WO2024103862A1 - 一种显示模组和电子设备 - Google Patents

一种显示模组和电子设备 Download PDF

Info

Publication number
WO2024103862A1
WO2024103862A1 PCT/CN2023/112921 CN2023112921W WO2024103862A1 WO 2024103862 A1 WO2024103862 A1 WO 2024103862A1 CN 2023112921 W CN2023112921 W CN 2023112921W WO 2024103862 A1 WO2024103862 A1 WO 2024103862A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
display
display module
electrode
detection electrode
Prior art date
Application number
PCT/CN2023/112921
Other languages
English (en)
French (fr)
Inventor
郭学平
丁才华
叶立芬
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Publication of WO2024103862A1 publication Critical patent/WO2024103862A1/zh

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G21/00Input or output devices integrated in time-pieces
    • G04G21/02Detectors of external physical values, e.g. temperature
    • G04G21/025Detectors of external physical values, e.g. temperature for measuring physiological data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4869Determining body composition
    • A61B5/4872Body fat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G17/00Structural details; Housings
    • G04G17/02Component assemblies
    • G04G17/04Mounting of electronic components
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G17/00Structural details; Housings
    • G04G17/02Component assemblies
    • G04G17/04Mounting of electronic components
    • G04G17/045Mounting of the display
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G21/00Input or output devices integrated in time-pieces
    • G04G21/02Detectors of external physical values, e.g. temperature
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G9/00Visual time or date indication means

Definitions

  • the present application relates to the technical field of electronic equipment, and in particular to a display module and an electronic equipment.
  • ECG electrocardiogram
  • the embodiments of the present application provide a display module and an electronic device for solving the problem of how to improve the accuracy of biological signal detection.
  • a display module which includes a light-transmitting cover plate, a display panel, a conductive hole, and a first detection electrode.
  • the display panel and the light-transmitting cover plate are stacked.
  • the conductive hole penetrates the light-transmitting cover plate, and the axial direction of the conductive hole is from a first surface of the light-transmitting cover plate facing away from the display panel to a second surface of the light-transmitting cover plate facing the display panel.
  • the first detection electrode is disposed on the first surface and is electrically connected to one end of the conductive hole facing the first surface.
  • the first detection electrode is disposed on the first surface
  • first detection electrode should be understood in a broad sense. Specifically, when the first detection electrode is located on the side facing the first surface and contacts the first surface, or when the first detection electrode is embedded in the light-transmitting cover plate and part of the first detection electrode (including one surface) is exposed on the first surface, it can be considered that the first detection electrode is disposed on the first surface.
  • the user can purposefully contact the first detection electrode with the skin of the finger or other parts to detect the signal.
  • the direction of the pressing force of the skin of the finger or other parts is roughly parallel to the thickness direction of the display module.
  • the probability of the electronic device including the display module being skewed is reduced, and the skin of the user's finger or other parts can be effectively attached to the first detection electrode, thereby ensuring the measurement precision and accuracy, and reducing the possibility of failure to detect or the need for repeated detection.
  • the conductive hole includes a through hole arranged on the transparent cover plate and a conductive medium arranged on the inner wall of the through hole or filled in the through hole.
  • the material of the conductive medium may include at least one of elements such as copper, silver, tin, tungsten, and gold.
  • the material of the conductive medium may also include at least one of indium tin oxide, nanosilver, carbon nanoconductive material, metal grid, conductive polymer PEDOT, and graphene.
  • the diameter of the conductive hole may be less than or equal to 20 ⁇ m.
  • the diameter of the conductive hole can be 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 12 ⁇ m, 14 ⁇ m, 15 ⁇ m, 17 ⁇ m, 18 ⁇ m, 19 ⁇ m, 20 ⁇ m.
  • the conductive hole is basically invisible to the naked eye of the user, and thus has little impact on the appearance of the electronic device.
  • the display module further includes a transparent conductive layer.
  • the material of the transparent conductive layer includes at least one of indium tin oxide, nanosilver, carbon nanoconductive material, metal grid, conductive polymer PEDOT, and graphene.
  • the transparent conductive layer is disposed on the first surface, and the transparent conductive layer covers the end of the conductive hole facing the first surface and is electrically connected to the conductive hole. At least part of the transparent conductive layer forms a first detection electrode.
  • the first detection electrode is formed by the transparent conductive layer, so that the first detection electrode is prevented from affecting the appearance of the electronic device, and when the first detection electrode is disposed in an area on the first surface directly opposite to the display portion, the first detection electrode can be prevented from interfering with the image display.
  • the display panel includes a display part and a non-display part.
  • the conductive hole is arranged in a part of the light-transmitting cover plate that is opposite to the non-display part.
  • the transparent conductive layer includes a first transparent conductive part, a second transparent conductive part and a third transparent conductive part.
  • the first transparent conductive part is located in an area on the first surface that is opposite to the non-display part, and the first transparent conductive part covers one end of the conductive hole facing the first surface and is electrically conductive with the conductive hole.
  • the second transparent conductive part is located in an area on the first surface that is opposite to the display part, and the second transparent conductive part forms a first detection electrode.
  • the third transparent conductive part is connected between the first transparent conductive part and the second transparent conductive part, and the third transparent conductive part is electrically conductive with the first transparent conductive part and the second transparent conductive part.
  • the first detection electrode is located in the area directly opposite to the display part on the first surface.
  • the display part can be used to display a mark indicating the position of the first detection electrode, so as to facilitate the user to quickly determine the position of the first detection electrode.
  • the display part can display other numbers or graphics. It not only identifies the position of the first detection electrode, but also ensures the consistency of the appearance of the electronic device.
  • the conductive hole is arranged in the part of the light-transmitting cover plate that is directly opposite to the non-display part. Since the non-display part is not used for display, the conductive hole has little effect on the appearance of the electronic device, which is conducive to ensuring the consistency of the appearance of the electronic device.
  • the material of the transparent conductive layer includes at least one of indium tin oxide, nanosilver, carbon nanoconductive material, metal grid, conductive polymer PEDOT, and graphene.
  • the multiple conductive holes are all arranged in a portion of the light-transmitting cover plate that is directly opposite to the non-display portion.
  • the first transparent conductive portion covers one end of the multiple conductive holes that faces the first surface, and is electrically connected to at least one of the multiple conductive holes. In this way, the fault tolerance rate can be improved and the reliability of the electrical connection can be ensured.
  • the display module further includes a connecting electrode.
  • the connecting electrode is disposed on the second surface, and the connecting electrode covers one end of the plurality of conductive holes facing the second surface, and is electrically connected to at least one of the plurality of conductive holes. In this way, the connecting electrode can be electrically connected to the signal acquisition circuit to facilitate operation.
  • the connecting electrode is a transparent electrode.
  • the material of the connecting electrode may include at least one of indium tin oxide, nanosilver, carbon nano conductive material, metal grid, conductive polymer PEDOT, and graphene.
  • the connecting electrode includes a plurality of first electrode portions and at least one The number of the plurality of first electrode parts is equal to the number of the plurality of conductive holes and corresponds to each other, each first electrode part covers the end of the corresponding conductive hole facing the second surface, and at least one second electrode part is connected between the plurality of first electrode parts.
  • the connecting electrode is a hollow structure, the material cost of the connecting electrode is low, and the actual occupied area on the second surface is small.
  • the concealment of the connecting electrode is high, which can avoid the connecting electrode affecting the appearance consistency of the electronic device to a certain extent.
  • the first electrode portion is circular, and the area of the first electrode portion is larger than the area of the end surface of the covered conductive hole facing the second surface. In this way, the first electrode portion is conducive to covering the conductive hole, and the reliability of electrical conduction between the first electrode portion and the conductive hole is high.
  • the second electrode portion is linear, and the line width of the second electrode portion may be less than or equal to 10 ⁇ m.
  • the line width of the second electrode portion may be 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, or 10 ⁇ m. In this way, the second electrode portion is invisible to the user, which can further improve the appearance consistency of the electronic device.
  • one end of the conductive hole facing the first surface is exposed on the first surface, and the one end of the conductive hole facing the first surface forms at least a portion of the first detection electrode. In this way, there is no need to separately set the first detection electrode on the first surface, so the process is simple and the cost is low.
  • the display panel includes a display portion.
  • the conductive hole is provided in a portion of the light-transmitting cover plate that is opposite to the display portion.
  • the first detection electrode is located in an area on the first surface that is opposite to the display portion.
  • the display portion can be used to display a mark indicating the position of the first detection electrode, so as to facilitate the user to quickly determine the position of the first detection electrode.
  • the display portion can display other numbers or graphics. This not only identifies the position of the first detection electrode, but also ensures the consistency of the appearance of the electronic device.
  • the multiple conductive holes are all arranged in a portion of the light-transmitting cover plate that is opposite to the display portion; and one end of the multiple conductive holes facing the first surface forms the first detection electrode.
  • the display panel also includes a non-display portion.
  • the display module also includes a conductive layer, which is arranged on the second surface, and the conductive layer includes a first conductive portion, a second conductive portion and a third conductive portion.
  • the first conductive portion is located in an area on the second surface that is directly opposite to the display portion, and the first conductive portion covers one end of the plurality of conductive holes facing the second surface, and is electrically conductive with at least one of the plurality of conductive holes.
