WO2024104447A1 - 太阳电池制备方法以及太阳电池 - Google Patents

太阳电池制备方法以及太阳电池 Download PDF

Info

Publication number
WO2024104447A1
WO2024104447A1 PCT/CN2023/132170 CN2023132170W WO2024104447A1 WO 2024104447 A1 WO2024104447 A1 WO 2024104447A1 CN 2023132170 W CN2023132170 W CN 2023132170W WO 2024104447 A1 WO2024104447 A1 WO 2024104447A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
sintering
curing
packaging
controlled
Prior art date
Application number
PCT/CN2023/132170
Other languages
English (en)
French (fr)
Inventor
薛晓东
Original Assignee
通威太阳能(安徽)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211445834.4A external-priority patent/CN115939264B/zh
Application filed by 通威太阳能(安徽)有限公司 filed Critical 通威太阳能(安徽)有限公司
Publication of WO2024104447A1 publication Critical patent/WO2024104447A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B11/00Wrapping, e.g. partially or wholly enclosing, articles or quantities of material, in strips, sheets or blanks, of flexible material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B31/00Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers
    • B65B31/04Evacuating, pressurising or gasifying filled containers or wrappers by means of nozzles through which air or other gas, e.g. an inert gas, is withdrawn or supplied
    • B65B31/06Evacuating, pressurising or gasifying filled containers or wrappers by means of nozzles through which air or other gas, e.g. an inert gas, is withdrawn or supplied the nozzle being arranged for insertion into, and withdrawal from, the mouth of a filled container and operating in conjunction with means for sealing the container mouth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B51/00Devices for, or methods of, sealing or securing package folds or closures; Devices for gathering or twisting wrappers, or necks of bags
    • B65B51/04Applying separate sealing or securing members, e.g. clips
    • B65B51/06Applying adhesive tape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials

Definitions

  • the present application relates to the fields of energy storage and photovoltaic technology, and in particular to a method for preparing a solar cell and a solar cell.
  • RESH batteries use special amorphous silicon and TCO coatings, and high temperatures can easily damage the batteries. Therefore, when preparing RESH batteries, the screen curing and sintering temperature does not exceed 230°C. After silver paste printing, resin curing is used instead of the traditional 700°C to 800°C high-temperature sintering method. Therefore, the organic matter and other additives in the paste cannot be completely removed, and the silver paste and the battery cell are bonded with resin instead of the traditional alloy method. The cured paste structure is loose, and air can easily enter the paste structure to undergo an oxidation reaction, causing the silver wires of the battery cell to turn red and oxidize, thereby affecting the conductivity of the battery cell and resulting in low conversion efficiency.
  • the solar cell preparation method of the present application uses a special process for production, a special packaging material and a packaging process for heterojunction, etc., which greatly reduces the proportion of poor oxidation of the grid lines of the cell, significantly improves the power and CTM of the module, further reduces the color difference of the appearance, and improves the product quality and customer satisfaction.
  • the battery cell is subjected to sintering and curing treatment.
  • the battery cell is placed in a curing furnace with the back auxiliary grid of the battery cell facing upward and the front positive grid facing downward, wherein the number of lines of the back auxiliary grid of the battery cell is greater than the number of lines of the front positive grid, and the curing furnace is controlled to ventilate and heat so that the sintering and curing temperature is not greater than 230°C.
  • the heating temperature of the back side of the battery cell is controlled to be 165°C to 200°C.
  • the heating temperature of the front side of the battery cell is controlled to be 165° C. to 200° C.
  • the first heating element and the second heating element are controlled to heat the back side of the battery cell and the front side of the battery cell respectively.
  • the distance between the first heating component and the second heating component is controlled to be 20 cm to 25 cm.
  • the environment during the sintering and curing process is exhausted.
  • the first exhaust component is controlled to exhaust gas from the environment during the sintering and curing process.
  • the second exhaust component is controlled to exhaust organic gas in the environment during the sintering and curing process.
  • the solar cell preparation method further comprises the following steps:
  • the battery cells after the sintering and curing treatment are packaged.
  • the battery cells after the sintering and curing process are placed in a packaging device, and the packaging device includes a packaging box and a filter component, and the filter component is connected to the packaging box to filter the gas in the packaging box.
  • the filtration assembly includes a FFU filter and a chemical filter.
  • the packaging material is selected from sulfur-free paper.
  • the packaging process specifically includes the following steps:
  • the sulfur-free paper is covered on multiple surfaces of the stacked battery cells, a hollow plate is placed outside the sulfur-free paper, the battery cells, the sulfur-free paper and the hollow plate are integrally sheathed in an anti-rust bag, and the anti-rust bag is plastic-sealed and vacuumed.
  • At least one embodiment of the present application provides a solar cell.
  • a solar cell is prepared by adopting the cell sheet preparation method.
  • FIG1 is a schematic diagram of a curing furnace in a method for preparing a solar cell according to an embodiment of the present application
  • FIG2 is a schematic diagram of a packaging device in a method for preparing a solar cell according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a packaging process in a solar cell preparation method according to an embodiment of the present application.
  • Curing furnace 101. Curing box; 102. First heating component; 103. Second heating component; 104. First exhaust component; 105. Second exhaust component; 20. Packaging device; 201. Packaging box; 202. FFU filter; 203. Chemical filter; 31. Sulfur-free paper; 31. Hollow board; 33. Anti-rust bag; 34. Plastic film; 40. Solar cell.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of this application, the meaning of "plurality” is at least two, such as two, three, etc., unless otherwise clearly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and the like are used herein.
  • the terms should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integrated connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • a first feature being “above” or “below” a second feature may mean that the first and second features are in direct contact, or that the first and second features are in indirect contact through an intermediate medium.
  • a first feature being “above”, “above” or “above” a second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • a first feature being “below”, “below” or “below” a second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is lower in level than the second feature.
