WO2024106277A1 - 強化材、強化材の製造方法、複合材料の製造方法及び複合材料 - Google Patents

強化材、強化材の製造方法、複合材料の製造方法及び複合材料 Download PDF

Info

Publication number
WO2024106277A1
WO2024106277A1 PCT/JP2023/040104 JP2023040104W WO2024106277A1 WO 2024106277 A1 WO2024106277 A1 WO 2024106277A1 JP 2023040104 W JP2023040104 W JP 2023040104W WO 2024106277 A1 WO2024106277 A1 WO 2024106277A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcing material
mmol
resin
acidic functional
sulfuric acid
Prior art date
Application number
PCT/JP2023/040104
Other languages
English (en)
French (fr)
Inventor
祐二 岡田
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Publication of WO2024106277A1 publication Critical patent/WO2024106277A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising

Definitions

  • the present invention relates to a reinforcing material, a method for producing a reinforcing material, a method for producing a composite material, and a composite material.
  • Reinforced composite materials are materials that are molded by compounding a base resin with reinforcing materials such as carbon fiber, glass fiber, metal fiber, high-strength organic fiber, inorganic filler, metal filler, carbon nanotubes, and cellulose nanofiber. They are characterized by their high strength and light weight compared to metals such as iron. Taking advantage of these characteristics, reinforced composite materials are beginning to be used in wind turbine blades as well as some automobiles and aircraft as a material that greatly contributes to improving energy efficiency.
  • carbon fiber the reinforcing material in carbon fiber reinforced plastic
  • carbon fiber reinforced plastic is made by first synthesizing a chemical substance called acrylonitrile from petroleum, which is then spun into acrylic fiber threads. Carbon fiber is then produced by carbonizing it at high temperatures of several thousand degrees. Carbon fiber can be used as is, but it is often processed into various forms such as continuous fiber, nonwoven fabric, and chopped fiber, and is then compounded with various types of resin to be used as carbon fiber reinforced plastic (CFRP), a type of composite reinforcing material.
  • CFRP carbon fiber reinforced plastic
  • Carbon fiber reinforced plastics have excellent material properties, such as being strong, hard, rust-free, and rot-resistant. However, because of these excellent material properties, disposal methods have become an issue. Ordinary plastics can be easily burned, but carbon fiber is difficult to burn because of its highly graphitized structure. For this reason, in Japan, scraps and waste materials of carbon fiber reinforced plastics are crushed as industrial waste and disposed of in landfills. Crushed carbon fiber disposed of in landfills is not biodegradable and becomes a cause of marine plastic pollution.
  • Superheated steam is steam that has a steam temperature equal to or higher than the saturation temperature at a certain pressure by further heating saturated steam. There is a method using this superheated steam to efficiently pyrolyze the resin component, which is the base material, and recover only the carbon fibers (see, for example, Patent Document 2).
  • a method has also been proposed in which the resin components are dissolved in a specific organic solvent. This method is characterized by the fact that the processing temperature is low at 100-150°C, and because it is a wet process, no resin remains, so the strength of the recovered carbon fiber does not decrease (for example, see Non-Patent Document 1).
  • Non-Patent Document 1 In the regeneration method proposed in Non-Patent Document 1, in which the resin components are dissolved in a specific organic solvent, the functional groups that remain unused during the composite formation are not lost, but since functional groups cannot be imparted to the fiber surface, the amount of functional groups is reduced compared to the original carbon fiber. As described above, in the conventional methods for separating and recovering reinforcing materials from composite reinforcing materials, the amount of functional groups on the surface of the recycled carbon fibers is small, and many of the fibers are short in shape, which makes it difficult to recombine them with resin and reuse them.
  • the object of the present invention was therefore made in consideration of the above problems, and is to provide a reinforcing material that has sufficient functional groups on its surface and has excellent surface adhesion so that it can be composited with a resin.
  • Another object of the present invention is to provide a method for producing a reinforcing material that can recover a reinforcing material that has sufficient functional groups on its surface from a reinforced composite material.
  • a reinforcing material which is a continuous fiber and which is characterized in that the total acidic functional group concentration on the surface of the reinforcing material is 0.4 mmol/g or more and 4.0 mmol/g or less.
  • the reinforcing material described in 1 above characterized in that the reinforcing material is a recycled reinforcing material that has been separated and recycled from a reinforced composite material containing a base material and a reinforcing material.
  • the reinforcing material according to 1 or 2 characterized in that the acidic functional group is a carboxyl group, a lactone group, or a phenolic hydroxyl group.
  • the reinforcing material described in 4 characterized in that the concentration of strong acidic functional groups on the surface of the recycled reinforcing material is 0.2 mmol/g or more and 2.0 mmol/g or less.
  • the reinforcing material according to 4 or 5 characterized in that the strongly acidic functional group is a carboxyl group.
  • reinforcing material according to any one of 1 to 6 above, characterized in that the reinforcing material is at least one selected from the group consisting of carbon fiber, glass fiber, and metal fiber.
  • a method for producing a reinforcing material comprising the steps of: A step of immersing the reinforced composite material in a decomposition solution containing an oxidizing active species derived from sulfuric acid and/or nitric acid; Decomposing the base material or the sizing agent by heating the decomposition solution; removing the acid adhering to the reinforcing material and recovering the reinforcing material by washing with water to obtain the reinforcing material;
  • a method for producing a reinforcing material comprising:
  • a method for producing a composite material comprising a step of compounding the reinforcing material described in any one of 1 to 8 above with a resin.
  • a composite material comprising the reinforcing material described in any one of 1 to 8 above and a resin.
  • the present invention can provide a reinforcing material that has sufficient functional groups on its surface and has excellent surface adhesion so that it can be composited with a resin.
  • the present invention can also provide a method for producing a reinforcing material that can recover a reinforcing material that has sufficient functional groups on its surface from a reinforced composite material.
  • the reinforced composite material of this embodiment is a material whose strength is improved by compounding a reinforcing material, which is a different material such as a fiber or a filler, in a base material such as a resin.
  • the compounding method is not particularly limited, and may be a method that utilizes interactions such as hydrogen bonds or intermolecular forces, and may be dispersion, attachment, adhesion, adsorption, support, arrangement, etc.
  • the reinforced composite material may include a matrix, a reinforcement, other additives, and the like.
  • the reinforcing material in this embodiment refers to a material that is compounded or dispersed in the matrix resin that is the base material of the reinforced composite material, and examples of the reinforcing material include carbon fiber, glass fiber, metal fiber, organic high-strength fiber, inorganic filler, carbon nanotube, cellulose nanofiber, etc., and is preferably at least one selected from the group consisting of carbon fiber, glass fiber, and metal fiber.
  • the reinforcing material is more preferably carbon fiber.
  • fibrous and particulate There are two types of reinforcing materials: fibrous and particulate. Although the definition is not clear, generally, those with a large aspect ratio (length/width) (for example, an aspect ratio of 100 or more, preferably 200 or more) are called fibrous, and those with a small aspect ratio (length/width) (for example, an aspect ratio of less than 200, preferably less than 100) are called particulate.
  • the carbon fiber is a fiber made by carbonizing acrylic fiber or pitch (a by-product of petroleum, coal, coal tar, etc.) at high temperatures.
  • the glass fiber is formed by melting and drawing glass into fibers.
  • the metal fibers are obtained by processing metals such as stainless steel, aluminum, iron, nickel, copper, etc., into thread form by plastic processing (rolling, etc.), melt spinning, CVD, etc.
  • the organic high strength fibers are fibers made from resins such as polyamide, polyester, acrylic, polyparaphenylenebenzobisoxazole, and polyimide.
  • the continuous fiber refers to a single fiber that is connected without any cuts and has a length of 30 cm or more. There is no particular upper limit to the length, but it is a length that can be wound around a bobbin and used, and is generally 1000 m to 5000 m.
  • the continuous fibers can be used in unidirectional plies, with all the fibers aligned parallel to one another, and can be knitted or woven, or the unidirectional plies can be stacked in various directions to create quasi-isotropic, orthotropic, or anisotropic plates.
  • the nonwoven fabric is a sheet-like material made by intertwining fibers without weaving them, and refers to fabric made by bonding or intertwining fibers through thermal, mechanical or chemical action.
  • the elements constituting the inorganic filler include, for example, elements in Groups 1 to 16 of the periodic table. Although there is no particular limitation on these elements, elements in Groups 2 to 14 of the periodic table are preferred. Specific examples include Group 2 elements (Mg, Ca, Ba, etc.), Group 3 elements (La, Ce, Eu, Ac, Th, etc.), Group 4 elements (Ti, Zr, Hf, etc.), Group 5 elements (V, Nb, Ta, etc.), Group 6 elements (Cr, Mo, W, etc.), Group 7 elements (Mn, Re, etc.), Group 8 elements (Fe, Ru, Os, etc.), Group 9 elements (Co, Rh, Ir, etc.), Group 10 elements (Ni, Pd, Pt, etc.), Group 11 elements (Cu, Ag, Au, etc.), Group 12 elements (Zn, Cd, etc.), Group 13 elements (Al, Ga, In, etc.), and Group 14 elements (Si, Ge, Sn, Pb, etc.).
  • Inorganic compounds containing these elements include, for example, oxides (including complex oxides), halides (fluorides, chlorides, bromides, iodides), oxoacid salts (nitrates, sulfates, phosphates, borates, perchlorates, carbonates, etc.), compounds formed from the above elements and negative elements such as carbon monoxide, carbon dioxide, and carbon disulfide, as well as salts such as hydrocyanic acid, hydrocyanates, cyanates, thiocyanates, and carbides.
  • One inorganic filler may contain one or more of the above elements.
  • the elements may be present uniformly or unevenly in the particles, and the surface of a particle of a compound of one element may be coated with a compound of another element.
  • These inorganic fillers may be used alone or in combination.
  • preferred inorganic fillers include, but are not limited to, at least one element selected from the group consisting of silica, zirconia, titanium, zinc, iron, copper, chromium, cadmium, carbon, tungsten, antimony, nickel, and platinum.
  • the carbon nanotube is a material in which a six-membered ring network (graphene sheet) made of carbon is formed into a single or multi-layered coaxial tube. It is an allotrope of carbon and is sometimes classified as a type of fullerene.
  • the cellulose nanofibers are wood cellulose fibers that have been thinned to a width of about 15 nanometers.
  • the content of the reinforcing material in the reinforced composite material is preferably 10 to 80 mass%, with the reinforced composite material being 100 mass%.
  • the lower limit is 15 mass% or more and 20 mass% or more, and preferably, the upper limit is 75 mass% or less and 70 mass% or less.
  • the concentration of all acidic functional groups on the surface of the reinforcing material is 0.4 mmol/g or more and 4.0 ⁇ mmol/g or less.
  • the total acidic functional group concentration on the surface of the reinforcing material is the amount (mmol/g) of all acidic functional groups present near the surface of the reinforcing material.
  • the total acidic functional group concentration on the surface of the reinforcing material is measured, for example, by acid-base titration (Boehm method). Specifically, after taking 1 g of sample from the reinforcing material, 30 mL of 0.05 mol/L sodium hydroxide aqueous solution is added, the container is sealed, shaken using a shaker, and then allowed to stand, and 15 mL of the supernatant is titrated with 0.05 mol/L hydrochloric acid, whereby the concentration can be measured. More specifically, the concentration can be measured by the method described in the Examples.
  • the acidic functional group examples include a carboxyl group, a lactone group, and a phenolic hydroxyl group.
  • the acidic functional group is preferably a strongly acidic functional group (a highly reactive functional group that can react with weakly basic substances or functional groups), and among the strongly acidic functional groups, it is more preferable that the acidic functional group contains at least a carboxyl group, because this can further increase the adhesion to the base material.
  • the surface functional group concentration in the reinforcing material of this embodiment is set to 0.4 mmol/g or more from the viewpoint of improving adhesion to the base material, and 4.0 mmol/g or less from the viewpoint of the strength of the composite reinforcing material.
  • the higher the total acidic functional group concentration the more sites there are for chemical bonding with the base material, improving adhesion.
  • the functional group concentration is set to 4.0 mmol/g or less, the chemical bonds between the fibers do not become larger than necessary, and the fibers can be easily opened when manufacturing the composite reinforcing material.
  • the good opening of the fibers allows the reinforcing material to be evenly dispersed in the base material, which tends to increase the strength of the composite material. Therefore, in this embodiment, the total acidic functional group concentration is set to the above numerical range.
  • the strongly acidic functional group concentration defined as the amount (mmol/g) of all strongly acidic functional groups present near the surface of the reinforcing material, is preferably 0.1 mmol/g or more from the viewpoint of improving adhesion to the base material, and is preferably 3.0 mmol/g or less from the viewpoint of the strength of the composite reinforcing material due to the openness of the fibers.
  • the strongly acidic functional group concentration is more preferably 0.15 mmol/g or more, even more preferably 0.2 mmol/g or more, more preferably 2.5 mmol/g or less, and even more preferably 2.0 mmol/g or less.
