WO2024104329A1 - 钙钛矿层的通用处理液、处理方法及应用 - Google Patents

钙钛矿层的通用处理液、处理方法及应用 Download PDF

Info

Publication number
WO2024104329A1
WO2024104329A1 PCT/CN2023/131471 CN2023131471W WO2024104329A1 WO 2024104329 A1 WO2024104329 A1 WO 2024104329A1 CN 2023131471 W CN2023131471 W CN 2023131471W WO 2024104329 A1 WO2024104329 A1 WO 2024104329A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite
treatment
layer
perovskite layer
polar solvent
Prior art date
Application number
PCT/CN2023/131471
Other languages
English (en)
French (fr)
Inventor
丁硕
向超宇
Original Assignee
中国科学院宁波材料技术与工程研究所
宁波杭州湾新材料研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所, 宁波杭州湾新材料研究院 filed Critical 中国科学院宁波材料技术与工程研究所
Publication of WO2024104329A1 publication Critical patent/WO2024104329A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application relates to the technical field of optoelectronic materials, and in particular to a universal treatment liquid, treatment method and application of a perovskite layer.
  • Perovskite materials are widely used in various optoelectronic devices due to their superior potential optoelectronic properties: solar cells (PV), light-emitting diodes (LED), photodetectors, etc.
  • solar cells PV
  • light-emitting diodes LED
  • photodetectors etc.
  • the stability of perovskite materials, especially to adverse environmental factors such as humidity, temperature, light, etc., is still far from meeting the requirements of commercial applications.
  • perovskite optoelectronic devices mainly relies on physical packaging with lower water and oxygen permeability and the addition of additives to perovskite precursors (for example, existing literature 1: Chu, Z. et al. Adv. Mater. 33, e2007169, (2021). Guo, Z. et al. Adv. Mater. 33, e2102246, (2021)), and the improvement of the efficiency of perovskite devices is also highly dependent on the addition of additives.
  • a processing method is needed that can optimize the perovskite structure at the microscopic level and is universal and can be effectively applied to perovskite systems of different components.
  • the purpose of the present application is to provide a universal treatment solution, treatment method and application of perovskite layer.
  • the present application provides a universal treatment solution for a perovskite layer, comprising a polar solvent and a non-polar solvent, wherein the polar solvent contains an amine group and/or a sulfonate group.
  • the volume fraction of the polar solvent in the universal treatment solution is 0.01-5%.
  • the volume fraction of the polar solvent in the universal treatment solution is 1-2%.
  • the volume fraction of the polar solvent in the universal treatment liquid includes any one or a combination of two or more of n-pentylamine, n-hexylamine, n-heptylamine, n-octylamine, pentanesulfonic acid, hexanesulfonic acid and heptanesulfonic acid.
  • the volume fraction of the polar solvent is 0.01-2%.
  • the volume fraction of the polar solvent is 0.5-1%.
  • non-polar solvent includes any one or a combination of two or more of aromatics, esters, alkanes, and halogenated hydrocarbons.
  • the non-polar solvent includes any one or a combination of two or more of benzene, benzene derivatives, ethyl acetate, methyl acetate, n-hexane, n-octane, chloroform, and carbon tetrachloride.
  • the present application also provides a general processing method for a perovskite layer, comprising:
  • the temperature of the modification treatment is 0-50°C.
  • step 3) specifically includes:
  • the modified perovskite layer is subjected to annealing treatment.
  • the annealing treatment is performed at a temperature of 60-150° C. and for a time of 10-600 s.
  • the present application also provides a perovskite layer obtained by the above-mentioned general treatment method. Compared with before the treatment, the surface average roughness and film defect density of the perovskite layer are reduced, and the content of the nano-thin sheet phase structure is reduced.
  • the average surface roughness of the perovskite layer is below 2.0 nm, and the film defect density is below 0.9 ⁇ 10 ⁇ 16 cm -3 .
  • the perovskite layer does not contain a thin nanosheet phase structure.
  • the present application also provides a perovskite photoelectric device, comprising a first transmission layer, a perovskite layer and a second
  • the perovskite layer is disposed between the first and second transport layers, and the perovskite layer is modified by the general treatment method.
  • the present application also provides a method for manufacturing a perovskite photoelectric device, comprising:
  • the perovskite layer is modified by the general treatment method mentioned above;
  • the step of forming a second transmission layer on the surface of the perovskite layer after the modification treatment is a step of forming a second transmission layer on the surface of the perovskite layer after the modification treatment.
  • the beneficial effects of the present application include at least:
  • the universal treatment liquid and treatment method provided in the present application utilize the selective solubility of perovskite materials in polar solvents and non-polar solvents to react with various defects or non-ideal phases formed in the preparation process of perovskite, remove defects and harmful non-ideal phases that cause perovskite degradation, and significantly improve the performance of perovskite materials. Moreover, since its working principle does not change with the type and composition of perovskite materials, it has a significant effect on perovskite materials of almost all compositions currently available.
  • the crystal quality of the perovskite layer obtained after treatment is significantly improved, specifically in terms of surface roughness, defect density and internal crystal phase, thereby improving the photoelectric conversion performance of the perovskite layer;
  • the general treatment method provided by the present invention has low requirements on treatment temperature and treatment equipment, which is very conducive to promotion and application in industry;
  • the materials of the general treatment method provided by the present invention are selected from common solvents, and the cost is low.
  • FIG1 is a schematic flow chart of a general method for treating a perovskite layer provided in a typical implementation case of the present application;
  • FIG2a is a current efficiency test diagram of a perovskite device provided in a typical implementation case and a comparative case of the present application;
  • FIG2b is a graph showing the operating life test of a perovskite device provided in a typical implementation case and a comparative case of the present application;
  • FIG3 is a schematic diagram of the principle of a general processing method provided by a typical implementation case and a comparative case of the present application;
  • FIG4 is a photo of the surface morphology test before and after treatment by a general treatment method provided in a typical implementation case of the present application;
  • FIG5 is a defect density test diagram before and after processing by a general processing method provided in a typical implementation case of the present application.
  • FIG6 is an absorption spectrum test diagram before and after treatment by a general treatment method provided in a typical implementation case of the present application.
  • an embodiment of the present application provides a universal treatment solution for a perovskite layer, comprising a polar solvent and a non-polar solvent, wherein the polar solvent contains amine groups and/or sulfonate groups.
  • the polar solvent may include any one or a combination of two or more of n-pentylamine, n-hexylamine, n-heptylamine, n-octylamine, pentanesulfonic acid, hexanesulfonic acid, and heptanesulfonic acid, but is not limited thereto.
  • the polar solvents used in the present application are not limited to the above-mentioned illustrative range, and other amines or organic sulfonic acids with similar molecular structures may also be used. Based on the actual research and development experience of the inventors of the present application, the number of amine groups in the molecules of the polar solvents used can be 1-2, and the sulfonate group can usually only have 1. This is because too many polar groups may cause the molecular polarity of the polar solvent to be too strong, resulting in the dissolution or damage of the perovskite film.
  • amine substances and sulfonic acid substances are prone to acid-base neutralization reaction after mixing. Therefore, mixed amine polar solvents and sulfonic acid polar solvents may react and fail to achieve technical effects; however, if a molecule having both an amine group and a sulfonic acid group and having a steric hindrance and not undergoing intramolecular reaction is provided as the polar solvent, it is also possible. Therefore, the scope of implementation of the present application does not exclude the presence of both amine groups and sulfonic acid groups in the treatment liquid.
  • the volume fraction of the polar solvent in the universal treatment liquid can be 0.01-5%. In a more preferred embodiment, it is further preferably 0.5-2%.
  • the implementation range of this optimal volume fraction is summarized by the inventors through multiple experiments. When its value is too high, it will cause structural damage or even complete dissolution of the perovskite film; when it is too low, it will reduce the treatment efficiency, resulting in incomplete film reaction and inability to fully improve the photoelectric performance.
  • the volume fraction of the polar solvent may be 0.01-2%, in a more preferred embodiment, further preferably 0.5-1%, similarly, too high will cause structural damage or even complete dissolution of the perovskite film, too low will reduce the processing efficiency, resulting in incomplete film reaction, and the photoelectric performance cannot be fully improved.
  • the volume fraction can be 0.01-5%, in a more preferred embodiment, further preferably 0.5-1%, similarly, too high will cause structural damage or even complete dissolution of the perovskite film, too low will reduce the processing efficiency, resulting in incomplete film reaction, and the photoelectric performance cannot be fully improved.
  • the non-polar solvent may include, for example, any one of aromatics, esters, alkanes, and halogenated hydrocarbons, or a combination of two or more thereof.
  • the non-polar solvent may include, for example, benzene, benzene derivatives, ethyl acetate, methyl acetate, n-hexane, n-octane, chloroform, carbon tetrachloride, any one or a combination of two or more thereof, and is not limited thereto;
  • the main function of the non-polar solvent is, on the one hand, to dissolve the polar solvent and adjust the concentration of the polar solvent, and on the other hand, to cooperate with the polar solvent to selectively dissolve the perovskite to improve the crystal quality of the perovskite. Therefore, the selection of other specific non-polar solvents with similar molecular structure or solubility different from the range of the above examples can also achieve similar effects.
  • the present embodiment also provides a general method for processing a perovskite layer, comprising the following steps:
  • the time of contact reaction with the perovskite layer needs to be deliberately controlled, and the time is precisely controlled in seconds. This is because the addition of polar solvents makes the treatment liquid more soluble in perovskite. If the treatment time is not properly controlled, the treatment effect cannot be formed if the time is too short. If the time is slightly extended, the perovskite film will be damaged and dissolved, thereby significantly reducing the performance of the perovskite layer. In severe cases, all photoelectric conversion performance may even be directly lost.
  • the temperature of the modification treatment is 0-50°C.
  • step 3) may specifically include the following steps:
  • the modified perovskite layer is dried.
  • the modified perovskite layer is subjected to annealing treatment.
  • the annealing treatment is performed at a temperature of 60-150° C. and for a time of 10-600 s.
  • FIG3 shows the principle of the above treatment method.
  • This universal treatment solution for improving the performance of perovskite can utilize the selective solubility of perovskite materials in polar solvents and non-polar solvents to react with various defects or non-ideal phases formed during the preparation of perovskite, remove defects and harmful non-ideal phases that cause perovskite degradation, and significantly improve the performance of perovskite materials. Since its working principle does not change with the type and composition of perovskite materials, it is effective for almost all perovskite materials currently available. Mineral materials have significant effects.
  • the embodiments of the present application provide a general liquid treatment method for improving the stability of perovskite, wherein the main components of the treatment liquid used include polar solvents and non-polar solvents.
  • the polar solvent is mainly an organic small molecule or ion containing an amine or sulfonate group
  • the non-polar solvent is mainly composed of benzene and its derivatives.
  • the relative proportion of the polar and non-polar parts in the treatment liquid should be controlled within a specific range to ensure the treatment effect.
  • the pre-prepared perovskite layer can be completely immersed in the treatment solution, and after the reaction is fully reacted for a few seconds, it can be taken out and the wet perovskite surface can be dried.
  • Annealing treatment can be used as an optional subsequent treatment method to accelerate the volatilization of the treatment solution and shorten the treatment time.
  • the universal treatment solution can be used for perovskite materials with various components.
  • the treatment method of the treatment liquid is not limited to immersion. Since the treatment time is extremely short, it is not necessary to completely immerse the perovskite layer in the reaction liquid for a long time (10-120 minutes) as in the prior art, but the treatment liquid can pass through the surface of the perovskite layer. In addition, it does not need to be heated (80-200°C) and kept warm as in the prior art. It can fully react at room temperature or even below room temperature, and there is no need to match a special reaction container. Therefore, the same technical effect can be achieved by using simple treatment methods such as spraying and dripping.
