be obtained in a manner that: for the situation where the target sensing node and/or the candidate reference target are devices with fixed positions, the first device obtains Access the first network function that stores device location information to obtain the location information of the target sensing node and/or the candidate reference target; or, receive and obtain the location information reported by the target sensing node and/or the candidate reference target. location information.
  • the location information of the target sensing node and/or the candidate reference target may be obtained by: the first device, for the situation where the target sensing node and/or the candidate reference target is a mobile device, by accessing
  • the positioning-related network function is also the second network function, which is to obtain the location information of the target sensing node and/or the candidate reference target.
  • the second network function can be a location management function, such as a location management function (LMF), a network function that receives location information from Minimization of Drive Test (MDT); the second network function can also be Positioning service function, such as application service (Application Function, AF), the AF can be a positioning server of Wireless LAN (Wi-Fi), Bluetooth (Bluetooth), Zigbee or Ultra Wide Band (UWB), etc. , or it can be an application function (such as a map APP) that can obtain positioning information such as Global Positioning System (GPS).
  • LMF location management function
  • MDT Minimization of Drive Test
  • the second network function can also be Positioning service function, such as application service (Application Function, AF), the AF can be a positioning server of Wireless LAN (Wi-Fi), Bluetooth (Bluetooth), Zigbee or Ultra Wide Band (UWB), etc. , or it can be an application function (such as a map APP) that can obtain positioning information such as Global Positioning System
  • the first device obtaining the second information includes:
  • the first device performs any of the following:
  • the first device sends second signaling to the target sensing node and/or the candidate reference target, and receives the second signaling from the target sensing node and/or the candidate reference target based on the second signaling.
  • capability information
  • the first device obtains the capability information from a second network side device, where the second network side device stores device capability information.
  • the capability information of the target sensing node and/or the candidate reference target is obtained by: the first device sends second signaling to the target sensing node and/or the candidate reference target, and receives the second signaling.
  • the target sensing node and/or candidate reference target of the second signaling will reply its capability information to the first device.
  • the acquisition method of the capability information of the target sensing node and/or the candidate reference target may also be: the first device accesses the second network side device to obtain the capability information of the target sensing node and/or the candidate reference target. Obtain the first information.
  • the second network side device stores capability information of the target sensing node and/or the candidate reference target.
  • the capability information of the candidate reference target includes at least one of the following:
  • the positioning-related information may be the positioning method and positioning accuracy supported by the candidate reference target, and the positioning method may include at least one of the following: NR positioning, Wi-Fi positioning, and GPS positioning.
  • the sensor-related information may be information related to the sensor equipped with the candidate reference target, including: the type of sensor, for example, the sensor type is a gyroscope; the measurement quantities supported by the sensor, for example, the supported measurement quantities are speed (vector) and acceleration (vector);
  • the accuracy of the measurement quantity such as the accuracy of the measurement quantity, is in the form of velocity measurement accuracy ⁇ m/s and acceleration measurement accuracy ⁇ m/s2.
  • the first device obtaining the second information includes:
  • the first device obtains the sensing prior information from an initiating node of the sensing service or a network node related to the initiating node.
  • the perceptual prior information includes at least one of the following:
  • the method further includes:
  • the first device obtains the positioning information of the reference target by accessing a third network function
  • the first device determines third information of the reference target based on at least one of the positioning information and the capability information of the reference target;
  • the third network function is a positioning-related network function; the third information includes at least one of a motion state parameter and a radar spectrum pattern.
  • the third network function can be a positioning management function, such as LMF, a network function that receives MDT location information; the third network function can also be a positioning service function, such as AF, and the AF can be Wi-Fi, Bluetooth, Zigbee or UWB It can also be an application function (such as a map APP) that can obtain positioning information such as GPS. After obtaining the positioning information of the reference target by accessing the third network function, the first device can determine the motion state parameters and At least one item in the radar spectrum pattern.
  • a positioning management function such as LMF
  • AF positioning service function
  • AF can be Wi-Fi, Bluetooth, Zigbee or UWB
  • It can also be an application function (such as a map APP) that can obtain positioning information such as GPS.
  • the motion state parameters include: position, motion speed, motion direction, etc.
  • the radar spectrum pattern is the combined radar spectrum of the reference target in at least one dimension or multiple dimensions of time delay, Doppler, azimuth angle and elevation angle, including at least one of the following: distance, Doppler Le, angle (including azimuth angle and/or pitch angle), range one-dimensional spectrum, Doppler one-dimensional spectrum, angle one-dimensional spectrum (including azimuth one-dimensional spectrum and/or pitch angle one-dimensional spectrum), range-Doppler two-dimensional spectrum, azimuth Angle-elevation angle two-dimensional spectrum, distance-angle (including azimuth angle or pitch angle) two-dimensional spectrum, distance-azimuth angle-elevation angle three-dimensional spectrum, range-Doppler-angle (including azimuth angle or pitch angle) three-dimensional spectrum , range-Doppler-azimuth angle-elevation angle four-dimensional spectrum.
  • a moving car also a UE
  • the first device determines the third information of the reference target according to the positioning information, which is converted based on the positioning information. For example, through the continuous positioning of a moving car (also a UE), the position, speed, direction of movement and other motion states of the car can be obtained, or radar spectrum patterns such as time delay-Doppler two-dimensional spectrum.
  • capability information of the reference target such as information measured by a sensor equipped with the reference target, may also be combined, including: Movement speed (vector), acceleration (vector), attitude (azimuth angle, pitch angle, roll angle relative to a certain reference coordinate system), etc.
  • the method before step 201, the method further includes:
  • the first device determines a first configuration of the first signal based on fourth information
  • the fourth information includes at least one of the following:
  • the first sensing node and the second sensing node are used to perform sensing measurements on the reference target based on the first signal.
  • the first configuration includes at least one of the following: signal waveform, signal format, frequency domain configuration, time domain configuration, spatial domain configuration, energy domain configuration, and signal transceiver mode.
  • the signal waveform may include OFDM, Orthogonal Time Frequency Space (OTFS), Frequency Modulated Continuous Wave (FMCW) and Single-carrier Frequency Division Multiple Access (Single-carrier Frequency- Division Multiple Access, SC-FDMA), etc.
  • OFDM Orthogonal Time Frequency Space
  • FMCW Frequency Modulated Continuous Wave
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • the signal format may include a demodulation reference signal (Demodulation Reference Signal, DMRS), a positioning reference signal (Positioning Reference Signal, PRS), a channel state information reference signal (Channel State Information Reference Signal, CSI-RS), etc.
  • DMRS Demodulation Reference Signal
  • PRS Positioning Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • the frequency domain configuration may include bandwidth, subcarrier spacing, starting frequency, starting position of resource block (Resource Block, RB) or resource element (Resource element, RE), offset of RB or RE, adjacent
  • the time domain configuration may include the sensing signal period, the sensing frame period, the sensing update period, the starting position of the OFDM symbol or time slot, the offset of the OFDM symbol or time slot, and the distance between adjacent OFDM symbols or time slots.
  • the airspace configuration may include: beam direction, antenna parameter configuration, quasi co-location (QCL) relationship between beams, etc.
  • the antenna parameter configuration further includes: antenna panel configuration (including: the number of antenna panels, coordinates, etc.), antenna array element configuration (including: the number of antenna array elements, coordinates, etc.), MIMO configuration (including: the normalization of multi-channel signals). Interaction methods (Time Division Multiplexing (TDM), Frequency Division Multiplexing (FDM), Doppler Division Multiplexing (DDM), Code Division Multiplexing (CDM) ), etc.) and corresponding parameters), etc.
  • TDM Time Division Multiplexing
  • FDM Frequency Division Multiplexing
  • DDM Doppler Division Multiplexing
  • CDM Code Division Multiplexing
  • the energy domain configuration may include: peak power, average power, etc.
  • the signal transceiving method includes at least one of the following:
  • One-way signal transmission and reception is performed between the first sensing node and the second sensing node;
  • Bidirectional signals are sent and received between the first sensing node and the second sensing node.
  • the above-mentioned sending and receiving of one-way signals can be understood as the first sensing node sending the first signal, and the second sensing node receiving the first signal; or, the first sensing node receiving the first signal, and the second sensing node sending the first signal.
  • the above two-way signal sending and receiving can be understood as the first sensing node sends the first signal, the second sensing node receives the first signal sent by the first sensing node, and, the second sensing node sends the first signal, the first sensing node Receive the first signal sent by the second sensing node.
  • the method further includes:
  • the first device performs perception measurement on the reference target according to at least one of the first configuration and the third information, and obtains a third perception result.
  • the first device performs perception measurement on the reference target according to at least one of the first configuration and the third information, and obtains a third perception result, including:
  • the first device sends the first configuration to the sending end and/or the receiving end of the first signal.
  • the sending end of the first signal can send the first signal according to the first configuration; the receiving end of the first signal can receive the first signal according to the first configuration.
  • the first device performs perception measurement on the reference target according to at least one of the first configuration and the third information, and obtains a third perception result, including:
  • the first device In the case where the first device is the receiving end of the first signal in the perceptual measurement process, the first device receives the first signal, obtains the first data, and the first device is based on the first Data determines the third perception result;
  • the first device When the first device is the sending end of the first signal in the sensing measurement process, the first device sends the first signal from the sensing node or sensing function corresponding to the receiving end of the first signal.
  • the network element receives a third sensing result corresponding to the sensing measurement;
  • the first device When the first device is a sensing function network element, the first device receives second data from the sensing node corresponding to the receiving end of the first signal, and determines the third data based on the second data. Perceive the results.
  • the first data is data obtained by performing down-conversion, filtering, sampling, extraction and other operations on the received first signal.
  • the first device determining the third sensing result based on the first data includes any of the following:
  • the first device performs a first operation on the first data to obtain the third sensing result
  • the first device sends third data to a sensing function network element, and receives a third sensing result determined based on the third data from the sensing function network element, where the third data includes the first data or is based on
  • the intermediate sensing result is obtained by performing a second operation on the first data.
  • the third sensing result is determined by the sensing function network element performing a first operation on the first data or performing a third operation based on the intermediate sensing result. It is determined that the second operation is part of the first operation, and the third operation is the rest of the first operation except the second operation.
  • the first device determines that the first sensing result includes any of the following based on the second data:
  • the second data includes first data corresponding to the perception measurement, and the first device performs a first operation on the first data to obtain the third perception result;
  • the second data includes an intermediate perception result obtained by performing a second operation based on the first data, and the first device performs a third operation on the intermediate perception result to obtain a third perception result;
  • the second operation is the Part of the operation in the first operation, the third operation is the remaining operation in the first operation except the second operation;
  • the second data includes the third sensing result, and the first device obtains the third sensing result by receiving.
  • the first device when the first device does not participate in the calculation of the sensing result, the first device can only receive the third sensing result from other devices. For example, in some embodiments, the first device receives the third sensing result from the sensing node or sensing function network element corresponding to the receiving end of the first signal in the sensing measurement process.
  • the first device can further send the third sensing result to other devices that need the sensing result, such as to the sensing function network element. Or the device such as the sensing demander sends the third sensing result.
  • the sending end of the first signal in the perceptual measurement process can generate and send the first signal according to the first configuration; the receiving end of the first signal in the perceptual measurement process receives the first signal and obtains the first data; so During the perception measurement process, the receiving end of the first signal and/or the perception function network element performs signal processing and/or data processing according to the first configuration and the third information.
  • the signal processing and/or data processing includes the following situations:
  • Case 1 During the sensing measurement process, the receiving end of the first signal performs the first operation on the first data to obtain the third sensing result;
  • the receiving end of the first signal sends the third sensing result to the first device.
  • Case 2 During the sensing measurement process, the receiving end of the first signal performs a second operation on the first data to obtain an intermediate sensing result, and sends the intermediate sensing result to the sensing function network element.
  • the sensing function network element The intermediate perception result is subjected to a third operation to obtain the third perception result; wherein the second operation is the second operation in the first operation. Partial operation; the third operation is a part of the first operation except the second operation;
  • the sensing function network element sends the third sensing result to the first device.
  • Case 3 During the sensing measurement process, the receiving end of the first signal sends the first data to the sensing function network element, and the sensing function network element performs a first operation on the first data to obtain a third sensing result;
  • the sensing function network element sends the third sensing result to the first device.
  • the third sensing result includes at least one of the following: distance; Doppler; angle; distance one-dimensional spectrum; Doppler one-dimensional spectrum; angle one-dimensional spectrum; distance and Doppler two-dimensional spectrum ; Two-dimensional spectrum of azimuth angle and elevation angle; two-dimensional spectrum of distance and angle; three-dimensional spectrum of distance, azimuth angle and elevation angle; three-dimensional spectrum of distance, Doppler and angle; range, Doppler, azimuth angle and Four-dimensional spectrum of pitch angle.
  • the third sensing results obtained above may include multiple ones, and the multiple sensing results may be averaged, or the third sensing result corresponding to the one with the largest power or the largest SNR of the first data is taken as the final third sensing result.
  • the three-perception results are processed later.
  • the first device obtains the first sensing result and the second sensing result, including:
  • the first device determines the second sensing result based on at least part of the fourth information
  • the first device determines the first perception result from the third perception result according to the second perception result.
  • the first device determines the first perception result from the third perception result according to the second perception result, which may be:
  • the first device matches the signal power distribution in the third sensing result with the radar cross section (RCS) pattern of the reference target in the second sensing result to obtain the first sensing result; or, the first device
  • the first perception result is obtained by matching the radar spectrum pattern in the third perception result with the radar spectrum pattern of the reference target in the second perception result.
  • the "measurement curve” is the third perception result
  • the “reference curve” is the second perception result (ie, the reference target "Delay-Doppler” pattern)
  • matching the "measurement curve” and “reference curve” in can identify the path or cluster corresponding to the reference target in the first signal, thereby obtaining the third reference target A perceived result.
  • the first parameter between the sending end of the first signal and the receiving end of the first signal can be obtained.
  • the first parameter includes at least one of the following:
  • the first sensing node and the second sensing node are used to perform sensing measurements on the reference target based on the first signal.
  • the first device when the signal transmission and reception mode of the first signal is unidirectional signal transmission and reception between the first sensing node and the second sensing node, the first device is configured according to The first perception result and The second sensing result determines that the first parameter includes at least one of the following:
  • the first measured phase is determined based on the angle derivation in the first perception result
  • the first reference phase is determined based on the angle derivation in the second perception result
  • the third perception The node is the first sensing node or the second sensing node
  • the third sensing node is the sensing node corresponding to the receiving end of the first signal.
  • the time delay in the first perception result minus the time delay in the second perception result can be determined as the timing error; the Doppler in the first perception result minus the Doppler The Doppler result in the second sensing result is determined as the frequency offset; the result determined by subtracting the first reference phase from the first measured phase is determined as the phase deviation between the antennas of the third sensing node.
  • the first device when the signal transceiver mode of the first signal is bidirectional signal transmission and reception between the first sensing node and the second sensing node, the first device performs the transmission and reception according to the The first parameter determined by the first sensing result and the second sensing result includes at least one of the following:
  • the timing error in the first parameter is determined based on the first delay, the second delay and the delay in the second sensing result; wherein the first delay is based on the second sensing node as the third The delay in the first sensing result obtained by the receiving end of a signal, the second delay is the delay in the first sensing result obtained based on the second sensing node serving as the sending end of the first signal;
  • the frequency offset in the first parameter is determined based on a first Doppler, a second Doppler and a Doppler in a second sensing result, the first Doppler being based on the second sensing node as The Doppler in the first sensing result obtained by the receiving end of the first signal, the second Doppler is the Doppler in the first sensing result obtained based on the second sensing node acting as the transmitting end of the first signal.
  • the phase deviation between the antennas of the third sensing node in the first parameter based on the first measured phase between the antennas of the third sensing node and the first reference phase between the antennas of the third sensing node ;
  • the first measured phase is determined based on the angle derivation in the first sensing result;
  • the first reference phase is determined based on the angle in the second sensing result;
  • the third sensing node is the first sensing node or the second sensing node, and the third sensing node is the sensing node corresponding to the receiving end of the first signal.
  • the first delay in the first sensing result minus the delay in the second sensing result may be determined as the first timing error
  • the first sensing result in the first sensing result may be The result obtained by subtracting the delay in the second sensing result from the second delay is determined to be the second timing error.
  • the timing error in the first parameter may be the average of the first timing error and the second timing error.
  • the first Doppler in the first perception result may be subtracted from the first Doppler in the second perception result.
  • the Doppler obtained result is determined as the first frequency offset
  • the second Doppler in the first sensing result minus the Doppler obtained in the second sensing result is determined as the second frequency offset
  • the frequency offset in the first parameter may be an average of the first frequency offset and the second frequency offset.
  • the result determined by subtracting the first reference phase from the first measured phase may be determined as a phase deviation between the antennas of the fourth sensing node.
  • the method further includes:
  • the first device determines a target parameter according to the first parameter, and the target parameter is used to compensate for the measurement error of the sensing node;
  • the first device sends at least part of the target parameters to a target device, and the target device includes at least one of a first sensing node, a second sensing node, and a sensing function network element; wherein, the first sensing node and the second sensing node is configured to perform sensing measurements on the reference target based on the first signal.
  • the first device when the first device and the first sensing node are not the same device, the first device sends at least some of the target parameters to the first sensing node;
  • the first device sends at least some of the target parameters to the second sensing node;
  • the first device When the first device and the sensing function network element are not the same device, the first device sends at least some of the target parameters to the sensing function network element.