  • the concentration of the strong acidic functional group is measured, for example, by acid-base titration (Boehm method). Specifically, after taking 1 g of sample from the reinforcing material, 30 mL of 0.05 mol/L aqueous sodium bicarbonate solution is added, the sample is sealed, shaken using a shaker, and then allowed to stand, and 15 mL of the supernatant is titrated with 0.05 mol/L hydrochloric acid. More specifically, the concentration can be measured by the method described in the Examples.
  • the method for setting the total acidic functional group concentration on the surface of the reinforcing material of this embodiment to 0.4 mmol/g or more and 4.0 mmol/g or less is not particularly limited.
  • adjustment of the acidity and oxidizing power of the acid solution used for treatment, adjustment of the treatment time and treatment temperature, etc. can be mentioned.
  • the total acidic functional group concentration can be suitably adjusted by adjusting the time from decomposition of the resin by the acid solution to draining the acid solution and rinsing with water, that is, the time the reinforcing material is in contact with the acid solution.
  • the total acidic functional group concentration can be increased by extending the time the reinforcing material is in contact with the acid solution.
  • the method for setting the strong acid functional group concentration on the surface of the reinforcing material of this embodiment to 0.2 mmol/g or more and 2.0 mmol/g or less is not particularly limited. Examples include adjustment of the acidity and oxidizing power of the acid solution used for treatment, and adjustment of the treatment time and treatment temperature. The stronger the acidity and oxidizing power of the acid solution, the higher the concentration of the strong acid functional groups tends to be, and the use of electrolytic sulfuric acid can suitably increase the concentration of the strong acid functional groups.
  • the strong acid functional group concentration can be suitably adjusted by adjusting the time from decomposition of the resin by the acid solution to draining the acid solution and rinsing with water, that is, the time the reinforcing material is in contact with the acid solution.
  • the strong acid functional group concentration can be increased by extending the time the reinforcing material is in contact with the acid solution.
  • the reinforcing material in this embodiment is a continuous fiber.
  • the openability of the reinforcing material is important for uniformly dispersing the reinforcing material in the base material, and in this case, continuous fibers with a long length are preferable.
  • the ends of the fibers tend to become physically entangled with other fibers, reducing the openability.
  • the ends of continuous fibers do not become entangled with other fibers, so the openability can be maintained even if the functional group concentration is increased.
  • the reinforcing material of this embodiment described above can be appropriately processed to produce an intermediate base material.
  • the intermediate substrate in this embodiment may be a continuous fiber or nonwoven fabric containing reinforcement.
  • a recycled reinforced composite material can be produced by compounding the aforementioned reinforcing material and the intermediate base material in a base material such as resin.
  • the reinforcing material of this embodiment may be a recycled reinforcing material that is separated and recycled from a reinforced composite material containing a base material and a reinforcing material.
  • the recycled reinforcement has a strength of 80% or more of the strength of the reinforcement before recycling, and that the shape retention rate of the reinforcement before and after recycling is 90% or more. Furthermore, in this embodiment, it is preferable that the strength of the recycled reinforcement material of the present embodiment described above is 90% or more of the strength of the reinforcement material before recycling, and that the shape retention rate of the reinforcement material before and after recycling is 80% or more.
  • the strength of the reinforcing material is measured by the method described in the Examples below.
  • the shape retention rate before and after recycling is measured by the method described in the Examples below.
  • the strength of the recycled reinforcement of this embodiment described above is 90% or more of the strength of the reinforcement before recycling, and that the shape retention rate of the reinforcement before and after recycling is 90% or more.
  • the strength of the reinforced composite material recycled using the recycled reinforcing material is preferably 65% or more, more preferably 70% or more, and even more preferably 75% or more, and is preferably 80% or less, more preferably 90% or less, of the strength of the reinforced composite material prepared using the reinforcing material before recycling.
  • the strength of the reinforced composite material is measured by the method described in the Examples below.
  • the base material in this embodiment refers to a resin used as a matrix of the reinforced composite material, and a thermoplastic resin or a thermosetting resin is used.
  • thermoplastic resin refers to a resin that becomes soft when heated to its glass transition temperature or melting point and can be molded into the desired shape.
  • thermoplastic resins are often difficult to machine, such as by cutting or grinding, so injection molding is widely used, in which the resin is heated and softened, then pressed into a mold, cooled, solidified, and made into the final product.
  • examples include polyethylene, polypropylene, polystyrene, ABS resin, polyvinyl chloride resin, methyl methacrylate resin, nylon, fluororesin, polycarbonate, polyester resin, etc.
  • thermosetting resin refers to a resin that polymerizes when heated, forms a polymer network structure, and hardens and cannot be restored to its original shape.
  • a relatively low molecular weight resin with a level of fluidity is shaped into a desired shape, and then reacted and hardened by heating or other means.
  • adhesives and putties that use a mixture of liquid A (base) and liquid B (hardener), but these are epoxy resins, a type of thermosetting resin, and a polymerization reaction occurs when they are mixed.
  • Thermosetting resins are hard and resistant to heat and solvents. Examples include phenolic resin, epoxy resin, unsaturated polyester resin, and polyurethane.
  • the content of the base material in the reinforced composite material is preferably 20 to 90 parts by mass, with the reinforcement being 100 parts by mass.
  • the lower limit is 25 parts by mass or more, 30 parts by mass or more, and preferably, the upper limit is 85 parts by mass or less, 80 parts by mass or less.
  • the other additives are not particularly limited, and examples thereof include flame retardants, heat stabilizers, antioxidants, light absorbers, release agents, lubricants, various stabilizers, antistatic agents, dyes and pigments, and various reactants used in the above-mentioned compounding.
  • the content of the other additives in the reinforced composite material may be 0.01% by mass or less, or 80% by mass or less, based on 100% by mass of the reinforced composite material.
  • the method for producing a reinforcing material of this embodiment includes the steps of immersing a reinforced composite material in a decomposition solution containing an oxidizing active species made from sulfuric acid and/or nitric acid as raw materials, heating the solution to decompose the base material, and removing the acid adhering to the reinforcing material and recovering the reinforcing material by washing with water to obtain the reinforcing material.
  • the immersion and decomposition step may involve the use of a treatment solution and/or heat, preferably an electrolytic sulfuric acid process.
  • the electrolytic sulfuric acid method is a method for treating composite materials, characterized in that a reinforced composite material consisting of a base material and a reinforcing material is immersed in a treatment solution containing oxidizing active species obtained by electrolyzing a sulfuric acid solution, whereby the base material is decomposed into water and carbon dioxide, and the decomposition products are dissolved in the treatment solution, and then the reinforcing material is removed from the treatment solution.
  • the oxidizing active species are generated by electrolyzing a sulfuric acid solution at a predetermined current and a predetermined voltage, and specifically include hydroxyl radicals, peroxosulfuric acid, peroxodisulfuric acid, and the like.
  • the method for processing the reinforced composite material of this embodiment specifically includes the following steps: A) obtaining a treatment solution containing an oxidizing active species by electrolyzing sulfuric acid; B) immersing the reinforced composite material, which is a scrap material discarded after use or from a manufacturing process, in the treatment solution to decompose and remove the base material; C) washing and drying the reinforcing material from which the base material has been removed, thereby regenerating the reinforcing material; including.
  • the sulfuric acid solution is a solution containing sulfuric acid (H 2 SO 4 ) and water (H 2 O).
  • the concentration of sulfuric acid contained in the sulfuric acid solution is preferably 30 to 95% by weight, more preferably 50 to 80% by weight. If the concentration of sulfuric acid is less than 30% by weight, the amount of oxidizing active species required to decompose the base material of the reinforced composite material cannot be obtained, and it takes a long time to decompose the base material.
  • concentrated sulfuric acid, hydrochloric acid, or nitric acid may be added to the treatment solution containing the electrolyzed oxidizing active species.
  • peroxides such as hydrogen peroxide and peroxosulfuric acid may be added to the treatment solution. In this case, the effect of accelerating the decomposition rate of the base material of the reinforced composite material can be obtained.
  • Platinum electrodes and carbon electrodes can be used for the electrolysis of sulfuric acid solutions, but for highly concentrated sulfuric acid solutions, so-called diamond electrodes, which are metal plates with a thin diamond coating on the surface, can be used for durability.
  • diamond electrodes which are metal plates with a thin diamond coating on the surface, can be used for durability.
  • an electrolysis device for sulfuric acid solutions it is preferable to use a diaphragm-type electrolysis cell using diamond electrodes.
  • the electrolysis conditions may be a current density of 0.01 to 10 A/cm 2 and a voltage of 0.1 to 100 V, but these may be appropriately changed depending on the type of electrode, the sulfuric acid concentration of the sulfuric acid solution, the amount of the sulfuric acid solution, etc.
  • the electrolysis must be performed in a closed system, and is preferably performed while circulating a predetermined amount of sulfuric acid solution in a closed sulfuric acid solution circulation system.
  • the circulation method may be a method of passing the solution at a flow rate of 50 mL/min or more in a direction parallel to the electrode surface using a pump or the like, or a method of natural circulation by convection according to the flow of gas generated by electrolysis.
  • the processing time for the electrolysis can be changed as appropriate depending on the amount of sulfuric acid solution, sulfuric acid concentration, flow rate of the sulfuric acid solution, current flow conditions, etc., but processing for 0.5 to 10 hours per 1 L of sulfuric acid solution is preferred in terms of efficiently generating oxidizing active species.
  • sulfuric acid of different concentrations may be used at both electrodes.
  • a sulfuric acid solution containing oxidizing active species obtained by electrolyzing high-concentration sulfuric acid is effective in promoting the decomposition of the base material of the reinforced composite material, so it is preferable to increase the sulfuric acid concentration on the anode side and decrease the sulfuric acid concentration on the cathode side in order to extend the life of the electrodes.
  • Electricity can be procured from a variety of possible devices as a power source for electrolyzing the sulfuric acid solution, but it is preferable to use electricity generated from so-called renewable energy sources such as solar cells.
  • electricity generated from so-called renewable energy sources such as solar cells.
  • the hydrogen (generated from the cathode) and oxygen (generated from the anode) generated by electrolysis can be collected and converted into electricity or heat.
  • the method for supplying the obtained sulfuric acid solution containing the oxidizing active species to a treatment tank for decomposing the base material of the reinforced composite material may be either a method in which the solution is continuously supplied to the treatment tank from an electrolytic device using a pump or the like (continuous method), or a method in which the sulfuric acid solution is circulated in a closed system, and a treatment solution is collected from the system after electrolysis and supplied to the treatment tank (batch method).
  • the collected treatment solution may also be combined with a device that can heat, cool, or pressurize it.
  • the treatment solution used to treat the reinforced composite material can be reused repeatedly, and can be recovered, the concentration adjusted, and reused as a sulfuric acid solution for electrolysis to generate oxidizing active species again.
  • the treatment solution containing the oxidizing active species is preferably heated to enhance the decomposition of the matrix of the reinforced composite material.
  • the heating temperature depends on the boiling point of the treatment solution, but it is preferable to heat the treatment solution to a temperature of 100° C. or higher in order to efficiently decompose the matrix of the reinforced composite material in a short period of time.
  • acids other than sulfuric acid such as hydrochloric acid and nitric acid, may be mixed.
  • a method of lining up the edges of a container, piping, cooling pipes, etc., and/or a method of quickly draining and removing the acid solution using a roller or bar are preferably used.
  • a system for recovering reinforcing materials from composite materials and using the carbon dioxide generated during the recovery as an industrial raw material The system of this embodiment for recovering reinforcing materials from composite materials and utilizing the carbon dioxide generated during the recovery as an industrial raw material separates neutral gases such as oxygen and nitrogen from the decomposition gas generated during the recovery using a separation membrane or an acidic gas absorption system, and utilizes the carbon dioxide as an industrial raw material.
  • reinforced composite materials were produced under the following conditions, and the reinforcing material was then separated and recovered.
  • a CFRP pressure tank was used as the composite material.
  • the CFRP pressure tank was created by applying epoxy resin to a reinforcing material and winding it around a core material using a filament winder. The pressure tank was then cured at 150°C for 30 minutes to create the pressure tank.
