WO2024106469A1 - リードフレーム及びその製造方法 - Google Patents

リードフレーム及びその製造方法 Download PDF

Info

Publication number
WO2024106469A1
WO2024106469A1 PCT/JP2023/041105 JP2023041105W WO2024106469A1 WO 2024106469 A1 WO2024106469 A1 WO 2024106469A1 JP 2023041105 W JP2023041105 W JP 2023041105W WO 2024106469 A1 WO2024106469 A1 WO 2024106469A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
die pad
lead frame
resin
metal connection
Prior art date
Application number
PCT/JP2023/041105
Other languages
English (en)
French (fr)
Inventor
昌博 永田
啓吾 今井
恭司 山本
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2024516550A priority Critical patent/JP7486065B1/ja
Priority to JP2024075362A priority patent/JP2024099832A/ja
Publication of WO2024106469A1 publication Critical patent/WO2024106469A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads

Definitions

  • This disclosure relates to a lead frame and a method for manufacturing the same.
  • QFN Quad Flat Non-lead
  • Patent Document 1 discloses a technology in which a non-through groove is used to form a semiconductor chip mounting section and leads, and the semiconductor chip etc. are sealed with resin, and then the non-through groove is penetrated to form a semiconductor device.
  • leads that are thinned from the back side are used, the leads are prone to deformation during wire bonding.
  • leads that are thinned from the back side are used, the space on the back side of the leads is narrow. For this reason, there is a risk that the sealing resin cannot be sufficiently filled on the back side of the leads.
  • This disclosure provides a lead frame and a manufacturing method thereof that can suppress deformation of the lead portion during wire bonding.
  • the embodiments of the present disclosure relate to the following [1] to [11].
  • a lead frame comprising: a die pad; a lead portion arranged around the die pad; a metal connection portion connecting the die pad and the lead portion to each other; and a resin portion arranged around the die pad and the lead portion on the back surface side of the lead frame, wherein at least a portion of the lead portion is thinned from the back surface side, and the thinned portion of the lead portion is filled with the resin portion.
  • [7] A lead frame according to any one of [1] to [6], in which the metal connection portion is thinned from the surface side.
  • [8] A lead frame according to any one of [1] to [7], in which the metal connection portion is thinned from the back side.
  • a lead frame comprising a die pad, a lead portion arranged around the die pad, a plurality of inner lead portions arranged around the die pad, a metal connecting portion connecting the plurality of inner lead portions to each other, and a resin portion arranged around the die pad and the lead portions on the back surface side of the lead frame, the metal connecting portion being thinned from the front surface side, at least a portion of the inner lead portions being thinned from the back surface side, and the resin portion being filled into the thinned portion of the inner lead portions.
  • a lead frame comprising a die pad, a lead portion arranged around the die pad, a metal connection portion arranged between the die pad and the lead portion, and a resin portion arranged around the die pad and the lead portion on the back side of the lead frame, wherein a recess is provided on the surface of the metal connection portion.
  • a method for manufacturing a lead frame comprising the steps of: preparing a metal substrate; etching the metal substrate from the rear side to partway through the thickness direction to form a rear side recess; forming a resin portion on the rear side of the metal substrate and filling the rear side recess with the resin portion; and etching the metal substrate from the front side to partway through the thickness direction to form a die pad, lead portions arranged around the die pad, and metal connecting portions arranged between the die pad and the lead portions.
  • FIG. 1 is a plan view showing a lead frame according to a first embodiment.
  • FIG. 2 is a bottom view showing the lead frame according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing the lead frame according to the first embodiment (a cross-sectional view taken along line III-III in FIG. 1).
  • FIG. 4 is an enlarged perspective view showing a part of the lead frame according to the first embodiment (an enlarged view of a portion IV in FIG. 1).
  • FIG. 5 is a plan view showing the semiconductor device according to the first embodiment.
  • FIG. 6 is a cross-sectional view showing the semiconductor device according to the first embodiment (a cross-sectional view taken along line VI-VI in FIG. 5).
  • FIG. 7A to 7I are cross-sectional views showing a method for manufacturing a lead frame according to the first embodiment.
  • 8A to 8H are cross-sectional views showing the method for manufacturing the semiconductor device according to the first embodiment.
  • FIG. 9 is a cross-sectional view showing a lead frame according to a first modified example of the first embodiment.
  • FIG. 10 is a cross-sectional view showing a lead frame according to a second modification of the first embodiment.
  • FIG. 11 is a plan view showing a lead frame according to the second embodiment.
  • FIG. 12 is a cross-sectional view showing a lead frame according to the second embodiment (a cross-sectional view taken along line XII-XII in FIG. 11).
  • FIG. 13 is a cross-sectional view showing a semiconductor device according to a second embodiment.
  • FIG. 14 is a cross-sectional view showing a lead frame according to a modified example of the second embodiment.
  • FIG. 15 is a cross-sectional view showing a lead frame according to a third embodiment.
  • FIG. 16 is a cross-sectional view showing a semiconductor device according to a third embodiment.
  • FIG. 17 is a cross-sectional view showing a lead frame according to a modified example of the third embodiment.
  • FIG. 18 is a plan view showing a lead frame according to the fourth embodiment.
  • FIG. 19(A) is a cross-sectional view showing a lead frame according to the fourth embodiment (cross-sectional view taken along line XIXA-XIXA in FIG. 18), and FIG.
  • FIG. 19(B) is a cross-sectional view showing a lead frame according to the fourth embodiment (cross-sectional view taken along line XIXB-XIXB in FIG. 18).
  • FIG. 20 is a plan view showing a semiconductor device according to a fourth embodiment.
  • FIG. 21 is a plan view showing a lead frame according to a fifth embodiment.
  • FIG. 22(A) is a cross-sectional view showing a lead frame according to a fifth embodiment (cross-sectional view taken along line XXIIA-XXIIA in FIG. 21), and
  • FIG. 22(B) is a cross-sectional view showing a lead frame according to the fifth embodiment (cross-sectional view taken along line XXIIB-XXIIB in FIG. 21).
  • FIG. 23 is a plan view showing a semiconductor device according to a fifth embodiment.
  • FIG. 24 is a plan view showing a lead frame according to a modification of the fifth embodiment.
  • FIG. 25 is a plan view showing a lead frame according to a sixth embodiment.
  • FIG. 26(A) is a cross-sectional view showing a lead frame according to a sixth embodiment (cross-sectional view taken along line XXVIA-XXVIA in FIG. 25), and
  • FIG. 26(B) is a cross-sectional view showing a lead frame according to the sixth embodiment (cross-sectional view taken along line XXVIB-XXVIB in FIG. 25).
  • FIG. 27 is a plan view showing a semiconductor device according to a sixth embodiment.
  • the X direction and the Y direction are two directions parallel to each side of the lead frame 10 or the package area 10a, and the X direction and the Y direction are perpendicular to each other.
  • the Z direction is perpendicular to both the X direction and the Y direction.
  • the terms “inside” and “inner side” refer to the side facing toward the center of each package area 10a.
  • the terms “outside” and “outer side” refer to the side away from the center of each package area 10a.
  • the term “front side” refers to the surface on the side on which the semiconductor element 21 is mounted (the surface on the positive side in the Z direction).
  • the term “back side” refers to the surface opposite the "front side” (the negative side in the Z direction), that is, the surface opposite the surface on which the semiconductor element 21 is mounted.
  • half-etching refers to etching the material to be etched partway in the thickness direction.
  • the thickness of the material to be etched after half-etching may be, for example, 10% to 90%, or 30% to 70%, or 40% to 60% of the thickness of the material to be etched before half-etching.
  • FIG. 1 to 4 are diagrams showing the lead frame according to the present embodiment.
  • the lead frame 10 includes a package area (unit lead frame) 10a.
  • the package areas 10a are arranged in multiple rows and multiple stages (in a matrix) in a plan view within the lead frame 10. However, this is not limited to this, and it is sufficient that there is one or more package areas 10a.
  • Each package area 10a corresponds to a semiconductor device 20 (described below), and is an area located inside the imaginary line in FIG. 1.
  • the imaginary line in FIG. 1 corresponds to the outer periphery of the semiconductor device 20.
  • the lead frame 10 includes a die pad 11, a plurality of lead portions 12, a metal connecting portion 16, and a resin portion 18.
  • Each of the plurality of lead portions 12 has an elongated shape and is provided around the die pad 11.
  • Each of the lead portions 12 electrically connects the semiconductor element 21 to an external wiring board (not shown).
  • the metal connecting portion 16 connects the die pad 11 and the lead portions 12 to each other.
  • the resin portion 18 is disposed around the die pad 11 and the lead portions 12 on the back surface side of the lead frame 10.
  • the metal connecting portion 16 is thinned from the front surface side. At least a portion of the lead portion 12 is thinned from the back surface side. At least a portion of the thinned portion of the lead portion 12 is filled with the resin portion 18.
  • the multiple package regions 10a are connected to each other via support leads (support members) 13.
  • the support leads 13 support the die pad 11 and the lead portion 12.
  • the support leads 13 extend along the X and Y directions, respectively.
  • the die pad 11 has a substantially square shape in a plan view.
  • the die pad 11 is not thinned from the front side or the back side. However, this is not limited to this, and a part of the die pad 11 may be thinned from the front side or the back side, for example, by half etching.
  • the planar shape of the die pad 11 is not limited to a square, and may be a polygon such as a rectangle.
  • the suspension leads 14 are connected to the four corners of the die pad 11 via metal connecting parts 16.
  • the die pad 11 is connected and supported to the support leads 13 via four suspension leads 14. In this embodiment, the suspension leads 14 are not thinned from either the front side or the back side, and have the same thickness as the metal substrate (metal substrate 31 described later) before processing.
  • suspension leads 14 may be thinned from the front side or the back side. Since the die pad 11 can be supported by the lead parts 12 and the support leads 13 by the resin part 18, the suspension leads 14 do not need to be provided. If the suspension leads 14 are not provided, it is easier to fill the four corners of the die pad 11 with resin to form the resin portion 18.
  • a semiconductor element 21, described later, is mounted on the surface of the die pad 11.
  • the front and back surfaces of the die pad 11 are not covered by the resin part 18 and are exposed outward from the lead frame 10.
  • the surface of the die pad 11 is located closer to the front surface (positive side in the Z direction) than the resin surface 18a of the resin part 18, described later.
  • a metal connecting part 16 is connected to the side of the die pad 11 facing the lead part 12.
  • the die pad 11 is formed integrally with the metal connecting part 16.
  • Each lead portion 12 is connected to the semiconductor element 21 via a bonding wire 22, as described below.
  • the lead portion 12 is arranged between the die pad 11 and the lead portion 12 via a metal connection portion 16.
  • the lead portions 12 each extend from a support lead 13.
  • the multiple lead portions 12 are arranged along the periphery of the die pad 11.
  • Each lead portion 12 has an inner lead 51 and an external terminal 53.
  • the inner lead 51 is located on the inside (the die pad 11 side).
  • the external terminal 53 is located on the outside (the opposite side of the die pad 11, the support lead 13 side).
  • the inner lead 51 is located at the inner end of the lead portion 12, and an internal terminal 15 is formed on its surface side.
  • This internal terminal 15 is an area that is electrically connected to the semiconductor element 21 via a bonding wire 22, as described below.
  • a metal layer that improves adhesion with the bonding wire 22 may be provided on the internal terminal 15.
  • the metal layer may be made of a plating layer such as silver plating.
  • the inner lead 51 is thinned from the back side by, for example, half etching.
  • the inner lead 51 has the internal terminal 15 described above and an inner lead back surface 51b.
  • the internal terminal 15 is located on the front side of the inner lead 51.
  • the internal terminal 15 is not thinned from the front side.
  • the inner lead back surface 51b is located on the back side of the inner lead 51.
  • the inner lead back surface 51b is a surface formed by etching.
  • the inner lead back surface 51b is in close contact with the resin part 18.
  • An inner lead side surface 51c is formed on the side of the inner lead 51 facing the die pad 11. A space is formed between the inner lead side surface 51c and the die pad 11.
  • the external terminal 53 is located on the support lead 13 side, and its outer end is connected to the support lead 13.
  • the external terminal 53 is not thinned from either the front side or the back side.
  • the external terminal 53 has an external terminal surface 53a and an external terminal surface 17.
  • the external terminal surface 53a is located on the front side of the external terminal 53 and is exposed to the outside.
  • the external terminal surface 53a is located on the same plane as the internal terminal 15.
  • the external terminal surface 17 is located on the back side of the external terminal 53 and is exposed to the outside.
  • the external terminal surface 17 is not thinned from the back side.
  • the area between the external terminal surface 17 and the support lead 13 may be thinned from the back side to form a connection portion.
  • an external terminal inner surface 53d is formed at a position on the back side of the inner lead back surface 51b of the external terminal 53.
  • the external terminal inner surface 53d extends between the inner lead back surface 51b and the external terminal surface 17.
  • the resin part 18 is in close contact with the external terminal inner surface 53d.
  • the metal connection portion 16 is arranged to connect the tips of the multiple lead portions 12.
  • the metal connection portion 16 is also arranged to surround the die pad 11.
  • This metal connection portion 16 has a substantially rectangular annular or ring shape in a planar view as a whole. Each side of the metal connection portion 16 extends along the X direction or Y direction.
  • a hanging lead 14 is connected to each of the four corners of the metal connection portion 16. Note that the metal connection portion 16 does not necessarily have to have an annular or ring shape.
  • the metal connection portion 16 connects the die pad 11 and the tips of the lead portions 12, and does not necessarily have to be provided between adjacent lead portions 12.
  • the metal connection portion 16 is thinned from the front surface side. By thinning the metal connection portion 16 from the front surface side, the volume of the metal connection portion 16 is reduced. This makes it easier to remove the metal connection portion 16 by etching when separating the lead portion 12 and the die pad 11 from each other, as described below.
  • the metal connection portion 16 has a connection portion front surface 16a, a connection portion back surface 16b, and a connection portion outer surface 16c.
  • the connecting portion surface 16a is located on the front side of the metal connecting portion 16. This connecting portion surface 16a is formed by, for example, half etching. The connecting portion surface 16a is located on the back side (negative side in the Z direction) of the front surface of the die pad 11 and the internal terminal 15. The connecting portion surface 16a may be located on the same plane as the inner lead back surface 51b. The portion of the connecting portion surface 16a located on the die pad 11 side from the tip of the lead portion 12 is exposed to the outside. The portion of the connecting portion surface 16a located between the adjacent lead portions 12 is exposed to the outside (see FIG. 4). On the other hand, the portion of the metal connecting portion 16 located on the back side of the inner lead 51 is integrated with the inner lead 51 and is not exposed to the outside.
  • the metal connecting portion 16 is thinned from the front side all around. However, this is not limited to this, and a portion of the metal connecting portion 16 in the circumferential direction may be thinned from the front side. For example, the portion of the metal connecting portion 16 excluding the four corners may be thinned from the front side.
  • the connecting portion back surface 16b is located on the back surface side of the metal connecting portion 16. This connecting portion back surface 16b is not thinned.
  • the connecting portion back surface 16b is located on the same plane as the back surface of the die pad 11 and the external terminal surface 17.
  • the connecting portion back surface 16b is exposed to the outside in its entirety. Note that a portion of the metal connecting portion 16 may be thinned from the back surface side.
  • the connecting portion outer surface 16c is located on the outside of the metal connecting portion 16 (the support lead 13 side).
  • the connecting portion outer surface 16c extends between the connecting portion front surface 16a and the connecting portion back surface 16b.
  • the resin portion 18 is in close contact with the connecting portion outer surface 16c.
  • the connecting portion outer surface 16c is located outside the inner lead side surface 51c (the support lead 13 side).
  • the connecting portion outer surface 16c may be located on the same plane as the inner lead side surface 51c between two adjacent lead portions 12.
  • the width W1 of the metal connection portion 16 may be 100 ⁇ m or more and 300 ⁇ m or less.
  • a part of the metal connection portion 16 is located on the back surface side of the inner lead 51 of the lead portion 12.
  • the width W2 of the part of the metal connection portion 16 located on the back surface side of the inner lead 51 of the lead portion 12 may be 50 ⁇ m or more and 150 ⁇ m or less.
  • width W1 and width W2 each refer to the distance measured from the die pad 11 side to the lead portion 12 side in a cross section perpendicular to the extension direction of the metal connection portion 16.
  • the resin portion 18 is disposed around the die pad 11 and the lead portion 12. That is, as shown in FIG. 1, when viewed from the front side, the resin portion 18 is located in an area surrounded by the metal connecting portion 16, the two adjacent lead portions 12, and the support lead 13. When viewed from the front side, the resin portion 18 is located in an area surrounded by the metal connecting portion 16, the hanging lead 14, the lead portion 12 adjacent to the hanging lead 14, and the support lead 13. When viewed from the back side, as shown in FIG. 2, the resin portion 18 is located in an area surrounded by the metal connecting portion 16, the multiple external terminal surfaces 17, the support lead 13, and the two hanging leads 14. Note that in each figure, the resin portion 18 is shown shaded.
  • the resin part 18 is disposed on the back side of the lead frame 10. That is, the resin part 18 is present on the back side (negative side in the Z direction) of the lead frame 10 at a midpoint in the thickness direction. The resin part 18 is not present on the front side (positive side in the Z direction) of the midpoint in the thickness direction (Z direction).
  • the midpoint is not limited to the center in the thickness direction of the lead frame 10, but may be located on the front side or back side of the center in the thickness direction.
  • the midpoint in the thickness direction corresponds to the position where the inner lead back surface 51b is located in the thickness direction. Without being limited to this, the midpoint in the thickness direction may be located on the front side (positive side in the Z direction) of the position where the inner lead back surface 51b is located.
  • the resin part 18 is in close contact with the outer surface 16c of the metal connecting part 16.
  • the resin part 18 is also disposed on the back surface side of the lead part 12. Specifically, the resin part 18 is in close contact with the inner surface 53d of the external terminal of the lead part 12 and the back surface 51b of the inner lead.
  • the resin part 18 has a resin surface 18a located on the front side and a resin back surface 18b located on the back side. Of these, the resin surface 18a is exposed to the outside from between two adjacent lead parts 12 (see FIG. 4).
  • the resin surface 18a, the inner lead back surface 51b and the connecting part surface 16a are located on the same plane. However, this is not limited to this, and the resin surface 18a may be located on the front side of the inner lead back surface 51b and the connecting part surface 16a.
  • the resin back surface 18b is exposed to the outside from the back surface side of the lead frame 10.
  • the back surface of the die pad 11, the resin back surface 18b and the external terminal surface 17 are located on the same plane.
  • the resin portion 18 may be made of a thermosetting resin such as a silicone resin or an epoxy resin, or a thermoplastic resin such as a PPS resin. In order to improve the adhesion between the resin portion 18 and a sealing resin 23 described later, it is preferable to use the same material as the sealing resin 23 for the resin portion 18.
  • the thermal conductivity of the resin portion 18 may be 1 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or more, or 3 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or more, in a 25° C. environment, for example.
  • the thermal conductivity of the resin portion 18 may be 12 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or less, or 10 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or less.
  • the thermal conductivity of the resin portion 18 is measured by a laser flash method.
  • the lead frame 10, except for the resin portion 18, is generally made of metal such as copper, copper alloy, or 42 alloy (Fe alloy containing 42% Ni).
  • the maximum thickness T1 of the lead frame 10 may be 80 ⁇ m or more and 300 ⁇ m or less, depending on the configuration of the semiconductor device 20 to be manufactured.
  • the maximum thickness of the lead frame 10 refers to the thickness (Z-direction distance) of the thickest part of the lead frame 10, and refers to the thickness of the part that is not thinned from either the front side or the back side.
  • the maximum thickness of the lead frame 10 corresponds to the plate thickness of the metal substrate 31 described later.
  • the resin portion 18 is provided on the back side of the lead portion 12, so that the lead portion 12 is less likely to deform due to the force applied during wire bonding. This allows the maximum thickness T1 of the lead frame 10 to be thin.
  • the thickness T2 of the inner lead 51 may be 30% to 60% or 40% to 50% of the maximum thickness T1 of the lead frame 10.
  • the thickness T2 of the inner lead 51 may be 24 ⁇ m to 180 ⁇ m or 32 ⁇ m to 150 ⁇ m.
  • the thickness T3 of the resin portion 18 may be 30% to 60% or 40% to 50% of the maximum thickness T1 of the lead frame 10.
  • the thickness T3 of the resin portion 18 may be 24 ⁇ m to 180 ⁇ m or 32 ⁇ m to 150 ⁇ m.
  • FIG. 5 and 6 are diagrams showing the semiconductor device according to the present embodiment.
  • the semiconductor device (semiconductor package) 20 includes a die pad 11, multiple lead portions 12, a semiconductor element 21, and multiple bonding wires (connecting members) 22.
  • the multiple lead portions 12 are arranged around the die pad 11.
  • the semiconductor element 21 is mounted on the die pad 11.
  • the bonding wires 22 electrically connect the lead portions 12 and the semiconductor element 21.
  • a resin portion 18 is arranged around the die pad 11 and the lead portions 12 on the back side of the semiconductor device 20.
  • the die pad 11, the lead portions 12, the semiconductor element 21, and the bonding wires 22 are resin-sealed with sealing resin 23.
  • the die pad 11, lead portion 12, and resin portion 18 of the semiconductor device 20 are made from the lead frame 10 described above.
  • the configurations of the die pad 11, lead portion 12, and resin portion 18 are similar to those shown in Figures 1 to 4 described above, except for the areas not included in the semiconductor device 20, so a detailed description will be omitted here.
  • the above-mentioned metal connection portion 16 is sealed with sealing resin 23 and then removed by etching from the back side. Therefore, as shown in Figures 5 and 6, the lead portion 12 is separated from the die pad 11 and other lead portions 12 and is electrically independent from each other.
  • a recess 27 is formed on the back surface of the sealing resin 23 between the lead portion 12 and the die pad 11.
  • This recess 27 roughly corresponds to the shape of the metal connection portion 16.
  • the recess 27 has a substantially rectangular annular or ring shape in a plan view so as to surround the die pad 11.
  • the recess 27 may be filled with an insulating resin of the same or different type as the sealing resin 23.