  • the second conductive portion is located in an area on the second surface that is directly opposite to the non-display portion, and the second conductive portion forms a connecting electrode, which is used to be electrically connected to the signal acquisition circuit.
  • the third conductive portion is connected between the first conductive portion and the second conductive portion, and is electrically conductive with the first conductive portion and the second conductive portion.
  • the potentials of the plurality of conductive holes are introduced into the second conductive part with the help of the first conductive part and the third conductive part, and then introduced into the signal acquisition circuit with the help of the second conductive part.
  • This layout is reasonable and helps to ensure the appearance consistency of the electronic equipment.
  • the first conductive portion includes a plurality of first conductive sub-portions and at least one second conductive sub-portion.
  • the number of the plurality of first conductive sub-portions is equal to and corresponds to the number of the plurality of conductive holes.
  • Each first conductive sub-portion covers an end of the corresponding conductive hole facing the second surface, and at least one second conductive sub-portion is connected between the plurality of first conductive sub-portions. In this way, the first conductive portion is hollow.
  • the structure is simple, the material cost of the first conductive part is low, and the actual occupied area on the second surface is small.
  • the first conductive part When the user views the display module from the side facing the first surface, the first conductive part is highly concealed, which can avoid the first conductive part affecting the appearance consistency of the electronic device to a certain extent.
  • the first conductive part electrically connects multiple conductive holes together, and the potential of multiple conductive holes can be led to the second conductive part with the help of only one conductive line, so the structural complexity and occupied area of the third conductive part can be reduced, which can avoid the third conductive part affecting the appearance consistency of the electronic device.
  • the second conductive sub-portion and the third conductive portion are both linear, and the widths of the second conductive sub-portion and the third conductive portion are both less than or equal to 10 ⁇ m.
  • the widths of the second conductive sub-portion and the third conductive portion can be 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, and 10 ⁇ m. In this way, the second conductive sub-portion and the third conductive portion are invisible to the user, which can further improve the appearance consistency of the electronic device.
  • the conductive hole includes a main body and a wear-resistant part, the wear-resistant part is arranged at one end of the main body facing the first surface, and the main body is electrically connected to the wear-resistant part, and the end of the wear-resistant part away from the main body forms at least the above-mentioned part of the first detection electrode, and the material of the wear-resistant part includes nickel and gold.
  • the wear resistance and scratch resistance of the conductive hole can be improved with the help of the wear-resistant part, and the conductive hole can be prevented from material loss during use, which leads to the inability to contact with the finger, thereby extending the service life of the first detection electrode.
  • the combination of nickel and gold elements has a large hardness, which is conducive to improving wear resistance.
  • an electronic device comprising a display module, a signal acquisition circuit and a processor.
  • the display module is the display module described in any technical solution of the first aspect.
  • the signal acquisition circuit is electrically connected to the end of the conductive hole facing the second surface.
  • the processor is electrically connected to the signal acquisition circuit.
  • the electronic device provided in the present application includes the display module described in any technical solution of the first aspect above, the two can solve the same technical problems and achieve the same effects.
  • the electronic device further includes a housing and a second detection electrode
  • the interior of the housing forms a housing space
  • the signal acquisition circuit and the processor are accommodated in the housing space
  • the housing includes a back cover
  • the back cover is arranged opposite to the display module.
  • the second detection electrode is arranged on the back cover, and at least part of the second detection electrode is exposed on the surface of the back cover that is opposite to the display module, and the second detection electrode is also electrically connected to the signal acquisition circuit.
  • the second detection electrode when the electronic device is worn on the user's wrist or other parts, the second detection electrode is in contact with the skin of the wrist and other parts, and can detect the user's ECG, body temperature, heart rate, body fat, voltage and other biological signals, and when the first detection electrode is pressed by a finger, the pressing force of the finger can drive the electronic device to be in close contact with the skin of the wrist and other parts, thereby ensuring the detection accuracy of the first detection electrode while also ensuring the detection accuracy of the second detection electrode.
  • the first detection electrode and the second detection electrode are electrocardiogram detection electrodes.
  • the first detection electrode and the second detection electrode simultaneously detect to simultaneously obtain the user's left hand potential and right hand potential, thereby obtaining the left and right hand potential difference, and then obtaining an electrocardiogram signal.
  • the pressing force of the finger can drive the second detection electrode to be in close contact with the wrist skin, thereby ensuring the detection accuracy of the ECG.
  • the electronic device is a smart watch or a smart bracelet.
  • FIG1 is a schematic diagram of the structure of an electronic device provided in some embodiments of the present application.
  • FIG2 is an exploded view of a watch body in the electronic device shown in FIG1 ;
  • FIG3 is a schematic diagram of the structure of a display module in the watch body shown in FIG2 ;
  • FIG4 is a schematic diagram of hand gestures of an electronic device during ECG detection provided by some embodiments of the present application.
  • FIG5 is a schematic structural diagram of the electronic device shown in FIG4 when viewed from a direction D1;
  • FIG6 is a schematic diagram of a force state of the electronic device shown in FIG4 when viewed from a direction D2;
  • FIG. 7 is a schematic diagram of another force state of the electronic device shown in FIG. 4 when viewed from the direction D2;
  • FIG8 is a cross-sectional view of a watch body in an electronic device provided in some other embodiments of the present application.
  • FIG9 is an enlarged view of a display module in the electronic device shown in FIG8 ;
  • FIG10 is a top view of the display module shown in FIG9 ;
  • FIG11 is a bottom view of the assembly structure of the light-transmitting cover plate, a plurality of conductive holes and connecting electrodes in the display module shown in FIG9 ;
  • FIG12 is an enlarged view of the assembly structure shown in FIG11 at area I;
  • FIG13 is a flow chart of a method for processing a display module provided in some embodiments of the present application.
  • FIG. 14 is a method flow chart of step S200 in the method for processing the display module shown in FIG. 13 ;
  • FIG15 is a bottom view of the watch body shown in FIG8 ;
  • FIG16 is a circuit block diagram of a circuit board assembly in an electronic device provided in some embodiments of the present application.
  • FIG17 is a flow chart of a control method of an electronic device provided in some embodiments of the present application.
  • FIG18 is a cross-sectional view of a display module in an electronic device provided in some other embodiments of the present application.
  • FIG19 is a top view of the display module shown in FIG18;
  • FIG20 is a schematic diagram of the structure of a single conductive hole in the display module shown in FIG18;
  • FIG21 is a schematic structural diagram of the second surface of the light-transmitting cover plate in the display module shown in FIG18;
  • FIG. 22 is an enlarged view of region II in the structure shown in FIG. 21 .
  • the terms “first”, “second”, and “third” are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as “first”, “second”, and “third” may explicitly or implicitly include one or more of the features.
  • the present application provides an electronic device for detecting human biological signals to judge the health status of the human body.
  • the electronic device includes but is not limited to wearable devices such as smart watches, smart bracelets, smart glasses and smart clothes, mobile phones, tablet computers, notebook computers, laptop computers (laptop computers), personal digital assistants (PDAs), personal computers, smart TVs, vehicle-mounted devices and other terminal devices, as well as electronic products such as digital cameras, walkmans, and radios.
  • FIG. 1 is a schematic diagram of the structure of an electronic device 100 provided in some embodiments of the present application.
  • the electronic device 100 is illustrated as a smart watch, which cannot be regarded as a special limitation on the structure of the electronic device 100.
  • the smart watch includes a watch body 2 and a watch strap. 1.
  • the watch body 2 is used to realize the main functions of the smart watch, and the watch strap 1 is used to wear the watch body 2 on the wrist of a human body.
  • the watchband 1 may include a first watchband portion 11 and a second watchband portion 12, one end of the first watchband portion 11 and one end of the second watchband portion 12 are connected to opposite ends of the watch body 2.
  • a first locking portion 111 is provided at the other end of the first watchband portion 11, and a second locking portion 121 is provided at the other end of the second watchband portion 12. The first locking portion 111 and the second locking portion 121 are detachably locked to each other so that the watch body 2 can be worn on a human wrist.
  • the matching structure composed of the first locking part 111 and the second locking part 121 can be a buckle structure such as a hook buckle, a concealed buckle, a butterfly buckle, a belt snap buckle, a folding safety buckle, a folding buckle or a pin buckle, and the present application does not make specific limitations on this.
  • the watch body 2 is roughly disc-shaped.
  • an XYZ coordinate system is established for the watch body 2 described in this embodiment and each embodiment below.
  • the thickness direction of the watch body 2 is defined as the Z-axis direction
  • the plane perpendicular to the Z-axis direction is the XY plane
  • the position on the watch body 2 for connecting the first strap part 11 is the first position A
  • the position on the watch body 2 for connecting the second strap part 12 is the second position B
  • the first position A and the second position B are located in the XY plane
  • the arrangement direction of the first position A and the second position B is defined as the X-axis direction
  • the direction perpendicular to the X-axis direction in the XY plane is the Y-axis direction.
  • the coordinate system setting of the watch body 2 can be flexibly set according to actual needs, and no specific limitation is made here.
  • the watch body 2 can also be roughly elliptical, triangular, polygonal, or rectangular, and no specific limitation is made here.
  • Figure 2 is an exploded view of the watch body 2 in the electronic device 100 shown in Figure 1.
  • the watch body 2 includes a watch body 21, a display module 22, an upper watch case 23, a lower watch case 24, a circuit board assembly 25 and a battery (not shown in the figure).