  • ⁇ Epoxy resin Epicoat 828 (manufactured by Japan Epoxy Resins Co., Ltd.) 20 parts by weight Epicoat 834 (manufactured by Japan Epoxy Resins Co., Ltd.) 20 parts by weight Epicoat 1001 (manufactured by Japan Epoxy Resins Co., Ltd.) 25 parts by weight Epicoat 154 (manufactured by Japan Epoxy Resins Co., Ltd.) 35 parts by weight Hardener: DICY7 (manufactured by Japan Epoxy Resins Co., Ltd.) 4 parts by weight Hardener: Omicure 24 (manufactured by PTI Japan Co., Ltd.) 5 parts by weight Polyvinyl formal: Vinylec K (manufactured by Chisso Corporation) 5 parts by weight Reinforcement material Carbon fiber: Torayca T700SC-12K-50C (manufactured by Toray Industries, Inc.)
  • a blank test was performed in the same manner, and the amount of strongly acidic functional groups was calculated from the difference in the titration amount from the blank test.
  • (2) Measurement of Strong Acidic Functional Group Concentration 30 mL of 0.05 mol/L sodium bicarbonate aqueous solution was added to 1 g of sample, and the container was sealed. After shaking for 4 hours using a shaker, the container was left to stand for 8 hours or more. 15 mL of the supernatant was titrated with 0.05 mol/L hydrochloric acid.
  • a blank test was performed in the same manner, and the amount of strongly acidic functional groups was calculated from the difference in the titration amount from the blank test.
  • the interfacial shear strength was measured by a microdroplet test.
  • the fibers were fixed on a dedicated mount, and the fiber diameter was measured using an optical microscope (Keyence Corporation, Digital Microscope V-HX6000).
  • the surface treatment method of the reinforcing material was the electrolytic sulfuric acid method 1. Specifically, a diamond electrode with an electrode area of 700 cm2 was used, and a 50% aqueous sulfuric acid solution was electrolyzed in a diaphragm-type electrolysis cell while the electrode was water-cooled to produce a treatment solution containing oxidizing active species. The amount of treatment solution (aqueous sulfuric acid solution) electrolyzed in one run was 10 L. The current was 3-10 A/ cm2 , the voltage was 170-200 V, and the treatment time was 120 minutes. The electric field was applied in a closed system while circulating with a pump.
  • the total acidic functional group concentration of the obtained reinforcing material was 1.8 mmol/g, and the strong acidic functional group concentration was 0.8 mmol/g.
  • the carbon fibers were obtained in the form of continuous fibers.
  • the interfacial shear strength with the epoxy resin was 39 MPa, and cohesive failure of the resin beads occurred, leaving the resin in a fibrous form.
  • the opening of the continuous fibers was good. It was not possible to open short fibers obtained by cutting the continuous fibers into 1 cm pieces.
  • Example 2 The method for separating and recovering the reinforcing material from the reinforced composite material was the electrolytic sulfuric acid method 2.
  • the electrolytic sulfuric acid solution was prepared in the same manner as in Example 1.
  • One pressure tank (120 kg) was immersed in 60 L of the prepared electrolytic sulfuric acid solution, and then the reinforced composite material was immersed at 120° C. for 10 hours to decompose the base material of the reinforced composite material.
  • the acid solution was quickly drained and removed by passing it through a roller, and the reinforcement was washed with water, dried, and wound around a core as a continuous fiber.
  • the time from the start of the immersion treatment to the completion of draining and rinsing was 12 hours.
  • the total acidic functional group concentration of the resulting recycled reinforcing material was 1.4 mmol/g, and the strong acidic functional group concentration was 0.6 mmol/g.
  • the carbon fibers were recovered in the form of continuous fibers.
  • the interfacial shear strength with the epoxy resin was 36 MPa, and cohesive failure of the resin beads occurred, leaving the resin in a fibrous form.
  • the opening of the continuous fibers was good. It was not possible to open short fibers obtained by cutting the continuous fibers into 1 cm pieces.
  • Example 3 The method for separating and recovering the reinforcing material from the reinforced composite material was the electrolytic sulfuric acid method 3.
  • the electrolytic sulfuric acid solution was prepared in the same manner as in Example 1. 10 L of commercially available 30% hydrogen peroxide solution (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was added to 50 L of the prepared electrolytic sulfuric acid solution, and one pressure tank (120 kg) was immersed in the treatment solution, and then the reinforced composite material was immersed and treated at 120° C. for 5 hours to decompose the base material of the reinforced composite material.
  • the acid solution was quickly drained and removed by passing through a roller, and the reinforcement was washed with water, dried, and wound around a core as a continuous fiber.
  • the time from the start of the immersion treatment to the completion of draining and rinsing was 12 hours.
  • the total acidic functional group concentration of the resulting regenerated reinforcing material was 2.2 mmol/g, and the strong acidic functional group concentration was 1.2 mmol/g.
  • the carbon fibers were recovered in the form of continuous fibers.
  • the interfacial shear strength with the epoxy resin was 46 MPa, and cohesive failure of the resin beads occurred, leaving the resin in a fibrous form.
  • the opening of the continuous fibers was good. It was not possible to open short fibers obtained by cutting the continuous fibers into 1 cm pieces.
  • Example 4 The method for separating and recovering the reinforcing material from the reinforced composite material was the electrolytic sulfuric acid method 4.
  • the electrolytic sulfuric acid solution was prepared in the same manner as in Example 1. 10 L of commercially available 30% hydrogen peroxide solution (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was added to 50 L of the prepared electrolytic sulfuric acid solution, and one pressure tank (120 kg) was immersed in the treatment solution, and then the reinforced composite material was immersed and treated at 120° C. for 5 hours to decompose the base material of the reinforced composite material.
  • the acid solution was quickly drained and removed by passing through a roller, and the reinforcement was washed with water, dried, and wound around a core as a continuous fiber.
  • the time from the start of the immersion treatment to the completion of draining and rinsing was 18 hours.
  • the total acidic functional group concentration of the resulting regenerated reinforcing material was 4.0 mmol/g, and the strong acidic functional group concentration was 2.0 mmol/g.
  • the carbon fibers were recovered in the form of continuous fibers.
  • the interfacial shear strength with the epoxy resin was 49 MPa, and cohesive failure of the resin beads occurred, leaving the resin in a fibrous form.
  • the opening of the continuous fibers was good.
  • the continuous fibers were cut into short fibers of 1 cm length, but the fibers could not be opened.
  • Example 5 The method for separating and recovering the reinforcing material from the reinforced composite material was the concentrated sulfuric acid method 1.
  • One pressure tank (120 kg) was immersed in 60 L of commercially available 95% sulfuric acid (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.), and the reinforced composite material was then immersed in the treatment at 120° C. for 24 hours to decompose the base material of the reinforced composite material.
  • the acid solution was quickly drained and removed by passing through a roller, the reinforcement was washed with water, dried, and wound around a core as a continuous fiber.
  • the time from the start of the immersion treatment to the completion of draining and rinsing was 12 hours.
  • the total acidic functional group concentration of the resulting regenerated reinforcing material was 0.5 mmol/g, and the strong acidic functional group concentration was 0.3 mmol/g.
  • the carbon fibers could be recovered in the form of continuous fibers.
  • the interfacial shear strength with the epoxy resin was 26 MPa, and cohesive failure of the resin beads occurred, leaving the resin in a fibrous form.
  • the opening of the continuous fibers was good. It was not possible to open short fibers obtained by cutting the continuous fibers into 1 cm pieces.
  • Example 6 Concentrated sulfuric acid method 2 was used to separate and recover the reinforcing material from the reinforced composite material. 10 L of commercially available 30% hydrogen peroxide solution (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was added to 50 L of commercially available 95% sulfuric acid (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.), and one pressure tank (120 kg) was immersed in the treatment solution, and then the reinforced composite material was immersed and treated at 120°C for 12 hours to decompose the base material of the reinforced composite material.
  • the acid solution was quickly drained and removed by passing it through a roller, and the reinforcement material was washed with water, dried, and wound around a core as a continuous fiber.
  • the time from the start of the immersion treatment to the completion of draining and rinsing was 12 hours.
  • the total acidic functional group concentration of the resulting regenerated reinforcing material was 0.8 mmol/g, and the strong acidic functional group concentration was 0.4 mmol/g.
  • the carbon fibers were recovered in the form of continuous fibers.
  • the interfacial shear strength with the epoxy resin was 29 MPa, and cohesive failure of the resin beads occurred, leaving the resin in a fibrous form.
  • the opening of the continuous fibers was good. It was not possible to open short fibers obtained by cutting the continuous fibers into 1 cm pieces.
  • Example 7 The method for separating and recovering the reinforcing material from the reinforced composite material was a concentrated nitric acid method.
  • One pressure tank 120 kg was immersed in 60 L of commercially available 90% nitric acid (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.), and the reinforced composite material was then immersed in the treatment at 120° C. for 48 hours to decompose the base material of the reinforced composite material.
  • the acid solution was quickly drained and removed by passing through a roller, the reinforcement was washed with water, dried, and wound around a core as a continuous fiber.
  • the time from the start of the immersion treatment to the completion of draining and rinsing was 12 hours.
  • the total acidic functional group concentration of the resulting regenerated reinforcing material was 0.4 mmol/g, and the strong acidic functional group concentration was 0.2 mmol/g.
  • the carbon fibers were recovered in the form of continuous fibers.
  • the interfacial shear strength with the epoxy resin was 22 MPa, and cohesive failure of the resin beads occurred, leaving the resin in a fibrous form.
  • the opening of the continuous fibers was good. It was not possible to open short fibers obtained by cutting the continuous fibers into 1 cm pieces.
  • the carbon fibers became tangled and could not be recovered in the form of continuous fibers.
  • the interfacial shear strength with the epoxy resin was 15 MPa, and the resin beads and fibers were peeled off, with no resin remaining in the fibers.
  • the short fibers having a length of 1 cm were easily opened.
  • the reinforcing material was separated and recovered from the reinforced composite material using an electrolytic sulfuric acid method 5.
  • the electrolytic sulfuric acid solution was prepared in the same manner as in Example 1.
  • One pressure tank (120 kg) was immersed in the prepared electrolytic sulfuric acid solution (60 L), and then the reinforced composite material was immersed at 120° C. for 10 hours to decompose the base material of the reinforced composite material.
  • the acid solution was not quickly drained off and the material was left for one day. Thereafter, the reinforcement was washed with water, dried, and wound around a core as a continuous fiber.
  • the time from the start of the immersion treatment to the completion of draining and rinsing was 30 hours.
  • the total acidic functional group concentration of the resulting regenerated reinforcing material was 5.0 mmol/g, and the strong acidic functional group concentration was 2.5 mmol/g.
  • the carbon fibers were recovered in the form of continuous fibers.
  • the interfacial shear strength with the epoxy resin was 46 MPa, and cohesive failure of the resin beads occurred, leaving the resin in a fibrous form. It was not possible to open the continuous fibers. It was not possible to open short fibers obtained by cutting the continuous fibers into 1 cm pieces.
  • the reinforcing material was separated and recovered from the reinforced composite material using an electrolytic sulfuric acid method 6.
  • the electrolytic sulfuric acid solution was prepared in the same manner as in Example 1.
  • One pressure tank (120 kg) was immersed in the prepared electrolytic sulfuric acid solution (60 L), and then the reinforced composite material was immersed at 120° C. for 10 hours to decompose the base material of the reinforced composite material.
  • the acid solution was not quickly drained off and the material was left for one day or more. Thereafter, the reinforcement was washed with water, dried, and wound around a core as a continuous fiber.
  • the time from the start of the immersion treatment to the completion of draining and rinsing was 3 hours.
  • the total acidic functional group concentration of the resulting regenerated reinforcing material was 0.2 mmol/g, and the strong acidic functional group concentration was 0.05 mmol/g.
  • the carbon fibers were recovered in the form of continuous fibers.
  • the interfacial shear strength with the epoxy resin was 15 MPa, and the resin beads and fibers were peeled off, with no resin remaining in the fibers.
  • the opening of the continuous fibers was good. The short fibers having a length of 1 cm were easily opened.
  • Anodization was performed for 3 hours at an applied voltage of 4.5 V and a current density of 0.21 A/m2. The distance between the electrodes was 40 mm.
  • the electrolyte after anodization was put into a tank equipped with a stirring blade and stirred at high speed to crush the embrittled epoxy resin into small pieces.
  • the resulting slurry was filtered through a stainless steel coarse mesh basket and repeatedly washed with water to remove the epoxy resin residue.
  • the recovered carbon fibers remaining on the mesh were neutralized and washed, and then dried at 150°C for 2 hours.
  • the total acidic functional group concentration of the resulting regenerated reinforcing material was 0.4 mmol/g, and the strong acidic functional group concentration was 0.1 mmol/g.
  • the carbon fibers could not be recovered in the form of continuous fibers.
  • the interfacial shear strength with the epoxy resin was 18 MPa, and the resin beads and fibers were peeled off, with no resin remaining in the fibers.
  • the short fibers having a length of 1 cm were easily opened.
  • the surface of the composite material has sufficient functional groups, resulting in high adhesive strength with the resin, and good fiber opening, allowing the reinforcing material to be uniformly dispersed in the base material. This makes it possible to provide a reinforcing material suitable for the production of high-strength reinforced composite materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Composite Materials (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