  • the semiconductor element 21 various types of semiconductor elements that are commonly used in the past can be used.
  • the semiconductor element 21 for example, an integrated circuit, a large-scale integrated circuit, a transistor, a thyristor, a diode, etc. may be used.
  • This semiconductor element 21 has a plurality of electrodes 21a to which bonding wires 22 are each attached.
  • the semiconductor element 21 is fixed to the surface of the die pad 11 by an adhesive 24.
  • the adhesive 24 for example, a die bonding paste, etc. may be used.
  • Each bonding wire 22 is made of a material with good conductivity, such as gold or copper. One end of each bonding wire 22 is connected to an electrode 21a of the semiconductor element 21. The other end of each bonding wire 22 is connected to an internal terminal 15 of each lead portion 12.
  • the sealing resin 23 may be a thermosetting resin such as silicone resin or epoxy resin, or a thermoplastic resin such as PPS resin.
  • the overall thickness of the sealing resin 23 may be about 300 ⁇ m or more and 1500 ⁇ m or less.
  • one side of the sealing resin 23 (one side of the semiconductor device 20) may be, for example, 0.2 mm or more and 16 mm or less.
  • the sealing resin 23 is exposed toward the inside of the recess 27.
  • the sealing resin 23 is in close contact with the resin surface 18a of the resin portion 18. Note that the sealing resin 23 is not shown in FIG. 5.
  • the metal substrate 31 may be made of a metal such as copper, a copper alloy, or alloy 42 (a 42% Ni-Fe alloy). It is preferable to use a metal substrate 31 that has been degreased and cleaned on both sides.
  • etching resist layers 32, 33 Figure 7 (B)
  • the etching resist layer 33 on the back surface side has openings 33b.
  • the etching resist layer 32 on the front surface side does not have openings, but may have openings.
  • the etching resist layers 32, 33 may be made of, for example, a dry film resist.
  • the metal substrate 31 is thinned from the back side of the metal substrate 31 to the middle of the thickness direction by half etching.
  • the back side of the metal substrate 31 is etched with an etchant, using the etching resist layer 33 on the back side as a corrosion-resistant film (FIG. 7(C)).
  • the front surface of the metal substrate 31 is not etched because it is entirely covered with the etching resist layer 32.
  • a back side recess 36 which is a non-penetrating recess, is formed on the back side of the metal substrate 31.
  • This back side recess 36 has a shape corresponding to the resin part 18.
  • the etchant can be appropriately selected depending on the material of the metal substrate 31 to be used.
  • an aqueous solution of ferric chloride may be used as the etchant.
  • the aqueous solution of ferric chloride may be spray-etched from one side or both sides of the metal substrate 31.
  • a resin part 18 is formed on the back side of the metal substrate 31, and the back side recess 36 is covered by the resin part 18 ( Figure 7 (E)).
  • a thermosetting resin or a thermoplastic resin may be injection molded or transfer molded onto the back side of the metal substrate 31. This causes the resin part 18 to fill the back side recess 36.
  • the resin part 18 is provided so as to cover the entire back side of the metal substrate 31.
  • the resin portion 18 is polished to a predetermined thickness (FIG. 7(F)). Specifically, the resin portion 18 is polished from the back surface side, and polishing of the resin portion 18 is stopped after the metal portion that constitutes the metal substrate 31 appears. This exposes the back surface of the die pad 11 and the portion that corresponds to the external terminal surface 17 of the lead portion 12 on the back surface side. Note that one example of a method for polishing the resin portion 18 is buff polishing.
  • etching resist layers 34, 35 Figure 7(G)
  • the etching resist layer 34 on the front side has an opening 34b.
  • the etching resist layer 35 on the back side does not have an opening, but may have an opening. Note that the etching resist layers 34, 35 may be, for example, a dry film resist.
  • the metal substrate 31 is thinned from the front surface side to the middle of the thickness direction by half etching.
  • the front surface side etching resist layer 34 is used as a corrosion-resistant film, and etching is performed on the front surface side of the metal substrate 31 with an etchant (Fig. 7(H)).
  • the etchant may be the same as that used when etching the back surface side of the metal substrate 31 (Fig. 7(C)).
  • the surface side of the metal substrate 31 is etched, and the outer shapes of the die pad 11, lead portions 12, and support leads 13 are formed.
  • the surface side of the die pad 11 is thinned by etching.
  • the portions of the metal substrate 31 between adjacent lead portions 12 are thinned from the surface side, exposing the resin surface 18a of the resin portion 18 to the outside ( Figure 4).
  • the portions of the metal substrate 31 between the die pad 11 and lead portions 12 are thinned from the surface side, forming the metal connection portion 16.
  • the lead frame 10 is fabricated ( Figure 8(A)) using, for example, the method shown in Figures 7(A)-(I).
  • the semiconductor element 21 is mounted on the die pad 11 of the lead frame 10.
  • the semiconductor element 21 is placed on the die pad 11 and fixed using an adhesive 24 (die attachment process) ( Figure 8 (B)).
  • an adhesive 24 die attachment process
  • Figure 8 (B) a die bonding paste or the like may be used.
  • each electrode 21a of the semiconductor element 21 and the internal terminal 15 of each lead portion 12 are electrically connected to each other by a bonding wire 22 (wire bonding process) ( Figure 8 (C)).
  • the lead frame 10 is placed on a heat block of a wire bonding device (not shown).
  • the inner lead 51 of each lead portion 12 is heated from the back side by the heat block via the metal connection portion 16 and the external terminal 53.
  • each electrode 21a of the semiconductor element 21 and the inner lead 51 of each lead portion 12 are connected to each other by a bonding wire 22.
  • the die pad 11 and the lead portion 12 are connected to each other by a metal connecting portion 16.
  • a resin portion 18 is filled in the thinned portion on the back side of the lead portion 12. Therefore, the back side of the inner lead 51 is stably held by the resin portion 18. This prevents the lead portion 12 from deforming when the bonding wire 22 is joined to the lead portion 12 by the capillary 38. Furthermore, heat from the heat block can be transferred more uniformly compared to when the heat block is directly in contact with the back side 51b of the inner lead.
  • the lead frame 10 is injection molded or transfer molded with, for example, a thermosetting resin or a thermoplastic resin to form the sealing resin 23 (FIG. 8(D)).
  • a thermosetting resin or a thermoplastic resin to form the sealing resin 23 (FIG. 8(D)).
  • the die pad 11, the lead portion 12, the semiconductor element 21, and the bonding wires 22 are sealed.
  • the sealing resin 23 is also filled between the die pad 11 and the lead portion 12 on the surface side of the metal connection portion 16.
  • an etching resist layer 37 having an opening 37b is provided on the back surface of the lead frame 10 and the sealing resin 23 ( Figure 8 (E)).
  • a photosensitive resist is first applied to the entire back surface of the lead frame 10 and the sealing resin 23.
  • the photosensitive resist is then exposed through a photomask and developed to form an etching resist layer 37 having an opening 37b.
  • the etching resist layer 37 covers the entire back surface of the lead frame 10 and the sealing resin 23 except for the opening 37b.
  • the opening 37b corresponds roughly to the position of the metal connecting portion 16 and has a roughly rectangular band shape when viewed from above.
  • the connecting portion back surface 16b of the metal connecting portion 16 is exposed from the opening 37b.
  • a dry film resist may be used as the etching resist layer 37.
  • the lead frame 10 is etched with an etchant using the etching resist layer 37 as a corrosion-resistant film (Fig. 8(F)).
  • the etchant entering from the opening 37b dissolves and removes the entire metal connection portion 16.
  • a recess 27 is formed at a position corresponding to the metal connection portion 16.
  • the etchant may be the same as that used when etching the back side of the metal substrate 31 (Fig. 7(C)).
  • the etching resist layer 37 is peeled off and removed (FIG. 8(G)). Note that after removing the etching resist layer 37, a process may be performed in which the recess 27 is filled with an insulating resin of the same type as or different from the sealing resin 23.
  • the sealing resin 23 and the support leads 13 between each semiconductor element 21 are diced. This separates the lead frame 10 into each semiconductor device 20. At this time, the sealing resin 23 and the support leads 13 between each semiconductor device 20 may be cut while rotating a blade containing, for example, artificial diamond.
  • the die pad 11 and the lead portion 12 are connected to each other by the metal connecting portion 16. Furthermore, the resin portion 18 is filled in the thinned portion on the back side of the lead portion 12. Therefore, the back side of the lead portion 12 is stably held by the resin portion 18. This prevents the lead portion 12 from being deformed when the bonding wire 22 is joined to the lead portion 12 by the capillary 38 during wire bonding (FIG. 8(C)).
  • the bonding wire 22 is connected to the inner lead 51 of the lead portion 12 (see FIG. 8(C))
  • a pressing force is applied to the lead portion 12 from the front side to the back side by the capillary 38.
  • the lead portion 12 is prevented from being deformed.
  • the thickness of the lead portion 12 can be made thin, and the overall thickness of the lead frame 10 and the semiconductor device 20 can also be made thin.
  • the thickness of the lead portion 12 can be made thin, the width of the lead portion 12 and the distance between the lead portions 12 can be narrowed, and the lead frame 10 and the semiconductor device 20 can have a large number of pins.
  • vibration of the lead portion 12 during wire bonding (FIG. 8(C)) can be suppressed. This allows the wire bonding operation to be performed stably.
  • the length of the lead portion 12 can be made long, the length of the bonding wire 22 can be shortened.
  • the resin portion 18 before the lead frame 10 is resin-sealed with the sealing resin 23 (FIG. 8(D)), the resin portion 18 is filled in the thinned portion on the back side of the lead portion 12 in advance. Therefore, the resin portion 18 can be filled in the thinned portion on the back side of the lead portion 12 without any gaps. In particular, even if the thickness of the thinned portion on the back side of the lead portion 12 (thickness T3 in FIG. 3) is thin, the resin portion 18 can be filled in this portion without any gaps. This prevents moisture in the air from penetrating the interface between the sealing resin 23 and the lead portion 12 from the back side of the semiconductor device 20 when the semiconductor device 20 is in use. On the other hand, if the resin portion 18 is not filled in the back side of the lead portion 12, the sealing resin 23 may not sufficiently reach this portion.
  • a part of the metal connection portion 16 may be located on the back side of the inner lead 51 of the lead portion 12. This firmly connects the metal connection portion 16 and the lead portion 12, and prevents the lead portion 12 from being deformed by the capillary 38 during wire bonding.
  • the width W2 of the part of the metal connection portion 16 located on the back side of the lead portion 12 may be 50 ⁇ m or more and 150 ⁇ m or less. By making the width W2 50 ⁇ m or more, the effect of suppressing the deformation of the lead portion 12 described above is more easily obtained. Furthermore, by making the width W2 150 ⁇ m or less, the recess 27 formed on the back side of the semiconductor device 20 is prevented from becoming unnecessarily large.
  • the resin portion 18 has a resin surface 18a located on the front side, and the resin surface 18a may be exposed to the outside from between two adjacent lead portions 12.
  • the presence of the resin portion 18 between the two lead portions 12 in this manner makes it possible to prevent the lead portions 12 from deforming in the lateral direction during wire bonding (FIG. 8(C)).
  • the metal connection portion 16 may have an annular or ring-shaped configuration in plan view. This allows the metal connection portion 16 to connect multiple lead portions 12 together.
  • the thermal conductivity of the resin portion 18 may be equal to or greater than 1 W ⁇ m -1 ⁇ K -1 and equal to or less than 12 W ⁇ m -1 ⁇ K -1 in an environment of 25° C.
  • (First Modification of the First Embodiment) 9 shows a lead frame 10 according to a first modified example of this embodiment.
  • the metal connection portion 16 is thinned from both the front side and the back side.
  • the part of the metal connection portion 16 thinned from the back side forms a back side thin portion 16d.
  • the back side thin portion 16d is located outside (on the support lead 13 side) of the inner lead side surface 51c.
  • the back side thin portion 16d is not filled with the resin portion 18.
  • the width W3 between the back side thin portion 16d and the inner lead side surface 51c of the metal connection portion 16 may be 50 ⁇ m or more and 250 ⁇ m or less.
  • the back side thin portion 16d may be formed by, for example, half etching.
  • the back side thin portion 16d may extend along the longitudinal direction of the metal connection portion 16 in a plan view.
  • the width W4 of the back side thin portion 16d may be 50 ⁇ m or more and 150 ⁇ m or less.
  • the metal connection portion 16 has a metal portion 16e located between the back side thin portion 16d and the resin portion 18. In this case, the resin portion 18 is not exposed in the back side thin portion 16d.
  • the metal portion 16e is not thinned from either the front side or the back side.
  • the width W5 of the metal portion 16e may be 25 ⁇ m or more and 150 ⁇ m or less. Note that the widths W3, W4, and W5 each refer to the distance measured from the die pad 11 side to the lead portion 12 side in a cross section perpendicular to the extension direction of the metal connection portion 16.
  • the depth d1 of the rear surface side thin portion 16d may be 30% to 60% or 40% to 50% of the maximum thickness T1 of the lead frame 10.
  • the depth d1 of the rear surface side thin portion 16d may be 24 ⁇ m to 180 ⁇ m or 32 ⁇ m to 150 ⁇ m.
  • the depth d1 of the rear surface side thin portion 16d is shallower than the thickness T3 of the resin portion 18, but is not limited to this.
  • the depth d1 of the rear surface side thin portion 16d may be the same as the thickness T3 of the resin portion 18, or may be deeper than the thickness T3 of the resin portion 18.
  • the thin back surface portion 16d may be formed as follows. First, in the step of forming the etching resist layers 34, 35 described above (FIG. 7(G)), an opening corresponding to the thin back surface portion 16d is formed in the etching resist layer 35 on the back surface side. After that, the metal substrate 31 is thinned partway through the thickness direction from both the front and back surfaces of the metal substrate 31 by half etching (FIG. 7(H)). At this time, the etching resist layer 35 on the back surface side serves as a corrosion-resistant film, and the back surface of the metal substrate 31 is etched with a corrosive liquid to form the thin back surface portion 16d.
  • the rear surface thin portion 16d may be formed together with the rear surface recess 36 in the process of forming the rear surface recess 36 by half etching on the rear surface of the metal substrate 31 (FIG. 7(C)).
  • the volume of the metal connection portion 16 is further reduced by thinning the metal connection portion 16 from the back surface side. This makes it easier to remove the metal connection portion 16 by etching or dicing when separating the lead portion 12 and the die pad 11 from each other (FIG. 8(F)), as described above.
  • Fig. 10 shows a lead frame 10 according to a second modified example of this embodiment.
  • the metal connecting portion 16 is thinned from both the front side and the back side.
  • the portion of the metal connecting portion 16 thinned from the back side forms a back side thin portion 16d.
  • the back side thin portion 16d is located outside (toward the support lead 13) relative to the inner lead side surface 51c.
  • the back side thin portion 16d is not filled with the resin portion 18.
  • the resin part 18 is exposed within the back side thin part 16d. In other words, there is no metal part between the back side thin part 16d and the resin part 18.
  • the volume of the metal connection portion 16 is further reduced by thinning the metal connection portion 16 from the back surface side. This makes it easier to remove the metal connection portion 16 by etching or dicing when separating the lead portion 12 and the die pad 11 from each other (FIG. 8(F)), as described above.
  • Figures 11 to 13 are diagrams showing the second embodiment.
  • the same parts as those in the first embodiment shown in Figures 1 to 8 are given the same reference numerals and detailed description thereof will be omitted.
  • the lead frame 10A includes a die pad 11, a plurality of lead portions 12, a plurality of inner lead portions 12A, 12B, and a metal connecting portion 16.
  • the plurality of lead portions 12 and the plurality of inner lead portions 12A, 12B are each arranged around the die pad 11.
  • the metal connecting portion 16 is arranged between the die pad 11 and the lead portions 12.
  • the plurality of inner lead portions 12A, 12B are also supported by the metal connecting portion 16.
  • Each lead portion 12 has an inner lead 51 and an external terminal 53.
  • the inner lead 51 is thinned from the back side by, for example, half etching.
  • An external terminal surface 17 is formed on the back side of each external terminal 53.
  • the metal connection portion 16 is arranged so as to surround the die pad 11.
  • the metal connection portion 16 is thinned from the front surface side.
  • This metal connection portion 16 has an approximately rectangular annular or ring shape in a plan view as a whole.
  • Each side of the metal connection portion 16 extends along the X direction or Y direction.
  • a hanging lead 14 is connected to each of the four corners of the metal connection portion 16.
  • the metal connection portion 16 is supported by the support lead 13 via the four hanging leads 14.
  • Multiple inner lead portions 12A, 12B each extend from the metal connection portion 16.
  • the multiple inner lead portions 12A, 12B are located between the die pad 11 and the lead portion 12.
  • the inner lead portions 12A, 12B include an inner lead portion 12A that extends toward the die pad 11 side and an inner lead portion 12B that extends toward the support lead 13 side.
  • Each inner lead portion 12A, 12B has an inner lead 51A, 51B and an external terminal 53A, 53B, respectively.
  • the inner leads 51A, 51B are thinned from the back side by, for example, half etching.
  • External terminal surfaces 17A, 17B are formed on the back sides of the external terminals 53A, 53B, respectively.
  • the multiple inner lead portions 12A, 12B are arranged at intervals along the metal connecting portion 16.
  • the inner lead portions 12A, 12B are individually separated from each other by removing the metal connecting portion 16.
  • the resin portion 18 is disposed around the die pad 11 and the lead portion 12.
  • the resin portion 18 is disposed on the back surface side of the lead frame 10A. In other words, the resin portion 18 is present on the back surface side (negative Z-direction side) of the lead frame 10A, rather than the midpoint in the thickness direction.
  • the resin portion 18 fills the thinned portion on the back surface of the lead portion 12 and the thinned portion on the back surface of the inner lead portion 12B.
  • the resin portion 18 also exists between the lead portion 12 and the inner lead portion 12B.
  • the resin portion 18 also fills the thinned portion on the back surface of the inner lead portion 12A.
  • the resin portion 18 also exists between the inner lead portion 12A and the die pad 11.
  • the manufacturing method of the lead frame 10A according to this embodiment can be performed in a manner substantially similar to the manufacturing method of the lead frame 10 according to the first embodiment (FIGS. 7(A)-(I)).
  • FIG. 13 is a diagram showing a semiconductor device 20A according to this embodiment.
  • the semiconductor device 20A includes a die pad 11, a plurality of lead portions 12, a plurality of inner lead portions 12A, 12B, a semiconductor element 21, and a plurality of bonding wires (connecting members) 22.
  • the plurality of lead portions 12 are arranged around the die pad 11.
  • the semiconductor element 21 is mounted on the die pad 11.
  • the bonding wires 22 electrically connect the lead portions 12 and the inner lead portions 12A, 12B to the semiconductor element 21.
  • a resin portion 18 is arranged around the die pad 11 and the lead portions 12 on the back side of the semiconductor device 20A.
  • the die pad 11, the lead portions 12, the inner lead portions 12A, 12B, the semiconductor element 21, and the bonding wires 22 are resin-sealed with a sealing resin 23.
  • the inner lead portion 12A is separated from the die pad 11, the inner lead portion 12B, and the other inner lead portions 12A, and are electrically independent of each other.
  • the inner lead portion 12B is separated from the die pad 11, the inner lead portion 12A, and the other inner lead portions 12B, and are electrically independent of each other.
  • a recess 27 is formed between the inner lead portion 12A and the inner lead portion 12B on the back surface of the semiconductor device 20A.
  • This recess 27 roughly corresponds to the shape of the metal connection portion 16.
  • the recess 27 has a substantially rectangular annular or ring-shaped shape in a plan view so as to surround the die pad 11.
  • the recess 27 may be filled with an insulating resin of the same or different type as the sealing resin 23.
  • the manufacturing method of the semiconductor device 20A according to this embodiment can be performed in a manner substantially similar to the manufacturing method of the semiconductor device 20 according to the first embodiment (FIGS. 8(A)-(H)).
  • the metal connecting portion 16 is removed, so that the inner lead portion 12A and the inner lead portion 12B are each individually separated. Therefore, in addition to the lead portion 12, the inner lead portions 12A and 12B can also be used, and the number of terminal portions (number of pins) connected to an external mounting board can be increased. This allows a high density semiconductor device 20 to be realized.
  • (Modification of the second embodiment) 14 shows a lead frame 10A according to a modified example of this embodiment.
  • the metal connection portion 16 is thinned from both the front side and the back side.
  • the portion of the metal connection portion 16 thinned from the front side forms a front side thin portion 16f.
  • the portion of the metal connection portion 16 thinned from the back side forms a back side thin portion 16d.
  • the back side thin portion 16d is formed on the inside (die pad 11 side) and outside (support lead 13 side) of the front side thin portion 16f. That is, one back side thin portion 16d is formed inside the front side thin portion 16f, and the other back side thin portion 16d is formed outside the front side thin portion 16f.
  • the front side thin portion 16f and the back side thin portion 16d may each be formed by, for example, half etching.
  • the front side thin portion 16f and the back side thin portion 16d may each extend along the longitudinal direction of the metal connecting portion 16 in a plan view.
  • External terminals 53A and 53B are present between the back side thin portion 16d and the resin portion 18, respectively.
  • the resin portion 18 is not exposed within the back side thin portion 16d.
  • the volume of the metal connection portion 16 is further reduced by thinning the metal connection portion 16 from the back surface side. This makes it easier to remove the metal connection portion 16 by etching or dicing when separating the inner lead portion 12A and the inner lead portion 12B from each other in the process of manufacturing the semiconductor device 20A.
  • Fig. 15 and Fig. 16 are diagrams showing the third embodiment.
  • the third embodiment shown in Fig. 15 and Fig. 16 is different from the first embodiment in that the metal connecting portion 16 is thinned from the back side and not thinned from the front side, and other configurations are substantially the same as those of the first embodiment described above.
  • Fig. 15 and Fig. 16 the same parts as those of the first embodiment shown in Fig. 1 to Fig. 8 are denoted by the same reference numerals and detailed description thereof will be omitted.
  • the lead frame 10B includes a die pad 11, a lead portion 12, a metal connecting portion 16, and a resin portion 18.
  • the metal connecting portion 16 connects the die pad 11 and the lead portion 12 to each other.
  • the resin portion 18 is disposed around the die pad 11 and the lead portion 12 on the back surface side of the lead frame 10B.
  • the metal connecting portion 16 is thinned from the back surface side. At least a portion of the lead portion 12 is thinned from the back surface side. At least a portion of the thinned portion of the lead portion 12 is filled with the resin portion 18.
  • the metal connection portion 16 is thinned from the back surface side.
  • the metal connection portion 16 is not thinned from the front surface side.
  • the portion of the metal connection portion 16 that is thinned from the back surface side forms the back surface thin portion 16d.
  • the back surface thin portion 16d is located inside (toward the die pad 11) the portion corresponding to the inner lead side surface 51c.