  • multiple sets of first parameter values may be obtained by performing the above-mentioned sensing measurements multiple times, and finally the final value used to compensate the sensing node is determined based on the multiple sets of first parameter values.
  • the measurement error is determined to compensate the measurement error when the first sensing node and the second sensing node perform sensing measurements. Therefore, optionally, the target parameters are determined based on N groups of first parameters determined by the first device, where N is a positive integer;
  • the target parameter when N is equal to 1, the target parameter is the first parameter; when N is greater than 1, the target parameter satisfies any of the following:
  • Each parameter value in the target parameter is the mean value of the corresponding parameter values in the N groups of first parameters
  • the target parameter is a group of first parameters corresponding to the highest received signal quality among the N groups of first parameters;
  • Each parameter value in the target parameter is the mean value of the corresponding parameter value in the L group of first parameters, and the L group of first parameters is the corresponding received signal quality in the N group of first parameters, sorted from high to low.
  • the first parameter of the first L group, L is an integer greater than 1.
  • the received signal quality may include: received signal power, Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), Received Signal Strength Indication (Received Signal Strength Indication). , RSSI) and the signal-to-noise ratio of the received signal (Signal Noise Ratio, SNR), etc.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • RSSI Received Signal Strength Indication
  • SNR Signal-to-noise ratio of the received signal
  • the following steps are performed repeatedly: sensing the reference target, determining the first sensing result and the second sensing result, determining the first parameter, determining target parameters and Send at least some of the parameters in the target parameters.
  • Scenario 1 Uplink sensing as shown in Figure 4.
  • Terminal 1 sends a first signal and the base station receives the first signal.
  • the goal of this embodiment is to perceive the sensing objects in the picture.
  • the base station may be the access base station of the terminal 1, or may not be the access base station of the terminal 1.
  • the first device is a sensing function network element, the sending end of the first signal (such as the first sensing node) is terminal 1, and the receiving end of the first signal (such as the second sensing node) is Base station, the reference target is terminal 2.
  • the sensing signal delay caused by the sensing object or Doppler, or The angle of the sensing object relative to the base station.
  • the reference target terminal 2 is sensed through the first signal to obtain the first sensing result of the reference target; on the other hand, through the positional relationship between the terminal 1, the base station and the reference target , and the motion state parameters or radar spectrum patterns of the reference target obtained through continuous positioning, the second sensing result corresponding to the reference target can be obtained.
  • the sensing function network element selects the reference target shown in the figure based on the base station, the terminal 1, and the prior information of the spatial location of the sensing object, performs the first configuration of the first signal, and determines the third information of the reference target.
  • the terminal 1 and the base station align the beam in the direction of the reference target; the terminal 1 sends the first signal, and the base station receives the first signal; the base station (or sensing function network element) performs according to the first configuration of the first signal and the third information of the reference target.
  • the signal processing extracts the paths or clusters reflected by the reference target in the signal received by the base station, and then obtains the first sensing result corresponding to the reference target.
  • the sensing function network element requests the positioning management function or positioning service function or
  • the positioning application function requests and obtains continuous positioning information of the reference target, and obtains motion state parameters or radar spectrum patterns of the reference target based on the continuous positioning information.
  • the base station uses the motion state parameter or radar spectrum pattern to identify the path or cluster corresponding to the reference target.
  • the base station obtains the timing deviation between the terminal 1 and the base station based on the delay, Doppler, or angle in the first sensing result and the delay, Doppler, and angle in the second sensing result corresponding to the reference target. , or frequency offset, or phase deviation between each antenna port of the base station.
  • the base station Based on the obtained timing deviation, or frequency offset, or phase deviation between antenna ports, the base station corrects the obtained sensing result in the process of sensing the sensing object through the terminal 1 and the base station.
  • Scenario 2 Downlink sensing as shown in Figure 5.
  • the base station sends the first signal and the terminal 1 receives the first signal.
  • the goal of this embodiment is to perceive the sensing objects in the picture.
  • the base station may be the access base station of the terminal 1, or may not be the access base station of the terminal 1.
  • the first device is a sensing function network element, the sending end of the first signal (such as the first sensing node) is a base station, and the receiving end of the first signal (such as the second sensing node) is a terminal.
  • the reference target is terminal 2.
  • the sensing signal delay or Doppler caused by the sensing object can be obtained more accurately, or object of perception Relative to the angle of terminal 1, on the one hand, the reference target (terminal 2) is sensed through the first signal to obtain the first sensing result of the reference target; on the other hand, through the positional relationship between terminal 1, the base station and the reference target, And the motion state parameters or radar spectrum patterns of the reference target obtained through continuous positioning can be used to obtain the second perception result corresponding to the reference target.
  • the sensing function network element selects the reference target shown in the figure based on the base station, the terminal 1, and the prior information of the spatial location of the sensing object, performs the first configuration of the first signal, and determines the third information of the reference target.
  • Terminal 1 and the base station align the beam in the direction of the reference target; the base station sends a first signal, and terminal 1 receives the first signal; terminal 1 (or sensing function network element) according to the first configuration of the first signal and the third information of the reference target, Signal processing is performed to extract the paths or clusters reflected by the reference target in the signal received by the terminal 1, and then a first sensing result corresponding to the reference target is obtained.
  • the sensing function network element requests the positioning management function or positioning service function.
  • the positioning application function requests and obtains the continuous positioning information of the reference target, and obtains the motion state parameters or radar spectrum pattern of the reference target based on the continuous positioning information.
  • the terminal 1 uses the motion state parameter or radar spectrum pattern to identify the path or cluster corresponding to the reference target.
  • the terminal 1 obtains the timing between the terminal 1 and the base station based on the delay, Doppler, or angle in the first sensing result and the delay, Doppler, and angle in the second sensing result corresponding to the reference target. Deviation, or frequency offset, or phase deviation between the antenna ports of terminal 1.
  • the terminal 1 Based on the obtained timing deviation, frequency offset, or phase deviation between antenna ports, the terminal 1 corrects the obtained sensing result in the process of sensing the sensing object through the terminal 1 and the base station.
  • Scenario 3 Sidelink sensing as shown in Figure 6.
  • Terminal 1 sends the first signal and terminal 2 receives the first signal.
  • the goal of this embodiment is to perceive the sensing objects in the picture.
  • the first device is a sensing function network element
  • the sending end of the first signal (such as the first sensing node) is terminal 1
  • the receiving end of the first signal (such as the second sensing node) is Terminal 2
  • the reference target is terminal 3.
  • the perceived signal delay or Doppler caused by the sensing object can be obtained more accurately , or the angle of the sensing object relative to the terminal 2.
  • the reference target terminal 3 is sensed through the first signal to obtain the first sensing result of the reference target; on the other hand, through the terminal 1, terminal 2 and the reference target three Based on the positional relationship of the target and the motion state parameters or radar spectrum pattern of the reference target obtained through continuous positioning, the second perception result corresponding to the reference target can be obtained.
  • the sensing function network element selects the reference target shown in the figure based on the a priori information of terminal 1, terminal 2 and the spatial range of the sensing object, performs the first configuration of the first signal, and determines the third information of the reference target.
  • Terminal 1 and terminal 2 align the beams in the direction of the reference target; terminal 1 sends the first signal, and terminal 2 receives the first signal; terminal 2 (or the sensing function network element) adjusts the beam according to the first configuration of the first signal and the third configuration of the reference target. information, perform signal processing to extract the paths or clusters reflected by the reference target in the signal received by the base station, and then obtain the first sensing result corresponding to the reference target.
  • the sensing function network element requests and obtains the continuous positioning information of the reference target from the positioning management function or positioning service function or positioning application function, and obtains the reference based on the continuous positioning information.
  • the target 's motion state parameters or radar spectrum pattern.
  • the terminal 2 uses the motion state parameter or radar spectrum pattern to identify the path or cluster corresponding to the reference target.
  • Terminal 2 obtains the communication between terminal 1 and terminal 2 based on the time delay, Doppler, or angle in the first sensing result and the time delay, Doppler, and angle in the second sensing result corresponding to the reference target. Timing deviation, or frequency deviation, or phase deviation between the antenna ports of the terminal 2.
  • the terminal 2 Based on the obtained timing deviation, frequency offset, or phase deviation between antenna ports, the terminal 2 corrects the obtained sensing result during the process of sensing the sensing object through the terminal 1 and the terminal 2.
  • the method of the embodiment of the present application can estimate at least one of the timing error between the transmitting end and the receiving end of the first signal, the frequency offset, and the phase deviation between the antennas at the receiving end of the first signal. Then, when performing the sensing of the sensing object, at least one of the estimated timing error, frequency offset, and inter-antenna phase deviation is used to perform corresponding compensation, which can reduce the error in the sensing measurement process of the sensing object and improve Perceived performance.
  • a perception processing method includes:
  • Step 701 The sensing node performs sensing measurement on the reference target based on the first signal
  • the measurement perception result corresponding to the perception measurement is used to determine the first parameter, and the first parameter is used to represent the measurement error of the perception measurement;
  • the reference target is user equipment.
  • the sensing node performing sensing measurement on the reference target based on the first signal includes at least one of the following:
  • the sensing node In the case where the sensing node is the receiving end of the first signal, the sensing node receives the first signal and obtains first data according to the first signal;
  • the sensing node When the sensing node is the sending end of the first signal, the sensing node sends the first signal.
  • the method further includes:
  • the sensing node performs any of the following:
  • the method also includes:
  • the sensing node receives the first signaling
  • the sensing node sends first information to the first device according to the first signaling, where the first information is used to determine whether to estimate a measurement error of the sensing measurement.
  • the first signaling satisfies at least one of the following:
  • the first signaling is signaling sent during the process of selecting a sensing node, or the first signaling is signaling sent after the target sensing node is determined;
  • the first signaling is signaling dedicated to querying the first information.
  • the sensing node before the sensing node performs sensing measurement on the reference target based on the first signal, it further includes:
  • the sensing node receives a first configuration of the first signal from a first device
  • the first configuration includes at least one of the following: waveform signal, signal format, frequency domain configuration, time domain configuration, spatial domain configuration, energy domain configuration and signal transceiver mode.
  • the signal transceiving method includes at least one of the following:
  • One-way signal transmission and reception is performed between the first sensing node and the second sensing node;
  • Bidirectional signals are sent and received between the first sensing node and the second sensing node.
  • the sensing node after the sensing node performs sensing measurement on the reference target based on the first signal, it further includes:
  • the sensing node receives at least part of the target parameters from the first device, and the target parameters are used to compensate for the measurement error of the sensing node.
  • the target parameter is determined based on N groups of first parameters, each group of first parameters is determined based on a first sensing result and a second sensing result, and the first sensing result is that the sensing node performs the sensing once.
  • the measured measurement sensing result, the second sensing result is the reference sensing result corresponding to the reference target, and N is a positive integer.
  • the target parameter is the first parameter; when N is greater than 1, the target parameter satisfies any of the following:
  • Each parameter value in the target parameter is the mean value of the corresponding parameter values in the N groups of first parameters
  • the target parameter is a group of first parameters corresponding to the highest received signal quality among the N groups of first parameters;
  • Each parameter value in the target parameter is the mean value of the corresponding parameter value in the L group of first parameters, and the L group of first parameters is the corresponding received signal quality in the N group of first parameters, sorted from high to low.
  • the first parameter of the first L group, L is an integer greater than 1.
  • the first parameter includes at least one of the following:
  • the method of this embodiment is implemented in conjunction with the above-mentioned perception processing method executed by the first device.
  • the implementation of the above-mentioned perception processing method executed by the first device is applicable to this method and can also achieve the same technical effects.
  • the execution subject may be a perception processing device.
  • the perception processing device executing the perception processing method is taken as an example to illustrate the perception processing device provided by the embodiment of the present application.
  • the perception processing device 800 includes:
  • the first acquisition module 810 is used to acquire a first perception result and a second perception result.
  • the first perception result is a measurement perception result obtained by perceptually measuring the reference target based on the first signal.
  • the second perception result is the corresponding The reference perception result of the reference target;
  • the first processing module 820 is configured to determine a first parameter according to the first perception result and the second perception result, where the first parameter is used to represent the measurement error of the perception measurement;
  • the reference target is user equipment.
  • the device also includes:
  • the second acquisition module is used to acquire the first information of the target sensing node.
  • the target sensing node includes at least one of a first sensing node and a second sensing node.
  • the first sensing node and the second sensing node For performing perceptual measurement on a reference target based on the first signal;
  • the third processing module is configured to determine whether to estimate the measurement error of the sensing measurement according to the first information of the target sensing node.
  • the second acquisition module is also used for any of the following:
  • the first signaling satisfies at least one of the following:
  • the first signaling is signaling sent during the process of selecting a sensing node, or the first signaling is signaling sent after the target sensing node is determined;
  • the first signaling is signaling dedicated to querying the first information.
  • the device also includes:
  • the third acquisition module is used to acquire the second information when it is determined to estimate the measurement error of the perceptual measurement
  • a fourth processing module configured to determine the reference target according to the second information
  • the second information includes at least one of the following:
  • the location information of the target sensing node is the location information of the target sensing node
  • Capability information of candidate reference targets within a preset spatial range is
  • the third acquisition module is also used to:
  • the second information includes position information of the target sensing node and/or the candidate reference target, perform:
  • the first network function is accessed, or the report of the target sensing node and/or the candidate reference target is received. Location information; wherein the first network function stores device location information;
  • the location information is obtained by accessing a second network function; wherein the second network function is a positioning-related network function.
  • the third acquisition module is also used to:
  • the second information includes capability information of the target sensing node and/or the candidate reference target, perform any of the following:
  • the capability information is obtained from a second network side device, where the second network side device stores device capability information.
  • the capability information of the candidate reference target includes at least one of the following:
  • the third acquisition module is also used to:
  • the sensing prior information is obtained from an initiating node of the sensing service or a network node related to the initiating node.
  • the perceptual prior information includes at least one of the following:
  • the device also includes:
  • the fourth acquisition module is used to obtain the positioning information of the reference target by accessing the third network function
  • a fifth processing module configured to determine third information of the reference target based on at least one of the positioning information and the capability information of the reference target;
  • the third network function is a positioning-related network function; the third information includes at least one of a motion state parameter and a radar spectrum pattern.
  • the device also includes:
  • a sixth processing module configured to determine the first configuration of the first signal according to the fourth information
  • the fourth information includes at least one of the following:
  • the first sensing node and the second sensing node are used to perform sensing measurements on the reference target based on the first signal.
  • the first configuration includes at least one of the following: signal waveform, signal format, frequency domain configuration, time domain configuration, air domain configuration, energy domain configuration, and signal transceiver mode.
  • the signal transceiving method includes at least one of the following:
  • One-way signal transmission and reception is performed between the first sensing node and the second sensing node;
  • Bidirectional signals are sent and received between the first sensing node and the second sensing node.
  • the device also includes:
  • a seventh processing module configured to perform perception measurement on the reference target according to at least one of the first configuration and the third information, and obtain a third perception result.
  • the seventh processing module is also used to:
  • the first device In the case where the first device is the receiving end of the first signal in the perceptual measurement process, the first device receives the first signal, obtains the first data, and the first device is based on the first Data determines the third perception result;
  • the first device When the first device is the sending end of the first signal in the sensing measurement process, the first device sends the first signal from the sensing node or sensing function corresponding to the receiving end of the first signal.
  • the network element receives a third sensing result corresponding to the sensing measurement;
  • the first device When the first device is a sensing function network element, the first device receives second data from the sensing node corresponding to the receiving end of the first signal, and determines the third data based on the second data. Perceive the results.
  • the first device determining the third sensing result based on the first data includes any of the following:
  • the first device performs a first operation on the first data to obtain the third sensing result
  • the first device sends third data to a sensing function network element, and receives a third sensing result determined based on the third data from the sensing function network element, where the third data includes the first data or is based on
  • the intermediate sensing result is obtained by performing a second operation on the first data.
  • the third sensing result is determined by the sensing function network element performing a first operation on the first data or performing a third operation based on the intermediate sensing result. It is determined that the second operation is part of the first operation, and the third operation is the rest of the first operation except the second operation.
  • the first device determines that the first sensing result includes any of the following based on the second data:
  • the second data includes first data corresponding to the perception measurement, and the first device performs a first operation on the first data to obtain the third perception result;
  • the second data includes an intermediate perception result obtained by performing a second operation based on the first data, and the first device performs a third operation on the intermediate perception result to obtain a third perception result;
  • the second operation is the Part of the operation in the first operation, the third operation is the remaining operation in the first operation except the second operation;
  • the second data includes the third sensing result, and the first device obtains the third sensing result by receiving.
  • the third sensing result includes at least one of the following: distance; Doppler; angle; distance one-dimensional spectrum; Doppler one-dimensional spectrum; angle one-dimensional spectrum; distance and Doppler two-dimensional spectrum ; Two-dimensional spectrum of azimuth angle and elevation angle; two-dimensional spectrum of distance and angle; three-dimensional spectrum of distance, azimuth angle and elevation angle; three-dimensional spectrum of distance, Doppler and angle; range, Doppler, azimuth angle and Four-dimensional spectrum of pitch angle.
  • the first acquisition module is also used to:
  • the first perception result is determined from the third perception result based on the second perception result.
