WO2023078297A1 - 无线感知协同方法、装置、网络侧设备和终端 - Google Patents

无线感知协同方法、装置、网络侧设备和终端 Download PDF

Info

Publication number
WO2023078297A1
WO2023078297A1 PCT/CN2022/129254 CN2022129254W WO2023078297A1 WO 2023078297 A1 WO2023078297 A1 WO 2023078297A1 CN 2022129254 W CN2022129254 W CN 2022129254W WO 2023078297 A1 WO2023078297 A1 WO 2023078297A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
network element
node
perception
function network
Prior art date
Application number
PCT/CN2022/129254
Other languages
English (en)
French (fr)
Inventor
丁圣利
姚健
姜大洁
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP22889319.4A priority Critical patent/EP4429206A1/en
Publication of WO2023078297A1 publication Critical patent/WO2023078297A1/zh
Priority to US18/653,600 priority patent/US20240292194A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/60Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/24Negotiation of communication capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present application belongs to the technical field of communication, and in particular relates to a wireless perception cooperation method, device, network side equipment and terminal.
  • sensing and communication systems are usually designed separately and occupy different frequency bands.
  • IIC Integrated Sensing And Communication
  • Embodiments of the present application provide a wireless sensing coordination method, device, network side equipment, and terminal, which can solve the problem of low sensing performance in the ISAC system in the related art.
  • a wireless sensing coordination method which is applied to a first sensing function network element, and the method includes:
  • the network element with the first sensing function acquires the first sensing demand information
  • the first sensing function network element determines a first sensing node and a second sensing node according to the first sensing demand information, and acquires respective sensing demand information of the first sensing node and the second sensing node;
  • the first sensing function network element acquires a target sensing result, wherein the target sensing result is determined according to the results of target cooperative sensing performed by the first sensing node and the second sensing node according to their respective sensing requirement information.
  • a wireless perception collaboration device which is applied to a network element with a first perception function, and the device includes:
  • a first acquiring module configured to acquire first perceived demand information
  • a first determining module configured to determine a first sensing node and a second sensing node according to the first sensing demand information, and acquire respective sensing demand information of the first sensing node and the second sensing node;
  • the second acquiring module is configured to acquire a target sensing result, wherein the target sensing result is determined according to the results of target cooperative sensing performed by the first sensing node and the second sensing node according to their respective sensing demand information.
  • a wireless sensing coordination method which is applied to a first sensing node, and the method includes:
  • the first sensing node acquires first sensing demand information
  • the first sensing node determines the target sensing coordination type according to its own capability configuration information and the first sensing demand information, and sends the target sensing coordination type; or,
  • the first sensing node receives the target sensing coordination type.
  • a wireless sensing coordination device which is applied to a first sensing node, and the device includes:
  • a third acquiring module configured to acquire the first perceived demand information
  • the second determination module is configured to determine the target perception coordination type according to its own capability configuration information and the first perception demand information, and send the target perception coordination type; or,
  • a first receiving module configured to receive the target perception coordination type.
  • a wireless perception coordination method which is applied to a network element of a core network, and the method includes:
  • the network element of the core network receives the second sensing demand information from the first sensing function network element
  • the network element of the core network determines, according to the second sensing requirement information and the sensing service type supported by each sensing function network element, a second sensing function network element for performing target collaborative sensing with the first sensing function network element , and determining a second sensing node scheduled by the second sensing function network element or receiving identification information of the second sensing node from the second sensing function network element; or,
  • the network element of the core network determines a third perception function network element according to the second perception requirement information, and determines the third perception function network element that supports the perception service type corresponding to the second perception requirement information as the first Two sensing function network elements, and determining a second sensing node scheduled by the second sensing function network element or receiving identification information of the second sensing node from the second sensing function network element;
  • the network element of the core network sends the second sensing requirement information to the second sensing node.
  • a wireless perception coordination device which is applied to a network element of a core network, and the device includes:
  • a fourth acquiring module configured to receive the second sensing demand information from the first sensing function network element
  • a third determining module configured to determine a second sensing function network for performing target cooperative sensing with the first sensing function network element according to the second sensing requirement information and the sensing service type supported by each sensing function network element element, and determine a second sensing node scheduled by the second sensing function network element or receive identification information of the second sensing node from the second sensing function network element; or,
  • a fourth determination module configured to determine a third perception function network element according to the second perception requirement information, and determine the third perception function network element that supports the perception service type corresponding to the second perception requirement information as the a second sensing function network element, and determining a second sensing node scheduled by the second sensing function network element or receiving identification information of the second sensing node from the second sensing function network element;
  • a first sending module configured to send the second sensing demand information to the second sensing node.
  • a network-side device includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, and the program or instruction is executed by the
  • the processor implements the steps of the method described in the first aspect or the second aspect or the third aspect when executed.
  • a network side device including a processor and a communication interface, wherein the communication interface is used to obtain first perception requirement information, and the processor is configured to determine the second perception requirement information according to the first perception requirement information.
  • the communication interface is used to obtain the first perception requirement information; the processor is used to determine the target perception cooperation type according to the capability configuration information of the first perception node and the first perception requirement information, and the communication interface is also used to send The object-aware coordination type, or, the communication interface is used to receive the object-aware coordination type;
  • the communication interface is used to receive the second perception requirement information from the first perception function network element; the processor is configured to determine, according to the second perception requirement information and the perception service type supported by each perception function network element, the A second sensing function network element performing target cooperative sensing with the first sensing function network element, and determining a second sensing node scheduled by the second sensing function network element or receiving a message from the second sensing function network element
  • the identification information of the second sensing node; or the processor is configured to determine a third sensing function network element according to the second sensing demand information, and support the first sensing service type corresponding to the second sensing demand information
  • the third sensing function network element is determined as the second sensing function network element, and determining a second sensing node scheduled by the second sensing function network element or receiving the second sensing function from the second sensing function network element Identification information of the node; the communication interface is further configured to send the second sensing requirement information to the second sensing node.
  • a terminal includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor.
  • the program or instruction is executed by the processor. The steps of the method as described in the fifth aspect are realized.
  • a terminal including a processor and a communication interface, where the communication interface is used to obtain first sensing demand information; the processor is configured to configure information according to the capability information of the first sensing node and the first Perceptual demand information, determine the target perception coordination type and the communication interface is also used to send the target perception coordination type, or the communication interface is used to receive the target perception coordination type.
  • a readable storage medium where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the implementation as described in the first aspect or the third aspect or the fifth aspect is realized. steps of the method described above.
  • a chip in a twelfth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the first aspect or the third aspect or the method described in the fifth aspect.
  • a computer program product is provided, the computer program product is stored in a non-transitory storage medium, and the computer program product is executed by at least one processor to implement the first aspect or the third aspect Or the steps of the wireless sensing cooperation method described in the fifth aspect.
  • the first sensing function network element obtains the first sensing demand information; the first sensing function network element determines the first sensing node and the second sensing node according to the first sensing demand information, and obtains Respective sensing demand information of the first sensing node and the second sensing node; the first sensing function network element acquires a target sensing result, wherein the target sensing result is based on the first sensing node and the second sensing node
  • the two sensing nodes determine the result of cooperative sensing of the target according to their respective sensing demand information.
  • the first sensing function network element can select at least two sensing nodes, and determine the demand information of each sensing node, so as to pass the at least two sensing nodes
  • a target sensing result satisfying the first sensing requirement information can be obtained, thereby improving the sensing performance.
  • FIG. 1 is a block diagram of a wireless communication system to which an embodiment of the present application can be applied;
  • Fig. 2 is a flow chart of the first wireless perception cooperation method provided by the embodiment of the present application.
  • FIG. 3 is a flow chart of a second wireless sensing coordination method provided by an embodiment of the present application.
  • FIG. 4 is a flow chart of a third wireless sensing coordination method provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a first wireless sensing coordination device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a second wireless sensing coordination device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a third wireless sensing coordination device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a terminal provided in an embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of a network side device provided by an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for illustrative purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6 th Generation, 6G) communication system.
  • 6G 6th Generation
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, a super mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR) / virtual reality (virtual reality, VR) equipment, robot, wearable device (Wearable Device) , vehicle equipment (Vehicle User Equipment, VUE), pedestrian terminals (Pedestrian User Equipment, PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.) and other terminal-side equipment, wearable Devices include: smart watches, smart bracelets, smart headphones, smart glasses,
  • the network side device 12 may be a base station or a core network element, where a base station may be called a node B, an evolved node B, an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, Wireless LAN ( Wireless Local Area Network, WLAN) access point, WiFi node, Transmitting Receiving Point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technology Glossary, it should be noted that in the embodiment of the present application, only the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • sensing and communication systems are usually designed separately and occupy different frequency bands.
  • This application takes into account the widespread deployment of millimeter wave and massive MIMO technologies, making communication signals in future wireless communication systems often have high resolution in both the time and angle domains, which makes it possible to use communication signals to achieve high-precision sensing. Therefore, it is better to jointly design sensing and communication systems so that they can share the same frequency band and hardware to improve frequency efficiency and reduce hardware costs, thus prompting research on Integrated Sensing And Communication (ISAC) .
  • IIC Integrated Sensing And Communication
  • ISAC will become a key technology in future wireless communication systems to support many important application scenarios. For example: In the future autonomous vehicle network, autonomous vehicles will obtain a large amount of information from the network, including ultra-high-resolution maps and near real-time information, to navigate and avoid upcoming traffic jams. In the same context, radar sensors in autonomous vehicles should be able to provide robust, high-resolution obstacle detection with resolution on the order of centimeters. ISAC technology for autonomous vehicles offers the possibility of high data rate communication and high resolution obstacle detection using the same hardware and spectrum resources. Other ISAC applications include Wi-Fi-based indoor positioning and activity recognition, communication and sensing for unmanned aircraft, extended reality (Extended Reality, XR), radar and communication integration, etc. Every application has different requirements, limitations and regulatory issues. ISAC has attracted enormous research interest and attention from academia and industry.
  • ISAC achieves an integrated low-cost implementation of communication and perception dual functions through hardware device sharing and software-defined functions.
  • the main features are: first, the architecture is unified and simplified; reduce.
  • the advantages of communication-sensing integration mainly include three aspects: first, equipment cost reduction and size reduction, second, spectrum utilization rate improvement, and third, system performance improvement.
  • the academic circle usually divides the development of ISAC into four stages: the coexistence stage, the co-operation stage, the co-design stage and the co-collaboration stage.
  • the coexistence stage means: the communication system and the perception system are two separate systems, and the two will interfere with each other.
  • the main methods to solve the interference are: distance isolation, frequency band isolation, time division work, MIMO technology, precoding, etc.;
  • the co-operation stage means: the communication system and the perception system share the hardware platform, and use the shared information to improve the common performance.
  • the power allocation between the two has a great impact on the system performance.
  • the main problems are: low signal-to-noise ratio, mutual interference, and low throughput. Rate.
  • the co-design stage means that the communication system and the perception system become a complete joint system, including joint signal design, waveform design, coding design, etc.
  • the early stage there are linear frequency modulation waveforms, spread spectrum waveforms, etc., and later focus on OFDM waveforms, MIMO technology, etc.
  • the joint collaboration stage means: multiple communication-aware integration nodes cooperate with each other to achieve common goals. For example, sharing radar detection information through communication data transmission, typical scenarios include driver assistance systems, radar-assisted communication, etc.
  • the wireless sensing coordination method provided by the embodiment of the present application can determine whether at least two sensing nodes and/or at least two sensing functions are required to perform cooperative sensing according to sensing requirements, and determine that at least two sensing nodes and/or In the case where at least two sensing functions perform cooperative sensing, at least two sensing nodes and/or at least two sensing functions are controlled to perform corresponding cooperative sensing, so as to obtain sensing results that meet sensing requirements.
  • the execution body of the first wireless perception coordination method provided by the present application may be the first perception function network element.
  • the first wireless perception coordination method may include the following steps:
  • Step 201 the network element with the first sensing function acquires the first sensing requirement information.
  • the first sensing function network element may be a network element used to implement the sensing function in the network elements of the core network, which is not specifically limited here.
  • the foregoing first perception requirement information may be requirement information of the first perception requirement initiated by a third-party application or terminal.
  • the first perception requirement information may be the perception requirement information in the communication and perception integration scenario as shown in Table 1 below:
  • the above-mentioned first sensing function network element can receive the first sensing demand information from a third-party application or terminal, for example: the third-party application sends the first sensing demand information to the application server, and the application server sends the first sensing demand information to the core network
  • the network element of the core network selects the corresponding sensing function network element according to the first sensing demand information, and sends the first sensing demand to the sensing function network element;
  • the user equipment (User Equipment, UE) through the non-access layer ( Non Access Stratum, NAS) signaling sends the first sensing requirement information to the core network element, and the core network element selects the corresponding sensing function network element according to the first sensing requirement information, and sends the first sensing requirement information to the selected Awareness function network element.
  • the first perception requirement information includes at least one of the following: a perception target, a priori information of a perception target, a perception index, and a perception measurement.
  • the perception target may include at least one of the following:
  • Target characteristics refers to the physical or chemical characteristics of the perceived object, such as: position (cartesian coordinates or spherical coordinates relative to a reference point), distance, velocity, acceleration, size, radar cross section (Radar Cross Section), material composition, temperature wait;
  • Target environment refers to the physical or chemical characteristics of the sensing area, such as: ambient temperature, ambient humidity, rainfall, liquid water content in the air (fog), snowfall, air wind, atmospheric pressure, environmental electromagnetic characteristics (including: reflection clutter, signal interference, etc.), building/vegetation distribution, etc.;
  • Target event refers to the event that the above-mentioned target characteristics of the sensing object change, or/and, the event that the above-mentioned target environment of the sensing area changes, such as: breathing, heartbeat, fall, gesture, pedestrian/vehicle crossing, animal migration wait.
  • the above-mentioned perceptual target prior information may include at least one of the following:
  • Prior information of target features refers to the prior information of the physical or chemical characteristics of the perceived object, and the prior information is not the target feature to be perceived; or, the prior information is the target feature to be perceived, but the prior information
  • the perception index of information is poorer than the perception index of the first perception demand information; for example: the indication information of radar detection is the characteristic prior information of the target to be detected, but the accuracy of the indication information is low, and the purpose of radar detection is at low High-precision detection with the help of accuracy indicator information;
  • Prior information of the target environment refers to the prior information of the physical or chemical characteristics of the perception area, which is not the target environment information to be perceived; or, the prior information is the target feature to be perceived, but the prior information
  • the perception index of information is poorer than that of the first perception demand information; for example: when performing air humidity detection, prior information of air temperature is needed to determine the signal attenuation caused by dry air, so that it can be calculated more accurately Signal attenuation caused by water vapor (humidity) in the air.
  • the sensing index may include at least one of the following: sensing error, sensing resolution/accuracy, sensing delay, sensing range, sensing frequency, detection probability, false alarm probability, sensing SINR, sensing blind zone requirements, and the like.
  • the perceptual measurements include at least one of the following:
  • the primary measurement quantity is the measurement quantity to be measured by performing the perception process
  • the secondary measurement quantity is a measurement quantity obtained by performing a first preset process on the primary measurement quantity
  • the tertiary measurement quantity is a measurement quantity obtained by performing a second preset process on the primary measurement quantity and/or the secondary measurement quantity.
  • the first-level measurement quantity refers to the receiver of the sensing node after antenna coupling, amplification, down-conversion, filtering, automatic gain control (Automatic Gain Control, AGC), analog or digital (Analog or Digital, A /D) Measured quantities that can be directly obtained after signal sampling, digital down-conversion, digital filtering, etc., including: complex signal (including I-way and Q-way), signal amplitude, signal phase, signal power, polarization information, etc., and Threshold detection results of the above measurement quantities, maximum/minimum value extraction results, etc.;
  • AGC Automatic Gain Control
  • a /D Analog or Digital
  • the first preset processing can be simple calculation processing, that is, the secondary measurement quantity: refers to the primary measurement quantity after simple calculation (including: addition, subtraction, multiplication, division, matrix addition, subtraction, multiplication, matrix transposition, triangular relation operation, square root operation, power operation, etc., and the threshold detection results of the above operation results, maximum/minimum value extraction results, etc.), including: amplitude ratio, phase difference, received signal angle of arrival (Angle-of- Arrival, AOA), transmission signal angle of departure (Angle of Departure, AOD), delay (distance) information, distance difference, angle difference, etc.
  • simple calculation processing that is, the secondary measurement quantity: refers to the primary measurement quantity after simple calculation (including: addition, subtraction, multiplication, division, matrix addition, subtraction, multiplication, matrix transposition, triangular relation operation, square root operation, power operation, etc., and the threshold detection results of the above operation results, maximum/minimum value extraction results, etc.), including: amplitude ratio, phase difference, received signal angle
  • the secondary measurement quantity also includes the result of receiving signal I path and Q path through complex plane rotation operation, and the complex plane rotation operation formula is I*cos(theta)+Q*sin(theta), where I represents The time-domain sampling data of the I-channel signal, Q indicates the time-domain sampling data of the Q-channel signal, and theta is a known angle value.
  • the first preset processing can be complex calculation processing, that is, the three-level measurement quantity: refers to the first-level measurement quantity and/or the second-level measurement quantity undergoing complex operations (including: Fast Fourier Transform (FFT, FFT) ) or inverse fast Fourier transform (Inverse Fast Fourier Transform, IFFT), discrete Fourier transform (Discrete Fourier Transform, DFT) or inverse discrete Fourier transform (Inverse Discrete Fourier Transform, IDFT), two-dimensional fast Fourier transform Leaf transform (2Dimensional Fast Fourier Transform, 2D-FFT), three-dimensional fast Fourier transform (3Dimensional Fast Fourier Transform, 3D-FFT), matched filter, autocorrelation operation, wavelet transform, digital filter, etc., and the threshold of the above operation results
  • the measurement quantities that can be obtained after detection results, maximum/minimum value extraction results, etc. including: the complex signal (or signal amplitude, or signal phase) after FFT (or IFFT) operation results or its maximum value data
  • only one level of measurement may be required (for example: monitoring of people/vehicle flow based on Received Signal Strength (RSS)) , or only the first-level measurement quantity and the second-level measurement quantity are required (for example: radar ranging), or the first-level measurement quantity, the second-level measurement quantity and the third-level measurement quantity are required at the same time (for example: radar imaging).
  • RSS Received Signal Strength
  • the second sensing measurement quantity obtained by the second sensing node performing the second sensing process has the same meaning as the first sensing measurement quantity, which will not be repeated here.
  • the above-mentioned secondary measurement quantities and/or tertiary measurement quantities can be calculated on the sensing node side, or the sensing nodes can also report to the sensing function network element or the core network element Send the first-level measurement quantity to calculate the above-mentioned second-level measurement quantity and/or third-level measurement quantity according to the first-level measurement quantity on the sensing function network element side or the core network element, or even calculate the above-mentioned level-2 measurement quantity and/or third-level measurement quantity on the application server side according to the first-level measurement quantity
  • the above-mentioned secondary and/or tertiary measurements are calculated.
  • the measurement quantities at all levels can be calculated in the same device. It can also be calculated in different devices in the perception node, the perception function network element, the core network network element, and the application server.
  • the secondary measurement quantity is calculated and obtained by a sensing node or a sensing function network element or a core network element according to the primary measurement quantity;
  • the third-level measurement quantity is calculated by the sensing node or the sensing function network element or the core network element according to the first-level measurement quantity and/or the second-level measurement quantity.
  • the sensing node performing the sensing process has strong computing power (such as a base station), and the data volume of the sensing measurement is large (the transmission time overhead is large), and the sensing demand has a high requirement on the sensing delay, then the sensing The node completes the calculation of the secondary measurement quantity and/or the tertiary measurement quantity, and sends the calculation result to the perception function network element, the core network network element, and the application server;
  • the computing power of the sensing node performing the sensing process is weak (such as the Internet of Things terminal), and the data volume of the sensing measurement is large (the transmission time overhead is large), and the sensing demand does not have high requirements on the sensing delay but the sensing If the accuracy requirement is high, the calculation of the first-level measurement can be completed at the sensing node, and the calculation result is sent to the sensing function network element, core network element, and application server, and the sensing function network element, core network element, and application server Perform calculations on secondary and/or tertiary measurements;
  • the sensing node, the sensing function network element, the core network element and the application server can At least one side completes the calculation of measurement quantities at all levels.
  • Step 202 the first sensing function network element determines the first sensing node and the second sensing node according to the first sensing demand information, and obtains the respective sensing demands of the first sensing node and the second sensing node information.
  • a sensing node may be a device or a device group that can completely complete a sensing process, that is, a sensing node may include one or at least two devices, and the one or at least two devices may include a network side equipment and/or terminal equipment.
  • radar echo detection can be used for sensing at this time, such as: the base station sends and receives spontaneously or the UE sends and receives spontaneously. ; At this time, only one device is needed to complete the complete sensing process, that is, one node contains one device; the device includes but is not limited to: base station, UE, sending and receiving point TRP, access node (Access Point, AP), Reconfigurable Intelligent Surface (RIS) entity.
  • the sensing target in the first sensing demand information is to measure the rainfall rate in the sensing area
  • the sensing can be performed by using base station A to send signals, and base station B to receive signals and perform signal processing, that is to say, the Two devices need to cooperate to complete a perception process, that is, one node can contain two devices; the devices include but are not limited to: base station, UE, TRP, AP, RIS.
  • the sensing target in the first sensing requirement information is to determine the location of the sensing target UE
  • a device-based method can be used for sensing.
  • at least three devices are required Cooperate to complete the three-point positioning, that is to say, at this time, multiple devices need to cooperate to complete the sensing process, that is, one node can contain multiple devices; the devices include but are not limited to: base station, UE, TRP, AP, RIS.
  • the above-mentioned first sensing node may be the best sensing node selected according to the first sensing demand information, which is a sensing node that can satisfy the first sensing demand information to the greatest extent, or can satisfy the first sensing demand information under certain conditions. sensing node. Among them, maximizing the satisfaction of the first sensing demand information can also be understood as minimizing the deviation, that is, compared with other sensing nodes, the sensing result with the smallest deviation from the sensing target and sensing index in the first sensing demand information can be obtained. Therefore, the first sensing node does not mean that it can independently meet the requirements of the first sensing demand information, and it may need the assistance of other sensing nodes.
  • the first sensing function network element may also determine the second sensing node, so as to use the second sensing node to assist the first sensing node to obtain a sensing result that can meet the requirements of the first sensing requirement information.
  • the first sensing function network element determining the first sensing node according to the first sensing requirement information includes:
  • the first sensing function network element determines the first sensing node and the target sensing coordination type according to the first sensing need information, and sends the first sensing need information to the first sensing node; or,
  • the first sensing function network element determines a first sensing node according to the first sensing need information, sends the first sensing need information to the first sensing node, and receives the first sensing node from the first sensing node. Describe the type of goal-aware collaboration.
  • the type of target perception cooperation includes any of the following:
  • Sensing nodes of different sensing types under the coordination of network elements with the same sensing function cooperate to implement the cooperative sensing of the target
  • Sensing nodes of the same sensing type coordinated by network elements with the same sensing function cooperate to implement the cooperative sensing of the target
  • the network elements with different sensing functions cooperate to implement the cooperative sensing of the target.
  • the sensing nodes of different sensing types under the coordination of the same sensing function network element cooperate to implement the target cooperative sensing, which can be understood as: under the coordination of the same sensing function network element, different sensing types cooperate to implement target sensing, that is, the first Both a sensing node and the second sensing node are sensing nodes scheduled by the first sensing function network element, and the sensing types of the first sensing node and the second sensing node are different, for example: the first sensing node The node is used to sense the flow of people, and the second sensing node is used to sense the weather conditions. In this way, the interference of different weather conditions such as rainfall and smog on the perception process of the flow of people can be eliminated to improve the accuracy of the perception results of the flow of people.
  • target cooperative sensing which can be understood as: under the coordination of the same sensing function network element, different sensing types cooperate to implement target sensing, that is, the first Both a sensing node and the second sensing node are sensing nodes scheduled
  • the sensing function network element can coordinate sensing nodes of different sensing types (for example: weather condition sensing, human/vehicle flow sensing, etc.) to perform sensing coordination.
  • the sensing requirement information of the first sensing node is different from that of the second sensing node.
  • the perceived demand information of is respectively different perceived demand information.
  • the sensing nodes of the same sensing type under the coordination of the same sensing function network element cooperate to implement the target cooperative sensing, which can be understood as: under the coordination of the same sensing function network element, the same sensing type cooperates to implement target sensing, that is, the first Both a sensing node and the second sensing node are sensing nodes scheduled by the first sensing function network element, and the sensing type of the first sensing node and the second sensing node are the same.
  • multiple nodes implement the same sensing process under the coordination of the same sensing function network element, and the sensing result with enhanced sensing index can be obtained through data fusion and other processing, so as to improve the sensing performance.
  • all base station/UE-based radar imaging sensing in a certain area are coordinated by the same sensing function network element. In this way, combining the radar imaging sensing results of the first sensing node and the second sensing node on the same sensing object can improve the radar The precision of imaging perception.
  • the sensing requirement information of the first sensing node is different from that of the second sensing node.
  • the perceived demand information of is respectively the same perceived demand information.
  • the coordinated implementation of the target coordinated sensing between the network elements with different sensing functions can be understood as: under the coordination of network elements with different sensing functions, the coordinated implementation of target sensing between different sensing types, that is, the first sensing node is controlled by the second sensing node. Scheduling by a network element with a sensing function, the second sensing node is scheduled by a network element with a sensing function.
  • the sensing types of the first sensing node and the second sensing node may be the same or different, but usually, different
  • the sensing types of sensing nodes under the scheduling of sensing function network elements are usually different.
  • sensing types with large differences in sensing measurements and/or sensing methods can be controlled by network elements with different sensing functions, for example :
  • Base station/UE based radar imaging perception and positioning perception can be coordinated by network elements with different perception functions.
  • the process of cooperatively implementing the target cooperative sensing between network elements with different sensing functions is illustrated by taking the sensing types of the first sensing node and the second sensing node as an example.
  • any of the following methods may be used to determine the first sensing node:
  • each sensing function network element can pre-store the capability configuration information of each sensing node scheduled by it, so that in a certain sensing function network element
  • each sensing function network element can pre-store the capability configuration information of each sensing node scheduled by it, so that in a certain sensing function network element
  • it can determine the first sensing node for performing the first sensing process according to the capability configuration information stored in advance by itself and/or other network nodes, and send the first sensing demand information to the first sensing node. sensing node.
  • the first sensing function network element determining the first sensing node according to the first sensing requirement information includes:
  • the first sensing function network element determines the first sensing node according to the first sensing requirement information and capability configuration information of each sensing node.
  • the sensing function network element can select the first sensing node that can be used to execute the first sensing process according to the pre-stored capability configuration information of each sensing node.
  • the network side device may not store the capability configuration information of the sensing node in advance.
  • the sensing function network element may initially select the sensing node to perform the first sensing process according to the first sensing demand information, and send the first sensing demand information to the sensing node. node; the sensing node feeds back the sensing function network element according to the received first sensing demand information, if the sensing node feedback determines to execute the first sensing process, select it as the first sensing node, and end Selection process: if the sensing node feedbacks that the first sensing process cannot be performed, the sensing function network element needs to reselect the first sensing node until a first sensing node capable of performing the first sensing process is selected.
  • the first sensing function network element determining the first sensing node according to the first sensing requirement information includes:
  • the first sensing function network element selects a third sensing node according to the first sensing need information, and sends the first sensing need information to the third sensing node;
  • the first sensing function network element receives the first feedback information of the third sensing node
  • the first sensing function network element determines, according to the first feedback information, a third sensing node that supports execution of the first sensing process as the first sensing node.
  • the third sensing node may be understood as a sensing node that is preliminarily selected to execute the first sensing process according to the first sensing requirement information.
  • the sensing node determines that the first sensing process can be performed according to its own capability configuration information, which avoids the need to pre-store the capability configuration information of each sensing node on the network side device.
  • the first sensing node may also be determined whether the first sensing node requires the cooperation of other sensing nodes to be satisfied according to the first sensing requirement information and the capability configuration information of the first sensing node. A target perception result of the first perception demand information.
  • the sensing function network element or other network nodes store the capability configuration information of each sensing node
  • the sensing function network element accesses the capability configuration information data of each sensing node stored by itself or other network nodes to obtain the information based on the capability of the first sensing node
  • the configuration information and the first awareness requirement determine whether awareness coordination is required.
  • the sensing function network element and other network nodes do not store the capability configuration information of the sensing node. After the first sensing function network element sends the first sensing demand information to the first sensing node, the first sensing node configures the The information and the first sensing requirement information determine whether sensing coordination is required, and report to the first sensing functional network element.
  • the first sensing function network element or the first sensing node may further determine the required target sensing coordination type, for example: according to Whether the sensing type of the second sensing node of the first sensing node is the same as that of the first sensing node, and whether the sensing function network elements of the first sensing node and the second sensing node are the same sensing
  • the functional network element and the like determine the type of target-aware collaboration, which is not specifically limited here.