  • the back surface thin portion 16d is not filled with the resin portion 18.
  • the back side thin portion 16d is formed by, for example, half etching.
  • the back side thin portion 16d may extend along the longitudinal direction of the metal connection portion 16 in a plan view.
  • the width W6 of the back side thin portion 16d may be 25 ⁇ m or more and 150 ⁇ m or less.
  • the metal portion 16e is present between the back side thin portion 16d and the resin portion 18. The resin portion 18 is not exposed in the back side thin portion 16d.
  • the metal portion 16e is not thinned from either the front side or the back side.
  • the width W7 of the metal portion 16e may be 25 ⁇ m or more and 100 ⁇ m or less.
  • the widths W6 and W7 refer to the distances measured from the die pad 11 side to the lead portion 12 side in a cross section perpendicular to the extension direction of the metal connection portion 16.
  • the depth d2 of the rear surface side thin portion 16d may be 30% to 60% or 40% to 50% of the maximum thickness T1 of the lead frame 10.
  • the depth d2 of the rear surface side thin portion 16d may be 24 ⁇ m to 180 ⁇ m or 32 ⁇ m to 150 ⁇ m.
  • the depth d2 of the rear surface side thin portion 16d is the same as the thickness T3 of the resin portion 18, but is not limited to this.
  • the depth d2 of the rear surface side thin portion 16d may be shallower than the thickness T3 of the resin portion 18, or may be deeper than the thickness T3 of the resin portion 18.
  • the thin back surface portion 16d may be formed as follows. First, in the step of forming the etching resist layers 34, 35 described above (FIG. 7(G)), an opening corresponding to the thin back surface portion 16d is formed in the etching resist layer 35 on the back surface side. On the other hand, the opening 34b is not formed in the etching resist layer 34 on the front surface side. After that, the metal substrate 31 is thinned from the back surface side of the metal substrate 31 to the middle of the thickness direction by half etching (FIG. 7(H)). At this time, the etching resist layer 35 on the back surface side is used as a corrosion-resistant film, and the back surface side of the metal substrate 31 is etched with a corrosive liquid to form the thin back surface portion 16d.
  • the rear surface thin portion 16d may be formed together with the rear surface recess 36 in the process of forming the rear surface recess 36 by half etching on the rear surface of the metal substrate 31 (FIG. 7(C)).
  • the volume of the metal connection portion 16 is reduced by thinning the metal connection portion 16 from the back surface side. This makes it easier to remove the metal connection portion 16 by etching when separating the lead portion 12 and the die pad 11 from each other (FIG. 8(F)), as described above.
  • FIG. 16 is a diagram showing a semiconductor device 20B according to this embodiment.
  • the semiconductor device 20B includes a plurality of lead portions 12, a semiconductor element 21, and a plurality of bonding wires (connecting members) 22.
  • the plurality of lead portions 12 are arranged around the die pad 11.
  • the semiconductor element 21 is mounted on the die pad 11.
  • the bonding wires 22 electrically connect the lead portions 12 and the semiconductor element 21.
  • a resin portion 18 is arranged around the die pad 11 and the lead portions 12 on the back side of the semiconductor device 20B.
  • the die pad 11, the lead portions 12, the semiconductor element 21, and the bonding wires 22 are resin-sealed with sealing resin 23.
  • the metal connection portion 16 is sealed with sealing resin 23, and then etched away from the back side. As a result, the lead portion 12 is separated from the die pad 11 and the other lead portions 12, and are electrically independent of each other.
  • a recess 27 is formed on the back surface of the sealing resin 23 between the lead portion 12 and the die pad 11.
  • This recess 27 roughly corresponds to the shape of the metal connection portion 16.
  • the recess 27 has a substantially rectangular annular or ring shape in a plan view so as to surround the die pad 11.
  • the die pad 11 and the lead portion 12 are separated from each other.
  • an inner lead side surface 51c of the lead portion 12 is formed.
  • the recess 27 is also formed between the die pad 11 and the lead portion 12. Note that at least a part of the removed metal connection portion 16 may remain on the side surface of the resin portion 18 that contacts the recess 27.
  • the recess 27 may also be filled with an insulating resin of the same or different type as the sealing resin 23.
  • (Modification of the third embodiment) 17 shows a lead frame 10B according to a modified example of this embodiment.
  • the metal connecting portion 16 is thinned from the back surface side, but not from the front surface side.
  • the portion of the metal connecting portion 16 thinned from the back surface side forms a back surface thin portion 16d.
  • the back surface thin portion 16d is located on the inner side (toward the die pad 11) of the portion corresponding to the inner lead side surface 51c.
  • the back surface thin portion 16d is not filled with the resin portion 18.
  • the resin part 18 is exposed within the back side thin part 16d. In other words, there is no metal part between the back side thin part 16d and the resin part 18.
  • the volume of the metal connection portion 16 is further reduced by thinning the metal connection portion 16 from the back surface side. This makes it easier to remove the metal connection portion 16 by etching when separating the lead portion 12 and the die pad 11 from each other (FIG. 8(F)), as described above.
  • Figures 18 to 20 are diagrams showing the fourth embodiment.
  • the same parts as those in the first to third embodiments are given the same reference numerals, and detailed descriptions thereof will be omitted.
  • the lead frame 10C shown in Figures 18, 19(A) and 19(B) comprises a die pad 11, multiple elongated peripheral lead portions 12C, 12D, a metal connection portion 41 and a resin portion 18.
  • the multiple peripheral lead portions 12C, 12D are arranged around the die pad 11.
  • the metal connection portion 41 is arranged between the die pad 11 and the peripheral lead portions 12C, 12D, and extends along the periphery of the die pad 11.
  • the resin portion 18 is arranged around the die pad 11 and the peripheral lead portions 12C, 12D, on the back side of the lead frame 10C.
  • the multiple outer peripheral lead portions 12C, 12D are provided along the outer periphery of each package area 10a.
  • the multiple outer peripheral lead portions 12C, 12D include a relatively long outer peripheral lead portion 12C and a relatively short outer peripheral lead portion 12D.
  • the long outer peripheral lead portion 12C and the short outer peripheral lead portion 12D are collectively referred to as the outer peripheral lead portions 12C, 12D.
  • the outer peripheral lead portions 12C, 12D each have an external terminal 53 and a connection lead 52.
  • the external terminal 53 is located on the inside (the die pad 11 side).
  • the connection lead 52 is located on the outside (the opposite side of the die pad 11, the support lead 13 side).
  • the external terminal 53 is located at the inner end of the outer peripheral lead portions 12C, 12D.
  • An internal terminal 15 is formed on the front side of the external terminal 53.
  • An external terminal surface 17 is formed on the back side of the external terminal 53.
  • the connection lead 52 connects the external terminal 53 and the support lead 13 to each other.
  • the metal connection portion 41 is disposed so as to surround the die pad 11, on the inside of the peripheral lead portions 12C and 12D.
  • the metal connection portion 41 has a generally rectangular shape, with each side extending along the X direction or the Y direction.
  • a suspension lead 14 is connected to each of the four corners of the metal connection portion 41.
  • the metal connection portion 41 is supported by the support lead 13 via the four suspension leads 14.
  • a number of first recesses 41a are formed at intervals on the surface of the metal connection portion 41.
  • Each first recess 41a is formed by half etching and has a constant depth without penetrating in the thickness direction.
  • Each first recess 41a is formed on the inside (die pad 11 side) of the widthwise center of the metal connection portion 41.
  • Each first recess 41a may be formed in the widthwise center of the metal connection portion 41, or may be formed on the outside (opposite side of the die pad 11) of the widthwise center of the metal connection portion 41.
  • Inner terminal portions 42 are formed between adjacent first recesses 41a. That is, the first recesses 41a and the inner terminal portions 42 are alternately arranged along the length of the metal connecting portion 41. In this case, the inner terminal portions 42 are not half-etched and have the same thickness as the die pad 11 and the support lead 13. A metal layer such as plating may be provided on the surface of each inner terminal portion 42 to improve adhesion with the bonding wire 22.
  • each second recess 41b is formed by half etching and has a certain depth without penetrating in the thickness direction.
  • Each second recess 41b is formed outside the center of the width of the metal connection part 41 (opposite the die pad 11).
  • Each second recess 41b may be formed in the center of the width of the metal connection part 41, or may be formed inside the center of the width of the metal connection part 41 (on the die pad 11 side).
  • the resin part 18 is not filled in each second recess 41b.
  • Each first recess 41a and each second recess 41b are arranged side by side in the width direction of the metal connection part 41 in a plan view. Not limited to this, each first recess 41a and each second recess 41b may be arranged in a staggered pattern (alternate) in a plan view.
  • the semiconductor device 20C when the semiconductor device 20C (see FIG. 20) is fabricated, only a portion of the metal connection portion 41 is removed by etching. Specifically, the peripheral areas of each of the first recesses 41a of the metal connection portion 41 are removed. On the other hand, the portions of the metal connection portion 41 located between each of the first recesses 41a and each of the second recesses 41b are not removed, but are individually separated to form the inner terminal portions 42.
  • openings 37a are provided in the etching resist layer 37 in the areas corresponding to the first recesses 41a, the second recesses 41b, and their surroundings. Then, the etchant entering through the openings 37a selectively dissolves and removes the peripheral areas of the first recesses 41a and the second recesses 41b of the metal connection part 41. In this case, the first recesses 41a and the second recesses 41b are provided in the metal connection part 41.
  • the etchant entering through the openings 37a can appropriately remove only the peripheral areas of the first recesses 41a and the second recesses 41b of the metal connection part 41 without dissolving the inner terminal part 42 or the peripheral lead parts 12C and 12D more than necessary. In this way, the inner terminal parts 42 remain between the adjacent first recesses 41a of the metal connection part 41.
  • the first recess 41a and the second recess 41b are formed at positions corresponding to the tip of the long outer periphery lead portion 12C, but this is not limited, and they may be formed at positions corresponding to the tip of the short outer periphery lead portion 12D.
  • the multiple first recesses 41a and the multiple second recesses 41b are provided over the entire circumferential area of the metal connection portion 41, but this is not limited, and they may be provided only in a part of the metal connection portion 41.
  • the first recess 41a is arranged on the inside (die pad 11 side), and the second recess 41b is arranged on the outside (opposite side of the die pad 11). This is not limited, and the first recess 41a may be arranged on the outside, and the second recess 41b may be arranged on the inside.
  • the semiconductor device 20C shown in FIG. 20 is fabricated from the lead frame 10C shown in FIG. 18 and FIG. 19(A)(B).
  • the inner terminal portions 42 are arranged at intervals along the four peripheral sides of the die pad 11 (four sides parallel to the X direction or Y direction in FIG. 20).
  • each inner terminal portion 42 is separated from the die pad 11, the outer lead portions 12C and 12D, and the other inner terminal portions 42, and is electrically independent from these components.
  • the inner terminal portions 42 are not half-etched, and have the same thickness as the die pad 11.
  • An external terminal surface 17 that is electrically connected to an external mounting board (not shown) is formed on the back surface of the inner terminal portion 42.
  • a recess 27A is formed on the back surface of the sealing resin 23 in the area between the outer lead portions 12C, 12D and the die pad 11, surrounding the die pad 11.
  • the semiconductor device 20C when manufacturing the semiconductor device 20C, a portion of the metal connection portion 41 is removed. Furthermore, the portions of the metal connection portion 41 that are not removed are individually separated to become the inner terminal portions 42. In this way, by forming a large number of inner terminal portions 42, the number of terminal portions (number of pins) that are connected to an external mounting board can be increased, and further high density of the semiconductor device 20C can be achieved.
  • some of the inner terminal portions 42 may be formed larger than the other inner terminal portions 42.
  • they may be used as bus bars for adjusting electrical signals or ground (GND) terminals. This reduces heat generation that accompanies an increase in the number of terminals, and realizes a semiconductor device 20C with higher reliability.
  • GND ground
  • the manufacturing method of the lead frame 10C and the manufacturing method of the semiconductor device 20C according to this embodiment are substantially similar to the manufacturing method of the lead frame 10 (FIGS. 7(A)-(I)) and the manufacturing method of the semiconductor device 20 (FIGS. 8(A)-(H)) according to the first embodiment.
  • Figures 21 to 24 are diagrams showing the fifth embodiment.
  • the same parts as those in the first to fourth embodiments are given the same reference numerals and detailed description thereof will be omitted.
  • the lead frame 10D shown in Figures 21 and 22 (A) and (B) comprises a die pad 11, multiple elongated peripheral lead portions 12C, 12D, a metal connecting portion 43, and a resin portion 18.
  • the multiple elongated peripheral lead portions 12C, 12D are arranged around the die pad 11.
  • the metal connecting portion 43 is arranged between the die pad 11 and the peripheral lead portions 12C, 12D, and extends along the periphery of the die pad 11.
  • the resin portion 18 is arranged around the die pad 11 and the peripheral lead portions 12C, 12D, on the back side of the lead frame 10E.
  • a recess 43a is formed on the surface of the metal connection part 43.
  • the recess 43a is formed in a groove shape along the longitudinal direction of the metal connection part 43.
  • the recess 43a is formed, for example, by half etching, and has a certain depth without penetrating in the thickness direction.
  • the recess 43a is formed in the approximate center of the width direction of the metal connection part 43, but may be shifted from the approximate center of the width direction of the metal connection part 43.
  • a bank part 43b On both sides of the width direction of the recess 43a, a bank part 43b that is not thinned is formed.
  • the cross section perpendicular to the longitudinal direction of the metal connection part 43 is approximately concave-shaped or approximately U-shaped.
  • the recess 43a is provided around the entire circumference of the metal connection part 43 except for the four corners, but this is not limited thereto, and may be provided around the entire circumference including the four corners of the metal connection part 43, for example.
  • the volume of the metal connection portion 43 is reduced. This makes it easier to remove the metal connection portion 43 by etching when separating the multiple external terminals 56 individually during the manufacture of the semiconductor device 20D (see FIG. 23).
  • a plurality of inner lead portions 12E-12H are supported by the metal connecting portion 43.
  • the plurality of inner lead portions 12E-12H include a long inner lead portion 12E, a short inner lead portion 12F, a long inner lead portion 12G, and a short inner lead portion 12H.
  • Each of the inner lead portions 12E-12H has an external terminal 56 and a connection lead 57.
  • the connection lead 57 is connected to the metal connecting portion 43.
  • the connection lead 57 is thinned from the front surface side.
  • the long inner lead portion 12E and the short inner lead portion 12F each extend outward from the metal connecting portion 43.
  • the long inner lead portion 12E and the short inner lead portion 12F are alternately arranged along the longitudinal direction of the metal connecting portion 43.
  • the long inner lead portion 12G and the short inner lead portion 12H each extend inward from the metal connecting portion 43.
  • the long inner lead portion 12G and the short inner lead portion 12H are alternately arranged along the longitudinal direction of the metal connecting portion 43.
  • the long inner lead portion 12G extending inward from the metal connection portion 43 and the short inner lead portion 12F extending outward from the metal connection portion 43 are positioned on opposite sides of the metal connection portion 43.
  • the long inner lead portion 12G and the corresponding short inner lead portion 12F are positioned in a straight line with the metal connection portion 43 in between.
  • the short inner lead portion 12H extending inward from the metal connection portion 43 and the long inner lead portion 12E extending outward from the metal connection portion 43 are positioned on opposite sides of the metal connection portion 43.
  • the short inner lead portion 12H and the corresponding long inner lead portion 12E are positioned in a straight line with the metal connection portion 43 in between.
  • connection lead 57 of the inner lead portions 12E to 12H is thinned from the front side.
  • the connection lead 57 is exposed on the back side, so the work of removing the connection lead 57 together with the metal connection portion 43 can be easily performed.
  • the semiconductor device 20D shown in FIG. 23 is made from the lead frame 10D shown in FIG. 21 and FIG. 22(A)(B).
  • the metal connection portion 43 of the lead frame 10D is sealed with the sealing resin 23, and then removed by etching from the back surface side. With the removal of the metal connection portion 43, a recess 27A is formed in the area on the back surface of the sealing resin 23 between the inner lead portions 12E, 12F and the inner lead portions 12G, 12H.
  • connection lead 57 has been removed along with the metal connecting portion 43. This is not a limitation, and a part of the connection lead 57 may be left in the semiconductor device 20D, or the entire connection lead 57 may be left in the semiconductor device 20D.
  • FIG. 24 shows a lead frame 10E according to a modified example of this embodiment.
  • the short inner lead portion 12H extends inside the metal connection portion 43, and the long inner lead portion 12G does not extend inside. Therefore, the external terminals 53, 56 are arranged in five rows around the die pad 11. In this case, a large area of the die pad 11 can be secured relative to the size of the semiconductor device 20D.
  • the manufacturing method of the lead frames 10D and 10E and the manufacturing method of the semiconductor device 20D according to this embodiment are substantially similar to the manufacturing method of the lead frame 10 (FIGS. 7(A)-(I)) and the manufacturing method of the semiconductor device 20 (FIGS. 8(A)-(H)) according to the first embodiment.
  • all of the external terminals 53, 56 can be arranged in a staggered pattern with equal spacing between the external terminals 53, 56. This makes it possible to suppress the occurrence of solder bridges when mounting on a board, thereby improving mounting reliability.
  • the number of terminal parts can be increased to 308 pins.
  • the number of terminal parts can be increased to 280 pins. In this way, according to this embodiment, a semiconductor device capable of mounting a highly functional LSI can be manufactured at low cost.
  • the number of terminal parts can be increased to 208 to 216 pins.
  • This number of pins corresponds to the same number of pins as a conventional 28 mm square QFP (Quad Flat Package).
  • Figures 25 to 27 are diagrams showing the sixth embodiment.
  • the same parts as those in the first to fifth embodiments are given the same reference numerals and detailed description thereof will be omitted.
  • the lead frame 10F shown in Figures 25, 26 (A) and 26 (B) comprises a die pad 11, multiple elongated peripheral lead portions 12J, 12K, a metal connecting portion 44 and a resin portion 18.
  • the multiple peripheral lead portions 12J, 12K are arranged around the die pad 11.
  • the metal connecting portion 44 is arranged between the die pad 11 and the peripheral lead portions 12J, 12K, and extends along the periphery of the die pad 11.
  • the resin portion 18 is arranged around the die pad 11 and the peripheral lead portions 12J, 12K, on the back side of the lead frame 10F.
  • the peripheral lead portions 12J, 12K have an inner lead 51, a connection lead 52, and an external terminal 53.
  • the inner lead 51 is located on the inside (the die pad 11 side).
  • the connection lead 52 is located on the outside (the opposite side of the die pad 11, the support lead 13 side).
  • the external terminal 53 is located between the inner lead 51 and the connection lead 52.
  • the inner lead 51 and the connection lead 52 are thinned from the back surface side.
  • the external terminal 53 is not thinned.
  • the connection lead 52 is connected to the support lead 13.
  • the metal connection portion 44 is provided at the tip of the inner lead 51 of the peripheral lead portions 12J and 12K.
  • the metal connection portion 44 is arranged so as to surround the die pad 11.
  • the inner leads 51 of the peripheral lead portions 12J and 12K are connected to the outer peripheral edge portion (the peripheral edge portion on the support lead 13 side) of the metal connection portion 44.
  • a connecting bar 45 extends from the metal connection portion 44 toward the inside (the die pad 11 side). In this case, the metal connection portion 44 is connected to and supported by all the inner leads 51. However, it is not limited to this, and the metal connection portion 44 may be connected to only some of the inner leads 51.
  • a recess 44a is formed on the surface of the metal connection portion 44 near the tip of each inner lead 51.
  • Each recess 44a is formed by half etching and has a certain depth without penetrating in the thickness direction.
  • Each recess 44a is formed at approximately the center of the metal connection portion 44 in the width direction, but may be formed inside or outside of the approximately center of the metal connection portion 44 in the width direction.
  • the recesses 44a are arranged at intervals along the longitudinal direction of the metal connection part 44. Thick portions 44b are formed between adjacent recesses 44a. The recesses 44a and the thick portions 44b are arranged alternately along the longitudinal direction of the metal connection part 44. The thick portions 44b are not half-etched and have the same thickness as the die pad 11 and the support leads 13. Two connecting bars 45 are connected to each of the four sides of the die pad 11. The die pad 11 is supported by the metal connection parts 44 and the connecting bars 45. Suspension leads 14 are provided at the four corners of the die pad 11. Note that the resin part 18 can support the die pad 11 with respect to the peripheral lead parts 12J, 12K and the support leads 13, so the suspension leads 14 do not need to be provided. If the suspension leads 14 are not provided, it is easy to fill the four corners of the die pad 11 with the resin that forms the resin part 18.
  • each recess 44a of the metal connection portion 44 and the thick portion 44b of the metal connection portion 44 begin to be etched at the same time.
  • an opening 37b is provided in the etching resist layer 37 on the back side of the sealing resin 23 at a position corresponding to the metal connection portion 44. Then, the etchant that enters from the opening 37b appropriately dissolves and removes each recess 44a and thick portion 44b of the metal connection portion 44. In this case, because the recess 44a is provided on the surface of the metal connection portion 44, the etchant that enters from the opening 37b can appropriately remove the entire metal connection portion 44 without dissolving the peripheral lead portions 12J, 12K more than necessary.
  • the recesses 44a are provided near the tips of all the inner leads 51. However, this is not limiting, and the recesses 44a may be provided only near the tips of some of the inner leads 51.
  • the semiconductor device 20F shown in FIG. 27 is made from the lead frame 10F shown in FIG. 25 and FIG. 26(A)(B).
  • the metal connection portion 44 of the lead frame 10F is sealed with the sealing resin 23, and then removed by etching from the back surface side. With the removal of the metal connection portion 44, a recess 27B is formed in the area on the back surface of the sealing resin 23 between the peripheral lead portions 12J, 12K and the die pad 11, surrounding the die pad 11.
  • the manufacturing method of the lead frame 10F and the manufacturing method of the semiconductor device 20F according to this embodiment are substantially similar to the manufacturing method of the lead frame 10 (FIGS. 7(A)-(I)) and the manufacturing method of the semiconductor device 20 (FIGS. 8(A)-(H)) according to the first embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