  • the first sensing result includes at least one of the following: time delay, Doppler and angle;
  • the second perception result includes at least one of the following: time delay, Doppler and angle.
  • the first parameter includes at least one of the following:
  • the first sensing node and the second sensing node are used to perform sensing measurements on the reference target based on the first signal.
  • the first processing module is also used for at least one of the following: item:
  • the first measured phase is determined based on the angle derivation in the first perception result
  • the first reference phase is determined based on the angle derivation in the second perception result
  • the third perception The node is the first sensing node or the second sensing node
  • the third sensing node is the sensing node corresponding to the receiving end of the first signal.
  • the first processing module is also used for at least one of the following: :
  • the timing error in the first parameter is determined based on the first delay, the second delay and the delay in the second sensing result; wherein the first delay is based on the second sensing node as the third The delay in the first sensing result obtained by the receiving end of a signal, the second delay is the delay in the first sensing result obtained based on the second sensing node serving as the sending end of the first signal;
  • the frequency offset in the first parameter is determined based on a first Doppler, a second Doppler and a Doppler in a second sensing result, the first Doppler being based on the second sensing node as The Doppler in the first sensing result obtained by the receiving end of the first signal, the second Doppler is the Doppler in the first sensing result obtained based on the second sensing node acting as the transmitting end of the first signal.
  • the phase deviation between the antennas of the third sensing node in the first parameter based on the first measured phase between the antennas of the third sensing node and the first reference phase between the antennas of the third sensing node ;
  • the first measured phase is determined based on the angle derivation in the first sensing result;
  • the first reference phase is determined based on the The angle in the second sensing result is determined;
  • the third sensing node is the first sensing node or the second sensing node, and the third sensing node is the sensing node corresponding to the receiving end of the first signal. node.
  • the device also includes:
  • An eighth processing module configured to determine a target parameter according to the first parameter, the target parameter being used to compensate for the measurement error of the sensing node;
  • a sending module configured to send at least some of the target parameters to a target device, where the target device includes at least one of a first sensing node, a second sensing node, and a sensing function network element; wherein, the first sensing node and the second sensing node is configured to perform sensing measurements on the reference target based on the first signal.
  • the target parameters are determined based on N groups of first parameters determined by the first device, where N is a positive integer;
  • the target parameter when N is equal to 1, the target parameter is the first parameter; when N is greater than 1, the target parameter satisfies any of the following:
  • Each parameter value in the target parameter is the mean value of the corresponding parameter values in the N groups of first parameters
  • the target parameter is a group of first parameters corresponding to the highest received signal quality among the N groups of first parameters;
  • Each parameter value in the target parameter is the mean value of the corresponding parameter value in the L group of first parameters, and the L group of first parameters is the corresponding received signal quality in the N group of first parameters, sorted from high to low.
  • the first parameter of the first L group, L is an integer greater than 1.
  • the device in the embodiment of the present application may be a base station or a sensing function network element, which is not specifically limited in the embodiment of the present application.
  • the perception processing device provided by the embodiments of the present application can implement each process implemented by the method embodiments of Figures 2 to 6, and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • the perception processing device 900 includes:
  • the second processing module 910 is configured to perform perceptual measurement on the reference target based on the first signal
  • the measurement perception result corresponding to the perception measurement is used to determine the first parameter, and the first parameter is used to represent the measurement error of the perception measurement;
  • the reference target is user equipment.
  • the second processing module is also used for at least one of the following:
  • the sensing node In the case where the sensing node is the receiving end of the first signal, the sensing node receives the first signal and obtains first data according to the first signal;
  • the sensing node When the sensing node is the sending end of the first signal, the sensing node sends the first signal.
  • the device also includes:
  • Execution module that performs any of the following:
  • the device also includes:
  • the first receiving module is used to receive the first signaling
  • a first information reply module configured to send first information to the first device according to the first signaling, where the first information is used to determine whether to estimate the measurement error of the perceptual measurement.
  • the first signaling satisfies at least one of the following:
  • the first signaling is signaling sent during the process of selecting a sensing node, or the first signaling is signaling sent after the target sensing node is determined;
  • the first signaling is signaling dedicated to querying the first information.
  • the device also includes:
  • a second receiving module configured to receive the first configuration of the first signal from the first device
  • the first configuration includes at least one of the following: waveform signal, signal format, frequency domain configuration, time domain configuration, spatial domain configuration, energy domain configuration and signal transceiver mode.
  • the signal transceiving method includes at least one of the following:
  • One-way signal transmission and reception is performed between the first sensing node and the second sensing node;
  • Bidirectional signals are sent and received between the first sensing node and the second sensing node.
  • the device also includes:
  • the third receiving module is configured to receive at least part of the target parameters from the first device, where the target parameters are used to compensate for the measurement error of the sensing node.
  • the target parameter is determined based on N groups of first parameters, each group of first parameters is determined based on a first sensing result and a second sensing result, and the first sensing result is that the sensing node performs the sensing once.
  • the measured measurement sensing result, the second sensing result is the reference sensing result corresponding to the reference target, and N is a positive integer.
  • the target parameter is the first parameter; when N is greater than 1, the target parameter satisfies any of the following:
  • Each parameter value in the target parameter is the mean value of the corresponding parameter values in the N groups of first parameters
  • the target parameter is a group of first parameters corresponding to the highest received signal quality among the N groups of first parameters;
  • Each parameter value in the target parameter is the mean value of the corresponding parameter value in the L group of first parameters, and the L group of first parameters is the corresponding received signal quality in the N group of first parameters, sorted from high to low.
  • the first parameter of the first L group, L is an integer greater than 1.
  • the first parameter includes at least one of the following:
  • the device in the embodiment of the present application may be a terminal or a network-side device, which is not specifically limited in the embodiment of the present application.
  • the perception processing device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 7 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 1000, including a processor 1001 and memory 1002.
  • the memory 1002 stores programs or instructions that can be run on the processor 1001. For example, when the program or instructions are executed by the processor 1001, each step of the above-mentioned perception processing method embodiment is implemented, and the same can be achieved. technical effects.
  • Embodiments of the present application also provide a terminal, including a processor and a communication interface.
  • the processor is configured to perform sensing measurements on a reference target based on the first signal;
  • the measurement perception result corresponding to the perception measurement is used to determine the first parameter, and the first parameter is used to represent the measurement error of the perception measurement;
  • the reference target is user equipment.
  • the communication interface is used for sending and receiving under the control of the processor.
  • FIG. 11 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 1100 includes but is not limited to: a radio frequency unit 1101, a network module 1102, an audio output unit 1103, an input unit 1104, a sensor 1105, a display unit 1106, a user input unit 1107, an interface unit 1108, a memory 1109, a processor 1110, etc. At least some parts.
  • the terminal 1100 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 1110 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 11 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 1104 may include a graphics processing unit (Graphics Processing Unit, GPU) 11041 and a microphone 11042.
  • the graphics processor 11041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 1106 may include a display panel 11061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1107 includes at least one of a touch panel 11071 and other input devices 11072 .
  • Touch panel 11071 also called touch screen.
  • the touch panel 11071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 11072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 1101 after receiving downlink data from the network side device, the radio frequency unit 1101 can transmit it to the processor 1110 for processing; in addition, the radio frequency unit 1101 can send uplink data to the network side device.
  • the radio frequency unit 1101 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 1109 may be used to store software programs or instructions as well as various data.
  • the memory 1109 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 1109 may include volatile memory or nonvolatile memory, or memory 1109 may include volatile Both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct memory bus
  • the processor 1110 may include one or more processing units; optionally, the processor 1110 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 1110.
  • the processor 1110 is configured to perform perceptual measurement on the reference target based on the first signal
  • the measurement perception result corresponding to the perception measurement is used to determine the first parameter, and the first parameter is used to represent the measurement error of the perception measurement;
  • the reference target is user equipment.
  • processor 1110 is also used for at least one of the following:
  • the sensing node In the case where the sensing node is the receiving end of the first signal, the sensing node receives the first signal and obtains first data according to the first signal;
  • the sensing node When the sensing node is the sending end of the first signal, the sensing node sends the first signal.
  • processor 1110 is also used for any of the following:
  • processor 1110 is also used to:
  • the sensing node receives the first signaling
  • the sensing node sends first information to the first device according to the first signaling, where the first information is used to determine whether to estimate a measurement error of the sensing measurement.
  • the first signaling satisfies at least one of the following:
  • the first signaling is signaling sent during the process of selecting a sensing node, or the first signaling is signaling sent after the target sensing node is determined;
  • the first signaling is signaling dedicated to querying the first information.
  • processor 1110 is also used to:
  • the first configuration includes at least one of the following: waveform signal, signal format, frequency domain configuration, time domain configuration, spatial domain configuration, energy domain configuration and signal transceiver mode.
  • the signal transceiving method includes at least one of the following:
  • One-way signal transmission and reception is performed between the first sensing node and the second sensing node;
  • Bidirectional signals are sent and received between the first sensing node and the second sensing node.
  • processor 1110 is also used to:
  • At least some of the target parameters are received from the first device, the target parameters being used to compensate for a measurement error of the sensing node.
  • the target parameter is determined based on N groups of first parameters, each group of first parameters is determined based on a first sensing result and a second sensing result, and the first sensing result is that the sensing node performs the sensing once.
  • the measured measurement sensing result, the second sensing result is the reference sensing result corresponding to the reference target, and N is a positive integer.
  • the target parameter is the first parameter; when N is greater than 1, the target parameter satisfies any of the following:
  • Each parameter value in the target parameter is the mean value of the corresponding parameter values in the N groups of first parameters
  • the target parameter is a group of first parameters corresponding to the highest received signal quality among the N groups of first parameters;
  • Each parameter value in the target parameter is the mean value of the corresponding parameter value in the L group of first parameters, and the L group of first parameters is the corresponding received signal quality in the N group of first parameters, sorted from high to low.
  • the first parameter of the first L group, L is an integer greater than 1.
  • the first parameter includes at least one of the following:
  • the terminal may also serve as the first device to perform the above sensing processing method performed by the first device, which will not be described again here.
  • An embodiment of the present application also provides a network side device, including a processor and a communication interface, wherein:
  • the processor is configured to obtain a first sensing result and a second sensing result, where the first sensing result is a measurement obtained by performing sensing measurement on a reference target based on the first signal. Perception result, the second perception result is a reference perception result corresponding to the reference target;
  • the reference target is user equipment
  • the processor is configured to perform sensing measurement on the reference target based on the first signal
  • the measurement perception result corresponding to the perception measurement is used to determine the first parameter, and the first parameter is used to represent the measurement error of said perceptual measurement;
  • the reference target is user equipment.
  • This network-side device embodiment corresponds to the above-mentioned first device-side or sensing node-side method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network-side device embodiment, and the same technology can be achieved Effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1200 includes: an antenna 121 , a radio frequency device 122 , a baseband device 123 , a processor 124 and a memory 125 .
  • the antenna 121 is connected to the radio frequency device 122 .
  • the radio frequency device 122 receives information through the antenna 121 and sends the received information to the baseband device 123 for processing.
  • the baseband device 123 processes the information to be sent and sends it to the radio frequency device 122.
  • the radio frequency device 122 processes the received information and then sends it out through the antenna 121.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 123, which includes a baseband processor.
  • the baseband device 123 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 126, which is, for example, a common public radio interface (CPRI).
  • a network interface 126 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1200 in the embodiment of the present application also includes: instructions or programs stored in the memory 125 and executable on the processor 124.
  • the processor 124 calls the instructions or programs in the memory 125 to execute Figure 7 or Figure 8
  • the execution methods of each module are shown and achieve the same technical effect. To avoid repetition, they will not be described in detail here.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1300 includes: a processor 1301, a network interface 1302, and a memory 1303.
  • the network interface 1302 is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1300 in the embodiment of the present application also includes: instructions or programs stored in the memory 1303 and executable on the processor 1301.
  • the processor 1301 calls the instructions or programs in the memory 1303 to execute Figures 7 to 8
  • the execution methods of each module are shown and achieve the same technical effect. To avoid repetition, they will not be described in detail here.
  • Embodiments of the present application also provide a server.
  • the server includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement sensing as performed by the first device.
  • the steps of the processing method can achieve the same technical effect. To avoid repetition, they will not be repeated here.
  • Embodiments of the present application also provide a readable storage medium on which a program or instructions are stored.
  • the program or instructions are executed by a processor, the embodiment of the sensing processing method executed by the first device or sensing node is implemented.
  • Each process can achieve the same technical effect. To avoid repetition, we will not go into details here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above-mentioned first device or sensing node.
  • Each process of the embodiment of the perception processing method is executed and can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above-mentioned first device or perception.
  • Each process of the embodiment of the sensing processing method executed by the node can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • Embodiments of the present application also provide a sensing processing system, including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the sensing processing method performed by the sensing node as described above.
  • the network side device can be used to perform the above steps.
  • the first device or sensing node executes the steps of the sensing processing method.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application. and
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other various media that can store program codes.
  • the program can be stored in a computer-readable storage medium.
  • the program can be stored in a computer-readable storage medium.
  • the process may include the processes of the embodiments of each of the above methods.