  • FIG. 1 and FIG. 2 only schematically illustrate some components included in the watch body 2 , and the actual shapes, actual sizes, actual positions and actual structures of these components are not limited by FIG. 1 and FIG. 2 .
  • the watch body 21 is a support frame of the watch body 2, and the first position A and the second position B are located on the watch body 21.
  • the watch body 21 can be made of stainless steel to ensure the structural strength of the watch body 21 and the support strength for other components.
  • the upper case 23 is connected to one end of the body 21 along the Z axis
  • the lower case 24 is connected to the other end of the body 21 along the Z axis.
  • the materials of the upper case 23 and the lower case 24 include but are not limited to metal materials such as stainless steel and plastics such as polycarbonate (PC), PC+glass fiber, and ABS plastic (acrylonitrile butadiene styrene plastic).
  • the upper case 23, the body 21 and the lower case 24 constitute the shell of the watch body 2, and the lower case 24 forms the back cover of the shell.
  • the interior of the shell forms an accommodating space, and the circuit board assembly 25 and the battery are accommodated in the accommodating space.
  • the "outer surface” used to describe the watch body 21 and the lower watch case 24 below refers to the surface of the object being described that is facing away from the accommodating space, and will not be described one by one in the following text.
  • the display module 22 is fixed to the upper case 23.
  • the display module 22 is used to display hour hand, minute hand, second hand, dial, digital time, weather, temperature, ECG, human body temperature, heart rate, body fat, voltage and other numerical values or graphics.
  • the display module 22 is electrically connected to the circuit board assembly 25 , and the circuit board assembly 25 is used to control the display module 22 to display the above-mentioned numerical values, graphics or other images.
  • Fig. 3 is a schematic diagram of the structure of the display module 22 in the watch body 2 shown in Fig. 2.
  • the display module 22 includes a transparent cover plate 221, a touch module 222, a display panel (English name: panel) 223, a first adhesive layer 224 and a second adhesive layer 225 which are sequentially stacked and fixedly connected.
  • FIG3 only schematically shows some components included in the display module 22, and the actual shape, actual size, actual position and actual structure of these components are not limited by FIG3.
  • the display module 22 may also not include at least one of the touch module 222, the first adhesive layer 224 and the second adhesive layer 225.
  • the transparent cover plate 221 is mainly used to protect the touch module 222 and the display panel 223 from water, dust and scratches.
  • the material of the transparent cover plate 221 includes but is not limited to glass and sapphire.
  • the transparent cover plate 221 can also be a polarizer, which not only has a polarizing effect, but also protects the display panel 223.
  • the touch module 222 is used to detect the touch position and trajectory, so as to control the execution of corresponding operations, thereby realizing human-computer interaction.
  • the touch module 222 includes but is not limited to infrared touch modules, resistive touch modules, surface acoustic wave touch modules and capacitive touch modules. Among them, when the touch module 222 is a capacitive touch module, specifically, the touch module 222 can be a self-capacitive touch module or a mutual-capacitive touch module, which is not specifically limited here.
  • the display panel 223 is a core device for displaying numerical values and graphics.
  • the display panel 223 can be a flexible display screen or a rigid display screen.
  • the display panel 223 can be an organic light-emitting diode (OLED) display screen, an active-matrix organic light-emitting diode or an active-matrix organic light-emitting diode (AMOLED) display screen, a mini organic light-emitting diode (MIL-O-D) display screen, a micro organic light-emitting diode (MIL-O-D) display screen, a micro organic light-emitting diode (MIL-O-D) display screen, a quantum dot light-emitting diode (QLED) display screen, or a liquid crystal display (LCD).
  • OLED organic light-emitting diode
  • AMOLED active-matrix organic light-emitting diode
  • MIL-O-D mini organic light-emitting diode
  • the display module 22 may further include a backlight module, which is disposed on the side of the display panel 223 that is opposite to the transparent cover plate 221 to provide backlight.
  • the backlight module includes but is not limited to a direct-type backlight module and an edge-type backlight module.
  • the display panel 223 includes a display portion 223a and a non-display portion 223b.
  • the display portion 223a is a portion of the display panel 223 for displaying numerical values or graphics.
  • the display portion 223a is a portion of the display panel 223 where array pixels are arranged.
  • the display portion 223a is a certain area surrounded by the non-display portion 223a.
  • the portion of the transparent cover plate 221 that is opposite to the display portion 223a is a transparent portion.
  • a light-shielding layer such as a light-shielding ink layer or a light-shielding tape is not provided between the partially transparent cover plate 221 and the display portion 223a, and the image light generated by the display portion 223a can be allowed to pass through. Image and video display is thereby achieved.
  • the non-display portion 223a is an area in the display panel 223 that is not used for display. In other words, the non-display portion 223a is the area in the display panel 223 where the array pixels are not arranged.
  • the non-display portion 223a usually has signal wiring and packaging structures.
  • the inner surface of the portion of the transparent cover plate 221 opposite to the non-display portion 223a is provided with a light-shielding layer such as a light-shielding ink layer or a light-shielding tape to prevent the user from viewing the internal wiring and packaging structure, thereby ensuring the appearance of the electronic device.
  • a light-shielding layer such as a light-shielding ink layer or a light-shielding tape to prevent the user from viewing the internal wiring and packaging structure, thereby ensuring the appearance of the electronic device.
  • the first adhesive layer 224 is disposed between the light-transmitting cover plate 221 and the touch module 222, and the light-transmitting cover plate 221 and the touch module 222 are bonded together by means of the first adhesive layer 224.
  • the second adhesive layer 225 is disposed between the touch module 222 and the display panel 223, and the touch module 222 and the display panel 223 are bonded together by means of the second adhesive layer 225.
  • the materials of the first adhesive layer 224 and the second adhesive layer 225 include but are not limited to optically clear adhesive (OCA).
  • the watch body 2 also includes a first electrical connection structure 226 and a second electrical connection structure 227 .
  • the first electrical connection structure 226 is used to realize the interconnection between the touch module 222 and the aforementioned circuit board assembly 25.
  • the second electrical connection structure 227 is used to realize the interconnection between the display panel 223 and the aforementioned circuit board assembly 25.
  • the first electrical connection structure 226 and the second electrical connection structure 227 include but are not limited to a flexible printed circuit board (FPC), a printed circuit board (PCB), a wire, and a structure formed by weaving a flexible structure and a wire.
  • the connection method between the first electrical connection structure 226 and the touch module 222, and between the second electrical connection structure 227 and the display panel 223 includes but is not limited to welding, anisotropic conductive film (ACF) bonding, spring contact, elastic ejector pin contact, and planar metal contact, which are not specifically limited here.
  • ACF anisotropic conductive film
  • ECG ECG
  • body temperature body temperature
  • body fat body fat
  • voltage voltage
  • other signals ECG
  • the electrodes used to detect these signals are usually arranged on the back cover. During the detection process, the electrode has a low fit with the user's skin, resulting in low detection precision and accuracy, and problems such as failure to detect or the need for repeated detection.
  • FIG. 4 is a schematic diagram of the gestures of the electronic device 100 provided in some embodiments of the present application during ECG detection
  • Figure 5 is a schematic diagram of the structure of the electronic device 100 shown in Figure 4 when viewed from the direction D1.
  • the electronic device 100 includes a first electrode K1 and a second electrode K2 for detecting ECG.
  • There are two first electrodes K1 and the two first electrodes K1 are arranged on the lower case 24, and at least partially exposed to the outer surface of the lower case 24.
  • the second electrode K2 is arranged on the watch body 21, and at least partially exposed to the outer surface of the watch body 21.
  • the first electrode K1 is used to contact the skin of the wrist to realize the potential detection of the user's wearing hand, and the fingers of the other hand of the user are attached to the second electrode K2 to realize the potential detection of the other hand, thereby obtaining the potential difference between the user's wearing hand and the other hand to obtain the electrocardiogram signal.
  • Figure 6 is a schematic diagram of a force state when the electronic device 100 shown in Figure 4 is viewed from the direction D2
  • Figure 7 is a schematic diagram of another force state when the electronic device 100 shown in Figure 4 is viewed from the direction D2.
  • the force F applied to the second electrode K2 by the finger of the other hand cannot be guaranteed to be absolutely horizontal, and it is easy to tilt upward or downward, causing the watch body 2 to be skewed, thereby causing the first electrode K1 and the second electrode K2 to be unable to effectively fit the skin of the wrist, thereby reducing the measurement precision and accuracy, and causing problems such as failure to detect or the need for repeated detection.
  • FIG. 8 is a cross-sectional view of the watch body 2 in the electronic device 100 provided in some other embodiments of the present application.
  • a first detection electrode 26 is provided on the surface of the transparent cover plate 221 facing away from the display panel 223.
  • the first detection electrode 26 can be one of an ECG detection electrode, a body temperature detection electrode, a heart rate detection electrode, a body fat detection electrode and a voltage detection electrode.
  • a conductive hole 27 is provided on the transparent cover plate 221, and the electronic device 100 also includes a third electrical connection structure 28.
  • the conductive hole 27 introduces the detection potential of the first detection electrode 27 into the interior of the electronic device 100, and further introduces the circuit board assembly through the third electrical connection structure 28. 25, to achieve signal acquisition and processing.
  • the other structural components in the display module 22 can be the same as the display module 22 shown in FIG. 3.