  • the present application provides a method for preparing solar cells to solve the problem that organic matter and other additives in the slurry cannot be completely removed in the traditional solar cell preparation process, the silver paste and the cell 40 are bonded by resin rather than the traditional alloy method, the solidified slurry structure is loose, and air can easily enter the slurry structure to undergo oxidation reaction, causing the silver wire of the cell 40 to turn red and oxidize, thereby affecting the conductivity of the cell 40 and resulting in low conversion efficiency.
  • the solar cell preparation method of the present application can be used for the preparation of RESH cells (Rear Emitter Si Heterojunction).
  • the cells need to go through the steps of texturing and cleaning ⁇ CVD coating ⁇ PVD coating ⁇ printing ⁇ drying ⁇ sintering and curing ⁇ testing.
  • a method for preparing a solar cell comprises at least the following steps:
  • the battery cell 40 is subjected to sintering and curing treatment.
  • the battery cell 40 is placed in a curing furnace 10, with the back side auxiliary grid facing upward and the front side positive grid facing downward, wherein the number of lines of the back side auxiliary grid of the battery cell 40 is greater than the number of lines of the front side positive grid, and the curing furnace 10 is controlled to heat so that the sintering and curing temperature is not greater than 230°C.
  • the curing oven 10 includes a curing box 101, a first heating component 102, a second heating component 103 and an exhaust component.
  • the first heating component 102 and the second heating component 103 are both arranged in the curing box 101.
  • the first heating component 102 and the second heating component 103 are arranged opposite to each other in the vertical direction.
  • the first heating component 102 is located above the second heating component 103.
  • the exhaust component is connected to the curing box 101 for exhausting the interior of the curing box 101.
  • the first heating component and the second heating component are controlled to heat the back side and the front side of the battery cell respectively, and the heating temperature of the back side of the battery cell is controlled to be 165°C-200°C; the heating temperature of the front side of the battery cell is controlled to be 165°C-200°C.
  • the heating temperature of the back side of the battery cell is controlled to be 165°C, and in another specific example, the heating temperature of the back side of the battery cell is controlled to be 200°C. It is not difficult to understand that in other specific examples, the heating temperature of the back side of the battery cell can also be 170°C, 175°C, 180°C, 185°C, 190°C, 195°C or other values.
  • the heating temperature of the front side of the battery cell is controlled to be 165°C, and in another specific example, the heating temperature of the front side of the battery cell is controlled to be 200°C. It is not difficult to understand that in other specific examples, the heating temperature of the front side of the battery cell can also be 170°C, 175°C, 180°C, 185°C, 190°C, 195°C or other values.
  • the heating temperature of the back side of the battery cell can be the same as the heating temperature of the front side of the battery cell.
  • the distance between the first heating component 102 and the second heating component 103 is 20-25 cm.
  • the distance between the first heating component 102 and the second heating component 103 needs to be within a certain range.
  • the distance between the first heating component 102 and the second heating component 103 is greater than 25 cm, the sintering and curing effect of the battery cell 40 is poor, and the sintering and curing completion is low.
  • the distance between the first heating component 102 and the second heating component 103 is less than 20 cm, the temperature between the first heating component 102 and the second heating component 103 is too high, exceeding 230°C, and does not meet the maximum sintering temperature limit of the battery cell 40.
  • the RESH battery uses special amorphous silicon and TCO coating, if the distance between the first heating component 102 and the second heating component 103 is too small, on the one hand, it is not conducive to the organic matter and other impurities in the back side grid silver wire to be more easily sintered and drawn away, and on the other hand, it will be easy to damage the battery cell 40 due to local high temperature.
  • the environment during the sintering and curing process is exhausted.
  • the exhaust assembly includes a first exhaust component 104 and a second exhaust component 105
  • the first exhaust component 104 is used to exhaust the gas in the curing box 101
  • the second exhaust component 105 is used to exhaust the organic gas in the curing box 101.
  • the first exhaust component 104 is controlled to exhaust the gas in the environment during the sintering and curing process
  • the second exhaust component 105 is controlled to exhaust the organic gas in the environment during the sintering and curing process.
  • the first exhaust component 104 can be a common exhaust fan, suction fan and other structures, and the first exhaust component 104 can exhaust all other things in the curing box 101.
  • the second exhaust component 105 can be composed of a stainless steel pipe, an organic exhaust fan, and an organic tower. The second exhaust component 105 can discharge the organic matter generated during the sintering and drying process in the curing box 101 and send it into the organic tower.