  • the first sensing function network element determines the second sensing node according to the first sensing requirement information, including:
  • the first sensing function network element determines second sensing demand information and a second sensing node according to the target sensing coordination type and the first sensing demand information, and sends the second sensing node to the second sensing node request information; or,
  • the first sensing function network element receives the second sensing demand information from the first sensing node, determines a second sensing node according to the second sensing need information and the target sensing coordination type, and sends the The second sensing node sends the second sensing demand information.
  • the first sensing function network element can combine the first sensing requirement information and
  • the target sensing coordination type coordinated target sensing between different sensing types under the coordination of network elements with the same sensing function
  • the collaborative sensing requirement that is, the second sensing requirement information
  • the first sensing node may also determine the second sensing demand information, for example: the first sensing node determines its needs according to its own capability configuration information and the first sensing demand information. What kind of assistance is provided by other sensing nodes, so as to determine that the second sensing demand information is the information of needed assistance, at this time, the sensing function network element can receive the second sensing demand information from the first sensing node, And select the second perception node accordingly.
  • the above process of selecting the second sensing node by the sensing function network element according to the second sensing requirement information may be similar to the process of determining the first sensing node by the first sensing function network element according to the first sensing requirement information,
  • the sensing function network element or other network nodes store the capability configuration information of each sensing node
  • the sensing function network element accesses the capability configuration information data of each sensing node stored by itself or other network nodes
  • the sensing function network element configures the information and the second sensing requirement information to select the second sensing node that executes the cooperative sensing process (i.e.
  • the sensing function network element preliminarily selects the second sensing node to perform the second sensing process according to the second sensing demand information, and sends the second sensing demand information to the second sensing node; Feedback from the functional network element: if the second sensing node feedbacks that it is determined to execute the second sensing process, the selection process ends; if the second sensing node feedbacks that the second sensing process cannot be performed, the sensing function network element reselects the second sensing node, The process of determining the second sensing node by the sensing function network element will not be elaborated here.
  • the coordination may be performed by core network elements.
  • the method further includes:
  • the first sensing function network element sends the second sensing requirement information to a core network element, where the second sensing requirement information is used to determine the second sensing function network element and the second sensing node.
  • the above-mentioned second perception requirement information is used to determine the second perception function network element and the second perception node can be understood as: the core network element receives the second perception requirement information , the second sensing function network element and the second sensing node may be determined according to the second sensing requirement information, or the core network element is configured to determine the second sensing function network element according to the second sensing requirement information Two sensing function network elements, and the second sensing function network element determines the second sensing node according to the second sensing requirement information.
  • the core network element may select the second sensing function network element and the corresponding second sensing node according to the second sensing requirement information, or the core network element may select the second sensing function network element only according to the second sensing requirement information , and the second sensing node is selected by the second sensing function network element.
  • the selection process of the second sensing function network element may be in any of the following two ways:
  • Method 1 The core network element or other network nodes store the sensing service types supported by each sensing function network element, and the core network element accesses the sensing service type data supported by each sensing function network element stored by itself or other network nodes, and the core network network The element selects a second sensing function network element to perform a cooperative sensing process according to the stored sensing service type information and second sensing requirement information, and sends the second sensing function network element to the second sensing function network element.
  • Method 2 The core network element and other network nodes do not store the sensing service types supported by each sensing function network element, the core network element initially selects the second sensing function network element according to the second sensing demand information, and stores the second sensing demand information Send to the second sensing function network element; the second sensing function network element gives feedback to the core network element: if the second sensing function network element supports the sensing service type indicated by the second sensing demand information, then confirm the execution of the second sensing process .
  • the selection process of the second sensing function network element ends; if the second sensing function network element does not support the sensing service type indicated by the second sensing demand information, the feedback cannot execute the second sensing process, and the core network element selects another sensing function network Yuan.
  • the network elements of the core network may coordinate.
  • the second sensing node satisfies at least one of the following:
  • sensing type of the first sensing node or different from the sensing type of the first sensing node
  • the second sensing node is a reference station.
  • the sensing types of the first sensing node and the second sensing node may be different.
  • the sensing types of the first sensing node and the second sensing node may be same.
  • the above-mentioned reference stations may include at least one of the following:
  • a site equipped with traditional measurement tools such as rain gauges, thermometers, hygrometers, infrared pedestrian flow sensing equipment, special Doppler speed measurement equipment, etc.
  • the site will send the measured reference sensing results to the first through wireless or wired communication
  • the sensing node or the sensing function network element is used as a reference to correct the deviation of the wireless sensing result of the first sensing node;
  • a site with known sensing results for example: a reference station with known precise latitude and longitude coordinates, the first sensing node senses the position of the site to determine and correct the deviation of the wireless sensing result of the first sensing node, At this time, the first sensing node and the site constitute a reference station, that is, the second sensing node; another example: a sensing node within a certain distance (for example, 100 meters) from a meteorological observation station can be used as a reference station for weather perception;
  • Wireless sensing nodes equipped with traditional measurement tools such as: weather sensing nodes equipped with rain gauges, thermometers, hygrometers, etc., some intermediate variables for wireless sensing nodes to perform sensing result calculations are measured by traditional measurement tools, so that the wireless sensing nodes The sensing index of the sensing results of the sensing nodes is enhanced and can be used as a reference station.
  • the second sensing node may also be a wireless sensing node similar to the first sensing node, but its configuration parameters are slightly different, so the sensing capabilities are different, which may specifically include the following situations At least one of:
  • the second sensing node is located in a different location from the first sensing node, and thus receives different interference factors.
  • the second sensing node is a macro base station tens of meters above the ground, so it will not be affected by factors such as pedestrians/vehicles passing through, but only affected by weather conditions, and can detect weather conditions; while the first sensing node is the distance
  • the micro base station that is closer to the ground is closer to the height of pedestrians/vehicles, which can detect pedestrians/vehicles and is also affected by weather conditions.
  • Case 2 The hardware configuration of the second sensing node is different from that of the first sensing node, so the signal-related configurations are different, and the signal-related configurations include: frequency band, polarization, bandwidth, transmit power, and so on.
  • the second sensing node is a device in the FR2 frequency band, which is significantly affected by weather conditions and is suitable for weather sensing; while the first sensing node is a device in the FR1 frequency band, which is not significantly affected by weather conditions but the occlusion of pedestrians/vehicles is still will have a significant impact;
  • Case 3 the workload of the second sensing node is different from that of the first sensing node, so the amount of resources (time, bandwidth, etc.) allowed to be used for sensing is different.
  • the first sensing node is in an area with high traffic density, and less time and bandwidth resources can be allocated for sensing; while the second sensing node is in an area with relatively low traffic density, and can be allocated for sensing time and bandwidth resources relatively more
  • the second sensing node and the first sensing node are the same entity, but need to perform different sensing processes; the same entity acts as the second sensing node when performing the second sensing process, and as the first sensing node when performing the first sensing process .
  • the second perception requirement information is similar to the first perception requirement information, and it may also include: at least one of perception target, perception target prior information, perception index and perception measurement quantity, where No longer.
  • the specific content of the second perception requirement information may be the same as or different from the specific content of the first perception requirement information; the use case where the second perception node assists the first perception node in implementing target perception Among them, the specific content contained in the second perception demand information and the first perception demand information are usually not exactly the same.
  • the main feature of the second sensing node is to execute the second sensing process according to the second sensing demand information.
  • the second sensing node and the first sensing node may be the same entity.
  • the first sensing node executes the second sensing process to assist the first sensing process of the first sensing node.
  • the first sensing function network element can also select a sensing node to perform the corresponding sensing process to obtain a sensing result that meets the sensing requirement, which will not be done here.
  • the first sensing function network element can also select a sensing node to perform the corresponding sensing process to obtain a sensing result that meets the sensing requirement, which will not be done here.
  • the above-mentioned second sensing node may be one sensing node or at least two sensing nodes, and even the second sensing node may also need assistance from other sensing nodes to obtain information that satisfies the needs of the second sensing node
  • the sensing result of the second sensing node is used to assist the first sensing node to obtain the target sensing result by using the sensing result satisfying the requirement information of the second sensing node.
  • the sensing function network element according to the capability configuration information reported by the first sensing node and the second sensing node, or according to the capability configuration information of the first sensing node and the second sensing node stored in the sensing function network element or other network nodes, and Sensing demand information of each sensing node to determine whether the third sensing node is required for sensing coordination (for example: determine whether the third sensing node is required to coordinate through the sensing index); if the third sensing node is not required to coordinate, the node selection process ends, The third sensing node cooperates and repeats the sensing node selection process in the previous step until the sensing indexes of all selected auxiliary sensing nodes (such as: the second sensing node and the third sensing node, and even the fourth sensing node) meet the sensing requirements. Require.
  • the number of required auxiliary nodes may be determined by the sensing function network element or the first sensing node.
  • the sensing function network element or the first sensing node.
  • one or at least two second sensing nodes and The other sensing nodes of the second sensing node are collectively referred to as the second sensing node.
  • Step 203 The first sensing function network element acquires a target sensing result, wherein the target sensing result is based on the results of target cooperative sensing performed by the first sensing node and the second sensing node according to their respective sensing demand information Sure.
  • the first sensing node may perform a first sensing process according to the first sensing demand information to obtain the first measurement quantity; the second sensing node may perform a second sensing process according to the second sensing demand information to obtain Acquiring the second measurement amount and/or the second sensing result; then, at least one of the first sensing node, the first sensing function network element, and the core network element may use the first measurement amount and the second measurement amount and/or the second sensing result to calculate the target sensing result, that is to say, the method for obtaining the target sensing result by the above-mentioned first sensing functional network element may be: obtaining from the first sensing node, or obtaining from a core network element , or calculated by itself, which is not specifically limited here.
  • the acquisition of the target sensing result by the first sensing function network element includes:
  • the first sensing function network element acquires a first measurement quantity and/or a first sensing result obtained by performing a first sensing process measurement by the first sensing node;
  • the first sensing function network element acquires the second measurement quantity and/or the second sensing result obtained by the second sensing node performing the measurement of the second sensing process, and the target cooperative sensing includes the first sensing process and the second perception process;
  • the first sensing function network element determines a target corresponding to the first sensing demand information according to the first measurement amount and/or the first sensing result, and the second measurement amount and/or the second sensing result Perceived results.
  • the first sensing function network element respectively receives the first measurement quantity and/or the first sensing result from the first sensing node and the second sensing node, and the second measurement quantity and/or the second perception result, and execute the process of calculating and obtaining the target perception result accordingly.
  • the acquisition of the target sensing result by the first sensing function network element includes:
  • the first sensing function network element acquires the first measurement quantity and/or the first sensing result obtained by the first sensing node performing the measurement of the first sensing process
  • the first sensing function network element acquires the second measurement quantity and/or the second sensing result obtained by the second sensing node performing the measurement of the second sensing process, and the target cooperative sensing includes the first sensing process and the second perception process;
  • the first sensing function network element sends the first measurement amount and/or the first sensing result, and the second measurement amount and/or the second sensing result to a core network element, and receives from the core network A target sensing result of the network element corresponding to the first sensing requirement information.
  • the first sensing function network element will obtain the first measurement quantity and/or the first sensing result from the first sensing node and the second sensing node respectively, and the second measurement
  • the first measurement quantity and/or the second sensing result are sent to the network element of the core network, so as to be performed by the core network network element according to the first measurement quantity and/or the first sensing result, and the second measurement quantity and/or the second measurement quantity.
  • the second sensing result is the process of calculating the target sensing result. In this way, the first sensing function network element does not need to perform the above calculation process, but only needs to obtain the calculated target sensing result from the core network element.
  • the acquisition of the target sensing result by the first sensing function network element includes:
  • the first sensing function network element acquires a second measurement quantity and/or a second sensing result obtained by performing a second sensing process measurement by the second sensing node, and sends the second measurement quantity to the first sensing node and/or second perception results;
  • the first sensing function network element receives the target sensing result corresponding to the first sensing requirement information from the first sensing node.
  • the first sensing function network element forwards the second measurement quantity and/or the second sensing result of the second sensing node to the first sensing node, so that the first sensing node performs A process of calculating the target perception result according to the second measurement quantity and/or the second perception result, as well as the first measurement quantity itself.
  • the first sensing node, the sensing function network element, and the core network element may be based on the computing capabilities of the first sensing node, the sensing function network element, and the core network element, as well as the first measurement quantity, the second measurement quantity and/or the data volume of the second sensing result In other cases, it is determined that the first sensing node, the sensing function network element, and the core network element perform the above process of calculating the target sensing result.
  • the second sensing node sends the second sensing result obtained by executing the second sensing process to the first sensing node, and the first sensing node obtains the first sensing measurement amount (which may be a primary measurement amount and/or The secondary measurement quantity and/or the tertiary measurement quantity) and the second sensing result are calculated to obtain the target sensing result, and the target sensing result is reported to the sensing function network element.
  • the first sensing measurement amount which may be a primary measurement amount and/or
  • the above-mentioned second sensing node may execute a second sensing process to obtain a second sensing measurement quantity, and calculate the above-mentioned second sensing result according to the second sensing measurement quantity.
  • the second sensing node sends the second sensing measurement quantity (primary measurement quantity, and/or secondary measurement quantity, and/or tertiary measurement quantity) obtained by performing the second sensing process to the first sensing node, and the first sensing node According to the first perception measurement quantity (primary measurement quantity and/or secondary measurement quantity and/or tertiary measurement quantity) and the second perception measurement quantity obtained by performing the first perception process, the target perception result is calculated, and the target perception The results are reported to the perception function network element.
  • the first sensing node sends the first sensing measurement quantity (primary measurement quantity and/or secondary measurement quantity and/or tertiary measurement quantity) obtained by performing the first sensing process to the sensing function network element, and the second sensing node will perform
  • the second sensing measurement quantity (primary measurement quantity and/or secondary measurement quantity and/or tertiary measurement quantity) obtained by the second sensing process is sent to the sensing function network element, and the sensing function network element according to the first sensing measurement quantity and the second sensing measurement quantity Second, the perception measurement quantity is calculated to obtain the target perception result.
  • the first sensing node sends the first sensing measurement quantity (primary measurement quantity and/or secondary measurement quantity and/or tertiary measurement quantity) obtained by performing the first sensing process to the sensing function network element, and the second sensing node will perform
  • the second sensing result obtained in the second sensing process is sent to the sensing function network element, and the sensing function network element calculates the target sensing result according to the first sensing measurement quantity and the second sensing result.
  • the target sensing result may be sent to a third-party application or terminal through a network element of the core network.
  • the sensing function network element may also use the above-mentioned first sensing measurement quantity and/or the first sensing result , forwarding the second sensing measurement quantity and/or the second sensing result to a network element of the core network, so as to obtain the target sensing result through calculation by the network element of the core network.
  • the first sensing node performs the first sensing measurement quantity (primary measurement quantity and/or secondary measurement quantity and/or tertiary measurement quantity) and/or the first sensing result obtained by performing the first sensing process through the first sensing
  • the functional network element sends to the network element of the core network
  • the second sensing node performs the second sensing measurement quantity (primary measurement quantity and/or secondary measurement quantity and/or tertiary measurement quantity) obtained by performing the second sensing process and/or
  • the second sensing result is sent to the core network element through the second sensing functional network element, and the core network element uses the first sensing measurement quantity and/or the first sensing result, and the second sensing measurement quantity and/or
  • the second sensing result is used to calculate the target sensing result required by a third-party application or UE.
  • the data interaction process between the first sensing node, the second sensing node, the first sensing function network element, the second sensing function network element, and the core network element may be direct communication or indirect communication.
  • the second sensing node may use the second sensing measurement and/or The second sensing result is sequentially sent to the first sensing node through the second sensing function network element, the core network network element, and the first sensing function network element, so as to realize that the second sensing node sends data to the first sensing node
  • the data interaction process among the first sensing node, the second sensing node, the first sensing function network element, the second sensing function network element, and the core network element is not specifically limited here.
  • the above-mentioned types of the first sensing process and the second sensing process may respectively include at least one of the following:
  • Spontaneous transmission and self-reception It is applicable to the situation where a sensing node only contains one device, for example: the radar spontaneously transmits and receives the measurement of the distance, speed, angle of the target object or the measurement of the weather conditions in the target area, etc.;
  • One device sends a signal and the other device receives a signal: it is suitable for the situation where a sensing node contains two devices, for example: in the case of people/vehicle flow monitoring, according to pedestrians/vehicles passing through the network composed of the first device and the second device When linking, it will cause the signal strength of the second device to decline to monitor the crossing process of pedestrians/vehicles;
  • One device sends a signal, and multiple devices receive a signal: it is suitable for a situation where a sensing node contains multiple devices.
  • the signal and multiple devices in other locations receive the signal separately, and through the calculation of the received signal strength of multiple devices, combined with tomographic reconstruction (tomographic reconstruction) and other algorithms, the distribution of weather conditions (such as rainfall rate) in the sensing area can be obtained.
  • one device can also receive signals and multiple devices send signals.
  • the principle is similar to that of the above-mentioned situation where one device sends signals and multiple devices receive signals, and will not be elaborated here.
  • the second sensing process may be executed first, and then the first sensing process may be executed, or the execution order of the first sensing process and the second sensing process is not limited.
  • some configuration parameters (or some parameters related to the configuration of the first sensing signal) applicable to the first sensing signal (referring to the signal sent by performing the first sensing process) ) is determined depending on the second perception result (referring to the perception result obtained by performing the second perception process) or the second perception measurement.
  • the execution order of the first sensing process and the second sensing process is not limited: this case applies to the configuration parameters of the first sensing signal not dependent on the second sensing result or the second sensing measurement, so the first sensing process and The second sensing process can be performed at the same time, or the first sensing process is executed first, and then the second sensing process is executed, or the second sensing process is executed first, and then the first sensing process is executed.
  • the execution order of the first sensing process and the second sensing process is not limited, the calculation of the target sensing result still depends on the second sensing result or the second sensing measurement.
  • the method further includes:
  • the first sensing function network element determines configuration information related to the first sensing signal according to the first sensing requirement information and the capability configuration information of the first sensing node, and sends the first sensing signal to the first sensing node. Sensing signal-related configuration information; or, the first sensing function network element receives the first sensing signal-related configuration information from the first sensing node, where the first sensing signal-related configuration information is used to configure the A first signal that the first sensing node performs a first sensing process.
  • the configuration information related to the first sensing signal may include at least one of the following:
  • Waveforms which can specifically include: radar signal waveforms, communication radar integrated signal waveforms, and other sensory signal waveforms, such as: Orthogonal frequency division multiplexing (Orthogonal frequency division multiplex, OFDM), discrete Fourier transform-time domain extension- Orthogonal Frequency Division Multiplexing (Discrete Fourier Transform-Spread OFDM, DFT-s-OFDM), Frequency Modulated Continuous Wave (FMCW), Linear Frequency Modulated (LFM) (also known as bird Acoustic signal (chirp)) waveform, etc.;
  • OFDM Orthogonal frequency division multiplexing
  • OFDM discrete Fourier transform-time domain extension- Orthogonal Frequency Division Multiplexing
  • FMCW Frequency Modulated Continuous Wave
  • LFM Linear Frequency Modulated
  • Orthogonal frequency division multiplexing OFDM subcarrier spacing for example: 15kHz, 30kHz, 60kHz, 120kHz, 240kHz, etc. used in NR;
  • Frequency which can be the frequency at the center of the bandwidth of the perceived signal, and specifically can be the absolute value of the frequency, or the offset value of the frequency relative to the frequency reference point (such as piont A);
  • Duty cycle the ratio between the time length of the transmitted pulse and the pulse period when the pulse waveform is used, this parameter affects the blind range and other performance of radar detection
  • Beam width in the implementation, the narrower the beam width, the better the angle measurement accuracy
  • the beam pointing is used to align the sending/receiving signal direction of the sensing node with the sensing object or sensing area, which can be realized by selecting the antenna module or setting the phase shift value of each module of the array antenna;
  • Polarization parameters can be vertical polarization, horizontal polarization, circular polarization, elliptical polarization and other polarization type parameters;
  • the power of the first signal can affect the perceived coverage and anti-noise performance, and at the same time, interference to other systems needs to be considered;
  • the receiver takes this cycle as the duration for signal processing, which can affect the radar's speed resolution and other performance.
  • the first sensing function network element may determine the configuration information related to the first sensing signal according to the first sensing requirement information and the capability configuration information of the first sensing node.
  • the sensing function network element determines configuration information related to the first sensing signal according to the first sensing requirement information and the capability configuration information of the first sensing node, and sends them to the first sensing node respectively.
  • the capability configuration information of the first sensing node may be stored by the sensing function network element itself or other network nodes, or reported by the first sensing node, which is not specifically limited here.
  • the sensing function network element may determine the first sensing signal-related configuration information of the first signal required by the first sensing node to perform the first sensing process according to the capability configuration information of the sensing node and the first sensing requirement information.
  • the configuration information related to the first sensing signal may also be determined by the first sensing node itself, for example: the first sensing node determines according to its own capability configuration information and the first sensing demand information The first sensing signal is related to configuration information.
  • the method further includes:
  • the first sensing function network element determines configuration information related to the second sensing signal according to the second sensing requirement information and the capability configuration information of the second sensing node, and sends the second sensing signal to the second sensing node. Sensing signal-related configuration information; or, the first sensing function network element receives the second sensing signal-related configuration information from the second sensing node, where the second sensing signal-related configuration information is used to configure the The second signal that the second sensing node executes the second sensing process.
  • the process of determining the related configuration information of the second sensing signal is similar to the process of determining the related configuration of the first sensing signal, for example, it may be determined by the sensing function network element, or determined by the second sensing node itself. This will not be repeated here.
  • the configuration information related to the second sensing signal may also be the configuration information recommended by the first sensing node, for example: the first sensing node determines the configuration information related to the first signal, and the first sensing node returns the The recommended value of the configuration information related to the second sensing signal is calculated and sent to the second sensing node, and then the second sensing node determines the configuration information related to the second sensing signal according to the recommended value of the configuration information related to the second sensing signal.
  • the sensing target in the first sensing demand information is the human/vehicle flow.
  • the first sensing node includes two devices (the first device and the second device), the first device sends a signal, the second device receives a signal, and the second device judges whether there is someone by detecting the strength (power) of the received signal /The vehicle traverses the link formed by the first device and the second device (such as a line of sight (Line Of Sight, LOS) path).
  • the sensing measurement quantity in the first sensing demand information is signal strength, and the related configuration of the first sensing signal includes signal frequency, transmit power, etc.
  • the base strength (Baseline) of the signal received by the second device of the first sensing node will also change with changes in weather conditions (including rain, snow, fog, humidity, etc.) Therefore, it is impossible to distinguish whether the change in the received signal strength of the second device of the first sensing node is due to the crossing of people/vehicles or the change of weather. Therefore, the Baseline needs to be calibrated in real time, and the first sensing node itself cannot calibrate the Baseline. Therefore, perception coordination is required to meet the requirements of the first perception demand information.
  • a feasible baseline calibration method is to introduce a second sensing node for collaborative sensing.
  • the target collaborative sensing type can be that sensing nodes of different sensing types under the coordination of the same sensing function network element cooperate to implement the target collaborative sensing , that is, the first sensing node and the second sensing node are scheduled by the same sensing function network element, or different sensing function network elements cooperate to implement the target cooperative sensing, that is, the first sensing node and the second sensing node are controlled by different sensing Functional network elements perform scheduling.
  • the second sensing node detects the change of the Baseline caused by the change of weather conditions to realize calibration; then, the second sensing node sends the calibration information to the first sensing node.
  • the first sensing node performs human/vehicle flow sensing on the basis of the Baseline calibration result of the second sensing node.
  • the sensing target in the second sensing demand information corresponding to the second sensing node is the weather condition
  • the sensing measurement quantity is the received signal strength.
  • the perception target in the perception demand information (including the first perception demand information and the second perception demand information) is the radar two-dimensional imaging of the target area
  • the perception demand information including the first perception demand information and the second perception demand information
  • Perceptual measurement quantities in demand information are complex signals, complex signal FFT calculation results, etc.
  • Perceptual signal-related configurations corresponding to perceptual demand information mainly include signal bandwidth, signal beamwidth wait.
  • the angular domain resolution of radar detection is limited, so the resolution of radar imaging is poor, which cannot meet the perception requirements of perception indicators.
  • multiple sensing nodes are made to perform cooperative sensing, and multiple sensing nodes implement the same sensing process.
  • the network element of the perception function selects multiple sensing nodes for collaborative sensing imaging to achieve the effect of synthetic aperture imaging, and performs fusion data processing on the sensing results obtained by multiple sensing nodes to obtain Higher resolution radar imaging results.
  • the target cooperative sensing type may be that sensing nodes of the same sensing type coordinated by network elements with the same sensing function implement the target cooperative sensing.
  • the sensing target in the perceptual demand information is the rainfall rate distribution in the target area
  • the perceptual measurement quantity is the signal strength
  • the perceptual signal-related configuration in the perceptual requirement information mainly includes signal power, frequency and the like.
  • the rainfall rate detection adopts the method that the first device sends a signal and the second device receives a signal.
  • the second device calculates the rainfall rate by detecting the attenuation of the received signal and combining with the ITU standard rainfall model.
  • a node including two devices: the first device and the second device
  • the first device and the second device can only detect the average rainfall rate on the link between the two devices and cannot obtain the distribution of the rainfall rate in the target area, it is necessary to introduce other sensing nodes for sensing collaboration , and multiple nodes implement the same sensing process.
  • the sensing function network element determines the number of sensing nodes that need to be coordinated (one node may include two or more devices).
  • the rainfall rate detection results of multiple nodes are calculated by algorithms such as tomographic reconstruction to obtain the distribution of rainfall rates in the target area.
  • the target cooperative sensing type may be that sensing nodes of the same sensing type coordinated by network elements with the same sensing function implement the target cooperative sensing.
  • the first sensing function network element obtains the first sensing demand information; the first sensing function network element determines the first sensing node and the second sensing node according to the first sensing demand information, and obtains Respective sensing demand information of the first sensing node and the second sensing node; the first sensing function network element acquires a target sensing result, wherein the target sensing result is based on the first sensing node and the second sensing node
  • the two sensing nodes determine the result of cooperative sensing of the target according to their respective sensing demand information.
  • At least two sensing nodes can be selected, and the demand information of each sensing node can be determined, so as to use the at least two sensing nodes according to their respective sensing demands
  • the target perception result that satisfies the first perception requirement information can be obtained by performing target cooperative perception of information, thereby improving the perception performance.
  • the second wireless perception cooperation method provided by the embodiment of the present application may include the following steps:
  • Step 301 the first sensing node acquires first sensing demand information.
  • Step 302 The first sensing node determines a target sensing coordination type according to its own capability configuration information and the first sensing requirement information, and sends the target sensing coordination type.
  • Step 303 The first sensing node receives the target sensing coordination type.
  • the first sensing node may only perform one of step 302 and step 303, and the method flowchart shown in FIG. 3 is only an example, and does not constitute a specific limitation here.
  • the execution body of the method embodiment shown in FIG. 2 is the first sensing function network element, while the method embodiment shown in FIG. The execution subject is the first perception node.
  • the above-mentioned first sensing node acquires the first sensing requirement information, which may specifically be: the first sensing node receives the first sensing requirement information from the first sensing functional network element.
  • the process of the first sensing node determining the target sensing coordination type according to its own capability configuration information and the first sensing demand information is the same as that in the method embodiment shown in FIG. 2 .
  • a sensing function network element sends the first sensing requirement information to the initially selected sensing node, and determines the first sensing node for performing the first sensing process according to the first feedback from the sensing node, and receives the information from the first sensing node
  • the implementation of the target-aware coordination type corresponds to and has the same beneficial effect, and will not be repeated here.
  • the above-mentioned first sensing node sending the target sensing coordination type may be that the first sensing node sends the target sensing coordination type to the first sensing function network element, so that the first sensing function network element The target sensing coordination type and the first sensing requirement information select the second sensing node.
  • the above-mentioned first sensing node receives the target sensing coordination type, which may specifically be: the first sensing node receives the target sensing coordination type from the first sensing functional network element.
  • the first perception node receives the target perception cooperation type from the first perception function network element.
  • the capability configuration information of the node and according to the first perception requirement information and the capability configuration information of each sensor node, select the first sensor node that can be used to perform the first sensory process, and determine the implementation of the target sensory coordination type, and have the same beneficial effects, and will not be repeated here.
  • the method further includes:
  • the first sensing node executes a first sensing process to measure a first sensing measurement quantity
  • the first sensing node acquires a second sensing measurement quantity measured by a second sensing node or acquires a second sensing result calculated by the second sensing node according to the second sensing measurement quantity;
  • the first sensing node calculates a target sensing result according to the first sensing measurement, the second sensing measurement and/or the second sensing result.
  • the first sensing node calculates the target sensing result according to the first sensing measurement, the second sensing measurement and/or the second sensing result. Correspondingly, and have the same beneficial effect, and will not be repeated here.
  • the method further includes:
  • the first sensing node executes a first sensing process to measure a first sensing measurement quantity and/or a first sensing result, and sends the first sensing measurement quantity and/or a first sensing measurement quantity to the first sensing functional network element. A perceptual result.
  • the network element with the first sensing function according to the first sensing measurement quantity and/or the first sensing result, and the second sensing measurement quantity and/or the second sensing result calculate the target sensing result, or the first sensing function network element forwards the received first sensing measurement quantity and/or first sensing result, and the second sensing measurement quantity and/or second sensing result to the core network network element, and the core network network element calculates and obtains the implementation scheme of the target perception result correspondingly, and has the same beneficial effect, which will not be repeated here.
  • the method further includes:
  • the first sensing node determines its own first signal-related configuration information according to its own capability configuration information and the first sensing requirement information;
  • the first sensing node determines its own first signal-related configuration information according to its own capability configuration information and the first sensing demand information, and determines the recommended value of the second signal-related configuration information of the second sensing node, and sends the The recommended value of the configuration information related to the second signal.
  • the sensing node determines its own signal-related configuration information, or the first sensing node determines its own signal-related configuration information and the recommendation of other sensing nodes’ signal-related configuration information.
  • the implementations of the values correspond to each other and have the same beneficial effect, and will not be repeated here.
  • the second sensing node satisfies at least one of the following:
  • sensing type of the first sensing node or different from the sensing type of the first sensing node
  • the second sensing node is a reference station.
  • the target-aware coordination type includes any of the following:
  • Sensing nodes of different sensing types under the coordination of network elements with the same sensing function cooperate to implement the cooperative sensing of the target
  • Sensing nodes of the same sensing type coordinated by network elements with the same sensing function cooperate to implement the cooperative sensing of the target
  • the network elements with different sensing functions cooperate to implement the cooperative sensing of the target.
  • the process in the second wireless sensing coordination method provided by the embodiment of the present application corresponds to the process performed by the first sensing node in the method embodiment shown in Figure 2, and has the same beneficial effect, and will not be repeated here repeat.
  • the third wireless perception cooperation method provided by the embodiment of the present application may include the following steps:
  • step 401 the network element of the core network receives the second sensing requirement information from the first sensing function network element.
  • Step 402 the network element of the core network determines the second sensing for cooperative sensing of the target with the first sensing function network element according to the second sensing requirement information and the sensing service type supported by each sensing function network element A functional network element, and determining a second sensing node scheduled by the second sensing functional network element or receiving identification information of the second sensing node from the second sensing functional network element.
  • Step 403 the network element of the core network determines a third perception function network element according to the second perception requirement information, and determines the third perception function network element that supports the perception service type corresponding to the second perception requirement information as The second sensing function network element, and determining a second sensing node scheduled by the second sensing function network element or receiving identification information of the second sensing node from the second sensing function network element.
  • Step 404 the network element of the core network sends the second sensing requirement information to the second sensing node.
  • the execution subject of the method embodiment shown in FIG. 2 is the first sensing function network element, while the method shown in FIG.
  • the execution subject of the embodiment is a network element of the core network.
  • the method embodiment shown in FIG. 4 is specifically applied to a scenario where the target sensing coordination type is: network elements with different sensing functions cooperate to implement the target collaborative sensing.
  • the second sensing requirement information received by the core network element from the first sensing function network element may be determined by the first sensing function network element, or may be selected by the first sensing function network element. It is determined by the first sensing node executing the first sensing process, and the specific meaning of the second sensing demand information is the same as the second sensing demand information in the method embodiment shown in FIG. 2 , and will not be repeated here.
  • step 402 in the case where the core network element or other network nodes pre-store the perceived service type supported by each sensing function network element, step 402 may be performed, so that the core network element can use the second sensing demand information and The pre-stored sensing service type supported by each sensing function network element is used to select the second sensing function network element.
  • step 403 may be performed, so that the core network element directly performs preliminary Selecting the second sensing function network element, and sending the second sensing function network element to the second sensing function network element; the second sensing function network element feeds back to the core network element: if the second sensing function network element supports the second If the sensing service type indicated by the sensing demand information is confirmed, the execution of the second sensing process is confirmed, and the second sensing function network element selection process ends; if the second sensing function network element does not support the sensing business type indicated by the second sensing demand information, feedback If the second sensing process cannot be performed, the network element of the core network selects another network element with the sensing function as the second sensing function network element.
  • the second sensing function network element may select the second sensing node according to the second sensing requirement information, and report the selected second sensing node to the The core network element; or the core network element selects the second sensing node from the sensing nodes scheduled by the second sensing function network element according to the second sensing demand information, and the determination process of the second sensing node is as shown in Figure 2
  • the process of determining the second sensing node in the method embodiment is similar, and will not be repeated here.
  • the network element of the core network sends the second perception requirement information to the second perception node, which may be understood as: the network element of the core network sends the second perception requirement information to the network element with the second perception function. demand information, and the second sensing function network element forwards the received second sensing demand information to the second sensing node.
  • the method before the core network element receives the second perception requirement information from the first perception function network element, the method further includes:
  • the network element of the core network acquires first sensing demand information
  • the network element of the core network determines the first perception function network element according to the first perception requirement information, and sends the first perception requirement information to the first perception function network element, wherein the second perception function
  • the requirement information is determined by the first sensing function network element or the first sensing node scheduled by the first sensing function network element.
  • the network element of the core network determines the first sensing function network element according to the first sensing demand information, and sends the first sensing demand to the first sensing function network element.
  • Information so that the first sensing function network element determines the first sensing node, or the first sensing node determines whether to execute the first sensing process according to its own capability configuration information.
  • the network element of the core network determines, as the second network element with the perception function, a third perception function network element that supports the perception service type corresponding to the second perception demand information, including:
  • the network element of the core network sends the second perception requirement information to the third perception function network element, and receives second feedback information from the third perception function network element;
  • the network element of the core network determines, according to the second feedback information, a third perception function network element that supports the perception service type corresponding to the second perception demand information as the second perception function network element.
  • the process of the network element of the core network determining the network element with the second sensing function is similar to the process of the network element of the core network determining the network element with the first sensing function according to the first sensing requirement information, and will not be repeated here.
  • the method further includes:
  • the network element of the core network receives the first sensing measurement quantity and/or the first sensing result from the first sensing functional network element;
  • the network element of the core network receives a second sensing measurement quantity and/or a second sensing result from the second sensing functional network element, wherein the second sensing measurement quantity is determined by the second sensing node;
  • the network element of the core network determines a target sensing result according to the first sensing measurement quantity and/or the first sensing result, and the second sensing measurement quantity and/or the second sensing result.
  • the network element of the core network calculates the The implementation schemes for obtaining the target perception result are the same and have the same beneficial effects, and will not be repeated here.
  • the method further includes:
  • the network element of the core network receives the second sensing measurement quantity and/or the second sensing result from the second sensing function network element, wherein the second sensing measurement quantity and/or the second sensing result are determined by the first Two sensing nodes are determined;
  • the network element of the core network sends the second sensing measurement quantity and/or the second sensing result to the first sensing function network element;
  • the network element of the core network receives the target perception result from the first perception function network element.
  • the target sensing result received by the network element of the core network from the first sensing function network element may be determined by the first sensing function network element or the first sensing node according to the first sensing measurement quantity and the The second perception measurement and/or the second perception result is calculated.
  • the first sensing function network element or the first sensing node calculates the The implementation schemes for obtaining the target perception result are the same and have the same beneficial effects, and will not be repeated here.
  • the process in the third wireless perception cooperation method provided by the embodiment of the present application corresponds to the process performed by the core network element in the method embodiment shown in Figure 2, and has the same beneficial effect, and will not be repeated here repeat.
  • the execution subject may be a wireless perception coordination device, or a control module in the wireless perception coordination device for executing the wireless perception coordination method.
  • the wireless sensing coordination device performed by the wireless sensing coordination device is taken as an example to describe the wireless sensing coordination device provided in the embodiment of the present application.
  • the first wireless perception coordination device 500 provided in the embodiment of the present application may be applied to a first perception function network element.
  • the first wireless perception coordination device 500 may include:
  • a first acquiring module 501 configured to acquire first perceived demand information
  • the first determining module 502 is configured to determine a first sensing node and a second sensing node according to the first sensing demand information, and acquire respective sensing demand information of the first sensing node and the second sensing node;
  • the second obtaining module 503 is configured to obtain a target sensing result, wherein the target sensing result is determined according to the results of target cooperative sensing performed by the first sensing node and the second sensing node according to their respective sensing demand information.
  • the first determining module 502 includes:
  • a first determining unit configured to determine a first sensing node and a target sensing coordination type according to the first sensing need information, and send the first sensing need information to the first sensing node;
  • the second determining unit is configured to determine a first sensing node according to the first sensing demand information, send the first sensing demand information to the first sensing node, and receive the first sensing node from the first sensing node.
  • Target-aware synergy type is configured to determine a first sensing node according to the first sensing demand information, send the first sensing demand information to the first sensing node, and receive the first sensing node from the first sensing node.
  • the first determining module 502 includes:
  • a third determination unit configured to determine second perception requirement information and a second perception node according to the target perception coordination type and the first perception requirement information, and send the second perception requirement to the second perception node information; or,
  • a first transmission unit configured to receive the second sensing requirement information from the first sensing node, determine a second sensing node according to the second sensing need information and the target sensing coordination type, and send the information to the first sensing node.
  • the second sensing node sends the second sensing demand information.
  • the second obtaining module 503 includes:
  • a first acquiring unit configured to acquire a first measurement quantity and/or a first sensing result obtained by performing a first sensing process measurement by the first sensing node
  • a second acquiring unit configured to acquire a second measurement quantity and/or a second sensing result obtained by performing a second sensing process measurement by the second sensing node, and the target cooperative sensing includes the first sensing process and the second sensing process Second perception process;
  • a third acquisition unit configured to determine the target perception corresponding to the first perception demand information according to the first measurement quantity and/or the first perception result, and the second measurement quantity and/or the second perception result As a result, or, the first sensing functional network element sends the first measurement quantity and/or the first sensing result and the second measurement quantity and/or the second sensing result to the core network element, and receives the A target sensing result of the core network element corresponding to the first sensing requirement information;
  • a fourth acquiring unit configured to acquire a second measurement quantity and/or a second sensing result obtained by performing a second sensing process measurement by the second sensing node, and send the second measurement quantity and the second sensing result to the first sensing node. / or second perception results;
  • a fifth acquiring unit configured to receive a target sensing result corresponding to the first sensing demand information from the first sensing node.
  • the first wireless perception coordination device 500 also includes:
  • a fifth determining module configured to determine configuration information related to a first sensing signal according to the first sensing requirement information and capability configuration information of the first sensing node, and send the first sensing signal to the first sensing node.
  • Signal-related configuration information or, the first sensing function network element receives the first sensing signal-related configuration information from the first sensing node, where the first sensing signal-related configuration information is used to configure the The first sensing node executes the first signal of the first sensing process.
  • the first wireless perception coordination device 500 also includes:
  • a sixth determining module configured to determine configuration information related to a second sensing signal according to the second sensing requirement information and capability configuration information of the second sensing node, and send the second sensing signal to the second sensing node.
  • Signal-related configuration information or, the first sensing function network element receives the second sensing signal-related configuration information from the second sensing node, where the second sensing signal-related configuration information is used to configure the The second sensing node executes the second signal of the second sensing process.
  • the configuration information related to the first sensing signal includes at least one of the following:
  • Waveform OFDM subcarrier spacing, bandwidth, frequency, duty cycle, beamwidth, beam pointing, polarization parameters, power and signal processing period;
  • the configuration information related to the second sensing signal includes at least one of the following:
  • Waveform OFDM subcarrier spacing, bandwidth, frequency, duty cycle, beamwidth, beam pointing, polarization parameters, power and signal processing period.
  • the first determining module 502 includes:
  • a first selection unit configured to select a third sensing node according to the first sensing need information, and send the first sensing need information to the third sensing node;
  • a second receiving module configured to receive first feedback information from the third sensing node
  • a seventh determining module configured to determine, according to the first feedback information, a third sensing node that supports execution of the first sensing process as the first sensing node.
  • the first determining module 502 includes:
  • An eighth determining module configured to determine the first sensing node according to the first sensing requirement information and the capability configuration information of each sensing node.
  • the target-aware coordination type includes any of the following:
  • Sensing nodes of different sensing types under the coordination of network elements with the same sensing function cooperate to implement the cooperative sensing of the target
  • Sensing nodes of the same sensing type coordinated by network elements with the same sensing function cooperate to implement the cooperative sensing of the target
  • the network elements with different sensing functions cooperate to implement the cooperative sensing of the target.
  • the second sensing node satisfies at least one of the following:
  • sensing type of the first sensing node or different from the sensing type of the first sensing node
  • the second sensing node is a reference station.
  • the first type of wireless sensing coordination apparatus 500 further includes:
  • the second sending module is configured to send the second perception requirement information to a core network element, where the second perception requirement information is used to determine the second perception function network element and the second perception node.
  • the first perception requirement information includes at least one of the following: a perception target, a priori information of the perception target, a perception index, and a perception measurement.
  • the sensory measurement includes at least one of the following:
  • the primary measurement quantity is the measurement quantity to be measured by performing the perception process
  • the secondary measurement quantity is a measurement quantity obtained by performing a first preset process on the primary measurement quantity
  • the tertiary measurement quantity is a measurement quantity obtained by performing a second preset process on the primary measurement quantity and/or the secondary measurement quantity.
  • the secondary measurement quantity is calculated and obtained by a sensing node or a sensing function network element or a core network element according to the primary measurement quantity;
  • the third-level measurement quantity is calculated by the sensing node or the sensing function network element or the core network element according to the first-level measurement quantity and/or the second-level measurement quantity.
  • the first type of wireless sensing coordination device 500 provided in the embodiment of the present application can execute the various processes performed by the first sensing function network element in the method embodiment shown in Figure 2, and can achieve the same beneficial effect. To avoid repetition, in This will not be repeated here.
  • the second wireless sensing coordination device 600 provided in the embodiment of the present application can be applied to the first sensing node.
  • the second wireless sensing coordination device 600 can include:
  • the second determination module 602 is configured to determine the target perception coordination type according to its own capability configuration information and the first perception demand information, and send the target perception coordination type; or,
  • the first receiving module 603 is configured to receive the target perception cooperation type.
  • the second wireless perception coordination device 600 may include only one of the second determining module 602 and the first receiving module 603, or may include both the second determining module 602 and the first receiving module 603.
  • the receiving module 603 in the device embodiment shown in FIG. 6 , an example is taken in which the second type of wireless sensing coordination device 600 includes both the second determining module 602 and the first receiving module 603 for illustration.
  • the second wireless perception coordination device 600 also includes:
  • a first execution module configured to execute a first sensing process to measure a first sensing measurement quantity
  • a fifth acquiring module configured to acquire a second sensing measurement quantity measured by the second sensing node or acquire a second sensing result calculated by the second sensing node according to the second sensing measurement quantity;
  • the first calculation module is used to calculate and obtain the target perception result according to the first perception measurement quantity, the second perception measurement quantity and/or the second perception result.
  • the second wireless perception coordination device 600 also includes:
  • the second execution module is configured to execute the first sensing process, to measure the first sensing measurement quantity and/or the first sensing result, and send the first sensing measurement quantity and/or to the first sensing function network element The first perception result.
  • the second wireless perception coordination device 600 also includes:
  • the ninth determination module is configured to determine its own first signal-related configuration information according to its own capability configuration information and the first perception demand information;
  • the tenth determination module is configured to determine its own first signal-related configuration information according to its own capability configuration information and the first sensing demand information, and determine a recommended value of the second signal-related configuration information of the second sensing node, and send A recommended value of the configuration information related to the second signal.
  • the second sensing node satisfies at least one of the following:
  • sensing type of the first sensing node or different from the sensing type of the first sensing node
  • the second sensing node is a reference station.
  • the target-aware coordination type includes any of the following:
  • Sensing nodes of different sensing types under the coordination of network elements with the same sensing function cooperate to implement the cooperative sensing of the target
  • Sensing nodes of the same sensing type coordinated by network elements with the same sensing function cooperate to implement the cooperative sensing of the target
  • the network elements with different sensing functions cooperate to implement the cooperative sensing of the target.
  • the second type of wireless sensing coordination device 600 provided in the embodiment of the present application can execute various processes performed by the first sensing node in the method embodiment shown in FIG. 3 , and can achieve the same beneficial effect. To avoid repetition, the Let me repeat.
  • the third wireless perception coordination device 700 provided in the embodiment of the present application can be applied to core network elements.
  • the third wireless perception coordination device 700 may include:
  • a fourth acquiring module 701, configured to receive the second sensing demand information from the first sensing function network element
  • the third determining module 702 is configured to determine a second sensing function for performing target cooperative sensing with the first sensing function network element according to the second sensing requirement information and the sensing service type supported by each sensing function network element A network element, and determining a second sensing node scheduled by the second sensing function network element or receiving identification information of the second sensing node from the second sensing function network element; or,
  • the fourth determining module 703 is configured to determine a third sensing function network element according to the second sensing demand information, and determine the third sensing function network element that supports the sensing service type corresponding to the second sensing demand information as the network element with the third sensing function The second sensing function network element, and determining a second sensing node scheduled by the second sensing function network element or receiving identification information of the second sensing node from the second sensing function network element;
  • the first sending module 704 is configured to send the second sensing demand information to the second sensing node.
  • the third wireless perception cooperation device 700 may include only one of the third determining module 702 and the fourth determining module 703, or include both the third determining module 702 and the fourth determining module 703,
  • the embodiment shown in FIG. 7 is described by taking the third type of wireless sensing coordination device 700 including both the third determination module 702 and the fourth determination module 703 as an example for illustration, which does not constitute a specific limitation here.
  • the third wireless perception coordination device 700 also includes:
  • a sixth acquiring module configured to acquire the first perceived demand information
  • a twelfth determining module configured to determine the first sensory function network element according to the first sensory requirement information, and send the first sensory requirement information to the first sensory function network element, wherein the first sensory function network element
  • the second sensing requirement information is determined by the first sensing function network element or the first sensing node scheduled by the first sensing function network element.
  • the fourth determining module 703 includes:
  • a first sending unit configured to send the second sensing demand information to the third sensing function network element, and receive second feedback information from the third sensing function network element;
  • the fourth determining unit is configured to determine, according to the second feedback information, a third sensing function network element that supports the sensing service type corresponding to the second sensing demand information as the second sensing function network element.
  • the third wireless perception coordination device 700 also includes:
  • a third receiving module configured to receive the first sensing measurement quantity and/or the first sensing result from the first sensing functional network element
  • a fourth receiving module configured to receive a second sensing measurement and/or a second sensing result from the second sensing functional network element, wherein the second sensing measurement is determined by the second sensing node;
  • a thirteenth determination module configured to determine a target perception result according to the first perception measurement and/or the first perception result, and the second perception measurement and/or the second perception result.
  • the third wireless perception coordination device 700 also includes:
  • a fifth receiving module configured to receive a second sensing measurement and/or a second sensing result from the second sensing functional network element, wherein the second sensing measurement and/or second sensing result are determined by the The second sensing node is determined;
  • a second sending module configured to send the second sensing measurement quantity and/or the second sensing result to the first sensing functional network element
  • the sixth receiving module is configured to receive the target sensing result from the first sensing functional network element.
  • the third wireless perception coordination device 700 provided in the embodiment of the present application can execute various processes performed by core network elements in the method embodiment shown in FIG. 4 , and can achieve the same beneficial effect. Let me repeat.
  • this embodiment of the present application further provides a communication device 800, including a processor 801, a memory 802, and programs or instructions stored in the memory 802 and operable on the processor 801,
  • a communication device 800 including a processor 801, a memory 802, and programs or instructions stored in the memory 802 and operable on the processor 801
  • the communication device 800 is a terminal (for example: when the first sensing node is a terminal)
  • the program or instruction is executed by the processor 801
  • each process of the method embodiment shown in FIG. 3 can be realized, and the same technical Effect: when the communication device 800 is a network-side device (such as: a first sensory function network element, a core network network element or a first sensory node), when the program or instruction is executed by the processor 801, it can be implemented as shown in Figure 2 or Figure 3 or
  • Each process of the method embodiment shown in FIG. 4 can achieve the same technical effect, and will not be repeated here to avoid repetition.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, the communication interface is used to obtain the first perception demand information; The requirement information is used to determine the target perception coordination type; the communication interface is also used to send the target perception coordination type.
  • This terminal embodiment corresponds to the above-mentioned method embodiment on the side of the first sensing node (when the first sensing node includes a terminal), and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this terminal embodiment, And can achieve the same technical effect.
  • FIG. 9 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 900 includes, but is not limited to: a radio frequency unit 901, a network module 902, an audio output unit 903, an input unit 904, a sensor 905, a display unit 906, a user input unit 907, an interface unit 908, a memory 909, and a processor 910, etc. at least some of the components.
  • the terminal 900 can also include a power supply (such as a battery) for supplying power to various components, and the power supply can be logically connected to the processor 910 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 9 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 904 may include a graphics processor (Graphics Processing Unit, GPU) 9041 and a microphone 9042, and the graphics processor 9041 is used for the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 906 may include a display panel 9061, and the display panel 9061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 907 includes a touch panel 9071 and other input devices 9072 .
  • the touch panel 9071 is also called a touch screen.
  • the touch panel 9071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 9072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 901 receives the downlink data from the network side device, and processes it to the processor 910; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 901 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 909 can be used to store software programs or instructions as well as various data.
  • the memory 909 may mainly include a program or instruction storage area and a data storage area, wherein the program or instruction storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 909 may include a high-speed random access memory, and may also include a nonvolatile memory, wherein the nonvolatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the processor 910 may include one or more processing units; optionally, the processor 910 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly handle wireless communications, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 910 .
  • the radio frequency unit 901 is configured to obtain the first perception demand information
  • the processor 910 is configured to determine a target perception coordination type according to its own capability configuration information and the first perception demand information;
  • the radio frequency unit 901 is further configured to send the target awareness coordination type.
  • the radio frequency unit 901 performs the sending of the target perception coordination type:
  • the processor 910 is further configured to execute a first sensing process to measure a first sensing measurement quantity
  • the radio frequency unit 901 is further configured to acquire a second sensing measurement quantity measured by the second sensing node or obtain a second sensing result calculated by the second sensing node according to the second sensing measurement quantity;
  • the processor 910 is further configured to calculate and obtain a target perception result according to the first perception measurement quantity, the second perception measurement quantity and/or the second perception result.
  • the radio frequency unit 901 performs the sending of the target perception coordination type:
  • the processor 910 is further configured to execute a first sensing process to measure a first sensing measurement quantity and/or a first sensing result, and control the radio frequency unit 901 to send the first sensing measurement to the first sensing function network element quantity and/or first perception results.
  • the processor 910 executes determining the target perception coordination type according to its own capability configuration information and the first perception demand information, it is further configured to:
  • the second sensing node satisfies at least one of the following:
  • sensing type of the first sensing node or different from the sensing type of the first sensing node
  • the second sensing node is a reference station.
  • the target-aware coordination type includes any of the following:
  • Sensing nodes of different sensing types under the coordination of network elements with the same sensing function cooperate to implement the cooperative sensing of the target
  • Sensing nodes of the same sensing type coordinated by network elements with the same sensing function cooperate to implement the cooperative sensing of the target
  • the network elements with different sensing functions cooperate to implement the cooperative sensing of the target.
  • the terminal 900 provided in the embodiment of the present application can execute various processes performed by the first sensing node in the method embodiment shown in FIG. 3 , and can achieve the same beneficial effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, the communication interface is used to obtain the first perception demand information, and the processor is used to determine the first perception demand information according to the first perception demand information. node and a second sensing node, and obtain the respective sensing demand information of the first sensing node and the second sensing node; the processor or the communication interface is also used to obtain a target sensing result, wherein the target The sensing result is determined according to the results of target cooperative sensing performed by the first sensing node and the second sensing node according to their respective sensing demand information;
  • the communication interface is used to obtain the first perception requirement information; the processor is used to determine the target perception coordination type according to the capability configuration information of the first perception node and the first perception requirement information; the communication interface is also used to send said target-aware collaboration type;
  • the communication interface is used to receive the second perception requirement information from the first perception function network element; the processor is configured to determine, according to the second perception requirement information and the perception service type supported by each perception function network element, the A second sensing function network element performing target cooperative sensing with the first sensing function network element, and determining a second sensing node scheduled by the second sensing function network element or receiving a message from the second sensing function network element
  • the identification information of the second sensing node; or the processor is configured to determine a third sensing function network element according to the second sensing demand information, and support the first sensing service type corresponding to the second sensing demand information
  • the third sensing function network element is determined as the second sensing function network element, and determines the second sensing node scheduled by the second sensing function network element or receives the second sensing node received from the second sensing function network element.
  • Identification information of the sensing node; the communication interface is further configured to send the second sensing requirement information to the second sensing node.
  • This embodiment of the network-side device corresponds to the above-mentioned method embodiments on the side of the first sensing function network element, the first sensing node (that is, the first sensing node includes the network-side device) and the core network element side.
  • the first sensing node that is, the first sensing node includes the network-side device
  • the core network element side that is, the first sensing node includes the network-side device
  • Each of the above-mentioned method embodiments Both the implementation process and the implementation manner are applicable to the embodiment of the network side device, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network device 1000 includes: an antenna 1001 , a radio frequency device 1002 , and a baseband device 1003 .
  • the antenna 1001 is connected to the radio frequency device 1002 .
  • the radio frequency device 1002 receives information through the antenna 1001, and sends the received information to the baseband device 1003 for processing.
  • the baseband device 1003 processes the information to be sent and sends it to the radio frequency device 1002
  • the radio frequency device 1002 processes the received information and sends it out through the antenna 1001 .
  • the foregoing frequency band processing device may be located in the baseband device 1003 , and the method performed by the network side device in the above embodiments may be implemented in the baseband device 1003 , and the baseband device 1003 includes a processor 1004 and a memory 1005 .
  • the baseband device 1003 may include, for example, at least one baseband board, and the baseband board is provided with a plurality of chips, as shown in FIG.
  • the baseband device 1003 may further include a network interface 1006 for exchanging information with the radio frequency device 1002, such as a common public radio interface (common public radio interface, CPRI for short).
  • a network interface 1006 for exchanging information with the radio frequency device 1002, such as a common public radio interface (common public radio interface, CPRI for short).
  • CPRI common public radio interface
  • the network-side device in this embodiment of the present invention further includes: instructions or programs stored in the memory 1005 and operable on the processor 1004, and the processor 1004 calls the instructions or programs in the memory 1005 to execute FIG. 5 or FIG. 6 or
  • the method executed by each module shown in FIG. 7 achieves the same technical effect. In order to avoid repetition, it is not repeated here.
  • the embodiment of the present application also provides a readable storage medium, the readable storage medium may be nonvolatile or volatile, the readable storage medium stores programs or instructions, and the programs or instructions are stored in When the processor executes, each process of the method embodiment shown in FIG. 2 or FIG. 3 or FIG. 4 can be realized, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes computer readable storage medium, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions, as shown in Figure 2 or Figure 3 or Each process of the method embodiment shown in FIG. 4 can achieve the same technical effect, and will not be repeated here to avoid repetition.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the embodiment of the present application also provides a computer program product, the computer program product is stored in a non-transitory storage medium, and the computer program product is executed by at least one processor to implement the process shown in Figure 2 or Figure 3 or Figure 4
  • the steps of the shown method can achieve the same technical effect, and to avoid repetition, details are not repeated here.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种无线感知协同方法、装置、网络侧设备和终端,属于通信技术领域,本申请实施例的无线感知协同方法包括:第一感知功能网元获取第一感知需求信息;所述第一感知功能网元根据所述第一感知需求信息,确定第一感知节点和第二感知节点,并获取所述第一感知节点和所述第二感知节点各自的感知需求信息;所述第一感知功能网元获取目标感知结果,其中,所述目标感知结果根据所述第一感知节点和所述第二感知节点分别按照各自的感知需求信息进行目标协同感知的结果确定。

