WO2023116588A1 - 无线感知的参数确定方法、装置及设备 - Google Patents

无线感知的参数确定方法、装置及设备 Download PDF

Info

Publication number
WO2023116588A1
WO2023116588A1 PCT/CN2022/139835 CN2022139835W WO2023116588A1 WO 2023116588 A1 WO2023116588 A1 WO 2023116588A1 CN 2022139835 W CN2022139835 W CN 2022139835W WO 2023116588 A1 WO2023116588 A1 WO 2023116588A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
parameter
target
echo
moment
Prior art date
Application number
PCT/CN2022/139835
Other languages
English (en)
French (fr)
Inventor
丁圣利
姜大洁
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023116588A1 publication Critical patent/WO2023116588A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]

Definitions

  • the present application belongs to the technical field of communication and sensing, and in particular relates to a method, device and equipment for determining parameters of wireless sensing.
  • Future wireless communication systems are expected to provide various high-precision sensing services, such as indoor positioning for robot navigation, Wi-Fi sensing for smart homes, and radar sensing for autonomous vehicles.
  • Sensing and communication systems are usually designed separately and occupy different frequency bands.
  • MIMO Multiple Input Multiple Output
  • the communication signals in future wireless communication systems often have high resolution in both time domain and angle domain, which makes the use of communication It is possible to realize high-precision sensing of signals. Therefore, it is better to jointly design sensing and communication systems so that they can share the same frequency band and hardware to improve frequency efficiency and reduce hardware cost. This has prompted research on Integrated Sensing And Communication (ISAC).
  • MIMO Multiple Input Multiple Output
  • ISAC will become a key technology in future wireless communication systems to support many important application scenarios.
  • autonomous vehicles will obtain a large amount of information from the network, including ultra-high-resolution maps and near real-time information, to navigate and avoid upcoming traffic jams.
  • radar sensors in autonomous vehicles should be able to provide robust, high-resolution obstacle detection with resolution on the order of centimeters.
  • ISAC technology for autonomous vehicles offers the possibility of high data rate communication and high resolution obstacle detection using the same hardware and spectrum resources.
  • Other ISAC applications include Wi-Fi-based indoor positioning and activity recognition, communication and sensing for unmanned aircraft, extended reality (Extended Reality, XR), radar and communication integration, etc. Every application has different requirements, limitations and regulatory issues.
  • Radar detection that is, using the reflected echo of the target to measure distance, speed, and angle, can be used as one of the important use cases of communication-sensing integration. , has many differences from traditional radar technology.
  • Embodiments of the present application provide a wireless sensing parameter determination method, device, and equipment, which can optimize system performance and use of power resources and aperture resources in a synesthesia-integrated scenario.
  • a method for determining parameters of wireless perception including:
  • the first device obtains the first value of the first parameter corresponding to the first target; wherein, the first device or the second device detects the echo signal of the signal sent at the first moment to determine the first target;
  • the first device configures the signal parameter of the first target according to the first value of the first parameter, and the signal parameter of the first target is used to indicate the signal transmission and the echo signal reception at the second moment;
  • the signal parameters include: signal transmission power, aperture gain at the transmitting end, aperture gain at the receiving end, transmitting beam pointing and receiving beam pointing;
  • the second moment is after the first moment; the value of the first parameter is determined by the first product, and the first product is: signal transmission power, aperture gain at the transmitting end, aperture gain at the receiving end, The product of the cosine of the transmit beam pointing and the cosine of the receive beam pointing.
  • an apparatus for determining parameters of wireless perception is provided, which is applied to a first device, including:
  • the first acquisition module is configured to acquire the first value of the first parameter corresponding to the first target; wherein, the first device or the second device detects the echo signal of the signal sent at the first moment to determine the first target ;
  • the first configuration module is configured to configure the signal parameters of the first target according to the first value of the first parameter, and the signal parameters of the first target are used to indicate the signal transmission and the echo signal at the second moment Receiving; wherein, the signal parameters include: signal transmission power, aperture gain at the transmitting end, aperture gain at the receiving end, transmitting beam pointing and receiving beam pointing;
  • the second moment is after the first moment; the value of the first parameter is determined by the first product, and the first product is: signal transmission power, aperture gain at the transmitting end, aperture gain at the receiving end, The product of the cosine of the transmit beam pointing and the cosine of the receive beam pointing.
  • a communication device in a third aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and the programs or instructions are implemented when executed by the processor The steps of the method as described in the first aspect.
  • a communication device including a processor and a communication interface, wherein the processor is configured to obtain a first value of a first parameter corresponding to a first target; wherein the first device or the second device is The echo signal of the signal sent at the first moment is detected to determine the first target; and the signal parameters of the first target are configured according to the first value of the first parameter, and the signal parameters of the first target are configured.
  • the signal parameters include: signal transmission power, aperture gain of the transmitting end, aperture gain of the receiving end, transmitting beam pointing and receiving beam pointing; wherein, the first The second moment is after the first moment; the value of the first parameter is determined by the first product, and the first product is: signal transmission power, transmit end aperture gain, receive end aperture gain, and the cosine of the transmit beam pointing value and the product of the cosine value of the receive beam pointing.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method according to the first aspect are implemented.
  • a sixth aspect provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, the processor is used to run programs or instructions, and implement the method as described in the first aspect .
  • a computer program product is provided, the computer program product is stored in a storage medium, and the computer program product is executed by at least one processor to implement the steps of the method described in the first aspect.
  • the first device configures the signal transmission power of the first target, the aperture gain of the transmitting end, the aperture gain of the receiving end, the direction of the transmitting beam, and the receiving beam according to the first value of the first parameter corresponding to the first target.
  • resource allocation can be optimized under the condition of meeting the perception requirements, so that the performance of the integrated communication perception system and the use of power resources can be optimized.
  • FIG. 1 shows a block diagram of a wireless communication system to which an embodiment of the present application is applicable
  • FIG. 2 shows a flow chart of the steps of the wireless sensing parameter determination method provided by the embodiment of the present application
  • Figure 3 shows an example diagram 1 of the connection relationship between the transmitting end device, the receiving end device and the sensing function network element in the method for determining the transmission power provided by the embodiment of the present application;
  • Figure 4 shows an example of the connection relationship between the transmitting end device, the receiving end device, and the sensing function network element in the method for determining the transmission power provided by the embodiment of the present application;
  • Figure 5 shows an example of the connection relationship between the transmitting end device, the receiving end device, and the sensing function network element in the method for determining the transmission power provided by the embodiment of the present application;
  • FIG. 6 shows an example diagram of an antenna array element provided by an embodiment of the present application
  • FIG. 7 shows a schematic structural diagram of an apparatus for determining parameters of wireless sensing provided by an embodiment of the present application
  • FIG. 8 shows one of the structural schematic diagrams of the communication device provided by the embodiment of the present application.
  • FIG. 9 shows a second schematic structural diagram of a communication device provided by an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of this application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • the following description describes the New Radio (New Radio, NR) system for example purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6th Generation , 6G) communication system.
  • 6G 6th generation
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, a super mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR) / virtual reality (virtual reality, VR) equipment, robot, wearable device (Wearable Device) , Vehicle User Equipment (VUE), Pedestrian User Equipment (PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers (personal computer, PC), teller machine or self-service machine and other terminal side devices, wearable devices include: smart watches, smart bracelet
  • the network side device 12 may include an access network device or a core network device, where the access network device 12 may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function, or Wireless access network unit.
  • RAN Radio Access Network
  • RAN Radio Access Network
  • Wireless access network unit Wireless access network unit
  • the access network device 12 may include a base station, a wireless local area network (Wireless Local Area Networks, WLAN) access point or a WiFi node, etc., and the base station may be called a node B, an evolved node B (eNB), an access point, or a base transceiver station (Base Transceiver Station, BTS), radio base station, radio transceiver, basic service set (Basic Service Set, BSS), extended service set (Extended Service Set, ESS), home node B, home evolved node B, sending and receiving point (Transmitting Receiving Point, TRP) or some other appropriate term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical vocabulary. It should be noted that in the embodiment of this application, only the NR system The base station in the example is introduced as an example, and the specific type of the base station is not limited.
  • the radar technology can adopt the single-station radar mode or the dual-station radar mode.
  • the transmitting and receiving signals share the same antenna, and the received signal and the transmitted signal enter different RF processing links through the circulator; in this mode, continuous wave signal waveforms can be used to achieve detection without blind spots, provided that the received It needs to be well isolated from the transmitted signal, usually an isolation of about 100dB is required to eliminate the flooding of the received signal by the leakage of the transmitted signal. Since the receiver of the monostatic radar has all the information of the transmitted signal, it can process the signal through matched filtering (pulse compression) to obtain a higher signal processing gain.
  • the dual-station radar mode there is no isolation problem of sending and receiving signals, which greatly simplifies the complexity of the hardware.
  • known information such as synchronization signals and reference signals can be used for radar signal processing.
  • the fuzzy diagram of the signal waveform is no longer a thumbtack shape, but a pegboard shape, and the degree of ambiguity of time delay and Doppler will increase, and the gain of the main lobe will be larger than that of the main lobe.
  • the monostatic radar mode is much lowered, reducing the range and speed measurement range.
  • the measurement range of distance and speed can meet the measurement requirements of common objects such as cars and pedestrians.
  • the measurement accuracy of bistatic radar is related to the position of the transceiver station relative to the target, and it is necessary to select a suitable pair of transceiver stations to improve the detection performance.
  • the first device may be a base station, a transmitting and receiving node (Transmission and Receiving Point, TRP), a terminal device (User Equipment, UE), a wireless access point (Access Point, AP) , Reconfigurable Intelligence Surface (RIS), etc.
  • TRP Transmission and Receiving Point
  • UE User Equipment
  • AP Access Point
  • RIS Reconfigurable Intelligence Surface
  • the wireless sensing parameter determination method provided in the embodiment of the present application can be understood as a joint adaptive method of transmit power, antenna aperture, and beam pointing. Please refer to FIG. 2.
  • FIG. 2 is a flow chart of the steps of the wireless sensing parameter determination method provided by the embodiment of the present application.
  • the parameter determination method includes:
  • Step 201 the first device acquires the first value of the first parameter corresponding to the first target; wherein, the first device or the second device detects the echo signal of the signal sent at the first moment to determine the first target;
  • Step 202 the first device configures the signal parameters of the first target according to the first value of the first parameter, and the signal parameters of the first target are used to indicate the signal transmission and echo signal reception at the second moment ;
  • the signal parameters include: signal transmission power, aperture gain at the transmitting end, aperture gain at the receiving end, transmitting beam pointing and receiving beam pointing;
  • the second moment is after the first moment; the value of the first parameter is determined by the first product, and the first product is: signal transmission power, aperture gain at the transmitting end, aperture gain at the receiving end, The product of the cosine of the transmit beam pointing and the cosine of the receive beam pointing.
  • the first moment mentioned in the embodiment of the present application can be understood as at least one first perception frame
  • the second moment can be understood as at least one second perception frame; wherein, signal transmission, reception and signal processing are all
  • the time unit is the perceptual frame; that is to say, the signal parameters of the signal in the same perceptual frame remain unchanged, and the adaptive adjustment method of the signal parameter provided by the embodiment of the present application adjusts the signal parameters in the next one or more perceptual frames. Signal parameters.
  • the aperture gain of the transmitting end is the same as that of the receiving end, and the direction of the transmitting beam is the same as that of the receiving beam; in the scenario of bistatic radar, the aperture gain of the transmitting end can be the same as that of the receiving end. It can be different, and the direction of the transmitting beam and the direction of the receiving beam can be the same or different.
  • the transmit power, aperture gain and beam pointing together determine the signal power of the reflected echo of the target, thus determining the maximum operating distance under a certain SNR requirement and the Noise Ratio (Signal to Noise) at a certain operating distance. ratio, SNR).
  • P t and P r represent the transmit power and receive power, respectively
  • R represents the target distance
  • SNR represents the signal-to-noise ratio of the target echo
  • G represents the aperture gain of the monostatic radar
  • represents the beam direction of the monostatic radar.
  • bistatic radar For bistatic radar (or called bistatic radar), the relationship is as follows:
  • P t and P r represent the transmit power and receive power respectively
  • R t and R r represent the distances from the target to the transmitter and receiver respectively
  • G t and G r represent the transmit aperture gain and receive aperture gain respectively, both of which are real Value units (not dB units);
  • ⁇ t and ⁇ r represent the transmit beam pointing and receiving beam pointing, respectively.
  • step 201 includes:
  • the first device determines a first value of the first parameter corresponding to the first target
  • the first device obtains the first value of the first parameter corresponding to the first target according to the first parameter adjustment information sent by the second device; wherein the first parameter adjustment information includes any of the following:
  • the second value of the first parameter is determined by signal parameters corresponding to the signal transmission and the echo signal reception at the first moment.
  • the first value of the first parameter may be determined by the first device itself, or may be determined by the second device and sent to the first device.
  • the second device determines the first value of the first parameter in the same way as the first device determines the first value of the first parameter.
  • the method of obtaining the value is the same, and the following description will only be made for the method of determining the first value of the first parameter by the first device, and the description will not be repeated for the method of determining the first value of the first parameter for the second device.
  • the above-mentioned first device is a signal transmitting end device, or a signal receiving end device, or a perception function network element.
  • the sensing function network element mentioned in the embodiment of the present application refers to a network node in the core network and/or radio access network that is responsible for at least one function such as sensing request processing, sensing resource scheduling, sensing information interaction, sensing data processing, etc. , which can be based on the access and mobility management function (Access and Mobility Management Function, AMF) or the location management service (Location Management Function, LMF) in the existing fifth generation mobile communication technology (5th Generation Mobile Communication Technology, 5G) network Upgrades can also be other existing or newly defined network nodes. For the convenience of description, it is collectively referred to as a perception function network element in this application.
  • AMF Access and Mobility Management Function
  • LMF Location Management Function
  • 5G Fifth Generation Mobile Communication Technology
  • the transmitter device and the receiver device mentioned in the embodiment of the present invention are one device in a single-static radar scenario, and are different devices in a dual-static radar scenario.
  • the device for determining the first value of the first parameter and the device for configuring the signal parameter may be the same device or different devices.
  • the device configuring the signal parameters may be the transmitter device, may also be the receiver device, or may be a sensor function network element, which is not specifically limited here. If the device that determines the first value of the first parameter and the device that configures the signal parameter are different devices, the device that determines the first value of the first parameter needs to send the first parameter adjustment information to the device that configures the signal parameter.
  • the method further includes:
  • the transmitting end device sends the receiving end aperture gain and receiving beam pointing indicating the echo signal reception at the second moment to the receiving end device; correspondingly,
  • the transmitter device sends the signal according to the signal transmission power, the aperture gain of the transmitter and the direction of the transmission beam;
  • the receiving end device receives the echo signal according to the aperture gain of the receiving end and the direction of the receiving beam.
  • the method further includes:
  • the receiving end device sends to the transmitting end device the signal transmission power indicating the signal transmission at the second moment, the aperture gain of the transmitting end, and the direction of the transmitting beam; correspondingly,
  • the transmitter device sends the signal according to the signal transmission power, the aperture gain of the transmitter and the direction of the transmission beam;
  • the receiving end device receives the echo signal according to the aperture gain of the receiving end and the direction of the receiving beam.
  • the method further includes:
  • the sensing function network element sends the signal transmission power, the aperture gain of the transmitting end, and the direction of the transmitting beam to the transmitting end device indicating the signal transmission at the second moment, and sends the receiving end aperture gain and the receiving end aperture gain indicating the echo signal reception at the second moment to the receiving end device receive beam pointing; correspondingly,
  • the transmitter device sends the signal according to the signal transmission power, the aperture gain of the transmitter and the direction of the transmission beam;
  • the receiving end device receives the echo signal according to the aperture gain of the receiving end and the direction of the receiving beam.
  • bistatic radar or called bistatic radar
  • the transmitting end device and the receiving end device are different devices, then the connection between the sensing function network element, the transmitting end device, and the receiving end device Relationships and corresponding information interaction methods are divided into the following three cases:
  • the perception function network element is only directly connected to one of the transmitter device or the receiver device, and there is a direct communication connection between the transmitter device and the receiver device, as shown in Figure 5;
  • a device with a direct communication connection with a functional network element can directly exchange information with a sensing function network element, and a device without a direct communication connection with a sensing function network element needs to communicate directly with a sensing function network element to interact with a sensing function network element. The device forwards.
  • the transmitting end device and the receiving end device are the same device, then the communication between the sensing function network element and the transmitting end device (that is, the receiving end device)
  • the connection relationship is generally a direct communication connection, that is, the two can directly exchange information; or, the connection relationship between the two is a connection through a third-party device, and the two can exchange information through the above-mentioned third-party device.
  • the first device determines the first target to determine the first value of the first parameter, including:
  • the first device determines the first value of the first parameter according to the echo signal quality of the first target at the first moment
  • the first device determines the first value of the first parameter according to the predicted distance value of the first target at the second moment and the echo signal quality of the first target at the first moment.
  • the adjustment target of the adaptive adjustment of the first parameter is to make the echo signal quality of the first target meet the requirement of perception requirements.
  • the perceived position of the target is approximately equal to that of the Radio Carrier Station (RCS).