  • the gas in the curing box 101 and the organic gas in the curing box 101 can be respectively exhausted, thereby reducing the content of sulfide in the sintering and curing process, and avoiding as much as possible the contact between sulfide and oxygen in the air and the entry into the battery cell 40 for oxidation reaction, reducing or avoiding the blackening and oxidation of the silver wire of the battery cell 40, improving the conductivity of the battery cell 40, and improving the conversion efficiency of the battery cell 40.
  • the temperature of the first heating component 102 is controlled to be 165°C-200°C
  • the temperature of the second heating component 103 is controlled to be 165°C-200°C.
  • the solar cell preparation method further comprises the following steps:
  • the battery cell 40 after sintering and curing is packaged.
  • the packaging device 20 includes a packaging box 201 and a filter assembly.
  • the filter assembly is connected to the packaging box 201 to filter the gas in the packaging box 201.
  • the efficiency of the cell 40 is first inspected and then the appearance is measured, which will inevitably cause a part of the cell 40 to be retained in the air, and the oxygen in the air and the Ag on the surface of the cell 40 undergo a redox reaction, causing partial oxidation of the crystalline silicon cell, so the packaging environment will cause oxidation of the crystalline silicon cell.
  • the finished cell 40 is packaged by a new packaging method, and a packaging inspection area and a packaging device 20 are separately set to isolate the outside air.
  • An air filter assembly is installed above the inspection area.
  • the packaging device 20 filters the particulate impurities contained in the gas in the packaging environment through the filter assembly to improve the cleanliness of the packaging environment.
  • the filter assembly includes an FFU filter 202 and a chemical filter 203.
  • FFU filter 202 and the chemical filter 203 In the above-mentioned solar cell preparation method, by setting the FFU filter 202 and the chemical filter 203, external impurities and chemical gases in the screen process are filtered, the contact of the battery cell 40 with sulfide and air before packaging is reduced, and the blackening and oxidation of the silver wire of the battery cell 40 is reduced or avoided.
  • the use of the new packaging device 20 can reduce the sulfide by 98%, and the battery cell 40 is exposed to the air for more than 12 hours without oxidation, which fully meets the production and packaging requirements. Therefore, reducing the contact of the battery cell 40 with sulfide and air before packaging can effectively reduce or avoid the blackening and oxidation of the silver wire of the battery cell 40.
  • the packaging material is selected from sulfur-free paper 31.
  • sulfur-free paper 31 is used during packaging. Specifically, multiple surfaces of a plurality of stacked cells 40 are covered with sulfur-free paper 31, and special packaging design and process design are used to reasonably and effectively store the cells 40 in the packaging box to prevent the packaging from being damaged and causing external air to enter. Furthermore, the plastic-sealed cells 40 are vacuumed to greatly reduce the air content inside the package, reduce the contact between the cells 40 and sulfide and air, and reduce the local oxidation of the cells 40.
  • the packaging process specifically includes the following steps:
  • sulfur-free paper 31 is covered on multiple surfaces of a plurality of stacked battery cells 40, a hollow plate 31 is placed outside the sulfur-free paper 31, the battery cells 40, the sulfur-free paper 31 and the hollow plate 31 are integrally sleeved in an anti-rust bag 33, and the anti-rust bag 33 is plastic-sealed and vacuum-treated with a plastic film 34.
  • the surfaces of the two outermost battery cells 40 of the plurality of stacked battery cells 40 are covered with sulfur-free paper 31.
  • the cell 40 is placed in the curing furnace 10. Since the back sub-grid is denser (the number of back sub-grid lines is generally designed to be 80 to 108) than the front (the number of front positive grid lines is generally designed to be 40 to 60), there are 47% more grid lines, and the number of back sub-grid lines of the cell 40 is more than the number of front positive grid lines.
  • the back side grid of the battery cell 40 is facing upward and the front side grid is facing downward, so that the organic matter and other impurities in the silver wire of the back side grid can be sintered and extracted more easily, which accelerates the volatilization of organic matter such as resin and accelerates the effective adhesion of the surface of the battery cell 40, enhances the ohmic contact, and reduces the oxidation of the battery cell 40.
  • At least one embodiment of the present application provides a solar cell.
  • a solar cell is prepared by a solar cell preparation method.
  • the proportion of poor oxidation of the obtained battery cells is reduced from 6.11% in the traditional technology to 0.78%, a decrease of 87.23%; the local oxidation of the battery is reduced to varying degrees, the ohmic contact is enhanced, the battery efficiency loss is greatly reduced, the component power is increased after stable welding, and the component CTM is increased by 0.44%.
  • the solar cell preparation method of this application adopts a new curing method and packaging environment, and also introduces a new cell 40 packaging separator and packaging process, which solves the oxidation phenomenon of 210 half-cell cells 40, avoids the degradation loss of cells 40, and improves the product A-level rate and yield.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请涉及一种太阳电池制备方法以及太阳电池。制备方法至少包括如下步骤:将电池片置于固化炉内,电池片的背面副栅朝上且正面正栅朝下,烧结固化处理,其中,电池片的背面副栅的线数多于正面正栅的线数,烧结固化温度不大于230℃。上述制备方法能够加快树脂等有机物挥发以及加快电池片表面有效粘合,增强欧姆接触,减少电池片氧化。