Description

无线感知协同方法、装置、网络侧设备和终端
相关申请的交叉引用
本申请主张在2021年11月04日在中国提交的中国专利申请No.202111302242.2的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种无线感知协同方法、装置、网络侧设备和终端。
背景技术
在相关技术中,传感和通信系统通常是单独设计的,并占用不同的频段。由于毫米波和大规模多输入多输出技术(Multi Input Multi Output,MIMO)技术的广泛部署,未来无线通信系统中的通信信号往往在时域和角度域都具有高分辨率,这使得利用通信信号实现高精度传感成为可能。因此,最好是联合设计传感和通信系统,使它们能够共享同一频段和硬件,以提高频率效率并降低硬件成本。这促使了对通信和感知一体化(Integrated Sensing And Communication,ISAC)的研究。
但是,在ISAC场景中,由于感知节点的感知能力有限,存在感知节点不能满足感知需求的问题,进而使得ISAC系统的感知性能较低。
发明内容
本申请实施例提供一种无线感知协同方法、装置、网络侧设备和终端,能够解决相关技术中的ISAC系统存在的感知性能较低的问题。
第一方面,提供了一种无线感知协同方法,应用于第一感知功能网元,该方法包括:
第一感知功能网元获取第一感知需求信息;
所述第一感知功能网元根据所述第一感知需求信息,确定第一感知节点和第二感知节点,并获取所述第一感知节点和所述第二感知节点各自的感知 需求信息;
所述第一感知功能网元获取目标感知结果,其中,所述目标感知结果根据所述第一感知节点和所述第二感知节点分别按照各自的感知需求信息进行目标协同感知的结果确定。
第二方面,提供了一种无线感知协同装置,应用于第一感知功能网元,所述装置包括:
第一获取模块,用于获取第一感知需求信息;
第一确定模块,用于根据所述第一感知需求信息,确定第一感知节点和第二感知节点,并获取所述第一感知节点和所述第二感知节点各自的感知需求信息;
第二获取模块,用于获取目标感知结果,其中,所述目标感知结果根据所述第一感知节点和所述第二感知节点分别按照各自的感知需求信息进行目标协同感知的结果确定。
第三方面,提供了一种无线感知协同方法,应用于第一感知节点,所述方法包括:
第一感知节点获取第一感知需求信息;
所述第一感知节点根据自身能力配置信息和所述第一感知需求信息,确定目标感知协同类型,并发送所述目标感知协同类型;或者,
所述第一感知节点接收所述目标感知协同类型。
第四方面,提供了一种无线感知协同装置,应用于第一感知节点,所述装置包括:
第三获取模块,用于获取第一感知需求信息;
第二确定模块,用于根据自身能力配置信息和所述第一感知需求信息,确定目标感知协同类型,并发送所述目标感知协同类型;或者,
第一接收模块,用于接收所述目标感知协同类型。
第五方面,提供了一种无线感知协同方法,应用于核心网网元,所述方法包括:
核心网网元接收来自第一感知功能网元的第二感知需求信息;
所述核心网网元根据所述第二感知需求信息和每一个感知功能网元支持 的感知业务类型,确定用于与所述第一感知功能网元进行目标协同感知的第二感知功能网元,以及确定由所述第二感知功能网元调度的第二感知节点或者接收来自所述第二感知功能网元的所述第二感知节点的标识信息;或者,
所述核心网网元根据所述第二感知需求信息,确定第三感知功能网元,并将支持所述第二感知需求信息对应的感知业务类型的第三感知功能网元确定为所述第二感知功能网元,以及确定由所述第二感知功能网元调度的第二感知节点或者接收来自所述第二感知功能网元的所述第二感知节点的标识信息;
所述核心网网元向所述第二感知节点发送所述第二感知需求信息。
第六方面,提供了一种无线感知协同装置,应用于核心网网元,所述装置包括:
第四获取模块,用于接收来自第一感知功能网元的第二感知需求信息;
第三确定模块,用于根据所述第二感知需求信息和每一个感知功能网元支持的感知业务类型,确定用于与所述第一感知功能网元进行目标协同感知的第二感知功能网元,以及确定由所述第二感知功能网元调度的第二感知节点或者接收来自所述第二感知功能网元的所述第二感知节点的标识信息;或者,
第四确定模块,用于根据所述第二感知需求信息,确定第三感知功能网元,并将支持所述第二感知需求信息对应的感知业务类型的第三感知功能网元确定为所述第二感知功能网元,以及确定由所述第二感知功能网元调度的第二感知节点或者接收来自所述第二感知功能网元的所述第二感知节点的标识信息;
第一发送模块,用于向所述第二感知节点发送所述第二感知需求信息。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第二方面或第三方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口用于获取第一感知需求信息,所述处理器用于根据所述第一感知 需求信息,确定第一感知节点和第二感知节点,并获取所述第一感知节点和所述第二感知节点各自的感知需求信息;所述处理器或所述通信接口还用于获取目标感知结果,其中,所述目标感知结果根据所述第一感知节点和所述第二感知节点分别按照各自的感知需求信息进行目标协同感知的结果确定;
或者,
所述通信接口用于获取第一感知需求信息;所述处理器用于根据第一感知节点的能力配置信息和所述第一感知需求信息,确定目标感知协同类型且所述通信接口还用于发送所述目标感知协同类型,或者,所述通信接口用于接收所述目标感知协同类型;
或者,
所述通信接口用于接收来自第一感知功能网元的第二感知需求信息;所述处理器用于根据所述第二感知需求信息和每一个感知功能网元支持的感知业务类型,确定用于与所述第一感知功能网元进行目标协同感知的第二感知功能网元,以及确定由所述第二感知功能网元调度的第二感知节点或者接收来自所述第二感知功能网元的所述第二感知节点的标识信息;或者所述处理器用于根据所述第二感知需求信息,确定第三感知功能网元,并将支持所述第二感知需求信息对应的感知业务类型的第三感知功能网元确定为所述第二感知功能网元,以及确定由所述第二感知功能网元调度的第二感知节点或者接收来自所述第二感知功能网元的所述第二感知节点的标识信息;所述通信接口还用于向所述第二感知节点发送所述第二感知需求信息。
第九方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第五方面所述的方法的步骤。
第十方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于获取第一感知需求信息;所述处理器用于根据第一感知节点的能力配置信息和所述第一感知需求信息,确定目标感知协同类型且所述通信接口还用于发送所述目标感知协同类型,或者,所述通信接口用于接收所述目标感知协同类型。
第十一方面,提供了一种可读存储介质,所述可读存储介质上存储程序 或指令,所述程序或指令被处理器执行时实现如第一方面或第三方面或第五方面所述的方法的步骤。
第十二方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面或第三方面或第五方面所述的方法。
第十三方面,提供了一种计算机程序产品,所述计算机程序产品被存储在非瞬态的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第一方面或第三方面或第五方面所述的无线感知协同方法的步骤。
在本申请实施例中,第一感知功能网元获取第一感知需求信息;所述第一感知功能网元根据所述第一感知需求信息,确定第一感知节点和第二感知节点,并获取所述第一感知节点和所述第二感知节点各自的感知需求信息;所述第一感知功能网元获取目标感知结果,其中,所述目标感知结果根据所述第一感知节点和所述第二感知节点分别按照各自的感知需求信息进行目标协同感知的结果确定。这样,在一个感知节点不能够满足第一感知需求信息的情况下,第一感知功能网元能够选取至少两个感知节点,并确定每一个感知节点的需求信息,以通过该至少两个感知节点分别按照各自的感知需求信息进行目标协同感知,便可以获取满足所述第一感知需求信息的目标感知结果,从而提升了感知性能。
附图说明
图1是本申请实施例能够应用的一种无线通信系统的框图;
图2是本申请实施例提供的第一种无线感知协同方法的流程图;
图3是本申请实施例提供的第二种无线感知协同方法的流程图;
图4是本申请实施例提供的第三种无线感知协同方法的流程图;
图5是本申请实施例提供的第一种无线感知协同装置的结构示意图;
图6是本申请实施例提供的第二种无线感知协同装置的结构示意图;
图7是本申请实施例提供的第三种无线感知协同装置的结构示意图;
图8是本申请实施例提供的一种通信设备的结构示意图;
图9是本申请实施例提供的一种终端的结构示意图;
图10是本申请实施例提供的一种网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本 电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装、游戏机等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网网元,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(Evolved Node B,eNB)、家用B节点、家用演进型B节点、无线局域网(Wireless Local Area Network,WLAN)接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
在无线通信系统中,有望提供各种高精度的传感服务,例如:机器人导航的室内定位、智能家居的Wi-Fi传感和自动驾驶汽车的雷达传感等。在相关技术中,传感和通信系统通常是单独设计的,并占用不同的频段。
本申请考虑到毫米波和大规模MIMO技术的广泛部署,使得未来无线通信系统中的通信信号往往在时域和角度域都具有高分辨率,这使得利用通信信号实现高精度传感成为可能。因此,最好是联合设计传感和通信系统,使它们能够共享同一频段和硬件,以提高频率效率并降低硬件成本,从而促使了对通信和感知一体化(Integrated Sensing And Communication,ISAC)的研究。
ISAC将成为未来无线通信系统的一项关键技术,以支持许多重要的应用 场景。例如:在未来的自动驾驶车辆网络中,自动驾驶车辆将从网络中获得大量的信息,包括超高分辨率的地图和接近实时的信息,以进行导航和避免即将到来的交通拥堵。在同样的情况下,自动驾驶车辆中的雷达传感器应该能够提供强大的、高分辨率的障碍物探测功能,分辨率在厘米量级。用于自动驾驶车辆的ISAC技术提供了使用相同硬件和频谱资源实现高数据率通信和高分辨率障碍物探测的可能。ISAC的其他应用包括基于Wi-Fi的室内定位和活动识别、无人驾驶飞机的通信和传感、扩展现实(Extended Reality,XR)、雷达和通信一体化等。每个应用都有不同的要求、限制和监管问题。ISAC已经引起了学术界和工业界巨大的研究兴趣和关注。
ISAC通过硬件设备共用和软件定义功能的方式获得通信和感知双功能的一体化低成本实现,特点主要有:一是架构统一且简化,二是功能可重构可扩展,三是效率提升且成本降低。通信感知一体化的优势主要有三个方面:一是设备成本降低、尺寸减小,二是频谱利用率提升,三是系统性能提升。
学术界通常将ISAC的发展划分为四个阶段:共存阶段、共运行阶段、共设计阶段和共同协作阶段。
其中,共存阶段表示:通信系统和感知系统是两个相互分立的系统,两者会相互干扰,解决干扰的主要方法是:距离隔离、频段隔离、时分工作,MIMO技术、预编码等;
共运行阶段表示:通信系统和感知系统共用硬件平台,利用共有信息提升共同的性能,二者之间的功率分配对系统性能影响较大,主要问题是:低信噪比、相互干扰、低吞吐率。
共设计阶段表示:通信系统和感知系统成为一个完全的联合系统,包括联合信号设计、波形设计、编码设计等,前期有线性调频波形、扩频波形等,后来聚焦到OFDM波形、MIMO技术等。
共同协作阶段表示:多个通信感知一体化节点相互协作实现公共目标。例如,通过通信数据传输共享雷达探测信息,典型场景有驾驶辅助系统、雷达辅助通信等。
但是,相关技术中对通感一体化场景中的感知系统的研究,只是针对单一感知节点或单一感知功能的感知方法的研究,而单个感知节点的感知能力 可能不能够满足实际应用场景下的感知需求。对此,本申请实施例提供的无线感知协同方法能够根据感知需求来确定是否需要至少两个感知节点和/或至少两个感知功能进行协同感知,并在确定需要至少两个感知节点和/或至少两个感知功能进行协同感知的情况下,控制至少两个感知节点和/或至少两个感知功能进行相应的协同感知,以得到满足感知需求的感知结果。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的无线感知协同方法、装置、网络侧设备和终端进行详细地说明。
请参阅图2,本申请提供的第一种无线感知协同方法的执行主体可以是第一感知功能网元,如图2所示,该第一种无线感知协同方法可以包括以下步骤:
步骤201、第一感知功能网元获取第一感知需求信息。
在具体实施中,第一感知功能网元可以是核心网网元中用于实现感知功能的网元,在此不作具体限定。
在实施中,上述第一感知需求信息可以是第三方应用或终端发起的第一感知需求的需求信息。例如:第一感知需求信息可以是如下表1所示通信与感知一体化场景中的感知需求信息:
表1
Figure PCTCN2022129254-appb-000001
上述第一感知功能网元可以接收来自第三方应用或终端的第一感知需求信息,例如:第三方应用将第一感知需求信息发送给应用服务器,应用服务器将第一感知需求发送给核心网网元,核心网网元根据第一感知需求信息选择对应的感知功能网元、并将第一感知需求发送给感知功能网元;再例如:用户设备(User Equipment,UE)通过非接入层(Non Access Stratum,NAS)信令将第一感知需求信息发送给核心网网元,核心网网元根据第一感知需求信息选择对应的感知功能网元、并将第一感知需求信息发送给选择的感知功能网元。
可选地,所述第一感知需求信息包括以下至少一项:感知目标、感知目标先验信息、感知指标和感知测量量。
其中,所述感知目标可以包括以下至少一项:
1)目标特征:指感知对象的物理或化学特征,例如:位置(相对参考点的直角坐标或球坐标)、距离、速度、加速度、尺寸、雷达截面积(Radar Cross Section)、材料成分、温度等;
2)目标环境:指感知区域的物理或化学特征,例如:环境温度、环境湿度、降雨情况、空气中液态水含量(雾)、降雪情况、空气风力、大气压强、环境电磁特性(包括:反射杂波、信号干扰等)、建筑物/植被分布等;
3)目标事件:指感知对象的上述目标特征发生变化的事件,或/和,感知区域的上述目标环境发生变化的事件,例如:呼吸、心跳、跌倒、手势动作、行人/车辆穿越、动物迁徙等。
上述感知目标先验信息可以包括以下至少一项:
1)目标特征的先验信息:指感知对象的物理或化学特征的先验信息,且该先验信息不是待感知的目标特征;或者,该先验信息是待感知的目标特征,但先验信息的感知指标相比第一感知需求信息的感知指标较差;例如:雷达探测的指示信息即是待探测目标的特征先验信息,但是指示信息的精度较低,雷达探测的目的是在低精度指示信息的帮助下进行高精度探测;
2)目标环境的先验信息:指感知区域的物理或化学特征的先验信息,该先验信息不是待感知的目标环境信息;或者,该先验信息是待感知的目标特征,但先验信息的感知指标相比第一感知需求信息的感知指标较差;例如: 在进行空气湿度检测时,需要空气温度的先验信息,以确定由干燥空气引起的信号衰减,从而能够更精确地计算由空气中水汽(湿度)引起的信号衰减。
所述感知指标可以包括以下至少一项:感知误差、感知分辨率/感知精度、感知时延、感知范围、感知频率、检测概率、虚警概率、感知信干杂噪比、感知盲区要求等。
所述感知测量量包括以下至少一项:
一级测量量,为通过执行感知过程所要测量的测量量;
二级测量量,为通过对所述一级测量量进行第一预设处理得到的测量量;
三级测量量,为通过对所述一级测量量和/或所述二级测量量进行第二预设处理得到的测量量。
在具体实施中,所述一级测量量:是指感知节点的接收机经过天线耦合、放大、下变频、滤波、自动增益控制(Automatic Gain Control,AGC)、模拟或数字(Analog or Digital,A/D)信号采样、数字下变频、数字滤波等过程后直接能够得到的测量量,包括:复数信号(包括I路和Q路)、信号幅度、信号相位、信号功率、极化信息等,以及上述测量量的门限检测结果、最大/最小值提取结果等;
所述第一预设处理可以是简单运算处理,即所述二级测量量:是指一级测量量经过简单运算(包括:加减乘除、矩阵加减乘、矩阵转置、三角关系运算、平方根运算、幂次运算等,以及上述运算结果的门限检测结果、最大/最小值提取结果等)后能够得到的测量量,包括:幅度比值、相位差值,接收信号到达角(Angle-of-Arrival,AOA)、发射信号离去角(Angle of Departure,AOD)、时延(距离)信息,距离差、角度差等。
可选地,所述二级测量量还包括接收信号I路和Q路经过复平面旋转运算的结果,复平面旋转运算公式为I*cos(theta)+Q*sin(theta),其中I表示I路信号时域采样数据、Q表示Q路信号时域采样数据、theta为某一已知的角度值。
所述第一预设处理可以是复杂运算处理,即所述三级测量量:指一级测量量和/或二级测量量经过复杂运算(包括:快速傅里叶变换(Fast Fourier Transform,FFT)或快速傅里叶反变换(Inverse Fast Fourier Transform,IFFT)、 离散傅里叶变换(Discrete Fourier Transform,DFT)或离散傅里叶反变换(Inverse Discrete Fourier Transform,IDFT)、二维快速傅里叶变换(2Dimensional Fast Fourier Transform,2D-FFT)、三维快速傅里叶变换(3Dimensional Fast Fourier Transform,3D-FFT)、匹配滤波、自相关运算、小波变换、数字滤波等,以及上述运算结果的门限检测结果、最大/最小值提取结果等)后能够得到的测量量,包括:复数信号(或信号幅度、或信号相位)经过FFT(或IFFT)的运算结果或其最大值数据点、功率谱或其最大值数据点,多普勒频移(速度)、多普勒扩展,速度差,时延多普勒二维图或其最大值数据点、雷达一维成像图或其最大值数据点、雷达二维成像图或其最大值数据点、合成孔径雷达(Synthetic Aperture Radar,SAR)成像图或其最大值数据点等。
需要说明的是,在不同的感知应用场景中,根据感知目标和感知方法的不同,可能只需要一级测量量(例如:基于接收信号强度(Received Signal Strength,RSS)的人/车流量监测),或者只需要一级测量量和二级测量量(例如:雷达测距),或者同时需要一级测量量、二级测量量和三级测量量(例如:雷达成像)。
另外,上述第二感知节点执行第二感知过程所得到的第二感知测量量,与上述第一感知测量量具有相同的含义,在此不再赘述。
在实施中,在感知节点测量得到各自的测量结果后,可以在感知节点侧计算上述二级测量量和/或三级测量量,或者,感知节点还可以向感知功能网元或核心网网元发送一级测量量,以在感知功能网元侧或核心网网元来根据一级测量量计算上述二级测量量和/或三级测量量,甚至可以在应用服务器侧来根据一级测量量计算上述二级测量量和/或三级测量量。
在应用中,可以根据执行感知过程的感知节点、感知功能网元、核心网网元、应用服务器等设备的运算能力,以及对感知指标的要求,各级测量量可以在同一设备中运算得到,也可以在感知节点、感知功能网元、核心网网元、应用服务器中的不同设备中运算得到。
可选地,所述二级测量量由感知节点或感知功能网元或核心网网元,根据所述一级测量量计算得到;
所述三级测量量由感知节点或感知功能网元或所述核心网网元,根据所述一级测量量和/或所述二级测量量计算得到。
举例一:
如果执行感知过程的感知节点的运算能力较强(如基站),且感知测量量的数据量较大(传输时间开销较大),且感知需求对感知时延的要求较高,则可以在感知节点完成二级测量量和/或三级测量量的运算,并将运算结果发送给感知功能网元、核心网网元、应用服务器;
举例二:
如果执行感知过程的感知节点的运算能力较弱(如物联网终端),且感知测量量的数据量较大(传输时间开销较大),且感知需求对感知时延的要求不高但对感知精度的要求较高,则可以在感知节点完成一级测量量的运算,将运算结果发送给感知功能网元、核心网网元、应用服务器,由感知功能网元、核心网网元、应用服务器进行二级测量量和/或三级测量量的运算;
举例三:
如果感知测量量的数据量较小(传输时间开销较小),则可在核心网网元或应用服务器的调度下,可在感知节点、感知功能网元、核心网网元以及应用服务器中的至少一侧完成各级测量量的运算。
步骤202、所述第一感知功能网元根据所述第一感知需求信息,确定第一感知节点和第二感知节点,并获取所述第一感知节点和所述第二感知节点各自的感知需求信息。
在具体实施中,一个感知节点可以是能够完整地完成一个感知过程的设备或设备组,也就是说,一个感知节点可以包括一个或至少两个设备,且该一个或至少两个设备可以包括网络侧设备和/或终端设备。
例如:假设所述第一感知需求信息中的感知目标为测量感知对象的距离和速度,此时可以采用雷达回波检测的方式进行感知,如:采用基站自发自收或UE自发自收的方式;此时,仅需一个设备即可完成完整的感知过程,即一个节点包含一个设备;所述设备包括但不限于:基站、UE、发送接收点TRP、接入节点(Access Point,AP)、可重构智能表面(Reconfigurable Intelligent Surface,RIS)实体。
再例如:假设所述第一感知需求信息中的感知目标为测量感知区域的降雨率,此时可以采用基站A发送信号、基站B接收信号并进行信号处理的方式进行感知,也就是说,此时需两个设备配合完成一个感知过程,即一个节点可以包含两个设备;所述设备包括但不限于:基站、UE、TRP、AP、RIS。
再例如:假设所述第一感知需求信息中的感知目标为确定感知对象UE的位置,此时可以采用基于设备(device-based)的方式进行感知,除感知对象UE外,需要至少三个设备配合完成三点定位,也就是说,此时需多个设备配合完成感知过程,即一个节点可以包含多个设备;所述设备包括但不限于:基站、UE、TRP、AP、RIS。
另外,上述第一感知节点可以是根据第一感知需求信息选择的最佳感知节点,其是能够最大化满足第一感知需求信息的感知节点,或者在一定条件下能够满足第一感知需求信息的感知节点。其中,最大化满足第一感知需求信息,也可以理解为最小化偏差,即相比其他感知节点能够获得与第一感知需求信息中的感知目标和感知指标偏差最小的感知结果。因此,所述第一感知节点并不意味着能够独立满足第一感知需求信息的要求,其可能需要其他感知节点的辅助。此时,第一感知功能网元还可以确定第二感知节点,以利用第二感知节点辅助第一感知节点,以获取能够满足所述第一感知需求信息的要求的感知结果。
作为一种可选的实施方式,所述第一感知功能网元根据所述第一感知需求信息,确定第一感知节点,包括:
所述第一感知功能网元根据所述第一感知需求信息,确定第一感知节点和目标感知协同类型,并向所述第一感知节点发送所述第一感知需求信息;或者,
所述第一感知功能网元根据所述第一感知需求信息,确定第一感知节点,向所述第一感知节点发送所述第一感知需求信息,并接收来自所述第一感知节点的所述目标感知协同类型。
其中,所述目标感知协同类型包括以下任一项:
相同感知功能网元协调下的不同感知类型的感知节点协同实施所述目标协同感知;
相同感知功能网元协调下的相同感知类型的感知节点协同实施所述目标协同感知;
不同感知功能网元之间协同实施所述目标协同感知。
选项一
所述相同感知功能网元协调下的不同感知类型的感知节点协同实施所述目标协同感知,可以理解为:相同感知功能网元协调下、不同感知类型之间协同实施目标感知,即所述第一感知节点和所述第二感知节点都是由所述第一感知功能网元调度的感知节点,且所述第一感知节点与所述第二感知节点的感知类型不同,例如:第一感知节点用于感知人流量,所述第二感知节点用于感知天气情况,这样,可以排除降雨、雾霾等不同天气情况对人流量感知过程的干扰,以提升人流量感知结果的准确性。
在移动通信感知网络中,可以有至少两种不同感知类型的感知节点由相同的感知功能网元协调,例如:基于RSS的天气情况感知和人/车流量感知的感知较为相似,可以由相同的感知功能网元协调;此时,该感知功能网元可以协调不同的感知类型(例如:天气情况感知、人/车流量感知等)的感知节点,以进行感知协同。
需要说明的是,在确定所述目标感知协同类型为相同感知功能网元协调下、不同感知类型之间的协同的情况下,所述第一感知节点的感知需求信息与所述第二感知节点的感知需求信息分别为不同的感知需求信息。
选项二
所述相同感知功能网元协调下的相同感知类型的感知节点协同实施所述目标协同感知,可以理解为:相同感知功能网元协调下、相同感知类型之间协同实施目标感知,即所述第一感知节点和所述第二感知节点都是由所述第一感知功能网元调度的感知节点,且所述第一感知节点与所述第二感知节点的感知类型相同。
本实施方式下,多个节点在相同的感知功能网元的协调下实施相同的感知过程,可以通过数据融合等处理得到感知指标增强的感知结果,从而实现提高感知性能。例如:一定区域内所有的基于基站/UE的雷达成像感知由相同的感知功能网元进行协调,这样,综合第一感知节点和第二感知节点对同 一感知对象的雷达成像感知结果,可以提升雷达成像感知的精确度。
需要说明的是,在确定所述目标感知协同类型为相同感知功能网元协调下、相同感知类型之间的协同的情况下,所述第一感知节点的感知需求信息与所述第二感知节点的感知需求信息分别为相同的感知需求信息。
选项三
所述不同感知功能网元之间协同实施所述目标协同感知,可以理解为:不同感知功能网元协调下、不同感知类型之间协同实施目标感知,即所述第一感知节点由所述第一感知功能网元调度,所述第二感知节点由第二感知功能网元调度,此时,第一感知节点和第二感知节点的感知类型可以相同也可以不同,但是,通常情况下,不同感知功能网元调度下的感知节点的感知类型通常并不相同,例如:在移动通信感知网络中,感知测量量和/或感知方法区别较大的感知类型可以有不同感知功能网元控制,例如:基于基站/UE的雷达成像感知与定位感知,可以由不同的感知功能网元分别协调。为了便于说明,以下实施例中,以第一感知节点和第二感知节点的感知类型不同为例,对所述不同感知功能网元之间协同实施所述目标协同感知的过程进行举例说明。
在实施中,可以采用以下任一种方式来确定第一感知节点:
方式一:
可以在网络侧设备中预先存储每一个感知节点的能力配置信息,例如:每一个感知功能网元可以预先存储由其调度的每一个感知节点的能力配置信息,这样,在某一感知功能网元获取到感知需求时,能够根据自身和/或其他网络节点预先存储的能力配置信息,来确定用于执行第一感知过程的第一感知节点,并将第一感知需求信息发送给所述第一感知节点。
可选地,所述第一感知功能网元根据所述第一感知需求信息,确定第一感知节点,包括:
所述第一感知功能网元根据所述第一感知需求信息和每一个感知节点的能力配置信息,确定第一感知节点。
本实施方式中,感知功能网元能够根据预先存储的各个感知节点的能力配置信息,来选择可用于执行第一感知过程的第一感知节点。
方式二:
网络侧设备可以不预先存储感知节点的能力配置信息,此时,感知功能网元可以根据第一感知需求信息初步选择执行第一感知过程的感知节点,并将第一感知需求信息发送给该感知节点;所述感知节点则根据接收到的第一感知需求信息,对感知功能网元进行反馈,如果该感知节点反馈确定执行第一感知过程,则选择其作为所述第一感知节点,并结束选择过程;如果该感知节点反馈不能执行第一感知过程,则感知功能网元需要重新选择第一感知节点,直至选择到能够执行第一感知过程的第一感知节点。
可选地,所述第一感知功能网元根据所述第一感知需求信息,确定第一感知节点,包括:
所述第一感知功能网元根据所述第一感知需求信息选择第三感知节点,并向所述第三感知节点发送所述第一感知需求信息;
所述第一感知功能网元接收所述第三感知节点的第一反馈信息;
所述第一感知功能网元根据所述第一反馈信息,将支持执行所述第一感知过程的第三感知节点确定为第一感知节点。
其中,所述第三感知节点可以理解为根据第一感知需求信息初步选择执行第一感知过程的感知节点。
本实施方式中,由感知节点根据自身的能力配置信息确定能够执行第一感知过程,避免了需要在网络侧设备预先存储每一个感知节点的能力配置信息。
进一步地,在确定第一感知节点后,还可以根据第一感知需求信息和所述第一感知节点的能力配置信息,来确定所述第一感知节点是否需要其他感知节点协同,才能够得到满足所述第一感知需求信息的目标感知结果。
例如:感知功能网元或其他网络节点存储各感知节点的能力配置信息,感知功能网元通过访问自身存储或其他网络节点存储的各感知节点的能力配置信息数据,以根据第一感知节点的能力配置信息和第一感知需求确定是否需要感知协同。
再例如:感知功能网元和其他网络节点不存储感知节点的能力配置信息,在第一感知功能网元将第一感知需求信息发送给第一感知节点后,第一感知 节点根据自身的能力配置信息和第一感知需求信息确定是否需要感知协同,并上报给第一感知功能网元。