  • the echo signal quality of the target is proportional to the first parameter.
  • the first parameter is adaptively adjusted for the echo signal quality.
  • the echo signal quality of the first target includes at least one of the following:
  • SINR Signal Interference Noise Ratio
  • Reference Signal Received Quality (RSRQ) of the echo signal of the first target.
  • the echo signal power of the first target includes at least one of the following:
  • the signal sent is a perception-dominant signal or a communication-sensing integrated signal, then the echo signal power of the first target is the full power of the echo signal;
  • the signal sent is a communication dominant signal or a perception-enhanced communication dominant signal, such as a 5G NR signal, a Wi-Fi signal, and the echo signal power of the first target is a preamble in the echo signal, and/or Or the power of the synchronization signal, and/or the reference signal;
  • the reference signal can be a demodulation reference signal (Demodulation reference signals, DM-RS), a phase tracking reference signal (Phase-tracking reference signal, PT-RS), channel state Information reference signal (Channel State Information Reference Signal, CSI-RS), positioning reference signal (Positioning Reference Signals, P-RS), channel sounding reference signal (Sounding Reference Signal, SRS), etc.
  • the goal of adaptively adjusting the first parameter according to the echo signal quality of the first goal includes:
  • Target 1 maintaining the echo signal quality of the first target near a first preset echo quality.
  • the expression may be P r0 ⁇ P r , wherein P r0 is the preset first preset echo quality, and ⁇ P r is the allowable echo quality error.
  • target 2 maintain the echo signal quality of the first target within the first echo quality range.
  • the expression of the preset first echo quality range may be [P r min , P r max ], wherein P r min is the lower limit value of the first echo quality range, and P r max is the preset Set the upper limit value of the echo signal power range.
  • the method also includes:
  • the first condition determines the first preset echo quality or the first echo quality range; the first condition includes at least one of the following:
  • the required echo signal quality is limited by the interference level of the communication function in the synaesthesia integration application.
  • the method for determining the preset echo signal power value includes:
  • the echo signal power value that meets the requirements of the sensing index in the sensing demand, or the echo signal power value that meets the sensing index requirement in the sensing demand and leaves a certain margin, and the sensing index requirement can be: sensing accuracy, Detection probability/false alarm probability;
  • the method for determining the lower limit value of the echo signal power range includes:
  • the minimum received power of the echo signal that satisfies the requirements of the sensing index in the sensing requirement, the sensing index requirement may be: sensing accuracy, detection probability/false alarm probability;
  • the method for determining the upper limit of the echo signal power range includes:
  • the echo signal power corresponding to the sensing index reaching a certain level, the sensing index requirement may be: sensing accuracy, detection probability/false alarm probability;
  • the first device determines the first value of the first parameter according to the echo signal quality of the first target at the first moment, including:
  • the echo signal quality of the first target If it is determined to maintain the echo signal quality of the first target near the first preset echo quality, according to the second value of the first parameter, the echo signal quality of the first target at the first moment, and The first preset echo quality determines the first value of the first parameter;
  • the echo signal quality of the first target determines the first value of the first parameter
  • the second value of the first parameter is determined by signal parameters corresponding to the signal transmission and the echo signal reception at the first moment.
  • determining the first value of the first parameter includes:
  • the first value of the first parameter is determined; the first formula is:
  • C' is the first value of the first parameter
  • C is the second value of the first parameter
  • P r0 is the first preset echo quality
  • P r is the echo of the first target at the first moment wave signal quality.
  • the first value of the first parameter is determined according to the second value of the first parameter, the echo signal quality of the first target at the first moment, and the first echo quality range, including:
  • the first value of the first parameter is determined; the second formula is:
  • C' is the first value of the first parameter
  • C is the second value of the first parameter
  • P r is the echo signal quality of the first target at the first moment
  • P r is greater than the upper limit echo quality of the first echo quality range
  • P is the upper limit echo quality of the first echo quality range
  • the second formula is P r max is the upper limit echo quality of the first echo quality range.
  • P r is less than the lower limit echo quality of the first echo quality range
  • P is the lower limit echo quality of the first echo quality range
  • the second formula is P r min is the lower limit echo quality of the first echo quality range.
  • P is the arithmetic mean value or the geometric mean value of the upper limit echo quality and the lower limit echo quality of the first echo quality range
  • the second formula is P r mid is the arithmetic mean value or the geometric mean value of the upper limit echo quality and the lower limit echo quality of the first echo quality range.
  • the arithmetic mean can be understood as (P r max +P r min )/2
  • the geometric mean can be understood as
  • the first device determines the first parameter of the first parameter according to the predicted distance value of the first target at the second moment and the echo signal quality of the first target at the first moment.
  • a value including:
  • the first preset echo quality and the predicted distance value of the first target at the second moment determine the first value of the first parameter
  • the first echo quality range and the predicted distance value of the first target at the second moment determine the first value of the first parameter.
  • the trajectory prediction method to obtain the distance prediction value at the next moment: the distance R' (monostatic radar) of the first target relative to the monostatic radar; or, the distance of the first target relative to the transmitter and the relative receiver of the first target
  • the distance R′ r of the aircraft (bistatic radar).
  • the prediction of the distance of the first object at the second moment is based on maintaining the trajectory of the first object, and obtaining the predicted distance value at the second moment by predicting the position of the first object at the second moment.
  • the premise assumption of the prediction method is: when tracking the first target, since the movement speed of the typical target (for example: vehicle, pedestrian, etc.) of the synaesthesia integration application is a low-speed target relative to the update rate of perception,
  • the change of the target state between two adjacent radar detections is small.
  • the small change in the target state here mainly refers to the small change in the target RCS. It can be considered that the target RCS remains almost unchanged in two or several consecutive radar detections.
  • the target’s maneuverability is small, that is, the acceleration is small, and the position and velocity of the target do not change much, so linear filtering algorithms such as Kalman filtering can be used; the other is the perceptual channel characteristics (large-scale and small-scale fading characteristics) have little change, especially the small-scale fading characteristics have little change.
  • the prediction method is implemented by the device, which is not limited here.
  • the echo signal quality of the first target at the first moment, the first preset echo quality, and the distance prediction value of the first target at the second moment determine The first value of the first parameter, including:
  • the third formula the first value of the first parameter is determined; the third formula includes:
  • the second value of the first parameter is determined.
  • a value including:
  • the fourth formula the first value of the first parameter is determined; the fourth formula includes:
  • P r is greater than the upper limit echo quality of the first echo quality range
  • P is the upper limit echo quality of the first echo quality range
  • the fourth formula is or, P r max is the upper limit echo quality of the first echo quality range.
  • P r is less than the lower limit echo quality of the first echo quality range
  • P is the lower limit echo quality of the first echo quality range
  • the fourth formula is or, P r min is the lower limit echo quality of the first echo quality range.
  • P is the arithmetic mean value or the geometric mean value of the upper limit echo quality and the lower limit echo quality of the first echo quality range; then the fourth formula is or, P rmid is the arithmetic mean value or the geometric mean value of the upper limit echo quality and the lower limit echo quality of the first echo quality range.
  • step 202 includes:
  • the first device configures the transmit beam pointing and the receiving beam pointing at the second moment according to a first angle of the first target relative to the transmitting end device and a second angle of the first target relative to the receiving end device;
  • the first device determines the lower limit value of the antenna aperture of the transmitting end and the lower limit value of the antenna aperture of the receiving end according to the antenna aperture required by the resolution in the perception requirement and the determined transmit beam pointing and receiving beam pointing at the second moment; optional Ground, the lower limit of the antenna aperture needs to meet at least the setting of the antenna aperture in the resolution requirement in the perception requirement;
  • the first device configures the signal transmission power, the aperture gain of the transmitting end, and the aperture gain of the receiving end at the second moment according to the lower limit value of the antenna aperture of the transmitting end, the lower limit value of the antenna aperture of the receiving end, the direction of the transmitting beam, and the direction of the receiving beam to satisfy the first value of the first parameter.
  • the first device configures the transmitting beam pointing and receiving beam pointing according to the first angle of the first target relative to the transmitting end device and the second angle of the first target relative to the receiving end device, including:
  • the first device configures the transmit beam to point to the first angle, and the receive beam to point to the second angle;
  • the first angle is the angle of the first target relative to the transmitter device at the first moment, or the predicted value of the angle of the first target relative to the transmitter device at the second moment;
  • the second angle is an angle of the first object relative to the receiving end device at the first moment, or a predicted value of an angle of the first object relative to the receiving end device at the second moment.
  • the first angle is the angle of the first target at the first moment relative to the transmitting end device
  • the second angle is the angle of the first target relative to the receiver device at the first moment.
  • the first angle is the predicted value of the angle of the first target relative to the transmitter device at the second moment
  • the second angle is the predicted value of the distance at the second moment.
  • the angle prediction method is the implementation content of the device, which is not limited here.
  • the resolution requirements in the perception requirements include: angular measurement resolution requirements, and/or radar imaging lateral resolution requirements.
  • angular resolution refers to the minimum angle between two targets that can be distinguished by radar detection, and the unit can be: degree or radian;
  • Lateral resolution refers to the minimum distance between two targets that can be distinguished by radar imaging in the direction perpendicular to the line of sight, and the unit can be: meters; for antenna arrays with beamforming capabilities, the number of antenna elements and array element rows The cloth determines the beamwidth and thus the angular resolution.
  • the angular resolution in azimuth or elevation can be expressed as:
  • D is the antenna aperture in the azimuth or elevation direction
  • is the wavelength
  • is the beam pointing
  • k is the beam width factor.
  • Aperture D includes two cases:
  • D For sparse array antennas, D depends on the distance between the array elements at both ends in azimuth or elevation.
  • case A and case B are the same, but their antenna gains are different (because the number of antenna elements is different).
  • the apertures in the azimuth direction can be set to include 1 to 8 antenna element widths and pitch directions respectively.
  • the apertures can be set to include 1 to 8 antenna element widths respectively.
  • the azimuth or elevation aperture contains 2 to 4 antenna element widths, it also includes two cases of dense array and sparse array respectively, and has an equivalent relationship in angular resolution, as shown in Figure 6 :
  • 2-element sparse array According to the difference of the array element spacing, when the interval between 2 array elements is 2-7 array elements, it can be equivalent to the dense array of 3-8 array elements respectively;
  • 3-element sparse array According to the difference of the array element spacing, when two adjacent array elements are separated by 2 array elements, it can be equivalent to a 5-element dense array. When 3 array elements are spaced apart, it can be equivalent to 7 array elements dense array;
  • 4-element sparse array There is an interval of 2 array elements between two adjacent array elements, which can be equivalent to a 7-element dense array.
  • the first device determines the lower limit value of the antenna aperture of the transmitting end and the receiving beam pointing according to the antenna aperture required by the resolution in the perception requirement and the determined transmitting beam pointing and receiving beam pointing at the second moment.
  • the lower limit of the end antenna aperture including:
  • the first device determines the lower limit value of the antenna aperture of the transmitting end and the antenna aperture of the receiving end according to the antenna aperture required by the angular measurement resolution and the determined transmit beam pointing and receiving beam pointing at the second moment the lower limit value of .
  • Angle measurement resolution in azimuth or elevation can be set in 8 levels, as shown in Table 1:
  • 3 bits can be used to represent the aperture offset in the azimuth direction, and 3 bits can be used to represent the aperture offset in the pitch direction;
  • the offset value of the fixed aperture relative to the antenna array in the azimuth or pitch direction, the aperture offset value is shown in Table 2:
  • the aperture setting and the aperture offset may be combined for encoding configuration, so as to reduce the number of bits occupied by the aperture configuration information.
  • option 1 has 1 aperture setting and 8 aperture offsets in 8 situations
  • option 2 has 1 aperture setting and 7 aperture offsets in 7 situations
  • option 3 has 2 aperture settings and 6 aperture offsets.
  • option 4 has 2 aperture settings, 5 aperture offsets, 10 situations in total
  • option 5 has 3 aperture settings, 4 aperture offsets, and there are 12 situations
  • option 6 has 2 aperture settings, There are 6 situations for 3 aperture offsets
  • Option 7 has 4 aperture settings and 2 aperture offsets for 8 situations
  • option 8 has 2 aperture settings and 1 aperture offset for 2 situations. Therefore, there are 65 cases in which 7 bits can be used to transmit the aperture configuration information.
  • the first device determines the lower limit value of the antenna aperture of the transmitting end and the antenna aperture of the receiving end according to the antenna aperture required by the resolution in the perception requirement and the determined transmit beam pointing and receiving beam pointing at the second moment lower bounds, including:
  • the first device is based on the antenna aperture required by the lateral resolution of radar imaging, the direction of the transmit beam at the second moment, the direction of the receive beam at the second moment, the first distance of the first target relative to the transmitting end device, and the first distance of the first target relative to the receiving end.
  • the second distance of the device determines the lower limit value of the antenna aperture of the transmitting end and the lower limit value of the antenna aperture of the receiving end.
  • the angular resolution should be adaptively adjusted according to the change of the distance of the target, that is, the antenna aperture should be adjusted:
  • the angular resolution should be increased (decrease the value of the angular resolution), that is, the antenna aperture should be increased to maintain the radar imaging Lateral distance resolution;
  • the angle measurement resolution can be reduced (increase the value of the angle measurement resolution), that is, the antenna aperture can be reduced to release part of the antenna resources ;
  • the adjusting antenna aperture includes:
  • Adjust the number of antenna elements in the case of dense arrays, adjusting the number of antenna elements means adjusting the corresponding antenna aperture;
  • the antenna aperture can be adjusted by adjusting the antenna array element spacing.
  • the link adaptive adjustment of the antenna aperture can be performed in sections according to the relative distance R between the target and the radar and the target angle (beam pointing) ⁇ , combined with the hardware configuration of the antenna array. For each subsection, it shall satisfy:
  • D is the antenna aperture in the azimuth or elevation direction
  • is the wavelength
  • is the beam pointing
  • k is the beam width factor
  • R is the relative distance between the target and the radar
  • ⁇ L cross is the lateral resolution requirement of radar imaging.
  • the link adaptation is set according to the target distance and angle segmented aperture as shown in Table 4:
  • the first device configures the signal transmission power, the aperture gain of the transmitting end, and the aperture of the receiving end according to the lower limit value of the antenna aperture of the transmitting end, the lower limit value of the antenna aperture of the receiving end, the direction of the transmitting beam, and the direction of the receiving beam
  • the gain satisfies the first value of the first parameter, including:
  • the lower limit value of the antenna aperture of the transmitting end and the lower limit value of the antenna aperture of the receiving end configure the signal transmit power, the aperture gain of the transmit end, and the aperture gain of the receive end.
  • the capability information includes: a set of information corresponding to the currently available transmit power configuration and antenna array configuration of the device.
  • the beam pointing in the first parameter has been obtained in the above steps; it is further necessary to set the transmit power and aperture gain in the first parameter, or the product of transmit power and aperture gain (ie: power-aperture product). That is, the configuration of the signal transmission power at the second moment, the aperture gain of the transmitting end and the aperture gain of the receiving end includes:
  • the first device configures the signal transmission power, the aperture gain of the transmitting end, and the aperture gain of the receiving end according to the power priority mode or the aperture priority mode, including:
  • the power priority method includes: prioritizing the configuration of signal transmission power to meet the requirements of the first parameter, if the signal transmission power reaches the configured upper limit of the power range and still cannot meet the requirements of the first parameter, then configure the transmit end aperture gain and/or Or the aperture gain of the receiving end to meet the requirements of the first parameter;
  • the aperture priority method includes: preferentially configuring the aperture gain of the transmitting end and/or the aperture gain of the receiving end to meet the requirements of the first parameter, if the aperture gain of the transmitting end and/or the aperture gain of the receiving end reach the upper limit of the aperture gain and still cannot meet the The requirements of the first parameter are met by configuring the signal transmission power to meet the requirements of the first parameter.
  • the first device determines to use power priority or aperture priority to set signal transmission power, transmit end aperture gain, and receive end aperture gain according to the resource occupation of the sensing node and/or the indication of the sensing function network element.
  • the way of configuring the aperture gain of the transmitting end and/or the aperture gain of the receiving end includes: giving priority to the aperture gain of the transmitting end or prioritizing the aperture gain of the receiving end;
  • the transmit-end aperture gain priority includes: preferentially configuring the transmit-end aperture gain, if the transmit-end aperture gain configuration reaches the upper limit of the transmit-end aperture gain and still cannot meet the requirements of the first parameter, then configure the receive-end aperture gain to meet The requirements of the first parameter;
  • the receiving end aperture gain priority includes: preferentially configuring the receiving end aperture gain, if the receiving end aperture gain configuration reaches the upper limit value of the receiving end aperture gain and still cannot meet the requirements of the first parameter, then configure the transmitting end aperture gain to meet the first parameter. parameter requirements.
  • the first device determines to configure the aperture gain in the manner of prioritizing the aperture gain of the transmitting end or the manner of prioritizing the aperture gain of the receiving end according to the resource occupation situation and/or the indication of the sensing function network element.
  • the configuration priorities of transmit power and aperture gain are sorted from high to low:
  • the aperture gain is divided into the transmitter aperture gain and the receiver aperture gain, so the order of configuration priority from high to low is:
  • the lower limit of the aperture gain is the aperture gain corresponding to the lower limit of the antenna aperture set in the previous step, and the upper limit of the aperture gain includes at least one of the following options:
  • the lower limit of the transmission power is the minimum power required by the communication function, and the maximum value of the transmission power includes at least one of the following options:
  • the maximum transmission power assigned to the radar detection task in the case of multiple tasks working in parallel.
  • the above transmission power can be set in a continuous manner, that is, any value within the preconfigured power range can be set as the above transmission power value; or, the above transmission power can be set in steps
  • the method is to set the corresponding transmit power value at a certain step interval within the preconfigured power range.
  • the method of increasing the aperture gain is to increase the number of occupied antenna elements, including two types:
  • the antenna aperture remains unchanged: reduce the array element spacing, such as adjusting from option 5b in Table 1 or Table 2 or Table 4 to option 5c or option 5a. At this time, the antenna aperture remains unchanged, but the number of antenna elements is increased;