Description

太阳电池制备方法以及太阳电池
本申请要求于2022年11月18日提交中国专利局、申请号为2022114458344、发明名称为“太阳电池制备方法以及太阳电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及储能、光伏技术领域,特别是涉及一种太阳电池制备方法以及太阳电池。
背景技术
在光伏领域中,太阳电池中的RESH电池被誉为PERC之后最有前景的太阳能电池技术之一,相对于传统晶硅技术,由于非晶硅薄膜的引入,硅异质结太阳电池的晶硅衬底前后表面实现了良好的钝化,因而其表面钝化更趋完善,且非晶硅薄膜隔绝了金属电极与硅材料的直接接触,其载流子复合损失进一步降低,可以提升转换效率。
RESH电池使用特殊的非晶硅和TCO镀膜,高温易损伤电池,所以RESH电池在制备时,丝网固化烧结温度最高不超过230℃,银浆印刷后采用树脂固化方式而非传统的700℃~800℃高温烧结方式,所以浆料内有机物和其他添加剂无法完全去除,而且银浆与电池片采用树脂粘合方式而非传统的合金方式,固化的浆料结构上较松散,空气易进入浆料结构内部进行氧化反应导致电池片银线发红氧化,进而影响电池片导电性能,导致转换效率偏低。
发明内容
基于此,有必要提供一种太阳电池制备方法以及太阳电池。本申请的太阳电池制备方法使用特殊工艺生产,异质结特用包装材质和包装流程等,使电池片栅线氧化不良比例大幅降低,组件功率和CTM明显提高,外观色差进一步降低,提升产品品质和客户满意度。
本申请一实施例提供的太阳电池制备方法,包括如下步骤:
对电池片进行烧结固化处理,所述烧结固化处理时,将所述电池片置于固化炉内,所述电池片的背面副栅朝上且正面正栅朝下,其中,所述电池片的背面副栅的线数多于正面正栅的线数,控制所述固化炉抽风,控制所述固化炉加热使得烧结固化温度不大于230℃。
在其中一些实施例中,控制所述电池片的背面的加热温度为165℃~200℃。
在其中一些实施例中,控制所述电池片的正面的加热温度为165℃~200℃。
在其中一些实施例中,控制第一加热组件与第二加热组件分别对所述电池片的背面、所述电池片的正面加热。
在其中一些实施例中,控制所述第一加热组件与所述第二加热组件之间的间距为20cm~25cm。
在其中一些实施例中,对烧结固化处理时的环境进行排气处理。
在其中一些实施例中,控制第一排风部件排除烧结固化处理时的环境中的气体。
在其中一些实施例中,控制第二排风部件排除烧结固化处理时的环境中的有机气体。
在其中一些实施例中,所述太阳电池制备方法还包括如下步骤:
对所述烧结固化处理后的所述电池片进行包装处理。
在其中一些实施例中,所述包装处理时,将所述烧结固化处理后的所述电池片置于包装装置中,所述包装装置包括包装箱体以及过滤组件,所述过滤组件连接于所述包装箱体以用于过滤所述包装箱体内的气体。
在其中一些实施例中,所述过滤组件包括FFU过滤器以及化学过滤器。
在其中一些实施例中,所述包装处理时,包装材料选自无硫纸。
在其中一些实施例中,所述包装处理时,具体包括如下步骤:
在若干个层叠放置的所述电池片的多个表面覆盖所述无硫纸,在所述无硫纸的外部放置中空板,将所述电池片、所述无硫纸以及所述中空板整体套设于防锈袋,对所述防锈袋进行塑封以及抽真空处理。
本申请的至少一实施例提供了一种太阳电池。
一种太阳电池,采用所述电池片制备方法制备得到。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对本领域技 术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
为了更完整地理解本申请及其有益效果,下面将结合附图来进行说明。其中,在下面的描述中相同的附图标号表示相同部分。
图1为本申请一实施例所述的太阳电池制备方法中的固化炉示意图;
图2为本申请一实施例所述的太阳电池制备方法中的包装装置示意图;
图3为本申请一实施例所述的太阳电池制备方法中的包装流程示意图。
附图标记说明
10、固化炉;101、固化箱体;102、第一加热组件;103、第二加热组件;104、第一排风部
件;105、第二排风部件;20、包装装置;201、包装箱体;202、FFU过滤器;203、化学过滤器;31、无硫纸;31、中空板;33、防锈袋;34、塑封胶膜;40、太阳电池。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等 术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
在本申请的描述中,若干的含义是一个以上,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请实施例提供一种太阳电池制备方法,以解决传统的太阳电池制备工艺中浆料内有机物和其他添加剂无法根本去除,银浆与电池片40采用树脂粘合方式而非传统的合金方式,固化的浆料结构上较松散,空气易进入浆料结构内部进行氧化反应导致电池片40银线发红氧化,进而影响电池片40导电性能,导致转换效率偏低的问题。以下将结合附图对太阳电 池制备方法进行说明。本申请的太阳电池制备方法能够用于RESH电池(Rear Emitter Si Heterojunction)制备。
为了更清楚的说明太阳电池制备方法的结构,以下将结合附图对太阳电池制备方法进行介绍。
在太阳电池制备过程中,电池片需要经过制绒清洗→CVD镀膜→PVD镀膜→印刷→烘干→烧结固化→测试等步骤处理。
示例性的,一种太阳电池制备方法,至少包括如下步骤:
对电池片40进行烧结固化处理,烧结固化处理时,将电池片40置于固化炉10内,电池片40的背面副栅朝上且正面正栅朝下,其中,电池片40的背面副栅的线数多于正面正栅的线数,控制固化炉10加热使得烧结固化温度不大于230℃。
在其中一些实施例中,固化炉10包括固化箱体101、第一加热组件102、第二加热组件103以及排风组件,第一加热组件102与第二加热组件103均设置在固化箱体101内,第一加热组件102与第二加热组件103在竖直方向上相对设置,第一加热组件102位于第二加热组件103的上方,排风组件连接于固化箱体101以用于对固化箱体101内部进行排气。控制第一加热组件与第二加热组件分别对所述电池片的背面、所述电池片的正面加热,控制所述电池片的背面的加热温度为165℃-200℃;控制所述电池片的正面的加热温度为165℃-200℃。例如,在一个具体示例中,控制所述电池片的背面的加热温度为165℃,在另一个具体示例中,控制所述电池片的背面的加热温度为200℃。不难理解,在其他具体示例中,控制所述电池片的背面的加热温度还可以是170℃、175℃、180℃、185℃、190℃、195℃或者其他数值。例如,在一个具体示例中,控制所述电池片的正面的加热温度为165℃,在另一个具体示例中,控制所述电池片的正面的加热温度为200℃。不难理解,在其他具体示例中,控制所述电池片的正面的加热温度还可以是170℃、175℃、180℃、185℃、190℃、195℃或者其他数值。控制所述电池片的背面的加热温度与控制所述电池片的正面的加热温度可以相同。