需要说明的是,通过上述确定是否需要感知协同的过程,若确定需要感知协同,则第一感知功能网元或第一感知节点可以进一步确定所需的目标感知协同类型,例如:根据用于辅助所述第一感知节点的第二感知节点的感知类型是否与第一感知节点的感知类型相同,以及分别调用所述第一感知节点和所述第二感知节点的感知功能网元是否为同一感知功能网元等,确定所述目标感知协同类型,在此不作具体限定。
作为一种可选的实施方式,所述第一感知功能网元根据所述第一感知需求信息,确定第二感知节点,包括:
所述第一感知功能网元根据所述目标感知协同类型和所述第一感知需求信息,确定第二感知需求信息和第二感知节点,并向所述第二感知节点发送所述第二感知需求信息;或者,
所述第一感知功能网元接收来自所述第一感知节点的所述第二感知需求信息,根据所述第二感知需求信息和所述目标感知协同类型确定第二感知节点,并向所述第二感知节点发送所述第二感知需求信息。
在一些实施例中,所述第一感知功能网元,能够根据第一感知节点上报或感知功能网元存储或其他网络节点存储的第一感知节点的能力配置信息,结合第一感知需求信息和所述目标感知协同类型(相同感知功能网元协调下、不同感知类型之间协同实施目标感知),来确定协同感知需求(即第二感知需求信息)。
当然,在其他实施例中,还可以由第一感知节点确定所述第二感知需求信息,例如:所述第一感知节点根据自身的能力配置信息和所述第一感知需求信息,确定其需要其他感知节点提供什么样的辅助,从而据此确定所述第二感知需求信息为需要的辅助的信息,此时,感知功能网元可以接收来自所述第一感知节点的第二感知需求信息,并据此选择第二感知节点。
需要说明的是,上述感知功能网元根据第二感知需求信息选择第二感知节点的过程,可以与所述第一感知功能网元根据第一感知需求信息,确定第一感知节点的过程相似,例如:感知功能网元或其他网络节点存储各感知节 点的能力配置信息,感知功能网元访问自身存储或其他网络节点存储的各感知节点的能力配置信息数据,感知功能网元根据存储的能力配置信息和第二感知需求信息选择执行协同感知过程(即第二感知过程)的第二感知节点,并向第二感知节点发送第二感知需求信息;或者,感知功能网元或其他网络节点没有存储感知节点的能力配置信息,感知功能网元根据第二感知需求信息初步选择执行第二感知过程的第二感知节点,并向该第二感知节点发送第二感知需求信息;第二感知节点对感知功能网元进行反馈:如果第二感知节点反馈确定执行第二感知过程,则选择过程结束;如果第二感知节点反馈不能执行该第二感知过程,则感知功能网元重新选择第二感知节点,在此对感知功能网元确定第二感知节点的过程不做过多阐述。
值得注意的是,在所述目标协同感知类型为不同感知功能网元之间协同实施所述目标协同感知的情况下,可以由核心网网元进行协调。
作为一种可选的实施方式,在所述第二感知节点由第二感知功能网元调度的情况下,所述方法还包括:
所述第一感知功能网元向核心网网元发送所述第二感知需求信息,其中,所述第二感知需求信息用于确定所述第二感知功能网元和所述第二感知节点。
在实施中,上述所述第二感知需求信息用于确定所述第二感知功能网元和所述第二感知节点可以理解为:所述核心网网元在接收到所述第二感知需求信息时,可以根据所述第二感知需求信息确定所述第二感知功能网元和所述第二感知节点,或者,所述核心网网元用于根据所述第二感知需求信息确定所述第二感知功能网元,且所述第二感知功能网元根据所述第二感知需求信息确定所述第二感知节点。
具体的,核心网网元可以根据第二感知需求信息选择第二感知功能网元和对应的第二感知节点,或者核心网网元仅根据所述第二感知需求信息选择第二感知功能网元,并由所述第二感知功能网元选择第二感知节点。
可选地,所述第二感知功能网元的选择过程可以是以下两种方式中的任一种:
方式一:核心网网元或其他网络节点存储各感知功能网元支持的感知业务类型,核心网网元访问自身或其他网络节点存储的各感知功能网元支持的 感知业务类型数据,核心网网元根据存储的感知业务类型信息和第二感知需求信息选择执行协同感知过程的第二感知功能网元,并将第二感知需求发送给第二感知功能网元。
方式二:核心网网元和其他网络节点不存储各感知功能网元支持的感知业务类型,核心网网元根据第二感知需求信息初步选择第二感知功能网元,并将第二感知需求信息发送给第二感知功能网元;第二感知功能网元对核心网网元进行反馈:如果该第二感知功能网元支持第二感知需求信息指示的感知业务类型,则确认执行第二感知过程、第二感知功能网元选择过程结束;如果第二感知功能网元不支持第二感知需求信息指示的感知业务类型,则反馈不能执行该第二感知过程,核心网网元选择其他感知功能网元。
本实施方式中,对于上述不同感知功能网元之间协同实施所述目标协同感知的情况,可以由核心网网元进行协调。
可选地,所述第二感知节点满足以下至少一项:
与所述第一感知节点的感知类型相同,或者,与所述第一感知节点的感知类型不相同;
由所述第一感知功能网元调度,或者,由第二感知功能网元调度;
所述第二感知节点为参考站。
在实施中,在所述目标感知协同类型为相同感知功能网元协调下的不同感知类型的感知节点协同实施所述目标协同感知或者不同感知功能网元之间协同实施所述目标协同感知的情况下,所述第一感知节点与所述第二感知节点的感知类型可以不相同。
在所述目标感知协同类型为相同感知功能网元协调下的相同感知类型的感知节点协同实施所述目标协同感知的情况下,所述第一感知节点与所述第二感知节点的感知类型可以相同。
另外,上述参考站可以包括以下至少一项:
1)配备传统测量工具的站点,例如:雨量计、温度计、湿度计、红外线人流感知设备、专用多普勒测速设备等,该站点将测得的参考感知结果通过无线或有线通信发送给第一感知节点或感知功能网元作为参考,用以修正第一感知节点的无线感知结果的偏差;
2)已知感知结果的站点,例如:已知精确的经纬高坐标的参考站,第一感知节点通过对该站点进行位置感知,用以确定并修正第一感知节点的无线感知结果的偏差,此时,第一感知节点与该站点一起构成参考站,即第二感知节点;又例如:距离气象观测站一定距离之内(例如一百米)的感知节点可作为天气感知的参考站;
3)配备传统测量工具的无线感知节点,例如:配备雨量计、温度计、湿度计等的天气感知节点,无线感知节点执行感知结果运算的部分中间变量由配备的传统测量工具测量得到,从而该无线感知节点的感知结果的感知指标得到增强,可以作为参考站。
在另一些可选的实施方式中,所述第二感知节点也可以是与第一感知节点相似的无线感知节点,但是其配置参数稍有不同,从而感知能力不同,其具体可以包括以下情况中的至少一种:
情况一:第二感知节点与第一感知节点所处的位置不同,从而所受到的干扰因素不同。
例如:第二感知节点为距离地面数十米高的宏基站,从而不会受到行人/车辆穿越等因素的影响,只受到天气情况的影响,可以进行天气情况检测;而第一感知节点为距离地面较近的微基站,与行人/车辆的高度较为接近,可进行行人/车辆的检测,同时也受到天气情况的影响。
情况二:第二感知节点与第一感知节点的硬件配置不同,从而信号相关配置不同,所述信号相关配置包括:频段、极化、带宽、发射功率等。
例如:第二感知节点为FR2频段的设备,受到天气情况影响比较显著,适合用来进行天气情况感知;而第一感知节点为FR1频段设备,受天气情况影响不显著但行人/车辆的遮挡仍会造成显著影响;
情况三:第二感知节点与第一感知节点的工作负荷不同,从而允许用来进行感知的资源(时间、带宽等)量不同。
例如:第一感知节点处在人流密度较高区域,能够分配给感知的时间和带宽资源较少;而第二感知节点处在人流密度相对较低的区域,能够分配给感知的时间和带宽资源相对较多
情况四:第二感知节点与第一感知节点是相同实体,但是需执行不同的 感知过程;该相同实体执行第二感知过程时作为第二感知节点、执行第一感知过程时作为第一感知节点。
需要说明的是,所述第二感知需求信息与所述第一感知需求信息相似,其同样可以包括:感知目标、感知目标先验信息、感知指标和感知测量量中的至少一项,在此不再赘述。
另外,在具体实施中,第二感知需求信息的具体内容与第一感知需求信息的具体内容可以是相同的也可以是不相同的;在第二感知节点辅助第一感知节点实施目标感知的用例中,第二感知需求信息与第一感知需求信息所包含的具体内容通常不完全相同。
而且,第二感知节点的主要特征是根据第二感知需求信息执行第二感知过程,在某些情况下,第二感知节点与第一感知节点可以是相同的实体。此种情况下,由第一感知节点执行第二感知过程,用来辅助第一感知节点的第一感知过程。为了便于说明,我们称此种情况下执行第二感知过程的第一感知节点为第二感知节点,执行第一感知过程的第一感知节点为第一感知节点。
需要说明的是,在一个感知节点能够满足感知需求的情况下,第一感知功能网元也可以选择一个感知节点执行对应的感知过程,以获取满足该感知需求的感知结果,在此不做过多阐述。
另外,上述第二感知节点可以是一个感知节点也可能是至少两个感知节点,甚至,所述第二感知节点可能也需要其他感知节点进行辅助,以获取满足所述第二感知节点的需求信息的感知结果,再利用该满足所述第二感知节点的需求信息的感知结果去辅助第一感知节点,以获取目标感知结果。
例如:感知功能网元根据第一感知节点和第二感知节点上报的能力配置信息,或根据在感知功能网元或其他网络节点存储的第一感知节点和第二感知节点的能力配置信息,以及各个感知节点的感知需求信息,确定是否需要第三感知节点进行感知协同(例如:通过感知指标判定是否需要第三感知节点协同);如果不需要第三感知节点协同则节点选择过程结束,如果需要第三感知节点协同则重复上一步的感知节点选择过程,直至选择的全部辅助感知节点(如:第二感知节点和第三感知节点,甚至还包括第四感知节点)的感知指标满足感知需求的要求。
在实施中,可以由感知功能网元或第一感知节点确定需要的辅助节点的数量,为了便于说明,以下实施例中,将一个或至少两个第二感知节点,以及用于辅助所述第二感知节点的其他感知节点,统一称之为第二感知节点。
步骤203、所述第一感知功能网元获取目标感知结果,其中,所述目标感知结果根据所述第一感知节点和所述第二感知节点分别按照各自的感知需求信息进行目标协同感知的结果确定。
在实施中,所述第一感知节点可以根据第一感知需求信息执行第一感知过程,以获取第一测量量;所述第二感知节点可以根据第二感知需求信息执行第二感知过程,以获取第二测量量和/或第二感知结果;然后,可以由第一感知节点、第一感知功能网元、核心网网元中的至少一个,根据该第一测量量,以及第二测量量和/或第二感知结果来计算得到所述目标感知结果,也就是说,上述第一感知功能网元获取目标感知结果的方式可以是:从第一感知节点获取,或者从核心网网元获取,或者自身计算得到,在此不作具体限定。
在第一种可选的实施方式中,所述第一感知功能网元获取目标感知结果,包括:
所述第一感知功能网元获取所述第一感知节点执行第一感知过程测量得到的第一测量量和/或第一感知结果;
所述第一感知功能网元获取所述第二感知节点执行第二感知过程测量得到的第二测量量和/或第二感知结果,所述目标协同感知包括所述第一感知过程和所述第二感知过程;
所述第一感知功能网元根据所述第一测量量和/或第一感知结果,以及所述第二测量量和/或第二感知结果,确定与所述第一感知需求信息对应的目标感知结果。
本实施方式中,所述第一感知功能网元分别接收来自所述第一感知节点和所述第二感知节点的所述第一测量量和/或第一感知结果,以及所述第二测量量和/或第二感知结果,并据此执行计算得到所述目标感知结果的过程。
在第二种可选的实施方式中,所述第一感知功能网元获取目标感知结果,包括:
所述第一感知功能网元获取所述第一感知节点执行第一感知过程测量得 到的第一测量量和/或第一感知结果;
所述第一感知功能网元获取所述第二感知节点执行第二感知过程测量得到的第二测量量和/或第二感知结果,所述目标协同感知包括所述第一感知过程和所述第二感知过程;
所述第一感知功能网元向核心网网元发送所述第一测量量和/或第一感知结果,以及所述第二测量量和/或第二感知结果,并接收来自所述核心网网元的与所述第一感知需求信息对应的目标感知结果。
本实施方式中,所述第一感知功能网元将分别从所述第一感知节点和所述第二感知节点获取所述第一测量量和/或第一感知结果,以及所述第二测量量和/或第二感知结果发送至核心网网元,以由所述核心网网元执行根据所述第一测量量和/或第一感知结果,以及所述第二测量量和/或第二感知结果,计算所述目标感知结果的过程,这样,第一感知功能网元不需要执行上述计算过程,而是从核心网网元获取其计算得到的目标感知结果即可。
在第三种可选的实施方式中,所述第一感知功能网元获取目标感知结果,包括:
所述第一感知功能网元获取所述第二感知节点执行第二感知过程测量得到的第二测量量和/或第二感知结果,并向所述第一感知节点发送所述第二测量量和/或第二感知结果;
所述第一感知功能网元接收来自所述第一感知节点的与所述第一感知需求信息对应的目标感知结果。
本实施方式中,通过第一感知功能网元将所述第二感知节点的第二测量量和/或第二感知结果转发至所述第一感知节点,以通过所述第一感知节点,执行根据所述第二测量量和/或第二感知结果,以及自身的第一测量量,计算所述目标感知结果的过程。
在实际应用中,可以根据第一感知节点、感知功能网元以及核心网网元的计算能力,以及所述第一测量量,以及所述第二测量量和/或第二感知结果的数据量等情况,确定由第一感知节点、感知功能网元以及核心网网元执行上述计算目标感知结果的过程。
为了便于说明,通过以下几种实施例,对上述计算所述第一感知节点的 目标感知结果的过程,进行举例说明:
实施例一
第二感知节点将执行第二感知过程得到的第二感知结果发送给第一感知节点,第一感知节点根据执行第一感知过程得到的第一感知测量量(可以是一级测量量和/或二级测量量和/或三级测量量)和第二感知结果,计算得到目标感知结果,并将目标感知结果上报至感知功能网元。
在具体实施中,上述第二感知节点可以执行第二感知过程,以得到第二感知测量量,并根据第二感知测量量计算得到上述第二感知结果。
实施例二
第二感知节点将执行第二感知过程得到的第二感知测量量(一级测量量,和/或二级测量量,和/或三级测量量)发送给第一感知节点,第一感知节点根据执行第一感知过程得到的第一感知测量量(一级测量量和/或二级测量量和/或三级测量量)和第二感知测量量,计算得到目标感知结果,并将目标感知结果上报至感知功能网元。
实施例三
第一感知节点将执行第一感知过程得到的第一感知测量量(一级测量量和/或二级测量量和/或三级测量量)发送给感知功能网元,第二感知节点将执行第二感知过程得到的第二感知测量量(一级测量量和/或二级测量量和/或三级测量量)发送给感知功能网元,感知功能网元根据第一感知测量量和第二感知测量量计算得到目标感知结果。
实施例四
第一感知节点将执行第一感知过程得到的第一感知测量量(一级测量量和/或二级测量量和/或三级测量量)发送给感知功能网元,第二感知节点将执行第二感知过程得到的第二感知结果发送给感知功能网元,感知功能网元根据第一感知测量量和第二感知结果计算得到目标感知结果。
需要说明的是,在得到目标感知结果后,可以通过核心网网元向第三方应用或终端发送所述目标感知结果。
在实施中,在所述目标感知协同类型为不同感知功能网元之间协同实施所述目标协同感知的情况下,感知功能网元还可以将上述第一感知测量量和/ 或第一感知结果,所述第二感知测量量和/或第二感知结果转发至核心网网元,以通过核心网网元来计算得到所述目标感知结果。例如:第一感知节点将执行第一感知过程得到的第一感知测量量(一级测量量和/或二级测量量和/或三级测量量)和/或第一感知结果通过第一感知功能网元发送给核心网网元,第二感知节点将执行第二感知过程得到的第二感知测量量(一级测量量和/或二级测量量和/或三级测量量)和/或第二感知结果通过第二感知功能网元发送给核心网网元,由核心网网元根据所述第一感知测量量和/或第一感知结果,以及所述第二感知测量量和/或所述第二感知结果,来计算第三方应用或UE需要的所述目标感知结果。
值得指出的是,上述第一感知节点、第二感知节点、第一感知功能网元、第二感知功能网元以及核心网网元之间的数据交互过程可以是直接进行通信,或者间接进行通信,例如:在第一感知节点由第一感知功能网元调度,且第二感知节点由第二感知功能网元调度的情况下,所述第二感知节点可以将第二感知测量量和/或第二感知结果,依次通过第二感知功能网元、核心网网元、第一感知功能网元发送给第一感知节点,以实现所述第二感知节点向所述第一感知节点发送数据,在此对第一感知节点、第二感知节点、第一感知功能网元、第二感知功能网元以及核心网网元之间的数据交互过程不作具体限定。
其中,上述第一感知过程和第二感知过程的类型,分别可以包括以下至少一项:
1)自发自收:适用于一个感知节点只包含一个设备的情况,例如:雷达自发自收进行目标对象距离、速度、角度的测量或目标区域天气情况的测量等;
2)一个设备发信号、另一个设备收信号:适用于一个感知节点包含两个设备的情况,例如:人/车流量监测用例中,根据行人/车辆穿越由第一设备与第二设备构成的链路时,将造成第二设备接收信号强度衰落的情况,来监测行人/车辆的穿越过程;
3)一个设备发信号,且多个设备收信号:适用于一个感知节点包含多个设备的情况,例如:天气情况检测用例中,处于感知区域中心位置的一个设备通过波束扫描的方式向四周发信号、处于其他位置的多个设备分别接收信 号,通过多个设备的接收信号强度运算,结合层析重构(tomographic reconstruction)等算法,可得到感知区域的天气情况(如降雨率)分布。
当然,在实施中,也可由一个设备收信号,且多个设备发信号,其原理与上述一个设备发信号,且多个设备收信号的情况相似,在此不做过多阐述。
根据第一感知过程对第二感知过程的需求关系,可以先执行第二感知过程,然后执行第一感知过程,或者,并不限定第一感知过程与第二感知过程的执行顺序。
对于先执行第二感知过程,然后执行第一感知过程的情况:适用于第一感知信号(指执行第一感知过程所发送的信号)的部分配置参数(或第一感知信号相关配置的部分参数)依赖于第二感知结果(指执行第二感知过程得到的感知结果)或第二感知测量量来确定。
对于不限定第一感知过程与第二感知过程的执行顺序的情况:此种情况适用于第一感知信号的配置参数不依赖于第二感知结果或第二感知测量量,因此第一感知过程与第二感知过程可以同时执,或者先执行第一感知过程,再执行第二感知过程,或者先执行第二感知过程,再执行第一感知过程。
需要说明的是,本实施方式中,虽然不限定第一感知过程与第二感知过程的执行顺序,但是目标感知结果的计算仍然依赖于第二感知结果或第二感知测量量。
作为一种可选的实施方式,在所述第一感知功能网元向所述第一感知节点发送所述第一感知需求信息之后,所述方法还包括:
所述第一感知功能网元根据所述第一感知需求信息和所述第一感知节点的能力配置信息,确定第一感知信号相关配置信息,并向所述第一感知节点发送所述第一感知信号相关配置信息;或者,所述第一感知功能网元接收来自所述第一感知节点的所述第一感知信号相关配置信息,其中,所述第一感知信号相关配置信息用于配置所述第一感知节点执行第一感知过程的第一信号。
其中,上述第一感知信号相关配置信息可以包括以下至少一项:
波形,其具体可以包括:雷达信号波形、通信雷达一体化信号波形、以及其他感知信号波形等,例如:正交频分复用(Orthogonal frequency division  multiplex,OFDM),离散傅立叶变换-时域扩展-正交频分复用(Discrete Fourier Transform-Spread OFDM,DFT-s-OFDM),调频连续波(Frequency Modulated Continuous Wave,FMCW),线性调频信号(Linear Frequency Modulated,LFM)(其又称之为鸟声信号(chirp))波形等;
正交频分复用OFDM子载波间隔,例如:NR中才用的15kHz、30kHz、60kHz、120kHz、240kHz等;
带宽,该参数影响雷达探测的测距分辨率等性能;
频率,其可以是感知信号带宽中心的频率,且具体可以是频率的绝对值,也可以是频率相对频率参考点(如piont A)的偏移值等;
占空比,采用脉冲波形时发射脉冲时间长度与脉冲周期之间的比值,该参数影响雷达探测的盲距等性能;
波束宽度,在实施中,波束宽度越窄,测角精度越好;
波束指向,所述波束指向用于使感知节点的发送/接收信号方向对准感知对象或感知区域,可以通过选择天线模块或设定阵列天线各模块的移相值来实现;
极化参数,该极化参数可以是垂直极化、水平极化、圆极化、椭圆极化等极化类型参数;
功率,在实施中,第一信号的功率可以影响感知的覆盖范围和抗噪声性能,同时需要考虑对其他系统的干扰;
信号处理周期,在实施中,接收机以该周期为时长进行信号处理,能够影响雷达的速度分辨率等性能。
在第一种可选的实施方式中,可以由第一感知功能网元根据所述第一感知需求信息和所述第一感知节点的能力配置信息,确定第一感知信号相关配置信息。
例如:感知功能网元根据第一感知需求信息,以及第一感知节点的能力配置信息,确定第一感知信号相关配置信息,并分别发送给第一感知节点。其中,上述第一感知节点的能力配置信息可以是所述感知功能网元自身或其他网络节点存储的,或者是第一感知节点上报的,在此不作具体限定。
本实施方式中,感知功能网元可以根据感知节点的能力配置信息和第一 感知需求信息来确定第一感知节点执行第一感知过程所需的第一信号的第一感知信号相关配置信息。
在第二种可选的实施方式中,上述第一感知信号相关配置信息也可以由第一感知节点自行确定,例如:第一感知节点根据自身能力配置信息和所述第一感知需求信息,确定所述第一感知信号相关配置信息。
作为一种可选的实施方式,在所述第一感知功能网元向所述第二感知节点发送所述第二感知需求信息之后,所述方法还包括:
所述第一感知功能网元根据所述第二感知需求信息和所述第二感知节点的能力配置信息,确定第二感知信号相关配置信息,并向所述第二感知节点发送所述第二感知信号相关配置信息;或者,所述第一感知功能网元接收来自所述第二感知节点的所述第二感知信号相关配置信息,其中,所述第二感知信号相关配置信息用于配置所述第二感知节点执行第二感知过程的第二信号。
本实施方式中,确定所述第二感知信号相关配置信息的过程与上述确定第一感知信号相关配置的过程相似,例如:可以由感知功能网元确定,或者由第二感知节点自行确定,在此不再赘述。
需要说明的是,在实际应用中,上述第二感知信号相关配置信息还可以第一感知节点推荐的配置信息,例如:第一感知节点确定第一信号相关配置信息,并且第一感知节点还给出第二感知信号相关配置信息的推荐值,并发送给第二感知节点,再由第二感知节点根据所述第二感知信号相关配置信息的推荐值来确定第二感知信号相关配置信息。
为了便于理解本申请实施例提供的无线感知协同方法,以如下三个应用场景为例,对本申请提供的无线感知协同方法进行举例说明:
场景一
在人/车流量感知应用场景中,第一感知需求信息中的感知目标是人/车流量。此时,第一感知节点包括两个设备(第一设备和第二设备),第一设备发送信号、第二设备接收信号,第二设备通过对接收信号强度(功率)的检测来判断是否有人/车穿越过由第一设备和第二设备构成的链路(如视距(Line Of Sight,LOS)路径)。第一感知需求信息中的感知测量量是信号强度,第 一感知信号相关配置包括信号频率、发射功率等。
在此场景中,在无人/车穿越时,第一感知节点的第二设备接收信号的基础强度(Baseline)也会随着天气情况(包括雨、雪、雾、湿度等)等的变化而变化;从而无法区分第一感知节点的第二设备接收信号强度的变化是因为人/车流穿越还是天气变化。因此Baseline需要实时校准,而第一感知节点自身无法校准Baseline。因此,需要进行感知协同才能满足第一感知需求信息的要求。
对此,一个可行的Baseline校准方法是:引入第二感知节点进行协同感知,此时的目标协同感知类型可以是相同感知功能网元协调下的不同感知类型的感知节点协同实施所述目标协同感知,即第一感知节点和第二感知节点由同一感知功能网元进行调度,或者不同感知功能网元之间协同实施所述目标协同感知,即第一感知节点和第二感知节点由不同的感知功能网元进行调度。通过本申请提供的无线感知协同方法,利用第二感知节点检测出由天气情况变化而引起的Baseline变化从而实现校准;然后,第二感知节点将校准信息发送给第一感知节点。第一感知节点在第二感知节点的Baseline校准结果的基础上进行人/车流量感知。其中,第二感知节点对应的第二感知需求信息中的感知目标是天气情况,感知测量量是接收信号强度。
场景二
在雷达成像场景中,感知需求信息(包括第一感知需求信息和第二感知需求信息)中的感知目标是目标区域的雷达二维成像,感知需求信息(包括第一感知需求信息和第二感知需求信息)中的感知测量量是复数信号、复数信号FFT运算结果等,感知需求信息(包括第一感知需求信息和第二感知需求信息)对应的感知信号相关配置主要包括信号带宽、信号波束宽度等。
在实施中,由于单个设备由于其天线阵面尺寸有限,雷达探测的角度域分辨率有限,从而雷达成像的分辨率较差,无法满足感知需求感知指标。通过本申请提供的无线感知协同方法,使多感知节点协同感知,且多个感知节点实施相同的感知过程。
根据第三方应用或UE的感知需求感知指标,感知功能网元选择多个感知节点进行协同感知成像,达到合成孔径成像的效果,并将多个感知节点得 出的感知结果进行融合数据处理,得到更高分辨率的雷达成像结果。
本应用场景下,目标协同感知类型可以是相同感知功能网元协调下的相同感知类型的感知节点协同实施所述目标协同感知。
场景三
在天气情况检测中的降雨率分布检测的场景下,感知需求信息(包括第一感知需求信息和第二感知需求信息)中的感知目标是目标区域的降雨率分布,感知测量量是信号强度,感知需求信息(包括第一感知需求信息和第二感知需求信息)中的感知信号相关配置主要包括信号功率、频率等。降雨率检测采用第一设备发信号、第二设备收信号的方式,第二设备通过检测接收信号衰减,结合ITU标准降雨模型计算降雨率。
由于一个节点(包括两个设备:第一设备和第二设备)只能检测两个设备之间链路上的平均降雨率,无法得到目标区域的降雨率分布,需要引入其他感知节点进行感知协同,且多个节点实施相同的感知过程。
根据感知需求中的降雨率分布的空间分辨率需求,感知功能网元确定需要协同的感知节点数目(一个节点可包含两个或多个设备)。多个节点的降雨率检测结果通过层析重构等算法运算得到目标区域的降雨率分布情况。
本应用场景下,目标协同感知类型可以是相同感知功能网元协调下的相同感知类型的感知节点协同实施所述目标协同感知。
在本申请实施例中,第一感知功能网元获取第一感知需求信息;所述第一感知功能网元根据所述第一感知需求信息,确定第一感知节点和第二感知节点,并获取所述第一感知节点和所述第二感知节点各自的感知需求信息;所述第一感知功能网元获取目标感知结果,其中,所述目标感知结果根据所述第一感知节点和所述第二感知节点分别按照各自的感知需求信息进行目标协同感知的结果确定。这样,在一个感知节点不能够满足第一感知需求信息的情况下,能够选取至少两个感知节点,并确定每一个感知节点的需求信息,以通过该至少两个感知节点分别按照各自的感知需求信息进行目标协同感知,便可以获取满足所述第一感知需求信息的目标感知结果,从而提升了感知性能。
请参阅图3,本申请实施例提供的第二种无线感知协同方法可以包括以 下步骤:
步骤301、第一感知节点获取第一感知需求信息。
步骤302、所述第一感知节点根据自身能力配置信息和所述第一感知需求信息,确定目标感知协同类型,并发送所述目标感知协同类型。
步骤303、所述第一感知节点接收所述目标感知协同类型。
需要说明的是,在具体实施中,第一感知节点可以仅执行步骤302和步骤303中的一项,如图3所示方法流程图仅作为实例,在此不构成具体限定。
另外,本申请实施例与如图2所示方法实施例的不同之处在于:如图2所示方法实施例的执行主体是第一感知功能网元,而如图3所示方法实施例的执行主体是第一感知节点。
在实施中,上述第一感知节点获取第一感知需求信息,具体可以是:第一感知节点接收来自第一感知功能网元的第一感知需求信息。
在一种可选的实施方式中,所述第一感知节点根据自身能力配置信息和所述第一感知需求信息,确定目标感知协同类型的过程,与如图2所示方法实施例中,第一感知功能网元将第一感知需求信息发送至初步选择的感知节点,并根据该感知节点的第一反馈来确定用于执行第一感知过程的第一感知节点,并接收来自第一感知节点的所述目标感知协同类型的实施方案相对应,且具有相同的有益效果,在此不再赘述。
上述第一感知节点发送所述目标感知协同类型,可以是所述第一感知节点向所述第一感知功能网元发送所述目标感知协同类型,以使所述第一感知功能网元根据该目标感知协同类型和第一感知需求信息选择第二感知节点。
在另一种可选的实施方式中,上述第一感知节点接收所述目标感知协同类型,具体可以是:第一感知节点接收来自第一感知功能网元的所述目标感知协同类型。且第一感知节点接收来自第一感知功能网元的所述目标感知协同类型的实施方式与如图2所示方法实施例中,第一感知功能网元或其他网络侧节点预先存储有各个感知节点的能力配置信息,并根据第一感知需求信息和各个感知节点的能力配置信息选择可用于执行第一感知过程的第一感知节点,以及确定所述目标感知协同类型的实施方案相对应,且具有相同的有益效果,在此不再赘述。
可选地,在所述第一感知节点发送或接收所述目标感知协同类型之后,所述方法还包括:
所述第一感知节点执行第一感知过程,以测量得到第一感知测量量;
所述第一感知节点获取第二感知节点测量得到的第二感知测量量或获取所述第二感知节点根据所述第二感知测量量计算得到的第二感知结果;
所述第一感知节点根据所述第一感知测量量,以及所述第二感知测量量和/或第二感知结果,计算得到目标感知结果。
本实施方式与如图2所示方法实施例中,由第一感知节点根据第一感知测量量,以及所述第二感知测量量和/或第二感知结果,计算得到目标感知结果的实施方案相对应,且具有相同的有益效果,在此不再赘述。