リードフレーム(10)は、ダイパッド(11)と、ダイパッド(11)の周囲に配置されたリード部(12)と、ダイパッド(11)とリード部(12)とを互いに連結する金属連結部(16)と、ダイパッド(11)とリード部(12)との周囲であって、リードフレーム(10)の裏面側に配置された樹脂部(18)と、を備える。金属連結部(16)は、表面側から薄肉化され、リード部(12)の少なくとも一部は、裏面側から薄肉化されている。リード部(12)の薄肉化された部分に樹脂部(18)が充填されている。

Description

リードフレーム及びその製造方法
 本開示は、リードフレーム及びその製造方法に関する。
 近年、基板に実装される半導体装置の小型化及び薄型化が要求されてきている。このような要求に対応すべく、従来、リードフレームを用い、その搭載面に搭載した半導体素子を封止樹脂によって封止するとともに、裏面側にリードの一部分を露出させて構成された、いわゆるQFN(Quad Flat Non-lead)タイプの半導体装置が種々提案されている。
 しかしながら、従来、リードフレームが薄くなるにしたがって、リードフレームの強度を維持することが難しくなり、エッチング後にリードフレームが変形してしまうことが問題となる。
 また近年、チップサイズを変更することなく、リードの数(ピン数)を増やすことが求められてきている。これに対して、従来、リードの幅を細くすることが行われているが、リードが細くなるにしたがって、リードに変形が生じやすくなり、ワイヤボンディングを安定して行いにくくなるという問題が生じる。
特開2002-184927号公報
 特許文献1には、非貫通溝を用いて半導体チップ搭載部及びリードを形成し、半導体チップ等を樹脂封止した後、非貫通溝を貫通させて半導体装置を形成する技術が開示されている。しかしながら、仮にリードとして裏面側から薄肉化されたものを用いる場合、ワイヤボンディング時にリードが変形しやすい。またリードとして裏面側から薄肉化されたものを用いる場合、リードの裏面側の空間が狭い。このため、リードの裏面側に封止樹脂を十分に充填できないおそれがある。
 本開示は、ワイヤボンディング時にリード部の変形を抑制することが可能な、リードフレーム及びその製造方法を提供する。
 本開示の実施の形態は、以下の[1]~[11]に関する。
 [1]リードフレームにおいて、ダイパッドと、前記ダイパッドの周囲に配置されたリード部と、前記ダイパッドと前記リード部とを互いに連結する金属連結部と、前記ダイパッドと前記リード部との周囲であって、前記リードフレームの裏面側に配置された樹脂部と、を備え、前記リード部の少なくとも一部は、裏面側から薄肉化され、前記リード部の薄肉化された部分に前記樹脂部が充填されている、リードフレーム。
 [2]前記金属連結部の一部は、前記リード部の裏面側に位置する、[1]に記載のリードフレーム。
 [3]前記金属連結部のうち、前記リード部の裏面側に位置する部分の幅は、50μm以上150μm以下である、[2]に記載のリードフレーム。
 [4]前記樹脂部は、表面側に位置する樹脂表面を有し、前記樹脂表面は、互いに隣接する2本のリード部の間から外方に露出する、[1]乃至[3]のいずれか1つに記載のリードフレーム。
 [5]前記金属連結部は、平面視で環形状又はリング形状を有する、[1]乃至[4]のいずれか1つに記載のリードフレーム。
 [6]前記樹脂部の熱伝導率は、25℃環境下で1W・m-1・K-1以上12W・m-1・K-1以下である、[1]乃至[5]のいずれか1つに記載のリードフレーム。
 [7]前記金属連結部は、表面側から薄肉化されている、[1]乃至[6]のいずれか1つに記載のリードフレーム。
 [8]前記金属連結部は、裏面側から薄肉化されている、[1]乃至[7]のいずれか1つに記載のリードフレーム。
 [9]リードフレームにおいて、ダイパッドと、前記ダイパッドの周囲に配置されたリード部と、前記ダイパッドの周囲に配置された複数の内側リード部と、前記複数の内側リード部を互いに連結する金属連結部と、前記ダイパッドと前記リード部との周囲であって、前記リードフレームの裏面側に配置された樹脂部と、を備え、前記金属連結部は、表面側から薄肉化され、前記内側リード部の少なくとも一部は、裏面側から薄肉化され、前記内側リード部の薄肉化された部分に前記樹脂部が充填されている、リードフレーム。
 [10]リードフレームにおいて、ダイパッドと、前記ダイパッドの周囲に配置されたリード部と、前記ダイパッドと前記リード部との間に配置された金属連結部と、前記ダイパッドと前記リード部との周囲であって、前記リードフレームの裏面側に配置された樹脂部と、を備え、前記金属連結部の表面に凹部が設けられている、リードフレーム。
 [11]前記金属連結部の表面に複数の凹部が設けられ、前記複数の凹部は、前記金属連結部の長手方向に沿って互いに間隔を空けて設けられ、各凹部の間には端子部が形成されている、[10]に記載のリードフレーム。
 [12]前記凹部は、前記金属連結部の長手方向に沿って溝状に形成されている、[10]に記載のリードフレーム。
 [13]前記金属連結部によって複数の内側リード部が支持されており、前記複数の内側リード部は、長内側リード部と、短内側リード部とを含み、前記長内側リード部と前記短内側リード部とが前記金属連結部に沿って交互に配置されている、[10]乃至[12]のいずれか1つに記載のリードフレーム。
 [14]前記金属連結部の表面に複数の凹部が設けられ、前記複数の凹部は、前記金属連結部の長手方向に沿って互いに間隔を空けて設けられ、各凹部の間には厚肉部が形成されている、[10]に記載のリードフレーム。
 [15]リードフレームの製造方法において、金属基板を準備する工程と、前記金属基板の裏面側から前記金属基板を厚み方向の途中までエッチングすることにより、裏面側凹部を形成する工程と、前記金属基板の裏面側に樹脂部を形成し、前記樹脂部を前記裏面側凹部に充填する工程と、前記金属基板の表面側から前記金属基板を厚み方向の途中までエッチングすることにより、ダイパッドと、前記ダイパッドの周囲に配置されたリード部と、前記ダイパッドと前記リード部との間に配置された金属連結部と、を形成する工程と、を備えた、リードフレームの製造方法。
 本開示によれば、ワイヤボンディング時にリード部の変形を抑制できる。
図1は、第1の実施の形態によるリードフレームを示す平面図。 図2は、第1の実施の形態によるリードフレームを示す底面図。 図3は、第1の実施の形態によるリードフレームを示す断面図(図1のIII-III線断面図)。 図4は、第1の実施の形態によるリードフレームの一部を示す拡大斜視図(図1のIV部拡大図)。 図5は、第1の実施の形態による半導体装置を示す平面図。 図6は、第1の実施の形態による半導体装置を示す断面図(図5のVI-VI線断面図)。 図7(A)-(I)は、第1の実施の形態によるリードフレームの製造方法を示す断面図。 図8(A)-(H)は、第1の実施の形態による半導体装置の製造方法を示す断面図。 図9は、第1の実施の形態の第1の変形例によるリードフレームを示す断面図。 図10は、第1の実施の形態の第2の変形例によるリードフレームを示す断面図。 図11は、第2の実施の形態によるリードフレームを示す平面図。 図12は、第2の実施の形態によるリードフレームを示す断面図(図11のXII-XII線断面図)。 図13は、第2の実施の形態による半導体装置を示す断面図。 図14は、第2の実施の形態の変形例によるリードフレームを示す断面図。 図15は、第3の実施の形態によるリードフレームを示す断面図。 図16は、第3の実施の形態による半導体装置を示す断面図。 図17は、第3の実施の形態の変形例によるリードフレームを示す断面図。 図18は、第4の実施の形態によるリードフレームを示す平面図。 図19(A)は、第4の実施の形態によるリードフレームを示す断面図(図18のXIXA-XIXA線断面図)、図19(B)は、第4の実施の形態によるリードフレームを示す断面図(図18のXIXB-XIXB線断面図)。 図20は、第4の実施の形態による半導体装置を示す平面図。 図21は、第5の実施の形態によるリードフレームを示す平面図。 図22(A)は、第5の実施の形態によるリードフレームを示す断面図(図21のXXIIA-XXIIA線断面図)、図22(B)は、第5の実施の形態によるリードフレームを示す断面図(図21のXXIIB-XXIIB線断面図)。 図23は、第5の実施の形態による半導体装置を示す平面図。 図24は、第5の実施の形態の変形例によるリードフレームを示す平面図。 図25は、第6の実施の形態によるリードフレームを示す平面図。 図26(A)は、第6の実施の形態によるリードフレームを示す断面図(図25のXXVIA-XXVIA線断面図)、図26(B)は、第6の実施の形態によるリードフレームを示す断面図(図25のXXVIB-XXVIB線断面図)。 図27は、第6の実施の形態による半導体装置を示す平面図。
 (第1の実施の形態)
 以下、第1の実施の形態について、図1乃至図8を参照して説明する。なお、以下の各図において、同一部分には同一の符号を付しており、一部詳細な説明を省略する場合がある。
 本明細書中、X方向、Y方向とは、リードフレーム10又はパッケージ領域10aの各辺に平行な二方向であり、X方向とY方向とは互いに直交する。また、Z方向は、X方向及びY方向の両方に対して垂直な方向である。また、「内」、「内側」とは、各パッケージ領域10aの中心方向を向く側をいう。「外」、「外側」とは、各パッケージ領域10aの中心から離れる側をいう。また、「表面」とは、半導体素子21が搭載される側の面(Z方向プラス側の面)をいう。「裏面」とは、「表面」の反対側(Z方向マイナス側)の面であって、半導体素子21が搭載される側の面と反対側の面をいう。
 また、本明細書中、ハーフエッチングとは、被エッチング材料をその厚み方向に途中までエッチングすることをいう。ハーフエッチング後の被エッチング材料の厚みは、ハーフエッチング前の被エッチング材料の厚みの例えば10%以上90%以下、又は30%以上70%以下、又は40%以上60%以下であっても良い。
 (リードフレームの構成)
 まず、図1乃至図4により、本実施の形態によるリードフレームの概略について説明する。図1乃至図4は、本実施の形態によるリードフレームを示す図である。
 図1に示すように、リードフレーム10は、パッケージ領域(単位リードフレーム)10aを含む。パッケージ領域10aは、リードフレーム10内で、平面視で多列及び多段に(マトリックス状に)複数配置されている。なお、これに限らずパッケージ領域10aは1つ以上存在していれば良い。なお、パッケージ領域10aは、それぞれ半導体装置20(後述)に対応する領域であり、図1において仮想線の内側に位置する領域である。また、図1の仮想線は半導体装置20の外周縁に対応している。
 図1に示すように、リードフレーム10は、ダイパッド11と、複数のリード部12と、金属連結部16と、樹脂部18と、を備えている。複数のリード部12は、それぞれ細長い形状を有し、ダイパッド11周囲に設けられている。各リード部12は、それぞれ半導体素子21と図示しない外部の配線基板とを電気的に接続する。金属連結部16は、ダイパッド11とリード部12とを互いに連結する。樹脂部18は、ダイパッド11とリード部12の周囲であって、リードフレーム10の裏面側に配置されている。金属連結部16は、表面側から薄肉化されている。リード部12の少なくとも一部は、裏面側から薄肉化されている。リード部12の薄肉化された部分の少なくとも一部に樹脂部18が充填されている。
 複数のパッケージ領域10aは、支持リード(支持部材)13を介して互いに連結される。支持リード13は、ダイパッド11とリード部12とを支持する。支持リード13は、X方向及びY方向に沿ってそれぞれ延びている。
 ダイパッド11は、平面視で略正方形形状を有している。ダイパッド11は、表面側及び裏面側からは薄肉化されていない。なお、これに限らず、ダイパッド11の一部は、例えばハーフエッチングにより表面側又は裏面側から薄肉化されても良い。ダイパッド11の平面形状は、正方形に限らず、長方形等の多角形としても良い。また、ダイパッド11の四隅には、金属連結部16を介して吊りリード14が連結されている。ダイパッド11は、4本の吊りリード14を介して支持リード13に連結支持されている。本実施の形態において、吊りリード14は、表面側及び裏面側のいずれからも薄肉化されておらず、加工前の金属基板(後述する金属基板31)と同一の厚みを有する。なお、これに限らず、吊りリード14は、表面側又は裏面側から薄肉化されていても良い。樹脂部18により、ダイパッド11をリード部12と支持リード13に対して支持できるため、吊りリード14を設けなくてもよい。吊りリード14を設けない場合は、ダイパッド11の四隅に樹脂部18を形成する樹脂を充填しやすい。
 ダイパッド11の表面には、後述する半導体素子21が搭載される。ダイパッド11の表面及び裏面は、樹脂部18に覆われることなく、リードフレーム10から外方に露出する。ダイパッド11の表面は、後述する樹脂部18の樹脂表面18aよりも表面側(Z方向プラス側)に位置する。またダイパッド11のうちリード部12を向く側には、金属連結部16が連結されている。ダイパッド11は、金属連結部16と一体に形成されている。
 各リード部12は、それぞれ後述するようにボンディングワイヤ22を介して半導体素子21に接続される。リード部12は、ダイパッド11との間に金属連結部16を介して配置されている。リード部12は、それぞれ支持リード13から延び出している。
 複数のリード部12は、ダイパッド11の周囲に沿って配置されている。リード部12はそれぞれ、インナーリード51と、外部端子53とを有する。インナーリード51は、内側(ダイパッド11側)に位置する。外部端子53は、外側(ダイパッド11の反対側、支持リード13側)に位置する。インナーリード51は、リード部12の内側端部に位置し、その表面側には内部端子15が形成されている。この内部端子15は、後述するようにボンディングワイヤ22を介して半導体素子21に電気的に接続される領域である。なお、内部端子15上には、ボンディングワイヤ22との密着性を向上させる金属層が設けられていても良い。金属層は、例えば銀めっき等のめっき層からなっていても良い。
 インナーリード51は、例えばハーフエッチングにより裏面側から薄肉化されている。インナーリード51は、上述した内部端子15と、インナーリード裏面51bとを有する。内部端子15は、インナーリード51の表面側に位置する。内部端子15は、表面側から薄肉化されていない。インナーリード裏面51bは、インナーリード51の裏面側に位置する。インナーリード裏面51bはエッチングにより形成された面である。インナーリード裏面51bは、樹脂部18に密着している。また、インナーリード51のうちダイパッド11を向く側には、インナーリード側面51cが形成されている。インナーリード側面51cとダイパッド11との間には、空間が形成されている。
 外部端子53は、支持リード13側に位置しており、その外側端部は支持リード13に連結されている。外部端子53は、表面側及び裏面側のいずれからも薄肉化されていない。外部端子53は、外部端子表面53aと、外部端子面17とを有する。外部端子表面53aは、外部端子53の表面側に位置しており、外方に露出する。外部端子表面53aは、内部端子15と同一平面上に位置する。外部端子面17は、外部端子53の裏面側に位置しており、外方に露出する。外部端子面17は、裏面側から薄肉化されてない。なお、外部端子面17と支持リード13との間の領域が裏面側から薄肉化されることにより、接続部を構成しても良い。
 また、外部端子53のうちインナーリード裏面51bよりも裏面側の位置には、外部端子内側面53dが形成されている。外部端子内側面53dは、インナーリード裏面51bと外部端子面17との間に延びる。外部端子内側面53dには、樹脂部18が密着している。
 金属連結部16は、複数のリード部12の先端を連結するように配置されている。また金属連結部16は、ダイパッド11を取り囲むように配置されている。この金属連結部16は、全体として平面視で略矩形の環形状又はリング形状を有する。金属連結部16の各辺は、X方向又はY方向に沿って延びている。金属連結部16の四隅にはそれぞれ吊りリード14が連結されている。なお、金属連結部16は、必ずしも環形状又はリング形状を有していなくても良い。例えば、金属連結部16は、ダイパッド11とリード部12の先端とを連結するとともに、互いに隣接するリード部12同士の間には設けられていなくても良い。
 金属連結部16は、表面側から薄肉化されている。金属連結部16を表面側から薄肉化することにより、金属連結部16の体積が減らされる。これにより、後述するように、リード部12とダイパッド11とを互いに分離する際、金属連結部16をエッチングにより除去しやすい。金属連結部16は、連結部表面16aと、連結部裏面16bと、連結部外側面16cとを有する。
 連結部表面16aは、金属連結部16の表面側に位置する。この連結部表面16aは、例えばハーフエッチングにより形成される。連結部表面16aは、ダイパッド11の表面及び内部端子15よりも裏面側(Z方向マイナス側)に位置する。連結部表面16aは、インナーリード裏面51bと同一平面上に位置しても良い。連結部表面16aのうち、リード部12の先端よりもダイパッド11側に位置する部分は、外方に露出する。また連結部表面16aのうち、互いに隣接するリード部12同士の間に位置する部分は、外方に露出する(図4参照)。一方、金属連結部16のうち、インナーリード51の裏面側に位置する部分は、インナーリード51に一体化されており、外方に露出しない。本実施の形態において、金属連結部16は、全周にわたって表面側から薄肉化されている。なお、これに限らず、金属連結部16の周方向の一部が表面側から薄肉化されていても良い。例えば金属連結部16の四隅を除く部分が、表面側から薄肉化されていても良い。
 連結部裏面16bは、金属連結部16の裏面側に位置する。この連結部裏面16bは、薄肉化されていない。連結部裏面16bは、ダイパッド11の裏面及び外部端子面17と同一平面上に位置する。連結部裏面16bは、全体にわたって外方に露出する。なお、金属連結部16の一部が裏面側から薄肉化されていても良い。
 連結部外側面16cは、金属連結部16の外側(支持リード13側)に位置する。連結部外側面16cは、連結部表面16aと連結部裏面16bとの間に延びる。連結部外側面16cには、樹脂部18が密着している。図4に示すように、連結部外側面16cは、インナーリード側面51cよりも外側(支持リード13側)に位置する。なお、これに限らず、互いに隣接する2本のリード部12の間において、連結部外側面16cは、インナーリード側面51cと同一平面上に位置しても良い。
 金属連結部16の幅W1(図3参照)は、100μm以上300μm以下としても良い。また金属連結部16の一部は、リード部12のインナーリード51の裏面側に位置する。金属連結部16のうち、リード部12のインナーリード51の裏面側に位置する部分の幅W2(図3参照)は、50μm以上150μm以下としても良い。なお幅W1及び幅W2は、それぞれ金属連結部16の延伸方向に垂直な断面において、ダイパッド11側からリード部12側に測定した距離をいう。
