WO2024104496A1 - 一种co2泄漏量检测方法 - Google Patents

一种co2泄漏量检测方法 Download PDF

Info

Publication number
WO2024104496A1
WO2024104496A1 PCT/CN2023/139060 CN2023139060W WO2024104496A1 WO 2024104496 A1 WO2024104496 A1 WO 2024104496A1 CN 2023139060 W CN2023139060 W CN 2023139060W WO 2024104496 A1 WO2024104496 A1 WO 2024104496A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
leakage
difference
air conditioner
leakage detection
Prior art date
Application number
PCT/CN2023/139060
Other languages
English (en)
French (fr)
Inventor
陈绍龙
王军
吴镇
Original Assignee
应雪汽车科技(常熟)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 应雪汽车科技(常熟)有限公司 filed Critical 应雪汽车科技(常熟)有限公司
Publication of WO2024104496A1 publication Critical patent/WO2024104496A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F22/00Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F22/00Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for
    • G01F22/02Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for involving measurement of pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors

Definitions

  • the present invention relates to the technical field of gas detection, and in particular to a method for detecting CO2 leakage.
  • CO2 refrigerant has gradually expanded from its original industrial use to the automotive field.
  • CO2 has been mass-produced as a refrigerant for automotive air conditioners and is gradually being accepted by people.
  • an object of the present invention is to provide a CO2 leakage detection method for solving the problem of detecting and determining CO2 refrigerant leakage.
  • the present invention provides a CO2 leakage detection method, comprising:
  • a leakage detection is performed on the refrigerant to determine whether the refrigerant is leaking;
  • the process of determining whether the refrigerant is leaking includes:
  • the density of the refrigerant is calculated, and whether the refrigerant is leaking is determined based on the density of the refrigerant;
  • the refrigerant is retested for leakage.
  • the process of calculating the density of the refrigerant and determining whether the refrigerant is leaking based on the density of the refrigerant includes:
  • the method further includes:
  • the air conditioner will be controlled to stop running
  • the maximum leakage amount corresponding to the first leakage level is less than or equal to the minimum leakage amount of the second leakage level
  • the maximum leakage amount corresponding to the second leakage level is less than or equal to the minimum leakage amount of the third leakage level
  • the maximum leakage amount corresponding to the third leakage level is less than or equal to the minimum leakage amount of the fourth leakage level.
  • the process of determining whether the refrigerant is leaking includes:
  • the process of generating the instruction to trigger leakage detection includes:
  • the process of generating the instruction to trigger leakage detection includes:
  • the present invention provides a CO2 leakage detection method, which has the following beneficial effects: first, in response to the triggering of the leakage detection instruction, the refrigerant is leaked and the refrigerant is leaked to determine whether the refrigerant is leaking; if the refrigerant is leaking, the leakage of CO2 in the refrigerant is calculated; if the refrigerant is not leaking, the refrigerant leakage detection is stopped. It can be seen that the present invention can use the necessary sensors in the original CO2 system without adding any detection equipment, and can test the leakage of the refrigerant of the CO2 refrigeration and heat pump device under static conditions, thereby achieving the effects of prompting leakage, warning leakage, and shutdown protection.
  • the present invention solves the detection and judgment of the leakage of the CO2 refrigeration and heat pump device system very well, and can give accurate judgments on the refrigerant leakage in both qualitative and quantitative aspects.
  • the detection and judgment can be in the static state of the system, without starting the equipment and adding more auxiliary detection equipment.
  • FIG1 is a schematic diagram of a flow chart of a CO2 leakage detection method provided by an embodiment
  • FIG2 is a schematic diagram of a flow chart of generating a trigger leakage detection instruction provided by an embodiment
  • FIG3 is a schematic diagram of a flow chart of generating a trigger leakage detection instruction provided by another embodiment