  • the user can purposefully contact the first detection electrode 26 with the skin of the finger or other parts to achieve signal detection.
  • the direction of the pressing force F of the skin of the finger or other parts is roughly parallel to the thickness direction of the watch body 2 (that is, the Z-axis direction). Under the action of the pressing force F, the probability of the watch body 2 being skewed is reduced, and the skin of the user's finger or other parts can effectively fit with the first detection electrode 26, thereby ensuring the measurement precision and accuracy, and reducing the possibility of failure to detect or the need for repeated detection.
  • Figure 9 is an enlarged view of the display module 22 in the electronic device 100 shown in Figure 8.
  • the surface of the transparent cover plate 221 facing away from the display panel 223 is defined as the first surface S1
  • the surface of the transparent cover plate 221 facing the display panel 223 is defined as the second surface S2.
  • the axial direction of the conductive hole 27 points from the first surface S1 to the second surface S2.
  • the axial direction of the conductive hole 27 can be perpendicular to the first surface S1 or the second surface S2, or it can be inclined at a certain angle relative to the first surface S1 and the second surface S2, which is not specifically limited here.
  • the conductive hole 27 passes through the transparent cover plate 221, that is, one end of the conductive hole 27 in the axial direction is located on the first surface S1, and the other end is located on the second surface S2.
  • the conductive hole 27 includes a through hole provided on the transparent cover plate 221 and a conductive medium provided on the inner wall of the through hole or filled in the through hole.
  • the material of the conductive medium may include at least one of copper, silver, tin, tungsten, gold and other elements.
  • the material of the conductive medium may also include at least one of indium tin oxide, nanosilver, carbon nanoconductive material, metal mesh, conductive polymer PEDOT, and graphene.
  • the axial direction of the conductive hole 27 specifically refers to: the axial direction of the through hole;
  • the conductive hole 27 passes through the transparent cover plate 221 specifically refers to: the through hole passes through the transparent cover plate 221, and the conductive medium covers the entire through hole along the axial direction of the through hole.
  • the conductive hole 27 may be disposed in a portion of the light-transmitting cover plate 221 directly opposite to the non-display portion 223 b , or may be disposed in a portion of the light-transmitting cover plate 221 directly opposite to the display portion 223 a .
  • the conductive hole 27 is disposed in a portion of the light-transmitting cover plate 221 that is directly opposite to the non-display portion 223b. Since the non-display portion 223b is not used for display, the conductive hole 27 has little effect on the appearance of the electronic device 100, which is conducive to ensuring the consistency of the appearance of the electronic device 100.
  • the diameter of the conductive hole 27 can be less than or equal to 20 micrometers ( ⁇ m). Specifically, the diameter of the conductive hole 27 can be 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 12 ⁇ m, 14 ⁇ m, 15 ⁇ m, 17 ⁇ m, 18 ⁇ m, 19 ⁇ m, 20 ⁇ m. In this way, the conductive hole 27 is basically invisible to the naked eye of the user, and thus has little impact on the appearance of the electronic device 100.
  • the diameter of the conductive hole 27 may also be greater than 20 ⁇ m, such as 21 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m, 100 ⁇ m or 1 nanometer (nm).
  • the diameter of the conductive hole 27 may be less than or equal to 10 ⁇ m to prevent the conductive hole 27 from affecting the display.
  • the number of the conductive holes 27 can be one or more. Among them, “more than one" refers to two or more. In some embodiments, please refer to Figures 9 and 10 together.
  • Figure 10 is a top view of the display module 22 shown in Figure 9.
  • the number of the conductive holes 27 is multiple, specifically three, which can improve the fault tolerance and ensure the reliability of the electrical connection. In some other embodiments, the number of the conductive holes 27 can also be two, four, five, six, etc., which is not specifically limited here.
  • the multiple conductive holes 27 can all be arranged in the part of the transparent cover plate 221 that is opposite to the non-display part 223b, or all be arranged in the part of the transparent cover plate 221 that is opposite to the display part 223a, or some can be arranged in the part of the transparent cover plate 221 that is opposite to the non-display part 223b, and the other part can be arranged in the part of the transparent cover plate 221 that is opposite to the display part 223a.
  • the plurality of conductive holes 27 are all disposed in the portion of the light-transmitting cover plate 221 that is directly opposite to the non-display portion 223b. In this way, the plurality of conductive holes 27 have little effect on the appearance of the electronic device 100, which is conducive to ensuring the consistency of the appearance of the electronic device 100.
  • One end of the conductive hole 27 facing the first surface S1 is electrically connected to the first detection electrode 26 .
  • the display module 22 further includes a transparent conductive layer 29.
  • the material of the transparent conductive layer 29 includes at least one of indium tin oxide, nanosilver, carbon nano conductive material, metal grid, conductive polymer PEDOT, and graphene.
  • the transparent conductive layer 29 is disposed on the first surface S1, and the transparent conductive layer 29 covers the end of the conductive hole 27 facing the first surface S1, and is electrically connected to the conductive hole 27. On this basis, at least part of the transparent conductive layer 29 forms the above-mentioned first detection electrode 26.
  • the transparent conductive layer 29 can partially form the above-mentioned first detection electrode 26, or can form the above-mentioned first detection electrode 26 as a whole.
  • part of the transparent conductive layer 29 forms the first detection electrode 26.
  • the part of the transparent conductive layer 29 used for contacting the user's finger forms the first detection electrode 26.
  • a mark is usually provided around or below the part of the transparent conductive layer 29 used for contacting the user's finger, and the mark is used to mark the position of the part of the transparent conductive layer 29 so that the user can quickly find the first detection electrode 26.
  • the mark may be a groove, ridge or coating with a special shape, or a graphic displayed on the display panel 223, which is not specifically limited here.
  • the first detection electrode 26 is formed by the transparent conductive layer 29, so as to avoid the first detection electrode 26 affecting the appearance of the electronic device 100, and when the first detection electrode 26 is arranged in the area on the first surface S1 directly opposite to the display part 223a, the first detection electrode 26 can be prevented from interfering with the image display.
  • the first detection electrode 26 may be disposed in a region on the first surface S1 directly opposite to the display portion 223 a , or may be disposed in a region on the first surface S1 directly opposite to the non-display portion 223 b .
  • the transparent conductive layer 29 includes a first transparent conductive portion 291 , a second transparent conductive portion 292 , and a third transparent conductive portion 293 .
  • the first transparent conductive portion 291 is located in a region of the first surface S1 directly opposite to the non-display portion 223 b , and covers one end of the conductive hole 27 facing the first surface S1 , and is electrically connected to the conductive hole 27 .
  • the second transparent conductive portion 292 is located in a region on the first surface S1 directly opposite to the display portion 223 a , and the second transparent conductive portion 292 forms the first detection electrode 26 .
  • the third transparent conductive portion 293 is connected between the first transparent conductive portion 291 and the second transparent conductive portion 292 , and the third transparent conductive portion 293 is electrically connected to the first transparent conductive portion 291 and the second transparent conductive portion 292 .
  • the first detection electrode 26 is located in the area on the first surface S1 that is directly opposite to the display portion 223a.
  • the display portion 223a can be used to display a mark indicating the position of the first detection electrode 26, so that the user can quickly determine the position of the first detection electrode 26.
  • the display portion 223a can display other numbers or graphics. This not only identifies the position of the first detection electrode 26, but also ensures that the electronic device 100 consistency of appearance.
  • the mark displayed on the display portion 223a may be in the shape of a fingerprint, and is displayed on the portion of the display portion 223a that is directly opposite to the first detection electrode 26.
  • the mark displayed on the display portion 223a may also be in other shapes, such as an arrow shape, and the mark may also be located in other areas on the display portion 223a, as long as it can indicate the position of the first detection electrode 26, and no specific limitation is made here.
  • the first detection electrode 26 may also be located in an area on the first surface S1 that is directly opposite to the non-display portion 223b.
  • a groove, ridge, coating or other mark having a special shape may be provided on the portion of the transparent cover plate 221 that is directly opposite to the first detection electrode 26 to mark the position of the first detection electrode 26.
  • the first detection electrode 26 when the first detection electrode 26 is located in the area on the first surface S1 directly opposite to the non-display portion 223b, the first detection electrode 26 may also be a non-transparent electrode. In this way, the first detection electrode 26 itself can be used as a mark to indicate the position without setting an additional mark.
  • the end of the conductive hole 27 facing the second surface S2 is electrically connected to the circuit board assembly 25 by means of the third electrical connection structure 28.
  • the third electrical connection structure 28 includes but is not limited to FPC, PCB, wire, and a structure formed by weaving a flexible structure and wire.
  • the third electrical connection structure 28 includes a first end 281 and a second end (not shown in the figure). The first end 281 is electrically connected to the end of the conductive hole 27 facing the second surface S2, and the second end is electrically connected to the circuit board assembly 25.
  • the distance between the circuit board assembly 25 and the conductive hole 27 can be increased, so that the circuit board assembly 25 can be arranged in an area with sufficient space, which is conducive to the reasonable layout of various structures inside the watch body 2.
  • connection electrode 30 is provided on the second surface S2.
  • the connection electrode 30 covers the end of the conductive hole 27 facing the second surface S2, and is electrically connected with the conductive hole 27.
  • the connection electrode 30 covers the ends of the multiple conductive holes 27 facing the second surface S2, and is electrically connected with at least one of the multiple conductive holes 27. In this way, the connection electrode 30 can be used to electrically connect with the first end 281, which is convenient for operation.