 樹脂部18は、ダイパッド11とリード部12の周囲に配置されている。すなわち、図1に示すように、表面側から見て、樹脂部18は、金属連結部16と、互いに隣接する2本のリード部12と、支持リード13とによって取り囲まれる領域に位置している。また表面側から見て、樹脂部18は、金属連結部16と、吊りリード14と、当該吊りリード14に隣接するリード部12と、支持リード13とによって取り囲まれる領域に位置している。また、図2に示すように、裏面側から見て、樹脂部18は、金属連結部16と、複数の外部端子面17と、支持リード13と、2本の吊りリード14とによって取り囲まれる領域に位置している。なお、各図において、樹脂部18を網掛けで示している。
 樹脂部18は、リードフレーム10の裏面側に配置されている。すなわち樹脂部18は、リードフレーム10のうち、厚み方向の途中位置よりも裏面側(Z方向マイナス側)に存在する。樹脂部18は、厚み方向(Z方向)の途中位置よりも表面側(Z方向プラス側)には存在しない。なお、上記途中位置は、リードフレーム10の厚み方向の中央に限らず、厚み方向の中央よりも表面側又は裏面側に位置しても良い。厚み方向の途中位置は、厚み方向において、インナーリード裏面51bが存在する位置に対応する。これに限らず、厚み方向の途中位置は、インナーリード裏面51bが存在する位置よりも表面側(Z方向プラス側)に位置しても良い。
 図3に示すように、樹脂部18は、金属連結部16の連結部外側面16cに密着している。また樹脂部18は、リード部12の裏面側に配置されている。具体的には、樹脂部18は、リード部12の外部端子内側面53dと、インナーリード裏面51bとに密着している。
 樹脂部18は、表面側に位置する樹脂表面18aと、裏面側に位置する樹脂裏面18bとを有する。このうち樹脂表面18aは、互いに隣接する2本のリード部12の間から外方に露出する(図4参照)。また樹脂表面18a、インナーリード裏面51b及び連結部表面16aは、互いに同一平面上に位置している。なお、これに限らず、樹脂表面18aは、インナーリード裏面51b及び連結部表面16aよりも表面側に位置していても良い。樹脂裏面18bは、リードフレーム10の裏面側から外方に露出する。ダイパッド11の裏面、樹脂裏面18b及び外部端子面17は、互いに同一平面上に位置する。
 樹脂部18としては、シリコーン樹脂やエポキシ樹脂等の熱硬化性樹脂、あるいはPPS樹脂等の熱可塑性樹脂を用いても良い。なお、樹脂部18と後述する封止樹脂23との密着性を高めるため、樹脂部18として、封止樹脂23と同一の材料を用いることが好ましい。樹脂部18の熱伝導率は、例えば25℃環境下で1W・m-1・K-1以上であってもよく、3W・m-1・K-1以上であってもよい。樹脂部18の熱伝導率は、12W・m-1・K-1以下であってもよく、10W・m-1・K-1以下であってもよい。樹脂部18の熱伝導率は、レーザーフラッシュ法によって測定する。
 リードフレーム10のうち樹脂部18以外の部分は、全体として銅、銅合金、42合金(Ni42%のFe合金)等の金属から構成されている。また、リードフレーム10の最大厚みT1は、製造する半導体装置20の構成にもよるが、80μm以上300μm以下としても良い。本明細書において、リードフレーム10の最大厚みとは、リードフレーム10のうち最も厚い部分における厚み(Z方向距離)であり、表面側からも裏面側からも薄肉化されていない部分における厚みをいう。また、リードフレーム10の最大厚みは、後述する金属基板31の板厚に対応する。本実施の形態において、リード部12の裏面側に樹脂部18が設けられているため、ワイヤボンディング時に加わる力によってリード部12が変形しにくい。これにより、リードフレーム10の最大厚みT1を薄くできる。
 インナーリード51の厚みT2は、リードフレーム10の最大厚みT1の30%以上60%以下としても良く、40%以上50%以下としても良い。インナーリード51の厚みT2は、24μm以上180μm以下としても良く、32μm以上150μm以下としても良い。
 樹脂部18の厚みT3は、リードフレーム10の最大厚みT1の30%以上60%以下としても良く、40%以上50%以下としても良い。樹脂部18の厚みT3は、24μm以上180μm以下としても良く、32μm以上150μm以下としても良い。
 (半導体装置の構成)
 次に、図5及び図6により、本実施の形態による半導体装置について説明する。図5及び図6は、本実施の形態による半導体装置を示す図である。
 図5及び図6に示すように、半導体装置(半導体パッケージ)20は、ダイパッド11と、複数のリード部12と、半導体素子21と、複数のボンディングワイヤ(接続部材)22とを備えている。複数のリード部12は、ダイパッド11の周囲に配置されている。半導体素子21は、ダイパッド11上に搭載されている。ボンディングワイヤ22は、リード部12と半導体素子21とを電気的に接続する。また、ダイパッド11とリード部12の周囲であって、半導体装置20の裏面側に樹脂部18が配置されている。さらに、ダイパッド11、リード部12、半導体素子21及びボンディングワイヤ22は、封止樹脂23によって樹脂封止されている。
 半導体装置20のダイパッド11、リード部12及び樹脂部18は、上述したリードフレーム10から作製されたものである。ダイパッド11、リード部12及び樹脂部18の構成は、半導体装置20に含まれない領域を除き、上述した図1乃至図4に示すものと同様であるため、ここでは詳細な説明を省略する。
 一方、上述した金属連結部16は、封止樹脂23によって樹脂封止された後、裏面側からエッチングにより除去されている。このため、図5及び図6に示すように、リード部12は、ダイパッド11及び他のリード部12から分離されており、互いに電気的に独立している。
 このように、金属連結部16が除去されたことに伴い、封止樹脂23の裏面のうち、リード部12とダイパッド11との間に凹部27が形成されている。この凹部27は、金属連結部16の形状に概ね対応している。凹部27は、ダイパッド11を取り囲むように、平面視で略矩形の環形状又はリング形状を有している。なお、凹部27には、封止樹脂23と同一又は異なる種類の絶縁性樹脂が充填されていても良い。
 半導体素子21としては、従来一般に用いられている各種半導体素子を使用可能である。半導体素子21としては、例えば集積回路、大規模集積回路、トランジスタ、サイリスタ、ダイオード等を用いても良い。この半導体素子21は、各々ボンディングワイヤ22が取り付けられる複数の電極21aを有している。また、半導体素子21は、接着剤24により、ダイパッド11の表面に固定されている。接着剤24としては、例えばダイボンディングペースト等を用いても良い。
 各ボンディングワイヤ22は、例えば金、銅等の導電性の良い材料からなる。各ボンディングワイヤ22の一端は、それぞれ半導体素子21の電極21aに接続されている。各ボンディングワイヤ22の他端は、それぞれ各リード部12の内部端子15に接続されている。
 封止樹脂23としては、シリコーン樹脂やエポキシ樹脂等の熱硬化性樹脂、あるいはPPS樹脂等の熱可塑性樹脂を用いても良い。封止樹脂23全体の厚みは、300μm以上1500μm以下程度としても良い。また、封止樹脂23の一辺(半導体装置20の一辺)は、例えば0.2mm以上16mm以下としても良い。ダイパッド11とリード部12との間の空間において、封止樹脂23は、凹部27内に向けて露出している。また、互いに隣接するリード部12同士の間に位置する部分において、封止樹脂23は、樹脂部18の樹脂表面18aに密着している。なお、図5において、封止樹脂23の図示を省略している。
 (リードフレームの製造方法)
 次に、図1乃至図4に示すリードフレーム10の製造方法について、図7(A)-(I)を用いて説明する。
 まず図7(A)に示すように、平板状の金属基板31を準備する。金属基板31としては、銅、銅合金、42合金(Ni42%のFe合金)等の金属からなる基板を使用しても良い。なお金属基板31は、その両面に対して脱脂等を行い、洗浄処理を施したものを使用することが好ましい。
 次に、金属基板31の表裏全体にそれぞれ感光性レジストを塗布し、乾燥する。続いて、金属基板31上の感光性レジストに対してフォトマスクを介して露光し、現像する。これにより、エッチング用レジスト層32、33を形成する(図7(B))。裏面側のエッチング用レジスト層33は、開口部33bを有する。表面側のエッチング用レジスト層32は開口部を有していないが、開口部を有していても良い。なお、エッチング用レジスト層32、33としては、例えばドライフィルムレジストを用いても良い。
 次に、ハーフエッチングにより、金属基板31の裏面側から金属基板31を厚み方向の途中まで薄肉化する。この場合、裏面側のエッチング用レジスト層33を耐腐蝕膜として、金属基板31の裏面側に腐蝕液でエッチングを施す(図7(C))。このとき金属基板31の表面は、その全体がエッチング用レジスト層32に覆われているため、エッチングされない。これにより、金属基板31の裏面側に非貫通凹部である裏面側凹部36を形成する。この裏面側凹部36は、樹脂部18に対応する形状を有する。なお、腐蝕液は、使用する金属基板31の材質に応じて適宜選択できる。例えば、金属基板31として銅を用いる場合、腐蝕液は、塩化第二鉄水溶液を使用してもよい。この場合、塩化第二鉄水溶液を金属基板31の一方の面又は両面からスプレーエッチングしても良い。
 続いて、エッチング用レジスト層32、33を剥離して除去する(図7(D))。次いで金属基板31を水洗し、乾燥させる。
 次に、金属基板31の裏面側に樹脂部18を形成し、樹脂部18によって裏面側凹部36を覆う(図7(E))。このとき、金属基板31の裏面側に熱硬化性樹脂又は熱可塑性樹脂を射出成形又はトランスファ成形しても良い。これにより、樹脂部18が裏面側凹部36内に充填される。このとき樹脂部18は、金属基板31の裏面全体を覆うように設けられる。
 次いで、樹脂部18を所定の厚みだけ研磨する(図7(F))。具体的には、樹脂部18を裏面側から研磨してゆき、金属基板31を構成する金属部分が出現した後、樹脂部18の研磨を終了する。これにより、ダイパッド11の裏面及びリード部12の外部端子面17に対応する部分が裏面側に露出する。なお、樹脂部18を研磨する方法としては、例えばバフ研磨が挙げられる。
 次に、金属基板31の表裏全体にそれぞれ感光性レジストを塗布し、乾燥する。続いて、金属基板31上の感光性レジストに対してフォトマスクを介して露光し、現像する。これにより、エッチング用レジスト層34、35を形成する(図7(G))。表面側のエッチング用レジスト層34は、開口部34bを有する。裏面側のエッチング用レジスト層35は、開口部を有していないが、開口部を有していても良い。なお、エッチング用レジスト層34、35としては、例えばドライフィルムレジストを用いても良い。
 続いて、ハーフエッチングにより、金属基板31の表面側から金属基板31を厚み方向の途中まで薄肉化する。この場合、表面側のエッチング用レジスト層34を耐腐蝕膜として、金属基板31の表面側に腐蝕液でエッチングを施す(図7(H))。なお、腐蝕液としては、金属基板31の裏面側をエッチングする際に用いたものと同様のものを用いても良い(図7(C))。
 これにより、金属基板31の表面側がエッチングされ、ダイパッド11、リード部12及び支持リード13の外形が形成される。このとき、ダイパッド11の表面側が、エッチングにより薄肉化される。金属基板31のうち、互いに隣接するリード部12同士の間の部分が表面側から薄肉化されることにより、樹脂部18の樹脂表面18aが外方に露出する(図4)。また、金属基板31のうち、ダイパッド11とリード部12との間の部分が表面側から薄肉化されることにより、金属連結部16が形成される。
 次に、エッチング用レジスト層34、35を剥離して除去する(図7(I))。次いで金属基板31を水洗し、乾燥させる。このようにして図1乃至図4に示すリードフレーム10が得られる。
 (半導体装置の製造方法)
 次に、図5及び図6に示す半導体装置20の製造方法について、図8(A)-(H)を用いて説明する。
 まず、例えば図7(A)-(I)に示す方法により、リードフレーム10を作製する(図8(A))。
 次に、リードフレーム10のダイパッド11上に、半導体素子21を搭載する。この場合、接着剤24を用いて、半導体素子21をダイパッド11上に載置して固定する(ダイアタッチ工程)(図8(B))。接着剤24としては、例えばダイボンディングペースト等を用いても良い。
 次に、半導体素子21の各電極21aと、各リード部12の内部端子15とを、それぞれボンディングワイヤ22によって互いに電気的に接続する(ワイヤボンディング工程)(図8(C))。このとき、リードフレーム10を図示しないワイヤボンディング装置のヒートブロック上に載置する。次いで、ヒートブロックにより、金属連結部16及び外部端子53を介して各リード部12のインナーリード51を裏面側から加熱する。これとともに、ワイヤボンディング装置のキャピラリー38を介して超音波を印加しながら、半導体素子21の各電極21aと各リード部12のインナーリード51とをボンディングワイヤ22により接続する。
 本実施の形態において、ダイパッド11とリード部12とが金属連結部16によって互いに連結されている。また、リード部12の裏面側の薄肉化された部分に樹脂部18が充填されている。このため、インナーリード51の裏面側が樹脂部18によって安定して保持される。これにより、キャピラリー38によってボンディングワイヤ22をリード部12に接合する際、リード部12が変形することを抑えられる。さらに、ヒートブロックを直接インナーリード裏面51bに接触させる場合と比較して、ヒートブロックからの熱を均一に伝達できる。
 次に、リードフレーム10に対して、例えば熱硬化性樹脂又は熱可塑性樹脂を射出成形又はトランスファ成形することにより、封止樹脂23を形成する(図8(D))。このようにして、ダイパッド11、リード部12、半導体素子21及びボンディングワイヤ22を封止する。また、封止樹脂23は、ダイパッド11とリード部12との間であって金属連結部16の表面側にも充填される。
 続いて、リードフレーム10及び封止樹脂23の裏面に、開口部37bを有するエッチング用レジスト層37を設ける(図8(E))。
 この間、まずリードフレーム10及び封止樹脂23の裏面全体にそれぞれ感光性レジストを塗布する。続いて、当該感光性レジストをフォトマスクを介して露光し、現像することにより、開口部37bを有するエッチング用レジスト層37が形成される。
 この場合、エッチング用レジスト層37は、開口部37bを除くリードフレーム10及び封止樹脂23の裏面全体を覆っている。また、開口部37bは、金属連結部16の位置にほぼ対応し、平面から見て略矩形の帯形状を有する。開口部37bからは金属連結部16の連結部裏面16bが露出している。なお、エッチング用レジスト層37としては、例えばドライフィルムレジストを用いても良い。
 次に、エッチング用レジスト層37を耐腐蝕膜としてリードフレーム10に腐蝕液でエッチングを施す(図8(F))。このとき、開口部37bから進入した腐蝕液が、金属連結部16の全体を溶解して除去する。金属連結部16が除去されることにより、金属連結部16に対応する位置に凹部27が形成される。このようにして、金属連結部16が取り除かれ、ダイパッド11と各リード部12とが分離されるとともに、互いに隣接するリード部12同士が分離される。なお、腐蝕液としては、金属基板31の裏面側をエッチングする際に用いたものと同様のものを用いても良い(図7(C))。
 次いで、エッチング用レジスト層37を剥離して除去する(図8(G))。なお、エッチング用レジスト層37を除去した後、凹部27に封止樹脂23と同一又は異なる種類の絶縁性樹脂を充填する工程が設けられていても良い。
 その後、各半導体素子21間の封止樹脂23及び支持リード13をダイシングする。これにより、リードフレーム10を各半導体装置20毎に分離する。この際、例えば人工ダイヤモンドを含有したブレードを回転させながら、各半導体装置20間の封止樹脂23及び支持リード13を切断しても良い。
 このようにして、図5及び図6に示す半導体装置20が得られる(図8(H))。
 このように本実施の形態によれば、ダイパッド11とリード部12とが金属連結部16によって互いに連結されている。また、リード部12の裏面側の薄肉化された部分に樹脂部18が充填されている。このため、リード部12の裏面側が樹脂部18によって安定して保持される。これにより、ワイヤボンディング時に(図8(C))、キャピラリー38によってボンディングワイヤ22をリード部12に接合する際、リード部12が変形することを抑えられる。
 すなわち、リード部12のインナーリード51にボンディングワイヤ22を接続する際(図8(C)参照)、リード部12にはキャピラリー38によって表面側から裏面側に向けて押圧力が加わる。本実施の形態によれば、リード部12の裏面側が樹脂部18によって保持されていることにより、このようなキャピラリー38による押圧力が加わった場合でも、リード部12が変形することを抑えられる。この結果、リード部12の厚みを薄くすることが可能となり、リードフレーム10及び半導体装置20の全体の厚みも薄くできる。リード部12の厚みを薄くできるので、リード部12の幅、リード部12同士の間隔を狭くすることができ、リードフレーム10及び半導体装置20を多ピン化できる。また、ワイヤボンディング時に(図8(C))、リード部12が振動することを抑制できる。これにより、ワイヤボンディング作業を安定して行える。また、リード部12の長さを長くできるため、ボンディングワイヤ22の長さを短くできる。
 また、本実施の形態によれば、封止樹脂23によってリードフレーム10を樹脂封止する時点(図8(D))より前に、予めリード部12の裏面側の薄肉化された部分に樹脂部18が充填されている。このため、樹脂部18を、リード部12の裏面側の薄肉化された部分に隙間なく充填できる。とりわけ、リード部12の裏面側の薄肉化された部分の厚み(図3の厚みT3)が薄い場合でも、この部分に樹脂部18を隙間なく充填できる。これにより、半導体装置20の使用時に、空気中の水分等が半導体装置20の裏面側から封止樹脂23とリード部12との界面に侵入することを抑えられる。他方、仮に、リード部12の裏面に樹脂部18が充填されていない場合、この部分に封止樹脂23が十分に回り込まないおそれがある。
 また、本実施の形態によれば、金属連結部16の一部は、リード部12のインナーリード51の裏面側に位置しても良い。これにより、金属連結部16とリード部12とが強固に連結され、ワイヤボンディング時にキャピラリー38によってリード部12が変形することを抑えられる。また、金属連結部16のうち、リード部12の裏面側に位置する部分の幅W2は、50μm以上150μm以下としても良い。幅W2を50μm以上とすることにより、上述したリード部12の変形を抑制する効果がより得られやすい。また、幅W2を150μm以下とすることにより、半導体装置20の裏面に形成される凹部27が必要以上に大きくなることを抑えられる。
 また、本実施の形態によれば、樹脂部18は、表面側に位置する樹脂表面18aを有し、樹脂表面18aは、互いに隣接する2本のリード部12の間から外方に露出しても良い。このように2本のリード部12の間に樹脂部18が存在することにより、ワイヤボンディング時に(図8(C))、リード部12が横方向に変形することを抑えられる。