表面に十分な官能基を有し、樹脂と複合化できるよう、表面の接着性に優れた強化材を提供する。 上記課題を解決するべく、本発明は、連続繊維である強化材であって、前記強化材の表面にある全酸性官能基濃度が0.4mmol/g以上、4.0mmol/g以下であることを特徴とする。

Description

強化材、強化材の製造方法、複合材料の製造方法及び複合材料
 本発明は、強化材、強化材の製造方法、複合材料の製造方法及び複合材料に関する。
 強化複合材料とは、母材である樹脂に、炭素繊維、ガラス繊維、炭素繊維、ガラス繊維、金属繊維、有機系高強度繊維、無機系充填材、金属系充填材、カーボンナノチューブ、セルロースナノファイバー等の強化材を複合化して成型される材料である。その特徴としては、強度が高く、鉄等の金属に比べて軽いことである。その特徴を活かし、強化複合材料は、エネルギー効率の向上に大きく貢献する素材として、一部の自動車や航空機等に加え、風車のブレード等にも利用され始めている。
 ここで、炭素繊維強化プラスチックの強化材である炭素繊維は、まず、石油からアクリロニトリルという化学物質を合成し、それを糸にしたアクリル繊維を製造する。そして、数千度という高温で炭化処理することによって炭素繊維が製造される。炭素繊維はそのまま使われる事もあるが、多くは連続繊維や不織布、チョップド等様々な形態に加工され、更に様々な種類の樹脂と複合することにより、複合強化材料の1つである炭素繊維強化プラスチック(CFRP)として使用されている。
 炭素繊維強化プラスチックは、強い、硬い、錆びない、腐らない等優れた材料特性を有している。しかしながら、優れた材料特性を有する故に廃棄方法が課題にもなっている。一般的なプラスチックは、容易に燃焼させることができるが、炭素繊維は高度にグラファイト化された構造であるため燃えにくい。そのため、国内では炭素繊維強化プラスチックの端材や廃材は産業廃棄物として粉砕後、埋め立て処分されている。粉砕されて、埋め立て処分された炭素繊維は、生分解されずに海洋プラスチック汚染の原因物質となってしまう。
 このような事情から、近年、使用後の複合強化材料から強化材を分離回収し、再利用する方法が提案されている。
 例えば、低酸素状態で500~700℃の高温で炭素繊維強化プラスチックを処理することで、母材である樹脂成分を熱分解させて炭素繊維のみを回収する方法である。また、二段階熱分解法という技術も開発された。その技術は、一段階目である程度まで樹脂成分を熱分解し、そこから可燃性ガスを回収する。そのガスを加熱用の燃焼ガスとして活用することで、燃料の消費を低減する。その後、二段階目で再び熱分解し、繊維表面に残った樹脂成分を熱分解して除去する方法がある(例えば、特許文献1参照。)。
 また、過熱水蒸気を利用する方法も提案されている。過熱水蒸気とは飽和蒸気を更に過熱することにより、ある圧力において飽和温度以上の蒸気温度を持つ水蒸気のことである。この過熱水蒸気を用いて、母材である樹脂成分を効率よく熱分解させて炭素繊維のみを回収する方法がある(例えば、特許文献2参照。)。
 また、特定の有機溶剤に樹脂成分を溶解させる手法も提案されている。処理温度が100~150℃という低温であることと、ウェットプロセスなので樹脂の残存がないために、回収した炭素繊維の強度が低下しないことが特徴である(例えば、非特許文献1を参照。)。
特許第5347056号公報 特許第5876968号号公報
日立化成テクニカルレポートNo.42(2004.1)
 しかしながら、上述した従来提案されている技術は、いずれも、再生された炭素繊維(再生強化材)の繊維表面に存在する官能基、とりわけ酸性官能基が少ないため、再び樹脂と複合化させ、強化複合材料を製造することが困難になる、という問題があった。炭素繊維は、炭素が規則正しく並んだ繊維であるため強度が高いが、反対に繊維の表面まで炭素が規則正しく並んでいるため、複合化する樹脂と化学結合する部位が存在しない。そのため、通常は樹脂と複合化しやすいように、酸処理等を行い繊維の表面に官能基を生成させているが、再生強化材の場合には、表面の官能基の多くが消失している。
 そのため、特許文献1に提案されている熱分解法による再生方法では、繊維表面の官能基も熱分解により消失してしまうため、再生された繊維の表面に官能基が存在しなくなってしまう。また、処理前に粉砕する必要があるため、連続繊維としての再生は出来ない。得られる再生炭素繊維は短く切断されたものであるため、ペレットや不織布など用途が限られてしまう。
 また、特許文献2に提案されている過熱水蒸気を利用する再生方法では、繊維表面の官能基が少しだけ付与されるが、中性の水による弱い酸化力しかないため、十分な量の官能基が存在しない。また、特許文献1と同様に、処理前に粉砕する必要があるため、連続繊維としての再生は出来ない。得られる再生炭素繊維は短く切断されたものであるため、ペレットや不織布など用途が限られてしまう。
 非特許文献1に提案されている特定の有機溶剤に樹脂成分を溶解させる再生方法では、複合化した際に活用されず残った官能基を消失することはないが、繊維表面に官能基を付与することが出来ないため、元となる炭素繊維よりも官能基量が減少してしまう。
 上述したように、従来提案されている複合強化材料からの強化材の分離回収方法は、再生した炭素繊維表面の官能基量が少なく、また形状も短いものが多いため、再び樹脂と複合化して再利用する際に困難が生じていた。
 そのため、本発明の目的は、上記問題点に鑑みてなされたものであり、表面に十分な官能基を有し、樹脂と複合化できるように、表面の接着性に優れた強化材を提供することである。また、本発明の目的は、強化複合材料から表面に十分な官能基を有する強化材を回収することができる強化材の製造方法を提供することである。
 本発明者は、上記課題を解決するために鋭意検討した結果、強化複合材料から強化材を回収する方法により、上記目的を達成できることを見出し、本発明を完成するに至った。
 本発明は、以上の知見に基づきなされたものであり、その要旨は以下の通りである。
1.連続繊維である強化材であって、前記強化材の表面にある全酸性官能基濃度が0.4mmol/g以上、4.0mmol/g以下であることを特徴とする、強化材。
2.前記強化材が、母材と強化材とを含む強化複合材料から、分離して再生回収された再生強化材であることを特徴とする、前記1に記載の強化材。
3.前記酸性官能基が、カルボキシル基、ラクトン基、又は、フェノール性水酸基であることを特徴とする、前記1又は2に記載の強化材。
4.前記再生強化材の表面にある強酸性官能基濃度が、0.1mmol/g以上、3.0mmol/g以下であることを特徴とする、前記1~3のいずれかに記載の強化材。
5.前記再生強化材の表面にある強酸性官能基濃度が、0.2mmol/g以上、2.0mmol/g以下であることを特徴とする、前記4に記載の強化材。
6.前記強酸性官能基が、カルボキシル基であることを特徴とする、前記4又は5に記載の強化材。
7.前記強化材が、炭素繊維、ガラス繊維、及び、金属繊維からなる群から選ばれる少なくとも1種であることを特徴とする、前記1~6いずれかに記載の強化材。
8.前記強化材が、炭素繊維であることを特徴とする、前記7に記載の強化材。
9.前記1~8のいずれかに記載の強化材の製造方法であって、
 強化複合材料を、硫酸及び/又は硝酸を原料とする酸化性活性種を含んだ分解溶液に浸漬する工程と、
 当該分解溶液を加熱することによって、母材又はサイジング剤を分解する工程と、
 強化材に付着している酸を除去し、水洗して前記強化材を回収することにより、強化材を得る工程と、
を含むことを特徴とする、強化材の製造方法。
10.前記分解溶液が、硫酸及び/又は硝酸溶液に過酸化水素を混合した溶液であることを特徴とする、前記9に記載の強化材の製造方法。
11.前記分解溶液が、硫酸及び/又は硝酸溶液を電気分解した溶液であることを特徴とする、前記9又は10に記載の強化材の製造方法。
12.前記強化材を得る工程が、前記連続繊維である強化材を芯材に巻き取る工程であることを特徴とする、前記9~11のいずれかに記載の強化材の製造方法。
13.前記1~8のいずれかに記載の強化材と、樹脂とを複合化する工程を含むことを特徴とする、複合材料の製造方法。
14.前記1~8のいずれかに記載の強化材と、樹脂とを含むことを特徴とする、複合材料。
 本発明によれば、表面に十分な官能基を有し、樹脂と複合化できるよう、表面の接着性に優れた強化材を提供できる。また、本発明によれば、強化複合材料から表面に十分な官能基を有する強化材を回収することができる強化材の製造方法を提供できる。
 以下、本発明を実施するための形態(以下、「本実施形態」と言う。)について詳細に説明する。なお、本発明は以下の記載に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。
 初めに、本実施形態の強化材を含む強化複合材料について記載する。
〔強化複合材料〕
 本実施形態の強化複合材料とは、樹脂等の母材中に繊維やフィラー等の異種材料である強化材を複合化することによって、強度が向上された材料である。複合化の手法は、特に限定されることなく、水素結合や分子間力等の相互作用を利用する手法であってよく、分散、付着、接着、吸着、担持、配置等としてよい。
 強化複合材料は、母材、強化材、その他の添加剤等を含んでよい。
(強化材)
 本実施形態の強化材とは、強化複合材料の母材となるマトリックス樹脂に複合化又は分散される材料のことで、炭素繊維、ガラス繊維、金属繊維、有機系高強度繊維、無機系充填材、カーボンナノチューブ、セルロースナノファイバー等が挙げられ、炭素繊維、ガラス繊維、及び、金属繊維からなる群から選ばれる少なくとも1種であることが好ましい。強化材は、炭素繊維であることがより好ましい。
 強化材には、繊維状のものと粒子状のものがあり、定義は明確でないが、一般的に、アスペクト比(長さ/幅)が大きい(例えば、アスペクト比が、100以上、好適には200以上)のものが繊維状と呼ばれており、アスペクト比(長さ/幅)が小さい(例えば、アスペクト比が、200未満、好適には100未満)のものが粒子状とされている。
 前記炭素繊維とは、アクリル繊維又はピッチ(石油、石炭、コールタール等の副生成物)を原料に高温で炭化して作った繊維のことである。
 前記ガラス繊維とは、ガラスを融解、牽引して繊維状にしたものである。
 前記金属繊維とは、塑性加工(圧延等)のほか,溶融紡糸法,CVD法等により、ステンレス,アルミニウム,鉄,ニッケル,銅等の金属を糸状に加工したものである。
 前記有機系高強度繊維とは、ポリアミド、ポリエステル、アクリル、ポリパラフェニレンベンゾビスオキサゾール、ポリイミド等の樹脂を繊維化したものである。
 これらの繊維は、連続繊維や不織布等の中間基材に加工され、母材と複合化される。
 ここで、前記連続繊維とは、切断部がない一本の繊維として繋がっていて、長さ30cm以上であるものを指す。長さの上限は特に限定されないが、例えばボビンに巻きつけて使用できる長さであり、1000m~5000mのものが一般的である。
 この連続繊維は、すべての繊維を互いに平行に並べた一方向層の形態で、編んだり、織ったりして用いることができる。また一方向層を様々な方向に積層することで擬似等方性や直交性、異方性のある板をつくることができる。
 前記不織布とは、繊維を織らずに絡み合わせたシート状のものである。不織布は繊維を熱・機械的又は化学的な作用によって接着又は絡み合わせる事で布にしたものを指す。