可选地,在所述第一感知节点发送或接收所述目标感知协同类型之后,所述方法还包括:
所述第一感知节点执行第一感知过程,以测量得到第一感知测量量和/或第一感知结果,并向所述第一感知功能网元发送所述第一感知测量量和/或第一感知结果。
本实施方式与如图2所示方法实施例中,由第一感知功能网元根据第一感知测量量和/或第一感知结果,以及所述第二感知测量量和/或第二感知结果,计算得到目标感知结果,或者第一感知功能网元将接收到的第一感知测量量和/或第一感知结果,以及所述第二感知测量量和/或第二感知结果转发至核心网网元,并由核心网网元据此计算得到目标感知结果的实施方案相对应,且具有相同的有益效果,在此不再赘述。
可选地,在所述第一感知节点根据自身能力配置信息和所述第一感知需求信息,确定目标感知协同类型之后,所述方法还包括:
所述第一感知节点根据自身能力配置信息和所述第一感知需求信息,确定自身的第一信号相关配置信息;
或者,
所述第一感知节点根据自身能力配置信息和所述第一感知需求信息,确定自身的第一信号相关配置信息,并确定第二感知节点的第二信号相关配置信息的推荐值,并发送所述第二信号相关配置信息的推荐值。
本实施方式与如图2所示方法实施例中,由感知节点确定自身的信号相关配置信息,或者统一由第一感知节点确定自身的信号相关配置信息和其他感知节点的信号相关配置信息的推荐值的实施方式相对应,且具有相同的有益效果,在此不再赘述。
可选地,所述第二感知节点满足以下至少一项:
与所述第一感知节点的感知类型相同,或者,与所述第一感知节点的感知类型不相同;
由所述第一感知功能网元调度,或者,由第二感知功能网元调度;
所述第二感知节点为参考站。
可选地,所述目标感知协同类型包括以下任一项:
相同感知功能网元协调下的不同感知类型的感知节点协同实施所述目标协同感知;
相同感知功能网元协调下的相同感知类型的感知节点协同实施所述目标协同感知;
不同感知功能网元之间协同实施所述目标协同感知。
本申请实施例提供的第二种无线感知协同方法中的过程,与如图2所示方法实施例中,由第一感知节点执行的过程相对应,且具有相同的有益效果,在此不再赘述。
请参阅图4,本申请实施例提供的第三种无线感知协同方法可以包括以下步骤:
步骤401、核心网网元接收来自第一感知功能网元的第二感知需求信息。
步骤402、所述核心网网元根据所述第二感知需求信息和每一个感知功能网元支持的感知业务类型,确定用于与所述第一感知功能网元进行目标协同感知的第二感知功能网元,以及确定由所述第二感知功能网元调度的第二感知节点或者接收来自所述第二感知功能网元的所述第二感知节点的标识信息。
步骤403、所述核心网网元根据所述第二感知需求信息,确定第三感知功能网元,并将支持所述第二感知需求信息对应的感知业务类型的第三感知功能网元确定为所述第二感知功能网元,以及确定由所述第二感知功能网元 调度的第二感知节点或者接收来自所述第二感知功能网元的所述第二感知节点的标识信息。
步骤404、所述核心网网元向所述第二感知节点发送所述第二感知需求信息。
需要说明的是,本申请实施例与如图2所示方法实施例的不同之处在于:如图2所示方法实施例的执行主体是第一感知功能网元,而如图4所示方法实施例的执行主体是核心网网元。且如图4所示方法实施例具体应用于目标感知协同类型为:不同感知功能网元之间协同实施所述目标协同感知的场景。
在实施中,上述核心网网元接收的来自第一感知功能网元的第二感知需求信息,可以是第一感知功能网元确定的,也可以是所述第一感知功能网元选择的用于执行第一感知过程的第一感知节点确定的,且上述第二感知需求信息的具体含义与如图2所示方法实施例中的第二感知需求信息相同,在此不再赘述。
需要说明的是,在实施中,可以仅执行上述步骤402和步骤403中的一项,如图4所示方法流程仅作为实例。例如:在核心网网元或其他网络节点预先存储有每一个感知功能网元支持的感知业务类型的情况下,可以执行步骤402,以使由核心网网元根据所述第二感知需求信息和预先存储的每一个感知功能网元支持的感知业务类型,来选择第二感知功能网元。
在核心网网元或其他网络节点未预先存储有每一个感知功能网元支持的感知业务类型的情况下,可以执行步骤403,以使由核心网网元直接根据所述第二感知需求信息初步选择第二感知功能网元,并将第二感知需求信息发送给第二感知功能网元;该第二感知功能网元对核心网网元进行反馈:如果该第二感知功能网元支持第二感知需求信息指示的感知业务类型,则确认执行第二感知过程,且第二感知功能网元选择过程结束;如果第二感知功能网元不支持第二感知需求信息指示的感知业务类型,则反馈不能执行该第二感知过程,核心网网元选择其他感知功能网元作为第二感知功能网元。
另外,在核心网网元确定了第二感知功能网元的情况下,可以由第二感知功能网元根据第二感知需求信息来选择第二感知节点,并将选择的第二感知节点上报至核心网网元;或者由核心网网元根据第二感知需求信息从第二 感知功能网元调度的感知节点中,选择第二感知节点,该第二感知节点的确定过程与如图2所示方法实施例中确定第二感知节点的过程相似,在此不再赘述。
相应的,所述核心网网元向所述第二感知节点发送所述第二感知需求信息,可以理解为:所述核心网网元向所述第二感知功能网元发送所述第二感知需求信息,并由所述第二感知功能网元将接收到的第二感知需求信息转发给所述第二感知节点。
可选地,在所述核心网网元接收来自第一感知功能网元的第二感知需求信息之前,所述方法还包括:
所述核心网网元获取第一感知需求信息;
所述核心网网元根据所述第一感知需求信息确定所述第一感知功能网元,并向所述第一感知功能网元发送所述第一感知需求信息,其中,所述第二感知需求信息由所述第一感知功能网元或所述第一感知功能网元调度的第一感知节点确定。
本实施方式与如图2所示方法实施例中,由核心网网元根据第一感知需求信息确定第一感知功能网元,并向所述第一感知功能网元发送所述第一感知需求信息,以使第一感知功能网元据此确定第一感知节点,或者由第一感知节点根据自身的能力配置信息,确定是否执行第一感知过程的实施方案相同,且具有相同的有益效果,在此不再赘述。
可选地,所述核心网网元将支持所述第二感知需求信息对应的感知业务类型的第三感知功能网元确定为所述第二感知功能网元,包括:
所述核心网网元向所述第三感知功能网元发送所述第二感知需求信息,并接收来自所述第三感知功能网元的第二反馈信息;
所述核心网网元根据所述第二反馈信息将支持所述第二感知需求信息对应的感知业务类型的第三感知功能网元确定为所述第二感知功能网元。
本实施方式中,由核心网网元确定第二感知功能网元的过程,与核心网网元根据第一感知需求信息确定第一感知功能网元的过程相似,在此不再赘述。
可选地,在所述核心网网元向所述第二感知功能网元调度的第二感知节 点发送所述第二感知需求信息之后,所述方法还包括:
所述核心网网元接收来自所述第一感知功能网元的第一感知测量量和/或第一感知结果;
所述核心网网元接收来自所述第二感知功能网元的第二感知测量量和/或第二感知结果,其中,所述第二感知测量量由所述第二感知节点确定;
所述核心网网元根据所述第一感知测量量和/或第一感知结果,以及所述第二感知测量量和/或第二感知结果,确定目标感知结果。
本实施方式与如图2所示方法实施例中,由核心网网元根据第一感知测量量和/或第一感知结果,以及所述第二感知测量量和/或第二感知结果,计算得到目标感知结果的实施方案相同,且具有相同的有益效果,在此不再赘述。
可选地,在所述核心网网元向所述第二感知功能网元调度的第二感知节点发送所述第二感知需求信息之后,所述方法还包括:
所述核心网网元接收来自所述第二感知功能网元的第二感知测量量和/或第二感知结果,其中,所述第二感知测量量和/或第二感知结果由所述第二感知节点确定;
所述核心网网元向所述第一感知功能网元发送所述第二感知测量量和/或第二感知结果;
所述核心网网元接收来自所述第一感知功能网元的目标感知结果。
在具体实施中,上述核心网网元接收的来自所述第一感知功能网元的目标感知结果,可以由第一感知功能网元或第一感知节点,根据第一感知测量量,以及所述第二感知测量量和/或第二感知结果计算得到。
本实施方式与如图2所示方法实施例中,由第一感知功能网元或第一感知节点根据第一感知测量量,以及所述第二感知测量量和/或第二感知结果,计算得到目标感知结果的实施方案相同,且具有相同的有益效果,在此不再赘述。
本申请实施例提供的第三种无线感知协同方法中的过程,与如图2所示方法实施例中,由核心网网元执行的过程相对应,且具有相同的有益效果,在此不再赘述。
需要说明的是,本申请实施例提供的无线感知协同方法,执行主体可以 为无线感知协同装置,或者,该无线感知协同装置中的用于执行无线感知协同方法的控制模块。本申请实施例中以无线感知协同装置执行无线感知协同方法为例,说明本申请实施例提供的无线感知协同装置。
请参阅图5,本申请实施例提供的第一种无线感知协同装置500,可以应用于第一感知功能网元,如图5所示,该第一种无线感知协同装置500可以包括:
第一获取模块501,用于获取第一感知需求信息;
第一确定模块502,用于根据所述第一感知需求信息,确定第一感知节点和第二感知节点,并获取所述第一感知节点和所述第二感知节点各自的感知需求信息;
第二获取模块503,用于获取目标感知结果,其中,所述目标感知结果根据所述第一感知节点和所述第二感知节点分别按照各自的感知需求信息进行目标协同感知的结果确定。
可选地,第一确定模块502包括:
第一确定单元,用于根据所述第一感知需求信息,确定第一感知节点和目标感知协同类型,并向所述第一感知节点发送所述第一感知需求信息;或者,
第二确定单元,用于根据所述第一感知需求信息,确定第一感知节点,向所述第一感知节点发送所述第一感知需求信息,并接收来自所述第一感知节点的所述目标感知协同类型。
可选地,第一确定模块502包括:
第三确定单元,用于根据所述目标感知协同类型和所述第一感知需求信息,确定第二感知需求信息和第二感知节点,并向所述第二感知节点发送所述第二感知需求信息;或者,
第一传输单元,用于接收来自所述第一感知节点的所述第二感知需求信息,根据所述第二感知需求信息和所述目标感知协同类型确定第二感知节点,并向所述第二感知节点发送所述第二感知需求信息。
可选地,第二获取模块503包括:
第一获取单元,用于获取所述第一感知节点执行第一感知过程测量得到 的第一测量量和/或第一感知结果;
第二获取单元,用于获取所述第二感知节点执行第二感知过程测量得到的第二测量量和/或第二感知结果,所述目标协同感知包括所述第一感知过程和所述第二感知过程;
第三获取单元,用于根据所述第一测量量和/或第一感知结果,以及所述第二测量量和/或第二感知结果,确定与所述第一感知需求信息对应的目标感知结果,或者,所述第一感知功能网元向核心网网元发送所述第一测量量和/或第一感知结果,以及所述第二测量量和/或第二感知结果,并接收来自所述核心网网元的与所述第一感知需求信息对应的目标感知结果;
或者,
第四获取单元,用于获取所述第二感知节点执行第二感知过程测量得到的第二测量量和/或第二感知结果,并向所述第一感知节点发送所述第二测量量和/或第二感知结果;
第五获取单元,用于接收来自所述第一感知节点的与所述第一感知需求信息对应的目标感知结果。
可选地,第一种无线感知协同装置500还包括:
第五确定模块,用于根据所述第一感知需求信息和所述第一感知节点的能力配置信息,确定第一感知信号相关配置信息,并向所述第一感知节点发送所述第一感知信号相关配置信息;或者,所述第一感知功能网元接收来自所述第一感知节点的所述第一感知信号相关配置信息,其中,所述第一感知信号相关配置信息用于配置所述第一感知节点执行第一感知过程的第一信号。
可选地,第一种无线感知协同装置500还包括:
第六确定模块,用于根据所述第二感知需求信息和所述第二感知节点的能力配置信息,确定第二感知信号相关配置信息,并向所述第二感知节点发送所述第二感知信号相关配置信息;或者,所述第一感知功能网元接收来自所述第二感知节点的所述第二感知信号相关配置信息,其中,所述第二感知信号相关配置信息用于配置所述第二感知节点执行第二感知过程的第二信号。
可选地,所述第一感知信号相关配置信息包括以下至少一项:
波形、正交频分复用OFDM子载波间隔、带宽、频率、占空比、波束宽 度、波束指向、极化参数、功率和信号处理周期;和/或
所述第二感知信号相关配置信息包括以下至少一项:
波形、OFDM子载波间隔、带宽、频率、占空比、波束宽度、波束指向、极化参数、功率和信号处理周期。
可选地,第一确定模块502包括:
第一选择单元,用于根据所述第一感知需求信息选择第三感知节点,并将向所述第三感知节点发送所述第一感知需求信息;
第二接收模块,用于接收所述第三感知节点的第一反馈信息;
第七确定模块,用于根据所述第一反馈信息,将支持执行所述第一感知过程的第三感知节点确定为第一感知节点。
可选地,第一确定模块502包括:
第八确定模块,用于根据所述第一感知需求信息和每一个感知节点的能力配置信息,确定第一感知节点。
可选地,所述目标感知协同类型包括以下任一项:
相同感知功能网元协调下的不同感知类型的感知节点协同实施所述目标协同感知;
相同感知功能网元协调下的相同感知类型的感知节点协同实施所述目标协同感知;
不同感知功能网元之间协同实施所述目标协同感知。
可选地,所述第二感知节点满足以下至少一项:
与所述第一感知节点的感知类型相同,或者,与所述第一感知节点的感知类型不相同;
由所述第一感知功能网元调度,或者,由第二感知功能网元调度;
所述第二感知节点为参考站。
可选地,在所述第二感知节点由第二感知功能网元调度的情况下,第一种无线感知协同装置500还包括:
第二发送模块,用于向核心网网元发送所述第二感知需求信息,其中,所述第二感知需求信息用于确定所述第二感知功能网元和所述第二感知节点。
可选地,所述第一感知需求信息包括以下至少一项:感知目标、感知目 标先验信息、感知指标和感知测量量。
可选地,所述感知测量量包括以下至少一项:
一级测量量,为通过执行感知过程所要测量的测量量;
二级测量量,为通过对所述一级测量量进行第一预设处理得到的测量量;
三级测量量,为通过对所述一级测量量和/或所述二级测量量进行第二预设处理得到的测量量。
可选地,所述二级测量量由感知节点或感知功能网元或核心网网元,根据所述一级测量量计算得到;
所述三级测量量由感知节点或感知功能网元或所述核心网网元,根据所述一级测量量和/或所述二级测量量计算得到。
本申请实施例提供的第一种无线感知协同装置500能够执行如图2所示方法实施例中,第一感知功能网元执行的各个过程,且能够取得相同的有益效果,为避免重复,在此不再赘述。
请参阅图6,本申请实施例提供的第二种无线感知协同装置600,可以应用于第一感知节点,如图6所示,该第二种无线感知协同装置600可以包括:
第三获取模块601,用于获取第一感知需求信息;
第二确定模块602,用于根据自身能力配置信息和所述第一感知需求信息,确定目标感知协同类型,并发送所述目标感知协同类型;或者,
第一接收模块603,用于接收所述目标感知协同类型。
需要说明的是,在具体实施中,所述第二种无线感知协同装置600可以仅包括第二确定模块602和第一接收模块603中的一个,也可以同时包括第二确定模块602和第一接收模块603,如图6所示装置实施例中,以所述第二种无线感知协同装置600同时包括第二确定模块602和第一接收模块603为例进行举例说明。
可选地,第二种无线感知协同装置600还包括:
第一执行模块,用于执行第一感知过程,以测量得到第一感知测量量;
第五获取模块,用于获取第二感知节点测量得到的第二感知测量量或获取所述第二感知节点根据所述第二感知测量量计算得到的第二感知结果;
第一计算模块,用于根据所述第一感知测量量,以及所述第二感知测量 量和/或第二感知结果,计算得到目标感知结果。
可选地,第二种无线感知协同装置600还包括:
第二执行模块,用于执行第一感知过程,以测量得到第一感知测量量和/或第一感知结果,并向所述第一感知功能网元发送所述第一感知测量量和/或第一感知结果。
可选地,第二种无线感知协同装置600还包括:
第九确定模块,用于根据自身能力配置信息和所述第一感知需求信息,确定自身的第一信号相关配置信息;
或者,
第十确定模块,用于根据自身能力配置信息和所述第一感知需求信息,确定自身的第一信号相关配置信息,并确定第二感知节点的第二信号相关配置信息的推荐值,并发送所述第二信号相关配置信息的推荐值。
可选地,所述第二感知节点满足以下至少一项:
与所述第一感知节点的感知类型相同,或者,与所述第一感知节点的感知类型不相同;
由所述第一感知功能网元调度,或者,由第二感知功能网元调度;
所述第二感知节点为参考站。
可选地,所述目标感知协同类型包括以下任一项:
相同感知功能网元协调下的不同感知类型的感知节点协同实施所述目标协同感知;
相同感知功能网元协调下的相同感知类型的感知节点协同实施所述目标协同感知;
不同感知功能网元之间协同实施所述目标协同感知。
本申请实施例提供的第二种无线感知协同装置600能够执行如图3所示方法实施例中,第一感知节点执行的各个过程,且能够取得相同的有益效果,为避免重复,在此不再赘述。
请参阅图7,本申请实施例提供的第三种无线感知协同装置700,可以应用于核心网网元,如图7所示,该第三种无线感知协同装置700可以包括:
第四获取模块701,用于接收来自第一感知功能网元的第二感知需求信 息;
第三确定模块702,用于根据所述第二感知需求信息和每一个感知功能网元支持的感知业务类型,确定用于与所述第一感知功能网元进行目标协同感知的第二感知功能网元,以及确定由所述第二感知功能网元调度的第二感知节点或者接收来自所述第二感知功能网元的所述第二感知节点的标识信息;或者,
第四确定模块703,用于根据所述第二感知需求信息,确定第三感知功能网元,并将支持所述第二感知需求信息对应的感知业务类型的第三感知功能网元确定为所述第二感知功能网元,以及确定由所述第二感知功能网元调度的第二感知节点或者接收来自所述第二感知功能网元的所述第二感知节点的标识信息;
第一发送模块704,用于向所述第二感知节点发送所述第二感知需求信息。
需要说明的是,在实施中,第三种无线感知协同装置700可以仅包含第三确定模块702和第四确定模块703中的一个,或者同时包含第三确定模块702和第四确定模块703,如图7所示实施例以第三种无线感知协同装置700同时包含第三确定模块702和第四确定模块703为例进行举例说明,在此不构成具体限定。
可选地,第三种无线感知协同装置700还包括:
第六获取模块,用于获取第一感知需求信息;
第十二确定模块,用于根据所述第一感知需求信息确定所述第一感知功能网元,并向所述第一感知功能网元发送所述第一感知需求信息,其中,所述第二感知需求信息由所述第一感知功能网元或所述第一感知功能网元调度的第一感知节点确定。
可选地,第四确定模块703,包括:
第一发送单元,用于向所述第三感知功能网元发送所述第二感知需求信息,并接收来自所述第三感知功能网元的第二反馈信息;
第四确定单元,用于根据所述第二反馈信息将支持所述第二感知需求信息对应的感知业务类型的第三感知功能网元确定为所述第二感知功能网元。
可选地,第三种无线感知协同装置700还包括:
第三接收模块,用于从接收来自所述第一感知功能网元的第一感知测量量和/或第一感知结果;
第四接收模块,用于接收来自所述第二感知功能网元的第二感知测量量和/或第二感知结果,其中,所述第二感知测量量由所述第二感知节点确定;
第十三确定模块,用于根据所述第一感知测量量和/或第一感知结果,以及所述第二感知测量量和/或第二感知结果,确定目标感知结果。
可选地,第三种无线感知协同装置700还包括:
第五接收模块,用于接收来自所述第二感知功能网元的第二感知测量量和/或第二感知结果,其中,所述第二感知测量量和/或第二感知结果由所述第二感知节点确定;
第二发送模块,用于向所述第一感知功能网元发送所述第二感知测量量和/或第二感知结果;
第六接收模块,用于接收来自所述第一感知功能网元的目标感知结果。
本申请实施例提供的第三种无线感知协同装置700能够执行如图4所示方法实施例中,核心网网元执行的各个过程,且能够取得相同的有益效果,为避免重复,在此不再赘述。
可选地,如图8所示,本申请实施例还提供一种通信设备800,包括处理器801,存储器802,存储在存储器802上并可在所述处理器801上运行的程序或指令,例如,该通信设备800为终端时(例如:第一感知节点为终端时),该程序或指令被处理器801执行时实现如图3所示方法实施例的各个过程,且能达到相同的技术效果;该通信设备800为网络侧设备(如:第一感知功能网元、核心网网元或第一感知节点)时,该程序或指令被处理器801执行时实现如图2或图3或图4所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,所述通信接口用于获取第一感知需求信息;所述处理器用于根据第一感知节点的能力配置信息和所述第一感知需求信息,确定目标感知协同类型;所述通信接口还用于发送所述目标感知协同类型。该终端实施例是与上述第一感知节点侧(该 第一感知节点包括终端时)的方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图9为实现本申请实施例的一种终端的硬件结构示意图。
该终端900包括但不限于:射频单元901、网络模块902、音频输出单元903、输入单元904、传感器905、显示单元906、用户输入单元907、接口单元908、存储器909、以及处理器910等中的至少部分部件。
本领域技术人员可以理解,终端900还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器910逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图9中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元904可以包括图形处理器(Graphics Processing Unit,GPU)9041和麦克风9042,图形处理器9041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元906可包括显示面板9061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板9061。用户输入单元907包括触控面板9071以及其他输入设备9072。触控面板9071,也称为触摸屏。触控面板9071可包括触摸检测装置和触摸控制器两个部分。其他输入设备9072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元901将来自网络侧设备的下行数据接收后,给处理器910处理;另外,将上行的数据发送给网络侧设备。通常,射频单元901包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器909可用于存储软件程序或指令以及各种数据。存储器909可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器909可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only  Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器910可包括一个或多个处理单元;可选地,处理器910可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器910中。
其中,射频单元901,用于获取第一感知需求信息;
处理器910,用于根据自身能力配置信息和所述第一感知需求信息,确定目标感知协同类型;
射频单元901,还用于发送所述目标感知协同类型。
可选地,在射频单元901执行所述发送所述目标感知协同类型之后:
处理器910,还用于执行第一感知过程,以测量得到第一感知测量量;
射频单元901,还用于获取第二感知节点测量得到的第二感知测量量或获取所述第二感知节点根据所述第二感知测量量计算得到的第二感知结果;
处理器910,还用于根据所述第一感知测量量,以及所述第二感知测量量和/或第二感知结果,计算得到目标感知结果。
可选地,在射频单元901执行所述发送所述目标感知协同类型之后:
处理器910,还用于执行第一感知过程,以测量得到第一感知测量量和/或第一感知结果,并控制射频单元901向所述第一感知功能网元发送所述第一感知测量量和/或第一感知结果。
可选地,处理器910在执行所述根据自身能力配置信息和所述第一感知需求信息,确定目标感知协同类型之后,还用于:
根据自身能力配置信息和所述第一感知需求信息,确定自身的第一信号相关配置信息;
或者,
根据自身能力配置信息和所述第一感知需求信息,确定自身的第一信号相关配置信息,并确定第二感知节点的第二信号相关配置信息的推荐值,并 控制射频单元901发送所述第二信号相关配置信息的推荐值。
可选地,所述第二感知节点满足以下至少一项:
与所述第一感知节点的感知类型相同,或者,与所述第一感知节点的感知类型不相同;
由所述第一感知功能网元调度,或者,由第二感知功能网元调度;
所述第二感知节点为参考站。
可选地,所述目标感知协同类型包括以下任一项:
相同感知功能网元协调下的不同感知类型的感知节点协同实施所述目标协同感知;
相同感知功能网元协调下的相同感知类型的感知节点协同实施所述目标协同感知;
不同感知功能网元之间协同实施所述目标协同感知。
本申请实施例提供的终端900可以执行如图3所示方法实施例中的第一感知节点执行的各个过程,且能够取得相同的有益效果,为避免重复,在此不再赘述。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,所述通信接口用于获取第一感知需求信息,所述处理器用于根据所述第一感知需求信息,确定第一感知节点和第二感知节点,并获取所述第一感知节点和所述第二感知节点各自的感知需求信息;所述处理器或所述通信接口还用于获取目标感知结果,其中,所述目标感知结果根据所述第一感知节点和所述第二感知节点分别按照各自的感知需求信息进行目标协同感知的结果确定;
或者,
所述通信接口用于获取第一感知需求信息;所述处理器用于根据第一感知节点的能力配置信息和所述第一感知需求信息,确定目标感知协同类型;所述通信接口还用于发送所述目标感知协同类型;
或者,
所述通信接口用于接收来自第一感知功能网元的第二感知需求信息;所述处理器用于根据所述第二感知需求信息和每一个感知功能网元支持的感知业务类型,确定用于与所述第一感知功能网元进行目标协同感知的第二感知 功能网元,以及确定由所述第二感知功能网元调度的第二感知节点或者接收来自所述第二感知功能网元的所述第二感知节点的标识信息;或者所述处理器用于根据所述第二感知需求信息,确定第三感知功能网元,并将支持所述第二感知需求信息对应的感知业务类型的第三感知功能网元确定为所述第二感知功能网元,以及确定由所述第二感知功能网元调度的第二感知节点或者接收来自所述第二感知功能网元接收的所述第二感知节点的标识信息;所述通信接口还用于向所述第二感知节点发送所述第二感知需求信息。
该网络侧设备实施例是与上述第一感知功能网元、第一感知节点(即第一感知节点包括网络侧设备)和核心网网元侧的方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图10所示,该网络设备1000包括:天线1001、射频装置1002、基带装置1003。天线1001与射频装置1002连接。在上行方向上,射频装置1002通过天线1001接收信息,将接收的信息发送给基带装置1003进行处理。在下行方向上,基带装置1003对要发送的信息进行处理,并发送给射频装置1002,射频装置1002对收到的信息进行处理后经过天线1001发送出去。
上述频带处理装置可以位于基带装置1003中,以上实施例中网络侧设备执行的方法可以在基带装置1003中实现,该基带装置1003包括处理器1004和存储器1005。
基带装置1003例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图10所示,其中一个芯片例如为处理器1004,与存储器1005连接,以调用存储器1005中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置1003还可以包括网络接口1006,用于与射频装置1002交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器1005上并可在处理器1004上运行的指令或程序,处理器1004调用存储器1005中的指令或程序执行图5或图6或图7所示各模块执行的方法,并达到相同的技术效 果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质可以是非易失的,也可以是易失的,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现如图2或图3或图4所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如图2或图3或图4所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品被存储在非瞬态的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如图2或图3或图4所示所示方法的步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (34)