在其中一些实施例中,参见图1所示,第一加热组件102与第二加热组件103之间的间距为20-25cm。第一加热组件102与第二加热组件103之间的间距需要在一定的范围内。当 第一加热组件102与第二加热组件103之间的间距大于25cm时,则电池片40的烧结固化效果差,烧结固化完成度低。当第一加热组件102与第二加热组件103之间的间距小于20cm距离时,则第一加热组件102与第二加热组件103之间的温度过高,会超过230℃,不符合电池片40的烧结最大温度限制,由于RESH电池使用特殊的非晶硅和TCO镀膜,因此第一加热组件102与第二加热组件103之间的间距过小时一方面不利于背面副栅银线内的有机物和其他杂质更容易被烧结以及抽走,另一方面会因局部高温易损伤电池片40。
在其中一些实施例中,对烧结固化处理时的环境进行排气处理。
在其中一些实施例中,排风组件包括第一排风部件104与第二排风部件105,第一排风部件104用于排除固化箱体101内的气体,第二排风部件105用于排除固化箱体101内的有机气体。控制第一排风部件104排除烧结固化处理时的环境中的气体,控制第二排风部件105排除烧结固化处理时的环境中的有机气体。需要说明的是,第一排风部件104可以是普通的抽风机、吸风机等结构,第一排风部件104可以将固化箱体101内的所有其他排出。第二排风部件105可以由不锈钢管道、有机排风机、有机塔组成。第二排风部件105能够将固化箱体101内烧结烘干过程中产生的有机物排出并送入有机塔。
上述太阳电池制备方法中,通过设置第一排风部件104与第二排风部件105,能够分别排除固化箱体101内的气体,以及排除固化箱体101内的有机气体,减少烧结固化工序中硫化物的含量,尽可能地避免空气中硫化物和氧气接触和进入电池片40内部进行氧化反应,减少或者避免电池片40银线发黑氧化,提高电池片40导电性能,提高电池片40转换效率。
在其中一些实施例中,控制第一加热组件102的温度为165℃-200℃,控制第二加热组件103的温度为165℃-200℃。上述太阳电池制备方法中,通过控制第一加热组件102的温度为165℃-200℃,控制第二加热组件103的温度为165℃-200℃,能够加快电池片40背面银线内的有机物和其他杂质被烧结去除,提高固化效果和固化效率,减少或者避免电池片40银线发黑氧化。
在其中一些实施例中,太阳电池制备方法还包括如下步骤:
对烧结固化处理后的电池片40进行包装处理,包装处理时,将烧结固化处理后的电池片40置于包装装置20中,参见图2所示,包装装置20包括包装箱体201以及过滤组件, 过滤组件连接于包装箱体201以用于过滤包装箱体201内的气体。传统技术中一般采用的是先对电池片40检效率后测外观,这样势必导致一部分电池片40在空气中置留,空气中的氧气等与电池片40表面的Ag发生氧化还原反应,造成晶硅电池部分氧化,因此包装环境会导致晶硅电池氧化。基于此,上述太阳电池制备方法中,通过新的包装方法对成品电池片40进行包装,单独设置包装检测区域以及包装装置20,隔绝外界空气,检验区域上方安装一种空气过滤组件,包装处理时,包装装置20通过过滤组件过滤包装环境中的气体中含有的颗粒杂质,提高包装环境洁净程度。
在其中一些实施例中,过滤组件包括FFU过滤器202以及化学过滤器203。上述太阳电池制备方法中,通过设置FFU过滤器202以及化学过滤器203,过滤外部杂质和丝网工序的化学气体,减少电池片40在未包装之前与硫化物和空气的接触,减少或者避免电池片40银线发黑氧化。经测试,采用新的包装装置20能够将硫化物降低98%,电池片40暴露空气中放置超过12小时,无氧化现象,完全满足生产、包装需求,因此减少电池片40在未包装之前与硫化物和空气的接触,能够有效减少或者避免电池片40银线发黑氧化。
在其中一些实施例中,包装处理时,包装材料选自无硫纸31。上述太阳电池制备方法中,在包装时采用无硫纸31,具体地,在若干个层叠放置的电池片40的多个表面覆盖无硫纸31,并采用特殊包装设计和流程设计,将电池片40合理有效的保存在包装盒里,防止包装损破导致外部空气进入,进一步地,并对塑封后的电池片40进行抽真空,大大减少包装内部的空气含量,减少电池片40与硫化物和空气的接触,减少电池片40局部氧化现象。
在其中一些实施例中,包装处理时,具体包括如下步骤:
参见图3所示,在若干个层叠放置的电池片40的多个表面覆盖无硫纸31,在无硫纸31的外部放置中空板31,将电池片40、无硫纸31以及中空板31整体套设于防锈袋33,采用塑封胶膜34对防锈袋33进行塑封以及抽真空处理。优选地,在若干个层叠放置的电池片40的最外层两个电池片40的表面覆盖无硫纸31。
上述太阳电池制备方法中,在烧结固化处理时,将电池片40置于固化炉10内,由于背面副栅密集(背面副栅线数一般设计为80~108根)较正面(正面正栅线数一般设计为40~60根)多出47%的栅线,电池片40的背面副栅的线数多于正面正栅的线数,因此,本申请 将电池片40的背面副栅朝上且正面正栅朝下,使背面副栅银线内的有机物和其他杂质更容易被烧结以及抽走,加快树脂等有机物挥发以及加快电池片40表面有效粘合,增强欧姆接触,减少电池片40氧化。
本申请的至少一实施例提供了一种太阳电池。
一种太阳电池,采用太阳电池制备方法制备得到。
采用上述的太阳电池制备方法,得到的电池片氧化不良比例由传统技术中6.11%降至0.78%,降幅达87.23%;电池局部氧化不同程度降低,欧姆接触增强,电池效率损失大幅减少,稳定焊接后组件功率提升,组件CTM提升0.44%。
综上,传统技术生产制备得到的电池片40,包装好的电池片40放置30天左右时,重叠放置的电池片40前后2片会出现氧化现象,同时随着时间的增加氧化片数量会逐步增加,其出现氧化片像常规的单晶过电注入是无法解决的。相比传统技术,本申请的太阳电池制备方法采用新型固化方式和包装环境,同时也引进一种新型电池片40包装隔纸和包装流程,解决了210半片电池片40氧化现象,同时避免电池片40降级损失,提升产品A级率以及收益率。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (14)