 前記無機系充填材を構成する元素としては、例えば、周期律表1~16族の元素が挙げられる。この元素は、特に限定されるものではないが、周期律表2~14族に属する元素が好ましい。その具体例としては、2族元素(Mg、Ca、Ba等)、3族元素(La、Ce、Eu、Ac、Th等)、4族元素(Ti、Zr、Hf等)、5族元素(V、Nb、Ta等)、6族元素(Cr、Mo、W等)、7族元素(Mn、Re等)、8族元素(Fe、Ru、Os等)、9族元素(Co、Rh、Ir等)、10族元素(Ni、Pd、Pt等)、11族元素(Cu、Ag、Au等)、12族元素(Zn、Cd等)、13族元素(Al、Ga、In等)、及び14族元素(Si、Ge、Sn、Pb等)が挙げられる。
 これら元素を含む無機化合物としては、例えば、酸化物(複合酸化物を含む)、ハロゲン化物(フッ化物、塩化物、臭化物、ヨウ化物)、オキソ酸塩(硝酸塩、硫酸塩、リン酸塩、ホウ酸塩、過塩素酸塩、炭酸塩等)、一酸化炭素、二酸化炭素及び二硫化炭素等の陰性の元素と上記元素とから形成される化合物、並びに、青酸、青酸塩、シアン酸塩、チオシアン酸塩及び炭化物等の塩が挙げられる。
 1つの無機系充填材は、上記元素のうち1種又は2種以上を含んでいてもよい。複数種の元素は、粒子中に均一に存在していても、偏在していてもよく、ある元素の化合物の粒子の表面が、別の元素の化合物によって被覆されていてもよい。これら無機系充填材は、単独で使用しても、複数を組み合わせて使用してもよい。
 これらの中でも好ましい無機系充填材は、特に限定されるものではないが、例えば、シリカ、ジルコニア、チタン、亜鉛、鉄、銅、クロム、カドミウム、炭素、タングステン、アンチモン、ニッケル及び白金からなる群より選ばれる少なくとも1種の元素を含む。
 前記カーボンナノチューブとは、炭素によって作られる六員環ネットワーク(グラフェンシート)が単層あるいは多層の同軸管状になった物質である。炭素の同素体で、フラーレンの一種に分類されることもある。
 前記セルロースナノファイバーとは、幅15ナノメートル程度まで細くした木のセルロース繊維のことである。
 本実施形態では、前記強化複合材料における前記強化材の含有量としては、強化複合材料を100質量%として、10~80質量%であることが好ましい。好適には、下限は、15質量%以上20質量%以上であり、また、好適には、上限は、75質量%以下70質量%以下である。
 そして、本実施形態の強化材は、前記強化材の表面にある全酸性官能基濃度が0.4mmol/g以上、4.0×mmol/g以下である。
 前記強化部材の表面にある全酸性官能基濃度を0.4mmol/g以上とすることで、母材表面との反応性を高め、密着性を向上できる。また、前記強化部材の表面にある全酸性官能基濃度を4.0mmol/g以下とすることで、繊維の開繊性を保つことができ、強化複合材料を製造する際に強化材を母材に均等に分散させることができる。
 なお、前記強化材の表面にある全酸性官能基濃度とは、強化材の表面近傍に存在する全ての酸性官能基の量(mmol/g)である。前記強化材の表面にある全酸性官能基濃度は、例えば、酸塩基滴定法(ベーム法)によって測定される。具体的には、強化材から、試料1gを採取した後、0.05mol/L水酸化ナトリウム水溶液30mLを加え、密栓し、振とう機を使用して振とうし、その後静置し、上澄み液15mLを0.05mol/L塩酸で滴定することによって測定することができる。さらに具体的には、実施例に記載の方法で測定することができる。
 また、前記酸性官能基としては、例えば、カルボキシル基、ラクトン基、フェノール性水酸基等が挙げられる。
 これらの中でも、前記酸性官能基は、強酸性官能基(弱い塩基性物質や官能基とも反応しうる反応性の高い官能基)であることが好ましく、強酸性官能基の中でもカルボキシル基を少なくとも含むことがより好ましい。前記母材との密着性をより高めることができるためである。
 本実施形態の強化材における表面官能基濃度は、上述したように、全酸性官能基濃度が母材との密着性を向上する観点から、0.4mmol/g以上であり、複合強化材料の強度の観点から4.0mmol/g以下とする。前記全酸性官能基濃度は、多い方が前記母材との化学結合をする部位が増えて密着性が向上する。一方、官能基濃度が4.0mmol/g以下であることで、繊維同士の化学結合が必要以上に大きくならず、複合強化材料を製造する際の繊維の開繊性が良好となる。繊維の開繊性が良好であることで、強化材を母材に均等に分散させることができ、複合材料の強度を高くすることができる傾向にある。そのため、本実施形態では、前記全酸性官能基濃度を上記数値範囲としている。
 同様に、強化材の表面近傍に存在する全ての強酸性官能基の量(mmol/g)と定義される強酸性官能基濃度は、母材との密着性を向上する観点から、0.1mmol/g以上であることが好ましく、繊維の開繊性による複合強化材料の強度の観点から、3.0mmol/g以下であることが好ましい。同様の観点から、前記強酸性官能基濃度は、0.15mmol/g以上であることがより好ましく、0.2mmol/g以上であることがさらに好ましく、2.5mmol/g以下であることがより好ましく、2.0mmol/g以下であることがさらに好ましい。
 前記強酸性官能基濃度は、例えば、酸塩基滴定法(ベーム法)によって測定される。具体的には、強化材から、試料1gを採取した後、0.05mol/L炭酸水素ナトリウム水溶液30mLを加え、密栓し、振とう機を使用して振とうし、その後静置し、上澄み液15mLを0.05mol/L塩酸で滴定することによって測定することができる。さらに具体的には、実施例に記載の方法で測定することができる。
 なお、本実施形態の強化材の表面にある全酸性官能基濃度を0.4mmol/g以上、4.0mmol/g以下にする方法としては、特に限定はされない。例えば、処理する酸溶液の酸性度、酸化力の調整、処理時間及び処理温度の調整等が挙げられる。酸溶液としては、酸性度及び酸化力が高いほど全酸性官能基濃度を高くできる傾向があり、電解硫酸を用いることで、好適に全酸性官能基濃度を高くすることができる。また、酸溶液による樹脂の分解から、酸溶液の液切りと水洗までの時間、すなわち強化材が酸溶液と接触している時間を調整することで、全酸性官能基濃度を好適に調整可能である。強化材が酸溶液と接触している時間を長くすることで、全酸性官能基濃度を高くすることができる。
 同様に、本実施形態の強化材の表面にある強酸性官能基濃度を0.2mmol/g以上、2.0mmol/g以下にする方法としては、特に限定はされない。例えば、処理する酸溶液の酸性度、酸化力の調整、処理時間及び処理温度の調整等が挙げられる。酸溶液としては、酸性度及び酸化力が高いほど強酸性官能基濃度を高くできる傾向があり、電解硫酸を用いることで、好適に強酸性官能基濃度を高くすることができる。また、酸溶液による樹脂の分解から、酸溶液の液切りと水洗までの時間、すなわち強化材が酸溶液と接触している時間を調整することで、強酸性官能基濃度を好適に調整可能である。強化材が酸溶液と接触している時間を長くすることで、強酸性官能基濃度を高くすることができる。
 また、本実施形態の強化材は、連続繊維である。上記した通り、強化材を母材に均一に分散させるためには、強化材の開繊性が重要であるが、このとき強化材の長さが長い連続繊維の方が好ましい。短い繊維の場合、官能基による化学結合の他にも繊維の端部が他の繊維に物理的に絡み合ってしまいやすいため、開繊性が低下する。一方で、連続繊維は繊維の端部が他の繊維に絡まることがないため、官能基濃度を大きくしても開繊性を保つことができる。
 本実施形態では、前述の本実施形態の強化材を適宜加工して、中間基材を作製することもできる。
 本実施形態の中間基材は、強化材を含む連続繊維又は不織布としてよい。
 本実施形態では、樹脂等の母材中に前述強化材や上述の中間基材を複合化することによって、再生した強化複合材料を作製することもできる。
(再生強化材)
 また、本実施形態の強化材については、母材と強化材とを含む強化複合材料から、分離して再生回収された再生強化材を用いることもできる。
 前記再生強化材については、強度が、再生する前の強化材の強度の80%以上であり、かつ強化材の再生前後での形状保持率が90%以上であることが好ましい。
 また、本実施形態において、前述の本実施形態の再生強化材は、その強度が再生する前の強化材の強度の90%以上であり、且つ強化材の再生前後での形状保持率が80%以上であることが好ましい。
 なお、強化材の強度は、後述の実施例に記載の方法で測定されるものをいう。また、再生前後での形状保持率は、後述の実施例に記載の方法で測定されるものをいう。
 さらに、本実施形態において、前述の本実施形態の再生強化材は、その強度が再生する前の強化材の強度の90%以上であり、且つ強化材の再生前後での形状保持率が90%以上であることがより好ましい。
 また、本実施形態において、前述の本実施形態の強化材の再生方法を用いて強化複合材料を再生したとき、再生した強化材した強化材を用いて再生した強化複合材料の強度が、再生する前の強化材を用いて作成した強化複合材料の強度の65%以上であることが好ましく、より好ましくは70%以上であり、さらに好ましくは75%以上であり、また、80%以下であることが好ましく、より好ましくは90%以下である。
 なお、強化複合材料の強度は、後述の実施例に記載の方法で測定されるものをいう。
(母材)
 本実施形態の母材とは、強化複合材料のマトリックスとして用いられる樹脂のことで、熱可塑性樹脂又は熱硬化性樹脂が用いられる。
 前記熱可塑性樹脂とは、ガラス転移温度又は融点まで加熱することによって軟らかくなり、目的の形に成形できる樹脂を指す。一般的に、熱可塑性樹脂は切削・研削等の機械加工がしにくい事が多く、加温し軟化したところで金型に押し込み、冷し固化させて最終製品とする射出成形加工等が広く用いられている。例として、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂、塩化ビニル樹脂、メタクリル酸メチル樹脂、ナイロン、フッ素樹脂、ポリカーボネート、ポリエステル樹脂等が挙げられる。
 前記熱硬化性樹脂とは、加熱すると重合を起こして高分子の網目構造を形成し、硬化して元に戻らなくなる樹脂を指す。使用に際しては、流動性を有するレベルの比較的低分子の樹脂を所定の形状に整形し、その後加熱等により反応させて硬化させる。接着剤やパテでA液(基剤)とB液(硬化剤)を混ぜて使うタイプがあるが、これは熱硬化性樹脂のエポキシ樹脂で、混合により重合反応が起こっている。熱硬化性樹脂は硬くて熱や溶剤に強い。例として、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポリウレタン等が挙げられる。
 本実施形態では、強化複合材料における母材の含有量としては、強化材を100質量部として、20~90質量部であることが好ましい。好適には、下限は、25質量部以上、30質量部以上であり、また、好適には、上限は、85質量部以下、80質量部以下である。
(その他の添加剤)
 その他の添加剤としては、特に限定されず、難燃剤、熱安定剤、酸化防止剤、光吸収剤、離型剤、滑剤、各種安定剤、帯電防止剤、染顔料や、前述の複合化において用いられる各種反応剤等が挙げられる。
 本実施形態では、強化複合材料におけるその他の添加剤の含有量としては、強化複合材料を100質量%として、0.01質量%以下、80質量%以下としてよい。
〔強化材の製造方法〕
 本実施形態の強化材の製造方法は、強化複合材料を、硫酸及び/又は硝酸を原料とする酸化性活性種を含んだ分解溶液に浸漬する工程と、当該溶液を加熱することによって、前記母材を分解する工程と、強化材に付着している酸を除去し、水洗して前記強化材を回収することにより強化材を得る工程と、を含む。