  • the technical method provided by the prior art cannot achieve the efficiency and convenience of the treatment method provided in the embodiment of the present application, and its cost is naturally much higher than that of the present application.
  • the pre-prepared perovskite layer is completely drip-coated and immersed in 300 microliters of the mixed treatment solution, and after the reaction is sufficient, it is taken out and the wet perovskite surface is dried.
  • Annealing is an optional subsequent treatment method that can accelerate the volatilization of the treatment solution and shorten the treatment time.
  • the annealing temperature can be selected to be the same or similar to the perovskite annealing temperature, usually between 60 and 150°C.
  • the current efficiency of the prepared perovskite light-emitting diode can be increased to more than twice that of the untreated device, and the operating life is increased by more than two orders of magnitude.
  • the present application also provides a perovskite layer obtained by the general treatment method provided by any of the above embodiments. Compared with before the treatment, the surface average roughness and film defect density of the perovskite layer are reduced, and the content of the nano-thin sheet phase structure is reduced.
  • the average surface roughness of the perovskite layer is below 2.0 nm, and the film defect density is below 0.9 ⁇ 10 ⁇ 16 cm -3 .
  • the perovskite layer does not contain a thin nanosheet phase structure. Specific film characteristics are shown in the following examples.
  • An embodiment of the present application also provides a perovskite photoelectric device, comprising a first transmission layer, a perovskite layer and a second transmission layer, wherein the perovskite layer is arranged between the first transmission layer and the second transmission layer, and the perovskite layer is modified by the general processing method provided in any of the above embodiments.
  • the present application also provides a method for manufacturing a perovskite photoelectric device, comprising the following steps:
  • the step of forming a first transmission layer is a first transmission layer.
  • the step of forming a perovskite layer on the surface of the first transmission layer is a step of forming a perovskite layer on the surface of the first transmission layer.
  • the perovskite layer is modified by using the general treatment method provided in any of the above embodiments.
  • the step of forming a second transmission layer on the surface of the perovskite layer after the modification treatment is a step of forming a second transmission layer on the surface of the perovskite layer after the modification treatment.
  • This embodiment illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, as shown below:
  • a glass substrate with an indium tin oxide electrode prepared in advance is provided, wherein the electrode thickness is 100 nm and the glass thickness is 0.7 cm.
  • a hole transport layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) material with a thickness of 50 nm was formed on the substrate by spin coating and drying.
  • the perovskite layer of the formamidinium lead bromide perovskite material with a thickness of 50 nm is formed by spin coating and drying.
  • a universal treatment solution is prepared by mixing an amine-based polar solvent n-hexylamine and benzene, in which the volume fraction of the amine-based polar solvent is 0.01%. Then 300 ⁇ L of the treatment solution is dropwise applied to the perovskite layer, kept at room temperature (about 25°C) for 5 seconds, and then annealed at 80°C for 60 seconds to form a treated perovskite layer.
  • An electron transport layer of 1,3,5-tri(1-phenyl-1H-benzimidazol-2-yl)benzene material with a thickness of 40 nm was formed by vapor deposition on the perovskite layer.
  • Electrodes are formed to electrically connect the hole transport layer and the electron transport layer, respectively, and finally a perovskite light-emitting diode is formed.
  • This embodiment illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, which is substantially the same as that of Embodiment 1, except that:
  • the volume fraction of the amine-based polar solvent in the universal treatment solution is 1%.
  • This embodiment illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, which is substantially the same as that of Embodiment 1, except that:
  • the volume fraction of the amine-based polar solvent in the universal treatment solution is 5%.
  • This comparative example illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, which is substantially the same as that of Example 1, except that:
  • This comparative example illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, which is substantially the same as that of Example 1, except that:
  • the volume fraction of the amine-based polar solvent in the universal treatment solution is 10%.
  • the light-emitting diodes provided in the above-mentioned embodiments 1-3 and comparative examples 1-1 and 1-2 were subjected to luminous efficiency tests and operating life tests, wherein the luminous efficiency test is to scan the maximum luminous efficiency of the light-emitting diode in the voltage range of 0 to 10 volts under the environmental conditions of room temperature (about 25°C) and medium humidity (30 to 80%), and the operating life test is to adjust the voltage so that the brightness reaches the initial brightness under the environmental conditions of room temperature (about 25°C) and medium humidity (30 to 80%), and ensure the life of the light-emitting diode when it operates under the corresponding constant current.
  • the luminous efficiency test is to scan the maximum luminous efficiency of the light-emitting diode in the voltage range of 0 to 10 volts under the environmental conditions of room temperature (about 25°C) and medium humidity (30 to 80%)
  • the operating life test is to adjust the voltage so that the brightness reaches the initial brightness under the environmental conditions of room temperature (about
  • Table 1 below shows the relationship between the maximum efficiency of the treated perovskite light-emitting diodes and the concentration of the treatment solution used in the above-mentioned embodiments and comparative examples.
  • Example 2 the test results of the light-emitting diodes of Example 2 and Comparative Example 1 are shown in Figures 2a and 2b, respectively. It can be seen that by treating the perovskite material with the universal treatment solution with a concentration of 1% in Example 2, the current efficiency of the prepared perovskite light-emitting diode can be increased to more than twice that of the untreated device, and the operating life is increased by more than two orders of magnitude.
  • This embodiment illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, which is substantially the same as that of Embodiment 1, except that:
  • the amine-based polar solvent in the general treatment solution is replaced by a sulfonate-based polar solvent, and its compound name is heptanesulfonic acid.
  • This embodiment illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, which is substantially the same as that of embodiment 4, except that:
  • the volume fraction of the sulfonate polar solvent in the universal treatment liquid is 1%.
  • This embodiment illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, which is substantially the same as that of embodiment 4, except that:
  • the volume fraction of the sulfonate polar solvent in the universal treatment liquid is 2%.
  • This comparative example illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, which is substantially the same as that of Example 4, except that:
  • This comparative example illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, which is substantially the same as that of Example 4, except that:
  • the volume fraction of the sulfonate polar solvent in the universal treatment liquid is 5%.
  • This comparative example illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, which is substantially the same as that of Example 4, except that:
  • the volume fraction of the sulfonate polar solvent in the universal treatment liquid is 10%.
  • the light emitting diodes provided in the above-mentioned embodiments 4-6 and comparative examples 2-1, 2-2, and 2-3 were subjected to luminous efficiency tests and operating life tests.
  • the following Table 2 shows the relationship between the maximum efficiency of the treated perovskite light emitting diodes and the concentration of the treatment solution used in the above-mentioned embodiments and comparative examples.
  • the conventional mixed treatment liquid is a mixed solvent of chlorobenzene and dimethylformamide, wherein the dimethylformamide
  • the volume content of amine is 1%, and the same treatment time and treatment temperature as in Example 1 are used, and the same drop coating method (300 ⁇ l) is used. Since its reaction activity is significantly lower than that of the present application, its maximum efficiency is only 13.4%, which is much lower than 27.8% of Example 2; at the same time, its operating life is 1/20 of that of Example 2.
  • This comparative example illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, which is substantially the same as that of Example 1, except that:
  • the material of the perovskite layer is replaced with methylamine lead bromide perovskite.
  • This comparative example illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, which is substantially the same as that of Example 1, except that:
  • the material of the perovskite layer is replaced with cesium lead iodine perovskite.
  • the treated perovskite layer has a more uniform and smooth surface morphology than before treatment: measured by atomic force microscopy, its surface roughness is significantly lower than that of the untreated perovskite layer surface.
  • the surface of the untreated perovskite sample exhibits an uneven and rough morphology.
  • its surface After being treated with a universal treatment solution, its surface exhibits a smooth surface morphology, as shown in the figure below.
  • the average surface roughness (RMS) of the untreated perovskite sample is 5.7nm, while the average surface roughness (RMS) of the treated sample is reduced to 1.8nm.
  • This uniform and smooth perovskite surface not only shows the high film quality of the treated sample, but also helps to improve the effective contact between the perovskite layer and other layers in the device.
  • the treated perovskite film has a lower defect density: after treatment with the universal treatment solution, the internal defect density of the film is greatly reduced. Specifically, the internal defect density of the untreated and treated perovskite films is measured by the space charge limited current method. In a typical formamidinium lead bromide perovskite sample, the untreated perovskite film defect density reaches 2.0 ⁇ 10 ⁇ 16cm -3 , while after treatment with the universal treatment solution, the internal defect density is reduced to 0.9 ⁇ 10 ⁇ 16cm -3 .
  • This low defect density perovskite film is not only conducive to the preparation of efficient electroluminescence and high-efficiency perovskite light-emitting diodes, but also greatly improves the stability of the film.
  • the thin nanosheet structure in the treated perovskite film is significantly reduced, so that the typical implementation case does not contain small-sized phase structures such as thin nanosheets ("does not contain” means that it cannot be characterized and measured by corresponding technical means).
  • Small-sized grain structures such as thin nanosheets are one of the main reasons for inducing material instability, which is characterized by short-wavelength absorption peaks.
  • the untreated perovskite film exhibits obvious short-wavelength absorption peaks, such as the absorption peaks near 400nm and 435nm as shown in Figure 6, while the sample treated with a general treatment solution shows a smoothly connected absorption intensity change curve, indicating that there are no small-sized phase structures such as thin nanosheets inside.
  • This embodiment illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, as shown below:
  • a glass substrate with an indium tin oxide electrode prepared in advance is provided, wherein the electrode thickness is 70 nm and the glass thickness is 0.6 cm.
  • a hole transport layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) material with a thickness of 30 nm was formed on the substrate by spin coating and drying.
  • the perovskite layer of the formamidinium lead bromide perovskite material with a thickness of 40 nm is formed by spin coating and drying.
  • a universal treatment solution is prepared by mixing an amine-based polar solvent n-pentylamine and ethyl acetate, in which the volume fraction of the amine-based polar solvent is 1%. Then 300 ⁇ L of the treatment solution is dropped onto the perovskite layer, kept at room temperature (about 25°C) for 2 seconds, and then annealed at 140°C for 10 seconds to form a treated perovskite layer.
  • An electron transport layer of 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene material with a thickness of 30 nm was formed by vapor deposition on the perovskite layer.
  • Electrodes are formed to electrically connect the hole transport layer and the electron transport layer, respectively, and finally a perovskite light-emitting diode is formed.
  • the perovskite layer provided in this embodiment achieved the same improvement, including at least improvements in surface roughness, defect density and nanosheet phase structure.
  • the photoelectric conversion performance and operating life of the prepared perovskite device were also significantly improved compared to before treatment.
  • This embodiment illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, as shown below:
  • a glass substrate with an indium tin oxide electrode prepared in advance is provided, wherein the electrode thickness is 70 nm and the glass thickness is 0.6 cm.