  • the storage medium can be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to related technologies.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种感知处理方法、装置、终端及设备,属于通信感知一体化技术领域,本申请实施例的方法包括:第一设备获取第一感知结果和第二感知结果,所述第一感知结果为基于第一信号对参考目标进行感知测量获得的测量感知结果,所述第二感知结果为对应所述参考目标的参考感知结果;所述第一设备根据所述第一感知结果和所述第二感知结果确定第一参数,所述第一参数用于表示所述感知测量的测量误差;其中,所述参考目标为用户设备。

Description

感知处理方法、装置、终端及设备
相关申请的交叉引用
本申请主张在2022年7月14日在中国提交的中国专利申请No.202210834166.8的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信感知一体化技术领域,具体涉及一种感知处理方法、装置、终端及设备。
背景技术
随着通信技术的发展,未来的无线通信系统有望提供各种高精度的传感服务。传感和通信系统通常是单独设计的,并占用不同的频段。然而,由于毫米波和大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)技术的广泛部署,未来无线通信系统中的通信信号往往在时域和角度域都具有高分辨率,这使得利用通信信号实现高精度传感成为可能。因此,联合设计传感和通信系统,使它们能够共享同一频段和硬件,以提高频率效率并降低硬件成本,促使了对通信感知一体化(Integrated Sensing And Communication,ISAC)的研究。
但是,当感知测量的过程中感知信号或通信感知一体化信号的发送和接收涉及到多个设备时,感知测量存在一定的误差,导致感知测量的准确性较低的问题。
发明内容
本申请实施例提供一种感知处理方法、装置、终端及设备,能够解决感知测量的过程中感知信号或通信感知一体化信号的发送和接收涉及到多个设备时,感知测量存在一定的误差,导致的感知测量的准确性较低的问题。
第一方面,提供了一种感知处理方法,该方法包括:
第一设备获取第一感知结果和第二感知结果,所述第一感知结果为基于第一信号对参考目标进行感知测量获得的测量感知结果,所述第二感知结果为对应所述参考目标的参考感知结果;
所述第一设备根据所述第一感知结果和所述第二感知结果确定第一参数,所述第一参数用于表示所述感知测量的测量误差;
其中,所述参考目标为用户设备。
第二方面,提供了一种感知处理装置,包括:
第一获取模块,用于获取第一感知结果和第二感知结果,所述第一感知结果为基于第一信号对参考目标进行感知测量获得的测量感知结果,所述第二感知结果为对应所述参考目标的参考感知结果;
第一处理模块,用于根据所述第一感知结果和所述第二感知结果确定第一参数,所述第一参数用于表示所述感知测量的测量误差;
其中,所述参考目标为用户设备。
第三方面,提供了一种感知处理方法,该方法包括:
感知节点基于第一信号对参考目标执行感知测量;
其中,所述感知测量对应的测量感知结果用于确定第一参数,所述第一参数用于表示所述感知测量的测量误差;
所述参考目标为用户设备。
第四方面,提供了一种感知处理装置,包括:
第二处理模块,用于基于第一信号对参考目标执行感知测量;
其中,所述感知测量对应的测量感知结果用于确定第一参数,所述第一参数用于表示所述感知测量的测量误差;
所述参考目标为用户设备。
第五方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,所述处理器用于基于第一信号对参考目标执行感知测量;
其中,所述感知测量对应的测量感知结果用于确定第一参数,所述第一参数用于表示所述感知测量的测量误差;
所述参考目标为用户设备。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,
在所述网络侧设备为第一设备的情况下,所述处理器用于获取第一感知结果和第二感知结果,所述第一感知结果为基于第一信号对参考目标进行感知测量获得的测量感知结果,所述第二感知结果为对应所述参考目标的参考感知结果;
根据所述第一感知结果和所述第二感知结果确定第一参数,所述第一参数用于表示所述感知测量的测量误差;
其中,所述参考目标为用户设备;
或者,在所述网络侧设备为感知节点的情况下,所述处理器用于基于第一信号对参考 目标执行感知测量;
其中,所述感知测量对应的测量感知结果用于确定第一参数,所述第一参数用于表示所述感知测量的测量误差;
所述参考目标为用户设备。
第九方面,提供了一种感知处理系统,包括:终端及网络侧设备,所述终端可用于执行如第三方面所述的感知处理方法的步骤,所述网络侧设备可用于执行如第一方面或第三方面所述的感知处理方法的步骤。
第十方面,提供了一种服务器,所述服务器包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法的步骤。
第十一方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第十二方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第三方面所述的方法。
第十三方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法,或实现如第三方面所述的方法的步骤。
在本申请实施例中,通过获取基于第一信号对参考目标进行感知测量获得的测量感知结果,并基于所述测量感知结果和所述参考目标的参考感知结果可以确定第一参数,从而获得感知测量的测量误差,能够便于后续基于该测量误差可以对感知测量进行补偿,提高感知测量的准确性。
附图说明
图1是本申请实施例的无线通信系统的框图;
图2是本申请实施例的感知处理方法的流程图之一;
图3是“时延—多普勒”二维谱的示意图;
图4是本申请实施例方法应用的场景示意图之一;
图5是本申请实施例方法应用的场景示意图之二;
图6是本申请实施例方法应用的场景示意图之三;
图7是本申请实施例的感知处理方法的流程图之二;
图8是本申请实施例的感知处理装置的结构图之一;
图9是本申请实施例的感知处理装置的结构图之二;
图10是本申请实施例的通信设备的结构图;
图11是本申请实施例的终端的结构图;
图12是本申请实施例的网络侧设备的结构图;
图13是本申请实施例的另一网络侧设备的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网 设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或无线局域网(Wireless Local Area Network,WiFi)节点等,基站可被称为节点B、演进节点B(Evolved Node B,eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM)、统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF)、网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
为了方便理解,以下对本申请实施例涉及的一些内容进行说明:
一、通信感知一体化。
未来超五代(beyond 5th Generation,B5G)和6G无线通信系统有望提供各种高精度的传感服务,如机器人导航的室内定位、智能家居的Wi-Fi传感和自动驾驶汽车的雷达传感。传感和通信系统通常是单独设计的,并占用不同的频段。然后,由于毫米波和大规模MIMO技术的广泛部署,未来无线通信系统中的通信信号往往在时域和角度域都具有高分辨率,这使得利用通信信号实现高精度传感成为可能。因此,最好是联合设计传感和通信系统,使它们能够共享同一频段和硬件,以提高频率效率并降低硬件成本。这促使了对ISAC的研究。ISAC将成为未来无线通信系统的一项关键技术,以支持许多重要的应用场景。例如,在未来的自动驾驶车辆网络中,自动驾驶车辆将从网络中获得大量的信息,包括超高分辨率的地图和接近实时的信息,以进行导航和避免即将到来的交通拥堵。在同样的情况下,自动驾驶车辆中的雷达传感器应该能够提供强大的、高分辨率的障碍物探测功能,分辨率在厘米量级。用于自动驾驶车辆的ISAC技术提供了使用相同硬件和频谱资源实现高数据率通信和高分辨率障碍物探测的可能。ISAC的其他应用包括基于Wi-Fi的室 内定位和活动识别、无人驾驶飞机的通信和传感、扩展现实(Extended Reality,XR)、雷达和通信一体化等。
JSAC通过硬件设备共用和软件定义功能的方式获得通信和感知双功能的一体化低成本实现,特点主要有:一是架构统一且简化,二是功能可重构可扩展,三是效率提升、成本降低。通信感知一体化的优势主要有三个方面:一是设备成本降低、尺寸减小,二是频谱利用率提升,三是系统性能提升。
ISAC的发展划分为四个阶段:共存、共运行、共设计和共同协作。
共存:通信和感知是两个相互分立的系统,两者会相互干扰,解决干扰的主要方法是:距离隔离、频段隔离、时分工作、多输入多输出(Multiple Input Multiple Output,MIMO)技术和预编码等。
共运行:通信和感知共用硬件平台,利用共有信息提升共同的性能,二者之间的功率分配对系统性能影响较大。
共设计:通信和感知成为一个完全的联合系统,包括联合信号设计、波形设计、编码设计等,前期有线性调频波形、扩频波形等,后来聚焦到正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM)波形、MIMO技术等。
共同协作:多个通信感知一体化节点相互协作实现公共目标。例如,通过通信数据传输共享雷达探测信息,典型场景有驾驶辅助系统、雷达辅助通信等。
二、雷达技术。
随着雷达技术的发展,雷达探测目标不仅是测量目标的距离,还包括测量目标的速度、方位角、俯仰角,以及从以上信息中提取出更多有关目标的信息,包括目标的尺寸和形状等。
雷达技术最初用于军事用途,用来探测飞机、导弹、车辆、舰艇等目标。随着技术的发展和社会的演进,雷达越来越多用于民用场景,典型应用是气象雷达通过测量云雨等气象目标的回波来测定关于云雨的位置、强度等信息用来进行天气的预报。进一步地,随着电子信息产业、物联网、通信技术等的蓬勃发展,雷达技术开始进入到人们的日常生活应用中,大大提高了工作和生活的便利性、安全性等。例如,汽车雷达通过测量车辆之间、车辆与周边环境物之间、车辆与行人之间等的距离和相对速度对车辆的驾驶提供预警信息,极大地提高了道路交通的安全水平。
在技术层面上,雷达有很多分类方式。按照雷达收发站点之间的位置关系可以分为:单站雷达和双站雷达,如下图所示。对于单站雷达,信号发射机与接收机一体、共用天线;优点是目标回波信号与接收机本振之间天然是相干的、信号处理较为方便;缺点是信号收发不能同时进行,只能采用具有一定占空比的信号波形,从而带来探测的盲区,需要采用复杂的算法来弥补;或者收发信号同时进行,收发之间严格隔离,但是对于大功率的军用雷达来说很难做到。对于双站雷达,信号发射机与接收机位于不同的位置;优点是信号收发能够同时进行,可以采用连续波波形进行探测;缺点是接收机与发射机之间很难实现同 频和相干,信号处理较为复杂。
在通感一体化无线感知应用中,雷达技术可以采用单站雷达模式,也可以采用双站雷达模式。
在单站雷达模式下,收发信号共用天线,接收信号与发射信号通过环形器进入不同的射频处理链路;在这种模式下,可以采用连续波信号波形实现无盲区的探测,前提是接收信号与发射信号需要很好的隔离,通常需要100dB左右的隔离度,以消除发射信号泄露对接收信号的淹没。由于单站雷达的接收机具有发射信号的全部信息,从而可以通过匹配滤波(脉冲压缩)的方式进行信号处理,获得较高的信号处理增益。
在双站雷达模式下,不存在收发信号的隔离问题,极大地简化的硬件的复杂度。由于雷达信号处理建立在已知信息的基础上,在5G NR通感一体化应用中,可以利用同步信号和参考信号等已知信息进行雷达信号处理。但是,由于同步信号、参考信号等的周期性,信号波形的模糊图不再是图钉形,而是钉板形,时延和多普勒的模糊程度会增大、且主瓣的增益相较单站雷达模式降低了许多,降低了距离和速度的测量范围。通过恰当的参数集设计,距离和速度的测量范围能够满足汽车、行人等常见目标的测量需求。此外,双站雷达的测量精度与收发站点相对目标的位置有关,需要选择合适的收发站点对来提高探测性能。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的感知处理方法进行详细地说明。
如图2所示,本申请实施例的一种感知处理方法,包括:
步骤201,第一设备获取第一感知结果和第二感知结果,所述第一感知结果为基于第一信号对参考目标进行感知测量获得的测量感知结果,所述第二感知结果为对应所述参考目标的参考感知结果;
其中,所述参考目标为用户设备。
这里,参考目标是指参考感知结果已知的目标。第一信号由所述感知测量的发送端设备发送,经作为参考目标的用户设备反射,被所述感知测量的接收端设备接收。第二感知结果是对应参考目标的、相较第一感知结果更为准确的感知结果,该第二感知结果可以是通过除第一信号以外的其他任意方法获取的感知结果。故,本步骤中,第一设备获取到对应该参考目标的第一感知结果和第二感知结果,以执行下一步骤。
步骤202,所述第一设备根据所述第一感知结果和所述第二感知结果确定第一参数,所述第一参数用于表示所述感知测量的测量误差。
本步骤中,第一设备根据步骤201获取到的第一感知结果和第二感知结果,确定出能够表示所述感知测量的测量误差的第一参数,以便后续所述感知测量的发送端和接收端能够基于该第一参数,执行对未知感知结果的感知对象的更为准确的感知测量,提升感知测量的准确性。
如此,第一设备执行步骤201和202,通过获取基于第一信号对参考目标进行感知测 量获得的第一感知结果,并基于所述第一感知结果和所述参考目标的第二感知结果可以确定第一参数,从而获得感知测量的测量误差,能够便于后续基于该测量误差可以对感知测量进行补偿,提高感知测量的准确性。
可选地,该实施例中,为了能够从接收的第一信号中识别出经所述参考目标反射的信号(径或簇),从而得到所述第二感知结果,本申请中所述参考目标是用户设备(User Equipment,UE),该UE可以具有以下要求:
1、该UE为移动终端;
2、能够通过定位的方法获取该UE的位置信息,所述的定位方法包括:NR定位、Wi-Fi定位、GPS定位等;
3、(可选地)该UE还配备有传感器能够测量UE的运动状态;例如:UE配备有陀螺仪能够测量UE的运动速度、加速度、运动方向等;
4、该UE具备通信能力。
可选地,该实施例中,所述第一设备可以是感知功能网元;或者,在所述第一信号的发送端设备和接收端设备中有至少一者是基站时,第一设备也可以是该基站;或者,第一设备可以是服务器。其中,感知功能网元是指核心网和/或无线接入网(Radio Access Network,RAN)中负责感知请求处理、感知资源调度、感知信息交互、感知数据处理等至少一项功能的网络功能节点,可以是基站、或基于5G网络中AMF或LMF升级、或其他网络功能节点或新定义的网络功能节点。
可选地,该实施例中,所述第一感知结果包括以下至少一项:时延、多普勒和角度;
所述第二感知结果包括以下至少一项:时延、多普勒和角度。
可选地,在一些实施例中,步骤201之前,所述方法还包括:
所述第一设备获取目标感知节点的第一信息,所述目标感知节点包括第一感知节点和第二感知节点中的至少一项,所述第一感知节点和所述第二感知节点用于基于所述第一信号对参考目标进行感知测量;
所述第一设备根据所述目标感知节点的第一信息确定是否对感知测量的测量误差进行估计。
也就是说,第一设备在获取到第一感知节点和/或第二感知节点的第一信息后,能够进一步根据该第一信息确定是否对感知测量的测量误差进行估计,即是否需要执行上述步骤201-202。
可选地,所述第一信息包括以下至少一项:
所述目标感知节点的频率源相关的信息,如第一感知节点和第二感知节点的频率源是否来源于同一频率源;
所述目标感知节点的时钟相关信息,如第一感知节点和第二感知节点的时钟是否来源于同一时钟;
所述目标感知节点的频率源同步相关的方法,如第一感知节点或第二感知节点是否具 有进行频率源同步的软硬件能力;
所述目标感知节点的时钟同步相关的方法,如第一感知节点或第二感知节点是否具有进行时钟同步的软硬件能力;
与所述目标感知节点的频率源的偏差相关的信息,如第一感知节点与第二感知节点之间的频率源的稳定性以及由此得到的频率偏差的范围等;
与所述目标感知节点的时钟的偏差相关的信息,如第一感知节点与第二感知节点之间的频率源的稳定性以及由此得到的时钟偏差的范围等;
与所述感知测量过程中第一信号的接收端对应的感知节点的各天线之间的相位偏差相关的信息,如各天线之间的相位偏差的指标,或者各天线之间的相位偏差的校准情况。
可选地,所述第一感知节点和所述第二感知节点中的一者为所述第一信号的发送端设备,所述第一感知节点和所述第二感知节点中的另一者为所述第一信号的接收端设备。所述第一感知节点和所述第二感知节点均可以是一个或多个设备。
可选地,所述第一设备获取目标感知节点的第一信息包括以下任一项:
所述第一设备向目标感知节点发送第一信令,并基于所述第一信令从所述目标感知节点接收所述第一信息;
所述第一设备从第一网络侧设备获取所述第一信息。
即,第一设备可以向第一感知节点和/或第二感知节点发送第一信令,而收到该第一信令的第一感知节点和/或第二感知节点则会向第一设备回复所述第一信息。另外,第一设备还可以访问第一网络侧设备来获取所述第一信息,这里,第一网络侧设备中存储有第一感知节点和/或第二感知节点的第一信息。
可选地,所述第一信令满足以下至少一项:
所述第一信令为进行感知节点选择的过程中发送的信令,或者所述第一信令为确定所述目标感知节点后发送的信令;
所述第一信令为专用于查询所述第一信息的信令。
可选地,在一些实施例中,所述方法还包括:
在确定对感知测量的测量误差进行估计的情况下,所述第一设备获取第二信息;
所述第一设备根据所述第二信息确定所述参考目标;
其中,所述第二信息包括以下至少一项:
所述目标感知节点的位置信息;
所述目标感知节点的能力信息;
感知先验信息;
预设空间范围内的候选参考目标的位置信息;
预设空间范围内的候选参考目标的能力信息。
该实施例中,候选参考目标为UE。第一设备在获取第二信息后,根据该第二信息在多个候选参考目标中选择出至少一个作为参考目标。
可选地,所述预设空间范围是根据:目标感知节点的位置信息、目标感知节点的能力信息、感知先验信息中的至少一项确定的。
可选地,在一些实施例中,所述第一设备获取第二信息包括:
在所述第二信息包括所述目标感知节点和/或所述候选参考目标的位置信息的情况下,所述第一设备执行:
若所述目标感知节点和/或所述候选参考目标为固定位置的设备,则通过访问第一网络功能,或者,接收所述目标感知节点和/或所述候选参考目标的上报,得到所述位置信息;其中,所述第一网络功能存储设备位置信息;
若所述目标感知节点和/或所述候选参考目标为移动的设备,则通过访问第二网络功能得到所述位置信息;其中,所述第二网络功能为定位相关的网络功能。