 また、本実施の形態によれば、金属連結部16は、平面視で環形状又はリング形状を有しても良い。これにより、金属連結部16により複数のリード部12をまとめて連結できる。
 また、本実施の形態によれば、樹脂部18の熱伝導率は、25℃環境下で1W・m-1・K-1以上12W・m-1・K-1以下であっても良い。これにより、ワイヤボンディング時に、リード部12のインナーリード51を裏面側から加熱する際、樹脂部18、金属連結部16及び外部端子53を介して、ヒートブロックからの熱を均一に伝達できる。
 (第1の実施の形態の第1の変形例)
 図9は、本実施の形態の第1の変形例によるリードフレーム10を示している。図9に示すリードフレーム10において、金属連結部16は、表面側及び裏面側の両方から薄肉化されている。金属連結部16の裏面側から薄肉化された部分は、裏面側薄肉部16dを形成する。裏面側薄肉部16dは、インナーリード側面51cよりも外側(支持リード13側)に位置する。裏面側薄肉部16dには、樹脂部18は充填されていない。裏面側薄肉部16dと、金属連結部16のインナーリード側面51cとの間の幅W3は、50μm以上250μm以下としても良い。
 裏面側薄肉部16dは、例えばハーフエッチングにより形成されても良い。裏面側薄肉部16dは、平面視で金属連結部16の長手方向に沿って延びていても良い。裏面側薄肉部16dの幅W4は、50μm以上150μm以下としても良い。金属連結部16は、裏面側薄肉部16dと樹脂部18との間に位置する金属部分16eを有する。この場合、樹脂部18は、裏面側薄肉部16d内に露出しない。金属部分16eは、表面側及び裏面側のいずれからも薄肉化されていない。金属部分16eの幅W5は、25μm以上150μm以下としても良い。なお幅W3、幅W4及び幅W5は、それぞれ金属連結部16の延伸方向に垂直な断面において、ダイパッド11側からリード部12側に測定した距離をいう。
 図9において、裏面側薄肉部16dの深さd1は、リードフレーム10の最大厚みT1の30%以上60%以下としても良く、40%以上50%以下としても良い。裏面側薄肉部16dの深さd1は、24μm以上180μm以下としても良く、32μm以上150μm以下としても良い。図9において、裏面側薄肉部16dの深さd1は、樹脂部18の厚みT3よりも浅いが、これに限られない。裏面側薄肉部16dの深さd1は、樹脂部18の厚みT3と同一であっても良く、樹脂部18の厚みT3より深くても良い。
 裏面側薄肉部16dは、以下のようにして形成されても良い。まず上述したエッチング用レジスト層34、35を形成する工程において(図7(G))、裏面側のエッチング用レジスト層35に、裏面側薄肉部16dに対応する開口部を形成する。その後、ハーフエッチングにより、金属基板31の表面側及び裏面側の両方からそれぞれ金属基板31を厚み方向の途中まで薄肉化する(図7(H))。この際、裏面側のエッチング用レジスト層35を耐腐蝕膜として、金属基板31の裏面側に腐蝕液でエッチングを施すことにより、裏面側薄肉部16dが形成される。
 あるいは、裏面側薄肉部16dは、金属基板31の裏面側にハーフエッチングにより裏面側凹部36を形成する工程において(図7(C))、裏面側凹部36とともに形成されても良い。
 本変形例によれば、金属連結部16を裏面側から薄肉化することにより、金属連結部16の体積がさらに減らされる。これにより、上述したように、リード部12とダイパッド11とを互いに分離する際(図8(F))、金属連結部16をエッチングやダイシングによりさらに除去しやすい。
 このほかの構成は、図1乃至図8に示す形態と同一としても良い。
 (第1の実施の形態の第2の変形例)
 図10は、本実施の形態の第2の変形例によるリードフレーム10を示している。図10に示すリードフレーム10において、金属連結部16は、表面側及び裏面側の両方から薄肉化されている。金属連結部16の裏面側から薄肉化された部分は、裏面側薄肉部16dを形成する。裏面側薄肉部16dは、インナーリード側面51cよりも外側(支持リード13側)に位置する。裏面側薄肉部16dには、樹脂部18は充填されていない。
 図10において、樹脂部18は、裏面側薄肉部16d内に露出している。すなわち裏面側薄肉部16dと樹脂部18との間には、金属部分が存在しない。
 本変形例によれば、金属連結部16を裏面側から薄肉化することにより、金属連結部16の体積がさらに減らされる。これにより、上述したように、リード部12とダイパッド11とを互いに分離する際(図8(F))、金属連結部16をエッチングやダイシングによりさらに除去しやすい。
 このほかの構成は、図9に示す第1の変形例と同一としても良い。
 (第2の実施の形態)
 次に、図11乃至図13を参照して第2の実施の形態について説明する。図11乃至図13は第2の実施の形態を示す図である。図11乃至図13において、図1乃至図8に示す第1の実施の形態と同一部分には同一の符号を付して詳細な説明は省略する。
 本実施の形態によるリードフレーム10Aは、ダイパッド11と、複数のリード部12と、複数の内側リード部12A、12Bと、金属連結部16とを備えている。複数のリード部12及び複数の内側リード部12A、12Bは、それぞれダイパッド11の周囲に配置されている。金属連結部16は、ダイパッド11とリード部12との間に配置されている。また、金属連結部16によって、複数の内側リード部12A、12Bが支持されている。
 各リード部12は、それぞれインナーリード51と、外部端子53とを有する。インナーリード51は、例えばハーフエッチングにより裏面側から薄肉化されている。外部端子53の裏面には、それぞれ外部端子面17が形成されている。
 金属連結部16は、ダイパッド11を取り囲むように配置されている。金属連結部16は、表面側から薄肉化されている。この金属連結部16は、全体として平面視で略矩形の環形状又はリング形状を有する。金属連結部16の各辺はX方向又はY方向に沿って延びている。金属連結部16の四隅にはそれぞれ吊りリード14が連結されている。金属連結部16は、4本の吊りリード14を介して支持リード13に支持されている。
 金属連結部16からは、複数の内側リード部12A、12Bがそれぞれ延出している。複数の内側リード部12A、12Bは、ダイパッド11とリード部12との間に位置する。内側リード部12A、12Bは、ダイパッド11側に延びる内側リード部12Aと、支持リード13側に延びる内側リード部12Bとを含む。
 各内側リード部12A、12Bは、それぞれインナーリード51A、51Bと、外部端子53A、53Bとを有する。インナーリード51A、51Bは、例えばハーフエッチングにより裏面側から薄肉化されている。外部端子53A、53Bの裏面には、それぞれ外部端子面17A、17Bが形成されている。
 また、複数の内側リード部12A、12Bは、金属連結部16に沿って互いに間隔を空けて配列されている。内側リード部12A、12Bは、半導体装置20を作製する際、金属連結部16を除去することにより、互いに個別に分離される。
 樹脂部18は、ダイパッド11とリード部12の周囲に配置されている。樹脂部18は、リードフレーム10Aの裏面側に配置されている。すなわち樹脂部18は、リードフレーム10Aのうち、厚み方向の途中位置よりも裏面側(Z方向マイナス側)に存在する。
 図12に示すように、樹脂部18は、リード部12の裏面の薄肉化された部分と、内側リード部12Bの裏面の薄肉化された部分とに充填されている。また樹脂部18は、リード部12と内側リード部12Bとの間にも存在する。また樹脂部18は、内側リード部12Aの裏面の薄肉化された部分に充填されている。また樹脂部18は、内側リード部12Aとダイパッド11との間にも存在する。
 本実施の形態によるリードフレーム10Aの製造方法は、第1の実施の形態によるリードフレーム10の製造方法と略同様にして行うことができる(図7(A)-(I))。
 図13は、本実施の形態による半導体装置20Aを示す図である。図13に示すように、半導体装置20Aは、ダイパッド11と、複数のリード部12と、複数の内側リード部12A、12Bと、半導体素子21と、複数のボンディングワイヤ(接続部材)22とを備えている。複数のリード部12は、ダイパッド11の周囲に配置されている。半導体素子21は、ダイパッド11上に搭載されている。ボンディングワイヤ22は、リード部12及び内側リード部12A、12Bと、半導体素子21とを互いに電気的に接続する。また、ダイパッド11とリード部12の周囲であって、半導体装置20Aの裏面側に樹脂部18が配置されている。さらに、ダイパッド11、リード部12、内側リード部12A、12B、半導体素子21及びボンディングワイヤ22は、封止樹脂23によって樹脂封止されている。
 この場合、内側リード部12Aは、ダイパッド11、内側リード部12B及び他の内側リード部12Aから分離されており、互いに電気的に独立している。内側リード部12Bは、ダイパッド11、内側リード部12A及び他の内側リード部12Bから分離されており、互いに電気的に独立している。図13において、金属連結部16が除去されたことにより、半導体装置20Aの裏面であって、内側リード部12Aと内側リード部12Bとの間に凹部27が形成されている。この凹部27は、金属連結部16の形状に概ね対応している。凹部27は、ダイパッド11を取り囲むように、平面視で略矩形の環形状又はリング形状を有している。なお、凹部27には、封止樹脂23と同一又は異なる種類の絶縁性樹脂が充填されていても良い。
 本実施の形態による半導体装置20Aの製造方法は、第1の実施の形態による半導体装置20の製造方法と略同様にして行うことができる(図8(A)-(H))。
 本実施の形態によれば、半導体装置20Aを作製する際、金属連結部16を除去することにより、内側リード部12Aと内側リード部12Bとがそれぞれ個別に分離されるようになっている。このため、リード部12に加え、内側リード部12A、12Bを用いることもでき、外部の実装基板と接続される端子部の数(ピン数)を増やせる。これにより、半導体装置20の高密度化を実現できる。
 (第2の実施の形態の変形例)
 図14は、本実施の形態の変形例によるリードフレーム10Aを示している。図14に示すリードフレーム10Aにおいて、金属連結部16は、表面側及び裏面側の両方から薄肉化されている。金属連結部16の表面側から薄肉化された部分は、表面側薄肉部16fを形成する。金属連結部16の裏面側から薄肉化された部分は、裏面側薄肉部16dを形成する。裏面側薄肉部16dは、表面側薄肉部16fの内側(ダイパッド11側)と外側(支持リード13側)とにそれぞれ形成されている。すなわち一方の裏面側薄肉部16dは、表面側薄肉部16fの内側に形成され、他方の裏面側薄肉部16dは、表面側薄肉部16fの外側に形成される。
 表面側薄肉部16f及び裏面側薄肉部16dは、それぞれ例えばハーフエッチングにより形成されても良い。表面側薄肉部16f及び裏面側薄肉部16dは、それぞれ平面視で金属連結部16の長手方向に沿って延びていても良い。裏面側薄肉部16dと樹脂部18との間には、それぞれ外部端子53A、53Bが存在する。樹脂部18は、裏面側薄肉部16d内に露出しない。
 本変形例によれば、金属連結部16を裏面側から薄肉化することにより、金属連結部16の体積がさらに減らされる。これにより、半導体装置20Aを作製する工程において、内側リード部12Aと内側リード部12Bとを互いに分離する際、金属連結部16をエッチングやダイシングによりさらに除去しやすい。
 このほかの構成は、図11乃至図13に示す形態と同一としても良い。
 (第3の実施の形態)
 次に、図15及び図16を参照して第3の実施の形態について説明する。図15及び図16は第3の実施の形態を示す図である。図15及び図16に示す第3の実施の形態は、主として、金属連結部16が裏面側から薄肉化され、表面側から薄肉化されていない点が異なるものであり、他の構成は上述した第1の実施の形態と略同一である。図15及び図16において、図1乃至図8に示す第1の実施の形態と同一部分には同一の符号を付して詳細な説明は省略する。
 図15に示すように、本実施の形態によるリードフレーム10Bは、ダイパッド11と、リード部12と、金属連結部16と、樹脂部18とを備えている。金属連結部16は、ダイパッド11とリード部12とを互いに連結する。樹脂部18は、ダイパッド11とリード部12との周囲であって、リードフレーム10Bの裏面側に配置される。金属連結部16は、裏面側から薄肉化されている。リード部12の少なくとも一部は、裏面側から薄肉化されている。リード部12の薄肉化された部分の少なくとも一部に樹脂部18が充填されている。
 図15において、金属連結部16は、裏面側から薄肉化されている。金属連結部16は、表面側から薄肉化されていない。金属連結部16の裏面側から薄肉化された部分は、裏面側薄肉部16dを形成する。裏面側薄肉部16dは、インナーリード側面51cに対応する部分よりも内側(ダイパッド11側)に位置する。裏面側薄肉部16dには、樹脂部18は充填されていない。
 裏面側薄肉部16dは、例えばハーフエッチングにより形成される。裏面側薄肉部16dは、平面視で金属連結部16の長手方向に沿って延びていても良い。裏面側薄肉部16dの幅W6は、25μm以上150μm以下としても良い。裏面側薄肉部16dと樹脂部18との間には、金属部分16eが存在する。樹脂部18は、裏面側薄肉部16d内に露出しない。金属部分16eは、表面側及び裏面側のいずれからも薄肉化されていない。金属部分16eの幅W7は、25μm以上100μm以下としても良い。なお幅W6及び幅W7は、それぞれ金属連結部16の延伸方向に垂直な断面において、ダイパッド11側からリード部12側に測定した距離をいう。
 図15において、裏面側薄肉部16dの深さd2は、リードフレーム10の最大厚みT1の30%以上60%以下としても良く、40%以上50%以下としても良い。裏面側薄肉部16dの深さd2は、24μm以上180μm以下としても良く、32μm以上150μm以下としても良い。図15において、裏面側薄肉部16dの深さd2は、樹脂部18の厚みT3と同一であるが、これに限られない。裏面側薄肉部16dの深さd2は、樹脂部18の厚みT3より浅くても良く、樹脂部18の厚みT3より深くても良い。
 裏面側薄肉部16dは、以下のようにして形成されても良い。まず上述したエッチング用レジスト層34、35を形成する工程において(図7(G))、裏面側のエッチング用レジスト層35に、裏面側薄肉部16dに対応する開口部を形成する。一方、表面側のエッチング用レジスト層34には、開口部34bを形成しない。その後、ハーフエッチングにより、金属基板31の裏面側から金属基板31を厚み方向の途中まで薄肉化する(図7(H))。この際、裏面側のエッチング用レジスト層35を耐腐蝕膜として、金属基板31の裏面側に腐蝕液でエッチングを施すことにより、裏面側薄肉部16dが形成される。
 あるいは、裏面側薄肉部16dは、金属基板31の裏面側にハーフエッチングにより裏面側凹部36を形成する工程において(図7(C))、裏面側凹部36とともに形成されても良い。
 本実施の形態によれば、金属連結部16を裏面側から薄肉化することにより、金属連結部16の体積が減らされる。これにより、上述したように、リード部12とダイパッド11とを互いに分離する際(図8(F))、金属連結部16をエッチングにより除去しやすい。
 図16は、本実施の形態による半導体装置20Bを示す図である。図16に示すように、半導体装置20Bは、複数のリード部12と、半導体素子21と、複数のボンディングワイヤ(接続部材)22とを備えている。複数のリード部12は、ダイパッド11の周囲に配置されている。半導体素子21は、ダイパッド11上に搭載されている。ボンディングワイヤ22は、リード部12と半導体素子21とを電気的に接続する。また、ダイパッド11とリード部12の周囲であって、半導体装置20Bの裏面側に樹脂部18が配置されている。ダイパッド11、リード部12、半導体素子21及びボンディングワイヤ22は、封止樹脂23によって樹脂封止されている。
 金属連結部16は、封止樹脂23によって樹脂封止された後、裏面側からエッチングにより除去される。このため、リード部12は、ダイパッド11及び他のリード部12から分離されており、互いに電気的に独立している。
 金属連結部16が除去されたことに伴い、封止樹脂23の裏面のうち、リード部12とダイパッド11との間に凹部27が形成される。この凹部27は、金属連結部16の形状に概ね対応している。凹部27は、ダイパッド11を取り囲むように、平面視で略矩形の環形状又はリング形状を有している。金属連結部16が除去されることにより、ダイパッド11とリード部12とが互いに分離する。このとき、リード部12のインナーリード側面51cが形成される。また、凹部27は、ダイパッド11とリード部12との間にも形成される。なお、凹部27に接する樹脂部18の側面には、除去された金属連結部16が少なくとも一部残っていても良い。この場合、半導体装置20の使用時に、空気中の水分等が、樹脂部18とリード部12との界面から半導体素子21側に侵入することを抑えられる。また、凹部27には、封止樹脂23と同一又は異なる種類の絶縁性樹脂が充填されていても良い。
 (第3の実施の形態の変形例)
 図17は、本実施の形態の変形例によるリードフレーム10Bを示している。図17に示すリードフレーム10Bにおいて、金属連結部16は、裏面側から薄肉化され、表面側から薄肉化されていない。金属連結部16の裏面側から薄肉化された部分は、裏面側薄肉部16dを形成する。裏面側薄肉部16dは、インナーリード側面51cに対応する部分よりも内側(ダイパッド11側)に位置する。裏面側薄肉部16dには、樹脂部18は充填されていない。
 図17において、樹脂部18は、裏面側薄肉部16d内に露出している。すなわち裏面側薄肉部16dと樹脂部18との間には、金属部分が存在しない。
 本変形例によれば、金属連結部16を裏面側から薄肉化することにより、金属連結部16の体積がさらに減らされる。これにより、上述したように、リード部12とダイパッド11とを互いに分離する際(図8(F))、金属連結部16をエッチングによりさらに除去しやすい。
 このほかの構成は、図15及び図16に示す形態と同一としても良い。
 (第4の実施の形態)
 次に、図18乃至図20を参照して第4の実施の形態について説明する。図18乃至図20は第4の実施の形態を示す図である。図18乃至図20において、第1の実施の形態乃至第3の実施の形態と同一部分には同一の符号を付して詳細な説明は省略する。
 図18及び図19(A)(B)に示すリードフレーム10Cは、ダイパッド11と、複数の細長い外周リード部12C、12Dと、金属連結部41と、樹脂部18とを備えている。複数の外周リード部12C、12Dは、ダイパッド11の周囲に配置されている。金属連結部41は、ダイパッド11と外周リード部12C、12Dとの間に配置され、ダイパッド11の周囲に沿って延びている。樹脂部18は、ダイパッド11と外周リード部12C、12Dとの周囲であって、リードフレーム10Cの裏面側に配置されている。
 複数の外周リード部12C、12Dは、各パッケージ領域10aの外周に沿って設けられている。複数の外周リード部12C、12Dは、相対的に長い長外周リード部12Cと、相対的に短い短外周リード部12Dとを含む。本明細書において、長外周リード部12Cと短外周リード部12Dとを合わせて外周リード部12C、12Dともいう。