  • FIG4 is a schematic diagram of a curve of air conditioner downtime and air conditioner external temperature provided by an embodiment
  • FIG5 is a schematic diagram of different refrigerant leakage density curves at different temperatures for the same air-conditioning system provided by an embodiment.
  • the present invention provides a method for detecting CO2 leakage, comprising the following steps:
  • a leakage detection is performed on the refrigerant to determine whether the refrigerant is leaking.
  • the generation process of the trigger leakage detection instruction includes: judging whether the air conditioner is turned off; if the air conditioner is turned off, proceeding to the next step; if the air conditioner is not turned off, the trigger leakage detection instruction is not generated; judging whether the external temperature value of the air conditioner is greater than the preset temperature reference value; if the external temperature value of the air conditioner is greater than the preset temperature reference value, proceeding to the next step; if the external temperature value of the air conditioner is less than or equal to the preset temperature reference value, the trigger leakage detection instruction is not generated; judging whether the air conditioner downtime is greater than the preset time reference value; if the air conditioner downtime is greater than the preset time reference value, proceeding to the next step; if the air conditioner downtime is less than or equal to the preset time reference value, the trigger leakage detection instruction is not generated; judging whether the refrigerant temperature difference is less than the preset temperature reference difference; if the refrigerant temperature difference is less than the preset temperature reference difference
  • T reference represents the minimum temperature required to enter the leakage detection (different systems, different filling amounts correspond to different minimum temperatures).
  • t reference represents different external temperatures, corresponding to different downtimes.
  • T Benchmark indicates the maximum value allowed within the error range of the refrigerant temperature difference (maximum refrigerant temperature - minimum refrigerant temperature) collected by the air conditioning system sensor.
  • the curve diagram of the air conditioning downtime and the air conditioning external temperature is shown in Figure 4. Different refrigerants at different temperatures in the same air conditioning system
  • the schematic diagram of the leakage density curve is shown in Figure 5.
  • the generation process of the trigger leakage detection instruction includes: determining whether the air conditioner is turned off; if the air conditioner is turned off, proceeding to the next step; if the air conditioner is not turned off, the trigger leakage detection instruction is not generated; determining whether the external temperature value of the air conditioner is greater than the preset temperature reference value; if the external temperature value of the air conditioner is greater than the preset temperature reference value, proceeding to the next step; if the external temperature value of the air conditioner is less than or equal to the preset temperature reference value, the trigger leakage detection instruction is not generated; determining whether the air conditioner downtime is greater than the preset time reference value; if the air conditioner downtime is greater than the preset time reference value, the trigger leakage detection instruction is generated; if the air conditioner downtime is less than or equal to the preset time reference value, the trigger leakage detection instruction is not generated.
  • T reference represents the minimum temperature required to enter the leakage detection (different systems, different filling amounts correspond to different minimum temperatures).
  • t reference represents different external temperatures, corresponding to different downtimes.
  • ⁇ T reference represents the maximum value allowed within the error range of the refrigerant temperature difference (maximum refrigerant temperature-minimum refrigerant temperature) collected by the air conditioning system sensor.
  • FIG4 a schematic diagram of a curve of air conditioner downtime and air conditioner external temperature
  • FIG5 a schematic diagram of a curve of different refrigerant leakage densities at different temperatures of the same air conditioning system is shown in FIG5 .
  • the process of determining whether the refrigerant is leaking includes:
  • the density of the refrigerant is calculated, and whether the refrigerant is leaking is determined based on the density of the refrigerant; if the temperature difference is greater than or equal to the preset temperature value, and/or the pressure difference is greater than or equal to the preset pressure value If the refrigerant leaks too low, re-test the refrigerant for leaks.
  • the process of calculating the density of the refrigerant and determining whether the refrigerant is leaking based on the density of the refrigerant includes:
  • the method further includes: judging the leakage level of the refrigerant according to the leakage amount of CO2; if it is at the first leakage level, stopping the leakage detection of the refrigerant; if it is at the second leakage level, issuing a refrigerant leakage prompt message; if it is at the third leakage level, issuing a refrigerant shortage alarm; if it is at the fourth leakage level, controlling the air conditioner to stop running; wherein the maximum leakage amount corresponding to the first leakage level is less than or equal to the minimum leakage amount of the second leakage level; the maximum leakage amount corresponding to the second leakage level is less than or equal to the minimum leakage amount of the third leakage level; the maximum leakage amount corresponding to the third leakage level is less than or equal to the minimum leakage amount of the fourth leakage level.
  • the leakage amount of CO2 can be expressed by density or by mass. If the leakage amount of CO2 is expressed by mass, the corresponding leakage level is the mass leakage level; if the leakage amount of CO2 is expressed by density, the corresponding leakage level is the density leakage level.
  • the process of determining whether the refrigerant is leaking includes: obtaining a real-time temperature value and a real-time pressure value at any time in a stable state of the refrigeration system after any refrigerant is completely evaporated; calculating the density at this time according to the real-time temperature value and the real-time pressure value, calculating the difference between the density at this time and the density at the initial filling amount of the refrigeration system, and determining whether the difference is less than zero; If the difference is less than zero, it is determined that the refrigerant is leaking; if the difference is equal to zero, it is determined that the refrigerant is not leaking.
  • the embodiment provides a CO2 leakage detection method, comprising the following steps: triggering leakage detection, detecting whether there is leakage, calculating the leakage amount, determining the leakage level, automatic feedback and protection. Specifically:
  • Triggering leakage detection includes: shutdown, ambient temperature determination, shutdown time determination, and whether the refrigerant is completely evaporated.
  • Automatic feedback and protection include: leakage prompt, refrigerant shortage alarm, shutdown protection, display of refrigerant shortage, and system failure to start normally.
  • the present invention provides a CO2 leakage detection method.
  • the method first responds to the triggering of the leakage detection instruction and performs leakage detection on the refrigerant to determine whether the refrigerant is leaking; if the refrigerant is leaking, the leakage of CO2 in the refrigerant is calculated; if the refrigerant is not leaking, the leakage detection of the refrigerant is stopped. It can be seen that the present invention can use the necessary sensors in the original CO2 system without adding any detection equipment to test the leakage of the refrigerant of the CO2 refrigeration and heat pump device under static conditions, thereby achieving the functions of prompting leakage, warning leakage, and shutdown protection.
  • the present invention solves the detection and judgment of the leakage of the CO2 refrigeration and heat pump device system very well, and can give accurate judgments on the refrigerant leakage in both qualitative and quantitative aspects.
  • the detection and judgment can be in the static state of the system, without starting the equipment and adding more auxiliary detection equipment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种CO2泄漏量检测方法,首先响应于触发泄露检测指令,并对制冷剂进行泄露检测,确定制冷剂是否出现泄露;如果制冷剂存在泄露,则计算制冷剂中CO2的泄漏量;如果制冷剂未存在泄露,则停止对制冷剂进行泄露检测。可以在不增加任何检测设备的情况下,利用CO2原有系统中所必须的传感器,在静态工况下可测试出CO2制冷及热泵装置冷媒的泄漏量,从而达到提示泄露、预警泄露、和停机保护的作用。并且很好的解决了针对CO2制冷及热泵装置系统泄露量的检测及判断,可以对冷媒泄露量在定性及定量两个方面给出准确判断。同时检测和判断可以处于系统静止状态下,无需启动设备,无需多增加辅助检测设备。