即,所述目标感知节点和/或所述候选参考目标的位置信息的获取方式可以为:第一设备针对所述目标感知节点和/或所述候选参考目标为固定位置的设备的情况,通过访问存储设备位置信息的第一网络功能,获取所述目标感知节点和/或所述候选参考目标的位置信息;或者,由所述目标感知节点和/或所述候选参考目标上报,接收获得其的位置信息。
另外,所述目标感知节点和/或所述候选参考目标的位置信息的获取方式可以为:第一设备针对所述目标感知节点和/或所述候选参考目标为移动的设备的情况,通过访问定位相关的网络功能也就是第二网络功能,获取所述目标感知节点和/或所述候选参考目标的位置信息。这里,第二网络功能可以是定位管理功能,如位置管理功能(Location Management Function,LMF)、接收最小化路测(Minimization of Drive Test,MDT)位置信息的网络功能;第二网络功能还可以是定位服务功能,如应用服务(Application Function,AF),该AF可以是无线局域网(Wi-Fi)、蓝牙(Bluetooth)、紫蜂(Zigbee)或超宽带(Ultra Wide Band,UWB)等的定位服务器,也可以是可获得全球定位系统(Global Positioning System,GPS)等定位信息的应用功能(如地图APP)。
可选地,在一些实施例中,所述第一设备获取第二信息包括:
在所述第二信息包括所述目标感知节点和/或所述候选参考目标的能力信息的情况下,所述第一设备执行以下任一项:
所述第一设备向所述目标感知节点和/或所述候选参考目标发送第二信令,并基于所述第二信令从所述目标感知节点和/或所述候选参考目标接收所述能力信息;
所述第一设备从第二网络侧设备获取所述能力信息,其中,所述第二网络侧设备存储有设备能力信息。
即,所述目标感知节点和/或所述候选参考目标的能力信息的获取方式为:第一设备向所述目标感知节点和/或所述候选参考目标发送第二信令,而收到该第二信令的目标感知节点和/或候选参考目标则会向第一设备回复其能力信息。另外,所述目标感知节点和/或所述候选参考目标的能力信息的获取方式还可以为:第一设备访问第二网络侧设备来获 取所述第一信息,这里,第二网络侧设备存储有目标感知节点和/或候选参考目标的能力信息。
可选地,所述候选参考目标的能力信息包括以下至少一项:
感知能力信息;
感知签约信息;
定位相关信息;
传感器相关信息。
其中,定位相关信息可以是候选参考目标支持的定位方法及定位精度,所述定位方法可以包括以下至少一项:NR定位、Wi-Fi定位、GPS定位。传感器相关信息可以是候选参考目标配备的传感器相关的信息,包括:传感器的类型,如传感器类型为陀螺仪;传感器支持的测量量,如支持的测量量为速度(矢量)、加速度(矢量);测量量的精度,如测量量的精度的形式为速度测量精度~m/s和加速度测量精度~m/s2。
可选地,在一些实施例中,所述第一设备获取第二信息包括:
在所述第二信息包括所述感知先验信息的情况下,所述第一设备从感知业务的发起节点或者与所述发起节点相关的网络节点处获取所述感知先验信息。
可选地,所述感知先验信息包括以下至少一项:
感知目标区域的空间范围信息;
感知对象的空间位置的先验信息;
感知对象的运动参数先验信息。
可选地,在一些实施例中,所述第一设备根据所述第二信息确定所述参考目标之后,所述方法还包括:
所述第一设备通过访问第三网络功能得到所述参考目标的定位信息;
所述第一设备根据所述定位信息和所述参考目标的能力信息中的至少一项,确定所述参考目标的第三信息;
其中,所述第三网络功能为定位相关的网络功能;所述第三信息包括运动状态参数和雷达谱图样中的至少一项。
这里,第三网络功能可以是定位管理功能,如LMF、接收MDT位置信息的网络功能;第三网络功能还可以是定位服务功能,如AF,该AF可以是Wi-Fi、Bluetooth、Zigbee或UWB等的定位服务器,也可以是可获得GPS等定位信息的应用功能(如地图APP)。第一设备在通过访问该第三网络功能得到所述参考目标的定位信息后,能够根据该定位信息和所述参考目标的能力信息中的至少一项确定出所述参考目标的运动状态参数和雷达谱图样中的至少一项。
可选地,所述运动状态参数,包括:位置、运动速度、运动方向等。
可选地,所述雷达谱图样即所述参考目标在时延、多普勒、方位角和俯仰角中至少一个维度或者多个维度的组合雷达谱,包括以下至少一项:距离、多普勒、角度(含方位角 和/或俯仰角)、距离一维谱、多普勒一维谱、角度一维谱(含方位角一维谱和/或俯仰角一维谱)、距离—多普勒二维谱、方位角—俯仰角二维谱、距离—角度(含方位角或俯仰角)二维谱、距离—方位角—俯仰角三维谱、距离—多普勒—角度(含方位角或俯仰角)三维谱、距离—多普勒—方位角—俯仰角四维谱。例如,行驶中的汽车(同时也是UE)在“时延—多普勒”二维图上具有直线或曲线图样,能够被识别出来。
可选地,在一些实施例中,所述第一设备根据所述定位信息确定所述参考目标的第三信息,是基于所述定位信息转换得到的。例如,通过对行驶中的汽车(同时也是UE)的连续定位,获得汽车的位置、速度、运动方向等运动状态,或者时延-多普勒二维谱等雷达谱图样。
可选地,在基于所述定位信息转换得到所述参考目标的第三信息的过程中,还可以结合所述参考目标的能力信息,如所述参考目标配备的传感器测得的信息,包括:运动速度(矢量)、加速度(矢量)、姿态(相对于某个参考坐标系的方位角、俯仰角、横滚角)等。
可选地,在一些实施例中,步骤201之前,所述方法还包括:
所述第一设备根据第四信息确定第一信号的第一配置;
其中,所述第四信息包括以下至少一项:
第一感知节点、第二感知节点和所述参考目标中的至少一项的位置信息;
第一感知节点、第二感知节点和所述参考目标中的至少一项的能力信息;
感知先验信息;
所述参考目标的第三信息;
其中,所述第一感知节点和所述第二感知节点用于基于所述第一信号对参考目标进行感知测量。
可选地,所述第一配置包括以下至少一项:信号波形、信号格式、频域配置、时域配置、空域配置、能量域配置和信号收发方式。
可选地,所述信号波形可以包括OFDM、正交时频空间(Orthogonal Time Frequency Space,OTFS)、调频连续波(Frequency Modulated Continuous Wave,FMCW)和单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)等。
可选地,信号格式可以包括解调参考信号(Demodulation Reference Signal,DMRS)、定位参考信号(Positioning Reference Signal,PRS)和信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)等。
可选地,频域配置可以包括带宽、子载波间隔、起始频率、资源块(Resource Block,RB)或资源单元(Resource element,RE)的起始位置、RB或RE的偏移、相邻RE或相邻RB之间的频域间隔、RE或RB的位图(bitmap)。
可选地,时域配置可以包括感知信号周期、感知帧周期、感知更新周期,OFDM符号或时隙的起始位置、OFDM符号或时隙的偏移、相邻OFDM符号或时隙之间的时间间隔、OFDM符号或时隙的bitmap,首次执行定时误差和/或频率偏移和/或天线间相位偏差估计 的时间、相邻两次执行定时误差和/或频率偏移和/或天线间相位偏差估计的时间间隔等。
可选地,空域配置可以包括:波束指向、天线参数配置、波束间的准共址(Quasi co-location,QCL)关系等。其中,天线参数配置进一步包括:天线面板配置(包括:天线面板的数量、坐标等)、天线阵元配置(包括:天线阵元的数量、坐标等)、MIMO配置(包括:多路信号的正交方式(时分复用(Time Division Multiplexing,TDM)、频分复用(Frequency Division Multiplexing,FDM)、多普勒分割复用(Doppler Division Multiplexing,DDM)、码分复用(Code Division Multiplexing,CDM)等)及相应的参数)等。
可选地,能量域配置可以包括:峰值功率和平均功率等。
可选地,所述信号收发方式包括以下至少一项:
所述第一感知节点和第二感知节点之间进行单向信号的发送和接收;
所述第一感知节点和第二感知节点之间进行双向信号的发送和接收。
针对上述单向信号的发送和接收可以理解为第一感知节点发送第一信号,第二感知节点接收第一信号;或者,第一感知节点接收第一信号,第二感知节点发送第一信号。
针对上述双向信号的发送和接收可以理解为第一感知节点发送第一信号、第二感知节点接收第一感知节点发送的第一信号,和,第二感知节点发送第一信号、第一感知节点接收第二感知节点发送的第一信号。
可选地,在一些实施例中,所述第一设备根据第四信息确定第一信号的第一配置之后,所述方法还包括:
所述第一设备根据所述第一配置和所述第三信息中的至少一项,对所述参考目标进行感知测量,获取第三感知结果。
可选地,所述第一设备根据所述第一配置和所述第三信息中的至少一项,对所述参考目标进行感知测量,获取第三感知结果,包括:
所述第一设备向所述第一信号的发送端和/或接收端发送所述第一配置。
如此,所述第一信号的发送端能够按照所述第一配置发送第一信号;所述第一信号的接收端能够按照所述第一配置接收第一信号。
可选地,所述第一设备根据所述第一配置和所述第三信息中的至少一项,对所述参考目标进行感知测量,获取第三感知结果,包括:
在所述第一设备为所述感知测量过程中第一信号的接收端的情况下,所述第一设备接收所述第一信号,获得第一数据,并且所述第一设备基于所述第一数据确定所述第三感知结果;
在所述第一设备为所述感知测量过程中第一信号的发送端的情况下,所述第一设备发送所述第一信号,从所述第一信号的接收端对应的感知节点或者感知功能网元接收基于所述感知测量对应的第三感知结果;
在所述第一设备为感知功能网元的情况下,所述第一设备从所述第一信号的接收端对应的感知节点接收第二数据,并基于所述第二数据确定所述第三感知结果。
其中,所述第一数据是对接收的第一信号进行下变频、滤波、采样、抽取等操作后得到的数据。
可选地,在所述第一设备为所述感知测量过程中第一信号的接收端的情况下,所述第一设备基于所述第一数据确定所述第三感知结果包括以下任一项:
所述第一设备对所述第一数据进行第一运算获得所述第三感知结果;
所述第一设备向感知功能网元发送第三数据,并从所述感知功能网元接收基于所述第三数据确定的第三感知结果,所述第三数据包括所述第一数据或者基于所述第一数据进行第二运算得到的中间感知结果,所述第三感知结果为所述感知功能网元对所述第一数据进行第一运算确定或者基于所述中间感知结果进行第三运算确定,所述第二运算为所述第一运算中的部分运算,所述第三运算为所述第一运算中除所述第二运算之外的其余运算。
可选地,在一些实施例中,在所述第一设备为感知功能网元的情况下,所述第一设备基于所述第二数据确定所述第一感知结果包括以下任一项:
所述第二数据包括所述感知测量对应的第一数据,所述第一设备对所述第一数据进行第一运算获得所述第三感知结果;
所述第二数据包括基于所述第一数据进行第二运算得到的中间感知结果,所述第一设备对所述中间感知结果进行第三运算获得第三感知结果;所述第二运算为所述第一运算中的部分运算,所述第三运算为所述第一运算中除所述第二运算之外的其余运算;
所述第二数据包括所述第三感知结果,所述第一设备通过接收得到所述第三感知结果。
需要说明的是,当第一设备不参与感知结果的计算的情况下,第一设备只能从其他设备接收第三感知结果。例如,在一些实施例中,所述第一设备从所述感知测量过程中第一信号的接收端对应的感知节点或感知功能网元,接收所述第三感知结果。
需要说明的是,在一些实施例中,若第一设备是计算第三感知结果的设备,第一设备还可以进一步的向需要感知结果的其他设备发送第三感知结果,例如向感知功能网元或者感知需求方等设备发送第三感知结果。
例如,所述感知测量过程中第一信号的发送端,可以根据第一配置生成并发送第一信号;所述感知测量过程中第一信号的接收端接收第一信号、得到第一数据;所述感知测量过程中第一信号的接收端和/或感知功能网元根据第一配置和第三信息进行信号处理和/或数据处理。
其中,所述信号处理和/或数据处理包括以下情况:
情况1,所述感知测量过程中第一信号的接收端对第一数据进行第一运算,得到第三感知结果;
可选地,所述感知测量过程中第一信号的接收端向第一设备发送所述第三感知结果。
情况2,所述感知测量过程中第一信号的接收端对第一数据进行第二运算,得到中间感知结果,并将所述中间感知结果发送给感知功能网元,所述感知功能网元对所述中间感知结果进行第三运算,得到所述第三感知结果;其中,所述第二运算是所述第一运算中的 部分运算;所述第三运算是所述第一运算中除第二运算以外的部分运算;
可选地,感知功能网元向第一设备发送所述第三感知结果。
情况3,所述感知测量过程中第一信号的接收端将第一数据发送给感知功能网元,感知功能网元对所述第一数据进行第一运算,得到第三感知结果;
可选地,感知功能网元向第一设备发送所述第三感知结果。
可选地,所述第三感知结果包括以下至少一项:距离;多普勒;角度;距离一维谱;多普勒一维谱;角度一维谱;距离与多普勒的二维谱;方位角与俯仰角的二维谱;距离与角度的二维谱;距离、方位角与俯仰角的三维谱;距离、多普勒与角度的三维谱;距离、多普勒、方位角与俯仰角的四维谱。
需要说明的是,上述获得的第三感知结果可以包括多个,可以将该多个取平均值,或者,取第一数据的功率最大或SNR最大的一次对应的第三感知结果作为最终的第三感知结果进行后续处理。
可选地,在一些实施例中,所述第一设备获取第一感知结果和第二感知结果,包括:
所述第一设备根据所述第四信息中的至少部分信息确定所述第二感知结果;
所述第一设备根据所述第二感知结果从所述第三感知结果中确定所述第一感知结果。
可选地,在一些实施例中,所述第一设备根据所述第二感知结果从所述第三感知结果中确定所述第一感知结果,可以是:
第一设备根据第三感知结果中的信号功率分布与第二感知结果中所述参考目标的雷达散射截面积(Radar Cross Section,RCS)图样进行匹配,得到第一感知结果;或者,第一设备根据第三感知结果中的雷达谱图样与第二感知结果中所述参考目标的雷达谱图样进行匹配,得到第一感知结果。
例如,如图3所示,在“时延—多普勒”二维谱上,“测量曲线”是所述第三感知结果,“参考曲线”是第二感知结果(即,所述参考目标的“时延-多普勒”图样),则根据中的“测量曲线”和“参考曲线”进行匹配可以识别出第一信号中参考目标对应的径或簇,从而得到所述参考目标的第一感知结果。后续,结合已知的第二感知结果即可以得到所述第一信号的发送端与所述第一信号的接收到之间第一参数。
可选地,在一些实施例中,所述第一参数包括以下至少一项:
第一感知节点与第二感知节点之间的定时误差;
第一感知节点与第二感知节点之间的频率偏移;
所述第一信号的接收端对应的感知节点的各天线之间的相位偏差;
其中,所述第一感知节点和所述第二感知节点用于基于所述第一信号对参考目标进行感知测量。
需要说明的是,针对不同的收发方式,对应的确定第一参数的方式不同。
可选地,在一些实施例中,在所述第一信号的信号收发方式为第一感知节点和第二感知节点之间进行单向信号的发送和接收的情况下,所述第一设备根据所述第一感知结果和 所述第二感知结果确定第一参数包括以下至少一项:
基于所述第一感知结果中的时延和所述第二感知结果中的时延,确定所述第一参数中的定时误差;
基于所述第一感知结果中的多普勒和所述第二感知结果中的多普勒,确定所述第一参数中的频率偏移;
基于第三感知节点各天线之间的第一测量相位和所述第三感知节点各天线之间的第一参考相位,确定所述第一参数中第三感知节点的各天线之间的相位偏差;其中,所述第一测量相位是基于所述第一感知结果中的角度推导确定的;所述第一参考相位是基于所述第二感知结果中的角度推导确定的;所述第三感知节点为所述第一感知节点或所述第二感知节点,且所述第三感知节点为所述第一信号的接收端对应的感知节点。
可选地,在一些实施例中,可以将第一感知结果中的时延减去第二感知结果中的时延得到结果确定为定时误差;将第一感知结果中的多普勒减去第二感知结果中的多普勒得到结果确定为频率偏移;将第一测量相位减去第一参考相位确定得到的结果确定为第三感知节点的各天线之间的相位偏差。
可选地,在一些实施例中,在所述第一信号的信号收发方式为第一感知节点和第二感知节点之间进行双向信号的发送和接收的情况下,所述第一设备根据所述第一感知结果和所述第二感知结果确定第一参数包括以下至少一项:
基于第一时延、第二时延和所述第二感知结果中的时延确定所述第一参数中的定时误差;其中,所述第一时延为基于所述第二感知节点作为第一信号的接收端得到的第一感知结果中的时延,所述第二时延为基于所述第二感知节点作为第一信号的发送端得到的第一感知结果中的时延;
基于第一多普勒、第二多普勒和第二感知结果中的多普勒确定所述第一参数中的频率偏移,所述第一多普勒为基于所述第二感知节点作为第一信号的接收端得到的第一感知结果中的多普勒,所述第二多普勒为基于所述第二感知节点作为第一信号的发送端得到的第一感知结果中的多普勒;
基于第三感知节点各天线之间的第一测量相位和所述第三感知节点各天线之间的第一参考相位,确定所述第一参数中第三感知节点的各天线之间的相位偏差;其中,所述第一测量相位是基于所述第一感知结果中的角度推导确定的;所述第一参考相位是基于所述第二感知结果中的角度确定的;所述第三感知节点为所述第一感知节点或所述第二感知节点,且所述第三感知节点为所述第一信号的接收端对应的感知节点。
可选地,在一些实施例中,可以将第一感知结果中的第一时延减去第二感知结果中的时延得到结果确定为第一定时误差,以及将第一感知结果中的第二时延减去第二感知结果中的时延得到结果确定为第二定时误差,此时,第一参数中的定时误差可以是所述第一定时误差和所述第二定时误差的平均值。
可选地,在一些实施例中,可以将第一感知结果中的第一多普勒减去第二感知结果中 的多普勒得到结果确定为第一频率偏移,以及将第一感知结果中的第二多普勒减去第二感知结果中的多普勒得到结果确定为第二频率偏移,此时,第一参数中的频率偏移可以是所述第一频率偏移和所述第二频率偏移的平均值。
可选地,在一些实施例中,可以将第一测量相位减去第一参考相位确定得到的结果确定为第四感知节点的各天线之间的相位偏差。
可选地,在一些实施例中,所述第一设备根据所述第一感知结果和所述第二感知结果确定第一参数之后,所述方法还包括:
所述第一设备根据所述第一参数确定目标参数,所述目标参数用于补偿所述感知节点的测量误差;
所述第一设备向目标设备发送目标参数中的至少部分参数,所述目标设备包括第一感知节点、第二感知节点和感知功能网元中的至少一项;其中,所述第一感知节点和所述第二感知节点用于基于所述第一信号对参考目标进行感知测量。
其中,第一设备与第一感知节点不是同一设备的情况下,第一设备向第一感知节点发送所述目标参数中的至少部分参数;
第一设备与第二感知节点不是同一设备的情况下,第一设备向第二感知节点发送所述目标参数中的至少部分参数;
第一设备与感知功能网元不是同一设备的情况下,第一设备向感知功能网元发送所述目标参数中的至少部分参数。
还需要说明的是,在一些实施例中,可以通过执行多次上述感知测量,从而获得多组第一参数的取值,最后基于多组第一参数的取值确定最终用于补偿感知节点的测量误差,即确定用于补偿第一感知节点和第二感知节点执行感知测量时的测量误差。故,可选地,所述目标参数基于所述第一设备确定的N组第一参数确定,N为正整数;