 当該浸漬、分解工程としては、処理溶液及び/又は熱を用いるものとしてよく、電解硫酸法を用いるものが好ましい。
 電解硫酸法とは、硫酸溶液を電気分解することにより得られた酸化性活性種を含む処理用溶液に、母材と強化材とからなる強化複合材料を浸漬することにより、母材が水と二酸化炭素とに分解し、分解後の分解物が該処理用溶液に溶解され、その後、強化材を処理用溶液から取り出すことを特徴とする複合材の処理方法である。
 酸化性活性種とは、所定電流、所定電圧にて硫酸溶液を電気分解することで生成されるものであり、具体的には、ヒドロキシラジカルやペルオキソ硫酸、ペルオキソ二硫酸等である。
 本実施形態の強化複合材料の処理方法は、具体的には、
 A)硫酸を電気分解することによって、酸化性活性種を含む処理溶液を得る工程と、
 B)前記処理溶液に、使用後又は製造工程から廃棄される端材である前記強化複合材料を浸漬して、母材を分解、除去する工程と、
 C)前記母材が除去された強化材を洗浄、乾燥することで、前記強化材を再生する工程と、
を含む。
 前記硫酸溶液は、硫酸(HSO)及び水(HO)を含む溶液である。前記硫酸溶液中に含まれる硫酸の濃度は30~95重量%であることが好ましく、さらに好ましくは50~80重量%である。硫酸の濃度が30重量%未満の場合は、強化複合材料の母材を分解するために必要な酸化性活性種の量を得ることができず、母材の分解に長時間を要する。なお、濃度98重量%の濃硫酸においても、電気分解の方法を工夫しさえすれば酸化性活性種を生成させることは可能ではあるが、電気分解の際において電流が流れにくいことから酸化性活性種の生成量が極端に低下したり、電気分解に使用する電極の寿命が極端に短くなることから好ましくはない。
 なお、電気分解した酸化性活性種を含む処理用溶液に、濃硫酸や塩酸、硝酸を加えてもよい。また、処理用溶液に過酸化水素やペルオキソ硫酸のような過酸化物を添加してもよい。この場合、強化複合材の母材の分解速度を速める効果が得られる。
 硫酸溶液の電気分解では、白金電極やカーボン電極等が使用できるが、濃度の高い硫酸溶液の電気分解にあっては、耐久性の面から、金属板表面に薄膜状にダイヤモンドコーティングされたいわゆるダイヤモンド電極を用いることができる。硫酸溶液の電気分解装置としては、ダイヤモンド電極を用いた隔膜式の電解セルを用いることが好ましい。
 前記電気分解の通電条件は、ダイヤモンド電極の場合、電流密度を0.01~10A/cm、電圧0.1~100Vであればよいが、電極の種類、硫酸溶液の硫酸濃度、硫酸溶液の液量等によって適宜変更される。
 なお、前記電気分解は、閉鎖系にて行う必要があり、閉鎖した硫酸溶液循環系にて、所定量の硫酸溶液を循環させながら行うことが好ましい。循環方法としては、ポンプ等を利用して電極面に対して平行方向に50mL/分以上の流量で通液する方法、電気分解によって発生するガスの流れに従って対流させる自然循環による方法でもよい。
 前記電気分解の処理時間は、硫酸溶液の量、硫酸濃度、硫酸溶液の流量、通電条件等によって適宜変更されるが、硫酸溶液1L当たり0.5~10時間処理することが酸化性活性種を効率的に生成させる点で好ましい。
 陰極液及び陽極液に硫酸溶液を用いて電解する硫酸電解方法の場合は、両極に濃度の異なる硫酸を用いてもよい。特に、本発明では、濃度の高い硫酸を電気分解して得られた酸化性活性種を含む硫酸溶液が強化複合材料の母材の分解を促進する上で有効であることから、陽極側の硫酸濃度を高くし、陰極側の硫酸濃度を低くすることが電極の寿命を長くする上で好ましい。
 硫酸溶液の電気分解するための電源としては、考えられる様々な装置類から電気を調達することが可能であるが、太陽電池のようないわゆる再生可能エネルギーより生成された電気を用いることが好ましい。また、電気分解で発生した水素(陰極より発生)と酸素(陽極より発生)を回収して、発電や熱に変換することもできる。
 得られた酸化性活性種を含む硫酸溶液を、強化複合材料の母材を分解させるための処理槽に供給する方式としては、ポンプ等で電解装置から連続して処理槽に供給する方式(連続式)、閉ざされた系内で硫酸溶液を循環させて電気分解処理後に系内から処理用溶液を採取し、処理槽に処理用溶液を供給する方式(バッチ式)のいずれでもよい。また、採取された処理用溶液を加熱又は冷却、加圧できる装置を組み合わせてもよい。
 なお、強化複合材料を処理した後の処理用溶液は繰り返し使用することができるため、回収して濃度調節し、再度酸化性活性種を生成させるための電気分解を行うための硫酸溶液として再利用することができる。
 酸化性活性種を含む処理用溶液は、強化複合材料の母材の分解を高めるために加熱することが好ましい。加熱温度は処理用溶液の沸点にも関係するが、好ましくは100℃以上の温度で加熱して使用することが強化複合材料の母材を効率的に短期間に分解する上で好ましい。
 また、硫酸以外の塩酸、硝酸などの酸を混合しても良い。
 前記強化材に付着している酸を除去し、水洗して前記強化材を回収することにより強化材を得る工程においては、容器、配管、冷却管等のヘリを沿わせる方法、及び/又は、ローラー、バーを用いて酸溶液を素早く液切りして除去する方法などが好適に用いられる。
〔複合材料からの強化材回収と、回収時に発生した二酸化炭素を工業原料として活用するシステム〕
 本実施形態の複合材料からの強化材回収と、回収時に発生した二酸化炭素を工業原料として活用するシステムは、回収時に発生した分解ガスから酸素、窒素などの中性ガスを分離膜や酸性ガス吸収システムなどを用いて二酸化炭素を分離し、その二酸化炭素を工業原料として活用するものである。
 以下、具体的な実施例、比較例を挙げて本発明を説明するが、本発明は以下の実施例に限定されるものではない。
 後述する実施例、比較例においては、以下の条件で強化複合材料を作製した後、強化材の分離回収を行った。
(強化複合材料の作製)
 複合材としてCFRP製圧力タンクを用いた。CFRP製圧力タンクは、母材としてエポキシ樹脂を用い、補強材に塗布しながらフィラメントワインダーを用いて芯材に巻き付けて作成した。その後、150℃、30分間で硬化することで圧力タンクを作製した。
・エポキシ樹脂:
  エピコート828(ジャパンエポキシレジン株式会社製)20質量部
  エピコート834(ジャパンエポキシレジン株式会社製)20質量部
  エピコート1001(ジャパンエポキシレジン株式会社製)25質量部
  エピコート154(ジャパンエポキシレジン株式会社製)35質量部
・硬化剤:DICY7(ジャパンエポキシレジン株式会社製)4質量部
・硬化促進剤:オミキュア24(ピイ・ティ・アイジャパン株式会社製)5質量部
・ポリビニルホルマール:ビニレックK(チッソ株式会社製)5質量部
強化材
・炭素繊維:トレカT700SC-12K-50C(東レ株式会社製)
(全酸性官能基濃度及び強酸性官能基濃度の測定:ベーム法)
 なお、後述する実施例、比較例においては、強化材を回収した後、以下の通り、全酸性官能基濃度及び強酸性官能基濃度を測定した。
(1)全酸性官能基濃度の測定 試料1gに、0.05mol/L水酸化ナトリウム水溶液30mLを加え、密栓した。振とう機を使用して4時間振とうした後、8時間以上静置した。上澄み液15mLを0.05mol/L塩酸で滴定した。同様の操作によりブランク試験を実施し、ブランク試験との滴定量の差より、強酸性官能基量を算出した。
(2)強酸性官能基濃度の測定
 試料1gに、0.05mol/L炭酸水素ナトリウム水溶液30mLを加え、密栓した。振とう機を使用して4時間振とうした後、8時間以上静置した。上澄み液15mLを0.05mol/L塩酸で滴定した。同様の操作によりブランク試験を実施し、ブランク試験との滴定量の差より、強酸性官能基量を算出した。
(界面せん断強度の測定)
 界面せん断強度はマイクロドロップレット試験により測定した。
(1)樹脂玉作製
 繊維を、専用の台紙に固定し、光学顕微鏡((株)キーエンス製デジタルマイクロスコープV-HX6000)で繊維径を計測した。
 樹脂は、重量比で主剤(三菱ケミカル(株)製JER801N):硬化剤(四国化成工業(株)製キュアゾール2E4MZ)=100:8で秤量し、手動で約 2 分間混合させ、樹脂液とした。
 繊維に樹脂液を塗布し、液玉ができたことを確認した。その後、140℃で1時間、160℃で1時間、170℃2時間加熱して硬化させた。
(2)測定
 下記の条件にてマイクロドロップレット試験を実施した。
使用装置:東栄産業(株)製複合材界面特性評価装置(MODEL HM410)
試験速度:0.12mm/min
測定回数:n=15
(3)観察
 マイクロドロップレット試験後の炭素繊維樹脂界面、および樹脂液塗布前の炭素繊維表面を観察した。
使用装置:Carl Zeiss社製GeminiSEM460
加速電圧:0.8kV
観察モード:アウトレンズ二次電子像
蒸着:無し
(4)評価
 ◎:せん断強度が30MPa以上あり、樹脂玉の凝集破壊が起こり繊維状に樹脂が残っている
 〇:せん断強度が20MPa以上30MPa未満であり、樹脂玉の凝集破壊が起こり繊維状に樹脂が残っている
 ×:せん断強度が20MPa未満であり、樹脂玉と繊維が剥離して繊維状に樹脂が残っていない
(開繊性の評価)
 開繊性は繊維束を揃えて水に浸漬し、3分間静置した後の状態を観察した。
 〇:繊維が1本ずつ、バラバラにほどけた状態
 ×;繊維が1本ずつほどけずに、束のままの状態
[実施例1]
 強化材の表面処理方法は、電解硫酸法1を用いた。
 具体的には、電極面積700cmのダイヤモンド電極を用い、電極を水冷しながら、隔膜式の電解セル内で濃度50%の硫酸水溶液を電気分解して酸化性活性種を含む処理溶液を作製した。1回で電気分解する処理溶液(硫酸水溶液)の量は10Lであった。電流は3~10A/cm、電圧は170~200V、処理時間は120分であった。電界は閉鎖系で、ポンプで循環させながら行った。
 作製した電解硫酸溶液60Lに、炭素繊維(東レ(株)製トレカT700SC-12K-50C)100mを処理溶液に浸漬した後、120℃、10時間で浸漬処理し、強化材のサイジング剤を分解した。その後、強化材を回収する際にローラーを通して素早く酸溶液を液切りして除去し、強化材を水洗、乾燥して、芯に連続繊維として巻き取った。
 浸漬処理開始から、液切り、水洗が完了するまでの時間は12時間であった。
 得られた強化材の全酸性官能基濃度は、1.8mmol/g、強酸性官能基濃度は、0.8mmol/gであった。
 なお、炭素繊維は、連続繊維状で取得することができた。
 エポキシ樹脂との界面せん断強度は39MPaで、樹脂玉の凝集破壊が起こり繊維状に樹脂が残っていた。
 連続繊維での開繊は良好であった。
 連続繊維を1cmに切断した短繊維での開繊はできなかった。
[実施例2]
 強化複合材料からの強化材の分離回収方法は、電解硫酸法2を用いた。
 電解硫酸溶液は実施例1と同様の方法で作成した。
 作製した電解硫酸溶液60Lに、圧力タンク1本(120kg)を処理溶液に浸漬した後、120℃、10時間で強化複合材料を浸漬処理し、強化複合材料の母材を分解して、強化材を回収する際にローラーを通して素早く酸溶液を液切りして除去し、強化材を水洗、乾燥して、芯に連続繊維として巻き取った。
 浸漬処理開始から、液切り、水洗が完了するまでの時間は12時間であった。  
 得られた再生強化材の全酸性官能基濃度は、1.4mmol/g、強酸性官能基濃度は、0.6mmol/gであった。
 なお、炭素繊維は、連続繊維状で回収することができた。
 エポキシ樹脂との界面せん断強度は36MPaで、樹脂玉の凝集破壊が起こり繊維状に樹脂が残っていた。
 連続繊維での開繊は良好であった。