  • the first device configures the signal transmission power corresponding to the first target, the aperture gain of the transmitting end, the aperture gain of the receiving end, and the transmitting beam corresponding to the first target according to the first value of the first parameter corresponding to the first target.
  • the pointing and receiving beam pointing can optimize the resource allocation under the condition of meeting the sensing requirements, so as to optimize the performance of the communication-sensing integrated system and the use of power resources.
  • Example 1 multi-parameter joint adaptation of monostatic radar
  • the transmitter device sends the first signal and receives the target echo of the first signal to obtain the target echo data.
  • the radar signal processing of the target echo data includes one of the following three situations:
  • the transmitter device performs radar signal processing on the target echo data to obtain the perception result
  • the transmitter device sends the target echo data to the sensing function network element, and the sensing function network element performs radar signal processing to obtain the sensing result;
  • the transmitting end equipment performs part of the radar signal processing calculation, and sends the calculation result to the perception function network element, and the perception function network element performs the remaining calculation of the radar signal processing to obtain the perception result.
  • the transmitting end device or the sensing function network element executes the joint adaptive method of transmitting power, antenna aperture and beam pointing mentioned in the embodiment of this application, and obtains the transmitting power, aperture gain and beam pointing at the next moment. beam pointing.
  • the transmitter device sets the transmit power, aperture gain and beam pointing at the next moment; if the sensing function network element implements the joint adaptive method of transmit power, antenna aperture and beam pointing, then the transmitter device generates the first Before a signal, there is a step that the transmitter device receives the transmit power, aperture gain and beam pointing at the next moment from the sensing function network element.
  • the transmitting end device sends the first signal, and the receiving end device receives the target reflection echo of the first signal to obtain the target echo data.
  • the radar signal processing of the target echo data includes one of the following three situations:
  • the receiver device performs radar signal processing on the target echo data to obtain the perception result
  • the receiving end device sends the target echo data to the sensing function network element, and the sensing function network element performs radar signal processing to obtain the sensing result;
  • the receiving-end device performs part of the radar signal processing calculation, and sends the calculation result to the perception function network element, and the perception function network element performs the remaining calculation of the radar signal processing to obtain the perception result.
  • the receiving end device or the sensing function network element executes the joint adaptive method of transmit power, antenna aperture and beam pointing mentioned in the embodiment of this application, and obtains the transmit power, transmit end aperture at the next moment Gain, Receive Aperture Gain, Transmit Beam Pointing and Receive Beam Pointing.
  • the transmitter device sets the transmit power, transmit aperture gain, and transmit beam pointing at the next moment, and the receiver device sets the receive aperture gain and receive beam pointing at the next moment. Prior to this, it also includes the information interaction between the perception function network element, the transmitting end device, and the receiving end device. Receive beam pointing.
  • step 2 Repeat step 2 to step 6 until the end of the sensing process.
  • the execution subject may be a wireless sensing parameter determination device.
  • the method for determining the parameter of the wireless sensing performed by the device for determining the parameter of the wireless sensing is taken as an example to describe the device for determining the parameter of the wireless sensing provided in the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an apparatus 700 for determining wireless sensing parameters provided in an embodiment of the present application.
  • the apparatus applied to the first device includes:
  • the first acquisition module 701 is configured to acquire the first value of the first parameter corresponding to the first target; wherein, the first device or the second device detects the echo signal of the signal sent at the first moment to determine the first Target;
  • the first configuration module 702 is configured to configure the signal parameters of the first target according to the first value of the first parameter, and the signal parameters of the first target are used to indicate the signal transmission and echo at the second moment Signal reception; wherein, the signal parameters include: signal transmission power, aperture gain at the transmitting end, aperture gain at the receiving end, transmitting beam pointing and receiving beam pointing;
  • the second moment is after the first moment; the value of the first parameter is determined by the first product, and the first product is: signal transmission power, aperture gain at the transmitting end, aperture gain at the receiving end, The product of the cosine of the transmit beam pointing and the cosine of the receive beam pointing.
  • the first obtaining module includes:
  • the first acquiring submodule is configured to determine the first value of the first parameter corresponding to the first target
  • the second obtaining submodule is used to obtain the first value of the first parameter corresponding to the first target according to the first parameter adjustment information sent by the second device; wherein, the first parameter adjustment information includes any of the following :
  • the second value of the first parameter is determined by signal parameters corresponding to the signal transmission and the echo signal reception at the first moment.
  • the apparatus further includes:
  • the first sending module is configured to send the aperture gain of the receiving end and the direction of the receiving beam indicating the reception of the echo signal at the second moment to the receiving end device.
  • the apparatus further includes:
  • the second sending module is configured to send the signal transmission power indicating the signal transmission at the second moment, the aperture gain of the transmitting end, and the direction of the transmitting beam to the transmitting end device.
  • the apparatus further includes:
  • the third sending module is configured to send to the transmitting end device the signal transmission power indicating the signal transmission at the second moment, the aperture gain of the transmitting end, and the direction of the transmitting beam, and send the receiving end indicating the reception of the echo signal at the second moment to the receiving end device Aperture gain and receive beam pointing.
  • the apparatus further includes:
  • the fourth sending module is configured to send a signal according to the signal transmission power, the aperture gain of the transmitting end, and the direction of the transmitting beam.
  • the apparatus further includes:
  • the receiving module is configured to receive the echo signal according to the aperture gain of the receiving end and the direction of the receiving beam.
  • the first acquiring submodule includes:
  • the first determining unit is configured to determine a first value of the first parameter according to the echo signal quality of the first target at the first moment;
  • the second determining unit is configured to determine the first value of the first parameter according to the predicted distance value of the first target at the second moment and the echo signal quality of the first target at the first moment.
  • the echo signal quality of the first target includes at least one of the following:
  • the echo signal to interference noise ratio of the first target is the echo signal to interference noise ratio of the first target
  • Reference signal received power of the echo signal of the first target
  • the reference signal receiving quality of the echo signal of the first target.
  • the first determining unit includes:
  • the first determining subunit is configured to, in the case of determining to maintain the echo signal quality of the first target near the first preset echo quality, according to the second value of the first parameter, the first target at the The echo signal quality at a moment and the first preset echo quality determine the first value of the first parameter;
  • the second determination subunit is configured to, in the case of determining to maintain the echo signal quality of the first target within the first echo quality range, according to the second value of the first parameter, the first target at the The echo signal quality at a moment and the first echo quality range determine the first value of the first parameter;
  • the second value of the first parameter is determined by signal parameters corresponding to the signal transmission and the echo signal reception at the first moment.
  • the first determining subunit is further configured to:
  • the first value of the first parameter is determined; the first formula is:
  • C' is the first value of the first parameter
  • C is the second value of the first parameter
  • P r0 is the first preset echo quality
  • P r is the echo of the first target at the first moment wave signal quality.
  • the second determining subunit is further configured to:
  • the first value of the first parameter is determined; the second formula is:
  • C' is the first value of the first parameter
  • C is the second value of the first parameter
  • P r is the echo signal quality of the first target at the first moment
  • P r is greater than the upper limit echo quality of the first echo quality range
  • P is the upper limit echo quality of the first echo quality range
  • P r is less than the lower limit echo quality of the first echo quality range
  • P is the lower limit echo quality of the first echo quality range
  • P is the arithmetic mean value or the geometric mean value of the upper limit echo quality and the lower limit echo quality of the first echo quality range.
  • the second determining unit includes:
  • the third determining subunit is configured to, in the case of determining to maintain the echo signal quality of the first target near the first preset echo quality, according to the second value of the first parameter, the first target at the The echo signal quality at a moment, the first preset echo quality and the predicted distance value of the first target at a second moment determine the first value of the first parameter;
  • the fourth determining subunit is configured to, in the case of determining to maintain the echo signal quality of the first target within the first echo quality range, according to the second value of the first parameter, the first target The echo signal quality at one moment, the first echo quality range, and the predicted distance value of the first target at the second moment determine the first value of the first parameter.
  • the third determining subunit is further configured to:
  • the third formula the first value of the first parameter is determined; the third formula includes:
  • the fourth determining subunit is further configured to:
  • the fourth formula the first value of the first parameter is determined; the fourth formula includes:
  • P r is greater than the upper limit echo quality of the first echo quality range
  • P is the upper limit echo quality of the first echo quality range
  • P r is less than the lower limit echo quality of the first echo quality range
  • P is the lower limit echo quality of the first echo quality range
  • P is the arithmetic mean value or the geometric mean value of the upper limit echo quality and the lower limit echo quality of the first echo quality range.
  • the first configuration module includes:
  • the first configuration submodule is configured to configure the transmit beam pointing and the receiving beam pointing according to the first angle of the first target relative to the transmitting end device and the second angle of the first target relative to the receiving end device;
  • the determination sub-module is used to determine the lower limit value of the antenna aperture of the transmitting end and the lower limit value of the antenna aperture of the receiving end according to the antenna aperture required by the resolution in the perception requirement and the determined transmit beam pointing and receiving beam pointing;
  • the second configuration sub-module is used to configure the signal transmission power, the aperture gain of the transmitting end and the aperture gain of the receiving end according to the lower limit value of the antenna aperture of the transmitting end, the lower limit value of the antenna aperture of the receiving end, the transmitting beam pointing and the receiving beam pointing. Satisfy the first value of the first parameter.
  • the first configuration submodule includes:
  • the first configuration unit is configured to configure the pointing of the transmitting beam to be the first angle, and the pointing of the receiving beam to be the second angle;
  • the first angle is the angle of the first target relative to the transmitter device at the first moment, or the predicted value of the angle of the first target relative to the transmitter device at the second moment;
  • the second angle is an angle of the first object relative to the receiving end device at the first moment, or a predicted value of an angle of the first object relative to the receiving end device at the second moment.
  • the resolution requirements in the perception requirements include: angular measurement resolution requirements, and/or radar imaging lateral resolution requirements.
  • the determining submodule includes:
  • the first determination unit is used to determine the lower limit value of the antenna aperture of the transmitting end and the lower limit value of the antenna aperture of the receiving end according to the antenna aperture required by the angular measurement resolution and the determined transmit beam pointing and receiving beam pointing;
  • the second determination unit is used for antenna aperture, transmit beam pointing, receive beam pointing and the first distance of the first target relative to the transmitting end device, and the second distance of the first target relative to the receiving end device according to the lateral resolution requirements of radar imaging. Distance, determine the lower limit value of the antenna aperture of the transmitting end and the lower limit value of the antenna aperture of the receiving end.
  • the second configuration submodule includes:
  • the second configuration unit is configured to use the first value of the first parameter, the lower limit value of the antenna aperture of the transmitting end and the lower limit value of the antenna aperture of the receiving end, the direction of the transmitting beam, the direction of the receiving beam, and the The capability information and the capability information of the receiving end device configure the signal transmission power, the aperture gain of the transmitting end, and the aperture gain of the receiving end.
  • the capability information includes: a set of information corresponding to the currently available transmit power configuration and antenna array configuration of the device.
  • the second configuration unit includes:
  • the configuration subunit is used to configure the signal transmission power, the aperture gain of the transmitting end, and the aperture gain of the receiving end at the second moment according to the power priority mode or the aperture priority mode, including:
  • the power priority method includes: prioritizing the configuration of signal transmission power to meet the requirements of the first parameter, if the signal transmission power reaches the configured upper limit of the power range and still cannot meet the requirements of the first parameter, then configure the transmit end aperture gain and/or Or the aperture gain of the receiving end to meet the requirements of the first parameter;
  • the aperture priority method includes: preferentially configuring the aperture gain of the transmitting end and/or the aperture gain of the receiving end to meet the requirements of the first parameter, if the aperture gain of the transmitting end and/or the aperture gain of the receiving end reach the upper limit of the aperture gain and still cannot meet the The requirements of the first parameter are met by configuring the signal transmission power to meet the requirements of the first parameter.
  • the manner of configuring the aperture gain of the transmitting end and/or the aperture gain of the receiving end includes: prioritizing the aperture gain of the transmitting end or prioritizing the aperture gain of the receiving end;
  • the transmit-end aperture gain priority includes: preferentially configuring the transmit-end aperture gain, if the transmit-end aperture gain configuration reaches the upper limit of the transmit-end aperture gain and still cannot meet the requirements of the first parameter, then configure the receive-end aperture gain to meet The requirements of the first parameter;
  • the receiving end aperture gain priority includes: preferentially configuring the receiving end aperture gain, if the receiving end aperture gain configuration reaches the upper limit value of the receiving end aperture gain and still cannot meet the requirements of the first parameter, then configure the transmitting end aperture gain to meet the first parameter. parameter requirements.
  • the first device configures the signal transmission power corresponding to the first target, the aperture gain of the transmitting end, the aperture gain of the receiving end, the direction of the transmission beam, and the direction of the reception beam according to the first value of the first parameter.
  • the resource allocation is optimized under the condition of meeting the sensing requirements, so as to optimize the performance of the integrated communication sensing system and the use of power resources.
  • the wireless sensing parameter determination device provided in the embodiment of the present application is a device capable of performing the above wireless sensing parameter determination method, and all embodiments of the above wireless sensing parameter determination method are applicable to the device, and all Can achieve the same or similar beneficial effects.
  • the wireless perception parameter determination apparatus in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or a component in the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal, or other devices other than the terminal.
  • the terminal may include, but not limited to, the types of terminal 11 listed above, and other devices may be servers, Network Attached Storage (NAS), etc., which are not specifically limited in this embodiment of the present application.
  • NAS Network Attached Storage
  • the apparatus for determining parameters of wireless sensing provided by the embodiment of the present application can realize various processes realized by the method embodiments in FIG. 1 to FIG. 6 , and achieve the same technical effect. In order to avoid repetition, details are not repeated here.
  • this embodiment of the present application also provides a communication device 800, including a processor 801 and a memory 802, and the memory 802 stores programs or instructions that can run on the processor 801.
  • the program or instruction is executed by the processor m01, the steps of the above wireless sensing parameter determination method embodiment can be realized, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a communication device, including a processor and a communication interface, the processor is used to acquire the first value of the first parameter corresponding to the first target; wherein, the first device or the second device The echo signal of the signal sent at any time is detected to determine the first target; and according to the first value of the first parameter, the signal parameter of the first target is configured, and the signal parameter of the first target is used for Indicates the signal transmission and echo signal reception at the second moment; wherein, the signal parameters include: signal transmission power, aperture gain at the transmitting end, aperture gain at the receiving end, transmitting beam pointing and receiving beam pointing; wherein, the second moment After the first moment; the value of the first parameter is determined by a first product, the first product is: signal transmission power, aperture gain at the transmitting end, aperture gain at the receiving end, cosine value of the transmitting beam pointing and The product of the cosine values of the receive beam pointing.
  • This communication device embodiment corresponds to the above-mentioned first device method embodiment, and
  • the embodiment of the present application also provides a network side device.
  • the network side device 900 includes: an antenna 91 , a radio frequency device 92 , a baseband device 93 , a processor 94 and a memory 95 .
  • the antenna 91 is connected to a radio frequency device 92 .
  • the radio frequency device 92 receives information through the antenna 91, and sends the received information to the baseband device 93 for processing.
  • the baseband device 93 processes the information to be sent and sends it to the radio frequency device 92
  • the radio frequency device 92 processes the received information and sends it out through the antenna 91 .
  • the method performed by the network side device in the above embodiments may be implemented in the baseband device 93, where the baseband device 93 includes a baseband processor.
  • the baseband device 93 can include at least one baseband board, for example, a plurality of chips are arranged on the baseband board, as shown in FIG.
  • the program executes the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 96, such as a common public radio interface (common public radio interface, CPRI).
  • a network interface 96 such as a common public radio interface (common public radio interface, CPRI).
  • the network side device 900 in the embodiment of the present application further includes: instructions or programs stored in the memory 95 and operable on the processor 94, and the processor 94 calls the instructions or programs in the memory 95 to execute the various programs shown in FIG.
  • the method of module execution achieves the same technical effect, so in order to avoid repetition, it is not repeated here.
  • the embodiment of the present application also provides a readable storage medium, the readable storage medium stores a program or an instruction, and when the program or instruction is executed by a processor, each process of the above-mentioned embodiment of the wireless sensing parameter determination method is implemented, and The same technical effect can be achieved, so in order to avoid repetition, details will not be repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory (Read Only Memory, ROM), a random access memory (Random-Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above wireless sensing parameter determination method
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run programs or instructions to implement the above wireless sensing parameter determination method
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the embodiment of the present application further provides a computer program product, the computer program product is stored in a storage medium, and the computer program product is executed by at least one processor to implement the various processes in the above embodiment of the wireless sensing parameter determination method , and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本申请公开了一种无线感知的参数确定方法、装置及设备,属于通信感知一体化领域,本申请实施例的方法包括:第一设备获取第一目标对应的第一参数的第一取值;第一设备根据所述第一参数的第一取值,配置所述第一目标的信号参数,所述第一目标的信号参数用于指示第二时刻的信号发送及回波信号接收;所述信号参数包括:信号发射功率、发射端孔径增益、接收端孔径增益、发射波束指向以及接收波束指向;所述第二时刻在所述第一时刻之后;所述第一参数的取值由第一乘积确定,所述第一乘积为:信号发射功率、发射端孔径增益、接收端孔径增益、发射波束指向的余弦值以及接收波束指向的余弦值的乘积。