Description

一种CO2泄漏量检测方法 技术领域
本发明涉及气体检测技术领域,特别是涉及一种CO2泄漏量检测方法。
背景技术
随着人们对环境保护需求的进一步提升,人们越来越意识到制冷剂替换的必要性,CO2制冷剂从原来的工业领域使用,已经逐步扩展到汽车领域。在欧洲,CO2作为汽车空调制冷剂已经量产,正在逐步被人们接受。然而,由于CO2本身分子小,加之系统压力高,长期使用下,对制冷剂的泄露提出了更为严格的要求。因此,在CO2制冷剂系统中,对CO2冷媒泄露的检测及判定,是目前亟需解决的问题。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种CO2泄漏量检测方法,用于解决CO2冷媒泄露的检测及判定的问题。
为实现上述目的及其他相关目的,本发明提供一种CO2泄漏量检测方法,包括有:
响应于触发泄露检测指令,并对制冷剂进行泄露检测,确定所述制冷剂是否出现泄露;
如果所述制冷剂存在泄露,则计算所述制冷剂中CO2的泄漏量;
如果所述制冷剂未存在泄露,则停止对所述制冷剂进行泄露检测。
可选地,响应于触发泄露检测指令,并对制冷剂进行泄露检测,确定所述制冷剂是否出现泄露的过程包括:
获取第一时间段内所述制冷剂的最大检测温度值和最小检测温度值,以及获取第一时间段内所述制冷剂的最大检测压力值和最小检测压力值;
计算所述最大检测温度值与所述最小检测温度值的差值,得到第一时间段内的温度差;以及,
计算所述最大检测压力值与所述最小检测压力值的差值,得到第一时间段 内的压力差;
判断第一时间段内的温度差是否小于预设温度值,以及判断第一时间段内的压力差是否小于预设压力值;
如果所述温度差小于预设温度值,且所述压力差小于预设压力值,则计算所述制冷剂的密度,并基于所述制冷剂的密度确定所述制冷剂是否出现泄露;
如果所述温度差大于或等于预设温度值,和/或所述压力差大于或等于预设压力值,则重新对制冷剂进行泄露检测。
可选地,计算所述制冷剂的密度,并基于所述制冷剂的密度确定所述制冷剂是否出现泄露的过程包括:
获取任意冷媒完全蒸发后制冷系统稳定状态下任意时刻的实时温度值和实时压力值;
根据所述实时温度值和所述实时压力值计算这一时刻下的密度,
计算所述的这一时刻下的密度和所述制冷系统起始加注量下的密度的差值,并判定所述差值是否小于零;
如果所述差值小于零,则确定所述制冷剂出现泄露;
如果所述差值等于零,则确定所述制冷剂未出现泄漏。。
可选地,在计算出所述制冷剂中CO2的泄漏量后,所述方法还包括:
根据所述CO2的泄漏量判断所述制冷剂的泄漏等级;
若处于第一泄漏等级,则停止对制冷剂进行泄露检测;
若处于第二泄漏等级,则发出制冷剂泄漏提示信息;
若处于第三泄漏等级,则进行冷媒不足报警;
若处于第四泄漏等级,则控制空调停止运行;
其中,所述第一泄漏等级对应的最大泄漏量小于或等于第二泄漏等级的最小泄漏量;
所述第二泄漏等级对应的最大泄漏量小于或等于第三泄漏等级的最小泄漏量;
所述第三泄漏等级对应的最大泄漏量小于或等于第四泄漏等级的最小泄漏量。
可选地,响应于触发泄露检测指令,并对制冷剂进行泄露检测,确定所述制冷剂是否出现泄露的过程包括:
获取任意冷媒完全蒸发后制冷系统稳定状态下任意时刻的实时温度值和实时压力值;
根据所述实时温度值和所述实时压力值计算这一时刻下的密度,
计算所述的这一时刻下的密度和所述制冷系统起始加注量下的密度的差值,并判定所述差值是否小于零;
如果所述差值小于零,则确定所述制冷剂出现泄露;
如果所述差值等于零,则确定所述制冷剂未出现泄漏。
可选地,所述触发泄露检测指令的生成过程包括:
判断空调是否关闭;若空调已关闭,则进入下一步;若空调未关闭,则不生成所述触发泄露检测指令;
判断空调外部温度值是否大于预设温度基准值;若空调外部温度值大于预设温度基准值,则进入下一步;若空调外部温度值小于或等于预设温度基准值,则不生成所述触发泄露检测指令;
判断空调停机时间是否大于预设时间基准值;若空调停机时间大于预设时间基准值,则进入下一步;若空调停机时间小于或等于预设时间基准值,则不生成所述触发泄露检测指令;
判断冷媒温度差值是否小于预设温度基准差值;若冷媒温度差值小于预设温度基准差值,则生成所述触发泄露检测指令;若冷媒温度差值大于或等于预设温度基准差值,则不生成所述触发泄露检测指令。