 連続繊維を1cmに切断した短繊維での開繊はできなかった。
[実施例3]
 強化複合材料からの強化材の分離回収方法は、電解硫酸法3を用いた。
 電解硫酸溶液は実施例1と同様の方法で作成した。
 作製した電解硫酸溶液50Lに、市販の30%過酸化水素水(富士フイルム和光純薬株式会社製)を10L加え、圧力タンク1本(120kg)を処理溶液に浸漬した後、120℃、5時間で強化複合材料を浸漬処理し、強化複合材料の母材を分解して、強化材を回収する際にローラーを通して素早く酸溶液を液切りして除去し、強化材を水洗、乾燥して、芯に連続繊維として巻き取った。
 浸漬処理開始から、液切り、水洗が完了するまでの時間は12時間であった。
 得られた再生強化材の全酸性官能基濃度は、2.2mmol/g、強酸性官能基濃度は、1.2mmol/gであった。
 なお、炭素繊維は、連続繊維状で回収することができた。
 エポキシ樹脂との界面せん断強度は46MPaで、樹脂玉の凝集破壊が起こり繊維状に樹脂が残っていた。
 連続繊維での開繊は良好であった。
 連続繊維を1cmに切断した短繊維での開繊はできなかった。
[実施例4]
 強化複合材料からの強化材の分離回収方法は、電解硫酸法4を用いた。
 電解硫酸溶液は実施例1と同様の方法で作成した。
 作製した電解硫酸溶液50Lに、市販の30%過酸化水素水(富士フイルム和光純薬株式会社製)を10L加え、圧力タンク1本(120kg)を処理溶液に浸漬した後、120℃、5時間で強化複合材料を浸漬処理し、強化複合材料の母材を分解して、強化材を回収する際にローラーを通して素早く酸溶液を液切りして除去し、強化材を水洗、乾燥して、芯に連続繊維として巻き取った。
 浸漬処理開始から、液切り、水洗が完了するまでの時間は18時間であった。
 得られた再生強化材の全酸性官能基濃度は、4.0mmol/g、強酸性官能基濃度は、2.0mmol/gであった。
 なお、炭素繊維は、連続繊維状で回収することができた。
 エポキシ樹脂との界面せん断強度は49MPaで、樹脂玉の凝集破壊が起こり繊維状に樹脂が残っていた。
 連続繊維での開繊は良好であった。
 連続繊維を1cmに切断した短繊維での開繊性はできなかった。
[実施例5]
 強化複合材料からの強化材の分離回収方法は、濃硫酸法1を用いた。
 市販の95%硫酸(富士フイルム和光純薬株式会社製)60Lに、圧力タンク1本(120kg)を処理溶液に浸漬した後、120℃、24時間で強化複合材料を浸漬処理し、強化複合材料の母材を分解して、強化材を回収する際にローラーを通して素早く酸溶液を液切りして除去し、強化材を水洗、乾燥して、芯に連続繊維として巻き取った。
 浸漬処理開始から、液切り、水洗が完了するまでの時間は12時間であった。
 得られた再生強化材の全酸性官能基濃度は0.5mmol/g、強酸性官能基濃度は0.3mmol/gであった。
 炭素繊維は、連続繊維状で回収することができた。
 エポキシ樹脂との界面せん断強度は26MPaで、樹脂玉の凝集破壊が起こり繊維状に樹脂が残っていた。
 連続繊維での開繊は良好であった。
 連続繊維を1cmに切断した短繊維での開繊はできなかった。
[実施例6]
 強化複合材料からの強化材の分離回収方法は、濃硫酸法2を用いた。
 市販の95%硫酸(富士フイルム和光純薬株式会社製)50Lに、市販の30%過酸化水素水(富士フイルム和光純薬株式会社製)を10L加え、圧力タンク1本(120kg)を処理溶液に浸漬した後、120℃、12時間で強化複合材料を浸漬処理し、強化複合材料の母材を分解して、強化材を回収する際にローラーを通して素早く酸溶液を液切りして除去し、強化材を水洗、乾燥して、芯に連続繊維として巻き取った。
 浸漬処理開始から、液切り、水洗が完了するまでの時間は12時間であった。
 得られた再生強化材の全酸性官能基濃度は、0.8mmol/g、強酸性官能基濃度は、0.4mmol/gであった。
 なお、炭素繊維は、連続繊維状で回収することができた。
 エポキシ樹脂との界面せん断強度は29MPaで、樹脂玉の凝集破壊が起こり繊維状に樹脂が残っていた。
 連続繊維での開繊は良好であった。
 連続繊維を1cmに切断した短繊維での開繊はできなかった。
[実施例7]
 強化複合材料からの強化材の分離回収方法は、濃硝酸法を用いた。
 市販の90%硝酸(富士フイルム和光純薬株式会社製)60Lに、圧力タンク1本(120kg)を処理溶液に浸漬した後、120℃、48時間で強化複合材料を浸漬処理し、強化複合材料の母材を分解して、強化材を回収する際にローラーを通して素早く酸溶液を液切りして除去し、強化材を水洗、乾燥して、芯に連続繊維として巻き取った。
 浸漬処理開始から、液切り、水洗が完了するまでの時間は12時間であった。
 得られた再生強化材の全酸性官能基濃度は、0.4mmol/g、強酸性官能基濃度は、0.2mmol/gであった。
 なお、炭素繊維は、連続繊維状で回収することができた。
 エポキシ樹脂との界面せん断強度は22MPaで、樹脂玉の凝集破壊が起こり繊維状に樹脂が残っていた。
 連続繊維での開繊は良好であった。
 連続繊維を1cmに切断した短繊維での開繊はできなかった。
[比較例1]
 強化複合材料からの強化材の分離回収方法は、熱分解法を用いた。
 大型加熱オーブンに圧力タンク1本(120kg)を投入し、窒素雰囲気下、700℃、24時間で母材を分解した。分解中に圧力タンクの形状が維持できず、潰れてしまったため、強化材を芯に巻き取る事が出来なかった。
 得られた再生強化材の全酸性官能基濃度は検出されず、強酸性官能基濃度は検出されなかった。
 また、炭素繊維は糸まり状に絡まってしまい、炭素繊維を連続繊維状で回収することが出来なかった。
 エポキシ樹脂との界面せん断強度は5MPaで、樹脂玉と繊維が剥離して繊維状に樹脂が残っていなかった。
 長さ1cmの短繊維での開繊は良好であった。
[比較例2]
 強化複合材料からの強化材の分離回収方法は、過熱水蒸気法を用いた。
 大型加熱オーブンに圧力タンク1本(120kg)を投入し、過熱水蒸気発生装置UPSS(トクデン株式会社製)を用いて発生させた過熱水蒸気を導入し、窒素雰囲気下、700℃、12時間で母材を分解した。分解中に圧力タンクの形状が維持できず、潰れてしまったため、強化材を芯に巻き取る事が出来なかった。
 得られた再生強化材の全酸性官能基濃度は、0.2mmol/g、強酸性官能基濃度は、0.05mmol/gであった。
 また、炭素繊維は糸まり状に絡まってしまい、炭素繊維を連続繊維状で回収することが出来なかった。
 エポキシ樹脂との界面せん断強度は エポキシ樹脂との界面せん断強度は15MPaで、樹脂玉と繊維が剥離して繊維状に樹脂が残っていなかった。
 長さ1cmの短繊維での開繊は良好であった。
[比較例3]
 強化複合材料からの強化材の分離回収方法は、溶媒分解法を用いた。
 市販のベンジルアルコール(富士フイルム和光純薬株式会社製)60Lに、市販のリン酸三カリウム(富士フイルム和光純薬株式会社製)を6kg加え、圧力タンク1本(120kg)を処理溶液に浸漬した後、120℃、96時間で強化複合材料を浸漬処理したが、強化複合材料の母材を分解することができず、強化材を回収することが出来なかった。
[比較例4]
 強化複合材料からの強化材の分離回収方法は、電解硫酸法5を用いた。
 電解硫酸溶液は実施例1と同様の方法で作成した。
 作製した電解硫酸溶液60Lに、圧力タンク1本(120kg)を処理溶液に浸漬した後、120℃、10時間で強化複合材料を浸漬処理し、強化複合材料の母材を分解して、強化材を回収する際に素早く酸溶液を液切りせずに1日放置し、その後、強化材を水洗、乾燥して、芯に連続繊維として巻き取った。
 浸漬処理開始から、液切り、水洗が完了するまでの時間は30時間であった。
 得られた再生強化材の全酸性官能基濃度は5.0mmol/g、強酸性官能基濃度は2.5mmol/gであった。
 なお、炭素繊維は、連続繊維状で回収することができた。
 エポキシ樹脂との界面せん断強度は46MPaで、樹脂玉の凝集破壊が起こり繊維状に樹脂が残っていた。
 連続繊維での開繊はできなかった。
 連続繊維を1cmに切断した短繊維での開繊はできなかった。
[比較例5]
 強化複合材料からの強化材の分離回収方法は、電解硫酸法6を用いた。
 電解硫酸溶液は実施例1と同様の方法で作成した。
 作製した電解硫酸溶液60Lに、圧力タンク1本(120kg)を処理溶液に浸漬した後、120℃、10時間で強化複合材料を浸漬処理し、強化複合材料の母材を分解して、強化材を回収する際に素早く酸溶液を液切りせずに1日以上放置し、その後、強化材を水洗、乾燥して、芯に連続繊維として巻き取った。
 浸漬処理開始から、液切り、水洗が完了するまでの時間は3時間であった。  
 得られた再生強化材の全酸性官能基濃度は、0.2mmol/g、強酸性官能基濃度は、0.05mmol/gであった。
 なお、炭素繊維は、連続繊維状で回収することができた。エポキシ樹脂との界面せん断強度は エポキシ樹脂との界面せん断強度は15MPaで、樹脂玉と繊維が剥離して繊維状に樹脂が残っていなかった。
 連続繊維での開繊は良好であった。
 長さ1cmの短繊維での開繊は良好であった。
[比較例6]
 強化複合材料からの強化材の分離回収方法は、電解酸化法を用いた。
 作製した圧力タンクから3cm角のCFRPを切り出した。
(1)前処理;
  前処理としてCFRPに対して、マッフル炉にて450℃、0.5h空気中加熱処理を行った。
(2)電気化学的処理;
  加熱処理したCFRPは直径80mm、高さ100mmのプラスチック製のメッシュ籠に充填した後、陽極側に設置し、0.1M のNaOH水溶液に完全に浸した。陽極には炭素電極を使用し陰極には円筒状のCu電極を用いた。電解時間3h、印加電圧4.5V、電流密度0.21A/m2各にて陽極酸化を行った。電極間距離は40mmで行った。
  陽極酸化後の電解液を撹拌羽根のついた槽に投入後高速撹拌を行い、脆化したエポキシ樹脂を細かく破砕した。得られたスラリーをステンレス製の粗いメッシュ籠で濾過し、水洗浄を繰り返すことによってエポキシ樹脂残渣を除去した。メッシュに残った回収炭素繊維を中和・洗浄した後、150℃、2時間乾燥した。
 得られた再生強化材の全酸性官能基濃度は0.4mmol/g、強酸性官能基濃度は0.1mmol/gであった。
 なお、炭素繊維は、連続繊維状で回収することができなかった。
 エポキシ樹脂との界面せん断強度は エポキシ樹脂との界面せん断強度は18MPaで、樹脂玉と繊維が剥離して繊維状に樹脂が残っていなかった。
 長さ1cmの短繊維での開繊は良好であった。
Figure JPOXMLDOC01-appb-T000001
 実施例1~7によれば、炭素繊維表面の全酸性官能基及び強酸性官能基の濃度が高く、かつ開繊性の良い連続繊維が得られるため、樹脂と複合化して活用することが容易になることが示された。
 比較例1~2及び比較例6では、炭素繊維表面の全酸性官能基及び強酸性官能基の濃度が低く、かつ連続繊維として再生されないため、再び樹脂と複合化して活用することが困難である。また、比較例3では炭素繊維が得られず、比較例4では、炭素繊維表面の全酸性官能基及び強酸性官能基の濃度が大きすぎるため、開繊性の良い連続繊維を得ることができず、比較例5では連続繊維として再生されたが、炭素繊維表面の全酸性官能基及び強酸性官能基の濃度が低く、再び樹脂と複合化して活用することが困難であり、有効な強化材の製造方法ではない事が示された。
 本発明によれば、複合材料からの表面に十分な官能基を有するため、樹脂との接着強度が高く、さらに開繊性が良いため、強化材を均一に母材に分散することができる。そのため、強度の高い強化複合材料の製造に適した強化材を提供できる。