Description

无线感知的参数确定方法、装置及设备
相关申请的交叉引用
本申请主张在2021年12月22日在中国提交的中国专利申请No.202111580756.4的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信及感知技术领域,具体涉及一种无线感知的参数确定方法、装置及设备。
背景技术
未来无线通信系统有望提供各种高精度的传感服务,如机器人导航的室内定位、智能家居的Wi-Fi传感和自动驾驶汽车的雷达传感。传感和通信系统通常是单独设计的,并占用不同的频段。然后,由于毫米波和大规模多进多出(Multiple Input Multiple Output,MIMO)技术的广泛部署,未来无线通信系统中的通信信号往往在时域和角度域都具有高分辨率,这使得利用通信信号实现高精度传感成为可能。因此,最好是联合设计传感和通信系统,使它们能够共享同一频段和硬件,以提高频率效率并降低硬件成本。这促使了对通信和感知一体化(Integrated Sensing And Communication,ISAC)的研究。ISAC将成为未来无线通信系统的一项关键技术,以支持许多重要的应用场景。例如,在未来的自动驾驶车辆网络中,自动驾驶车辆将从网络中获得大量的信息,包括超高分辨率的地图和接近实时的信息,以进行导航和避免即将到来的交通拥堵。在同样的情况下,自动驾驶车辆中的雷达传感器应该能够提供强大的、高分辨率的障碍物探测功能,分辨率在厘米量级。用于自动驾驶车辆的ISAC技术提供了使用相同硬件和频谱资源实现高数据率通信和高分辨率障碍物探测的可能。ISAC的其他应用包括基于Wi-Fi的室内定位和活动识别、无人驾驶飞机的通信和传感、扩展现实(Extended Reality,XR)、雷达和通信一体化等。每个应用都有不同的要求、限制和监管问题。
雷达探测,即利用目标的反射回波进行测距、测速、测角,可以作为通 信感知一体化的重要用例之一,然而通信感知一体化场景下的雷达技术,由于约束条件和应用目标的差异,与传统的雷达技术有许多不同之处。
发明内容
本申请实施例提供一种无线感知的参数确定方法、装置及设备,能够优化通感一体化场景下的系统性能和功率资源、孔径资源的使用。
第一方面,提供了一种无线感知的参数确定方法,包括:
第一设备获取第一目标对应的第一参数的第一取值;其中,第一设备或第二设备对第一时刻发送的信号的回波信号进行检测确定所述第一目标;
第一设备根据所述第一参数的第一取值,配置所述第一目标的信号参数,所述第一目标的信号参数用于指示第二时刻的信号发送及回波信号接收;其中,所述信号参数包括:信号发射功率、发射端孔径增益、接收端孔径增益、发射波束指向以及接收波束指向;
其中,所述第二时刻在所述第一时刻之后;所述第一参数的取值由第一乘积确定,所述第一乘积为:信号发射功率、发射端孔径增益、接收端孔径增益、发射波束指向的余弦值以及接收波束指向的余弦值的乘积。
第二方面,提供了一种无线感知的参数确定装置,应用于第一设备,包括:
第一获取模块,用于获取第一目标对应的第一参数的第一取值;其中,第一设备或第二设备对第一时刻发送的信号的回波信号进行检测确定所述第一目标;
第一配置模块,用于根据所述第一参数的第一取值,配置所述第一目标的信号参数,所述第一目标的信号参数用于指示第二时刻的信号发送及回波信号接收;其中,所述信号参数包括:信号发射功率、发射端孔径增益、接收端孔径增益、发射波束指向以及接收波束指向;
其中,所述第二时刻在所述第一时刻之后;所述第一参数的取值由第一乘积确定,所述第一乘积为:信号发射功率、发射端孔径增益、接收端孔径增益、发射波束指向的余弦值以及接收波束指向的余弦值的乘积。
第三方面,提供了一种通信设备,该通信设备包括处理器和存储器,所 述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种通信设备,包括处理器及通信接口,其中,所述处理器用于获取第一目标对应的第一参数的第一取值;其中,第一设备或第二设备对第一时刻发送的信号的回波信号进行检测确定所述第一目标;并根据所述第一参数的第一取值,配置所述第一目标的信号参数,所述第一目标的信号参数用于指示第二时刻的信号发送及回波信号接收;其中,所述信号参数包括:信号发射功率、发射端孔径增益、接收端孔径增益、发射波束指向以及接收波束指向;其中,所述第二时刻在所述第一时刻之后;所述第一参数的取值由第一乘积确定,所述第一乘积为:信号发射功率、发射端孔径增益、接收端孔径增益、发射波束指向的余弦值以及接收波束指向的余弦值的乘积。
第五方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第七方面,提供了一种计算机程序产品,所述计算机程序产品被存储在存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤。
在本申请实施例中,第一设备根据第一目标对应的第一参数的第一取值,配置第一目标的信号发射功率、发射端孔径增益、接收端孔径增益、发射波束指向以及接收波束指向,能够在满足感知需求的条件下优化资源配置,从而能够优化通信感知一体化系统的性能和功率资源的使用。
附图说明
图1表示本申请实施例可应用的一种无线通信系统的框图;
图2表示本申请实施例提供的无线感知的参数确定方法的步骤流程图;
图3表示本申请实施例提供的发射功率的确定方法中发射端设备、接收 端设备以及感知功能网元的连接关系示例图一;
图4表示本申请实施例提供的发射功率的确定方法中发射端设备、接收端设备以及感知功能网元的连接关系示例图二;
图5表示本申请实施例提供的发射功率的确定方法中发射端设备、接收端设备以及感知功能网元的连接关系示例图三;
图6表示本申请实施例提供的天线阵元示例图;
图7表示本申请实施例提供的无线感知的参数确定装置的结构示意图;
图8表示本申请实施例提供的通信设备的结构示意图之一;
图9表示本申请实施例提供的通信设备的结构示意图之二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系 统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、无线局域网(Wireless Local Area Networks,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的无线感知的参数确定方法、装置及设备进行详细地说明。
在通感一体化无线感知应用中,雷达技术可以采用单站雷达模式,也可以采用双站雷达模式。
在单站雷达模式下,收发信号共用天线,接收信号与发射信号通过环形器进入不同的射频处理链路;在这种模式下,可以采用连续波信号波形实现无盲区的探测,前提是接收信号与发射信号需要很好的隔离,通常需要100dB左右的隔离度,以消除发射信号泄露对接收信号的淹没。由于单站雷达的接收机具有发射信号的全部信息,从而可以通过匹配滤波(脉冲压缩)的方式进行信号处理,获得较高的信号处理增益。
在双站雷达模式下,不存在收发信号的隔离问题,极大地简化的硬件的复杂度。由于雷达信号处理建立在已知信息的基础上,在通感一体化应用中,可以利用同步信号、参考信号等已知信息进行雷达信号处理。但是,由于同步信号、参考信号等的周期性,信号波形的模糊图不再是图钉形,而是钉板形,时延和多普勒的模糊程度会增大、且主瓣的增益相较单站雷达模式降低了许多,降低了距离和速度的测量范围。通过恰当的参数集设计,距离和速度的测量范围能够满足汽车、行人等常见目标的测量需求。此外,双站雷达的测量精度与收发站点相对目标的位置有关,需要选择合适的收发站点对来提高探测性能。
需要说明的是,本申请实施例提供的第一设备可以是基站、发送接收节点(Transmission and Receiving Point,TRP)、终端设备(User Equipment,UE)、无线访问接入点(Access Point,AP)、可重构智能表面(Reconfigurable Intelligence Surface,RIS)等。
本申请实施例提供的无线感知的参数确定方法可以理解为发射功率、天线孔径和波束指向的联合自适应方法。请参见图2,图2是本申请实施例提供的无线感知的参数确定方法的步骤流程图,该参数确定方法包括:
步骤201,第一设备获取第一目标对应的第一参数的第一取值;其中,第一设备或第二设备对第一时刻发送的信号的回波信号进行检测确定所述第一目标;
步骤202,第一设备根据所述第一参数的第一取值,配置所述第一目标的信号参数,所述第一目标的信号参数用于指示第二时刻的信号发送及回波信号接收;其中,所述信号参数包括:信号发射功率、发射端孔径增益、接收端孔径增益、发射波束指向以及接收波束指向;
其中,所述第二时刻在所述第一时刻之后;所述第一参数的取值由第一乘积确定,所述第一乘积为:信号发射功率、发射端孔径增益、接收端孔径增益、发射波束指向的余弦值以及接收波束指向的余弦值的乘积。
需要说明的是,本申请实施例中提及的第一时刻可以理解为至少一个第一感知帧、第二时刻可以理解为至少一个第二感知帧;其中,信号的发射、接收和信号处理均是以感知帧为时间单位的;也就是说在同一个感知帧内信号的信号参数不变,本申请实施例提供的信号参数的自适应调节方法调节的是下一个或多个感知帧内的信号参数。
可选地,在单站雷达场景下,发射端孔径增益与接收端孔径增益相同,发射波束指向与接收波束指向相同;在双站雷达场景下,发射端孔径增益与接收端孔径增益可以相同也可以不同,发射波束指向与接收波束指向可以相同也可以不同。
在雷达探测中,发射功率、孔径增益和波束指向一起共同决定了目标反射回波的信号功率,从而决定了一定信噪比要求下的最大作用距离和一定作用距离下的噪声比(Signal to Noise ratio,SNR)。
对于单站雷达(或称单基地雷达)有如下关系:
P r、R 4、SNR∝P t·G 2cosθ 2
其中,P t和P r分别表示发射功率和接收功率,R表示目标距离,SNR表示目标回波信噪比,G表示单站雷达孔径增益,θ表示单站雷达波束指向。
对于双站雷达(或称双基地雷达)则有如下关系:
Figure PCTCN2022139835-appb-000001
其中,P t和P r分别表示发射功率和接收功率,R t和R r分别表示目标到发射机和接收机的距离,G t和G r分别表示发射孔径增益和接收孔径增益,均为实值单位(不是dB单位);θ t和θ r分别表示发射波束指向和接收波束指向。
本申请实施例通过发射功率、孔径增益和波束指向的联合自适应调节, 来调节目标反射回波信号功率或回波信噪比。因此本申请实施例定义了第一参数,且本申请实施例中发射功率、孔径增益及波束指向的联合自适应调节是基于第一参数的要求进行调节;其中,第一参数为P t·G tcosθ t·G rcosθ r;P t表示发射功率,G t和G r分别表示发射端孔径增益和接收端孔径增益;θ t和θ r分别表示发射波束指向和接收波束指向。对于单站雷达,第一参数中的G t=G r且θ t=θ r
在本申请的至少一个实施例中,步骤201包括:
第一设备确定第一目标对应的所述第一参数的第一取值;
或者,
第一设备根据第二设备发送的第一参数调整信息获取第一目标对应的所述第一参数的第一取值;其中,所述第一参数调整信息包括下述任意一项:
第一参数的第一取值;
第一参数的第一取值相对于第一参数的第二取值的比值;
第一参数的第一取值相对于第一参数的第二取值的差异值;
其中,所述第一参数的第二取值由第一时刻的信号发送及回波信号接收对应的信号参数确定。
也就是说,第一参数的第一取值可以由第一设备自身确定,也可以由第二设备确定后发送给第一设备。
可选地,若第一参数的第一取值由第二设备确定后告知第一设备,则第二设备确定第一参数的第一取值的方式与第一设备确定第一参数的第一取值的方式相同,后续仅针对第一设备确定第一参数的第一取值的方式进行说明,针对第二设备确定第一参数的第一取值的方式不做重复描述。
可选地,上述第一设备为信号的发射端设备,或信号的接收端设备,或感知功能网元。其中,本申请实施例所提及的感知功能网元是指核心网和/或无线接入网中负责感知请求处理、感知资源调度、感知信息交互、感知数据处理等至少一项功能的网络节点,可以是基于现有第五代移动通信技术(5th Generation Mobile Communication Technology,5G)网络中接入和移动性管理功能(Access and Mobility Management Function,AMF)或位置管理服务(Location Management Function,LMF)升级,也可以是其他已有的或新定 义的网络节点。为了叙述的方便,在本申请中统一称为感知功能网元。
需要说明的是,本发明实施例中提及的发射端设备和接收端设备在单站雷达场景下为一个设备,在双站雷达场景下为不同的设备。
进一步需要说明的是,确定第一参数的第一取值的设备和配置信号参数的设备可以为同一设备,也可以为不同的设备。例如,确定第一参数的第一取值为发射端设备,配置信号参数的设备可以为发射端设备,也可以为接收端设备,也可以感知功能网元,在此不做具体限定。若确定第一参数的第一取值的设备和配置信号参数的设备为不同的设备,确定第一参数的第一取值的设备需向配置信号参数的设备发送第一参数调整信息。
作为一个可选实施例,在配置信号参数的设备为发射端设备的情况下,所述方法还包括:
发射端设备向接收端设备发送指示第二时刻的回波信号接收的接收端孔径增益以及接收波束指向;相应的,
发射端设备根据信号发射功率、发射端孔径增益以及发射波束指向,发送信号;
接收端设备根据接收端孔径增益以及接收波束指向,接收回波信号。
作为另一个可选实施例,在配置第二时刻的信号参数的设备为接收端设备的情况下,所述方法还包括:
接收端设备向发射端设备发送指示第二时刻的信号发送的信号发射功率、发射端孔径增益以及发射波束指向;相应的,
发射端设备根据信号发射功率、发射端孔径增益以及发射波束指向,发送信号;
接收端设备根据接收端孔径增益以及接收波束指向,接收回波信号。
作为又一个可选实施例,在配置第二时刻的信号参数的设备为感知功能网元的情况下,所述方法还包括:
感知功能网元向发射端设备发送指示第二时刻的信号发送的信号发射功率、发射端孔径增益以及发射波束指向,向接收端设备发送指示第二时刻的回波信号接收的接收端孔径增益以及接收波束指向;相应的,
发射端设备根据信号发射功率、发射端孔径增益以及发射波束指向,发 送信号;
接收端设备根据接收端孔径增益以及接收波束指向,接收回波信号。
其中,针对双站雷达(或称为双基地雷达)的场景,发射端设备和接收端设备为不同的设备,则所述感知功能网元、发射端设备、接收端设备三者之间的连接关系以及对应的信息交互方法分为以下三种情况:
1)感知功能网元、发射端设备、接收端设备三者中任意两者之间具有通信直连,如图3所示;此时任意两者可直接进行信息交互;
2)感知功能网元与发射端设备和接收端设备之间均有通信直连、但发射端设备与接收端设备之间没有通信直连,如图4所示;此时感知功能网元与发射端设备或接收端设备可直接进行信息交互、发射端设备与接收端设备之间的信息交互需通过感知功能网元进行转发;
3)感知功能网元只与发射端设备或接收端设备设置两者之一有通信直连、且发射端设备与接收端设备之间有通信直连,如图5所示;此时与感知功能网元具有通信直连的设备可直接与感知功能网元进行信息交互、与感知功能网元没有通信直连的设备与感知功能网元进行交互需通过与感知功能网元有通信直连的设备进行转发。
而针对单站雷达(或称为单基地雷达)的场景,发射端设备和接收端设备为同一个设备,则所述感知功能网元和发射端设备(即接收端设备)两者之间的连接关系一般为通信直连,即两者之间可直接进行信息交互;或者,两者之间的连接关系为通过第三方设备进行连接,则两者可以通过上述第三方设备进行信息交互。
在本申请的至少一个实施例中,第一设备确第一目标在定第一参数的第一取值,包括:
第一设备根据第一目标在第一时刻的回波信号质量,确定第一参数的第一取值;
或者,
第一设备根据第一目标在第二时刻的距离预测值以及所述第一目标在第一时刻的回波信号质量,确定第一参数的第一取值。
本申请实施例中,第一参数的自适应调节的调节目标是使得第一目标的 回波信号质量满足感知需求的要求。在相邻的两个时刻内,感知目标的位置和无线电载波台(Radio Carrier Station,RCS)近似相等,此时目标的回波信号质量正比于第一参数,则本申请实施例中根据目标的回波信号质量进行第一参数的自适应调节。
其中,所述第一目标的回波信号质量包括下述至少一项:
第一目标的回波信号功率;
第一目标的回波信号的SNR;
第一目标的回波信号的干扰噪声比(Signal Interference Noise Ratio,SINR);
第一目标的回波信号的参考信号接收功率(Reference Signal Receiving Power,RSRP);
第一目标的回波信号的参考信号接收质量(Reference Signal Received Quality,RSRQ)。
可选地第一目标的回波信号功率包括以下至少一项:
发送的信号是感知主导信号或通信感知一体化信号,则所述第一目标的回波信号功率为回波信号的全部功率;
发送的信号为通信主导信号或感知增强的通信主导信号,例如5G NR信号、Wi-Fi信号,则所述第一目标的回波信号功率为回波信号中的前导码(preamble)、和/或同步信号、和/或参考信号的功率;所述参考信号可以是解调参考信号(Demodulation reference signals,DM-RS)、相位跟踪参考信号(Phase-tracking reference signal,PT-RS)、信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)、定位参考信号(Positioning Reference Signals,P-RS)、信道探测用参考信号(Sounding Reference Signal,SRS)等。
在本申请的至少一个实施例中,根据第一目标的回波信号质量进行第一参数的自适应调节的目标包括:
目标1,将所述第一目标的回波信号质量维持在第一预设回波质量附近。表述方式可以是P r0±ΔP r,其中P r0为所述预先设定的第一预设回波质量、ΔP r为允许的回波质量误差。
或者,目标2,将所述第一目标的回波信号质量维持在第一回波质量范围之内。预先设定的第一回波质量范围的表述方式可以是[P r min,P r max],其中P r min为所述第一回波质量范围的下限值、P r max为所述预先设定回波信号功率范围的上限值。
可选的,所述方法还包括:
根据第一条件,确定所述第一预设回波质量或所述第一回波质量范围;所述第一条件包括下述至少一项:
感知需求中感知指标要求的回波信号质量;
通感一体化应用中通信功能的通信质量所要求的发射信号功率所对应的回波信号质量;
通感一体化应用中通信功能干扰水平限制所要求的回波信号质量。
例如,第一预设回波质量为预设回波信号功率值时,该预设回波信号功率值的确定方法包括:
a)满足感知需求中感知指标的要求的回波信号功率值,或者,满足感知需求中感知指标要求并留有一定余量的回波信号功率值,所述感知指标要求可以是:感知精度、检测概率/虚警概率;