  1. 一种无线感知协同方法,应用于第一感知功能网元,所述方法包括:
    第一感知功能网元获取第一感知需求信息;
    所述第一感知功能网元根据所述第一感知需求信息,确定第一感知节点和第二感知节点,并获取所述第一感知节点和所述第二感知节点各自的感知需求信息;
    所述第一感知功能网元获取目标感知结果,其中,所述目标感知结果根据所述第一感知节点和所述第二感知节点分别按照各自的感知需求信息进行目标协同感知的结果确定。
  2. 根据权利要求1所述的方法,其中,所述第一感知功能网元根据所述第一感知需求信息,确定第一感知节点,包括:
    所述第一感知功能网元根据所述第一感知需求信息,确定第一感知节点和目标感知协同类型,并向所述第一感知节点发送所述第一感知需求信息;或者,
    所述第一感知功能网元根据所述第一感知需求信息,确定第一感知节点,向所述第一感知节点发送所述第一感知需求信息,并接收来自所述第一感知节点的所述目标感知协同类型。
  3. 根据权利要求2所述的方法,其中,所述第一感知功能网元根据所述第一感知需求信息,确定第二感知节点,包括:
    所述第一感知功能网元根据所述目标感知协同类型和所述第一感知需求信息,确定第二感知需求信息和第二感知节点,并向所述第二感知节点发送所述第二感知需求信息;或者,
    所述第一感知功能网元接收来自所述第一感知节点的所述第二感知需求信息,根据所述第二感知需求信息和所述目标感知协同类型确定第二感知节点,并向所述第二感知节点发送所述第二感知需求信息。
  4. 根据权利要求1所述的方法,其中,所述第一感知功能网元获取目标感知结果,包括:
    所述第一感知功能网元获取所述第一感知节点执行第一感知过程测量得 到的第一测量量和/或第一感知结果;
    所述第一感知功能网元获取所述第二感知节点执行第二感知过程测量得到的第二测量量和/或第二感知结果,所述目标协同感知包括所述第一感知过程和所述第二感知过程;
    所述第一感知功能网元根据所述第一测量量和/或第一感知结果,以及所述第二测量量和/或第二感知结果,确定与所述第一感知需求信息对应的目标感知结果,或者,所述第一感知功能网元向核心网网元发送所述第一测量量和/或第一感知结果,以及所述第二测量量和/或第二感知结果,并接收来自所述核心网网元的与所述第一感知需求信息对应的目标感知结果;
    或者,
    所述第一感知功能网元获取所述第二感知节点执行第二感知过程测量得到的第二测量量和/或第二感知结果,并向所述第一感知节点发送所述第二测量量和/或第二感知结果;
    所述第一感知功能网元接收来自所述第一感知节点的与所述第一感知需求信息对应的目标感知结果。
  5. 根据权利要求2所述的方法,其中,在所述第一感知功能网元向所述第一感知节点发送所述第一感知需求信息之后,所述方法还包括:
    所述第一感知功能网元根据所述第一感知需求信息和所述第一感知节点的能力配置信息,确定第一感知信号相关配置信息,并向所述第一感知节点发送所述第一感知信号相关配置信息;或者,所述第一感知功能网元接收来自所述第一感知节点的所述第一感知信号相关配置信息,其中,所述第一感知信号相关配置信息用于配置所述第一感知节点执行第一感知过程的第一信号。
  6. 根据权利要求3所述的方法,其中,在所述第一感知功能网元向所述第二感知节点发送所述第二感知需求信息之后,所述方法还包括:
    所述第一感知功能网元根据所述第二感知需求信息和所述第二感知节点的能力配置信息,确定第二感知信号相关配置信息,并向所述第二感知节点发送所述第二感知信号相关配置信息;或者,所述第一感知功能网元接收来自所述第二感知节点的所述第二感知信号相关配置信息,其中,所述第二感 知信号相关配置信息用于配置所述第二感知节点执行第二感知过程的第二信号。
  7. 根据权利要求5所述的方法,其中,所述第一感知信号相关配置信息包括以下至少一项:
    波形、正交频分复用OFDM子载波间隔、带宽、频率、占空比、波束宽度、波束指向、极化参数、功率和信号处理周期;和/或
    所述第二感知信号相关配置信息包括以下至少一项:
    波形、OFDM子载波间隔、带宽、频率、占空比、波束宽度、波束指向、极化参数、功率和信号处理周期。
  8. 根据权利要求5所述的方法,其中,所述第一感知功能网元根据所述第一感知需求信息,确定第一感知节点,包括:
    所述第一感知功能网元根据所述第一感知需求信息选择第三感知节点,并向所述第三感知节点发送所述第一感知需求信息;
    所述第一感知功能网元接收所述第三感知节点的第一反馈信息;
    所述第一感知功能网元根据所述第一反馈信息,将支持执行所述第一感知过程的第三感知节点确定为第一感知节点。
  9. 根据权利要求1所述的方法,其中,所述第一感知功能网元根据所述第一感知需求信息,确定第一感知节点,包括:
    所述第一感知功能网元根据所述第一感知需求信息和每一个感知节点的能力配置信息,确定第一感知节点。
  10. 根据权利要求1所述的方法,其中,所述目标感知协同类型包括以下任一项:
    相同感知功能网元协调下的不同感知类型的感知节点协同实施所述目标协同感知;
    相同感知功能网元协调下的相同感知类型的感知节点协同实施所述目标协同感知;
    不同感知功能网元之间协同实施所述目标协同感知。
  11. 根据权利要求1至10中任一项所述的方法,其中,所述第二感知节点满足以下至少一项:
    与所述第一感知节点的感知类型相同,或者,与所述第一感知节点的感知类型不相同;
    由所述第一感知功能网元调度,或者,由第二感知功能网元调度;
    所述第二感知节点为参考站。
  12. 根据权利要求11所述的方法,其中,在所述第二感知节点由第二感知功能网元调度的情况下,所述方法还包括:
    所述第一感知功能网元向核心网网元发送所述第二感知需求信息,其中,所述第二感知需求信息用于确定所述第二感知功能网元和所述第二感知节点。
  13. 根据权利要求1至10中任一项所述的方法,其中,所述第一感知需求信息包括以下至少一项:感知目标、感知目标先验信息、感知指标和感知测量量。
  14. 根据权利要求13所述的方法,其中,所述感知测量量包括以下至少一项:
    一级测量量,为通过执行感知过程所要测量的测量量;
    二级测量量,为通过对所述一级测量量进行第一预设处理得到的测量量;
    三级测量量,为通过对所述一级测量量和/或所述二级测量量进行第二预设处理得到的测量量。
  15. 根据权利要求14所述的方法,其中,所述二级测量量由感知节点或感知功能网元或核心网网元,根据所述一级测量量计算得到;
    所述三级测量量由感知节点或感知功能网元或所述核心网网元,根据所述一级测量量和/或所述二级测量量计算得到。
  16. 一种无线感知协同装置,应用于第一感知功能网元,所述装置包括:
    第一获取模块,用于获取第一感知需求信息;
    第一确定模块,用于根据所述第一感知需求信息,确定第一感知节点和第二感知节点,并获取所述第一感知节点和所述第二感知节点各自的感知需求信息;
    第二获取模块,用于获取目标感知结果,其中,所述目标感知结果根据所述第一感知节点和所述第二感知节点分别按照各自的感知需求信息进行目标协同感知的结果确定。
  17. 根据权利要求16所述的装置,其中,所述目标感知协同类型包括以下任一项:
    相同感知功能网元协调下的不同感知类型的感知节点协同实施所述目标协同感知;
    相同感知功能网元协调下的相同感知类型的感知节点协同实施所述目标协同感知;
    不同感知功能网元之间协同实施所述目标协同感知。
  18. 一种无线感知协同方法,应用于第一感知节点,所述方法包括:
    第一感知节点获取第一感知需求信息;
    所述第一感知节点根据自身能力配置信息和所述第一感知需求信息,确定目标感知协同类型,并发送所述目标感知协同类型;或者,
    所述第一感知节点接收所述目标感知协同类型。
  19. 根据权利要求18所述的方法,其中,在所述第一感知节点发送或接收所述目标感知协同类型之后,所述方法还包括:
    所述第一感知节点执行第一感知过程,以测量得到第一感知测量量;
    所述第一感知节点获取第二感知节点测量得到的第二感知测量量或获取所述第二感知节点根据所述第二感知测量量计算得到的第二感知结果;
    所述第一感知节点根据所述第一感知测量量,以及所述第二感知测量量和/或第二感知结果,计算得到目标感知结果。
  20. 根据权利要求18所述的方法,其中,在所述第一感知节点发送或接收所述目标感知协同类型之后,所述方法还包括:
    所述第一感知节点执行第一感知过程,以测量得到第一感知测量量和/或第一感知结果,并向所述第一感知功能网元发送所述第一感知测量量和/或第一感知结果。
  21. 根据权利要求18所述的方法,其中,在所述第一感知节点根据自身能力配置信息和所述第一感知需求信息,确定目标感知协同类型之后,所述方法还包括:
    所述第一感知节点根据自身能力配置信息和所述第一感知需求信息,确定自身的第一信号相关配置信息;
    或者,
    所述第一感知节点根据自身能力配置信息和所述第一感知需求信息,确定自身的第一信号相关配置信息,并确定第二感知节点的第二信号相关配置信息的推荐值,并发送所述第二信号相关配置信息的推荐值。
  22. 根据权利要求19或21所述的方法,其中,所述第二感知节点满足以下至少一项:
    与所述第一感知节点的感知类型相同,或者,与所述第一感知节点的感知类型不相同;
    由所述第一感知功能网元调度,或者,由第二感知功能网元调度;
    所述第二感知节点为参考站。
  23. 根据权利要求18至21中任一项所述的方法,其中,所述目标感知协同类型包括以下任一项:
    相同感知功能网元协调下的不同感知类型的感知节点协同实施所述目标协同感知;
    相同感知功能网元协调下的相同感知类型的感知节点协同实施所述目标协同感知;
    不同感知功能网元之间协同实施所述目标协同感知。
  24. 一种无线感知协同装置,应用于第一感知节点,所述装置包括:
    第三获取模块,用于获取第一感知需求信息;
    第二确定模块,用于根据自身能力配置信息和所述第一感知需求信息,确定目标感知协同类型,并发送所述目标感知协同类型;或者,
    第一接收模块,用于接收所述目标感知协同类型。
  25. 根据权利要求24所述的装置,其中,所述目标感知协同类型包括以下任一项:
    相同感知功能网元协调下的不同感知类型的感知节点协同实施所述目标协同感知;
    相同感知功能网元协调下的相同感知类型的感知节点协同实施所述目标协同感知;
    不同感知功能网元之间协同实施所述目标协同感知。
  26. 一种无线感知协同方法,应用于核心网网元,所述方法包括:
    核心网网元接收来自第一感知功能网元的第二感知需求信息;
    所述核心网网元根据所述第二感知需求信息和每一个感知功能网元支持的感知业务类型,确定用于与所述第一感知功能网元进行目标协同感知的第二感知功能网元,以及确定由所述第二感知功能网元调度的第二感知节点或者接收来自所述第二感知功能网元的所述第二感知节点的标识信息;或者,
    所述核心网网元根据所述第二感知需求信息,确定第三感知功能网元,并将支持所述第二感知需求信息对应的感知业务类型的第三感知功能网元确定为所述第二感知功能网元,以及确定由所述第二感知功能网元调度的第二感知节点或者接收来自所述第二感知功能网元的所述第二感知节点的标识信息;
    所述核心网网元向所述第二感知节点发送所述第二感知需求信息。
  27. 根据权利要求26所述的方法,其中,在所述核心网网元接收来自第一感知功能网元的第二感知需求信息之前,所述方法还包括:
    所述核心网网元获取第一感知需求信息;
    所述核心网网元根据所述第一感知需求信息确定所述第一感知功能网元,并向所述第一感知功能网元发送所述第一感知需求信息,其中,所述第二感知需求信息由所述第一感知功能网元或所述第一感知功能网元调度的第一感知节点确定。
  28. 根据权利要求26所述的方法,其中,所述核心网网元将支持所述第二感知需求信息对应的感知业务类型的第三感知功能网元确定为所述第二感知功能网元,包括:
    所述核心网网元向所述第三感知功能网元发送所述第二感知需求信息,并接收来自所述第三感知功能网元的第二反馈信息;
    所述核心网网元根据所述第二反馈信息将支持所述第二感知需求信息对应的感知业务类型的第三感知功能网元确定为所述第二感知功能网元。
  29. 根据权利要求26所述的方法,其中,在所述核心网网元向所述第二感知功能网元调度的第二感知节点发送所述第二感知需求信息之后,所述方法还包括:
    所述核心网网元接收来自所述第一感知功能网元的第一感知测量量和/或第一感知结果;
    所述核心网网元接收来自所述第二感知功能网元的第二感知测量量和/或第二感知结果,其中,所述第二感知测量量由所述第二感知节点确定;
    所述核心网网元根据所述第一感知测量量和/或第一感知结果,以及所述第二感知测量量和/或第二感知结果,确定目标感知结果。
  30. 根据权利要求26所述的方法,其中,在所述核心网网元向所述第二感知功能网元调度的第二感知节点发送所述第二感知需求信息之后,所述方法还包括:
    所述核心网网元接收来自所述第二感知功能网元的第二感知测量量和/或第二感知结果,其中,所述第二感知测量量和/或第二感知结果由所述第二感知节点确定;
    所述核心网网元向所述第一感知功能网元发送所述第二感知测量量和/或第二感知结果;
    所述核心网网元接收来自所述第一感知功能网元的目标感知结果。
  31. 一种无线感知协同装置,应用于核心网网元,所述装置包括:
    第四获取模块,用于接收来自第一感知功能网元的第二感知需求信息;
    第三确定模块,用于根据所述第二感知需求信息和每一个感知功能网元支持的感知业务类型,确定用于与所述第一感知功能网元进行目标协同感知的第二感知功能网元,以及确定由所述第二感知功能网元调度的第二感知节点或者接收来自所述第二感知功能网元的所述第二感知节点的标识信息;或者,
    第四确定模块,用于根据所述第二感知需求信息,确定第三感知功能网元,并将支持所述第二感知需求信息对应的感知业务类型的第三感知功能网元确定为所述第二感知功能网元,以及确定由所述第二感知功能网元调度的第二感知节点或者接收来自所述第二感知功能网元的所述第二感知节点的标识信息;
    第一发送模块,用于向所述第二感知节点发送所述第二感知需求信息。
  32. 一种网络侧设备,包括处理器,存储器及存储在所述存储器上并可 在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至15中任一项所述的无线感知协同方法的步骤,或者实现如权利要求18至23中任一项所述的无线感知协同方法的步骤,或者实现如权利要求26至30中任一项所述的无线感知协同方法的步骤。
  33. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求18至23中任一项所述的无线感知协同方法的步骤。
  34. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至15中任一项所述的无线感知协同方法的步骤,或者实现如权利要求18至23中任一项所述的无线感知协同方法的步骤,或者实现如权利要求26至30中任一项所述的无线感知协同方法的步骤。
PCT/CN2022/129254 2021-11-04 2022-11-02 无线感知协同方法、装置、网络侧设备和终端 WO2023078297A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22889319.4A EP4429206A1 (en) 2021-11-04 2022-11-02 Wireless sensing collaboration method and apparatus, network side device, and terminal
US18/653,600 US20240292194A1 (en) 2021-11-04 2024-05-02 Wireless sensing collaboration method and apparatus, network side device, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111302242.2 2021-11-04
CN202111302242.2A CN116073925A (zh) 2021-11-04 2021-11-04 无线感知协同方法、装置、网络侧设备和终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/653,600 Continuation US20240292194A1 (en) 2021-11-04 2024-05-02 Wireless sensing collaboration method and apparatus, network side device, and terminal