可选地,所述触发泄露检测指令的生成过程包括:
判断空调是否关闭;若空调已关闭,则进入下一步;若空调未关闭,则不生成所述触发泄露检测指令;
判断空调外部温度值是否大于预设温度基准值;若空调外部温度值大于预设温度基准值,则进入下一步;若空调外部温度值小于或等于预设温度基准值,则不生成所述触发泄露检测指令;
判断空调停机时间是否大于预设时间基准值;若空调停机时间大于预设时间基准值,则生成所述触发泄露检测指令;若空调停机时间小于或等于预设时间基准值,则不生成所述触发泄露检测指令。
如上所述,本发明提供一种CO2泄漏量检测方法,具有以下有益效果:首先响应于触发泄露检测指令,并对制冷剂进行泄露检测,确定制冷剂是否出现泄露;如果制冷剂存在泄露,则计算制冷剂中CO2的泄漏量;如果制冷剂未存在泄露,则停止对制冷剂进行泄露检测。由此可知,本发明可以在不增加任何检测设备的情况下,利用CO2原有系统中所必须的传感器,在静态工况下可测试出CO2制冷及热泵装置冷媒的泄漏量,从而达到提示泄露、预警泄露、和停机保护的作用。并且,本发明很好的解决了针对CO2制冷及热泵装置系统泄露量的检测及判断,可以对冷媒泄露量在定性及定量两个方面给出准确判断。同时检测和判断可以处于系统静止状态下,无需启动设备,无需多增加辅助检测设备。
附图说明
图1为一实施例提供的CO2泄漏量检测方法的流程示意图;
图2为一实施例提供的生成触发泄露检测指令的流程示意图;
图3为另一实施例提供的生成触发泄露检测指令的流程示意图;
图4为一实施例提供的空调停机时间与空调外部温度的曲线示意图;
图5为一实施例提供的相同空调系统不同温度下不同制冷剂泄露量密度曲线示意图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过 另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
请参阅图1所示,本发明提供一种CO2泄漏量检测方法,包括以下步骤:
响应于触发泄露检测指令,并对制冷剂进行泄露检测,确定所述制冷剂是否出现泄露。
如果所述制冷剂存在泄露,则计算所述制冷剂中CO2的泄漏量;
如果所述制冷剂未存在泄露,则停止对所述制冷剂进行泄露检测。
作为一示例,如图2所示,触发泄露检测指令的生成过程包括:判断空调是否关闭;若空调已关闭,则进入下一步;若空调未关闭,则不生成所述触发泄露检测指令;判断空调外部温度值是否大于预设温度基准值;若空调外部温度值大于预设温度基准值,则进入下一步;若空调外部温度值小于或等于预设温度基准值,则不生成所述触发泄露检测指令;判断空调停机时间是否大于预设时间基准值;若空调停机时间大于预设时间基准值,则进入下一步;空调停机时间小于或等于预设时间基准值,则不生成所述触发泄露检测指令;判断冷媒温度差值是否小于预设温度基准差值;若冷媒温度差值小于预设温度基准差值,则生成所述触发泄露检测指令;若冷媒温度差值大于或等于预设温度基准差值,则不生成所述触发泄露检测指令。在图2中,T基准:表示进入泄露检测所需最低温度(不同系统,不同加注量对应不同最低温度)。t基准:表示不同外温,对应不同停机时间。▲T基准:表示空调系统传感器所采集冷媒温差(最大冷媒温度-最小冷媒温度)误差范围内允许的最大值。其中,空调停机时间与空调外部温度的曲线示意图如图4所示,相同空调系统不同温度下不同制冷剂 泄露量密度曲线示意图如图5所示。
作为另一示例,如图3所示,触发泄露检测指令的生成过程包括:判断空调是否关闭;若空调已关闭,则进入下一步;若空调未关闭,则不生成所述触发泄露检测指令;判断空调外部温度值是否大于预设温度基准值;若空调外部温度值大于预设温度基准值,则进入下一步;若空调外部温度值小于或等于预设温度基准值,则不生成所述触发泄露检测指令;判断空调停机时间是否大于预设时间基准值;若空调停机时间大于预设时间基准值,则生成所述触发泄露检测指令;若空调停机时间小于或等于预设时间基准值,则不生成所述触发泄露检测指令。在图2中,T基准:表示进入泄露检测所需最低温度(不同系统,不同加注量对应不同最低温度)。t基准:表示不同外温,对应不同停机时间。▲T基准:表示空调系统传感器所采集冷媒温差(最大冷媒温度-最小冷媒温度)误差范围内允许的最大值。其中,空调停机时间与空调外部温度的曲线示意图如图4所示,相同空调系统不同温度下不同制冷剂泄露量密度曲线示意图如图5所示。