  • a hole transport layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) material with a thickness of 30 nm was formed on the substrate by spin coating and drying.
  • the perovskite layer of the formamidinium lead bromide perovskite material with a thickness of 40 nm is formed by spin coating and drying.
  • a general treatment liquid is prepared by mixing an amine-based polar solvent n-octylamine and n-hexane, wherein the volume fraction of the amine-based polar solvent is 1.5%;
  • 300 ⁇ L of the treatment liquid was droplet coated on the perovskite layer, kept at room temperature (about 25° C.) for 10 seconds, and then annealed at 60° C. for 600 seconds to form a treated perovskite layer.
  • An electron transport layer of 1,3,5-tri(1-phenyl-1H-benzimidazol-2-yl)benzene material with a thickness of 30 nm was formed by vapor deposition on the perovskite layer.
  • Electrodes are formed to electrically connect the hole transport layer and the electron transport layer, respectively, and finally a perovskite light-emitting diode is formed.
  • the perovskite layer provided in this embodiment achieved the same improvement, including at least improvements in surface roughness, defect density and nanosheet phase structure.
  • the photoelectric conversion performance and operating life of the prepared perovskite device were also significantly improved compared to before treatment.
  • This embodiment illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, as shown below:
  • a glass substrate with an indium tin oxide electrode prepared in advance is provided, wherein the electrode thickness is 70 nm and the glass thickness is 0.6 cm.
  • a hole transport layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) material with a thickness of 30 nm was formed on the substrate by spin coating and drying.
  • the perovskite layer of the formamidinium lead bromide perovskite material with a thickness of 40 nm is formed by spin coating and drying.
  • a universal treatment liquid is prepared by mixing pentanesulfonic acid and n-octane, wherein the volume fraction of the amine-based polar solvent is 1.5%;
  • 300 ⁇ L of the treatment liquid was droplet coated on the perovskite layer, kept at room temperature (about 25° C.) for 10 seconds, and then annealed at 60° C. for 600 seconds to form a treated perovskite layer.
  • An electron transport layer of 1,3,5-tri(1-phenyl-1H-benzimidazol-2-yl)benzene material with a thickness of 30 nm was formed by vapor deposition on the perovskite layer.
  • Electrodes are formed to electrically connect the hole transport layer and the electron transport layer, respectively, and finally a perovskite light-emitting diode is formed.
  • the perovskite layer provided in this embodiment achieved the same improvement, including at least improvements in surface roughness, defect density and nanosheet phase structure.
  • the photoelectric conversion performance and operating life of the prepared perovskite device were also significantly improved compared to before treatment.
  • This embodiment illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, as shown below:
  • a glass substrate with an indium tin oxide electrode prepared in advance is provided, wherein the electrode thickness is 70 nm and the glass thickness is 0.6 cm.
  • a hole transport layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) material with a thickness of 30 nm was formed on the substrate by spin coating and drying.
  • the perovskite layer of the formamidinium lead bromide perovskite material with a thickness of 40 nm is formed by spin coating and drying.
  • the general treatment solution is prepared by mixing the amino polar solvent hexanesulfonic acid and chloroform, wherein the volume fraction of the amino polar solvent is 1.5%;
  • 300 ⁇ L of the treatment liquid was droplet coated on the perovskite layer, kept at room temperature (about 25° C.) for 10 seconds, and then annealed at 60° C. for 600 seconds to form a treated perovskite layer.
  • An electron transport layer of 1,3,5-tri(1-phenyl-1H-benzimidazol-2-yl)benzene material with a thickness of 30 nm was formed by vapor deposition on the perovskite layer.
  • Electrodes are formed to electrically connect the hole transport layer and the electron transport layer, respectively, and finally a perovskite light-emitting diode is formed.
  • the perovskite layer provided in this embodiment achieved the same improvement, at least including improvements in surface roughness, defect density and nanosheet phase structure.
  • the photoelectric conversion performance and operating life of the prepared perovskite device have also been significantly improved compared with before treatment.
  • This embodiment illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, as shown below:
  • a glass substrate with an indium tin oxide electrode prepared in advance is provided, wherein the electrode thickness is 70 nm and the glass thickness is 0.6 cm.
  • a hole transport layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) material with a thickness of 30 nm was formed on the substrate by spin coating and drying.
  • the perovskite layer of the formamidinium lead bromide perovskite material with a thickness of 40 nm is formed by spin coating and drying.
  • a universal treatment solution is prepared by mixing an amine-based polar solvent, heptylsulfonic acid, and carbon tetrachloride, wherein the volume fraction of the amine-based polar solvent is 1.5%;
  • 300 ⁇ L of the treatment liquid was droplet coated on the perovskite layer, kept at room temperature (about 25° C.) for 10 seconds, and then annealed at 60° C. for 600 seconds to form a treated perovskite layer.
  • An electron transport layer of 1,3,5-tri(1-phenyl-1H-benzimidazol-2-yl)benzene material with a thickness of 30 nm was formed by vapor deposition on the perovskite layer.
  • Electrodes are formed to electrically connect the hole transport layer and the electron transport layer, respectively, and finally a perovskite light-emitting diode is formed.
  • the perovskite layer provided in this embodiment achieved the same improvement, at least including improvements in surface roughness, defect density and nanosheet phase structure.
  • the photoelectric conversion performance and operating life of the prepared perovskite device have also been significantly improved compared with before treatment.
  • This embodiment illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, as shown below:
  • a glass substrate with an indium tin oxide electrode prepared in advance is provided, wherein the electrode thickness is 70 nm and the glass thickness is 0.6 cm.
  • a hole transport layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) material with a thickness of 30 nm was formed on the substrate by spin coating and drying.
  • the perovskite layer of the formamidinium lead bromide perovskite material with a thickness of 40 nm is formed by spin coating and drying.
  • a universal treatment solution is prepared by mixing an amine-based polar solvent, heptylsulfonic acid, and carbon tetrachloride, wherein the volume fraction of the amine-based polar solvent is 1.5%;
  • 300 ⁇ L of the treatment liquid was droplet coated on the perovskite layer, kept at room temperature (about 25° C.) for 10 seconds, and then annealed at 60° C. for 600 seconds to form a treated perovskite layer.
  • An electron transport layer of 1,3,5-tri(1-phenyl-1H-benzimidazol-2-yl)benzene material with a thickness of 30 nm was formed by vapor deposition on the perovskite layer.
  • Electrodes are formed to electrically connect the hole transport layer and the electron transport layer, respectively, and finally a perovskite light-emitting diode is formed.
  • the perovskite layer provided in this embodiment achieved the same improvement, at least including improvements in surface roughness, defect density and nanosheet phase structure.
  • the photoelectric conversion performance and operating life of the prepared perovskite device have also been significantly improved compared with before treatment.
  • This embodiment illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, as shown below:
  • a glass substrate with an indium tin oxide electrode prepared in advance is provided, wherein the electrode thickness is 70 nm and the glass thickness is 0.6 cm.
  • a hole transport layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) material with a thickness of 30 nm was formed on the substrate by spin coating and drying.
  • the perovskite layer of the formamidinium lead bromide perovskite material with a thickness of 40 nm is formed by spin coating and drying.
  • a universal treatment solution is prepared by mixing an amine-based polar solvent, heptylsulfonic acid, and carbon tetrachloride, wherein the volume fraction of the amine-based polar solvent is 1.5%;
  • 300 ⁇ L of the treatment liquid was droplet coated on the perovskite layer, kept at room temperature (about 25° C.) for 10 seconds, and then annealed at 60° C. for 600 seconds to form a treated perovskite layer.
  • An electron transport layer of 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene material with a thickness of 30 nm was formed by vapor deposition on the perovskite layer.
  • Electrodes are formed to electrically connect the hole transport layer and the electron transport layer, respectively, and finally a perovskite light-emitting diode is formed.
  • the perovskite layer provided in this embodiment achieved the same improvement, at least including improvements in surface roughness, defect density and nanosheet phase structure.
  • the photoelectric conversion performance and operating life of the prepared perovskite device have also been significantly improved compared with before treatment.
  • This embodiment illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, as shown below:
  • a glass substrate with an indium tin oxide electrode prepared in advance is provided, wherein the electrode thickness is 70 nm and the glass thickness is 0.6 cm.
  • a hole transport layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) material with a thickness of 30 nm was formed on the substrate by spin coating and drying.
  • the perovskite layer of the formamidinium lead bromide perovskite material with a thickness of 40 nm is formed by spin coating and drying.
  • a universal treatment solution is prepared by mixing an amine-based polar solvent, heptylsulfonic acid, and carbon tetrachloride, wherein the volume fraction of the amine-based polar solvent is 1.5%;
  • 300 ⁇ L of the treatment liquid was droplet coated on the perovskite layer, kept at room temperature (about 25° C.) for 10 seconds, and then annealed at 60° C. for 600 seconds to form a treated perovskite layer.
  • An electron transport layer of 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene material with a thickness of 30 nm was formed by vapor deposition on the perovskite layer.
  • Electrodes are formed to electrically connect the hole transport layer and the electron transport layer, respectively, and finally a perovskite light-emitting diode is formed.
  • the perovskite layer provided in this embodiment achieved the same improvement, at least including improvements in surface roughness, defect density and nanosheet phase structure.
  • the photoelectric conversion performance and operating life of the prepared perovskite device have also been significantly improved compared with before treatment.
  • This embodiment illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, as shown below:
  • a glass substrate with an indium tin oxide electrode prepared in advance is provided, wherein the electrode thickness is 70 nm and the glass thickness is 0.6 cm.
  • a hole transport layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) material with a thickness of 30 nm was formed on the substrate by spin coating and drying.
  • the perovskite layer of the formamidinium lead bromide perovskite material with a thickness of 40 nm is formed by spin coating and drying.
  • a universal treatment solution is prepared by mixing an amine-based polar solvent, heptylsulfonic acid, and carbon tetrachloride, wherein the volume fraction of the amine-based polar solvent is 1.5%;
  • 300 ⁇ L of the treatment liquid was droplet coated on the perovskite layer, kept at room temperature (about 25° C.) for 10 seconds, and then annealed at 60° C. for 600 seconds to form a treated perovskite layer.
  • An electron transport layer of 1,3,5-tri(1-phenyl-1H-benzimidazol-2-yl)benzene material with a thickness of 30 nm was formed by vapor deposition on the perovskite layer.
  • Electrodes are formed to electrically connect the hole transport layer and the electron transport layer, respectively, and finally a perovskite light-emitting diode is formed.
  • the perovskite layer provided in this embodiment achieved the same improvement, at least including improvements in surface roughness, defect density and nanosheet phase structure.
  • the photoelectric conversion performance and operating life of the prepared perovskite device have also been significantly improved compared with before treatment.
  • This embodiment illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, as shown below:
  • a glass substrate with an indium tin oxide electrode prepared in advance is provided, wherein the electrode thickness is 70 nm and the glass thickness is 0.6 cm.
  • a hole transport layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) material with a thickness of 30 nm was formed on the substrate by spin coating and drying.
  • the perovskite layer of methylamine lead bromide perovskite material with a thickness of 40 nm is formed by spin coating and drying.
  • a universal treatment solution is prepared by mixing an amine-based polar solvent, heptylsulfonic acid, and carbon tetrachloride, wherein the volume fraction of the amine-based polar solvent is 1.5%;
  • 300 ⁇ L of the treatment liquid was droplet coated on the perovskite layer, kept at room temperature (about 25° C.) for 10 seconds, and then annealed at 60° C. for 600 seconds to form a treated perovskite layer.
  • An electron transport layer of 1,3,5-tri(1-phenyl-1H-benzimidazol-2-yl)benzene material with a thickness of 30 nm was formed by vapor deposition on the perovskite layer.
  • Electrodes are formed to electrically connect the hole transport layer and the electron transport layer, respectively, and finally a perovskite light-emitting diode is formed.