  • the connecting electrode 30 may be a transparent electrode or a non-transparent electrode.
  • the connecting electrode 30 is a transparent electrode
  • the material of the connecting electrode 30 may include at least one of indium tin oxide, nanosilver, carbon nano conductive material, metal mesh, conductive polymer PEDOT, and graphene. In this way, when the user views the display module 22 from the side facing the first surface S1, the connecting electrode 30 is invisible to the user, which can prevent the connecting electrode 30 from affecting the appearance consistency of the watch body 2.
  • connection electrode 30 When the connection electrode 30 is a non-transparent electrode, the material of the connection electrode 30 may include at least one of copper, silver, tin, tungsten, gold, etc. In this way, the connection electrode 30 has better conductivity and less energy loss.
  • the connecting electrode 30 is a non-transparent electrode, which cannot be regarded as a special limitation to the present application.
  • connection electrode 30 may be a solid area in a rectangular, circular, triangular or other shape, or may be a hollow area.
  • Figure 11 is a bottom view of the assembly structure of the transparent cover plate 221, multiple conductive holes 27 and the connecting electrode 30 in the display module 22 shown in Figure 9, and Figure 12 is an enlarged view of the assembly structure shown in Figure 11 at area I.
  • the connecting electrode 30 includes multiple first electrode parts 301 and at least one second electrode part 302.
  • the number of the plurality of first electrode portions 301 is equal to and corresponds to the number of the plurality of conductive holes 27, and each first electrode portion 301 covers an end of the corresponding conductive hole 27 facing the second surface S2.
  • the area of 301 can be equal to the cross-sectional area of the conductive hole 27, or can be slightly larger than the cross-sectional area of the conductive hole 27. In the embodiment shown in FIG12, the area of the first electrode portion 301 is slightly larger than the cross-sectional area of the conductive hole 27.
  • the shape of the first electrode portion 301 can be circular, square, polygonal, triangular, elliptical, etc., which is not specifically limited here. In the embodiment shown in FIG12, the shape of the first electrode portion 301 is circular.
  • the area of the first electrode portion 301 is larger than the area of the end face of the covered conductive hole 27 facing the second surface S2. In this way, it is beneficial for the first electrode portion 301 to cover the conductive hole 27, and the reliability of the electrical conduction between the first electrode portion 301 and the conductive hole 27 is high.
  • At least one second electrode portion 302 is connected between the plurality of first electrode portions 301 .
  • the connecting electrode 30 is a hollow structure, the material cost of the connecting electrode 30 is relatively low, and the actual occupied area on the second surface S2 is relatively small.
  • the connecting electrode 30 is more concealed, which can avoid the connecting electrode 30 from affecting the appearance consistency of the watch body 2 to a certain extent.
  • the second electrode portion 302 is linear, and the line width of the second electrode portion 302 may be less than or equal to 10 ⁇ m.
  • the line width of the second electrode portion 302 may be 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, or 10 ⁇ m. In this way, the second electrode portion 302 is invisible to the user, which can further improve the appearance consistency of the watch body 2.
  • connection method of the second electrode parts 302 can be flexibly designed based on the two design goals of short total length of the second electrode parts 302 and electrically connecting multiple first electrode parts 301 together.
  • the present application does not make specific limitations on this.
  • Figure 12 only shows one connection method, which cannot be regarded as a special limitation on the present application.
  • the connecting electrode 30 is electrically connected to the first end 281. Specifically, please refer back to FIG. 9 , the connecting electrode 30 and the first end 281 can be electrically connected by means of an anisotropic conductive film 31.
  • the color of the anisotropic conductive film 31 is better in adjustability, and can be selected to be consistent with the color of the light shielding layer on the transparent cover plate 221 to ensure the appearance consistency of the watch body 2.
  • connection electrode 30 and the first end 281 may also be electrically connected by means of solder, which is not specifically limited here.
  • the end of the conductive via 27 facing the second surface S2 may also be directly electrically connected to the circuit board assembly 25 through materials such as solder and ACF, which is not specifically limited here.
  • the present application also provides a method for processing the display module 22.
  • Figure 13 is a flow chart of the method for processing the display module 22 provided in some embodiments of the present application.
  • the method for processing the display module 22 includes the following steps S100 to S600.
  • Step S100 Please refer to (a) in FIG. 13 , providing a transparent cover plate 221.
  • the material of the transparent cover plate 221 includes, but is not limited to, glass and sapphire.
  • the transparent cover plate 221 includes a first surface S1 and a second surface S2 opposite to each other.
  • Step S200 Please refer to (b) in FIG. 13 , a conductive hole 27 is provided on the transparent cover plate 221 .
  • the conductive hole 27 may include a through hole arranged on the transparent cover plate 221 and a conductive medium arranged on the inner wall of the through hole or filled in the through hole.
  • the material of the conductive medium may include at least one of elements such as copper, silver, tin, tungsten, and gold.
  • the material of the conductive medium may also include at least one of indium tin oxide, nanosilver, carbon nanoconductive material, metal grid, conductive polymer PEDOT, and graphene.
  • the number of the conductive holes 27 can be one or more. When the plurality of conductive holes 27 are formed, they can be formed simultaneously or one after another, which is not specifically limited here.
  • Step S200 may include the following steps S201-S203.
  • Step S201 Please refer to (a) in FIG. 14 , a through hole a is provided on the light-transmitting cover plate 221 .
  • the through hole a has one axial end located on the first surface S1 and the other end located on the second surface S2.
  • the through hole a may be axially perpendicular to the first surface S1 or the second surface S2, or may be inclined at a certain angle relative to the first surface S1 and the second surface S2, which is not specifically limited here.
  • the process of setting the through hole a on the transparent cover plate 221 includes but is not limited to dry chemical, wet chemical, laser drilling or mechanical drilling.
  • the process of setting the through hole a on the transparent cover plate 221 can also be a process combining laser activation and wet etching.
  • Step S202 Please refer to (b) in FIG. 14 , a conductive medium b is disposed in the through hole a.
  • the process of providing the conductive medium b in the through hole a includes but is not limited to electroplating and silk-screen plugging.
  • Step S203 Please refer to (c) in FIG. 14 , removing the portions of the conductive medium b extending out of the openings at both ends of the through hole a to form a conductive hole 27 .
  • the process of removing the portion of the conductive medium b extending out of the openings at both ends of the through hole a includes, but is not limited to, chemical mechanical polishing (CMP) and other processes.
  • CMP chemical mechanical polishing
  • Step S300 Please refer to (c) in FIG. 13 , a connection electrode 30 is disposed on the second surface S2, and the connection electrode 30 covers one end of the conductive via 27 facing the second surface S2 and is electrically connected to the conductive via 27.
  • the connection electrode 30 covers one end of the multiple conductive vias 27 facing the second surface S2 and is electrically connected to at least one of the multiple conductive vias 27.
  • the process of setting the connection electrode 30 on the second surface S2 may be a process of making a re-distributed layer (RDL).
  • RDL re-distributed layer
  • the connection electrode 30 formed in this way actually occupies less area on the second surface S2.
  • the connection electrode 30 is more concealed, which can avoid the connection electrode 30 affecting the appearance consistency of the display module 22 to a certain extent.
  • Step S400 Dispose the first detection electrode 26 on the first surface S1 and electrically connect the first detection electrode 26 to the end of the conductive hole 27 facing the first surface S1.
  • the first detection electrode 26 is electrically connected to at least one of the multiple conductive holes 27.
  • step S300 may specifically include: referring to (d) in FIG. 13 , a transparent conductive layer 29 is provided on the first surface S1, and the transparent conductive layer 29 covers one end of the conductive hole 27 facing the first surface S1 and is electrically connected to the conductive hole 27.
  • the transparent conductive layer 29 covers one end of the multiple conductive holes 27 facing the first surface S1 and is electrically connected to at least one of the multiple conductive holes 27.
  • At least part of the transparent conductive layer 29 forms the above-mentioned first detection electrode 26. In this way, the first detection electrode 26 is formed by the transparent conductive layer 29, so that the first detection electrode 26 does not affect the appearance of the electronic device 100.
  • the material of the transparent conductive layer 29 includes at least one of indium tin oxide, nano silver, carbon nano conductive material, metal grid, conductive polymer PEDOT, and graphene.
  • the process of setting the transparent conductive layer 29 on the first surface S1 may be a screen printing process.
  • the process of setting the transparent conductive layer 29 on the first surface S1 may be a chemical deposition process.
  • step S400 may be performed after step S300, or before step S300, or simultaneously with step S300, which is not specifically limited here. In the embodiment shown in FIG13 , step S400 is performed after step S300.
  • Step S500 Please refer to (e) in FIG. 13 , connecting the third electrical connection structure 28 to the connection electrode 30 .
  • the third electrical connection structure 28 includes but is not limited to an FPC, a PCB, a wire, and a structure formed by weaving a flexible structure and a wire.
  • the process of connecting the third electrical connection structure 28 to the connection electrode 30 includes but is not limited to welding and ACF 31 bonding process.
  • the welding process includes but is not limited to hot bar welding (hot bar) process and surface mounting (surface mounted technology, SMT) process.
  • Step S600 Please refer to (f) in FIG. 13 , a touch module 222 and a display panel 223 are disposed on the transparent cover plate 221 , and the touch module 222 and the display panel 223 are located on the side facing the second surface S2 .