其中,在N等于1的情况下,所述目标参数为所述第一参数;在N大于1的情况下,所述目标参数满足以下任一项:
所述目标参数中的各参数值为所述N组第一参数中对应的参数值的均值;
所述目标参数为所述N组第一参数中对应的接收信号质量最高的一组第一参数;
所述目标参数中的各参数值为L组第一参数中对应的参数值的均值,所述L组第一参数为所述N组第一参数中对应的接收信号质量由高到低排序的前L组第一参数,L为大于1的整数。
其中,所述接收信号质量可以包括:接收信号的功率、参考信号接收功率(Reference Signal Received Power,RSRP)、参考信号接收质量(Reference Signal Received Quality,RSRQ)、接收信号强度指示(Received Signal Strength Indication,RSSI)和接收信号的信噪比(Signal Noise Ratio,SNR)等。
可选地,在一些实施例中,在第一配置包括时域配置的情况下,会重复执行:对参考目标的感知测量,确定第一感知结果和第二感知结果,确定第一参数,确定目标参数以及 发送目标参数中的至少部分参数。
下面,结合具体场景说明本申请实施例的方法的具体应用:
场景一、如图4所示的上行感知,终端1发送第一信号、基站接收第一信号。本实施例的目标是对图中的感知对象进行感知。在本实施例中,所述的基站可以是所述的终端1的接入基站、也可以不是所述的终端1的接入基站。在本实施例中,第一设备是感知功能网元,所述第一信号的发送端(如第一感知节点)是终端1,所述第一信号的接收端(如第二感知节点)是基站,参考目标是终端2。
为了补偿终端1与基站之间的定时偏差、或频率偏移、或基站各天线端口之间的相位偏差,从而能够更准确地得到由感知对象引起的感知信号时延、或多普勒、或感知对象相对于基站的角度,一方面,通过第一信号对参考目标(终端2)进行感知得到参考目标的第一感知结果;另一方面,通过终端1、基站和参考目标三者的位置关系、以及通过连续定位获得的参考目标的运动状态参数或者雷达谱图样,能够得到对应于所述参考目标的第二感知结果。
感知功能网元根据基站、终端1、以及感知对象的空间位置的先验信息选择图中所示的参考目标,并进行第一信号的第一配置、确定参考目标的第三信息。终端1和基站将波束对准参考目标方向;终端1发送第一信号、基站接收第一信号;基站(或感知功能网元)根据第一信号的第一配置和参考目标的第三信息,进行信号处理提取出基站接收信号中经参考目标反射的径或簇,进而得到对应于参考目标的第一感知结果。
在上述过程中,为了使得基站在对第一信号进行处理时能够识别出参考目标对应的径或簇,从而得到参考目标的第一感知结果,感知功能网元向定位管理功能或定位服务功能或定位应用功能请求并获得参考目标的连续定位信息,并基于所述连续定位信息获得参考目标的运动状态参数或雷达谱图样。基站在对第一信号进行信号处理时利用所述运动状态参数或雷达谱图样识别出参考目标对应的径或簇。
基站基于第一感知结果中的时延、或多普勒、或角度,与对应于参考目标的第二感知结果中的时延、多普勒和角度,得到终端1与基站之间的定时偏差、或频率偏移、或基站各天线端口之间的相位偏差。
基站基于得到的定时偏差、或频率偏移、或天线端口间相位偏差,在通过终端1和基站对感知对象进行感知的过程中,对得到的感知结果进行修正。
场景二、如图所示5所示的下行感知,基站发送第一信号、终端1接收第一信号。本实施例的目标是对图中的感知对象进行感知。在本实施例中,所述的基站可以是所述的终端1的接入基站、也可以不是所述的终端1的接入基站。在本实施例中,第一设备是感知功能网元,所述第一信号的发送端(如第一感知节点)是基站,所述第一信号的接收端(如第二感知节点)是终端1,参考目标是终端2。
为了补偿终端1与基站之间的定时偏差、或频率偏移、或终端1各天线端口之间的相位偏差,从而能够更准确地得到由感知对象引起的感知信号时延、或多普勒、或感知对象 相对于终端1的角度,一方面,通过第一信号对参考目标(终端2)进行感知得到参考目标的第一感知结果;另一方面,通过终端1、基站和参考目标三者的位置关系、以及通过连续定位获得的参考目标的运动状态参数或者雷达谱图样,能够得到对应参考目标的第二感知结果。
感知功能网元根据基站、终端1、以及感知对象的空间位置的先验信息选择图中所示的参考目标,并进行第一信号的第一配置、确定参考目标的第三信息。终端1和基站将波束对准参考目标方向;基站发送第一信号、终端1接收第一信号;终端1(或感知功能网元)根据第一信号的第一配置和参考目标的第三信息,进行信号处理提取出终端1接收信号中经参考目标反射的径或簇,进而得到对应于参考目标的第一感知结果。
在上述过程中,为了使得终端1在对第一信号进行处理时能够识别出参考目标对应的径或簇,从而得到参考目标的第一感知结果,感知功能网元向定位管理功能或定位服务功能或定位应用功能请求并获得参考目标的连续定位信息,并基于所述的连续定位信息获得参考目标的运动状态参数或雷达谱图样。终端1在对第一信号进行信号处理时利用所述的运动状态参数或雷达谱图样识别出参考目标对应的径或簇。
终端1基于第一感知结果中的时延、或多普勒、或角度,与对应于参考目标的第二感知结果中的时延、多普勒和角度,得到终端1与基站之间的定时偏差、或频率偏移、或终端1各天线端口之间的相位偏差。
终端1基于得到的定时偏差、或频率偏移、或天线端口间相位偏差,在通过终端1和基站对感知对象进行感知的过程中,对得到的感知结果进行修正。
场景三、如图6所示的侧链路(Sidelink)感知,终端1发送第一信号、终端2接收第一信号。本实施例的目标是对图中的感知对象进行感知。在本实施例中,第一设备是感知功能网元,所述第一信号的发送端(如第一感知节点)是终端1,所述第一信号的接收端(如第二感知节点)是终端2,参考目标是终端3。
为了补偿终端1与终端2之间的定时偏差、或频率偏移、或终端2各天线端口之间的相位偏差,从而能够更准确地得到由感知对象引起的感知信号时延、或多普勒、或感知对象相对于终端2的角度,一方面,通过第一信号对参考目标(终端3)进行感知得到参考目标的第一感知结果;另一方面,通过终端1、终端2和参考目标三者的位置关系、以及通过连续定位获得的参考目标的运动状态参数或者雷达谱图样,能够得到对应参考目标的第二感知结果。
感知功能网元根据终端1、终端2、以及感知对象空间范围的先验信息选择图中所示的参考目标,并进行第一信号的第一配置、确定参考目标的第三信息。终端1和终端2将波束对准参考目标方向;终端1发送第一信号、终端2接收第一信号;终端2(或感知功能网元)根据第一信号的第一配置和参考目标的第三信息,进行信号处理提取出基站接收信号中经参考目标反射的径或簇,进而得到对应于参考目标的第一感知结果。
在上述过程中,为了使得终端2在对第一信号进行处理时能够识别出参考目标对应的 径或簇,从而得到参考目标的第一感知结果,感知功能网元向定位管理功能或定位服务功能或定位应用功能请求并获得参考目标的连续定位信息,并基于所述的连续定位信息获得参考目标的运动状态参数或雷达谱图样。终端2在对第一信号进行信号处理时利用所述的运动状态参数或雷达谱图样识别出参考目标对应的径或簇。
终端2基于第一感知结果中的时延、或多普勒、或角度,与对应于参考目标的第二感知结果中的时延、多普勒和角度,得到终端1与终端2之间的定时偏差、或频率偏移、或终端2各天线端口之间的相位偏差。
终端2基于得到的定时偏差、或频率偏移、或天线端口间相位偏差,在通过终端1和终端2对感知对象进行感知的过程中,对得到的感知结果进行修正。
综上,本申请实施例的方法,能够估计出第一信号的发送端与接收端之间的定时误差、频率偏移以及第一信号的接收端各天线之间相位偏差中的至少一者,继而在执行对感知对象的感知时,利用估计出的定时误差、频率偏移、天线间相位偏差中的至少一者进行相应的补偿,能够减小对感知对象的感知测量过程中的误差,提升感知性能。
如图7所示,本申请的实施例的一种感知处理方法,包括:
步骤701,感知节点基于第一信号对参考目标执行感知测量;
其中,所述感知测量对应的测量感知结果用于确定第一参数,所述第一参数用于表示所述感知测量的测量误差;
所述参考目标为用户设备。
可选地,所述感知节点基于第一信号对参考目标执行感知测量包括以下至少一项:
在所述感知节点为所述第一信号的接收端的情况下,所述感知节点接收所述第一信号,并根据所述第一信号得到第一数据;
在所述感知节点为所述第一信号的发送端的情况下,所述感知节点发送所述第一信号。
可选地,所述感知节点接收到的所述第一信号,并根据所述第一信号得到第一数据之后,所述方法还包括:
所述感知节点执行以下任一项:
发送所述第一数据;
基于所述第一数据确定并发送第三感知结果;
基于所述第一数据确定并发送中间感知结果。
可选地,所述方法还包括:
所述感知节点接收第一信令;
所述感知节点根据所述第一信令向第一设备发送第一信息,所述第一信息用于确定是否对感知测量的测量误差进行估计。
可选地,所述第一信令满足以下至少一项:
所述第一信令为进行感知节点选择的过程中发送的信令,或者所述第一信令为确定目标感知节点后发送的信令;
所述第一信令为专用于查询所述第一信息的信令。
可选地,所述感知节点基于第一信号对参考目标执行感知测量之前,还包括:
所述感知节点从第一设备接收所述第一信号的第一配置;
其中,所述第一配置包括以下至少一项:波形信号、信号格式、频域配置、时域配置、空域配置、能量域配置和信号收发方式。
可选地,所述信号收发方式包括以下至少一项:
第一感知节点和第二感知节点之间进行单向信号的发送和接收;
第一感知节点和第二感知节点之间进行双向信号的发送和接收。
可选地,所述感知节点基于第一信号对参考目标执行感知测量之后,还包括:
所述感知节点从第一设备接收目标参数中至少部分参数,所述目标参数用于补偿所述感知节点的测量误差。
可选地,所述目标参数基于N组第一参数确定,每一组第一参数基于第一感知结果和第二感知结果确定,所述第一感知结果为所述感知节点执行一次所述感知测量的测量感知结果,所述第二感知结果为对应所述参考目标的参考感知结果,N为正整数。
可选地,在N等于1的情况下,所述目标参数为所述第一参数;在N大于1的情况下,所述目标参数满足以下任一项:
所述目标参数中的各参数值为所述N组第一参数中对应的参数值的均值;
所述目标参数为所述N组第一参数中对应的接收信号质量最高的一组第一参数;
所述目标参数中的各参数值为L组第一参数中对应的参数值的均值,所述L组第一参数为所述N组第一参数中对应的接收信号质量由高到低排序的前L组第一参数,L为大于1的整数。
可选地,所述第一参数包括以下至少一项:
第一感知节点与第二感知节点之间的定时误差;
第一感知节点与第二感知节点之间的频率偏移;
所述第一信号的接收端对应的感知节点的各天线之间的相位偏差。
需要说明的是,该实施例的方法与上述由第一设备执行的感知处理方法配合实现,上述由第一设备执行的感知处理方法的实施例的实现方式适用于该方法,也能达到相同的技术效果。
本申请实施例提供的感知处理方法,执行主体可以为感知处理装置。本申请实施例中以感知处理装置执行感知处理方法为例,说明本申请实施例提供的感知处理装置。
如图8所示,本申请实施例提供了一种感知处理装置,应用于第一设备,该感知处理装置800包括:
第一获取模块810,用于获取第一感知结果和第二感知结果,所述第一感知结果为基于第一信号对参考目标进行感知测量获得的测量感知结果,所述第二感知结果为对应所述参考目标的参考感知结果;
第一处理模块820,用于根据所述第一感知结果和所述第二感知结果确定第一参数,所述第一参数用于表示所述感知测量的测量误差;
其中,所述参考目标为用户设备。
可选地,所述装置还包括:
第二获取模块,用于获取目标感知节点的第一信息,所述目标感知节点包括第一感知节点和第二感知节点中的至少一项,所述第一感知节点和所述第二感知节点用于基于所述第一信号对参考目标进行感知测量;
第三处理模块,用于根据所述目标感知节点的第一信息确定是否对感知测量的测量误差进行估计。
可选地,所述第二获取模块还用于以下任一项:
向目标感知节点发送第一信令,并基于所述第一信令从所述目标感知节点接收所述第一信息;
从第一网络侧设备获取所述第一信息。
可选地,所述第一信令满足以下至少一项:
所述第一信令为进行感知节点选择的过程中发送的信令,或者所述第一信令为确定所述目标感知节点后发送的信令;
所述第一信令为专用于查询所述第一信息的信令。
可选地,所述装置还包括:
第三获取模块,用于在确定对感知测量的测量误差进行估计的情况下,获取第二信息;
第四处理模块,用于根据所述第二信息确定所述参考目标;
其中,所述第二信息包括以下至少一项:
所述目标感知节点的位置信息;
所述目标感知节点的能力信息;
感知先验信息;
预设空间范围内的候选参考目标的位置信息;
预设空间范围内的候选参考目标的能力信息。
可选地,所述第三获取模块还用于:
在所述第二信息包括所述目标感知节点和/或所述候选参考目标的位置信息的情况下,执行:
若所述目标感知节点和/或所述候选参考目标为固定位置的设备,则通过访问第一网络功能,或者,接收所述目标感知节点和/或所述候选参考目标的上报,得到所述位置信息;其中,所述第一网络功能存储设备位置信息;
若所述目标感知节点和/或所述候选参考目标为移动的设备,则通过访问第二网络功能得到所述位置信息;其中,所述第二网络功能为定位相关的网络功能。
可选地,所述第三获取模块还用于:
在所述第二信息包括所述目标感知节点和/或所述候选参考目标的能力信息的情况下,执行以下任一项:
向所述目标感知节点和/或所述候选参考目标发送第二信令,并基于所述第二信令从所述目标感知节点和/或所述候选参考目标接收所述能力信息;
从第二网络侧设备获取所述能力信息,其中,所述第二网络侧设备存储有设备能力信息。
可选地,所述候选参考目标的能力信息包括以下至少一项:
感知能力信息;
感知签约信息;
定位相关信息;
传感器相关信息。
可选地,所述第三获取模块还用于:
在所述第二信息包括所述感知先验信息的情况下,从感知业务的发起节点或者与所述发起节点相关的网络节点处获取所述感知先验信息。
可选地,所述感知先验信息包括以下至少一项:
感知目标区域的空间范围信息;
感知对象的空间位置的先验信息;
感知对象的运动参数先验信息。
可选地,所述装置还包括:
第四获取模块,用于通过访问第三网络功能得到所述参考目标的定位信息;
第五处理模块,用于根据所述定位信息和所述参考目标的能力信息中的至少一项,确定所述参考目标的第三信息;
其中,所述第三网络功能为定位相关的网络功能;所述第三信息包括运动状态参数和雷达谱图样中的至少一项。
可选地,所述装置还包括:
第六处理模块,用于根据第四信息确定第一信号的第一配置;
其中,所述第四信息包括以下至少一项:
第一感知节点、第二感知节点和所述参考目标中的至少一项的位置信息;
第一感知节点、第二感知节点和所述参考目标中的至少一项的能力信息;
感知先验信息;
所述参考目标的第三信息;
其中,所述第一感知节点和所述第二感知节点用于基于所述第一信号对参考目标进行感知测量。
可选地,所述第一配置包括以下至少一项:信号波形、信号格式、频域配置、时域配置、空域配置、能量域配置和信号收发方式。
可选地,所述信号收发方式包括以下至少一项:
所述第一感知节点和第二感知节点之间进行单向信号的发送和接收;
所述第一感知节点和第二感知节点之间进行双向信号的发送和接收。
可选地,所述装置还包括:
第七处理模块,用于根据所述第一配置和所述第三信息中的至少一项,对所述参考目标进行感知测量,获取第三感知结果。
可选地,所述第七处理模块还用于:
在所述第一设备为所述感知测量过程中第一信号的接收端的情况下,所述第一设备接收所述第一信号,获得第一数据,并且所述第一设备基于所述第一数据确定所述第三感知结果;
在所述第一设备为所述感知测量过程中第一信号的发送端的情况下,所述第一设备发送所述第一信号,从所述第一信号的接收端对应的感知节点或者感知功能网元接收基于所述感知测量对应的第三感知结果;
在所述第一设备为感知功能网元的情况下,所述第一设备从所述第一信号的接收端对应的感知节点接收第二数据,并基于所述第二数据确定所述第三感知结果。
可选地,在所述第一设备为所述感知测量过程中第一信号的接收端的情况下,所述第一设备基于所述第一数据确定所述第三感知结果包括以下任一项:
所述第一设备对所述第一数据进行第一运算获得所述第三感知结果;
所述第一设备向感知功能网元发送第三数据,并从所述感知功能网元接收基于所述第三数据确定的第三感知结果,所述第三数据包括所述第一数据或者基于所述第一数据进行第二运算得到的中间感知结果,所述第三感知结果为所述感知功能网元对所述第一数据进行第一运算确定或者基于所述中间感知结果进行第三运算确定,所述第二运算为所述第一运算中的部分运算,所述第三运算为所述第一运算中除所述第二运算之外的其余运算。
可选地,在所述第一设备为感知功能网元的情况下,所述第一设备基于所述第二数据确定所述第一感知结果包括以下任一项:
所述第二数据包括所述感知测量对应的第一数据,所述第一设备对所述第一数据进行第一运算获得所述第三感知结果;
所述第二数据包括基于所述第一数据进行第二运算得到的中间感知结果,所述第一设备对所述中间感知结果进行第三运算获得第三感知结果;所述第二运算为所述第一运算中的部分运算,所述第三运算为所述第一运算中除所述第二运算之外的其余运算;
所述第二数据包括所述第三感知结果,所述第一设备通过接收得到所述第三感知结果。
可选地,所述第三感知结果包括以下至少一项:距离;多普勒;角度;距离一维谱;多普勒一维谱;角度一维谱;距离与多普勒的二维谱;方位角与俯仰角的二维谱;距离与角度的二维谱;距离、方位角与俯仰角的三维谱;距离、多普勒与角度的三维谱;距离、多普勒、方位角与俯仰角的四维谱。
可选地,所述第一获取模块还用于:
根据所述第四信息中的至少部分信息确定所述第二感知结果;
根据所述第二感知结果从所述第三感知结果中确定所述第一感知结果。
可选地,所述第一感知结果包括以下至少一项:时延、多普勒和角度;
所述第二感知结果包括以下至少一项:时延、多普勒和角度。
可选地,所述第一参数包括以下至少一项:
第一感知节点与第二感知节点之间的定时误差;
第一感知节点与第二感知节点之间的频率偏移;
所述第一信号的接收端对应的感知节点的各天线之间的相位偏差;
其中,所述第一感知节点和所述第二感知节点用于基于所述第一信号对参考目标进行感知测量。
可选地,在所述第一信号的信号收发方式为第一感知节点和第二感知节点之间进行单向信号的发送和接收的情况下,所述第一处理模块还用于以下至少一项:
基于所述第一感知结果中的时延和所述第二感知结果中的时延,确定所述第一参数中的定时误差;
基于所述第一感知结果中的多普勒和所述第二感知结果中的多普勒,确定所述第一参数中的频率偏移;
基于第三感知节点各天线之间的第一测量相位和所述第三感知节点各天线之间的第一参考相位,确定所述第一参数中第三感知节点的各天线之间的相位偏差;其中,所述第一测量相位是基于所述第一感知结果中的角度推导确定的;所述第一参考相位是基于所述第二感知结果中的角度推导确定的;所述第三感知节点为所述第一感知节点或所述第二感知节点,且所述第三感知节点为所述第一信号的接收端对应的感知节点。
可选地,在所述第一信号的信号收发方式为第一感知节点和第二感知节点之间进行双向信号的发送和接收的情况下,所述第一处理模块还用于以下至少一项:
基于第一时延、第二时延和所述第二感知结果中的时延确定所述第一参数中的定时误差;其中,所述第一时延为基于所述第二感知节点作为第一信号的接收端得到的第一感知结果中的时延,所述第二时延为基于所述第二感知节点作为第一信号的发送端得到的第一感知结果中的时延;
基于第一多普勒、第二多普勒和第二感知结果中的多普勒确定所述第一参数中的频率偏移,所述第一多普勒为基于所述第二感知节点作为第一信号的接收端得到的第一感知结果中的多普勒,所述第二多普勒为基于所述第二感知节点作为第一信号的发送端得到的第一感知结果中的多普勒;
基于第三感知节点各天线之间的第一测量相位和所述第三感知节点各天线之间的第一参考相位,确定所述第一参数中第三感知节点的各天线之间的相位偏差;其中,所述第一测量相位是基于所述第一感知结果中的角度推导确定的;所述第一参考相位是基于所述 第二感知结果中的角度确定的;所述第三感知节点为所述第一感知节点或所述第二感知节点,且所述第三感知节点为所述第一信号的接收端对应的感知节点。
可选地,所述装置还包括:
第八处理模块,用于根据所述第一参数确定目标参数,所述目标参数用于补偿所述感知节点的测量误差;
发送模块,用于向目标设备发送目标参数中的至少部分参数,所述目标设备包括第一感知节点、第二感知节点和感知功能网元中的至少一项;其中,所述第一感知节点和所述第二感知节点用于基于所述第一信号对参考目标进行感知测量。
可选地,所述目标参数基于所述第一设备确定的N组第一参数确定,N为正整数;
其中,在N等于1的情况下,所述目标参数为所述第一参数;在N大于1的情况下,所述目标参数满足以下任一项:
所述目标参数中的各参数值为所述N组第一参数中对应的参数值的均值;
所述目标参数为所述N组第一参数中对应的接收信号质量最高的一组第一参数;
所述目标参数中的各参数值为L组第一参数中对应的参数值的均值,所述L组第一参数为所述N组第一参数中对应的接收信号质量由高到低排序的前L组第一参数,L为大于1的整数。
本申请实施例中的装置可以是基站或感知功能网元,本申请实施例不作具体限定。
本申请实施例提供的感知处理装置能够实现图2至图6的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
如图9所示,本申请实施例提供了一种感知处理装置,应用于感知节点,该感知处理装置900包括:
第二处理模块910,用于基于第一信号对参考目标执行感知测量;
其中,所述感知测量对应的测量感知结果用于确定第一参数,所述第一参数用于表示所述感知测量的测量误差;
所述参考目标为用户设备。
可选地,所述第二处理模块还用于以下至少一项:
在所述感知节点为所述第一信号的接收端的情况下,所述感知节点接收所述第一信号,并根据所述第一信号得到第一数据;
在所述感知节点为所述第一信号的发送端的情况下,所述感知节点发送所述第一信号。
可选地,所述装置还包括:
执行模块,用于执行以下任一项:
发送所述第一数据;
基于所述第一数据确定并发送第三感知结果;
基于所述第一数据确定并发送中间感知结果。
可选地,所述装置还包括:
第一接收模块,用于接收第一信令;
第一信息回复模块,用于根据所述第一信令向第一设备发送第一信息,所述第一信息用于确定是否对感知测量的测量误差进行估计。
可选地,所述第一信令满足以下至少一项:
所述第一信令为进行感知节点选择的过程中发送的信令,或者所述第一信令为确定目标感知节点后发送的信令;
所述第一信令为专用于查询所述第一信息的信令。
可选地,所述装置还包括:
第二接收模块,用于从第一设备接收所述第一信号的第一配置;
其中,所述第一配置包括以下至少一项:波形信号、信号格式、频域配置、时域配置、空域配置、能量域配置和信号收发方式。
可选地,所述信号收发方式包括以下至少一项:
第一感知节点和第二感知节点之间进行单向信号的发送和接收;
第一感知节点和第二感知节点之间进行双向信号的发送和接收。
可选地,所述装置还包括:
第三接收模块,用于从第一设备接收目标参数中至少部分参数,所述目标参数用于补偿所述感知节点的测量误差。
可选地,所述目标参数基于N组第一参数确定,每一组第一参数基于第一感知结果和第二感知结果确定,所述第一感知结果为所述感知节点执行一次所述感知测量的测量感知结果,所述第二感知结果为对应所述参考目标的参考感知结果,N为正整数。
可选地,在N等于1的情况下,所述目标参数为所述第一参数;在N大于1的情况下,所述目标参数满足以下任一项:
所述目标参数中的各参数值为所述N组第一参数中对应的参数值的均值;
所述目标参数为所述N组第一参数中对应的接收信号质量最高的一组第一参数;
所述目标参数中的各参数值为L组第一参数中对应的参数值的均值,所述L组第一参数为所述N组第一参数中对应的接收信号质量由高到低排序的前L组第一参数,L为大于1的整数。
可选地,所述第一参数包括以下至少一项:
第一感知节点与第二感知节点之间的定时误差;
第一感知节点与第二感知节点之间的频率偏移;
所述第一信号的接收端对应的感知节点的各天线之间的相位偏差。
本申请实施例中的装置可以是终端或网络侧设备,本申请实施例不作具体限定。
本申请实施例提供的感知处理装置能够实现图7的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图10所示,本申请实施例还提供一种通信设备1000,包括处理器1001 和存储器1002,存储器1002上存储有可在所述处理器1001上运行的程序或指令,例如,该程序或指令被处理器1001执行时实现上述感知处理方法实施例的各个步骤,且能达到相同的技术效果。
本申请实施例还提供一种终端,包括处理器和通信接口,处理器用于基于第一信号对参考目标执行感知测量;
其中,所述感知测量对应的测量感知结果用于确定第一参数,所述第一参数用于表示所述感知测量的测量误差;
所述参考目标为用户设备。
通信接口用于在所述处理器的控制下进行收发。
该终端实施例与上述感知节点侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图11为实现本申请实施例的一种终端的硬件结构示意图。
该终端1100包括但不限于:射频单元1101、网络模块1102、音频输出单元1103、输入单元1104、传感器1105、显示单元1106、用户输入单元1107、接口单元1108、存储器1109以及处理器1110等中的至少部分部件。
本领域技术人员可以理解,终端1100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图11中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1104可以包括图形处理单元(Graphics Processing Unit,GPU)11041和麦克风11042,图形处理器11041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1106可包括显示面板11061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板11061。用户输入单元1107包括触控面板11071以及其他输入设备11072中的至少一种。触控面板11071,也称为触摸屏。触控面板11071可包括触摸检测装置和触摸控制器两个部分。其他输入设备11072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1101接收来自网络侧设备的下行数据后,可以传输给处理器1110进行处理;另外,射频单元1101可以向网络侧设备发送上行数据。通常,射频单元1101包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1109可用于存储软件程序或指令以及各种数据。存储器1109可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1109可以包括易失性存储器或非易失性存储器,或者,存储器1109可以包括易失 性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1109包括但不限于这些和任意其它适合类型的存储器。
处理器1110可包括一个或多个处理单元;可选地,处理器1110集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1110中。
其中,处理器1110,用于基于第一信号对参考目标执行感知测量;
其中,所述感知测量对应的测量感知结果用于确定第一参数,所述第一参数用于表示所述感知测量的测量误差;
所述参考目标为用户设备。
可选地,所述处理器1110还用于以下至少一项:
在所述感知节点为所述第一信号的接收端的情况下,所述感知节点接收所述第一信号,并根据所述第一信号得到第一数据;
在所述感知节点为所述第一信号的发送端的情况下,所述感知节点发送所述第一信号。
可选地,所述处理器1110还用于以下任一项:
发送所述第一数据;
基于所述第一数据确定并发送第三感知结果;
基于所述第一数据确定并发送中间感知结果。
可选地,所述处理器1110还用于:
所述感知节点接收第一信令;
所述感知节点根据所述第一信令向第一设备发送第一信息,所述第一信息用于确定是否对感知测量的测量误差进行估计。
可选地,所述第一信令满足以下至少一项:
所述第一信令为进行感知节点选择的过程中发送的信令,或者所述第一信令为确定目标感知节点后发送的信令;
所述第一信令为专用于查询所述第一信息的信令。
可选地,所述处理器1110还用于:
从第一设备接收所述第一信号的第一配置;
其中,所述第一配置包括以下至少一项:波形信号、信号格式、频域配置、时域配置、空域配置、能量域配置和信号收发方式。
可选地,所述信号收发方式包括以下至少一项:
第一感知节点和第二感知节点之间进行单向信号的发送和接收;
第一感知节点和第二感知节点之间进行双向信号的发送和接收。
可选地,所述处理器1110还用于:
从第一设备接收目标参数中至少部分参数,所述目标参数用于补偿所述感知节点的测量误差。
可选地,所述目标参数基于N组第一参数确定,每一组第一参数基于第一感知结果和第二感知结果确定,所述第一感知结果为所述感知节点执行一次所述感知测量的测量感知结果,所述第二感知结果为对应所述参考目标的参考感知结果,N为正整数。
可选地,在N等于1的情况下,所述目标参数为所述第一参数;在N大于1的情况下,所述目标参数满足以下任一项:
所述目标参数中的各参数值为所述N组第一参数中对应的参数值的均值;
所述目标参数为所述N组第一参数中对应的接收信号质量最高的一组第一参数;
所述目标参数中的各参数值为L组第一参数中对应的参数值的均值,所述L组第一参数为所述N组第一参数中对应的接收信号质量由高到低排序的前L组第一参数,L为大于1的整数。
可选地,所述第一参数包括以下至少一项:
第一感知节点与第二感知节点之间的定时误差;
第一感知节点与第二感知节点之间的频率偏移;
所述第一信号的接收端对应的感知节点的各天线之间的相位偏差。
当然,本申请实施例中,终端也可以作为第一设备,执行如上由第一设备执行的感知处理方法,在此不再赘述。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,其中,
在所述网络侧设备为第一设备的情况下,所述处理器用于获取第一感知结果和第二感知结果,所述第一感知结果为基于第一信号对参考目标进行感知测量获得的测量感知结果,所述第二感知结果为对应所述参考目标的参考感知结果;
根据所述第一感知结果和所述第二感知结果确定第一参数,所述第一参数用于表示所述感知测量的测量误差;
其中,所述参考目标为用户设备;
或者,在所述网络侧设备为感知节点的情况下,所述处理器用于基于第一信号对参考目标执行感知测量;
其中,所述感知测量对应的测量感知结果用于确定第一参数,所述第一参数用于表示 所述感知测量的测量误差;
所述参考目标为用户设备。
该网络侧设备实施例与上述第一设备侧或感知节点侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图12所示,该网络侧设备1200包括:天线121、射频装置122、基带装置123、处理器124和存储器125。天线121与射频装置122连接。在上行方向上,射频装置122通过天线121接收信息,将接收的信息发送给基带装置123进行处理。在下行方向上,基带装置123对要发送的信息进行处理,并发送给射频装置122,射频装置122对收到的信息进行处理后经过天线121发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置123中实现,该基带装置123包括基带处理器。
基带装置123例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图12所示,其中一个芯片例如为基带处理器,通过总线接口与存储器125连接,以调用存储器125中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口126,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备1200还包括:存储在存储器125上并可在处理器124上运行的指令或程序,处理器124调用存储器125中的指令或程序执行图7或图8所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
具体地,本申请实施例还提供了一种网络侧设备。如图13所示,该网络侧设备1300包括:处理器1301、网络接口1302和存储器1303。其中,网络接口1302例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备1300还包括:存储在存储器1303上并可在处理器1301上运行的指令或程序,处理器1301调用存储器1303中的指令或程序执行图7至图8所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种服务器,所述服务器包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如上述第一设备执行的感知处理方法的步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述第一设备或感知节点执行的感知处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述第一设备或感知节点执行的感知处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述第一设备或感知节点执行的感知处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种感知处理系统,包括:终端及网络侧设备,所述终端可用于执行如上所述的感知节点执行的感知处理方法的步骤,所述网络侧设备可用于执行如上所述的第一设备或感知节点执行的感知处理方法的步骤。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而 前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (43)

  1. 一种感知处理方法,包括:
    第一设备获取第一感知结果和第二感知结果,所述第一感知结果为基于第一信号对参考目标进行感知测量获得的测量感知结果,所述第二感知结果为对应所述参考目标的参考感知结果;
    所述第一设备根据所述第一感知结果和所述第二感知结果确定第一参数,所述第一参数用于表示所述感知测量的测量误差;
    其中,所述参考目标为用户设备。
  2. 根据权利要求1所述的方法,其中,所述第一设备获取第一感知结果和第二感知结果之前,所述方法还包括:
    所述第一设备获取目标感知节点的第一信息,所述目标感知节点包括第一感知节点和第二感知节点中的至少一项,所述第一感知节点和所述第二感知节点用于基于所述第一信号对参考目标进行感知测量;
    所述第一设备根据所述目标感知节点的第一信息确定是否对感知测量的测量误差进行估计。
  3. 根据权利要求2所述的方法,其中,所述第一设备获取目标感知节点的第一信息包括以下任一项:
    所述第一设备向目标感知节点发送第一信令,并基于所述第一信令从所述目标感知节点接收所述第一信息;
    所述第一设备从第一网络侧设备获取所述第一信息。
  4. 根据权利要求3所述的方法,其中,所述第一信令满足以下至少一项:
    所述第一信令为进行感知节点选择的过程中发送的信令,或者所述第一信令为确定所述目标感知节点后发送的信令;
    所述第一信令为专用于查询所述第一信息的信令。
  5. 根据权利要求2所述的方法,其中,所述方法还包括:
    在确定对感知测量的测量误差进行估计的情况下,所述第一设备获取第二信息;
    所述第一设备根据所述第二信息确定所述参考目标;
    其中,所述第二信息包括以下至少一项:
    所述目标感知节点的位置信息;
    所述目标感知节点的能力信息;
    感知先验信息;
    预设空间范围内的候选参考目标的位置信息;
    预设空间范围内的候选参考目标的能力信息。
  6. 根据权利要求5所述的方法,其中,所述第一设备获取第二信息包括:
    在所述第二信息包括所述目标感知节点和/或所述候选参考目标的位置信息的情况下,所述第一设备执行:
    若所述目标感知节点和/或所述候选参考目标为固定位置的设备,则通过访问第一网络功能,或者,接收所述目标感知节点和/或所述候选参考目标的上报,得到所述位置信息;其中,所述第一网络功能存储设备位置信息;
    若所述目标感知节点和/或所述候选参考目标为移动的设备,则通过访问第二网络功能得到所述位置信息;其中,所述第二网络功能为定位相关的网络功能。
  7. 根据权利要求5所述的方法,其中,所述第一设备获取第二信息包括:
    在所述第二信息包括所述目标感知节点和/或所述候选参考目标的能力信息的情况下,所述第一设备执行以下任一项:
    所述第一设备向所述目标感知节点和/或所述候选参考目标发送第二信令,并基于所述第二信令从所述目标感知节点和/或所述候选参考目标接收所述能力信息;
    所述第一设备从第二网络侧设备获取所述能力信息,其中,所述第二网络侧设备存储有设备能力信息。
  8. 根据权利要求5所述的方法,其中,所述候选参考目标的能力信息包括以下至少一项:
    感知能力信息;
    感知签约信息;
    定位相关信息;
    传感器相关信息。
  9. 根据权利要求5所述的方法,其中,所述第一设备获取第二信息包括:
    在所述第二信息包括所述感知先验信息的情况下,所述第一设备从感知业务的发起节点或者与所述发起节点相关的网络节点处获取所述感知先验信息。
  10. 根据权利要求5或9所述的方法,其中,所述感知先验信息包括以下至少一项:
    感知目标区域的空间范围信息;
    感知对象的空间位置的先验信息;
    感知对象的运动参数先验信息。
  11. 根据权利要求5所述的方法,其中,所述第一设备根据所述第二信息确定所述参考目标之后,所述方法还包括:
    所述第一设备通过访问第三网络功能得到所述参考目标的定位信息;