  • the perovskite layer provided in this embodiment achieved the same improvement, at least including improvements in surface roughness, defect density and nanosheet phase structure.
  • the photoelectric conversion performance and operating life of the prepared perovskite device have also been significantly improved compared with before treatment.
  • This embodiment illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, as shown below:
  • a glass substrate with an indium tin oxide electrode prepared in advance is provided, wherein the electrode thickness is 70 nm and the glass thickness is 0.6 cm.
  • a hole transport layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) material with a thickness of 30 nm was formed on the substrate by spin coating and drying.
  • the perovskite layer of methylamine lead bromide perovskite material with a thickness of 40 nm is formed by spin coating and drying.
  • a universal treatment solution is prepared by mixing an amine-based polar solvent, heptylsulfonic acid, and carbon tetrachloride, wherein the volume fraction of the amine-based polar solvent is 1.5%;
  • 300 ⁇ L of the treatment liquid was droplet coated on the perovskite layer, kept at room temperature (about 25° C.) for 3 seconds, and then annealed at 60° C. for 600 seconds to form a treated perovskite layer.
  • An electron transport layer of 1,3,5-tri(1-phenyl-1H-benzimidazol-2-yl)benzene material with a thickness of 30 nm was formed by vapor deposition on the perovskite layer.
  • Electrodes are formed to electrically connect the hole transport layer and the electron transport layer, respectively, and finally a perovskite light-emitting diode is formed.
  • the perovskite layer provided in this embodiment achieved the same improvement, at least including improvements in surface roughness, defect density and nanosheet phase structure.
  • the photoelectric conversion performance and operating life of the prepared perovskite device have also been significantly improved compared with before treatment.
  • This embodiment illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, as shown below:
  • a glass substrate with an indium tin oxide electrode prepared in advance is provided, wherein the electrode thickness is 70 nm and the glass thickness is 0.6 cm.
  • a hole transport layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) material with a thickness of 30 nm was formed on the substrate by spin coating and drying.
  • the cesium lead iodine perovskite material is spin-coated and dried to form a perovskite layer with a thickness of 40 nm.
  • a universal treatment solution is prepared by mixing an amine-based polar solvent, heptylsulfonic acid, and carbon tetrachloride, wherein the volume fraction of the amine-based polar solvent is 1.5%;
  • 300 ⁇ L of the treatment liquid was droplet coated on the perovskite layer, kept at room temperature (about 25° C.) for 4 seconds, and then annealed at 60° C. for 600 seconds to form a treated perovskite layer.
  • An electron transport layer of 1,3,5-tri(1-phenyl-1H-benzimidazol-2-yl)benzene material with a thickness of 30 nm was formed by vapor deposition on the perovskite layer.
  • Electrodes are formed to electrically connect the hole transport layer and the electron transport layer, respectively, and finally a perovskite light-emitting diode is formed.
  • the perovskite layer provided in this embodiment achieved the same improvement, at least including improvements in surface roughness, defect density and nanosheet phase structure.
  • the photoelectric conversion performance and operating life of the prepared perovskite device have also been significantly improved compared with before treatment.
  • This embodiment illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, as shown below:
  • a glass substrate with an indium tin oxide electrode prepared in advance is provided, wherein the electrode thickness is 70 nm and the glass thickness is 0.6 cm.
  • a hole transport layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) material with a thickness of 30 nm was formed on the substrate by spin coating and drying.
  • the cesium lead iodine perovskite material is spin-coated and dried to form a perovskite layer with a thickness of 40 nm.
  • a universal treatment solution is prepared by mixing an amine-based polar solvent, heptylsulfonic acid, and carbon tetrachloride, wherein the volume fraction of the amine-based polar solvent is 1.5%;
  • 300 ⁇ L of the treatment liquid was droplet coated on the perovskite layer, kept at room temperature (about 25° C.) for 7 seconds, and then annealed at 60° C. for 600 seconds to form a treated perovskite layer.
  • An electron transport layer of 1,3,5-tri(1-phenyl-1H-benzimidazol-2-yl)benzene material with a thickness of 30 nm was formed by vapor deposition on the perovskite layer.
  • Electrodes are formed to electrically connect the hole transport layer and the electron transport layer, respectively, and finally a perovskite light-emitting diode is formed.
  • the perovskite layer provided in this embodiment achieved the same improvement, at least including improvements in surface roughness, defect density and nanosheet phase structure.
  • the photoelectric conversion performance and operating life of the prepared perovskite device have also been significantly improved compared with before treatment.
  • This embodiment illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, as shown below:
  • a glass substrate with an indium tin oxide electrode prepared in advance is provided, wherein the electrode thickness is 70 nm and the glass thickness is 0.6 cm.
  • a hole transport layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) material with a thickness of 30 nm was formed on the substrate by spin coating and drying.
  • the cesium lead iodine perovskite material is spin-coated and dried to form a perovskite layer with a thickness of 40 nm.
  • a universal treatment solution is prepared by mixing an amine-based polar solvent, heptylsulfonic acid, and carbon tetrachloride, wherein the volume fraction of the amine-based polar solvent is 1.5%;
  • 300 ⁇ L of the treatment liquid was droplet coated on the perovskite layer, kept at room temperature (about 25° C.) for 5 seconds, and then annealed at 60° C. for 600 seconds to form a treated perovskite layer.
  • An electron transport layer of 1,3,5-tri(1-phenyl-1H-benzimidazol-2-yl)benzene material with a thickness of 30 nm was formed by vapor deposition on the perovskite layer.
  • Electrodes are formed to electrically connect the hole transport layer and the electron transport layer, respectively, and finally a perovskite light-emitting diode is formed.
  • the perovskite layer provided in this embodiment achieved the same improvement, at least including improvements in surface roughness, defect density and nanosheet phase structure.
  • the photoelectric conversion performance and operating life of the prepared perovskite device have also been significantly improved compared with before treatment.
  • This embodiment illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, as shown below:
  • a glass substrate with an indium tin oxide electrode prepared in advance is provided, wherein the electrode thickness is 70 nm and the glass thickness is 0.6 cm.
  • a hole transport layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) material with a thickness of 30 nm was formed on the substrate by spin coating and drying.
  • the perovskite layer of the formamidinium lead bromide perovskite material with a thickness of 40 nm is formed by spin coating and drying.
  • a universal treatment solution is prepared by mixing an amine-based polar solvent, heptylsulfonic acid, and carbon tetrachloride, wherein the volume fraction of the amine-based polar solvent is 1.5%;
  • 300 ⁇ L of the treatment liquid was droplet coated on the perovskite layer, kept at a slightly high temperature (about 45° C.) for 10 seconds, and then annealed at 60° C. for 600 seconds to form a treated perovskite layer.
  • An electron transport layer of 1,3,5-tri(1-phenyl-1H-benzimidazol-2-yl)benzene material with a thickness of 30 nm was formed by vapor deposition on the perovskite layer.
  • Electrodes are formed to electrically connect the hole transport layer and the electron transport layer, respectively, and finally a perovskite light-emitting diode is formed.
  • the perovskite layer provided in this embodiment achieved the same improvement, at least including improvements in surface roughness, defect density and nanosheet phase structure.
  • the photoelectric conversion performance and operating life of the prepared perovskite device have also been significantly improved compared with before treatment.
  • This embodiment illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, as shown below:
  • a glass substrate with an indium tin oxide electrode prepared in advance is provided, wherein the electrode thickness is 70 nm and the glass thickness is 0.6 cm.
  • a hole transport layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) material with a thickness of 30 nm was formed on the substrate by spin coating and drying.
  • the perovskite layer of the formamidinium lead bromide perovskite material with a thickness of 40 nm is formed by spin coating and drying.
  • a universal treatment solution is prepared by mixing an amine-based polar solvent, heptylsulfonic acid, and carbon tetrachloride, wherein the volume fraction of the amine-based polar solvent is 1.5%;
  • 300 ⁇ L of the treatment liquid was droplet coated on the perovskite layer, kept at a slightly high temperature (about 50° C.) for 10 seconds, and then annealed at 60° C. for 600 seconds to form a treated perovskite layer.
  • An electron transport layer of 1,3,5-tri(1-phenyl-1H-benzimidazol-2-yl)benzene material with a thickness of 30 nm was formed by vapor deposition on the perovskite layer.
  • Electrodes are formed to electrically connect the hole transport layer and the electron transport layer, respectively, and finally a perovskite light-emitting diode is formed.
  • the perovskite layer provided in this embodiment achieved the same improvement, at least including improvements in surface roughness, defect density and nanosheet phase structure.
  • the photoelectric conversion performance and operating life of the prepared perovskite device have also been significantly improved compared with before treatment.
  • This embodiment illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, as shown below:
  • a glass substrate with an indium tin oxide electrode prepared in advance is provided, wherein the electrode thickness is 70 nm and the glass thickness is 0.6 cm.
  • a hole transport layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) material with a thickness of 30 nm was formed on the substrate by spin coating and drying.
  • the perovskite layer of the formamidinium lead bromide perovskite material with a thickness of 40 nm is formed by spin coating and drying.
  • a universal treatment solution is prepared by mixing an amine-based polar solvent, heptylsulfonic acid, and carbon tetrachloride, wherein the volume fraction of the amine-based polar solvent is 1.5%;
  • An electron transport layer of 1,3,5-tri(1-phenyl-1H-benzimidazol-2-yl)benzene material with a thickness of 30 nm was formed by vapor deposition on the perovskite layer.
  • Electrodes are formed to electrically connect the hole transport layer and the electron transport layer, respectively, and finally a perovskite light-emitting diode is formed.
  • the perovskite layer provided in this embodiment achieved the same improvement, at least including improvements in surface roughness, defect density and nanosheet phase structure.
  • the photoelectric conversion performance and operating life of the prepared perovskite device have also been significantly improved compared with before treatment.
  • This embodiment illustrates a preparation process of a perovskite device, which includes a treatment process for a perovskite layer, as shown below:
  • a glass substrate with an indium tin oxide electrode prepared in advance is provided, wherein the electrode thickness is 70 nm and the glass thickness is 0.6 cm.
  • a hole transport layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) material with a thickness of 30 nm was formed on the substrate by spin coating and drying.
  • the perovskite layer of the formamidinium lead bromide perovskite material with a thickness of 40 nm is formed by spin coating and drying.
  • a universal treatment solution is prepared by mixing an amine-based polar solvent, heptylsulfonic acid, and carbon tetrachloride, wherein the volume fraction of the amine-based polar solvent is 1.5%;
  • An electron transport layer of 1,3,5-tri(1-phenyl-1H-benzimidazol-2-yl)benzene material with a thickness of 30 nm was formed by vapor deposition on the perovskite layer.
  • Electrodes are formed to electrically connect the hole transport layer and the electron transport layer, respectively, and finally a perovskite light-emitting diode is formed.
  • the perovskite layer provided in this embodiment achieved the same improvement, at least including improvements in surface roughness, defect density and nanosheet phase structure.
  • the photoelectric conversion performance and operating life of the prepared perovskite device have also been significantly improved compared with before treatment.
  • the universal treatment solution and treatment method provided in the examples of the present application utilize the selective solubility of the perovskite material in polar solvents and non-polar solvents to react with various defects or non-ideal phases formed during the preparation of the perovskite, remove the defects and harmful non-ideal phases that cause the degradation of the perovskite, and significantly improve the performance of the perovskite material. Since its working principle does not change with the type and composition of the perovskite material, it has a significant effect on perovskite materials of almost all current compositions.
  • the treatment method provided in the present application has an extremely short treatment time and low requirements for treatment temperature and treatment equipment, which significantly improves the treatment efficiency of the perovskite layer and reduces the treatment cost, and is very conducive to promotion and application in the industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Chemically Coating (AREA)