  1. 一种太阳电池制备方法,其特征在于,包括如下步骤:
    对电池片进行烧结固化处理,所述烧结固化处理时,将所述电池片置于固化炉内,所述电池片的背面副栅朝上且正面正栅朝下,其中,所述电池片的背面副栅的线数多于正面正栅的线数,控制所述固化炉加热使得烧结固化温度不大于230℃。
  2. 根据权利要求1所述的太阳电池制备方法,其特征在于,控制所述电池片的背面的加热温度为165℃~200℃。
  3. 根据权利要求2所述的太阳电池制备方法,其特征在于,控制所述电池片的正面的加热温度为165℃~200℃。
  4. 根据权利要求2所述的太阳电池制备方法,其特征在于,控制第一加热组件与第二加热组件分别对所述电池片的背面、所述电池片的正面加热。
  5. 根据权利要求4所述的太阳电池制备方法,其特征在于,控制所述第一加热组件与所述第二加热组件之间的间距为20cm~25cm。
  6. 根据权利要求1所述的太阳电池制备方法,其特征在于,对烧结固化处理时的环境进行排气处理。
  7. 根据权利要求6所述的太阳电池制备方法,其特征在于,控制第一排风部件排除烧结固化处理时的环境中的气体。
  8. 根据权利要求6所述的太阳电池制备方法,其特征在于,控制第二排风部件排除烧结固化处理时的环境中的有机气体。
  9. 根据权利要求1-8任意一项所述的太阳电池制备方法,其特征在于,所述太阳电池制备方法还包括如下步骤:
    对所述烧结固化处理后的所述电池片进行包装处理。
  10. 根据权利要求9所述的太阳电池制备方法,其特征在于,所述包装处理时,将所述烧结固化处理后的所述电池片置于包装装置中,所述包装装置包括包装箱体以及过滤组件,所述过滤组件连接于所述包装箱体以用于过滤所述包装箱体内的气体。
  11. 根据权利要求10所述的太阳电池制备方法,其特征在于,所述过滤组件包括FFU过滤器以及化学过滤器。
  12. 根据权利要求10所述的太阳电池制备方法,其特征在于,所述包装处理时,包装材料选自无硫纸。
  13. 根据权利要求12所述的太阳电池制备方法,其特征在于,所述包装处理时,具体包括如下步骤:
    在若干个层叠放置的所述电池片的多个表面覆盖所述无硫纸,在所述无硫纸的外部放置中空板,将所述电池片、所述无硫纸以及所述中空板整体套设于防锈袋中,对所述防锈袋进行塑封以及抽真空处理。
  14. 一种太阳电池,其特征在于,采用权利要求1-13任意一项所述的太阳电池制备方法制备得到。
PCT/CN2023/132170 2022-11-18 2023-11-17 太阳电池制备方法以及太阳电池 WO2024104447A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211445834.4A CN115939264B (zh) 2022-11-18 太阳电池制备方法以及太阳电池
CN202211445834.4 2022-11-18