在一示例性实施例中,响应于触发泄露检测指令,并对制冷剂进行泄露检测,确定所述制冷剂是否出现泄露的过程包括:
获取第一时间段内所述制冷剂的最大检测温度值和最小检测温度值,以及获取第一时间段内所述制冷剂的最大检测压力值和最小检测压力值;
计算所述最大检测温度值与所述最小检测温度值的差值,得到第一时间段内的温度差;以及,计算所述最大检测压力值与所述最小检测压力值的差值,得到第一时间段内的压力差;
判断第一时间段内的温度差是否小于预设温度值,以及判断第一时间段内的压力差是否小于预设压力值;
如果所述温度差小于预设温度值,且所述压力差小于预设压力值,则计算所述制冷剂的密度,并基于所述制冷剂的密度确定所述制冷剂是否出现泄露;如果所述温度差大于或等于预设温度值,和/或所述压力差大于或等于预设压力 值,则重新对制冷剂进行泄露检测。
根据上述记载,在一示例性实施例中,计算所述制冷剂的密度,并基于所述制冷剂的密度确定所述制冷剂是否出现泄露的过程包括:
获取任意冷媒完全蒸发后制冷系统稳定状态下任意时刻的实时温度值和实时压力值;
根据所述实时温度值和所述实时压力值计算这一时刻下的密度,
计算所述的这一时刻下的密度和所述制冷系统起始加注量下的密度的差值,并判定所述差值是否小于零;
如果所述差值小于零,则确定所述制冷剂出现泄露;
如果所述差值等于零,则确定所述制冷剂未出现泄漏。
根据上述记载,在一示例性实施例中,在计算出所述制冷剂中CO2的泄漏量后,所述方法还包括:根据所述CO2的泄漏量判断所述制冷剂的泄漏等级;若处于第一泄漏等级,则停止对制冷剂进行泄露检测;若处于第二泄漏等级,则发出制冷剂泄漏提示信息;若处于第三泄漏等级,则进行冷媒不足报警;若处于第四泄漏等级,则控制空调停止运行;其中,所述第一泄漏等级对应的最大泄漏量小于或等于第二泄漏等级的最小泄漏量;所述第二泄漏等级对应的最大泄漏量小于或等于第三泄漏等级的最小泄漏量;所述第三泄漏等级对应的最大泄漏量小于或等于第四泄漏等级的最小泄漏量。在本实施例中,CO2的泄漏量可以用密度表示,也可以用质量表示。若CO2的泄漏量用质量表示,则对应的泄露等级为质量泄露等级;若CO2的泄漏量用密度表示,则对应的泄露等级为密度泄露等级。
在本发明另一示例性实施例中,响应于触发泄露检测指令,并对制冷剂进行泄露检测,确定所述制冷剂是否出现泄露的过程包括:获取任意冷媒完全蒸发后制冷系统稳定状态下任意时刻的实时温度值和实时压力值;根据所述实时温度值和所述实时压力值计算这一时刻下的密度,计算所述的这一时刻下的密度和所述制冷系统起始加注量下的密度的差值,并判定所述差值是否小于零; 如果所述差值小于零,则确定所述制冷剂出现泄露;如果所述差值等于零,则确定所述制冷剂未出现泄漏。
在本发明另一示例性实施例中,该实施例提供一种CO2泄漏量检测方法,包括以下步骤:触发泄露检测、检测是否泄露、泄露量计算、判定泄露等级、自动反馈及保护。具体地:
触发泄露检测包含:停机、环境温度判定、停机时间判定、冷媒是否完全蒸发。
判定检测泄露包含:触发泄露检测、读取采集冷媒温度及压力(P,T)、判定空调系统是否稳定、空调系统冷媒密度计算ρ=(P,T)、空调系统冷媒密度ρ等于相同外温下初始加注量密度ρ1,表示无泄漏;反之,表示泄露,并进行泄漏量计算。
自动反馈及保护包含:提示泄露,冷媒不足报警,停机保护,显示冷媒不足,系统无法正常启动。
综上所述,本发明提供一种CO2泄漏量检测方法,本方法首先响应于触发泄露检测指令,并对制冷剂进行泄露检测,确定制冷剂是否出现泄露;如果制冷剂存在泄露,则计算制冷剂中CO2的泄漏量;如果制冷剂未存在泄露,则停止对制冷剂进行泄露检测。由此可知,本发明可以在不增加任何检测设备的情况下,利用CO2原有系统中所必须的传感器,在静态工况下可测试出CO2制冷及热泵装置冷媒的泄漏量,从而达到提示泄露、预警泄露、和停机保护的作用。并且,本发明很好的解决了针对CO2制冷及热泵装置系统泄露量的检测及判断,可以对冷媒泄露量在定性及定量两个方面给出准确判断。同时检测和判断可以处于系统静止状态下,无需启动设备,无需多增加辅助检测设备。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利 要求所涵盖。