Abstract

本申请公开了一种钙钛矿层的通用处理液、处理方法及应用。所述通用处理液包括极性溶剂和非极性溶剂,极性溶剂包含胺基和/或磺酸根。所述处理方法包括:提供钙钛矿层;使钙钛矿层与通用处理液接触,进行改性处理;去除通用处理液。本申请所提供的通用处理液及处理方法能够显著提高钙钛矿材料的性能,且由于其作用原理不会随着钙钛矿材料的种类与成分变化而变化,所以对目前几乎所有成分的钙钛矿材料均具有显著效果;同时,由于本申请的通用处理液具有极强的反应活性,因此处理方法处理时间极短,对处理温度和处理设备要求较低,显著提高了钙钛矿层的处理效率和降低了处理成本,非常有利于在产业上进行推广应用。

Description

钙钛矿层的通用处理液、处理方法及应用
本申请基于并要求于2022年11月15日递交的申请号为202211431134X、发明名称为“钙钛矿层的通用处理液、处理方法及应用”的中国专利申请的优先权。
技术领域
本申请涉及光电材料技术领域,尤其涉及一种钙钛矿层的通用处理液、处理方法及应用。
背景技术
钙钛矿材料因为其优越的潜在光电特性,而广泛应用于各类光电器件:太阳能电池(PV)、发光二极管(LED)、光电探测器等等领域之中。然而,目前钙钛矿材料的稳定性,尤其对不利环境因素,例如湿度、温度、光照等,的稳定性依旧远远无法达到商业应用的要求。
同时,各类钙钛矿器件的效率依旧有提升的空间。因此,综合提高钙钛矿材料的性能十分必要。当前,钙钛矿光电器件的稳定性提升主要依赖更低水氧渗透率的物理封装和在钙钛矿前驱体中加入添加剂实现(例如现有文献1:Chu,Z.et al.Adv.Mater.33,e2007169,(2021).Guo,Z.et al.Adv.Mater.33,e2102246,(2021)),而对于钙钛矿器件效率的提升也高度依赖于添加剂的加入。
但是目前采用的传统的提高钙钛矿性能的方法中,物理封装效果的提升需要昂贵且复杂的高真空设备,器件结构复杂且制造成本大幅度提高,同时没有从根本上解决钙钛矿的稳定性问题,一旦封装失效器件将很快损坏。
而在前驱体中加入添加剂的方案则具有相当的特异性,特定的添加剂往往只对特定的材料体系有效,难以推广到具有其他组分的钙钛矿体系中,同时也提高了研发的难度和成本。因此,研发一种通用且简便的能够有效提高各种组分钙钛矿性能的处理方法就显得尤为必要。
想要从根本上提高钙钛矿的性能,需要一种能够从微观上优化钙钛矿结构的处理方法,并具有通用性,可以有效应用于不同组分的钙钛矿体系。
而现有技术中,提供的一些通用于不同钙钛矿体系的处理液,例如现有专利文献2:CN111628091A-一种溶剂浴辅助热处理改善钙钛矿薄膜质量的方法,这些现有技术需要较长的处理时间、较高的处理温度以及需要特定的反应设备等,一方面降低了处理效率,另一方面提高了处理成本,不利于钙钛矿光电器件的推广应用。
发明内容
针对现有技术的不足,本申请的目的在于提供一种钙钛矿层的通用处理液、处理方法及应用。
为实现前述申请目的,本申请采用的技术方案包括:
第一方面,本申请提供一种钙钛矿层的通用处理液,包括极性溶剂和非极性溶剂,所述极性溶剂包含胺基和/或磺酸根。
进一步地,所述通用处理液中极性溶剂的体积分数为0.01-5%。
进一步地,所述通用处理液中极性溶剂的体积分数为1-2%。
进一步地,所述通用处理液中极性溶剂的体积分数所述极性溶剂包括正戊胺、正己胺、正庚胺、正辛胺、戊磺酸、己磺酸以及庚磺酸中的任意一种或两种以上的组合。
进一步地,当所述极性溶剂仅包含磺酸根时,所述极性溶剂的体积分数为0.01-2%。
进一步地,当所述极性溶剂仅包含磺酸根时,所述极性溶剂的体积分数为0.5-1%。
进一步地,所述非极性溶剂包括芳香类、酯类、烷烃类、卤代烃类中的任意一种或两种以上的组合。
进一步地,所述非极性溶剂包括苯、苯衍生物、乙酸乙酯,乙酸甲酯、正己烷、正辛烷、氯仿,四氯化碳中的任意一种或两种以上的组合
第二方面,本申请还提供一种钙钛矿层的通用处理方法,包括:
1)提供钙钛矿层;
2)使所述钙钛矿层与上述通用处理液接触,进行改性处理,所述改性处理的时间为2-10s;
3)去除经过所述改性处理的钙钛矿层中的通用处理液。
进一步地,所述改性处理的温度为0-50℃。
进一步地,步骤3)具体包括:
对经过所述改性处理的钙钛矿层进行干燥处理;
或,对经过所述改性处理的钙钛矿层进行退火处理。
进一步地,所述退火处理的温度为60-150℃,时间为10-600s。
第三方面,本申请还提供一种经由上述通用处理方法处理获得的钙钛矿层,相比于处理前,所述钙钛矿层的表面平均粗糙度和膜层缺陷密度降低、纳米薄片相结构的含量减少。
进一步地,所述钙钛矿层的表面平均粗糙度在2.0nm以下,膜层缺陷密度在0.9×10^16cm-3以下。
进一步地,所述钙钛矿层不含有薄纳米片相结构。
第四方面,本申请还提供了一种钙钛矿光电器件,包括第一传输层、钙钛矿层以及第二 传输层,所述钙钛矿层设置于所述第一传输层和第二传输层之间,所述钙钛矿层经过上述通用处理方法进行改性处理。
第五方面,本申请还提供一种钙钛矿光电器件的制作方法,包括:
形成第一传输层的步骤;
在所述第一传输层表面形成钙钛矿层的步骤;
采用上述通用处理方法对所述钙钛矿层进行改性处理;
在经过所述改性处理的钙钛矿层表面形成第二传输层的步骤。
基于上述技术方案,与现有技术相比,本申请的有益效果至少包括:
1、具有优异的通用性:本申请所提供的通用处理液及处理方法利用钙钛矿材料在极性溶剂和非极性溶剂中的选择溶解性,与钙钛矿制备过程中形成的各类缺陷或非理想相反应,去除引起钙钛矿降解的缺陷和有害的非理想相,显著提高钙钛矿材料的性能,且由于其作用原理不会随着钙钛矿材料的种类与成分变化而变化,所以对目前几乎所有成分的钙钛矿材料均具有显著效果;
2、处理后所获得的钙钛矿层,其晶体质量获得显著提升,具体表现在表面粗糙度、缺陷密度以及内部晶相方面均获得显著改善,从而提高了钙钛矿层的光电转换性能;
3、由于本申请所提供的通用处理液中的特定基团具有极强的反应活性,因此本申请提供的处理方法处理时间极短显著提高了处理效率;
4、本发明所提供的通用处理方法对处理温度和处理设备要求较低,非常有利于在产业上进行推广应用;
5、本发明所提供的通用处理方法的材料选自常见溶剂,成本低廉。
上述说明仅是本申请技术方案的概述,为了能够使本领域技术人员能够更清楚地了解本申请的技术手段,并可依照说明书的内容予以实施,以下以本申请的较佳实施例并配合详细附图说明如后。
附图说明
图1是本申请一典型实施案例提供的钙钛矿层的通用处理方法的流程示意图;
图2a是本申请一典型实施案例和对比案例提供的钙钛矿器件的电流效率测试图;
图2b是本申请一典型实施案例和对比案例提供的钙钛矿器件的运行寿命测试图;
图3是本申请一典型实施案例和对比案例提供的通用处理方法的原理示意图;
图4是本申请一典型实施案例提供的通用处理方法处理前后的表面形貌测试照片;
图5是本申请一典型实施案例提供的通用处理方法处理前后的缺陷密度测试图;
图6是本申请一典型实施案例提供的通用处理方法处理前后的吸收光谱测试图。
具体实施方式
现有技术中,提供了一种钙钛矿层的通用处理方法,但是这种方法需要较长的反应时间且只能浸泡反应、较高的反应温度以及需要特定的反应设备,因此不利于大规模的产业应用。
鉴于现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本申请的技术方案。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
而且,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个与另一个具有相同名称的部件或方法步骤区分开来,而不一定要求或者暗示这些部件或方法步骤之间存在任何这种实际的关系或者顺序。
本发明人发现,在通用处理液中,胺基和磺酸根的反应活性远大于现有技术中的极性溶剂,因此,基于上述发现,本申请实施例提供一种钙钛矿层的通用处理液,包括极性溶剂和非极性溶剂,所述极性溶剂包含胺基和/或磺酸根。
在一些实施方案中,所述极性溶剂可以包括正戊胺、正己胺、正庚胺、正辛胺、戊磺酸、己磺酸以及庚磺酸中的任意一种或两种以上的组合,且并不仅限于此。
需说明,本申请所采用的极性溶剂不仅限于上述示例性的范围,分子结构相似的其他胺或有机磺酸亦可,基于本申请的发明人的实际研发经验,所采用的极性溶剂的分子中的胺基数目可以是1-2个,磺酸根通常只能具有1个,这是由于过多的极性基团数目可能会导致极性溶剂的分子极性过强,导致钙钛矿薄膜的溶解或损伤。
并且,胺类物质和磺酸类物质混合后容易发生酸碱中和反应,因此,混合胺类极性溶剂和磺酸类极性溶剂可能会发生反应而无法起到技术效果;但若提供一种同时具有胺基和磺酸基,且具有空间位阻作用不会发生分子内反应的一种分子作为所述极性溶剂,亦是可能的,因此,本申请的可实施范围不排除处理液中同时含有胺基和磺酸基。
在一些实施方案中,所述通用处理液中极性溶剂的体积分数可以为0.01-5%,在更优的实施方案中,进一步地优选为0.5-2%,该最佳体积分数的实施范围为发明人通过多次试验总结得出,当其数值过高使,会引起钙钛矿薄膜的结构损坏甚至完全溶解;过低时,会降低处理效率,使得薄膜反应不完全,光电性能不能得到充分提升。
在一些实施方案中,当所述极性溶剂仅包含磺酸根时,所述极性溶剂的体积分数可以为 0.01-2%,在更优的实施方案中,进一步地优选为0.5-1%,同样地,过高会引起钙钛矿薄膜的结构损坏甚至完全溶解,过低会降低处理效率,使得薄膜反应不完全,光电性能不能得到充分提升。而当所述极性溶剂仅包含胺基时,体积分数可以为0.01-5%,在更优的实施方案中,进一步地优选为0.5-1%,同样地,过高会引起钙钛矿薄膜的结构损坏甚至完全溶解,过低会降低处理效率,使得薄膜反应不完全,光电性能不能得到充分提升。
在一些实施方案中,所述非极性溶剂例如可以包括芳香类、酯类、烷烃类、卤代烃类中的任意一种或两种以上的组合。
在更加具体的实施方案中,所述非极性溶剂例如可以包括苯、苯衍生物、乙酸乙酯,乙酸甲酯等、正己烷、正辛烷、氯仿,四氯化碳、中的任意一种或两种以上的组合,且不仅限于此;非极性溶剂主要的作用一方面是溶解极性溶剂和调节极性溶剂的浓度,另一方面是与极性溶剂配合对钙钛矿形成选择性溶解来提高钙钛矿的晶体品质,因此选用不同于上述示例的范围的具有相似分子结构或溶解性的其他具体的非极性溶剂也是能够实现近似效果的。
参见图1,本申请实施例还提供一种钙钛矿层的通用处理方法,包括如下的步骤:
1)提供钙钛矿层。
2)使所述钙钛矿层与上述任意实施方式所述的通用处理液接触,进行改性处理,所述改性处理的时间为2-10s。
3)去除经过所述改性处理的钙钛矿层中的通用处理液。
如上所示,在本申请中,不仅仅需要精准地控制所选用的极性溶剂的含量,还需要特意控制与钙钛矿层的接触反应的时间,并且将时间精准地控制在秒级,这是由于极性溶剂的加入使得处理液对于钙钛矿的溶解性是较强的,若处理时间控制不得当,时间过短则无法形成处理效果,时间稍有延长,则对钙钛矿薄膜会产生损伤性溶解,从而断崖式地显著降低钙钛矿层的性能,严重时甚至直接丧失所有光电转换性能。
在一些实施方案中,所述改性处理的温度为0-50℃。
在一些实施方案中,步骤3)具体可以包括如下的步骤:
对经过所述改性处理的钙钛矿层进行干燥处理。
或,对经过所述改性处理的钙钛矿层进行退火处理。
在一些实施方案中,所述退火处理的温度为60-150℃,时间为10-600s。
图3示出了上述处理方法的原理,这种提高钙钛矿性能的通用处理液可以利用钙钛矿材料在极性溶剂和非极性溶剂中的选择溶解性,与钙钛矿制备过程中形成的各类缺陷或非理想相反应,去除引起钙钛矿降解的缺陷和有害的非理想相,显著提高钙钛矿材料的性能。由于其作用原理不会随着钙钛矿材料的种类与成分变化而变化,所以对目前几乎所有成分的钙钛 矿材料均具有显著效果。
作为上述技术方案的一些典型的应用示例,本申请实施例提供的一种提高钙钛矿稳定性的通用液体处理方法,其中使用的处理液的主要成分包括极性溶剂和非极性溶剂两部分。其中极性溶剂主要是含有胺基或磺酸根的有机小分子或离子,非极性溶剂则主要由苯及其衍生物构成。处理液中极性和非极性两部分的相对比例应该控制在特定范围内,以保证处理效果。
使用该通用处理液时,可以将预先制备的钙钛矿层完全浸于处理液中,待反应充分数秒级别后取出,并使湿润的钙钛矿表面干燥即可。而退火处理可以作为可选的后续处理方法,可以加速处理液的挥发,缩短处理时间。该通用处理液可用于具有各种组分的钙钛矿材料。
而该处理液的处理方式不仅限于浸没,由于处理时间极短,不需要像现有技术中那样将钙钛矿层长时间(10-120分钟)完全浸没在反应液中,而是使处理液从钙钛矿层表面经过即可,再加上不需要像现有技术中一样加热(80-200℃)和保温,常温甚至低于室温都可以充分反应,且也由此不需要匹配专门的反应容器,因此采用喷淋、滴涂等简便的处理方式均可以实现同样的技术效果。而现有技术所提供的技术方法无法达到本申请实施例所提供的处理方法的高效和便捷性,其成本自然远高于本申请。
作为一更加具体的示例,如图1所示,在一种典型的通用处理液处理钙钛矿材料的过程中,将预先制备的钙钛矿层完全滴涂浸于300微升混合处理液中,待反应充分后取出,并使湿润的钙钛矿表面干燥即可。退火作为可选的后续处理方法,可以加速处理液的挥发,缩短处理时间。退火温度可以选择与钙钛矿退火温度相同或相近的范围,通常在60到150℃之间。
在一种典型的情况下,如图2a和图2b所示,通过浓度1%的通用处理液对钙钛矿材料进行处理,制备的钙钛矿发光二极管的电流效率可以提高到未处理器件的两倍多,运行寿命提高超过两个数量级。
本申请实施例还提供由上述任一实施方案所提供的通用处理方法处理获得的钙钛矿层,相比于处理前,所述钙钛矿层的表面平均粗糙度和膜层缺陷密度降低、纳米薄片相结构的含量减少。
具体在一些实施方案中,所述钙钛矿层的表面平均粗糙度在2.0nm以下,膜层缺陷密度在0.9×10^16cm-3以下。
在一些实施方案中,所述钙钛矿层不含有薄纳米片相结构。具体的膜层特征请参见如下的实施例所示。
本申请实施例还提供一种钙钛矿光电器件,包括第一传输层、钙钛矿层以及第二传输层,所述钙钛矿层设置于所述第一传输层和第二传输层之间,所述钙钛矿层经过上述任一实施方式提供的通用处理方法进行改性处理。
本申请实施例还提供一种钙钛矿光电器件的制作方法,包括如下的步骤:
形成第一传输层的步骤。
在所述第一传输层表面形成钙钛矿层的步骤。
采用上述任一实施方式提供的通用处理方法对所述钙钛矿层进行改性处理。
在经过所述改性处理的钙钛矿层表面形成第二传输层的步骤。
以下通过若干实施例并结合附图进一步详细说明本申请的技术方案。然而,所选的实施例仅用于说明本申请,而不限制本申请的范围。
实施例1
本实施例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,具体如下所示:
提供预先制备有氧化铟锡电极的玻璃作为基底,其电极厚度为100nm,玻璃厚度为0.7cm。
在基底上旋涂并烘干形成50nm厚度的聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)材料的空穴传输层。
旋涂并烘干形成甲脒铅溴钙钛矿材料50nm厚度的钙钛矿层。
以胺基极性溶剂正己胺和苯混合配制成通用处理液,其中的胺基极性溶剂体积分数为0.01%,然后将300μL的该处理液滴涂于钙钛矿层上面,常温(25℃左右)下保持5s,然后在80℃下退火60s,形成处理后的钙钛矿层。
在钙钛矿层蒸镀形成厚度为40nm的1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯材料的电子传输层。
形成电极分别电连接空穴传输层和电子传输层,最终形成一种钙钛矿发光二极管。