 外周リード部12C、12Dは、それぞれ外部端子53と、接続リード52とを有する。外部端子53は、内側(ダイパッド11側)に位置する。接続リード52は、外側(ダイパッド11の反対側、支持リード13側)に位置する。外部端子53は、外周リード部12C、12Dの内側端部に位置している。外部端子53の表面側には内部端子15が形成されている。外部端子53の裏面側には外部端子面17が形成されている。接続リード52は、外部端子53と支持リード13とを互いに連結している。
 金属連結部41は、外周リード部12C、12Dよりも内側において、ダイパッド11を取り囲むように配置されている。金属連結部41は、全体として略矩形形状を有しており、その各辺はX方向又はY方向に沿って延びている。金属連結部41の四隅にはそれぞれ吊りリード14が連結されている。金属連結部41は、4本の吊りリード14を介して支持リード13に支持されている。
 金属連結部41の表面には、互いに間隔を空けて複数の第1凹部41aが形成されている。各第1凹部41aは、ハーフエッチングにより形成されたものであり、厚み方向に貫通することなく一定の深さを持っている。各第1凹部41aは、金属連結部41の幅方向中央部よりも内側(ダイパッド11側)に形成されている。各第1凹部41aは、金属連結部41の幅方向中央部に形成されても良く、金属連結部41の幅方向中央部よりも外側(ダイパッド11の反対側)に形成されても良い。
 互いに隣接する第1凹部41aの間には、内側端子部42が形成されている。すなわち第1凹部41aと内側端子部42とは、金属連結部41の長さ方向に沿って交互に配置されている。この場合、内側端子部42は、ハーフエッチングされておらず、ダイパッド11及び支持リード13と同一の厚みを有している。各内側端子部42の表面には、ボンディングワイヤ22と密着性を向上させるめっき等の金属層が設けられていても良い。
 金属連結部41の裏面には、互いに間隔を空けて複数の第2凹部41bが形成されている。各第2凹部41bは、ハーフエッチングにより形成されたものであり、厚み方向に貫通することなく一定の深さを持っている。各第2凹部41bは、金属連結部41の幅方向中央部よりも外側(ダイパッド11の反対側)に形成されている。各第2凹部41bは、金属連結部41の幅方向中央部に形成されても良く、金属連結部41の幅方向中央部よりも内側(ダイパッド11側)に形成されても良い。各第2凹部41b内には樹脂部18は充填されていない。各第1凹部41aと各第2凹部41bとは、平面視で金属連結部41の幅方向に並んで配置されている。これに限らず、各第1凹部41aと各第2凹部41bとは、平面視で千鳥状(互い違い)に配置されても良い。
 本実施の形態において、半導体装置20C(図20参照)を作製する際、金属連結部41の一部のみがエッチングにより除去される。具体的には、金属連結部41のうち各第1凹部41aの周辺領域がそれぞれ除去される。一方、金属連結部41のうち、各第1凹部41a及び各第2凹部41b間に位置する部分は、除去されることなく、それぞれ個別に分離されて内側端子部42を構成する。
 すなわち、リードフレーム10Cの裏面側から金属連結部41の一部をエッチング除去する際(図8(F)参照)、各第1凹部41a、各第2凹部41b及びその周囲に対応する領域に、エッチング用レジスト層37の開口部37aを設けておく。そして当該開口部37aから進入した腐蝕液により、金属連結部41のうち各第1凹部41a及び各第2凹部41bの周辺領域を選択的に溶解して除去する。この場合、金属連結部41に第1凹部41a及び各第2凹部41bが設けられている。このため、開口部37aから進入した腐蝕液が、内側端子部42や外周リード部12C、12Dを必要以上に溶解することなく、金属連結部41のうち各第1凹部41a及び各第2凹部41bの周辺領域のみを適切に除去できる。このようにして、金属連結部41のうち、互いに隣接する第1凹部41a同士の間に、それぞれ内側端子部42が残存する。
 なお、本実施の形態において、第1凹部41a及び第2凹部41bは、それぞれ長外周リード部12Cの先端に対応する位置に形成されているが、これに限らず、短外周リード部12Dの先端に対応する位置に形成されていても良い。複数の第1凹部41a及び複数の第2凹部41bは、金属連結部41の周方向全域にわたって設けられているが、これに限らず、金属連結部41の一部分のみに設けられていても良い。本実施の形態において、第1凹部41aが内側(ダイパッド11側)に配置され、第2凹部41bが外側(ダイパッド11の反対側)に配置されている。これに限らず、第1凹部41aが外側に配置され、第2凹部41bが内側に配置されても良い。
 図20に示す半導体装置20Cは、図18及び図19(A)(B)に示すリードフレーム10Cから作製されたものである。半導体装置20Cにおいて、内側端子部42は、ダイパッド11の周囲4辺(図20においてはX方向又はY方向に平行な4辺)に沿って、互いに間隔を空けて配列されている。
 リードフレーム10Cの金属連結部41のうち、各第1凹部41a及び各第2凹部41bの周辺領域は、封止樹脂23によって樹脂封止された後、裏面側からエッチングにより除去されている。このため、各内側端子部42は、ダイパッド11、外周リード部12C、12D及び他の内側端子部42から分離されており、これらの部材から電気的に独立している。内側端子部42は、ハーフエッチングされておらず、ダイパッド11と同一の厚みを有している。内側端子部42の裏面には、外部の実装基板(図示せず)に電気的に接続される外部端子面17が形成されている。
 金属連結部41のうち内側端子部42を除く部分が除去されたことに伴い、封止樹脂23の裏面のうち、外周リード部12C、12Dとダイパッド11との間の領域に、ダイパッド11を取り囲むように凹部27Aが形成される。
 本実施の形態によれば、半導体装置20Cを作製する際、金属連結部41の一部が除去される。また金属連結部41のうち除去されない部分がそれぞれ個別に分離されて内側端子部42となる。このように、多数の内側端子部42が形成されていることにより、外部の実装基板と接続される端子部の数(ピン数)を増やし、半導体装置20Cの更なる高密度化を実現できる。
 本実施の形態において、一部の内側端子部42を他の内側端子部42よりも大きく形成しても良い。他の内側端子部42よりも大きい内側端子部42に複数のボンディングワイヤ22を接続することにより、電気信号の調節のためのバスバーやグランド(GND)端子として用いても良い。これにより、端子数の増加に伴う発熱を低減し、より信頼性の高い半導体装置20Cを実現できる。
 本実施の形態によるリードフレーム10Cの製造方法及び半導体装置20Cの製造方法は、第1の実施の形態によるリードフレーム10の製造方法(図7(A)-(I))及び半導体装置20の製造方法(図8(A)-(H))と略同様である。
 (第5の実施の形態)
 次に、図21乃至図24を参照して第5の実施の形態について説明する。図21乃至図24は第5の実施の形態を示す図である。図21乃至図24において、第1の実施の形態乃至第4の実施の形態と同一部分には同一の符号を付して詳細な説明は省略する。
 図21及び図22(A)(B)に示すリードフレーム10Dは、ダイパッド11と、複数の細長い外周リード部12C、12Dと、金属連結部43と、樹脂部18とを備えている。複数の細長い外周リード部12C、12Dは、ダイパッド11の周囲に配置されている。金属連結部43は、ダイパッド11と外周リード部12C、12Dとの間に配置され、ダイパッド11の周囲に沿って延びている。樹脂部18は、ダイパッド11と外周リード部12C、12Dとの周囲であって、リードフレーム10Eの裏面側に配置されている。
 図21及び図22(A)(B)に示すリードフレーム10Dにおいて、金属連結部43の表面には、凹部43aが形成されている。凹部43aは、金属連結部43の長手方向に沿って溝状に形成されている。凹部43aは、例えばハーフエッチングにより形成されたものであり、厚み方向に貫通することなく一定の深さを持っている。凹部43aは、金属連結部43の幅方向略中央部に形成されているが、金属連結部43の幅方向略中央部からずれていても良い。凹部43aの幅方向両側には、薄肉化されていない土手部43bが形成されている。金属連結部43の長手方向に垂直な断面は、略凹字形状又は略U字形状となっている。なお、本実施の形態において、凹部43aは、金属連結部43の四隅を除く全周に設けられているが、これに限らず、例えば金属連結部43の四隅を含む全周にわたって設けられていても良い。
 このように凹部43aを設けたことにより、金属連結部43の体積が減らされる。これにより、半導体装置20D(図23参照)の製造時に、複数の外部端子56を個別に分離する際、金属連結部43をエッチングにより除去しやすい。
 本実施の形態において、金属連結部43によって複数の内側リード部12E~12Hが支持されている。複数の内側リード部12E~12Hは、長内側リード部12Eと、短内側リード部12Fと、長内側リード部12Gと、短内側リード部12Hとを含む。各内側リード部12E~12Hは、それぞれ外部端子56と、接続リード57とを有する。接続リード57は、金属連結部43に連結される。接続リード57は、表面側から薄肉化されている。
 複数の内側リード部12E~12Hのうち、長内側リード部12Eと短内側リード部12Fとは、それぞれ金属連結部43から外側に向けて延びている。長内側リード部12Eと短内側リード部12Fとは、金属連結部43の長手方向に沿って交互に配置されている。長内側リード部12Gと短内側リード部12Hとは、それぞれ金属連結部43から内側に向けて延びている。長内側リード部12Gと短内側リード部12Hとは、金属連結部43の長手方向に沿って交互に配置されている。
 金属連結部43から内側に向けて延びる長内側リード部12Gと、金属連結部43から外側に向けて延びる短内側リード部12Fとが、金属連結部43を介して互いに反対側の位置に配置されている。長内側リード部12Gと、対応する短内側リード部12Fとが、金属連結部43を挟んで一直線上に位置している。
 金属連結部43から内側に向けて延びる短内側リード部12Hと、金属連結部43から外側に向けて延びる長内側リード部12Eとが、金属連結部43を介して互いに反対側の位置に配置されている。短内側リード部12Hと、対応する長内側リード部12Eとが、金属連結部43を挟んで一直線上に位置している。
 金属連結部43から外側に向けて延びる短内側リード部12Fと、長外周リード部12Cとが互いに向かい合い、金属連結部43から外側に向けて延びる長内側リード部12Eと、短外周リード部12Dとが互いに向かい合っている。
 内側リード部12E~12Hの各接続リード57は、表面側から薄肉化されている。この場合、接続リード57が裏面側に露出するので、金属連結部43とともに接続リード57を除去する作業を容易に行うことができる。また、金属連結部43をエッチングにより除去する際(図8(E)参照)、金属連結部43及び接続リード57が確実に除去されたか否かを裏面側から容易に確認することができる。これにより、外部端子56を独立させる作業が容易となる。
 図23に示す半導体装置20Dは、図21及び図22(A)(B)に示すリードフレーム10Dから作製されたものである。リードフレーム10Dの金属連結部43は、封止樹脂23によって樹脂封止された後、裏面側からエッチングにより除去されている。金属連結部43が除去されたことに伴い、封止樹脂23の裏面のうち、内側リード部12E、12Fと内側リード部12G、12Hとの間の領域に、凹部27Aが形成される。
 図23に示す半導体装置20Dにおいて、金属連結部43とともに接続リード57が除去されている。これに限らず、半導体装置20Dに接続リード57の一部を残しても良く、あるいは接続リード57の全体を残しても良い。
 図24は、本実施の形態の変形例によるリードフレーム10Eを示している。図24において、金属連結部43の内側には、短内側リード部12Hのみが延びており、長内側リード部12Gは延びていない。したがって、外部端子53、56は、ダイパッド11の周囲に5列に配置されている。この場合、半導体装置20Dの大きさに対してダイパッド11の面積を広く確保できる。
 本実施の形態によるリードフレーム10D、10Eの製造方法及び半導体装置20Dの製造方法は、第1の実施の形態によるリードフレーム10の製造方法(図7(A)-(I))及び半導体装置20の製造方法(図8(A)-(H))と略同様である。
 本実施の形態において、図21に示すリードフレーム10D(外部端子53、56が6列)及び図24に示すリードフレーム10E(外部端子53、56が5列)のいずれにおいても、全ての外部端子53、56を、外部端子53、56同士の間隔が等しい千鳥状に配置できる。これにより、基板実装時における半田ブリッジの発生を抑制できるため、実装信頼性を向上できる。
 本実施の形態によれば、例えば12mm角のパッケージの場合、図21に示すリードフレーム10D(外部端子53、56が6列)を用いると、端子部の数(ピン数)を308ピンまで増やせる。また、例えば12mm角のパッケージの場合、図21に示すリードフレーム10D(外部端子53、56が5列)を用いると、端子部の数(ピン数)を280ピンまで増やせる。このように、本実施の形態によれば、高機能のLSIを搭載可能な半導体装置を安価に作製できる。さらに、例えば10mm角のパッケージの場合、図21に示すリードフレーム10D(外部端子53、56が5列)を用いると、端子部の数(ピン数)を208ピン~216ピンまで増やせる。このピン数(208ピン~216ピン)は、従来の28mm角のQFP(Quad Flat Package)と同等のピン数に相当する。
 (第6の実施の形態)
 次に、図25乃至図27を参照して第6の実施の形態について説明する。図25乃至図27は第6の実施の形態を示す図である。図25乃至図27において、第1の実施の形態乃至第5の実施の形態と同一部分には同一の符号を付して詳細な説明は省略する。
 図25及び図26(A)(B)に示すリードフレーム10Fは、ダイパッド11と、複数の細長い外周リード部12J、12Kと、金属連結部44と、樹脂部18とを備えている。複数の外周リード部12J、12Kは、ダイパッド11の周囲に配置されている。金属連結部44は、ダイパッド11と外周リード部12J、12Kとの間に配置され、ダイパッド11の周囲に沿って延びている。樹脂部18は、ダイパッド11と外周リード部12J、12Kとの周囲であって、リードフレーム10Fの裏面側に配置されている。
 外周リード部12J、12Kは、インナーリード51と、接続リード52と、外部端子53とを有する。インナーリード51は、内側(ダイパッド11側)に位置する。接続リード52は、外側(ダイパッド11の反対側、支持リード13側)に位置する。外部端子53は、インナーリード51と接続リード52との間に位置する。インナーリード51及び接続リード52は、裏面側から薄肉化されている。外部端子53は、薄肉化されていない。接続リード52は、支持リード13に連結されている。
 図25及び図26(A)(B)において、金属連結部44は、外周リード部12J、12Kのインナーリード51の先端に設けられている。金属連結部44は、ダイパッド11を取り囲むように配置されている。金属連結部44の外側周縁部(支持リード13側周縁部)には、外周リード部12J、12Kのインナーリード51が連結されている。金属連結部44から内側(ダイパッド11側)に向けて、連結バー45が延出している。この場合、金属連結部44は、全てのインナーリード51に連結されて支持されている。これに限らず、金属連結部44は一部のインナーリード51のみに連結されていても良い。
 金属連結部44の表面であって各インナーリード51の先端近傍に、それぞれ凹部44aが形成されている。各凹部44aは、ハーフエッチングにより形成されたものであり、厚み方向に貫通することなく一定の深さを持っている。各凹部44aは、金属連結部44の幅方向略中央部に形成されているが、金属連結部44の幅方向略中央部よりも内側又は外側に形成されても良い。
 複数の凹部44aは、金属連結部44の長手方向に沿って互いに間隔を空けて配置されている。互いに隣接する凹部44aの間には、厚肉部44bが形成されている。凹部44aと厚肉部44bとは、金属連結部44の長手方向に沿って交互に配置されている。厚肉部44bは、ハーフエッチングされておらず、ダイパッド11及び支持リード13と同一の厚みを有している。連結バー45は、ダイパッド11の4辺全てにそれぞれ2本ずつ連結されている。ダイパッド11は、金属連結部44及び連結バー45によって支持されている。ダイパッド11の四隅には吊りリード14が設けられている。なお、樹脂部18により、ダイパッド11を外周リード部12J、12Kと支持リード13に対して支持できるため、吊りリード14を設けなくてもよい。吊りリード14を設けない場合は、ダイパッド11の四隅に樹脂部18を形成する樹脂を充填しやすい。
 本実施の形態において、半導体装置20F(図27参照)を作製する際、金属連結部44のうち各凹部44aの周辺部と、金属連結部44の厚肉部44bとは、同時にエッチングされはじめる。一方、厚肉部44bを除去するのは、各凹部44aの領域を除去するよりも時間がかかる。これにより金属連結部44自体のエッチングの進行を調整することが可能である。
 本実施の形態において、リードフレーム10Fの裏面側から金属連結部44をエッチング除去する際(図8(E)参照)、封止樹脂23の裏面のエッチング用レジスト層37の金属連結部44に対応する位置に開口部37bを設けておく。そして当該開口部37bから進入した腐蝕液により、金属連結部44のうち各凹部44aと厚肉部44bとを適度に溶解して除去する。この場合、金属連結部44の表面に凹部44aが設けられているので、開口部37bから進入した腐蝕液が、外周リード部12J、12Kを必要以上に溶解することなく、金属連結部44の全体を適切に除去できる。
 本実施の形態において、凹部44aは、全てのインナーリード51の先端近傍に設けられている。これに限らず、凹部44aは、一部のインナーリード51の先端近傍のみに設けられていても良い。
 このように、金属連結部44に沿って凹部44aを一定間隔でドット状に設け、各凹部44aの間に厚肉部44bを形成したことにより、金属連結部44をエッチングにより除去する際、腐蝕液の進入と溶解とを適宜調整できる。
 図27に示す半導体装置20Fは、図25及び図26(A)(B)に示すリードフレーム10Fから作製されたものである。リードフレーム10Fの金属連結部44は、封止樹脂23によって樹脂封止された後、裏面側からエッチングにより除去されている。金属連結部44が除去されたことに伴い、封止樹脂23の裏面のうち、外周リード部12J、12Kとダイパッド11との間の領域に、ダイパッド11を取り囲むように凹部27Bが形成される。
 なお、本実施の形態によるリードフレーム10Fの製造方法及び半導体装置20Fの製造方法は、第1の実施の形態によるリードフレーム10の製造方法(図7(A)-(I))及び半導体装置20の製造方法(図8(A)-(H))と略同様である。
 上記各実施の形態及び変形例に開示されている複数の構成要素を必要に応じて適宜組合せることも可能である。あるいは、上記各実施の形態及び変形例に示される全構成要素から幾つかの構成要素を削除してもよい。