  • the process of disposing the touch module 222 and the display panel 223 on the transparent cover plate 221 may be a bonding process using the first adhesive layer 224 and the second adhesive layer 225 .
  • the watch body 2 further includes a second detection electrode 32.
  • the second detection electrode 32 is disposed on the lower case 24, the lower case 24 is disposed opposite to the display module 22, and at least a portion of the second detection electrode 32 is exposed on the surface of the lower case 24 facing away from the display module 22 (that is, the outer surface of the lower case 24 described above).
  • the second detection electrode 32 can be an ECG detection electrode, a body temperature detection electrode, a heart rate detection electrode, a body fat detection electrode, or a voltage detection electrode.
  • the second detection electrode 32 may be located on the surface of the lower case 24 facing away from the display module 22, or may be embedded in the lower case 24, with part of the second detection electrode 32 exposed on the surface of the lower case 24 facing away from the display module 22, or the surface of the second detection electrode 32 facing away from the display module 22 is coplanar with the surface of the lower case 24 facing away from the display module 22, so that the surface of the second detection electrode 32 facing away from the display module 22 is exposed.
  • This embodiment is exemplified by the second detection electrode 32 being located on the surface of the lower case 24 facing away from the display module 22, which cannot be considered as a special limitation to the present application.
  • the second detection electrode 32 can be a metal sheet, and the shape of the metal sheet can be circular, annular, square, polygonal, triangular or other irregular shapes, etc., which are not specifically limited here.
  • other detection electrodes are usually provided on the lower case 24, such as a photoelectric plethysmograph that uses photoplethysmograph (PPG) technology to detect heart rate
  • PPG photoplethysmograph
  • the setting area of the metal sheet can be increased as much as possible, or a plurality of metal sheets spaced apart from each other can be provided, and the plurality of metal sheets spaced apart from each other are used to detect the same signal.
  • Fig. 15 is a bottom view of the watch body 2 shown in Fig. 8.
  • the second detection electrode 32 includes two metal sheets, which are in the shape of arc-shaped long strips and are used to detect the same signal.
  • the material of the metal sheet may include at least one of copper, aluminum, silver, tin, tungsten, gold and the like.
  • the metal sheet may use aluminum as a substrate and a coating may be provided on the surface. Low cost and weight, the coating is used to improve the signal acquisition quality and reduce noise interference.
  • the materials of the coating include but are not limited to silver, stainless steel and nickel. Specifically, the acquisition signal quality of silver is better than the acquisition signal quality of common metals such as stainless steel and nickel.
  • the thickness of the coating can be 10 ⁇ m.
  • the second detection electrode 32 is electrically connected to the circuit board assembly 25, and the electrical connection method includes but is not limited to welding, spring contact, elastic ejector contact and plane metal contact, which is not specifically limited here.
  • the second detection electrode 32 and the circuit board assembly 25 can also be connected by FPC, PCB, wire, a structure formed by a flexible structure and wire braiding, which is not specifically limited here.
  • the second detection electrode 32 is in contact with the skin of the wrist and other parts, and can detect the user's ECG, body temperature, heart rate, body fat, voltage and other biological signals, and when the first detection electrode 26 is pressed by a finger, the pressing force F of the finger can drive the watch body 2 to fit tightly against the skin of the wrist and other parts, thereby ensuring the detection accuracy of the first detection electrode 26 while also ensuring the detection accuracy of the second detection electrode 32.
  • the first detection electrode 26 and the second detection electrode 32 are both ECG detection electrodes. In this way, during detection, the first detection electrode 26 and the second detection electrode 32 are detected simultaneously to obtain the user's left hand potential and right hand potential at the same time, so as to obtain the left and right hand potential difference, and then obtain the electrocardiogram signal. At the same time, when the first detection electrode 26 is pressed by a finger, the pressing force F of the finger can drive the second detection electrode 32 to be in close contact with the wrist skin, thereby ensuring the detection accuracy of the ECG.
  • both the first detection electrode 26 and the second detection electrode 32 are ECG detection electrodes.
  • the first detection electrode 26 and the second detection electrode 32 are both electrically connected to the circuit board assembly 25, and the circuit board assembly 25 is used to realize signal collection, processing and calculation.
  • FIG16 is a circuit block diagram of a circuit board assembly 25 in an electronic device 100 provided in some embodiments of the present application.
  • the circuit board assembly 25 includes a signal acquisition circuit 251 and a processor 252 .
  • the first detection electrode 26 and the second detection electrode 32 are both electrically connected to the signal acquisition circuit 251, and the signal acquisition circuit 251 is electrically connected to the processor 252. At the same time, the processor 252 is also electrically connected to the display panel 223.
  • the signal acquisition circuit 251 calculates the electrocardiogram signal according to the potential difference input by the first detection electrode 26 and the second detection electrode 32; the signal acquisition circuit 251 converts the electrocardiogram signal into a digital signal and transmits it to the processor 252.
  • the processor 252 transmits the electrocardiogram signal to the display panel 223 for display, so that the user can read it easily.
  • the present application further provides a control method of an electronic device 100, which is used to control the electronic device 100 shown in Figure 8.
  • a control method of an electronic device 100 which is used to control the electronic device 100 shown in Figure 8.
  • Figure 17 is a flow chart of the control method of the electronic device 100 provided in some embodiments of the present application.
  • the control method of the electronic device 100 may include the following steps S10-S50.
  • Step S10 receiving an indication signal, where the indication signal is used to indicate starting an ECG detection program.
  • the indication signal can be triggered by a button on the electronic device 100, or by a preset gesture received by the touch module 222, or by a user selecting a preset option displayed on the display panel.
  • This application does not make specific limitations on this.
  • Step S20 the display panel 223 displays a mark, which is used to mark the position of the first detection electrode 26 .
  • the mark may be a fingerprint pattern displayed on the display panel 223 directly below the first detection electrode 26.
  • the mark may also be other patterns displayed on the display panel 223 at other positions, and this application does not make specific reference to this. limited.
  • Step S30 executing a first prompting operation, where the first prompting operation is used to prompt the user to press the first detection electrode 26 with a finger.
  • the first prompt operation can be a voice reminder, a light reminder, a vibration reminder, or a graphic or text reminder displayed on a display panel, which is not specifically limited here.
  • Step S40 When the first detection electrode 26 and the second detection electrode 32 receive the electrocardiogram signal, the detection is continued for a preset time to obtain the electrocardiogram signal of the preset time.
  • the preset time may be 10 seconds (s), 20s, 30s, etc., which is not specifically limited here.
  • the ECG signal is continuously detected within the preset time to obtain multiple ECG signals.
  • the detection continues for a preset time and also includes: executing a second prompt operation, which is used to prompt the user to keep pressing the finger for a preset time and count down, thereby avoiding the user interrupting the detection.
  • Step S50 the display panel displays the ECG signal of the preset time.
  • the display panel can display the ECG signal of the above-mentioned preset time in the form of graphics, text or numbers.
  • the ECG signal of the preset time can also be stored in the memory to facilitate the user to view it later.
  • Figure 18 is a cross-sectional view of the display module 22 in the electronic device 100 provided in some embodiments of the present application
  • Figure 19 is a top view of the display module 22 shown in Figure 18.
  • the difference between this embodiment and the embodiment shown in Figure 8 includes: In this embodiment, the end of the conductive hole 27 facing the first surface S1 is exposed to the first surface S1, and the end of the conductive hole 27 facing the first surface S1 forms at least a part of the first detection electrode 26.
  • the other structures of the display module 22 may be the same as those of the display module shown in FIG. 9 , and will not be described in detail herein.
  • the process is simple and the cost is low.
  • the user can also purposefully contact the end of the conductive hole 27 facing the first surface S1 through the skin of the finger or other parts to detect the signal.
  • the direction of the pressing force F of the skin of the finger or other parts is roughly parallel to the thickness direction of the watch body 2 (that is, the Z-axis direction).
  • the probability of the watch body 2 being skewed is reduced, and the skin of the user's finger or other parts can effectively fit with the end of the conductive hole 27 facing the first surface S1, thereby ensuring the measurement precision and accuracy, and reducing the possibility of failure to detect or the need for repeated detection.
  • the number of the conductive hole 27 may be one or more.
  • the number of the conductive hole 27 is one, one end of the conductive hole 27 facing the first surface S1 forms the first detection electrode 26; when the number of the conductive hole 27 is more than one, one end of the multiple conductive holes 27 facing the first surface S1 together forms the first detection electrode 26.
  • the number of the conductive holes 27 is multiple, and the multiple conductive holes 27 are distributed in an array, and the ends of the multiple conductive holes 27 facing the first surface S1 together form the first detection electrode 26.
  • the conductive hole 27 can be set in the part of the transparent cover plate 221 that is opposite to the display part 223a, and can also be set in the part of the transparent cover plate 221 that is opposite to the non-display part 223b, which is not specifically limited here.
  • the conductive hole 27 is disposed in a portion of the transparent cover plate 221 that is directly opposite to the display portion 223a.
  • the multiple conductive holes 27 are all disposed in the transparent cover plate 221.
  • the first detection electrode 26 is located in the area on the first surface S1 that is directly opposite to the display portion 223a.
  • the display portion 223a can be used to display a mark indicating the position of the first detection electrode 26, so that the user can quickly determine the position of the first detection electrode 26.