Claims (7)

  1. 一种CO2泄漏量检测方法,其特征在于,包括以下步骤:
    响应于触发泄露检测指令,并对制冷剂进行泄露检测,确定所述制冷剂是否出现泄露;
    如果所述制冷剂存在泄露,则计算所述制冷剂中CO2的泄漏量;
    如果所述制冷剂未存在泄露,则停止对所述制冷剂进行泄露检测。
  2. 根据权利要求1所述的CO2泄漏量检测方法,其特征在于,响应于触发泄露检测指令,并对制冷剂进行泄露检测,确定所述制冷剂是否出现泄露的过程包括:
    获取第一时间段内所述制冷剂的最大检测温度值和最小检测温度值,以及获取第一时间段内所述制冷剂的最大检测压力值和最小检测压力值;
    计算所述最大检测温度值与所述最小检测温度值的差值,得到第一时间段内的温度差;以及,
    计算所述最大检测压力值与所述最小检测压力值的差值,得到第一时间段内的压力差;
    判断第一时间段内的温度差是否小于预设温度值,以及判断第一时间段内的压力差是否小于预设压力值;
    如果所述温度差小于预设温度值,且所述压力差小于预设压力值,则计算所述制冷剂的密度,并基于所述制冷剂的密度确定所述制冷剂是否出现泄露;
    如果所述温度差大于或等于预设温度值,和/或所述压力差大于或等于预设压力值,则重新对制冷剂进行泄露检测。
  3. 根据权利要求2所述的CO2泄漏量检测方法,其特征在于,计算所述制冷剂的密度,并基于所述制冷剂的密度确定所述制冷剂是否出现泄露的过程包括:
    获取任意冷媒完全蒸发后制冷系统稳定状态下任意时刻的实时温度值和实时压力值;
    根据所述实时温度值和所述实时压力值计算这一时刻下的密度,
    计算所述的这一时刻下的密度和所述制冷系统起始加注量下的密度的差值,并判定所述差值是否小于零;
    如果所述差值小于零,则确定所述制冷剂出现泄露;
    如果所述差值等于零,则确定所述制冷剂未出现泄漏。
  4. 根据权利要求1或3所述的CO2泄漏量检测方法,其特征在于,在计算出所述制冷剂中CO2的泄漏量后,所述方法还包括:
    根据所述CO2的泄漏量判断所述制冷剂的泄漏等级;
    若处于第一泄漏等级,则停止对制冷剂进行泄露检测;
    若处于第二泄漏等级,则发出制冷剂泄漏提示信息;
    若处于第三泄漏等级,则进行冷媒不足报警;
    若处于第四泄漏等级,则控制空调停止运行;
    其中,所述第一泄漏等级对应的最大泄漏量小于或等于第二泄漏等级的最小泄漏量;
    所述第二泄漏等级对应的最大泄漏量小于或等于第三泄漏等级的最小泄漏量;
    所述第三泄漏等级对应的最大泄漏量小于或等于第四泄漏等级的最小泄漏量。
  5. 根据权利要求1所述的CO2泄漏量检测方法,其特征在于,响应于触发泄露检测指令,并对制冷剂进行泄露检测,确定所述制冷剂是否出现泄露的过程包括:
    获取任意冷媒完全蒸发后制冷系统稳定状态下任意时刻的实时温度值和实时压力值;
    根据所述实时温度值和所述实时压力值计算这一时刻下的密度,
    计算所述的这一时刻下的密度和所述制冷系统起始加注量下的密度的差值,并判定所述差值是否小于零;
    如果所述差值小于零,则确定所述制冷剂出现泄露;
    如果所述差值等于零,则确定所述制冷剂未出现泄漏。
  6. 根据权利要求1所述的CO2泄漏量检测方法,其特征在于,所述触发泄露检测指令的生成过程包括:
    判断空调是否关闭;若空调已关闭,则进入下一步;若空调未关闭,则不生成所述触发泄露检测指令;
    判断空调外部温度值是否大于预设温度基准值;若空调外部温度值大于预设温度基准值,则进入下一步;若空调外部温度值小于或等于预设温度基准值,则不生成所述触发泄露检测指令;
    判断空调停机时间是否大于预设时间基准值;若空调停机时间大于预设时间基准值,则进入下一步;若空调停机时间小于或等于预设时间基准值,则不生成所述触发泄露检测指令;
    判断冷媒温度差值是否小于预设温度基准差值;若冷媒温度差值小于预设温度基准差值,则生成所述触发泄露检测指令;若冷媒温度差值大于或等于预设温度基准差值,则不生成所述触发泄露检测指令。
  7. 根据权利要求1所述的CO2泄漏量检测方法,其特征在于,所述触发泄露检测指令的生成过程包括:
    判断空调是否关闭;若空调已关闭,则进入下一步;若空调未关闭,则不生成所述触发泄露检测指令;
    判断空调外部温度值是否大于预设温度基准值;若空调外部温度值大于预设温度基准值,则进入下一步;若空调外部温度值小于或等于预设温度基准值,则不生成所述触发泄露检测指令;
    判断空调停机时间是否大于预设时间基准值;若空调停机时间大于预设时间基准值,则生成所述触发泄露检测指令;若空调停机时间小于或等于预设时间基准值,则不生成所述触发泄露检测指令。
PCT/CN2023/139060 2022-11-18 2023-12-15 一种co2泄漏量检测方法 WO2024104496A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211443206.2 2022-11-18
CN202211443206.2A CN115752906A (zh) 2022-11-18 2022-11-18 一种co2泄漏量检测方法