Publications (1)

Publication Number Publication Date
WO2023078297A1 true WO2023078297A1 (zh) 2023-05-11

Family

ID=86182549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129254 WO2023078297A1 (zh) 2021-11-04 2022-11-02 无线感知协同方法、装置、网络侧设备和终端

Country Status (4)

Country Link
US (1) US20240292194A1 (zh)
EP (1) EP4429206A1 (zh)
CN (1) CN116073925A (zh)
WO (1) WO2023078297A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024114968A1 (en) * 2023-08-10 2024-06-06 Lenovo (Singapore) Pte. Ltd. Sensing in a wireless communication network
WO2024120669A1 (en) * 2023-08-10 2024-06-13 Lenovo (Singapore) Pte. Ltd. Sensing in a wireless communication network

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117440397A (zh) * 2022-07-14 2024-01-23 维沃移动通信有限公司 感知处理方法、装置、终端、网络侧设备及可读存储介质
CN117014801B (zh) * 2023-08-24 2024-03-19 北京物资学院 无线蜂窝系统中感知性能优化方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104486400A (zh) * 2014-12-12 2015-04-01 广东工业大学 一种制造物联网节点协同感知调度优化方法
US20200142406A1 (en) * 2018-11-07 2020-05-07 Gm Cruise Holdings Llc Distributed integrated sensing and communication module
CN113037857A (zh) * 2021-03-23 2021-06-25 中国科学院自动化研究所 面向云环境的多机器人协同感知服务系统、方法及设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104486400A (zh) * 2014-12-12 2015-04-01 广东工业大学 一种制造物联网节点协同感知调度优化方法
US20200142406A1 (en) * 2018-11-07 2020-05-07 Gm Cruise Holdings Llc Distributed integrated sensing and communication module
CN113037857A (zh) * 2021-03-23 2021-06-25 中国科学院自动化研究所 面向云环境的多机器人协同感知服务系统、方法及设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
THE IMT-2030 (6G) PROMOTION GROUP: "Study Report on Communications and Sensing Integrated Technology", 30 September 2021 (2021-09-30), XP009546319 *
ZHANG ANDREW; RAHMAN MD. LUSHANUR; HUANG XIAOJING; GUO YINGJIE JAY; CHEN SHANZHI; HEATH ROBERT W.: "Perceptive Mobile Networks: Cellular Networks With Radio Vision via Joint Communication and Radar Sensing", IEEE VEHICULAR TECHNOLOGY MAGAZINE, vol. 16, no. 2, 17 December 2020 (2020-12-17), US , pages 20 - 30, XP011856459, ISSN: 1556-6072, DOI: 10.1109/MVT.2020.3037430 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024114968A1 (en) * 2023-08-10 2024-06-06 Lenovo (Singapore) Pte. Ltd. Sensing in a wireless communication network
WO2024120669A1 (en) * 2023-08-10 2024-06-13 Lenovo (Singapore) Pte. Ltd. Sensing in a wireless communication network

Also Published As

Publication number Publication date
US20240292194A1 (en) 2024-08-29
EP4429206A1 (en) 2024-09-11
CN116073925A (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
WO2023078297A1 (zh) 无线感知协同方法、装置、网络侧设备和终端
US20240155394A1 (en) Sensing method and apparatus, terminal, and network device
WO2023116588A1 (zh) 无线感知的参数确定方法、装置及设备
US20240337726A1 (en) Sensing method and apparatus, sensing configuration method and apparatus, and a communication device
US20240340949A1 (en) Sensing method and apparatus and communication device
WO2023116589A1 (zh) 无线感知的参数确定方法、装置及设备
WO2023125154A1 (zh) 感知信号周期的确定方法、装置、通信设备及存储介质
WO2023093644A1 (zh) 无线感知方法、装置、网络侧设备和终端
WO2024131757A1 (zh) 感知协作方法、装置及通信设备
WO2024131761A1 (zh) 感知协作方法、装置及通信设备
WO2023116687A1 (zh) 发射功率的确定方法、装置及设备
WO2024131758A1 (zh) 感知融合方法、装置及通信设备
US20240353522A1 (en) Wireless sensing parameter determination method and apparatus and device
US20240357319A1 (en) Method for Determining Sensing Signal Period, Communication Device, and Non-Transitory Storage Medium
WO2024012366A1 (zh) 感知处理方法、装置、终端及设备
WO2024131760A1 (zh) 移动性管理方法、装置、通信设备及可读存储介质
WO2023093825A1 (zh) 天气感知方法、装置、通信设备及存储介质
WO2024012252A1 (zh) 感知处理方法、装置、终端、网络侧设备及可读存储介质
WO2024131756A1 (zh) 信号配置方法、装置、通信设备及可读存储介质
WO2024140796A1 (zh) 传输处理方法、装置、终端及网络侧设备
WO2023231868A1 (zh) 感知方式切换方法、装置、通信设备及存储介质
WO2023231842A1 (zh) 感知方式切换方法、装置、终端及网络侧设备
WO2023231867A1 (zh) 感知方式切换方法、装置及通信设备
WO2023174342A1 (zh) 感知处理方法、装置、通信设备及可读存储介质
CN118250709A (zh) 感知融合方法、装置及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889319

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022889319

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022889319

Country of ref document: EP

Effective date: 20240604