b)满足通感一体化应用中通信功能的通信质量所要求的发射信号功率所对应的回波信号功率值,和,干扰水平限制所要求的回波信号功率值。
再例如,第一回波质量范围为回波信号功率范围的情况下,该回波信号功率范围的下限值确定方法包括:
a)满足感知需求中感知指标要求的最低回波信号接收功率,所述感知指标要求可以是:感知精度、检测概率/虚警概率;
b)满足通感一体化应用中通信功能波束失败的临界发射信号功率值所对应的回波信号功率值。
该回波信号功率范围的上限值确定方法包括:
a)感知指标达到一定水平对应的回波信号功率,所述感知指标要求可以是:感知精度、检测概率/虚警概率;
b)满足通感一体化应用中通信功能干扰水平限制所要求的回波信号功率值。
本申请的至少一个实施例中,第一设备根据第一目标在第一时刻的回波信号质量,确定第一参数的第一取值,包括:
在确定将所述第一目标的回波信号质量维持在第一预设回波质量附近的情况下,根据第一参数的第二取值、第一目标在第一时刻的回波信号质量以及所述第一预设回波质量,确定第一参数的第一取值;
或者,
在确定将所述第一目标的回波信号质量维持在第一回波质量范围之内的情况下,根据第一参数的第二取值、第一目标在第一时刻的回波信号质量以及第一回波质量范围,确定第一参数的第一取值;
其中,所述第一参数的第二取值由第一时刻的信号发送及回波信号接收对应的信号参数确定。
其中,根据第一参数的第二取值、第一目标在第一时刻的回波信号质量以及所述第一预设回波质量,确定第一参数的第一取值,包括:
根据第一公式,确定第一参数的第一取值;所述第一公式为:
Figure PCTCN2022139835-appb-000002
其中,C′为第一参数的第一取值;C为第一参数的第二取值;P r0为所述第一预设回波质量;P r为第一目标在第一时刻的回波信号质量。
其中,根据第一参数的第二取值、第一目标在第一时刻的回波信号质量以及第一回波质量范围,确定第一参数的第一取值,包括:
根据第二公式,确定第一参数的第一取值;所述第二公式为:
Figure PCTCN2022139835-appb-000003
其中,C′为第一参数的第一取值;C为第一参数的第二取值;P r为第一目标在第一时刻的回波信号质量;
在P r大于所述第一回波质量范围的上限回波质量的情况下,P为所述第一回波质量范围的上限回波质量;则第二公式为
Figure PCTCN2022139835-appb-000004
P r max为所述第一回波质量范围的上限回波质量。
或者,在P r小于所述第一回波质量范围的下限回波质量的情况下,P为所述第一回波质量范围的下限回波质量;则第二公式为
Figure PCTCN2022139835-appb-000005
P r min为所述第一回波质量范围的下限回波质量。
或者,在任何情况下,P为所述第一回波质量范围的上限回波质量和下限回波质量的算术平均值或几何平均值;则第二公式为
Figure PCTCN2022139835-appb-000006
P r mid为所述第一回波质量范围的上限回波质量和下限回波质量的算术平均值或几何平均值。其中,算术平均值可以理解为(P r max+P r min)/2;几何平均值可以理解为
Figure PCTCN2022139835-appb-000007
在本申请的至少一个是实施例中,所述第一设备根据第一目标在第二时刻的距离预测值以及所述第一目标在第一时刻的回波信号质量,确定第一参数的第一取值,包括:
在确定将所述第一目标的回波信号质量维持在第一预设回波质量附近的情况下,根据第一参数的第二取值、第一目标在第一时刻的回波信号质量、所述第一预设回波质量以及第一目标在第二时刻的距离预测值,确定第一参数的第一取值;
或者,
在确定将所述第一目标的回波信号质量维持在第一回波质量范围之内的情况下,根据第一参数的第二取值、第一目标在第一时刻的回波信号质量、第一回波质量范围以及第一目标在第二时刻的距离预测值,确定第一参数的第一取值。
可选地,用轨迹预测方法得到下一时刻的距离预测值:第一目标相对单站雷达的距离R′(单站雷达);或者,第一目标相对发射机的距离和第一目标相对接收机的距离R′ r(双站雷达)。且对第一目标在第二时刻的距离进行预测建立在维持第一目标运动轨迹、通过预测第一目标在第二时刻的位置来得到第二时刻的距离预测值。
所述预测方法的前提假设是:在对第一目标进行跟踪时,由于通感一体化应用的典型目标(例如:车辆、行人等)的运动速度相对于感知的更新速率来说是低速目标,相邻两次雷达探测的目标状态变化较小。这里的目标状态变化较小主要是指目标RCS的变化较小,可以认为相邻两次或连续若干次的雷达探测中目标RCS几乎保持不变。满足这一情况有以下两个条件:一是目标的机动较小,即加速度较小,目标的位置和速度变化不大,可以采用卡 尔曼滤波等线性滤波算法;二是感知信道特性(大尺度和小尺度衰落特性)变化不大,尤其是小尺度衰落特性变化不大。所述预测方法是设备实现内容,这里不做限制。
其中,所述根据第一参数的第二取值、第一目标在第一时刻的回波信号质量、所述第一预设回波质量以及第一目标在第二时刻的距离预测值,确定第一参数的第一取值,包括:
根据第三公式,确定第一参数的第一取值;所述第三公式包括:
Figure PCTCN2022139835-appb-000008
或,
Figure PCTCN2022139835-appb-000009
其中,C′为第一参数的第一取值;C为第一参数的第二取值;P r0为所述第一预设回波质量;P r为第一目标在第一时刻的回波信号质量;R为单站雷达场景下第一时刻的第一目标与信号收发设备之间的距离;R′为单站雷达场景下第二时刻的第一目标与信号收发设备之间的距离预测值;R t为双站雷达场景下第一时刻的第一目标与发射端设备之间的距离;R′ t为双站雷达场景下第二时刻的第一目标与发射端设备之间的距离预测值;为双站雷达场景下第一时刻的第一目标与接收端设备之间的距离;R′ r为双站雷达场景下第二时刻的第一目标与接收端设备之间的距离预测值。
其中,根据第一参数的第二取值、第一目标在第一时刻的回波信号质量、第一回波质量范围以及第一目标在第二时刻的距离预测值,确定第一参数的第一取值,包括:
根据第四公式,确定第一参数的第一取值;所述第四公式包括:
Figure PCTCN2022139835-appb-000010
或,
Figure PCTCN2022139835-appb-000011
其中,C′为第一参数的第一取值;C为第一参数的第二取值;P r为第一目标在第一时刻的回波信号质量;R为单站雷达场景下第一时刻的第一目标与信号收发设备之间的距离;R′为单站雷达场景下第二时刻的第一目标与信号收发设备之间的距离预测值;R t为双站雷达场景下第一时刻的第一目标与发射端设备之间的距离;R′ t为双站雷达场景下第二时刻的第一目标与发射端设备之间的距离预测值;R r为双站雷达场景下第一时刻的第一目标与接收端 设备之间的距离;R′ r为双站雷达场景下第二时刻的第一目标与接收端设备之间的距离预测值;
在P r大于所述第一回波质量范围的上限回波质量的情况下,P为所述第一回波质量范围的上限回波质量;则第四公式为
Figure PCTCN2022139835-appb-000012
或,
Figure PCTCN2022139835-appb-000013
P r max为所述第一回波质量范围的上限回波质量。
或者,在P r小于所述第一回波质量范围的下限回波质量的情况下,P为所述第一回波质量范围的下限回波质量;则第四公式为
Figure PCTCN2022139835-appb-000014
或,
Figure PCTCN2022139835-appb-000015
P r min为所述第一回波质量范围的下限回波质量。
或者,在任何情况下,P为所述第一回波质量范围的上限回波质量和下限回波质量的算术平均值或几何平均值;则第四公式为
Figure PCTCN2022139835-appb-000016
或,
Figure PCTCN2022139835-appb-000017
P rmid为所述第一回波质量范围的上限回波质量和下限回波质量的算术平均值或几何平均值。其中,算术平均值可以理解为(P r max+P r min)/2;几何平均值可以理解为
Figure PCTCN2022139835-appb-000018
在本申请的至少一个实施例中,步骤202包括:
第一设备根据第一目标相对发射端设备的第一角度和第一目标相对于接收端设备的第二角度,配置第二时刻的发射波束指向以及接收波束指向;
第一设备根据感知需求中的分辨率要求的天线孔径以及确定的第二时刻的发射波束指向以及接收波束指向,确定发射端天线孔径的下限值以及接收端天线孔径的下限值;可选地,天线孔径的下限值至少需要满足感知需求中的分辨率要求的天线孔径的设置;
第一设备根据发射端天线孔径的下限值、接收端天线孔径的下限值、发射波束指向以及接收波束指向,配置所述第二时刻的信号发射功率、发射端孔径增益以及接收端孔径增益以满足所述第一参数的第一取值。
作为一个可选实施例,第一设备根据第一目标相对发射端设备的第一角 度和第一目标相对于接收端设备的第二角度,配置发射波束指向以及接收波束指向,包括:
第一设备配置所述发射波束指向为所述第一角度,所述接收波束指向为所述第二角度;
其中,所述第一角度为第一时刻的第一目标相对发射端设备的角度,或者,第二时刻的第一目标相对发射端设备的角度预测值;
所述第二角度为第一时刻的第一目标相对于接收端设备的角度,或者,第二时刻的第一目标相对于接收端设备的角度预测值。
可选地,如果第一参数的第一取值是基于第一时刻的回波信号质量确定的,则第一角度为第一时刻的第一目标相对发射端设备的角度,所述第二角度为第一时刻的第一目标相对于接收端设备的角度。
如果第一参数的第一取值是基于第二时刻的距离预测值确定的,则第一角度为第二时刻的第一目标相对发射端设备的角度预测值,第二角度为第二时刻的第一目标相对于接收端设备的角度预测值。所述角度预测方法是设备实现内容,这里不做限制。
在本申请的至少一个实施例中,所述感知需求中的分辨率要求包括:测角分辨率要求,和/或,雷达成像横向分辨率要求。
其中,测角分辨率:是指雷达探测能够分辨出两个目标之间的最小角度,单位可以是:度或弧度;
横向分辨率:是指雷达成像在垂直于视线方向上能够区分出两个目标之间的最小距离,单位可以是:米;对于具有波束赋型能力的天线阵列,天线阵元数和阵元排布决定了波束宽度,从而决定测角分辨率。对于均匀布阵天线阵列,方位向或俯仰向的测角分辨率可以表示为:
Figure PCTCN2022139835-appb-000019
其中,D为方位向或俯仰向的天线孔径,λ为波长,θ为波束指向,k为波束宽度因子。对于双站雷达,测角分辨率取决于接收端设备。孔径D包括两种情况:
case A:对于紧密布阵天线,D=Nd,其中N为方位向或俯仰向的天线阵元数,d为天线阵元间距;
case B:对于稀疏布阵天线,D取决于方位向或俯仰向两端阵元之间的距离。
在天线两端阵元之间间距相同的情况下,case A和case B的波束宽度相同、但是其天线增益不同(因为天线阵元数不同)。
以NR的64天线为例描述天线孔径的自适应方法,考虑64天线在硬件上为8×8排布,则方位向的孔径可分别设置为包含1~8个天线阵元宽度、俯仰向的孔径可分别设置为包含1~8个天线阵元宽度。
对于方位向或俯仰向上孔径为包含2~4个天线阵元宽度的场景,还分别包括密布阵和稀布阵两种情况,并且在测角分辨率上具有等效关系,如图6所示:
2阵元稀布阵:根据阵元间距的不同,当2个阵元之间间隔2~7个阵元间隔时,可分别等效于3~8阵元的密布阵;
3阵元稀布阵:根据阵元间距的不同,当相邻两个阵元之间间隔2个阵元间隔时可等效于5阵元密布阵,当相邻两个阵元之间间隔3个阵元间隔时可等效于7阵元密布阵;
4阵元稀布阵:相邻两个阵元之间间隔2个阵元间隔,可等效于7阵元密布阵。
在本申请的至少一个实施例中,第一设备根据感知需求中的分辨率要求的天线孔径以及确定的第二时刻的发射波束指向以及接收波束指向,确定发射端天线孔径的下限值以及接收端天线孔径的下限值,包括:
对于非雷达成像的测角场景,第一设备根据测角分辨率要求的天线孔径以及确定的第二时刻的发射波束指向以及接收波束指向,确定发射端天线孔径的下限值以及接收端天线孔径的下限值。
方位向或俯仰向的测角分辨率可分8档设置,如表1所示:
Figure PCTCN2022139835-appb-000020
Figure PCTCN2022139835-appb-000021
表1测角分辨率与孔径设置关系对应表
根据上表,在天线硬件8×8布置的情况下,方位向或俯仰向的孔径设置有17个选项。可以用4个比特来设置。
另外,对于某个的孔径设置,在天线阵元硬件选择时,可以用3个比特来表示方位向的孔径偏移、3个比特来表示俯仰向的孔径偏移;所述孔径偏移表示设定的孔径相对于方位向或俯仰向天线阵列一端的偏移值,孔径偏移取值如表2所示:
选项 孔径偏移取值
选项1 0,1,2,3,4,5,6,7
选项2 0,1,2,3,4,5,6
选项3a/3b 0,1,2,3,4,5
选项4a/4b 0.1,2,3,4
选项5a/5b/5c 0,1,2,3
选项6a/6b 0,1,2
选项7a/7b/7c/7d 0,1
选项8a/8b 0
表2孔径设置可选的孔径偏移
因此,对于方位向和俯仰向两个方向,可以用一共14个比特来传输孔径配置信息,例如表3所示:
方位向孔径设 方位向孔径偏 俯仰向孔径设 俯仰向孔径偏
bit0~bit3 bit4~bi6 bit7~bit10 bit11~bit13
表3孔径设置与孔径偏移的传输编码
或者,也可以将孔径设置与孔径偏移结合起来进行编码配置,以减少孔径配置信息占用的比特数。例如,选项1有1种孔径设置、8种孔径偏移共有8种情况,选项2有1种孔径设置、7种孔径偏移共有7种情况,选项3有2种孔径设置、6种孔径偏移共有12种情况,选项4有2种孔径设置、5种孔径偏移共有10种情况,选项5有3种孔径设置、4种孔径偏移共有12种情况,选项6有2种孔径设置、3种孔径偏移共有6种情况,选项7有4种孔径设置、2种孔径偏移共有8种情况,选项8有2种孔径设置、1种孔径偏移共有2种情况。因此,一种有65种情况,可用7个比特来传输孔径配置信息。
或者,对于雷达成像场景,第一设备根据感知需求中的分辨率要求的天线孔径以及确定的第二时刻的发射波束指向以及接收波束指向,确定发射端天线孔径的下限值以及接收端天线孔径的下限值,包括:
第一设备根据雷达成像横向分辨率要求的天线孔径、第二时刻的发射波束指向、第二时刻的接收波束指向以及第一目标相对于发射端设备的第一距离、第一目标相对于接收端设备的第二距离,确定发射端天线孔径的下限值以及接收端天线孔径的下限值。
在雷达成像场景下,在雷达成像或三维重构等应用中,随着感知目标或探测设备本身的运动,探测设备与感知目标之间的相对距离发生变化。同时,目标远离天线法向时,波束展宽效应也会降低测角分辨率。为了保持成像的横向距离分辨率,应根据目标的距离的变化而自适应调整测角分辨率,即调节天线孔径:
感知节点与目标的距离变大,和/或,目标偏离感知节点天线法向,则应提高测角分辨率(减小测角分辨率的数值),即增大天线孔径,以保持雷达成像的横向距离分辨率;
感知节点与目标的距离变小,和/或,目标靠近感知节点天线法向,则可降低测角分辨率(增大测角分辨率的数值),即减小天线孔径,以释放部分天线资源;
所述调节天线孔径包括:
调节天线阵元数;在密布阵的情况下,调节天线阵元数即调节了则对应的天线孔径;
调节天线阵元间距;由于上述的稀布阵天线与密布阵天线之间的等效关系,可通过调节天线阵元间距来调节天线孔径。
所述天线孔径的链路自适应调节,可以根据目标与雷达的相对距离R和目标角度(波束指向)θ,结合天线阵列的硬件配置情况,分段进行。对于每一分段,应满足:
Figure PCTCN2022139835-appb-000022
其中,D为方位向或俯仰向的天线孔径,λ为波长,θ为波束指向,k为波束宽度因子,R为目标与雷达的相对距离;ΔL cross为雷达成像的横向分辨率要求。
仍然以上述8×8天线阵列为例,按目标距离和角度分段孔径设置链路自适应如表4所示:
Figure PCTCN2022139835-appb-000023
表4距离与角度分段与孔径设置关系对应表
作为一个可选实施例,第一设备根据发射端天线孔径的下限值、接收端天线孔径的下限值、发射波束指向以及接收波束指向,配置信号发射功率、发射端孔径增益以及接收端孔径增益以满足所述第一参数的第一取值,包括:
第一设备根据所述第一参数的第一取值,以及发射端天线孔径的下限值和接收端天线孔径的下限值、发射波束指向、接收波束指向、发射端设备的能力信息和接收端设备的能力信息,配置信号发射功率、发射端孔径增益以及接收端孔径增益。
其中,所述能力信息包括:对应设备当前可用的发射功率配置和天线阵列配置的信息集合。
上述步骤中已经得到了所述第一参数中的波束指向;进一步需要设置第一参数中的发射功率和孔径增益,或者说发射功率和孔径增益的乘积(即:功率孔径积)。即所述配置第二时刻的信号发射功率、发射端孔径增益以及接收端孔径增益,包括:
第一设备按照功率优先方式或孔径优先方式配置信号发射功率、发射端孔径增益以及接收端孔径增益,包括:
所述功率优先方式包括:优先配置信号发射功率来满足第一参数的要求,若信号发射功率达到配置的功率区间上限值仍不能满足第一参数的要求,再通过配置发射端孔径增益和/或接收端孔径增益来满足第一参数的要求;
所述孔径优先方式包括:优先配置发射端孔径增益和/或接收端孔径增益来满足第一参数的要求,若发射端孔径增益和/或接收端孔径增益达到孔径增益上限值仍不能满足第一参数的要求,再通过配置信号发射功率来满足第一参数的要求。
需要说明的是,第一设备根据感知节点的资源占用情况和/或感知功能网元的指示来确定采用功率优先方式或者孔径优先方式设置信号发射功率、发射端孔径增益以及接收端孔径增益。
其中,对于双站雷达,配置发射端孔径增益和/或接收端孔径增益的方式包括:发射端孔径增益优先或接收端孔径增益优先;
其中,所述发射端孔径增益优先包括:优先配置发射端孔径增益,若发射端孔径增益配置达到发射端孔径增益上限值仍不能满足第一参数的要求,再通过配置接收端孔径增益来满足第一参数的要求;
所述接收端孔径增益优先包括:优先配置接收端孔径增益,若接收端孔径增益配置达到接收端孔径增益上限值仍不能满足第一参数的要求,再通过 配置发射端孔径增益来满足第一参数的要求。
可选地,第一设备根据资源占用情况和/或感知功能网元的指示来确定采用发射端孔径增益优先的方式或接收端孔径增益优先的方式配置孔径增益。
例如,对于单站雷达,发射功率和孔径增益的配置优先级从高到低排序为:
①发射功率、孔径增益;或,
②孔径增益、发射功率。
再例如,对于双站雷达,孔径增益分为发射端孔径增益和接收端孔径增益,因此配置优先级从高到低的排序为:
①发射功率、发射端孔径增益、接收端孔径增益;
②发射功率、接收端孔径增益、发射端孔径增益;
③发射端孔径增益、发射功率、接收端孔径增益;
④发射端孔径增益、接收端孔径增益、发射功率;
⑤接收端孔径增益、发射功率、发射端孔径增益;