  • the display portion 223a can display other numbers or graphics. This not only identifies the position of the first detection electrode 26, but also ensures the consistency of the appearance of the electronic device 100.
  • the diameter of the conductive hole 27 can be less than or equal to 20 ⁇ m.
  • the diameter of the conductive hole 27 can be 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 12 ⁇ m, 14 ⁇ m, 15 ⁇ m, 17 ⁇ m, 18 ⁇ m, 19 ⁇ m, 20 ⁇ m.
  • the conductive hole 27 is basically invisible to the naked eye of the user, thereby preventing the conductive hole 27 from interfering with the display.
  • the conductive hole 27 may include a through hole a disposed on the transparent cover plate 221 and a conductive medium b disposed on the inner wall of the through hole a or filled in the through hole a, and the material of the conductive medium b may include at least one of copper, silver, tin, tungsten, gold and other elements, and the material of the conductive medium b may also include at least one of indium tin oxide, nanosilver, and carbon nano conductive materials.
  • the end of the conductive medium b facing the first surface S1 may extend out of the first surface S1, may be flush with the first surface S1, or may be slightly lower than the first surface S1, as long as it can be touched by the user's finger. In all three cases, the end of the conductive hole 27 facing the first surface S1 may be considered to be exposed to the first surface S1.
  • FIG20 shows an example in which the end of the conductive medium b facing the first surface S1 extends out of the first surface S1, which cannot be considered as a special limitation to the present application.
  • the conductive hole 27 includes a main body 271 and a wear-resistant portion 272.
  • the main body 271 and the wear-resistant portion 272 are two parts of the above-mentioned conductive medium b.
  • the wear-resistant portion 272 is arranged at one end of the main body 271 facing the first surface S1, and the main body 271 is electrically conductive with the wear-resistant portion 272, and the end of the wear-resistant portion 272 away from the main body 271 forms the above-mentioned at least part of the first detection electrode 26.
  • the wear-resistant and scratch-resistant performance of the conductive hole 27 can be improved with the help of the wear-resistant portion 272, so as to avoid material loss during use of the conductive hole 27, which may result in the inability to contact with the finger, thereby extending the service life of the first detection electrode 26.
  • the material of the wear-resistant portion 272 may include nickel and gold.
  • the combination of nickel and gold has a relatively high hardness, which is beneficial to improving the wear resistance.
  • Fig. 21 is a schematic structural diagram of the second surface S2 of the transparent cover plate 221 in the display module 22 shown in Fig. 18.
  • the second surface S2 of the transparent cover plate 221 is provided with a conductive layer 33.
  • the conductive layer 33 may be a transparent conductive layer or a non-transparent conductive layer.
  • the material of the conductive layer 33 may include at least one of indium tin oxide, nanosilver, carbon nano conductive material, metal grid, conductive polymer PEDOT, and graphene. In this way, when the user views the display module 22 from the side facing the first surface S1, the conductive layer 33 is invisible to the user, which can prevent the conductive layer 33 from affecting the appearance consistency of the electronic device 100.
  • the material of the conductive layer 33 may include at least one of copper, silver, tin, tungsten, gold, etc. In this way, the conductive layer 33 has better conductivity and less energy loss.
  • the conductive layer 33 is a non-transparent conductive layer, which cannot be regarded as Special limitations on this application.
  • the conductive layer 33 includes a first conductive portion 331 , a second conductive portion 332 and a third conductive portion 333 .
  • the first conductive portion 331 is located in a region of the second surface S2 directly opposite to the display portion 223 a , covers one end of the plurality of conductive holes 27 facing the second surface S2 , and is electrically connected to at least one of the plurality of conductive holes 27 .
  • the second conductive portion 332 is located in the area on the second surface S2 that is directly opposite to the non-display portion 223b, and the second conductive portion 332 forms a connection electrode, which is used to be electrically connected to the signal acquisition circuit.
  • the connection electrode can be electrically connected to the signal acquisition circuit on the circuit board assembly 25 by means of the third electrical connection structure 28.
  • the third conductive portion 333 is connected between the first conductive portion 331 and the second conductive portion 332 , and is electrically conductive with the first conductive portion 331 and the second conductive portion 332 .
  • the first conductive portion 331 may be a solid surface structure or a hollow structure. In some embodiments, please refer to FIG. 22, which is an enlarged view of region II in the structure shown in FIG. 21.
  • the first conductive portion 331 includes a plurality of first conductive sub-portions 331a and at least one second conductive sub-portion 331b.
  • the number of the plurality of first conductive sub-portions 331a is equal to the number of the plurality of conductive holes 27 and corresponds to each other, and each first conductive sub-portion 331a covers the end of the corresponding conductive hole 27 facing the second surface S2.
  • the area of the first conductive sub-portion 331a can be equal to the cross-sectional area of the conductive hole 27, or can be slightly larger than the cross-sectional area of the conductive hole 27. In the embodiment shown in FIG22, the area of the first conductive sub-portion 331a is slightly larger than the cross-sectional area of the conductive hole 27.
  • the shape of the first conductive sub-portion 331a can be circular, square, polygonal, triangular, elliptical, etc., which is not specifically limited here. In the embodiment shown in FIG22, the shape of the first conductive sub-portion 331a is circular.
  • At least one second conductive sub-portion 331 b is connected between the plurality of first conductive sub-portions 331 a.
  • the first conductive part 331 is a hollow structure, the material cost of the first conductive part 331 is low, and the actual occupied area on the second surface S2 is small.
  • the first conductive part 331 is highly concealed, which can avoid the first conductive part 331 affecting the appearance consistency of the watch body 2 to a certain extent.
  • the first conductive part 331 electrically connects the multiple conductive holes 27 together, and the potentials of the multiple conductive holes 27 can be led out to the second conductive part 332 with the help of only one conductive line, so the structural complexity and occupied area of the third conductive part 333 can be reduced, which can avoid the third conductive part 333 affecting the appearance consistency of the watch body 2.
  • the second conductive sub-portion 331b and the third conductive portion 333 are both linear, and the widths of the second conductive sub-portion 331b and the third conductive portion 333 are both less than or equal to 10 ⁇ m.
  • the widths of the second conductive sub-portion 331b and the third conductive portion 333 can be 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m. In this way, the second conductive sub-portion 331b and the third conductive portion 333 are invisible to the user, which can further improve the appearance consistency of the electronic device 100.
  • connection method of the second conductive sub-portions 331b can be flexibly designed according to the two design goals of minimizing the total length of the second conductive sub-portions 331b and electrically connecting multiple first conductive sub-portions 331a together.
  • This application does not make specific restrictions on this.
  • FIG. 22 only shows one connection method, which cannot be considered as a This application constitutes a special limitation.
  • the second conductive part 332 can be in the form of a solid surface or a mesh structure composed of linear metal layers, which is not specifically limited here.
  • FIG. 21 shows an example of the second conductive part 332 being in the form of a solid surface, which cannot be regarded as a specific limitation of the present application.
  • the above introduces the structure of the display module 22 provided by some other embodiments of the present application.
  • the processing method of the display module 22 is different from the processing method of the display module 22 shown in Figure 8 in that: when processing the display module 22 shown in Figure 18, the part of the conductive hole 27 facing the first surface S1 forms at least a part of the first detection electrode 26, so there is no need to set a dedicated first detection electrode 26.
  • the conductive hole 27 includes a main body 271 and a wear-resistant portion 272.
  • the main body 271 and the wear-resistant portion 272 are two parts of the above-mentioned conductive medium b.
  • the wear-resistant portion 272 is arranged at one end of the main body 271 facing the first surface S1, and the main body 271 is electrically connected to the wear-resistant portion 272, and the end of the wear-resistant portion 272 away from the main body 271 forms the above-mentioned at least part of the first detection electrode 26.
  • the hardness of the wear-resistant portion 272 is greater than the hardness of the main body 271.
  • the processing method of the conductive hole 27 includes: first, a through hole a is set on the transparent cover plate 221. Secondly, a first conductive medium is set in the through hole a, and the first conductive medium is also the main body 271. Then, a second conductive medium is set at one end of the first conductive medium facing the first surface S1, and the second conductive medium is also the wear-resistant part 272. The second conductive medium is electrically conductive with the first conductive medium, and the hardness of the second conductive medium is greater than the hardness of the first conductive medium. The end of the second conductive medium away from the first conductive medium forms the above-mentioned at least part of the first detection electrode 26.
  • the material of the second conductive medium includes but is not limited to nickel and gold.
  • the process of providing the second conductive medium at the end of the first conductive medium facing the first surface S1 includes electroplating or spraying.