Publications (1)

Publication Number Publication Date
WO2024104496A1 true WO2024104496A1 (zh) 2024-05-23

Family

ID=85373004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/139060 WO2024104496A1 (zh) 2022-11-18 2023-12-15 一种co2泄漏量检测方法

Country Status (2)

Country Link
CN (1) CN115752906A (zh)
WO (1) WO2024104496A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115752906A (zh) * 2022-11-18 2023-03-07 应雪汽车科技(常熟)有限公司 一种co2泄漏量检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163593A (ja) * 2013-02-26 2014-09-08 Gunma Prefecture 冷凍装置の冷媒漏れ検出方法及び冷媒漏洩検知システム
CN104566863A (zh) * 2014-12-30 2015-04-29 海信科龙电器股份有限公司 一种检测冷媒泄漏的方法及空调
US20180283719A1 (en) * 2015-03-31 2018-10-04 Daikin Industries, Ltd. Air conditioning indoor unit
CN110107819A (zh) * 2019-05-17 2019-08-09 河南工业大学 一种石化产品输送管道泄露监测预警系统及方法
CN110857802A (zh) * 2018-08-23 2020-03-03 奥克斯空调股份有限公司 一种空调冷媒泄露的检测方法及空调器
CN112665107A (zh) * 2020-12-21 2021-04-16 广东美的暖通设备有限公司 制冷剂泄漏检测方法、装置及设备
CN115752906A (zh) * 2022-11-18 2023-03-07 应雪汽车科技(常熟)有限公司 一种co2泄漏量检测方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267562A (ja) * 2001-03-07 2002-09-18 Yazaki Corp ガス漏洩判定装置及びガス漏洩判定方法
CN103837304A (zh) * 2014-02-20 2014-06-04 上海出入境检验检疫局机电产品检测技术中心 可燃制冷剂模拟泄露装置及泄露浓度测量装置
CN207439505U (zh) * 2017-10-31 2018-06-01 上海沃莘新能源科技有限公司 一种超声波液位计
CN110895024B (zh) * 2018-09-12 2021-08-27 奥克斯空调股份有限公司 一种冷媒泄漏检测方法及空调器
CN110895026B (zh) * 2018-09-12 2021-03-12 奥克斯空调股份有限公司 一种空调冷媒泄漏检测方法及使用该方法的空调
CN210513554U (zh) * 2019-09-29 2020-05-12 广州海关技术中心 一种制冷剂模拟泄漏试验装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163593A (ja) * 2013-02-26 2014-09-08 Gunma Prefecture 冷凍装置の冷媒漏れ検出方法及び冷媒漏洩検知システム
CN104566863A (zh) * 2014-12-30 2015-04-29 海信科龙电器股份有限公司 一种检测冷媒泄漏的方法及空调
US20180283719A1 (en) * 2015-03-31 2018-10-04 Daikin Industries, Ltd. Air conditioning indoor unit
CN110857802A (zh) * 2018-08-23 2020-03-03 奥克斯空调股份有限公司 一种空调冷媒泄露的检测方法及空调器
CN110107819A (zh) * 2019-05-17 2019-08-09 河南工业大学 一种石化产品输送管道泄露监测预警系统及方法
CN112665107A (zh) * 2020-12-21 2021-04-16 广东美的暖通设备有限公司 制冷剂泄漏检测方法、装置及设备
CN115752906A (zh) * 2022-11-18 2023-03-07 应雪汽车科技(常熟)有限公司 一种co2泄漏量检测方法

Also Published As

Publication number Publication date
CN115752906A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
CN110895024B (zh) 一种冷媒泄漏检测方法及空调器
WO2024104496A1 (zh) 一种co2泄漏量检测方法
CN101749825B (zh) 用于复合型空调器的冷媒追加控制方法
CN110895020B (zh) 一种制冷剂泄漏检测方法及空调器
CN103940560B (zh) 冷媒泄漏检测方法、冷媒泄漏检测系统和空调器
CN103884480B (zh) 冷媒泄漏检测方法、冷媒泄漏检测系统和空调器
CN107504732B (zh) 一种制冷系统制冷剂多少的判定方法及判定装置
US5647222A (en) Method and device for diagnosis of the refrigerant quantity in an air conditioning system
CN105509241B (zh) 判断冷凝器管中感温包是否脱落的方法、装置及空调器
CN108344108B (zh) 一种应用电化学压缩机的空调及氢气泄漏检测方法、装置
CN109631436B (zh) 制冷剂量合理性的判断方法
CN107906671B (zh) 冷媒量判断方法及系统
CN110195910A (zh) 制冷系统冷媒存量检测方法
CN104266798A (zh) 制冷剂泄漏测试装置和制冷剂泄漏测试方法
JP2007537913A (ja) 車両の空調システムの冷却液回路の充填レベルを監視するための装置及び方法
CN110940043B (zh) 一种空调冷媒泄漏检测方法及空调器
CN111819406B (zh) 制冷剂泄漏检测系统及方法
CN115930357A (zh) 冷媒循环系统的冷媒泄漏检测方法及使用该方法的空调
CN105466093B (zh) 压缩机的排气压力和回气压力的虚拟检测方法及装置
CN110873434B (zh) 一种冷媒泄露的检测方法、装置及空调器
CN110553343A (zh) 空调的冷媒泄漏检测方法、系统及空调
CN104111146B (zh) 制冷剂泄漏测试装置及制冷剂泄漏装置的控制方法
CN110887166A (zh) 一种空调器冷媒泄露的检测方法及其空调器
CN110940045A (zh) 一种空调冷媒泄露的检测方法及空调器
CN111678239B (zh) 一种追加冷媒的定量方法、处理器、空调器