Claims (15)

  1.  連続繊維である強化材であって、前記強化材の表面にある全酸性官能基濃度が0.4mmol/g以上、4.0mmol/g以下であることを特徴とする、強化材。
  2.  前記強化材が、母材と強化材とを含む強化複合材料から、分離して再生回収された再生強化材であることを特徴とする、請求項1に記載の強化材。
  3.  前記酸性官能基が、カルボキシル基、ラクトン基、又は、フェノール性水酸基であることを特徴とする、請求項1又は2に記載の強化材。
  4.  前記再生強化材の表面にある強酸性官能基濃度が、0.1mmol/g以上、3.0mmol/g以下であることを特徴とする、請求項1又は2に記載の強化材。
  5.  前記再生強化材の表面にある強酸性官能基濃度が、0.2mmol/g以上、2.0mmol/g以下であることを特徴とする、請求項4に記載の強化材。
  6.  前記強酸性官能基が、カルボキシル基であることを特徴とする、請求項3に記載の強化材。
  7.  前記強化材が、炭素繊維、ガラス繊維、及び、金属繊維からなる群から選ばれる少なくとも1種であることを特徴とする、請求項1又は2に記載の強化材。
  8.  前記強化材が、炭素繊維であることを特徴とする、請求項7に記載の強化材。
  9.  請求項1又は2に記載の強化材の製造方法であって、
     強化複合材料を、硫酸及び/又は硝酸を原料とする酸化性活性種を含んだ分解溶液に浸漬する工程と、
     当該分解溶液を加熱することによって、母材又はサイジング剤を分解する工程と、
     強化材に付着している酸を除去し、水洗して前記強化材を回収することにより、強化材を得る工程と、
    を含むことを特徴とする、強化材の製造方法。
  10.  前記分解溶液が、硫酸及び/又は硝酸溶液に過酸化水素を混合した溶液であることを特徴とする、請求項9に記載の強化材の製造方法。
  11.  前記分解溶液が、硫酸及び/又は硝酸溶液を電気分解した溶液であることを特徴とする、請求項9に記載の強化材の製造方法。
  12.  前記分解溶液が、硫酸及び/又は硝酸溶液を電気分解した溶液であることを特徴とする、請求項10に記載の強化材の製造方法。
  13.  前記強化材を得る工程が、前記連続繊維である強化材を芯材に巻き取る工程であることを特徴とする、請求項9に記載の強化材の製造方法。
  14.  請求項1又は2に記載の強化材と、樹脂とを複合化する工程を含むことを特徴とする、複合材料の製造方法。
  15.  請求項1又は2に記載の強化材と、樹脂とを含むことを特徴とする、複合材料。
PCT/JP2023/040104 2022-11-14 2023-11-07 強化材、強化材の製造方法、複合材料の製造方法及び複合材料 WO2024106277A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022181999 2022-11-14
JP2022-181999 2022-11-14

Publications (1)

Publication Number Publication Date
WO2024106277A1 true WO2024106277A1 (ja) 2024-05-23

Family

ID=91084632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040104 WO2024106277A1 (ja) 2022-11-14 2023-11-07 強化材、強化材の製造方法、複合材料の製造方法及び複合材料

Country Status (1)

Country Link
WO (1) WO2024106277A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104467A1 (ja) * 2014-12-26 2016-06-30 乗明 伊集院 炭素繊維、その製造方法及び炭素繊維強化樹脂組成物
JP2017171830A (ja) * 2016-03-25 2017-09-28 独立行政法人国立高等専門学校機構 複合材の処理方法
JP2020203996A (ja) * 2019-06-18 2020-12-24 旭化成株式会社 強化複合材料を再生する方法
JP2021014518A (ja) * 2019-07-11 2021-02-12 旭化成株式会社 強化複合材料から強化材を再生回収する方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104467A1 (ja) * 2014-12-26 2016-06-30 乗明 伊集院 炭素繊維、その製造方法及び炭素繊維強化樹脂組成物
JP2017171830A (ja) * 2016-03-25 2017-09-28 独立行政法人国立高等専門学校機構 複合材の処理方法
JP2020203996A (ja) * 2019-06-18 2020-12-24 旭化成株式会社 強化複合材料を再生する方法
JP2021014518A (ja) * 2019-07-11 2021-02-12 旭化成株式会社 強化複合材料から強化材を再生回収する方法

Similar Documents

Publication Publication Date Title
JP6205510B2 (ja) 炭素繊維、その製造方法及び炭素繊維強化樹脂組成物
JP6669354B2 (ja) 複合材の処理方法
JP2020203997A (ja) 強化複合材料を処理する方法
JP7328019B2 (ja) 強化複合材料を再生する方法
US8753543B2 (en) Chemically functionalized submicron graphitic fibrils, methods for producing same and compositions containing same
KR101801788B1 (ko) 열경화성 수지 복합 재료로부터 섬유 집합체를 회수하는 방법 및 장치, 이로부터 회수된 섬유 집합체
US20080302136A1 (en) Process for recycling glass fiber
JP2021014518A (ja) 強化複合材料から強化材を再生回収する方法
JP2013249386A (ja) 炭素繊維複合材料からの炭素繊維の回収方法
CN101649508B (zh) 一种高强度碳纤维的制备方法
WO2023080218A1 (ja) 複合材の処理方法及び複合材料の製造方法
Chen et al. Sustainable recycling of intact carbon fibres from end-of-service-life composites
WO2024106277A1 (ja) 強化材、強化材の製造方法、複合材料の製造方法及び複合材料
Ateeq A review on recycling technique and remanufacturing of the carbon fiber from the carbon fiber polymer composite: Processing, challenges, and state-of-arts
CN114044936B (zh) 一种催化水蒸汽热解回收碳纤维树脂基复合材料的方法
US11905386B2 (en) Apparatus, system and method for making a polymer-carbon nanomaterial admixture from carbon dioxide and materials and products thereof
JP2020203995A (ja) 強化材を再生する方法
CN114622222B (zh) 一种碳纳米材料的工业化制备方法
WO2024101364A1 (ja) 複合材の処理方法、気体及びリサイクルシステム
Hao et al. Influence of chemical treatment on the recycling of composites before pyrolysis
JP2016141913A (ja) 繊維束の製造方法
US20240199843A1 (en) Apparatus, system and method for making a polymer-carbon nanomaterial admixture from carbon dioxide and materials and products thereof
Nurmukhametova et al. Carbon fiber. Overview
US20220380947A1 (en) Apparatus, system and method for making a carbon nanomaterial fiber and textiles from carbon dioxide and materials and materials and products thereof
Kim et al. Simultaneous recycling and nitrogen doping in carbon fiber reinforced plastic using eco-friendly supercritical water treatment for Li-ion batteries anode application