Publications (1)

Publication Number Publication Date
WO2024104447A1 true WO2024104447A1 (zh) 2024-05-23

Family

ID=86654882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/132170 WO2024104447A1 (zh) 2022-11-18 2023-11-17 太阳电池制备方法以及太阳电池

Country Status (1)

Country Link
WO (1) WO2024104447A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105489666A (zh) * 2016-01-12 2016-04-13 山东联星能源集团有限公司 一种喷墨3d打印制备太阳能电池电极的系统及方法
CN109616531A (zh) * 2018-12-03 2019-04-12 江苏中宇光伏科技有限公司 一种太阳能电池片生产中硅片的印刷工艺
CN110957379A (zh) * 2019-11-29 2020-04-03 晋能光伏技术有限责任公司 多栅电极结构和具有其的异质结太阳能电池及其制备方法
CN111146121A (zh) * 2019-12-25 2020-05-12 广东爱旭科技有限公司 一种perc太阳能电池烧结炉及烧结方法
CN113437161A (zh) * 2021-06-24 2021-09-24 韩华新能源(启东)有限公司 太阳能电池片及其制备方法和光伏组件
CN114899251A (zh) * 2022-04-25 2022-08-12 苏州诺菲纳米科技有限公司 低成本、高效的太阳能电池栅线电极的制备方法
CN115939264A (zh) * 2022-11-18 2023-04-07 通威太阳能(安徽)有限公司 太阳电池制备方法以及太阳电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105489666A (zh) * 2016-01-12 2016-04-13 山东联星能源集团有限公司 一种喷墨3d打印制备太阳能电池电极的系统及方法
CN109616531A (zh) * 2018-12-03 2019-04-12 江苏中宇光伏科技有限公司 一种太阳能电池片生产中硅片的印刷工艺
CN110957379A (zh) * 2019-11-29 2020-04-03 晋能光伏技术有限责任公司 多栅电极结构和具有其的异质结太阳能电池及其制备方法
CN111146121A (zh) * 2019-12-25 2020-05-12 广东爱旭科技有限公司 一种perc太阳能电池烧结炉及烧结方法
CN113437161A (zh) * 2021-06-24 2021-09-24 韩华新能源(启东)有限公司 太阳能电池片及其制备方法和光伏组件
CN114899251A (zh) * 2022-04-25 2022-08-12 苏州诺菲纳米科技有限公司 低成本、高效的太阳能电池栅线电极的制备方法
CN115939264A (zh) * 2022-11-18 2023-04-07 通威太阳能(安徽)有限公司 太阳电池制备方法以及太阳电池

Also Published As

Publication number Publication date
CN115939264A (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
Chu et al. Cost effective perovskite solar cells with a high efficiency and open-circuit voltage based on a perovskite-friendly carbon electrode
CN103545013B (zh) 一种局部铝背场晶体硅太阳电池专用铝浆及其制备方法
WO2023116080A1 (zh) 一种高效异质结太阳能电池及制备方法
CN209056507U (zh) 一种mwt异质结硅太阳电池
CN106601916B (zh) 基于异质结阴极缓冲层的有机太阳能电池及其制备方法
CN108198903A (zh) 一种背面镀膜处理的mwt太阳能电池的制备方法
CN208352305U (zh) 一种p型背接触太阳电池
CN109473493A (zh) 一种mwt异质结硅太阳电池及其制备方法
CN109817810A (zh) 一种掺杂三唑离子液体的钙钛矿太阳能电池及制备方法
CN109802043A (zh) 氮硫共掺杂石墨烯量子点钙钛矿吸光层及其制备方法
CN107706246A (zh) 一种背面浆料直接烧穿的背钝化太阳能电池及其制造方法
Fang et al. Ultrathin interdigitated back-contacted silicon solar cell with light-trapping structures of Si nanowire arrays
CN102280519A (zh) 一种利用硼磷共扩散制备高效全背电极n型太阳电池的工艺
CN104900761A (zh) 一种晶体硅太阳能电池生产工艺
WO2024104328A1 (zh) 表面具有铜种子层的硅片及其制备方法、太阳电池
WO2024104447A1 (zh) 太阳电池制备方法以及太阳电池
CN207542252U (zh) 一种晶体硅太阳能电池结构
CN104134706B (zh) 一种石墨烯硅太阳电池及其制作方法
CN101777431A (zh) 二氧化钛包覆的碳纳米管的薄膜电极的制备方法
CN104064623B (zh) 一种提升太阳电池转换效率的后处理方法
CN105489709A (zh) Perc太阳能电池及其制备方法
CN105470319B (zh) 晶体硅太阳能电池点接触背电极结构的制备方法
CN204102912U (zh) 一种石墨烯硅太阳电池
CN110350054A (zh) 一种太阳能晶硅电池片的印刷方法
CN115939264B (zh) 太阳电池制备方法以及太阳电池