Claims (15)

  1.  リードフレームにおいて、
     ダイパッドと、
     前記ダイパッドの周囲に配置されたリード部と、
     前記ダイパッドと前記リード部とを互いに連結する金属連結部と、
     前記ダイパッドと前記リード部との周囲であって、前記リードフレームの裏面側に配置された樹脂部と、を備え、
     前記リード部の少なくとも一部は、裏面側から薄肉化され、前記リード部の薄肉化された部分に前記樹脂部が充填されている、リードフレーム。
  2.  前記金属連結部の一部は、前記リード部の裏面側に位置する、請求項1に記載のリードフレーム。
  3.  前記金属連結部のうち、前記リード部の裏面側に位置する部分の幅は、50μm以上150μm以下である、請求項2に記載のリードフレーム。
  4.  前記樹脂部は、表面側に位置する樹脂表面を有し、前記樹脂表面は、互いに隣接する2本のリード部の間から外方に露出する、請求項1に記載のリードフレーム。
  5.  前記金属連結部は、平面視で環形状又はリング形状を有する、請求項1に記載のリードフレーム。
  6.  前記樹脂部の熱伝導率は、25℃環境下で1W・m-1・K-1以上12W・m-1・K-1以下である、請求項1に記載のリードフレーム。
  7.  前記金属連結部は、表面側から薄肉化されている、請求項1に記載のリードフレーム。
  8.  前記金属連結部は、裏面側から薄肉化されている、請求項1に記載のリードフレーム。
  9.  リードフレームにおいて、
     ダイパッドと、
     前記ダイパッドの周囲に配置されたリード部と、
     前記ダイパッドの周囲に配置された複数の内側リード部と、
     前記複数の内側リード部を互いに連結する金属連結部と、
     前記ダイパッドと前記リード部との周囲であって、前記リードフレームの裏面側に配置された樹脂部と、を備え、
     前記金属連結部は、表面側から薄肉化され、
     前記内側リード部の少なくとも一部は、裏面側から薄肉化され、前記内側リード部の薄肉化された部分に前記樹脂部が充填されている、リードフレーム。
  10.  リードフレームにおいて、
     ダイパッドと、
     前記ダイパッドの周囲に配置されたリード部と、
     前記ダイパッドと前記リード部との間に配置された金属連結部と、
     前記ダイパッドと前記リード部との周囲であって、前記リードフレームの裏面側に配置された樹脂部と、を備え、
     前記金属連結部の表面に凹部が設けられている、リードフレーム。
  11.  前記金属連結部の表面に複数の凹部が設けられ、前記複数の凹部は、前記金属連結部の長手方向に沿って互いに間隔を空けて設けられ、各凹部の間には端子部が形成されている、請求項10に記載のリードフレーム。
  12.  前記凹部は、前記金属連結部の長手方向に沿って溝状に形成されている、請求項10に記載のリードフレーム。
  13.  前記金属連結部によって複数の内側リード部が支持されており、
     前記複数の内側リード部は、長内側リード部と、短内側リード部とを含み、前記長内側リード部と前記短内側リード部とが前記金属連結部に沿って交互に配置されている、請求項10に記載のリードフレーム。
  14.  前記金属連結部の表面に複数の凹部が設けられ、前記複数の凹部は、前記金属連結部の長手方向に沿って互いに間隔を空けて設けられ、各凹部の間には厚肉部が形成されている、請求項10に記載のリードフレーム。
  15.  リードフレームの製造方法において、
     金属基板を準備する工程と、
     前記金属基板の裏面側から前記金属基板を厚み方向の途中までエッチングすることにより、裏面側凹部を形成する工程と、
     前記金属基板の裏面側に樹脂部を形成し、前記樹脂部を前記裏面側凹部に充填する工程と、
     前記金属基板の表面側から前記金属基板を厚み方向の途中までエッチングすることにより、ダイパッドと、前記ダイパッドの周囲に配置されたリード部と、前記ダイパッドと前記リード部との間に配置された金属連結部と、を形成する工程と、を備えた、リードフレームの製造方法。
     
PCT/JP2023/041105 2022-11-16 2023-11-15 リードフレーム及びその製造方法 WO2024106469A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2024516550A JP7486065B1 (ja) 2022-11-16 2023-11-15 リードフレーム及びその製造方法
JP2024075362A JP2024099832A (ja) 2022-11-16 2024-05-07 リードフレーム及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022183449 2022-11-16
JP2022-183449 2022-11-16
JP2023127309 2023-08-03
JP2023-127309 2023-08-03

Publications (1)

Publication Number Publication Date
WO2024106469A1 true WO2024106469A1 (ja) 2024-05-23

Family

ID=91084864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041105 WO2024106469A1 (ja) 2022-11-16 2023-11-15 リードフレーム及びその製造方法

Country Status (2)

Country Link
TW (1) TW202427689A (ja)
WO (1) WO2024106469A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076232A (ja) * 2000-08-31 2002-03-15 Toppan Printing Co Ltd リードフレーム
JP2008004787A (ja) * 2006-06-23 2008-01-10 Matsushita Electric Ind Co Ltd 熱伝導基板の製造方法及びこれによって製造した熱伝導基板
JP2012164877A (ja) * 2011-02-08 2012-08-30 Shinko Electric Ind Co Ltd リードフレーム、リードフレームの製造方法、半導体装置及び半導体装置の製造方法
US9799613B1 (en) * 2016-08-09 2017-10-24 Chang Wah Technology Co., Ltd. Lead frame device
JP3222955U (ja) * 2019-04-17 2019-09-05 長華科技股▲ふん▼有限公司 予備成形リードフレーム
JP2021150638A (ja) * 2020-03-13 2021-09-27 大日本印刷株式会社 リードフレーム、リードフレームの製造方法及び半導体装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076232A (ja) * 2000-08-31 2002-03-15 Toppan Printing Co Ltd リードフレーム
JP2008004787A (ja) * 2006-06-23 2008-01-10 Matsushita Electric Ind Co Ltd 熱伝導基板の製造方法及びこれによって製造した熱伝導基板
JP2012164877A (ja) * 2011-02-08 2012-08-30 Shinko Electric Ind Co Ltd リードフレーム、リードフレームの製造方法、半導体装置及び半導体装置の製造方法
US9799613B1 (en) * 2016-08-09 2017-10-24 Chang Wah Technology Co., Ltd. Lead frame device
JP3222955U (ja) * 2019-04-17 2019-09-05 長華科技股▲ふん▼有限公司 予備成形リードフレーム
JP2021150638A (ja) * 2020-03-13 2021-09-27 大日本印刷株式会社 リードフレーム、リードフレームの製造方法及び半導体装置の製造方法

Also Published As

Publication number Publication date
TW202427689A (zh) 2024-07-01

Similar Documents

Publication Publication Date Title
JP3521758B2 (ja) 半導体装置の製造方法
KR101103871B1 (ko) 반도체장치 및 그 제조방법
JP2000307045A (ja) リードフレームおよびそれを用いた樹脂封止型半導体装置の製造方法
KR20040100997A (ko) 반도체 장치 및 그 제조 방법
JP3072291B1 (ja) リ―ドフレ―ムとそれを用いた樹脂封止型半導体装置およびその製造方法
JP2024096387A (ja) リードフレーム、リードフレームの製造方法及び半導体装置の製造方法
JP7174363B2 (ja) リードフレームおよび半導体装置
JP2018022772A (ja) リードフレーム
JP6573157B2 (ja) リードフレームおよびその製造方法、ならびに半導体装置およびその製造方法
JP4987041B2 (ja) 半導体装置の製造方法
JP7486065B1 (ja) リードフレーム及びその製造方法
WO2024106469A1 (ja) リードフレーム及びその製造方法
JP6465394B2 (ja) リードフレームおよびその製造方法、ならびに半導体装置およびその製造方法
WO2023228898A1 (ja) リードフレーム及びその製造方法
JP7468056B2 (ja) リードフレーム及びその製造方法、並びに半導体装置及びその製造方法
JP2001267484A (ja) 半導体装置およびその製造方法
JP7223347B2 (ja) リードフレームおよび半導体装置の製造方法
JP2001077285A (ja) リードフレームとそれを用いた樹脂封止型半導体装置の製造方法
JP7249533B2 (ja) リードフレームおよび半導体装置の製造方法
JP7380750B2 (ja) リードフレームおよび半導体装置
JP7064721B2 (ja) リードフレームおよび半導体装置
JP6967190B2 (ja) リードフレーム
JP7112663B2 (ja) リードフレームおよび半導体装置の製造方法
JP2001077275A (ja) リードフレームとそれを用いた樹脂封止型半導体装置の製造方法
JP2018064062A (ja) リードフレームおよび半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23891616

Country of ref document: EP

Kind code of ref document: A1