实施例2
本实施例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,与实施例1大体相同,区别仅在于:
通用处理液中的胺基极性溶剂体积分数为1%。
实施例3
本实施例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,与实施例1大体相同,区别仅在于:
通用处理液中的胺基极性溶剂体积分数为5%。
对比例1-1
本对比例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,与实施例1大体相同,区别仅在于:
通用处理液中不添加胺基极性溶剂。
对比例1-2
本对比例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,与实施例1大体相同,区别仅在于:
通用处理液中的胺基极性溶剂体积分数为10%。
对上述实施例1-3以及对比例1-1、1-2所提供的发光二极管进行发光效率测试和运行寿命测试,其中,发光效率测试是在室温(约25℃)和中等湿度(30到80%)的环境条件下扫描发光二极管在0到10伏电压范围下的最高发光效率,运行寿命测试是在室温(约25℃)和中等湿度(30到80%)的环境条件下,调整电压使得亮度达到初始亮度,并保证发光二极管在对应的恒定电流下运行时的寿命。
下表1展示了上述实施例以及对比例中的处理后钙钛矿发光二极管最高效率和使用的处理液浓度之间的关系。
表1处理后钙钛矿发光二极管最高效率和处理液浓度之间的关系
可以看出,在体积浓度在万分之一到百分之五的区间内,处理后的钙钛矿发光二极管的最高效率与未处理的相比均有提升,因此,在实际使用过程中应将胺基极性和非极性两部分的相对比例应该控制在特定范围内,以保证最佳处理效果。
关于发光效率和运行寿命,实施例2与对比例1的发光二极管的测试结果分别如图2a和图2b所示,从中可以看出,通过实施例2中的浓度1%的通用处理液对钙钛矿材料进行处理,制备的钙钛矿发光二极管的电流效率可以提高到未处理器件的两倍多,运行寿命提高超过两个数量级。
实施例4
本实施例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,与实施例1大体相同,区别仅在于:
通用处理液中的胺基极性溶剂替换为磺酸根极性溶剂,其化合物名称为庚磺酸。
实施例5
本实施例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,与实施例4大体相同,区别仅在于:
通用处理液中的磺酸根极性溶剂的体积分数为1%。
实施例6
本实施例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,与实施例4大体相同,区别仅在于:
通用处理液中的磺酸根极性溶剂的体积分数为2%。
对比例2-1
本对比例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,与实施例4大体相同,区别仅在于:
通用处理液中不添加磺酸根极性溶剂。
对比例2-2
本对比例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,与实施例4大体相同,区别仅在于:
通用处理液中的磺酸根极性溶剂的体积分数为5%。
对比例2-3
本对比例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,与实施例4大体相同,区别仅在于:
通用处理液中的磺酸根极性溶剂的体积分数为10%。
对上述实施例4-6以及对比例2-1、2-2、2-3所提供的发光二极管进行发光效率测试和运行寿命测试,下表2展示了上述实施例以及对比例中的处理后钙钛矿发光二极管最高效率和使用的处理液浓度之间的关系。
表2处理后钙钛矿发光二极管最高效率和处理液浓度之间的关系
可以看出,在体积浓度在万分之一到百分之二的区间内,处理后的钙钛矿发光二极管的最高效率与未处理的相比均有提升,因此,在实际使用过程中应将磺酸根极性和非极性两部分的相对比例应该控制在特定范围内,以保证最佳处理效果。
对比例3
建议提供:
采用现有技术中的通用混合处理液:氯苯和二甲基甲酰胺的混合溶剂,其中二甲基甲酰 胺的体积含量为1%采用和实施例1里面同样的处理时间和处理温度,也是同样的滴涂方式(300微升),由于其反应活性明显低于本申请,其最高效率仅为13.4%,远低于实施例2的27.8%;同时,其运行寿命为实施例2的1/20。
实施例7
本对比例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,与实施例1大体相同,区别仅在于:
钙钛矿层的材质替换为甲胺铅溴钙钛矿。
经过处理,本实施例提供的钙钛矿器件的发光效率以及运行寿命依然得到了和实施例1相似的大幅度提升。
实施例8
本对比例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,与实施例1大体相同,区别仅在于:
钙钛矿层的材质替换为铯铅碘钙钛矿。
经过处理,本实施例提供的钙钛矿器件的发光效率以及运行寿命依然得到了和实施例1相似的大幅度提升。
以上述实施案例中测试得到的发光效率最高者作为最具有代表性实施案例进行测试表征,可以发现,如图4所示,处理后的钙钛矿层相比于处理前具有更加均匀光滑的表面形貌:通过原子力显微镜的测量,其表面粗糙度显著低于未处理的钙钛矿层表面。在该典型的甲脒铅溴钙钛矿样品上,未处理的钙钛矿样品表面展现凹凸不平的粗糙形貌。经过通用处理液处理后,其表面展现出光滑的表面形貌,如下图所示,未处理的钙钛矿样品表面平均粗糙度(RMS)为5.7nm,而处理后的样品表面平均粗糙度(RMS)降低到1.8nm。这一均匀光滑的钙钛矿表面不仅展现了处理后样品的高薄膜质量,同时也有利于提高器件中钙钛矿层和其他各层之间的有效接触。
同时,如图5所示,处理后的钙钛矿膜层具有更低的缺陷密度:该通用处理液处理后,薄膜内部缺陷密度大幅度降低,具体来说,通过空间电荷限制电流方法对未处理和处理后的钙钛矿薄膜内部缺陷密度进行测量,在一种典型的甲脒铅溴钙钛矿样品中,未处理的钙钛矿薄膜缺陷密度达到2.0×10^16cm-3,而经过通用处理液处理,内部缺陷密度降低到0.9×10^16cm-3。这一低缺陷密度的钙钛矿薄膜不仅有利于高效的电致发光和高效率钙钛矿发光二极管的制备,同时也极大地提升了薄膜的稳定性。
以及,处理后的钙钛矿膜层中的薄纳米片结构显著减少,以至于典型实施案例中不含薄纳米片等小尺寸的相结构(“不含”意味着通过相应技术手段无法表征测得)。钙钛矿薄膜中 薄纳米片等小尺寸晶粒结构是诱发材料不稳定的主要原因之一,在表征上表现为短波长的吸收峰。在一种典型的甲脒铅溴钙钛矿样品中,未处理的钙钛矿薄膜呈现出明显的短波长吸收峰,如图6所示在400nm和435nm附近的吸收峰,而经过通用处理液处理的样品,则呈现平滑联系的吸光强度变化曲线,表明内部不含有薄纳米片等小尺寸的相结构。
实施例9
本实施例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,具体如下所示:
提供预先制备有氧化铟锡电极的玻璃作为基底,其电极厚度为70nm,玻璃厚度为0.6cm。
在基底上旋涂并烘干形成30nm厚度的聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)材料的空穴传输层。
旋涂并烘干形成甲脒铅溴钙钛矿材料40nm厚度的钙钛矿层。
以胺基极性溶剂正戊胺和乙酸乙酯混合配制成通用处理液,其中的胺基极性溶剂体积分数为1%,然后将300μL的该处理液滴涂于钙钛矿层上面,常温(25℃左右)下保持2s,然后在140℃下退火10s,形成处理后的钙钛矿层。
在钙钛矿层蒸镀形成厚度为30nm的1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯材料的电子传输层。
形成电极分别电连接空穴传输层和电子传输层,最终形成一种钙钛矿发光二极管。
经过表征测试,发现本实施例所提供的钙钛矿层取得了同样的改善,至少包括了表面粗糙度、缺陷密度以及纳米薄片相结构方面的改善。同时,所制得的钙钛矿器件的光电转换性能以及运行寿命也相比于处理前取得了显著改善。
实施例10
本实施例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,具体如下所示:
提供预先制备有氧化铟锡电极的玻璃作为基底,其电极厚度为70nm,玻璃厚度为0.6cm。
在基底上旋涂并烘干形成30nm厚度的聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)材料的空穴传输层。
旋涂并烘干形成甲脒铅溴钙钛矿材料40nm厚度的钙钛矿层。
以胺基极性溶剂正辛胺和正己烷混合配制成通用处理液,其中的胺基极性溶剂体积分数为1.5%;
然后将300μL的该处理液滴涂于钙钛矿层上面,常温(25℃左右)下保持10s,然后在60℃下退火600s,形成处理后的钙钛矿层。
在钙钛矿层蒸镀形成厚度为30nm的1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯材料的电子传输层。
形成电极分别电连接空穴传输层和电子传输层,最终形成一种钙钛矿发光二极管。
经过表征测试,发现本实施例所提供的钙钛矿层取得了同样的改善,至少包括了表面粗糙度、缺陷密度以及纳米薄片相结构方面的改善。同时,所制得的钙钛矿器件的光电转换性能以及运行寿命也相比于处理前取得了显著改善。
实施例11
本实施例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,具体如下所示:
提供预先制备有氧化铟锡电极的玻璃作为基底,其电极厚度为70nm,玻璃厚度为0.6cm。
在基底上旋涂并烘干形成30nm厚度的聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)材料的空穴传输层。
旋涂并烘干形成甲脒铅溴钙钛矿材料40nm厚度的钙钛矿层。
以胺基极性溶剂戊磺酸和正辛烷混合配制成通用处理液,其中的胺基极性溶剂体积分数为1.5%;
然后将300μL的该处理液滴涂于钙钛矿层上面,常温(25℃左右)下保持10s,然后在60℃下退火600s,形成处理后的钙钛矿层。
在钙钛矿层蒸镀形成厚度为30nm的1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯材料的电子传输层。
形成电极分别电连接空穴传输层和电子传输层,最终形成一种钙钛矿发光二极管。
经过表征测试,发现本实施例所提供的钙钛矿层取得了同样的改善,至少包括了表面粗糙度、缺陷密度以及纳米薄片相结构方面的改善。同时,所制得的钙钛矿器件的光电转换性能以及运行寿命也相比于处理前取得了显著改善。
实施例12
本实施例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,具体如下所示:
提供预先制备有氧化铟锡电极的玻璃作为基底,其电极厚度为70nm,玻璃厚度为0.6cm。
在基底上旋涂并烘干形成30nm厚度的聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)材料的空穴传输层。
旋涂并烘干形成甲脒铅溴钙钛矿材料40nm厚度的钙钛矿层。
以胺基极性溶剂己磺酸和氯仿混合配制成通用处理液,其中的胺基极性溶剂体积分数为 1.5%;
然后将300μL的该处理液滴涂于钙钛矿层上面,常温(25℃左右)下保持10s,然后在60℃下退火600s,形成处理后的钙钛矿层。
在钙钛矿层蒸镀形成厚度为30nm的1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯材料的电子传输层。
形成电极分别电连接空穴传输层和电子传输层,最终形成一种钙钛矿发光二极管。
经过表征测试,发现本实施例所提供的钙钛矿层取得了同样的改善,至少包括了表面粗糙度、缺陷密度以及纳米薄片相结构方面的改善。
同时,所制得的钙钛矿器件的光电转换性能以及运行寿命也相比于处理前取得了显著改善。
实施例13
本实施例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,具体如下所示:
提供预先制备有氧化铟锡电极的玻璃作为基底,其电极厚度为70nm,玻璃厚度为0.6cm。
在基底上旋涂并烘干形成30nm厚度的聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)材料的空穴传输层。
旋涂并烘干形成甲脒铅溴钙钛矿材料40nm厚度的钙钛矿层。
以胺基极性溶剂庚磺酸和四氯化碳混合配制成通用处理液,其中的胺基极性溶剂体积分数为1.5%;
然后将300μL的该处理液滴涂于钙钛矿层上面,常温(25℃左右)下保持10s,然后在60℃下退火600s,形成处理后的钙钛矿层。
在钙钛矿层蒸镀形成厚度为30nm的1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯材料的电子传输层。
形成电极分别电连接空穴传输层和电子传输层,最终形成一种钙钛矿发光二极管。
经过表征测试,发现本实施例所提供的钙钛矿层取得了同样的改善,至少包括了表面粗糙度、缺陷密度以及纳米薄片相结构方面的改善。
同时,所制得的钙钛矿器件的光电转换性能以及运行寿命也相比于处理前取得了显著改善。
实施例13
本实施例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,具体如下所示:
提供预先制备有氧化铟锡电极的玻璃作为基底,其电极厚度为70nm,玻璃厚度为0.6cm。
在基底上旋涂并烘干形成30nm厚度的聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)材料的空穴传输层。
旋涂并烘干形成甲脒铅溴钙钛矿材料40nm厚度的钙钛矿层。
以胺基极性溶剂庚磺酸和四氯化碳混合配制成通用处理液,其中的胺基极性溶剂体积分数为1.5%;
然后将300μL的该处理液滴涂于钙钛矿层上面,常温(25℃左右)下保持10s,然后在60℃下退火600s,形成处理后的钙钛矿层。
在钙钛矿层蒸镀形成厚度为30nm的1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯材料的电子传输层。
形成电极分别电连接空穴传输层和电子传输层,最终形成一种钙钛矿发光二极管。
经过表征测试,发现本实施例所提供的钙钛矿层取得了同样的改善,至少包括了表面粗糙度、缺陷密度以及纳米薄片相结构方面的改善。
同时,所制得的钙钛矿器件的光电转换性能以及运行寿命也相比于处理前取得了显著改善。
实施例13
本实施例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,具体如下所示:
提供预先制备有氧化铟锡电极的玻璃作为基底,其电极厚度为70nm,玻璃厚度为0.6cm。
在基底上旋涂并烘干形成30nm厚度的聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)材料的空穴传输层。
旋涂并烘干形成甲脒铅溴钙钛矿材料40nm厚度的钙钛矿层。
以胺基极性溶剂庚磺酸和四氯化碳混合配制成通用处理液,其中的胺基极性溶剂体积分数为1.5%;
然后将300μL的该处理液滴涂于钙钛矿层上面,常温(25℃左右)下保持10s,然后在60℃下退火600s,形成处理后的钙钛矿层。
在钙钛矿层蒸镀形成厚度为30nm的1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯材料的电子传输层。