⑥接收端孔径增益、发射端孔径增益、发射功率。
所述的孔径增益的取值下限是在上一步骤设置的天线孔径的取值下限对应的孔径增益,所述的孔径增益的取值上限包括以下选项中的至少一项:
天线阵列硬件配置的全部阵元对应的孔径增益;
在多任务并行工作的情况下给雷达探测任务分配的最大孔径对应的孔径增益。
所述的发射功率的取值下限是通信功能要求的最低功率,所述发射功率的最大值包括以下选项中的至少一项:
相关技术规范规定的最大发射功率;
满足相关节能要求的最大发射功率;
在多任务并行工作的情况下给雷达探测任务分配的最大发射功率。
可选地,上述发射功率的设置可以采用连续设置的方式,即在预配置的功率区间内的任意一个值均可以设置为上述发射功率值;或者,上述发射功率的设置可以采用步进设置的方式,即在预配置的功率区间内以一定的步进间隔设置对应的发射功率值。
所述增大孔径增益的方法是增加占用的天线阵元数,包括两种:
1)紧密布阵的情况下:增大天线孔径,此时即增大了天线阵元数;
2)稀疏布阵的情况下又分为两种情况:
a)天线孔径不变:减小阵元间距,如由表1或表2或表4中的选项5b调节为选项5c或选项5a,此时天线孔径不变、但增加了天线阵元数;
b)天线孔径改变:如由表1或表2或表4中的选项3b调节为选项5b,此时阵元间距不变、阵元数增加。
综上,在本申请实施例中,第一设备根据第一目标对应的第一参数的第一取值,配置第一目标对应的信号发射功率、发射端孔径增益、接收端孔径增益、发射波束指向以及接收波束指向,能够在满足感知需求的条件下优化资源配置,从而能够优化通信感知一体化系统的性能和功率资源的使用。
为了更清楚的描述本申请实施例提供的无线感知的参数确定方法,下面结合两个示例进行说明。
示例一,单站雷达多参数联合自适应
1.发射端设备发送第一信号、并接收第一信号的目标反射回波,得到目标回波数据。
2.发射端设备得到目标回波数据后,目标回波数据的雷达信号处理包括以下三种情况之一:
1)发射端设备对目标回波数据进行雷达信号处理,得到感知结果;
2)发射端设备将目标回波数据发送至感知功能网元,由感知功能网元进行雷达信号处理,得到感知结果;
3)发射端设备进行雷达信号处理的部分运算得,并将运算结果发送至感知功能网元,由感知功能网元进行雷达信号处理的剩余部分运算,得到感知结果。
3.发射端设备或感知功能网元,根据所述感知结果,执行本申请实施例提及的发射功率、天线孔径和波束指向的联合自适应方法,得到下一时刻的发射功率、孔径增益和波束指向。
4.发射端设备设置下一时刻的发射功率、孔径增益和波束指向;如果感知功能网元执行发射功率、天线孔径和波束指向的联合自适应方法,则在发 射端设备生成下一时刻的第一信号之前,还有发射端设备从感知功能网元处接收下一时刻的发射功率、孔径增益和波束指向的步骤。
5.循环执行上述步骤直至感知过程结束。
示例二,双站雷达多参数联合自适应
1.发射端设备发送第一信号,接收端设备接收第一信号的目标反射回波,得到目标回波数据。
2.接收端设备得到目标回波数据后,目标回波数据的雷达信号处理包括以下三种情况之一:
1)接收端设备对目标回波数据进行雷达信号处理,得到感知结果;
2)接收端设备将目标回波数据发送至感知功能网元,由感知功能网元进行雷达信号处理,得到感知结果;
3)接收端设备进行雷达信号处理的部分运算得,并将运算结果发送至感知功能网元,由感知功能网元进行雷达信号处理的剩余部分运算,得到感知结果。
3.接收端设备或感知功能网元,根据所述感知结果,执行本申请实施例提及的发射功率、天线孔径和波束指向的联合自适应方法,得到下一时刻的发射功率、发射端孔径增益、接收端孔径增益、发射波束指向和接收波束指向。
4.发射端设备设置下一时刻的发射功率、发射端孔径增益、发射波束指向,接收端设备设置下一时刻的接收端孔径增益和接收波束指向。在此之前,还包括感知功能网元、发射端设备、接收端设备之间的信息交互,信息交互的内容是下一时刻的发射功率、发射端孔径增益、接收端孔径增益、发射波束指向和接收波束指向。
5.循环执行第2步~第6步直至感知过程结束。
本申请实施例提供的无线感知的参数确定方法,执行主体可以为无线感知的参数确定装置。本申请实施例中以无线感知的参数确定装置执行无线感知的参数确定方法为例,说明本申请实施例提供的无线感知的参数确定装置。
请参见图7,图7为本申请实施例提供的无线感知的参数确定装置700的结构示意图,应用于第一设备的装置包括:
第一获取模块701,用于获取第一目标对应的第一参数的第一取值;其中,第一设备或第二设备对第一时刻发送的信号的回波信号进行检测确定所述第一目标;
第一配置模块702,用于根据所述第一参数的第一取值,配置所述第一目标的信号参数,所述第一目标的信号参数用于指示第二时刻的信号发送及回波信号接收;其中,所述信号参数包括:信号发射功率、发射端孔径增益、接收端孔径增益、发射波束指向以及接收波束指向;
其中,所述第二时刻在所述第一时刻之后;所述第一参数的取值由第一乘积确定,所述第一乘积为:信号发射功率、发射端孔径增益、接收端孔径增益、发射波束指向的余弦值以及接收波束指向的余弦值的乘积。
作为一个可选实施例,所述第一获取模块包括:
第一获取子模块,用于确定第一目标对应的所述第一参数的第一取值;
或者,
第二获取子模块用于根据第二设备发送的第一参数调整信息获取第一目标对应的所述第一参数的第一取值;其中,所述第一参数调整信息包括下述任意一项:
第一参数的第一取值;
第一参数的第一取值相对于第一参数的第二取值的比值;
第一参数的第一取值相对于第一参数的第二取值的差异值;
其中,所述第一参数的第二取值由第一时刻的信号发送及回波信号接收对应的信号参数确定。
作为一个可选实施例,在所述第一设备为发射端设备的情况下,所述装置还包括:
第一发送模块,用于向接收端设备发送指示第二时刻的回波信号接收的接收端孔径增益以及接收波束指向。
作为一个可选实施例,在所述第一设备为接收端设备的情况下,所述装置还包括:
第二发送模块,用于向发射端设备发送指示第二时刻的信号发送的信号发射功率、发射端孔径增益以及发射波束指向。
作为一个可选实施例,在所述第一设备为感知功能网元的情况下,所述装置还包括:
第三发送模块,用于向发射端设备发送指示第二时刻的信号发送的信号发射功率、发射端孔径增益以及发射波束指向,向接收端设备发送指示第二时刻的回波信号接收的接收端孔径增益以及接收波束指向。
作为一个可选实施例,在所述第一设备为发射端设备的情况下,所述装置还包括:
第四发送模块,用于根据信号发射功率、发射端孔径增益以及发射波束指向,发送信号。
作为一个可选实施例,在所述第一设备为接收端设备的情况下,所述装置还包括:
接收模块,用于根据接收端孔径增益以及接收波束指向,接收回波信号。
作为一个可选实施例,所述第一获取子模块包括:
第一确定单元,用于根据第一目标在第一时刻的回波信号质量,确定第一参数的第一取值;
或者,
第二确定单元,用于根据第一目标在第二时刻的距离预测值以及所述第一目标在第一时刻的回波信号质量,确定第一参数的第一取值。
作为一个可选实施例,所述第一目标的回波信号质量包括下述至少一项:
所述第一目标的回波信号功率;
所述第一目标的回波信号噪声比;
所述第一目标的回波信号干扰噪声比;
所述第一目标的回波信号的参考信号接收功率;
所述第一目标的回波信号的参考信号接收质量。
作为一个可选实施例,所述第一确定单元包括:
第一确定子单元,用于在确定将所述第一目标的回波信号质量维持在第一预设回波质量附近的情况下,根据第一参数的第二取值、第一目标在第一时刻的回波信号质量以及所述第一预设回波质量,确定第一参数的第一取值;
或者,
第二确定子单元,用于在确定将所述第一目标的回波信号质量维持在第一回波质量范围之内的情况下,根据第一参数的第二取值、第一目标在第一时刻的回波信号质量以及第一回波质量范围,确定第一参数的第一取值;
其中,所述第一参数的第二取值由第一时刻的信号发送及回波信号接收对应的信号参数确定。
作为一个可选实施例,所述第一确定子单元进一步用于:
根据第一公式,确定第一参数的第一取值;所述第一公式为:
Figure PCTCN2022139835-appb-000024
其中,C′为第一参数的第一取值;C为第一参数的第二取值;P r0为所述第一预设回波质量;P r为第一目标在第一时刻的回波信号质量。
作为一个可选实施例,所述第二确定子单元进一步用于:
根据第二公式,确定第一参数的第一取值;所述第二公式为:
Figure PCTCN2022139835-appb-000025
其中,C′为第一参数的第一取值;C为第一参数的第二取值;P r为第一目标在第一时刻的回波信号质量;
在P r大于所述第一回波质量范围的上限回波质量的情况下,P为所述第一回波质量范围的上限回波质量;或者,
在P r小于所述第一回波质量范围的下限回波质量的情况下,P为所述第一回波质量范围的下限回波质量;或者,
P为所述第一回波质量范围的上限回波质量和下限回波质量的算术平均值或几何平均值。
作为一个可选实施例,所述第二确定单元包括:
第三确定子单元,用于在确定将所述第一目标的回波信号质量维持在第一预设回波质量附近的情况下,根据第一参数的第二取值、第一目标在第一时刻的回波信号质量、所述第一预设回波质量以及第一目标在第二时刻的距离预测值,确定第一参数的第一取值;
或者,
第四确定子单元,用于在确定将所述第一目标的回波信号质量维持在第 一回波质量范围之内的情况下,根据第一参数的第二取值、第一目标在第一时刻的回波信号质量、第一回波质量范围以及第一目标在第二时刻的距离预测值,确定第一参数的第一取值。
作为一个可选实施例,所述第三确定子单元进一步用于:
根据第三公式,确定第一参数的第一取值;所述第三公式包括:
Figure PCTCN2022139835-appb-000026
或,
Figure PCTCN2022139835-appb-000027
其中,C′为第一参数的第一取值;C为第一参数的第二取值;P r0为所述第一预设回波质量;P r为第一目标在第一时刻的回波信号质量;R为单站雷达场景下第一时刻的第一目标与信号收发设备之间的距离;R′为单站雷达场景下第二时刻的第一目标与信号收发设备之间的距离预测值;R t为双站雷达场景下第一时刻的第一目标与发射端设备之间的距离;R′ t为双站雷达场景下第二时刻的第一目标与发射端设备之间的距离预测值;R r为双站雷达场景下第一时刻的第一目标与接收端设备之间的距离;R′ r为双站雷达场景下第二时刻的第一目标与接收端设备之间的距离预测值。
作为一个可选实施例,所述第四确定子单元进一步用于:
根据第四公式,确定第一参数的第一取值;所述第四公式包括:
Figure PCTCN2022139835-appb-000028
或,
Figure PCTCN2022139835-appb-000029
其中,C′为第一参数的第一取值;C为第一参数的第二取值;P r为第一目标在第一时刻的回波信号质量;R为单站雷达场景下第一时刻的第一目标与信号收发设备之间的距离;R′为单站雷达场景下第二时刻的第一目标与信号收发设备之间的距离预测值;R t为双站雷达场景下第一时刻的第一目标与发射端设备之间的距离;R′ t为双站雷达场景下第二时刻的第一目标与发射端设备之间的距离预测值;R r为双站雷达场景下第一时刻的第一目标与接收端设备之间的距离;R′ r为双站雷达场景下第二时刻的第一目标与接收端设备之间的距离预测值;
在P r大于所述第一回波质量范围的上限回波质量的情况下,P为所述第一回波质量范围的上限回波质量;或者,
在P r小于所述第一回波质量范围的下限回波质量的情况下,P为所述第一回波质量范围的下限回波质量;或者,
P为所述第一回波质量范围的上限回波质量和下限回波质量的算术平均值或几何平均值。
作为一个可选实施例,所述第一配置模块包括:
第一配置子模块,用于根据第一目标相对发射端设备的第一角度和第一目标相对于接收端设备的第二角度,配置发射波束指向以及接收波束指向;
确定子模块,用于根据感知需求中的分辨率要求的天线孔径以及确定的发射波束指向以及接收波束指向,确定发射端天线孔径的下限值以及接收端天线孔径的下限值;
第二配置子模块,用于根据发射端天线孔径的下限值、接收端天线孔径的下限值、发射波束指向以及接收波束指向,配置信号发射功率、发射端孔径增益以及接收端孔径增益以满足所述第一参数的第一取值。
作为一个可选实施例,所述第一配置子模块包括:
第一配置单元,用于配置发射波束指向为所述第一角度,接收波束指向为所述第二角度;
其中,所述第一角度为第一时刻的第一目标相对发射端设备的角度,或者,第二时刻的第一目标相对发射端设备的角度预测值;
所述第二角度为第一时刻的第一目标相对于接收端设备的角度,或者,第二时刻的第一目标相对于接收端设备的角度预测值。
作为一个可选实施例,所述感知需求中的分辨率要求包括:测角分辨率要求,和/或,雷达成像横向分辨率要求。
作为一个可选实施例,所述确定子模块包括:
第一确定单元,用于根据测角分辨率要求的天线孔径以及确定的发射波束指向以及接收波束指向,确定发射端天线孔径的下限值以及接收端天线孔径的下限值;
或者,
第二确定单元,用于根据雷达成像横向分辨率要求的天线孔径、发射波束指向、接收波束指向以及第一目标相对于发射端设备的第一距离、第一目 标相对于接收端设备的第二距离,确定发射端天线孔径的下限值以及接收端天线孔径的下限值。
作为一个可选实施例,所述第二配置子模块包括:
第二配置单元,用于根据所述第一参数的第一取值,以及发射端天线孔径的下限值和接收端天线孔径的下限值、发射波束指向、接收波束指向、发射端设备的能力信息和接收端设备的能力信息,配置信号发射功率、发射端孔径增益以及接收端孔径增益。
其中,所述能力信息包括:对应设备当前可用的发射功率配置和天线阵列配置的信息集合。
作为一个可选实施例,所述第二配置单元包括:
配置子单元,用于按照功率优先方式或孔径优先方式配置第二时刻的信号发射功率、发射端孔径增益以及接收端孔径增益,包括:
所述功率优先方式包括:优先配置信号发射功率来满足第一参数的要求,若信号发射功率达到配置的功率区间上限值仍不能满足第一参数的要求,再通过配置发射端孔径增益和/或接收端孔径增益来满足第一参数的要求;
所述孔径优先方式包括:优先配置发射端孔径增益和/或接收端孔径增益来满足第一参数的要求,若发射端孔径增益和/或接收端孔径增益达到孔径增益上限值仍不能满足第一参数的要求,再通过配置信号发射功率来满足第一参数的要求。
作为一个可选实施例,配置发射端孔径增益和/或接收端孔径增益的方式包括:发射端孔径增益优先或接收端孔径增益优先;
其中,所述发射端孔径增益优先包括:优先配置发射端孔径增益,若发射端孔径增益配置达到发射端孔径增益上限值仍不能满足第一参数的要求,再通过配置接收端孔径增益来满足第一参数的要求;
所述接收端孔径增益优先包括:优先配置接收端孔径增益,若接收端孔径增益配置达到接收端孔径增益上限值仍不能满足第一参数的要求,再通过配置发射端孔径增益来满足第一参数的要求。
在本申请实施例中,第一设备根据第一参数的第一取值,配置第一目标对应的信号发射功率、发射端孔径增益、接收端孔径增益、发射波束指向以 及接收波束指向,能够在满足感知需求的条件下优化资源配置,从而能够优化通信感知一体化系统的性能和功率资源的使用。
需要说明的是,本申请实施例提供的无线感知的参数确定装置是能够执行上述无线感知的参数确定方法的装置,则上述无线感知的参数确定方法的所有实施例均适用于该装置,且均能达到相同或相似的有益效果。
本申请实施例中的无线感知的参数确定装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的无线感知的参数确定装置能够实现图1至图6的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图8所示,本申请实施例还提供一种通信设备800,包括处理器801和存储器802,存储器802上存储有可在所述处理器801上运行的程序或指令,该程序或指令被处理器m01执行时实现上述无线感知的参数确定方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种通信设备,包括处理器和通信接口,所述处理器用于获取第一目标对应的第一参数的第一取值;其中,第一设备或第二设备对第一时刻发送的信号的回波信号进行检测确定所述第一目标;并根据所述第一参数的第一取值,配置所述第一目标的信号参数,所述第一目标的信号参数用于指示第二时刻的信号发送及回波信号接收;其中,所述信号参数包括:信号发射功率、发射端孔径增益、接收端孔径增益、发射波束指向以及接收波束指向;其中,所述第二时刻在所述第一时刻之后;所述第一参数的取值由第一乘积确定,所述第一乘积为:信号发射功率、发射端孔径增益、接收端孔径增益、发射波束指向的余弦值以及接收波束指向的余弦值的乘积。该通信设备实施例与上述第一设备方法实施例对应,上述方法实施例的各个 实施过程和实现方式均可适用于该通信设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图9所示,该网络侧设备900包括:天线91、射频装置92、基带装置93、处理器94和存储器95。天线91与射频装置92连接。在上行方向上,射频装置92通过天线91接收信息,将接收的信息发送给基带装置93进行处理。在下行方向上,基带装置93对要发送的信息进行处理,并发送给射频装置92,射频装置92对收到的信息进行处理后经过天线91发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置93中实现,该基带装置93包括基带处理器。
基带装置93例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图9所示,其中一个芯片例如为基带处理器,通过总线接口与存储器95连接,以调用存储器95中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口96,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备900还包括:存储在存储器95上并可在处理器94上运行的指令或程序,处理器94调用存储器95中的指令或程序执行图7所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述无线感知的参数确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read Only Memory,ROM)、随机存取存储器(Random-Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述无线感知的参数确定方法实施例的各个过程,且能达到相同的技术效果,为 避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序产品,所述计算机程序产品被存储在存储介质中,所述计算机程序产品被至少一个处理器执行以实现上述无线感知的参数确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (30)