    所述第一设备根据所述定位信息和所述参考目标的能力信息中的至少一项,确定所述参考目标的第三信息;
    其中,所述第三网络功能为定位相关的网络功能;所述第三信息包括运动状态参数和雷达谱图样中的至少一项。
  12. 根据权利要求1所述的方法,其中,所述第一设备获取第一感知结果和第二感知 结果之前,所述方法还包括:
    所述第一设备根据第四信息确定第一信号的第一配置;
    其中,所述第四信息包括以下至少一项:
    第一感知节点、第二感知节点和所述参考目标中的至少一项的位置信息;
    第一感知节点、第二感知节点和所述参考目标中的至少一项的能力信息;
    感知先验信息;
    所述参考目标的第三信息;
    其中,所述第一感知节点和所述第二感知节点用于基于所述第一信号对参考目标进行感知测量。
  13. 根据权利要求12所述的方法,其中,所述第一配置包括以下至少一项:信号波形、信号格式、频域配置、时域配置、空域配置、能量域配置和信号收发方式。
  14. 根据权利要求13所述的方法,其中,所述信号收发方式包括以下至少一项:
    所述第一感知节点和第二感知节点之间进行单向信号的发送和接收;
    所述第一感知节点和第二感知节点之间进行双向信号的发送和接收。
  15. 根据权利要求12所述的方法,其中,所述第一设备根据第四信息确定第一信号的第一配置之后,所述方法还包括:
    所述第一设备根据所述第一配置和所述第三信息中的至少一项,对所述参考目标进行感知测量,获取第三感知结果。
  16. 根据权利要求15所述的方法,其中,所述第一设备根据所述第一配置和所述第三信息中的至少一项,对所述参考目标进行感知测量,获取第三感知结果,包括:
    在所述第一设备为所述感知测量过程中第一信号的接收端的情况下,所述第一设备接收所述第一信号,获得第一数据,并且所述第一设备基于所述第一数据确定所述第三感知结果;
    在所述第一设备为所述感知测量过程中第一信号的发送端的情况下,所述第一设备发送所述第一信号,从所述第一信号的接收端对应的感知节点或者感知功能网元接收基于所述感知测量对应的第三感知结果;
    在所述第一设备为感知功能网元的情况下,所述第一设备从所述第一信号的接收端对应的感知节点接收第二数据,并基于所述第二数据确定所述第三感知结果。
  17. 根据权利要求16所述的方法,其中,在所述第一设备为所述感知测量过程中第一信号的接收端的情况下,所述第一设备基于所述第一数据确定所述第三感知结果包括以下任一项:
    所述第一设备对所述第一数据进行第一运算获得所述第三感知结果;
    所述第一设备向感知功能网元发送第三数据,并从所述感知功能网元接收基于所述第三数据确定的第三感知结果,所述第三数据包括所述第一数据或者基于所述第一数据进行第二运算得到的中间感知结果,所述第三感知结果为所述感知功能网元对所述第一数据进 行第一运算确定或者基于所述中间感知结果进行第三运算确定,所述第二运算为所述第一运算中的部分运算,所述第三运算为所述第一运算中除所述第二运算之外的其余运算。
  18. 根据权利要求16所述的方法,其中,在所述第一设备为感知功能网元的情况下,所述第一设备基于所述第二数据确定所述第一感知结果包括以下任一项:
    所述第二数据包括所述感知测量对应的第一数据,所述第一设备对所述第一数据进行第一运算获得所述第三感知结果;
    所述第二数据包括基于所述第一数据进行第二运算得到的中间感知结果,所述第一设备对所述中间感知结果进行第三运算获得第三感知结果;所述第二运算为所述第一运算中的部分运算,所述第三运算为所述第一运算中除所述第二运算之外的其余运算;
    所述第二数据包括所述第三感知结果,所述第一设备通过接收得到所述第三感知结果。
  19. 根据权利要求15所述的方法,其中,所述第三感知结果包括以下至少一项:距离;多普勒;角度;距离一维谱;多普勒一维谱;角度一维谱;距离与多普勒的二维谱;方位角与俯仰角的二维谱;距离与角度的二维谱;距离、方位角与俯仰角的三维谱;距离、多普勒与角度的三维谱;距离、多普勒、方位角与俯仰角的四维谱。
  20. 根据权利要求15所述的方法,其中,所述第一设备获取第一感知结果和第二感知结果,包括:
    所述第一设备根据所述第四信息中的至少部分信息确定所述第二感知结果;
    所述第一设备根据所述第二感知结果从所述第三感知结果中确定所述第一感知结果。
  21. 根据权利要求1所述的方法,其中,所述第一感知结果包括以下至少一项:时延、多普勒和角度;
    所述第二感知结果包括以下至少一项:时延、多普勒和角度。
  22. 根据权利要求1所述的方法,其中,所述第一参数包括以下至少一项:
    第一感知节点与第二感知节点之间的定时误差;
    第一感知节点与第二感知节点之间的频率偏移;
    所述第一信号的接收端对应的感知节点的各天线之间的相位偏差;
    其中,所述第一感知节点和所述第二感知节点用于基于所述第一信号对参考目标进行感知测量。
  23. 根据权利要求1所述的方法,其中,在所述第一信号的信号收发方式为第一感知节点和第二感知节点之间进行单向信号的发送和接收的情况下,所述第一设备根据所述第一感知结果和所述第二感知结果确定第一参数包括以下至少一项:
    基于所述第一感知结果中的时延和所述第二感知结果中的时延,确定所述第一参数中的定时误差;
    基于所述第一感知结果中的多普勒和所述第二感知结果中的多普勒,确定所述第一参数中的频率偏移;
    基于第三感知节点各天线之间的第一测量相位和所述第三感知节点各天线之间的第 一参考相位,确定所述第一参数中第三感知节点的各天线之间的相位偏差;其中,所述第一测量相位是基于所述第一感知结果中的角度推导确定的;所述第一参考相位是基于所述第二感知结果中的角度推导确定的;所述第三感知节点为所述第一感知节点或所述第二感知节点,且所述第三感知节点为所述第一信号的接收端对应的感知节点。
  24. 根据权利要求1所述的方法,其中,在所述第一信号的信号收发方式为第一感知节点和第二感知节点之间进行双向信号的发送和接收的情况下,所述第一设备根据所述第一感知结果和所述第二感知结果确定第一参数包括以下至少一项:
    基于第一时延、第二时延和所述第二感知结果中的时延确定所述第一参数中的定时误差;其中,所述第一时延为基于所述第二感知节点作为第一信号的接收端得到的第一感知结果中的时延,所述第二时延为基于所述第二感知节点作为第一信号的发送端得到的第一感知结果中的时延;
    基于第一多普勒、第二多普勒和第二感知结果中的多普勒确定所述第一参数中的频率偏移,所述第一多普勒为基于所述第二感知节点作为第一信号的接收端得到的第一感知结果中的多普勒,所述第二多普勒为基于所述第二感知节点作为第一信号的发送端得到的第一感知结果中的多普勒;
    基于第三感知节点各天线之间的第一测量相位和所述第三感知节点各天线之间的第一参考相位,确定所述第一参数中第三感知节点的各天线之间的相位偏差;其中,所述第一测量相位是基于所述第一感知结果中的角度推导确定的;所述第一参考相位是基于所述第二感知结果中的角度确定的;所述第三感知节点为所述第一感知节点或所述第二感知节点,且所述第三感知节点为所述第一信号的接收端对应的感知节点。
  25. 根据权利要求1所述的方法,其中,所述第一设备根据所述第一感知结果和所述第二感知结果确定第一参数之后,所述方法还包括:
    所述第一设备根据所述第一参数确定目标参数,所述目标参数用于补偿所述感知节点的测量误差;
    所述第一设备向目标设备发送目标参数中的至少部分参数,所述目标设备包括第一感知节点、第二感知节点和感知功能网元中的至少一项;其中,所述第一感知节点和所述第二感知节点用于基于所述第一信号对参考目标进行感知测量。
  26. 根据权利要求25所述的方法,其中,所述目标参数基于所述第一设备确定的N组第一参数确定,N为正整数;
    其中,在N等于1的情况下,所述目标参数为所述第一参数;在N大于1的情况下,所述目标参数满足以下任一项:
    所述目标参数中的各参数值为所述N组第一参数中对应的参数值的均值;
    所述目标参数为所述N组第一参数中对应的接收信号质量最高的一组第一参数;
    所述目标参数中的各参数值为L组第一参数中对应的参数值的均值,所述L组第一参数为所述N组第一参数中对应的接收信号质量由高到低排序的前L组第一参数,L为大于 1的整数。
  27. 一种感知处理方法,包括:
    感知节点基于第一信号对参考目标执行感知测量;
    其中,所述感知测量对应的测量感知结果用于确定第一参数,所述第一参数用于表示所述感知测量的测量误差;
    所述参考目标为用户设备。
  28. 根据权利要求27所述的方法,其中,所述感知节点基于第一信号对参考目标执行感知测量包括以下至少一项:
    在所述感知节点为所述第一信号的接收端的情况下,所述感知节点接收所述第一信号,并根据所述第一信号得到第一数据;
    在所述感知节点为所述第一信号的发送端的情况下,所述感知节点发送所述第一信号。
  29. 根据权利要求28所述的方法,其中,所述感知节点接收到的所述第一信号,并根据所述第一信号得到第一数据之后,所述方法还包括:
    所述感知节点执行以下任一项:
    发送所述第一数据;
    基于所述第一数据确定并发送第三感知结果;
    基于所述第一数据确定并发送中间感知结果。
  30. 根据权利要求27所述的方法,其中,所述方法还包括:
    所述感知节点接收第一信令;
    所述感知节点根据所述第一信令向第一设备发送第一信息,所述第一信息用于确定是否对感知测量的测量误差进行估计。
  31. 根据权利要求30所述的方法,其中,所述第一信令满足以下至少一项:
    所述第一信令为进行感知节点选择的过程中发送的信令,或者所述第一信令为确定目标感知节点后发送的信令;
    所述第一信令为专用于查询所述第一信息的信令。
  32. 根据权利要求27所述的方法,其中,所述感知节点基于第一信号对参考目标执行感知测量之前,还包括:
    所述感知节点从第一设备接收所述第一信号的第一配置;
    其中,所述第一配置包括以下至少一项:波形信号、信号格式、频域配置、时域配置、空域配置、能量域配置和信号收发方式。
  33. 根据权利要求32所述的方法,其中,所述信号收发方式包括以下至少一项:
    第一感知节点和第二感知节点之间进行单向信号的发送和接收;
    第一感知节点和第二感知节点之间进行双向信号的发送和接收。
  34. 根据权利要求27所述的方法,其中,所述感知节点基于第一信号对参考目标执行感知测量之后,还包括:
    所述感知节点从第一设备接收目标参数中至少部分参数,所述目标参数用于补偿所述感知节点的测量误差。
  35. 根据权利要求34所述的方法,其中,所述目标参数基于N组第一参数确定,每一组第一参数基于第一感知结果和第二感知结果确定,所述第一感知结果为所述感知节点执行一次所述感知测量的测量感知结果,所述第二感知结果为对应所述参考目标的参考感知结果,N为正整数。
  36. 根据权利要求35所述的方法,其中,在N等于1的情况下,所述目标参数为所述第一参数;在N大于1的情况下,所述目标参数满足以下任一项:
    所述目标参数中的各参数值为所述N组第一参数中对应的参数值的均值;
    所述目标参数为所述N组第一参数中对应的接收信号质量最高的一组第一参数;
    所述目标参数中的各参数值为L组第一参数中对应的参数值的均值,所述L组第一参数为所述N组第一参数中对应的接收信号质量由高到低排序的前L组第一参数,L为大于1的整数。
  37. 根据权利要求27至36中任一项所述的方法,其中,所述第一参数包括以下至少一项:
    第一感知节点与第二感知节点之间的定时误差;
    第一感知节点与第二感知节点之间的频率偏移;
    所述第一信号的接收端对应的感知节点的各天线之间的相位偏差。
  38. 一种感知处理装置,包括:
    第一获取模块,用于获取第一感知结果和第二感知结果,所述第一感知结果为基于第一信号对参考目标进行感知测量获得的测量感知结果,所述第二感知结果为对应所述参考目标的参考感知结果;
    第一处理模块,用于根据所述第一感知结果和所述第二感知结果确定第一参数,所述第一参数用于表示所述感知测量的测量误差;
    其中,所述参考目标为用户设备。
  39. 一种感知处理装置,包括:
    第二处理模块,用于基于第一信号对参考目标执行感知测量;
    其中,所述感知测量对应的测量感知结果用于确定第一参数,所述第一参数用于表示所述感知测量的测量误差;
    所述参考目标为用户设备。
  40. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求27至37任一项所述的感知处理方法的步骤。
  41. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至26任一项所述 的感知处理方法,或者如权利要求27至37任一项所述的感知处理方法的步骤。
  42. 一种服务器,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至26任一项所述的感知处理方法的步骤。
  43. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至26任一项所述的感知处理方法,或者实现如权利要求27至37任一项所述的感知处理方法的步骤。
PCT/CN2023/104335 2022-07-14 2023-06-30 感知处理方法、装置、终端及设备 WO2024012237A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210834166.8 2022-07-14
CN202210834166.8A CN117440396A (zh) 2022-07-14 2022-07-14 感知处理方法、装置、终端及设备

Publications (1)

Publication Number Publication Date
WO2024012237A1 true WO2024012237A1 (zh) 2024-01-18

Family

ID=89535553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104335 WO2024012237A1 (zh) 2022-07-14 2023-06-30 感知处理方法、装置、终端及设备

Country Status (2)

Country Link
CN (1) CN117440396A (zh)
WO (1) WO2024012237A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114428251A (zh) * 2021-12-23 2022-05-03 福瑞泰克智能系统有限公司 一种雷达测量精度的确定方法及装置
CN114553284A (zh) * 2022-04-27 2022-05-27 四川太赫兹通信有限公司 一种波束对准方法、装置、基站及计算机可读存储介质
CN114599086A (zh) * 2022-03-04 2022-06-07 北京邮电大学 一种通信感知一体化方法、装置、基站及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114428251A (zh) * 2021-12-23 2022-05-03 福瑞泰克智能系统有限公司 一种雷达测量精度的确定方法及装置
CN114599086A (zh) * 2022-03-04 2022-06-07 北京邮电大学 一种通信感知一体化方法、装置、基站及系统
CN114553284A (zh) * 2022-04-27 2022-05-27 四川太赫兹通信有限公司 一种波束对准方法、装置、基站及计算机可读存储介质

Also Published As

Publication number Publication date
CN117440396A (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
WO2023078297A1 (zh) 无线感知协同方法、装置、网络侧设备和终端
US20240337726A1 (en) Sensing method and apparatus, sensing configuration method and apparatus, and a communication device
WO2023116588A1 (zh) 无线感知的参数确定方法、装置及设备
Yang et al. Multi-domain cooperative SLAM: The enabler for integrated sensing and communications
CN116057404A (zh) 无线通信系统中双基地和多基地雷达的tx/rx参数的信令
WO2023174345A1 (zh) 感知处理方法、装置、通信设备及可读存储介质
WO2023125154A1 (zh) 感知信号周期的确定方法、装置、通信设备及存储介质
CN116156354A (zh) 感知信号传输处理方法、装置及相关设备
WO2024012237A1 (zh) 感知处理方法、装置、终端及设备
WO2024012366A1 (zh) 感知处理方法、装置、终端及设备
WO2024012252A1 (zh) 感知处理方法、装置、终端、网络侧设备及可读存储介质
WO2024012253A1 (zh) 感知处理方法、装置、终端、网络侧设备及可读存储介质
CN116390116A (zh) 感知方法、装置及通信设备
CN116347469A (zh) 无线感知的参数确定方法、装置及设备
WO2023174332A1 (zh) 感知处理方法、装置、通信设备及可读存储介质
CN117440399A (zh) 感知处理方法、装置、终端、网络侧设备及可读存储介质
US20240357319A1 (en) Method for Determining Sensing Signal Period, Communication Device, and Non-Transitory Storage Medium
WO2024131761A1 (zh) 感知协作方法、装置及通信设备
WO2023131315A1 (zh) 无线感知方法、装置、设备及存储介质
WO2023174342A1 (zh) 感知处理方法、装置、通信设备及可读存储介质
WO2024131757A1 (zh) 感知协作方法、装置及通信设备
WO2023193787A1 (zh) 感知模糊化处理方法、装置、设备及存储介质
WO2024131758A1 (zh) 感知融合方法、装置及通信设备
WO2024109641A1 (zh) 信号传输方法、装置及通信设备
WO2024109785A1 (zh) 信号传输方法、装置及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838729

Country of ref document: EP

Kind code of ref document: A1