形成电极分别电连接空穴传输层和电子传输层,最终形成一种钙钛矿发光二极管。
经过表征测试,发现本实施例所提供的钙钛矿层取得了同样的改善,至少包括了表面粗糙度、缺陷密度以及纳米薄片相结构方面的改善。
同时,所制得的钙钛矿器件的光电转换性能以及运行寿命也相比于处理前取得了显著改善。
实施例13
本实施例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,具体如下所示:
提供预先制备有氧化铟锡电极的玻璃作为基底,其电极厚度为70nm,玻璃厚度为0.6cm。
在基底上旋涂并烘干形成30nm厚度的聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)材料的空穴传输层。
旋涂并烘干形成甲脒铅溴钙钛矿材料40nm厚度的钙钛矿层。
以胺基极性溶剂庚磺酸和四氯化碳混合配制成通用处理液,其中的胺基极性溶剂体积分数为1.5%;
然后将300μL的该处理液滴涂于钙钛矿层上面,常温(25℃左右)下保持10s,然后在60℃下退火600s,形成处理后的钙钛矿层。
在钙钛矿层蒸镀形成厚度为30nm的1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯材料的电子传输层。
形成电极分别电连接空穴传输层和电子传输层,最终形成一种钙钛矿发光二极管。
经过表征测试,发现本实施例所提供的钙钛矿层取得了同样的改善,至少包括了表面粗糙度、缺陷密度以及纳米薄片相结构方面的改善。
同时,所制得的钙钛矿器件的光电转换性能以及运行寿命也相比于处理前取得了显著改善。
实施例13
本实施例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,具体如下所示:
提供预先制备有氧化铟锡电极的玻璃作为基底,其电极厚度为70nm,玻璃厚度为0.6cm。
在基底上旋涂并烘干形成30nm厚度的聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)材料的空穴传输层。
旋涂并烘干形成甲脒铅溴钙钛矿材料40nm厚度的钙钛矿层。
以胺基极性溶剂庚磺酸和四氯化碳混合配制成通用处理液,其中的胺基极性溶剂体积分数为1.5%;
然后将300μL的该处理液滴涂于钙钛矿层上面,常温(25℃左右)下保持10s,然后在60℃下退火600s,形成处理后的钙钛矿层。
在钙钛矿层蒸镀形成厚度为30nm的1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯材料的电子传输层。
形成电极分别电连接空穴传输层和电子传输层,最终形成一种钙钛矿发光二极管。
经过表征测试,发现本实施例所提供的钙钛矿层取得了同样的改善,至少包括了表面粗糙度、缺陷密度以及纳米薄片相结构方面的改善。
同时,所制得的钙钛矿器件的光电转换性能以及运行寿命也相比于处理前取得了显著改善。
实施例13
本实施例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,具体如下所示:
提供预先制备有氧化铟锡电极的玻璃作为基底,其电极厚度为70nm,玻璃厚度为0.6cm。
在基底上旋涂并烘干形成30nm厚度的聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)材料的空穴传输层。
旋涂并烘干形成甲胺铅溴钙钛矿材料40nm厚度的钙钛矿层。
以胺基极性溶剂庚磺酸和四氯化碳混合配制成通用处理液,其中的胺基极性溶剂体积分数为1.5%;
然后将300μL的该处理液滴涂于钙钛矿层上面,常温(25℃左右)下保持10s,然后在60℃下退火600s,形成处理后的钙钛矿层。
在钙钛矿层蒸镀形成厚度为30nm的1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯材料的电子传输层。
形成电极分别电连接空穴传输层和电子传输层,最终形成一种钙钛矿发光二极管。
经过表征测试,发现本实施例所提供的钙钛矿层取得了同样的改善,至少包括了表面粗糙度、缺陷密度以及纳米薄片相结构方面的改善。
同时,所制得的钙钛矿器件的光电转换性能以及运行寿命也相比于处理前取得了显著改善。
实施例14
本实施例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,具体如下所示:
提供预先制备有氧化铟锡电极的玻璃作为基底,其电极厚度为70nm,玻璃厚度为0.6cm。
在基底上旋涂并烘干形成30nm厚度的聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)材料的空穴传输层。
旋涂并烘干形成甲胺铅溴钙钛矿材料40nm厚度的钙钛矿层。
以胺基极性溶剂庚磺酸和四氯化碳混合配制成通用处理液,其中的胺基极性溶剂体积分数为1.5%;
然后将300μL的该处理液滴涂于钙钛矿层上面,常温(25℃左右)下保持3s,然后在60℃下退火600s,形成处理后的钙钛矿层。
在钙钛矿层蒸镀形成厚度为30nm的1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯材料的电子传输层。
形成电极分别电连接空穴传输层和电子传输层,最终形成一种钙钛矿发光二极管。
经过表征测试,发现本实施例所提供的钙钛矿层取得了同样的改善,至少包括了表面粗糙度、缺陷密度以及纳米薄片相结构方面的改善。
同时,所制得的钙钛矿器件的光电转换性能以及运行寿命也相比于处理前取得了显著改善。
实施例15
本实施例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,具体如下所示:
提供预先制备有氧化铟锡电极的玻璃作为基底,其电极厚度为70nm,玻璃厚度为0.6cm。
在基底上旋涂并烘干形成30nm厚度的聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)材料的空穴传输层。
旋涂并烘干形成铯铅碘钙钛矿材料40nm厚度的钙钛矿层。
以胺基极性溶剂庚磺酸和四氯化碳混合配制成通用处理液,其中的胺基极性溶剂体积分数为1.5%;
然后将300μL的该处理液滴涂于钙钛矿层上面,常温(25℃左右)下保持4s,然后在60℃下退火600s,形成处理后的钙钛矿层。
在钙钛矿层蒸镀形成厚度为30nm的1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯材料的电子传输层。
形成电极分别电连接空穴传输层和电子传输层,最终形成一种钙钛矿发光二极管。
经过表征测试,发现本实施例所提供的钙钛矿层取得了同样的改善,至少包括了表面粗糙度、缺陷密度以及纳米薄片相结构方面的改善。
同时,所制得的钙钛矿器件的光电转换性能以及运行寿命也相比于处理前取得了显著改善。
实施例16
本实施例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,具体如下所示:
提供预先制备有氧化铟锡电极的玻璃作为基底,其电极厚度为70nm,玻璃厚度为0.6cm。
在基底上旋涂并烘干形成30nm厚度的聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)材料的空穴传输层。
旋涂并烘干形成铯铅碘钙钛矿材料40nm厚度的钙钛矿层。
以胺基极性溶剂庚磺酸和四氯化碳混合配制成通用处理液,其中的胺基极性溶剂体积分数为1.5%;
然后将300μL的该处理液滴涂于钙钛矿层上面,常温(25℃左右)下保持7s,然后在60℃下退火600s,形成处理后的钙钛矿层。
在钙钛矿层蒸镀形成厚度为30nm的1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯材料的电子传输层。
形成电极分别电连接空穴传输层和电子传输层,最终形成一种钙钛矿发光二极管。
经过表征测试,发现本实施例所提供的钙钛矿层取得了同样的改善,至少包括了表面粗糙度、缺陷密度以及纳米薄片相结构方面的改善。
同时,所制得的钙钛矿器件的光电转换性能以及运行寿命也相比于处理前取得了显著改善。
实施例17
本实施例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,具体如下所示:
提供预先制备有氧化铟锡电极的玻璃作为基底,其电极厚度为70nm,玻璃厚度为0.6cm。
在基底上旋涂并烘干形成30nm厚度的聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)材料的空穴传输层。
旋涂并烘干形成铯铅碘钙钛矿材料40nm厚度的钙钛矿层。
以胺基极性溶剂庚磺酸和四氯化碳混合配制成通用处理液,其中的胺基极性溶剂体积分数为1.5%;
然后将300μL的该处理液滴涂于钙钛矿层上面,常温(25℃左右)下保持5s,然后在60℃下退火600s,形成处理后的钙钛矿层。
在钙钛矿层蒸镀形成厚度为30nm的1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯材料的电子传输层。
形成电极分别电连接空穴传输层和电子传输层,最终形成一种钙钛矿发光二极管。
经过表征测试,发现本实施例所提供的钙钛矿层取得了同样的改善,至少包括了表面粗糙度、缺陷密度以及纳米薄片相结构方面的改善。
同时,所制得的钙钛矿器件的光电转换性能以及运行寿命也相比于处理前取得了显著改善。
实施例18
本实施例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,具体如下所示:
提供预先制备有氧化铟锡电极的玻璃作为基底,其电极厚度为70nm,玻璃厚度为0.6cm。
在基底上旋涂并烘干形成30nm厚度的聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)材料的空穴传输层。
旋涂并烘干形成甲脒铅溴钙钛矿材料40nm厚度的钙钛矿层。
以胺基极性溶剂庚磺酸和四氯化碳混合配制成通用处理液,其中的胺基极性溶剂体积分数为1.5%;
然后将300μL的该处理液滴涂于钙钛矿层上面,稍高温(45℃左右)下保持10s,然后在60℃下退火600s,形成处理后的钙钛矿层。
在钙钛矿层蒸镀形成厚度为30nm的1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯材料的电子传输层。
形成电极分别电连接空穴传输层和电子传输层,最终形成一种钙钛矿发光二极管。
经过表征测试,发现本实施例所提供的钙钛矿层取得了同样的改善,至少包括了表面粗糙度、缺陷密度以及纳米薄片相结构方面的改善。
同时,所制得的钙钛矿器件的光电转换性能以及运行寿命也相比于处理前取得了显著改善。
实施例19
本实施例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,具体如下所示:
提供预先制备有氧化铟锡电极的玻璃作为基底,其电极厚度为70nm,玻璃厚度为0.6cm。
在基底上旋涂并烘干形成30nm厚度的聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)材料的空穴传输层。
旋涂并烘干形成甲脒铅溴钙钛矿材料40nm厚度的钙钛矿层。
以胺基极性溶剂庚磺酸和四氯化碳混合配制成通用处理液,其中的胺基极性溶剂体积分数为1.5%;
然后将300μL的该处理液滴涂于钙钛矿层上面,稍高温(50℃左右)下保持10s,然后在60℃下退火600s,形成处理后的钙钛矿层。
在钙钛矿层蒸镀形成厚度为30nm的1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯材料的电子传输层。
形成电极分别电连接空穴传输层和电子传输层,最终形成一种钙钛矿发光二极管。
经过表征测试,发现本实施例所提供的钙钛矿层取得了同样的改善,至少包括了表面粗糙度、缺陷密度以及纳米薄片相结构方面的改善。
同时,所制得的钙钛矿器件的光电转换性能以及运行寿命也相比于处理前取得了显著改善。
实施例20
本实施例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,具体如下所示:
提供预先制备有氧化铟锡电极的玻璃作为基底,其电极厚度为70nm,玻璃厚度为0.6cm。
在基底上旋涂并烘干形成30nm厚度的聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)材料的空穴传输层。
旋涂并烘干形成甲脒铅溴钙钛矿材料40nm厚度的钙钛矿层。
以胺基极性溶剂庚磺酸和四氯化碳混合配制成通用处理液,其中的胺基极性溶剂体积分数为1.5%;
然后将300μL的该处理液滴涂于钙钛矿层上面,稍低温(15℃左右)下保持10s,然后在60℃下退火600s,形成处理后的钙钛矿层。
在钙钛矿层蒸镀形成厚度为30nm的1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯材料的电子传输层。
形成电极分别电连接空穴传输层和电子传输层,最终形成一种钙钛矿发光二极管。
经过表征测试,发现本实施例所提供的钙钛矿层取得了同样的改善,至少包括了表面粗糙度、缺陷密度以及纳米薄片相结构方面的改善。
同时,所制得的钙钛矿器件的光电转换性能以及运行寿命也相比于处理前取得了显著改善。
实施例21
本实施例示例一种钙钛矿器件的制备过程,其中包括了对于钙钛矿层的处理过程,具体如下所示:
提供预先制备有氧化铟锡电极的玻璃作为基底,其电极厚度为70nm,玻璃厚度为0.6cm。
在基底上旋涂并烘干形成30nm厚度的聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)材料的空穴传输层。
旋涂并烘干形成甲脒铅溴钙钛矿材料40nm厚度的钙钛矿层。
以胺基极性溶剂庚磺酸和四氯化碳混合配制成通用处理液,其中的胺基极性溶剂体积分数为1.5%;
然后将300μL的该处理液滴涂于钙钛矿层上面,稍低温(5℃左右)下保持10s,然后在60℃下退火600s,形成处理后的钙钛矿层。
在钙钛矿层蒸镀形成厚度为30nm的1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯材料的电子传输层。
形成电极分别电连接空穴传输层和电子传输层,最终形成一种钙钛矿发光二极管。
经过表征测试,发现本实施例所提供的钙钛矿层取得了同样的改善,至少包括了表面粗糙度、缺陷密度以及纳米薄片相结构方面的改善。
同时,所制得的钙钛矿器件的光电转换性能以及运行寿命也相比于处理前取得了显著改善。
基于上述实施例以及对比例,可以明确,本申请实施例所提供的通用处理液及处理方法利用钙钛矿材料在极性溶剂和非极性溶剂中的选择溶解性,与钙钛矿制备过程中形成的各类缺陷或非理想相反应,去除引起钙钛矿降解的缺陷和有害的非理想相,显著提高钙钛矿材料的性能。由于其作用原理不会随着钙钛矿材料的种类与成分变化而变化,所以对目前几乎所有成分的钙钛矿材料均具有显著效果。
同时,由于本申请实施例所提供的通用处理液及处理方法中的特定基团具有极强的反应活性,因此本申请提供的处理方法处理时间极短,对处理温度和处理设备要求较低,显著提高了钙钛矿层的处理效率和降低了处理成本,非常有利于在产业上进行推广应用。
应当理解,上述实施例仅为说明本申请的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本申请的内容并据以实施,并不能以此限制本申请的保护范围。凡根据本申请精神实质所作的等效变化或修饰,都应涵盖在本申请的保护范围之内。