  1. 一种无线感知的参数确定方法,包括:
    第一设备获取第一目标对应的第一参数的第一取值;其中,第一设备或第二设备对第一时刻发送的信号的回波信号进行检测确定所述第一目标;
    第一设备根据所述第一参数的第一取值,配置所述第一目标的信号参数,所述第一目标的信号参数用于指示第二时刻的信号发送及回波信号接收;其中,所述信号参数包括:信号发射功率、发射端孔径增益、接收端孔径增益、发射波束指向以及接收波束指向;
    其中,所述第二时刻在所述第一时刻之后;所述第一参数的取值由第一乘积确定,所述第一乘积为:信号发射功率、发射端孔径增益、接收端孔径增益、发射波束指向的余弦值以及接收波束指向的余弦值的乘积。
  2. 根据权利要求1所述的方法,其中,第一设备获取第一目标对应的第一参数的第一取值,包括:
    第一设备确定第一目标对应的第一参数的第一取值;
    或者,
    第一设备根据第二设备发送的第一参数调整信息获取第一目标对应的第一参数的第一取值;其中,所述第一参数调整信息包括下述任意一项:
    第一参数的第一取值;
    第一参数的第一取值相对于第一参数的第二取值的比值;
    第一参数的第一取值相对于第一参数的第二取值的差异值;
    其中,所述第一参数的第二取值由第一时刻的信号发送及回波信号接收对应的信号参数确定。
  3. 根据权利要求1或2所述的方法,在所述第一设备为发射端设备的情况下,所述方法还包括:
    发射端设备向接收端设备发送指示第二时刻的回波信号接收的接收端孔径增益以及接收波束指向。
  4. 根据权利要求1或2所述的方法,在所述第一设备为接收端设备的情况下,所述方法还包括:
    接收端设备向发射端设备发送指示第二时刻的信号发送的信号发射功率、发射端孔径增益以及发射波束指向。
  5. 根据权利要求1或2所述的方法,在所述第一设备为感知功能网元的情况下,所述方法还包括:
    感知功能网元向发射端设备发送指示第二时刻的信号发送的信号发射功率、发射端孔径增益以及发射波束指向,向接收端设备发送指示第二时刻的回波信号接收的接收端孔径增益以及接收波束指向。
  6. 根据权利要求1所述的方法,在所述第一设备为发射端设备的情况下,所述方法还包括:
    发射端设备根据信号发射功率、发射端孔径增益以及发射波束指向,发送信号。
  7. 根据权利要求1所述的方法,在所述第一设备为接收端设备的情况下,所述方法还包括:
    接收端设备根据接收端孔径增益以及接收波束指向,接收回波信号。
  8. 根据权利要求2所述的方法,其中,第一设备确定第一目标在第一参数的第一取值,包括:
    第一设备根据第一目标在第一时刻的回波信号质量,确定第一参数的第一取值;
    或者,
    第一设备根据第一目标在第二时刻的距离预测值以及所述第一目标在第一时刻的回波信号质量,确定第一参数的第一取值。
  9. 根据权利要求8所述的方法,其中,所述第一目标的回波信号质量包括下述至少一项:
    所述第一目标的回波信号功率;
    所述第一目标的回波信号噪声比;
    所述第一目标的回波信号干扰噪声比;
    所述第一目标的回波信号的参考信号接收功率;
    所述第一目标的回波信号的参考信号接收质量。
  10. 根据权利要求8所述的方法,其中,第一设备根据第一目标在第一 时刻的回波信号质量,确定第一参数的第一取值,包括:
    在确定将所述第一目标的回波信号质量维持在第一预设回波质量附近的情况下,根据第一参数的第二取值、第一目标在第一时刻的回波信号质量以及所述第一预设回波质量,确定第一参数的第一取值;
    或者,
    在确定将所述第一目标的回波信号质量维持在第一回波质量范围之内的情况下,根据第一参数的第二取值、第一目标在第一时刻的回波信号质量以及第一回波质量范围,确定第一参数的第一取值;
    其中,所述第一参数的第二取值由第一时刻的信号发送及回波信号接收对应的信号参数确定。
  11. 根据权利要求10所述的方法,其中,根据第一参数的第二取值、第一目标在第一时刻的回波信号质量以及所述第一预设回波质量,确定第一参数的第一取值,包括:
    根据第一公式,确定第一参数的第一取值;所述第一公式为:
    Figure PCTCN2022139835-appb-100001
    其中,C′为第一参数的第一取值;C为第一参数的第二取值;P r0为所述第一预设回波质量;P r为第一目标在第一时刻的回波信号质量。
  12. 根据权利要求10所述的方法,其中,根据第一参数的第二取值、第一目标在第一时刻的回波信号质量以及第一回波质量范围,确定第一参数的第一取值,包括:
    根据第二公式,确定第一参数的第一取值;所述第二公式为:
    Figure PCTCN2022139835-appb-100002
    其中,C′为第一参数的第一取值;C为第一参数的第二取值;P r为第一目标在第一时刻的回波信号质量;
    在P r大于所述第一回波质量范围的上限回波质量的情况下,P为所述第一回波质量范围的上限回波质量;或者,
    在P r小于所述第一回波质量范围的下限回波质量的情况下,P为所述第一回波质量范围的下限回波质量;或者,
    P为所述第一回波质量范围的上限回波质量和下限回波质量的算术平均值或几何平均值。
  13. 根据权利要求8所述的方法,其中,所述第一设备根据第一目标在第二时刻的距离预测值以及所述第一目标在第一时刻的回波信号质量,确定第一参数的第一取值,包括:
    在确定将所述第一目标的回波信号质量维持在第一预设回波质量附近的情况下,根据第一参数的第二取值、第一目标在第一时刻的回波信号质量、所述第一预设回波质量以及第一目标在第二时刻的距离预测值,确定第一参数的第一取值;
    或者,
    在确定将所述第一目标的回波信号质量维持在第一回波质量范围之内的情况下,根据第一参数的第二取值、第一目标在第一时刻的回波信号质量、第一回波质量范围以及第一目标在第二时刻的距离预测值,确定第一参数的第一取值。
  14. 根据权利要求13所述的方法,其中,所述根据第一参数的第二取值、第一目标在第一时刻的回波信号质量、所述第一预设回波质量以及第一目标在第二时刻的距离预测值,确定第一参数的第一取值,包括:
    根据第三公式,确定第一参数的第一取值;所述第三公式包括:
    Figure PCTCN2022139835-appb-100003
    或,
    Figure PCTCN2022139835-appb-100004
    其中,C′为第一参数的第一取值;C为第一参数的第二取值;P r0为所述第一预设回波质量;P r为第一目标在第一时刻的回波信号质量;R为单站雷达场景下第一时刻的第一目标与信号收发设备之间的距离;R′为单站雷达场景下第二时刻的第一目标与信号收发设备之间的距离预测值;R t为双站雷达场景下第一时刻的第一目标与发射端设备之间的距离;R t′为双站雷达场景下第二时刻的第一目标与发射端设备之间的距离预测值;R r为双站雷达场景下第一时刻的第一目标与接收端设备之间的距离;R r′为双站雷达场景下第二时刻的第一目标与接收端设备之间的距离预测值。
  15. 根据权利要求13所述的方法,其中,根据第一参数的第二取值、第 一目标在第一时刻的回波信号质量、第一回波质量范围以及第一目标在第二时刻的距离预测值,确定第一参数的第一取值,包括:
    根据第四公式,确定第一参数的第一取值;所述第四公式包括:
    Figure PCTCN2022139835-appb-100005
    或,
    Figure PCTCN2022139835-appb-100006
    其中,C′为第一参数的第一取值;C为第一参数的第二取值;P r为第一目标在第一时刻的回波信号质量;R为单站雷达场景下第一时刻的第一目标与信号收发设备之间的距离;R′为单站雷达场景下第二时刻的第一目标与信号收发设备之间的距离预测值;R t为双站雷达场景下第一时刻的第一目标与发射端设备之间的距离;R t′为双站雷达场景下第二时刻的第一目标与发射端设备之间的距离预测值;R r为双站雷达场景下第一时刻的第一目标与接收端设备之间的距离;R r′为双站雷达场景下第二时刻的第一目标与接收端设备之间的距离预测值;
    在P r大于所述第一回波质量范围的上限回波质量的情况下,P为所述第一回波质量范围的上限回波质量;或者,
    在P r小于所述第一回波质量范围的下限回波质量的情况下,P为所述第一回波质量范围的下限回波质量;或者,
    P为所述第一回波质量范围的上限回波质量和下限回波质量的算术平均值或几何平均值。
  16. 根据权利要求1所述的方法,其中,第一设备根据所述第一参数的第一取值,配置所述第一目标的信号参数,包括:
    第一设备根据第一目标相对发射端设备的第一角度和第一目标相对于接收端设备的第二角度,配置发射波束指向以及接收波束指向;
    第一设备根据感知需求中的分辨率要求的天线孔径以及确定的发射波束指向以及接收波束指向,确定发射端天线孔径的下限值以及接收端天线孔径的下限值;
    第一设备根据发射端天线孔径的下限值、接收端天线孔径的下限值、发射波束指向以及接收波束指向,配置所述信号发射功率、发射端孔径增益以及接收端孔径增益以满足所述第一参数的第一取值。
  17. 根据权利要求16所述的方法,其中,第一设备根据第一目标相对发射端设备的第一角度和第一目标相对于接收端设备的第二角度,配置发射波束指向以及接收波束指向,包括:
    第一设备配置所述发射波束指向为所述第一角度,所述接收波束指向为所述第二角度;
    其中,所述第一角度为第一时刻的第一目标相对发射端设备的角度,或者,第二时刻的第一目标相对发射端设备的角度预测值;
    所述第二角度为第一时刻的第一目标相对于接收端设备的角度,或者,第二时刻的第一目标相对于接收端设备的角度预测值。
  18. 根据权利要求16所述的方法,其中,所述感知需求中的分辨率要求包括:测角分辨率要求,和/或,雷达成像横向分辨率要求。
  19. 根据权利要求18所述的方法,其中,第一设备根据感知需求中的分辨率要求的天线孔径以及确定的发射波束指向以及接收波束指向,确定发射端天线孔径的下限值以及接收端天线孔径的下限值,包括:
    第一设备根据测角分辨率要求的天线孔径以及确定的发射波束指向以及接收波束指向,确定发射端天线孔径的下限值以及接收端天线孔径的下限值;
    或者,
    第一设备根据雷达成像横向分辨率要求的天线孔径、发射波束指向、接收波束指向以及第一目标相对于发射端设备的第一距离、第一目标相对于接收端设备的第二距离,确定发射端天线孔径的下限值以及接收端天线孔径的下限值。
  20. 根据权利要求16所述的方法,其中,第一设备根据发射端天线孔径的下限值、接收端天线孔径的下限值、发射波束指向以及接收波束指向,配置信号发射功率、发射端孔径增益以及接收端孔径增益以满足所述第一参数的第一取值,包括:
    第一设备根据所述第一参数的第一取值,以及发射端天线孔径的下限值和接收端天线孔径的下限值、发射波束指向、接收波束指向、发射端设备的能力信息和接收端设备的能力信息,配置信号发射功率、发射端孔径增益以及接收端孔径增益;
    其中,所述能力信息包括:对应设备当前可用的发射功率配置和天线阵列配置的信息集合。
  21. 根据权利要求20所述的方法,其中,所述配置信号发射功率、发射端孔径增益以及接收端孔径增益,包括:
    第一设备按照功率优先方式或孔径优先方式配置信号发射功率、发射端孔径增益以及接收端孔径增益,包括:
    所述功率优先方式包括:优先配置信号发射功率来满足第一参数的要求,若信号发射功率达到配置的功率区间上限值仍不能满足第一参数的要求,再通过配置发射端孔径增益和/或接收端孔径增益来满足第一参数的要求;
    所述孔径优先方式包括:优先配置发射端孔径增益和/或接收端孔径增益来满足第一参数的要求,若发射端孔径增益和/或接收端孔径增益达到孔径增益上限值仍不能满足第一参数的要求,再通过配置信号发射功率来满足第一参数的要求。
  22. 根据权利要求21所述的方法,其中,配置发射端孔径增益和/或接收端孔径增益的方式包括:发射端孔径增益优先或接收端孔径增益优先;
    其中,所述发射端孔径增益优先包括:优先配置发射端孔径增益,若发射端孔径增益配置达到发射端孔径增益上限值仍不能满足第一参数的要求,再通过配置接收端孔径增益来满足第一参数的要求;
    所述接收端孔径增益优先包括:优先配置接收端孔径增益,若接收端孔径增益配置达到接收端孔径增益上限值仍不能满足第一参数的要求,再通过配置发射端孔径增益来满足第一参数的要求。
  23. 一种无线感知的参数确定装置,应用于第一设备,包括:
    第一获取模块,用于获取第一目标对应的第一参数的第一取值;其中,第一设备或第二设备对第一时刻发送的信号的回波信号进行检测确定所述第一目标;
    第一配置模块,用于根据所述第一参数的第一取值,配置所述第一目标的信号参数,所述第一目标的信号参数用于指示第二时刻的信号发送及回波信号接收;其中,所述信号参数包括:信号发射功率、发射端孔径增益、接收端孔径增益、发射波束指向以及接收波束指向;
    其中,所述第二时刻在所述第一时刻之后;所述第一参数的取值由第一乘积确定,所述第一乘积为:信号发射功率、发射端孔径增益、接收端孔径增益、发射波束指向的余弦值以及接收波束指向的余弦值的乘积。
  24. 根据权利要求23所述的装置,其中,所述第一获取模块包括:
    第一获取子模块,用于确定第一目标对应的所述第一参数的第一取值;
    或者,
    第二获取子模块用于根据第二设备发送的第一参数调整信息获取第一目标对应的所述第一参数的第一取值;其中,所述第一参数调整信息包括下述任意一项:
    第一参数的第一取值;
    第一参数的第一取值相对于第一参数的第二取值的比值;
    第一参数的第一取值相对于第一参数的第二取值的差异值;
    其中,所述第一参数的第二取值由第一时刻的信号发送及回波信号接收对应的信号参数确定。
  25. 根据权利要求24所述的装置,其中,所述第一获取子模块包括:
    第一确定单元,用于根据第一目标在第一时刻的回波信号质量,确定第一参数的第一取值;
    或者,
    第二确定单元,用于根据第一目标在第二时刻的距离预测值以及所述第一目标在第一时刻的回波信号质量,确定第一参数的第一取值。
  26. 根据权利要求25所述的装置,其中,所述第一确定单元包括:
    第一确定子单元,用于在确定将所述第一目标的回波信号质量维持在第一预设回波质量附近的情况下,根据第一参数的第二取值、第一目标在第一时刻的回波信号质量以及所述第一预设回波质量,确定第一参数的第一取值;
    或者,
    第二确定子单元,用于在确定将所述第一目标的回波信号质量维持在第一回波质量范围之内的情况下,根据第一参数的第二取值、第一目标在第一时刻的回波信号质量以及第一回波质量范围,确定第一参数的第一取值。
  27. 根据权利要求25所述的装置,其中,所述第二确定单元包括:
    第三确定子单元,用于在确定将所述第一目标的回波信号质量维持在第一预设回波质量附近的情况下,根据第一参数的第二取值、第一目标在第一时刻的回波信号质量、所述第一预设回波质量以及第一目标在第二时刻的距离预测值,确定第一参数的第一取值;
    或者,
    第四确定子单元,用于在确定将所述第一目标的回波信号质量维持在第一回波质量范围之内的情况下,根据第一参数的第二取值、第一目标在第一时刻的回波信号质量、第一回波质量范围以及第一目标在第二时刻的距离预测值,确定第一参数的第一取值。
  28. 根据权利要求23所述的装置,其中,所述第一配置模块包括:
    第一配置子模块,用于根据第一目标相对发射端设备的第一角度和第一目标相对于接收端设备的第二角度,配置发射波束指向以及接收波束指向;
    确定子模块,用于根据感知需求中的分辨率要求的天线孔径以及确定的发射波束指向以及接收波束指向,确定发射端天线孔径的下限值以及接收端天线孔径的下限值;
    第二配置子模块,用于根据发射端天线孔径的下限值、接收端天线孔径的下限值、发射波束指向以及接收波束指向,配置信号发射功率、发射端孔径增益以及接收端孔径增益以满足所述第一参数的第一取值。
  29. 一种通信设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至22任一项所述的无线感知的参数确定方法的步骤。
  30. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-22任一项所述的无线感知的参数确定方法的步骤。
PCT/CN2022/139835 2021-12-22 2022-12-19 无线感知的参数确定方法、装置及设备 WO2023116588A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111580756.4 2021-12-22
CN202111580756.4A CN116347468A (zh) 2021-12-22 2021-12-22 无线感知的参数确定方法、装置及设备

Publications (1)

Publication Number Publication Date
WO2023116588A1 true WO2023116588A1 (zh) 2023-06-29

Family

ID=86879266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139835 WO2023116588A1 (zh) 2021-12-22 2022-12-19 无线感知的参数确定方法、装置及设备

Country Status (2)

Country Link
CN (1) CN116347468A (zh)
WO (1) WO2023116588A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116774158A (zh) * 2023-07-06 2023-09-19 南京能智电子科技有限公司 一种雷达发射功率调节系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108702710A (zh) * 2016-11-14 2018-10-23 华为技术有限公司 一种功率控制方法及终端
CN111512565A (zh) * 2017-12-29 2020-08-07 索尼公司 用于无线通信系统的电子设备、方法、装置和存储介质
US20200358501A1 (en) * 2019-05-08 2020-11-12 Qualcomm Incorporated Beamforming repeaters with digitally assisted interference mitigation
CN112769719A (zh) * 2020-12-01 2021-05-07 华南理工大学 基于智能反射表面辅助无线通信系统渐进式信道估计方法
CN113747365A (zh) * 2021-08-30 2021-12-03 中国联合网络通信集团有限公司 一种通信方法及装置
CN113825236A (zh) * 2021-09-03 2021-12-21 浙江大学 一种无线网络中感知、计算和通信的融合方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108702710A (zh) * 2016-11-14 2018-10-23 华为技术有限公司 一种功率控制方法及终端
CN111512565A (zh) * 2017-12-29 2020-08-07 索尼公司 用于无线通信系统的电子设备、方法、装置和存储介质
US20200358501A1 (en) * 2019-05-08 2020-11-12 Qualcomm Incorporated Beamforming repeaters with digitally assisted interference mitigation
CN112769719A (zh) * 2020-12-01 2021-05-07 华南理工大学 基于智能反射表面辅助无线通信系统渐进式信道估计方法
CN113747365A (zh) * 2021-08-30 2021-12-03 中国联合网络通信集团有限公司 一种通信方法及装置
CN113825236A (zh) * 2021-09-03 2021-12-21 浙江大学 一种无线网络中感知、计算和通信的融合方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116774158A (zh) * 2023-07-06 2023-09-19 南京能智电子科技有限公司 一种雷达发射功率调节系统

Also Published As

Publication number Publication date
CN116347468A (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
WO2023078297A1 (zh) 无线感知协同方法、装置、网络侧设备和终端
WO2021081811A1 (zh) 一种角度定位的方法、装置以及设备
WO2023088298A1 (zh) 感知信号检测方法、感知信号检测处理方法及相关设备
WO2023071931A1 (zh) 感知信号的处理方法、装置及通信设备
WO2023116588A1 (zh) 无线感知的参数确定方法、装置及设备
WO2023088299A1 (zh) 感知信号传输处理方法、装置及相关设备
US20220361244A1 (en) Anonymous collection of directional transmissions
JP2024520106A (ja) メッセージ伝送方法、信号送信方法、及び通信機器
US11374643B2 (en) Beam operation method and device at terminal of beamforming communication system
WO2023116589A1 (zh) 无线感知的参数确定方法、装置及设备
WO2023116590A1 (zh) 感知、感知配置方法、装置及通信设备
CN115604728A (zh) 通信感知方法、装置及网络设备
CN111869123A (zh) 用于高效波束管理的通信设备
WO2023125154A1 (zh) 感知信号周期的确定方法、装置、通信设备及存储介质
WO2023040747A1 (zh) 感知信号传输处理方法、装置、电子设备及可读存储介质
WO2023116687A1 (zh) 发射功率的确定方法、装置及设备
WO2024012237A1 (zh) 感知处理方法、装置、终端及设备
WO2024012252A1 (zh) 感知处理方法、装置、终端、网络侧设备及可读存储介质
WO2024012253A1 (zh) 感知处理方法、装置、终端、网络侧设备及可读存储介质
WO2024012366A1 (zh) 感知处理方法、装置、终端及设备
US20240147525A1 (en) Anonymous collection of broadband directional transmissions
WO2024131756A1 (zh) 信号配置方法、装置、通信设备及可读存储介质
WO2023174342A1 (zh) 感知处理方法、装置、通信设备及可读存储介质
WO2024131761A1 (zh) 感知协作方法、装置及通信设备
WO2023104106A1 (zh) 检测及配置参考信号的方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909901

Country of ref document: EP

Kind code of ref document: A1