Claims (17)

  1. 一种钙钛矿层的通用处理液,其特征在于,包括极性溶剂和非极性溶剂,所述极性溶剂包含胺基和/或磺酸根。
  2. 根据权利要求1所述的通用处理液,其特征在于,所述通用处理液中极性溶剂的体积分数为0.01-5%。
  3. 根据权利要求2所述的通用处理液,其特征在于,所述通用处理液中极性溶剂的体积分数为1-2%。
  4. 根据权利要求1所述的通用处理液,其特征在于,所述通用处理液中极性溶剂的体积分数所述极性溶剂包括正戊胺、正己胺、正庚胺、正辛胺、戊磺酸、己磺酸以及庚磺酸中的任意一种或两种以上的组合。
  5. 根据权利要求2所述的通用处理液,其特征在于,当所述极性溶剂仅包含磺酸根时,所述极性溶剂的体积分数为0.01-2%。
  6. 根据权利要求5所述的通用处理液,其特征在于,当所述极性溶剂仅包含磺酸根时,所述极性溶剂的体积分数为0.5-1%。
  7. 根据权利要求1所述的通用处理液,其特征在于,所述非极性溶剂包括芳香类、酯类、烷烃类、卤代烃类中的任意一种或两种以上的组合。
  8. 根据权利要求7所述的通用处理液,其特征在于,所述非极性溶剂包括苯、苯衍生物、乙酸乙酯,乙酸甲酯、正己烷、正辛烷、氯仿,四氯化碳中的任意一种或两种以上的组合。
  9. 一种钙钛矿层的通用处理方法,其特征在于,包括:
    1)提供钙钛矿层;
    2)使所述钙钛矿层与权利要求1-8中任意一项所述的通用处理液接触,进行改性处理,所述改性处理的时间为2-10s;
    3)去除经过所述改性处理的钙钛矿层中的通用处理液。
  10. 根据权利要求9所述的通用处理方法,其特征在于,所述改性处理的温度为0-50℃。
  11. 根据权利要求9所述的通用处理方法,其特征在于,步骤3)具体包括:
    对经过所述改性处理的钙钛矿层进行干燥处理;
    或,对经过所述改性处理的钙钛矿层进行退火处理。
  12. 根据权利要求11所述的通用处理方法,其特征在于,所述退火处理的温度为60-150℃,时间为10-600s。
  13. 一种由权利要求9-12中任意一项所述的通用处理方法处理获得的钙钛矿层,其特征在于,相比于处理前,所述钙钛矿层的表面平均粗糙度和膜层缺陷密度降低、纳米薄片相结构 的含量减少。
  14. 根据权利要求13所述的钙钛矿层,其特征在于,所述钙钛矿层的表面平均粗糙度在2.0nm以下,膜层缺陷密度在0.9×10^16cm-3以下。
  15. 根据权利要求13所述的钙钛矿层,其特征在于,所述钙钛矿层不含有薄纳米片相结构。
  16. 一种钙钛矿光电器件,包括第一传输层、钙钛矿层以及第二传输层,所述钙钛矿层设置于所述第一传输层和第二传输层之间,其特征在于,所述钙钛矿层经过权利要求9-12中任意一项所述的通用处理方法进行改性处理。
  17. 一种钙钛矿光电器件的制作方法,其特征在于,包括:
    形成第一传输层的步骤;
    在所述第一传输层表面形成钙钛矿层的步骤;
    采用权利要求9-12中任意一项所述的通用处理方法对所述钙钛矿层进行改性处理;
    在经过所述改性处理的钙钛矿层表面形成第二传输层的步骤。
PCT/CN2023/131471 2022-11-15 2023-11-14 钙钛矿层的通用处理液、处理方法及应用 WO2024104329A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211431134.X 2022-11-15
CN202211431134.XA CN117835776A (zh) 2022-11-15 2022-11-15 钙钛矿层的通用处理液、处理方法及应用

Publications (1)

Publication Number Publication Date
WO2024104329A1 true WO2024104329A1 (zh) 2024-05-23

Family

ID=90523453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/131471 WO2024104329A1 (zh) 2022-11-15 2023-11-14 钙钛矿层的通用处理液、处理方法及应用

Country Status (2)

Country Link
CN (1) CN117835776A (zh)
WO (1) WO2024104329A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106634961A (zh) * 2016-12-19 2017-05-10 中央民族大学 一种有机无机杂化钙钛矿量子点及其制备方法
CN106750427A (zh) * 2016-11-11 2017-05-31 张家港海纳至精新材料科技有限公司 一种钙钛矿量子点/聚合物复合荧光膜的制备方法
CN110867532A (zh) * 2019-11-22 2020-03-06 苏州大学 基于表面配体控制的钙钛矿发光二极管器件及其制备方法
CN111628091A (zh) * 2020-06-08 2020-09-04 西北工业大学 一种溶剂浴辅助热处理改善钙钛矿薄膜质量的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101819954B1 (ko) * 2016-09-23 2018-02-28 청주대학교 산학협력단 페로브스카이트 광흡수층의 제조방법 및 이에 의해 제조된 광흡수층을 포함하는 태양전지
CN112467038B (zh) * 2020-12-22 2023-10-27 厦门大学 一种钝化钙钛矿薄膜层的方法及钙钛矿太阳能电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106750427A (zh) * 2016-11-11 2017-05-31 张家港海纳至精新材料科技有限公司 一种钙钛矿量子点/聚合物复合荧光膜的制备方法
CN106634961A (zh) * 2016-12-19 2017-05-10 中央民族大学 一种有机无机杂化钙钛矿量子点及其制备方法
CN110867532A (zh) * 2019-11-22 2020-03-06 苏州大学 基于表面配体控制的钙钛矿发光二极管器件及其制备方法
CN111628091A (zh) * 2020-06-08 2020-09-04 西北工业大学 一种溶剂浴辅助热处理改善钙钛矿薄膜质量的方法

Also Published As

Publication number Publication date
CN117835776A (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
CN108899420B (zh) 钙钛矿薄膜的制备方法及钙钛矿太阳能电池器件
Gao et al. Preparation of flexible perovskite solar cells by a gas pump drying method on a plastic substrate
CN105070849B (zh) 一种量子点发光二极管及其制备方法
Zheng et al. Promoting perovskite crystal growth to achieve highly efficient and stable solar cells by introducing acetamide as an additive
Vesce et al. Ambient air blade‐coating fabrication of stable triple‐cation perovskite solar modules by green solvent quenching
CN109216557B (zh) 一种基于柠檬酸/SnO2电子传输层的钙钛矿太阳能电池及其制备方法
WO2018192334A1 (zh) 丙烯酸酯共聚物修饰的金属氧化物及制备方法与量子点发光二极管
WO2020029205A1 (zh) 基于梯度退火与反溶剂协同效应制备无机钙钛矿电池的方法及制备的无机钙钛矿电池
Luo et al. Passivation of defects in inverted perovskite solar cells using an imidazolium-based ionic liquid
CN108807694B (zh) 一种超低温稳定的平板钙钛矿太阳能电池及其制备方法
CN109860396B (zh) 一种钙钛矿太阳能电池及制备方法与其聚合物/富勒烯衍生物电荷传输层
Jeon et al. Air-processed inverted organic solar cells utilizing a 2-aminoethanol-stabilized ZnO nanoparticle electron transport layer that requires no thermal annealing
CN108511633A (zh) 一种无机钙钛矿发光二极管及其制备方法
WO2023124601A1 (zh) 基于酸处理氧化锡的钙钛矿电池及其制备
WO2024031752A1 (zh) 钙钛矿薄膜、晶种辅助成膜方法、钙钛矿太阳能电池
WO2024104329A1 (zh) 钙钛矿层的通用处理液、处理方法及应用
Li et al. Achieving the high phase purity of CH3NH3PbI3 film by two-step solution processable crystal engineering
CN109638164A (zh) 一种水处理SnO2薄膜及其钙钛矿太阳能电池的制备方法
CN109742240B (zh) 一种钙钛矿太阳能电池及其制备方法
KR101856563B1 (ko) 액정성 유기박막 트랜지스터 및 그 제조방법
CN114583063A (zh) 一种高性能柔性钙钛矿室内光伏器件及其制备方法
CN115895648B (zh) 一种采用Eu3+掺杂的CsCl纳米晶修饰的钙钛矿太阳能电池
WO2024098538A1 (zh) 通过在钙钛矿体相掺杂磺酰基分子制备太阳能电池的方法
CN113416155A (zh) 一种钙钛矿太阳能电池添加剂的制备方法及其应用
CN114068823B (zh) 一种钙钛矿结晶调控策略及其光伏器件制备方法