  • control method of the electronic device 100 including the display module shown in FIG. 18 may be the same as the control method of the aforementioned electronic device 100 , which will not be described in detail herein.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • General Physics & Mathematics (AREA)
  • Physiology (AREA)
  • Pulmonology (AREA)
  • Electric Clocks (AREA)

Abstract

一种显示模组(22)和电子设备(100),涉及电子设备技术领域,用于解决如何提升生物信号检测精度的问题。其中,显示模组(22)包括透光盖板(221)、显示面板(223)、导电孔(27)和第一检测电极(26)。显示面板(223)与透光盖板(221)层叠设置。导电孔(27)贯穿透光盖板(221),且导电孔(27)的轴向由透光盖板(221)的背对显示面板(223)的第一表面(S1)指向透光盖板(221)的朝向显示面板(223)的第二表面(S2)。第一检测电极(26)设置于第一表面(S1),且与导电孔(27)的朝向第一表面(S1)的一端电导通。显示模组(22)用于显示视频或图像,同时实现信号检测。

Description

一种显示模组和电子设备
本申请要求于2022年11月16日提交国家知识产权局、申请号为202211436030.8、发明名称为“一种显示模组和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,尤其涉及一种显示模组和电子设备。
背景技术
目前,在诸如智能手表、智能手环、智能衣服、智能眼镜、手机、平板电脑等电子设备中,集成了越来越多的功能,尤其是集成了越来越多的与外界人体交互检测的功能,比如对人体的心电图(electrocardiogram,ECG)、体温、体脂、电压等信号的检测。
随着技术的发展,电子设备的信号(尤其是生物信号)检测精度要求越来越向医疗级演进。因此,如何使电子设备实现更高的检测精度,是提升产品竞争力所需解决的核心问题。
发明内容
本申请实施例提供一种显示模组和电子设备,用于解决如何提升生物信号检测精度的问题。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种显示模组,该显示模组包括透光盖板、显示面板、导电孔和第一检测电极。显示面板与透光盖板层叠设置。导电孔贯穿透光盖板,且导电孔的轴向由透光盖板的背对显示面板的第一表面指向透光盖板的朝向显示面板的第二表面。第一检测电极设置于第一表面,且与导电孔的朝向第一表面的一端电导通。
其中,需要说明的是,“第一检测电极设置于第一表面”,应做广义的理解。具体的,当第一检测电极位于第一表面所朝向的一侧,并与第一表面接触时,或者当第一检测电极嵌设于透光盖板内,且第一检测电极的部分(包括一个表面)裸露于第一表面时,均可以认为第一检测电极设置于第一表面。
这样一来,用户可以有目的性的通过手指等部位皮肤接触第一检测电极,以实现信号的检测。且在检测过程中,手指等部位皮肤的按压力的方向大致与显示模组的厚度方向平行,在该按压力的作用下,包括该显示模组的电子设备产生歪斜的概率降低,用户手指等部位皮肤与第一检测电极能够有效贴合,从而保证了测量精度及准确性,降低了出现无法检测或者需要反复检测的可能性。
在第一方面的一种可能的实现方式中,导电孔包括设置于透光盖板上的通孔以及设置于该通孔的内壁上或者填充于通孔内的导电介质,该导电介质的材料可以包括铜、银、锡、钨、金等元素中的至少一种,导电介质的材料也可以包括氧化铟锡、纳米银、碳纳米导电材料、金属网格、导电聚合物PEDOT、石墨烯中的至少一种。
在第一方面的一种可能的实现方式中,导电孔的直径可以小于或者等于20μm, 具体的,导电孔的直径可以为1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm、12μm、14μm、15μm、17μm、18μm、19μm、20μm。这样一来,导电孔对用户肉眼基本不可见,因此对电子设备的外观影响较小。
在第一方面的一种可能的实现方式中,显示模组还包括透明导电层。透明导电层的材料包括氧化铟锡、纳米银、碳纳米导电材料、金属网格、导电聚合物PEDOT、石墨烯中的至少一种。透明导电层设置于第一表面,且透明导电层覆盖导电孔的朝向第一表面的一端,并与导电孔电导通。透明导电层的至少部分形成第一检测电极。这样一来,第一检测电极由透明导电层形成,避免第一检测电极影响电子设备的外观,且当第一检测电极设置于第一表面上与显示部分正对的区域时,可以避免第一检测电极干扰图像显示。
在第一方面的一种可能的实现方式中,显示面板包括显示部分和非显示部分。导电孔设置于透光盖板上与非显示部分正对的部分内。透明导电层包括第一透明导电部分、第二透明导电部分和第三透明导电部分。其中,第一透明导电部分位于第一表面上与非显示部分正对的区域,且第一透明导电部分覆盖导电孔的朝向第一表面的一端,并与导电孔电导通。第二透明导电部分位于第一表面上与显示部分正对的区域,且第二透明导电部分形成第一检测电极。第三透明导电部分连接于第一透明导电部分与第二透明导电部分之间,且第三透明导电部分与第一透明导电部分、第二透明导电部分均电导通。
这样一来,第一检测电极位于第一表面上与显示部分正对的区域,在信号检测过程中,可以借助显示部分显示用于指示第一检测电极位置的标识,以利于用户快速确定第一检测电极的位置。在其他场景下,显示部分可以显示其他的数字或者图形。既标识了第一检测电极的位置,又保证了电子设备的外观一致性。同时,导电孔设置于透光盖板上与非显示部分正对的部分内。由于非显示部分不用于显示,因此,导电孔对电子设备的外观影响较小,有利于保证电子设备的外观一致性。
在第一方面的一种可能的实现方式中,透明导电层的材料包括氧化铟锡、纳米银、碳纳米导电材料、金属网格、导电聚合物PEDOT、石墨烯中的至少一种。
在第一方面的一种可能的实现方式中,导电孔的数量为多个,多个导电孔均设置于透光盖板上与非显示部分正对的部分内。第一透明导电部分覆盖多个导电孔的朝向第一表面的一端,并与多个导电孔中的至少一个导电孔电导通。这样一来,可以提升容错率,保证电连接可靠性。
在第一方面的一种可能的实现方式中,显示模组还包括连接电极。连接电极设置于第二表面,且连接电极覆盖多个导电孔的朝向第二表面的一端,并与多个导电孔中的至少一个导电孔电导通。这样一来,可以借助连接电极与信号采集电路电连接,方便操作。
在第一方面的一种可能的实现方式中,连接电极为透明电极。具体的,连接电极的材料可以包括氧化铟锡、纳米银、碳纳米导电材料、金属网格、导电聚合物PEDOT、石墨烯中的至少一种。这样一来,当用户由第一表面所朝向的一侧观看显示模组时,连接电极对用户不可见,可以避免连接电极影响电子设备的外观一致性。
在第一方面的一种可能的实现方式中,连接电极包括多个第一电极部分和至少一 个第二电极部分。其中,多个第一电极部分的数量与多个导电孔的数量相等并一一对应,每个第一电极部分覆盖对应导电孔的朝向第二表面的一端,至少一个第二电极部分连接于多个第一电极部分之间。这样一来,连接电极为镂空状结构,连接电极的用料成本较少,且在第二表面的实际占用区域较少,用户由第一表面所朝向的一侧观看显示模组时,连接电极的隐蔽性较高,可以在一定程度上避免连接电极影响电子设备的外观一致性。
在第一方面的一种可能的实现方式中,第一电极部分呈圆形,第一电极部分的面积大于所覆盖导电孔的朝向第二表面的一端端面的面积。这样一来,有利于第一电极部分覆盖导电孔,且第一电极部分与导电孔的电导通的可靠性较高。
在第一方面的一种可能的实现方式中,第二电极部分呈线状,且第二电极部分的线宽可以小于或者等于10μm。具体的,第二电极部分的线宽可以为1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm。这样一来,第二电极部分对用户不可见,可以进一步提升电子设备的外观一致性。
在第一方面的一种可能的实现方式中,导电孔的朝向第一表面的一端裸露于第一表面,且导电孔的朝向第一表面的一端形成第一检测电极的至少部分。这样一来,无需在第一表面单独设置第一检测电极,因此工艺简单,成本较低。
在第一方面的一种可能的实现方式中,显示面板包括显示部分。导电孔设置于透光盖板上与显示部分正对的部分内。这样一来,第一检测电极位于第一表面上与显示部分正对的区域,在信号检测过程中,可以借助显示部分显示用于指示第一检测电极位置的标识,以利于用户快速确定第一检测电极的位置。在其他场景下,显示部分可以显示其他的数字或者图形。既标识了第一检测电极的位置,又保证了电子设备的外观一致性。
在第一方面的一种可能的实现方式中,导电孔的数量为多个,多个所述导电孔均设置于所述透光盖板上与所述显示部分正对的部分内;多个所述导电孔的朝向所述第一表面的一端形成所述第一检测电极。
在第一方面的一种可能的实现方式中,显示面板还包括非显示部分。显示模组还包括导电层,该导电层设置于第二表面,导电层包括第一导电部分、第二导电部分和第三导电部分。其中,第一导电部分位于第二表面上与显示部分正对的区域,且第一导电部分覆盖多个导电孔的朝向第二表面的一端,并与多个导电孔中的至少一个导电孔电导通。第二导电部分位于第二表面上与非显示部分正对的区域,第二导电部分形成连接电极,连接电极用于与信号采集电路电连接。第三导电部分连接于第一导电部分与第二导电部分之间,并与第一导电部分、第二导电部分电导通。
这样一来,借助第一导电部分和第三导电部分将多个导电孔的电位引入第二导电部分,以借助第二导电部分引入信号采集电路,此布局合理,有利于保证电子设备的外观一致性。
在第一方面的一种可能的实现方式中,第一导电部分包括多个第一导电子部分和至少一个第二导电子部分。多个第一导电子部分的数量与多个导电孔的数量相等并一一对应,每个第一导电子部分覆盖于对应的导电孔的朝向第二表面的一端,至少一个第二导电子部分连接于多个第一导电子部分之间。这样一来,第一导电部分为镂空状 结构,第一导电部分的用料成本较少,且在第二表面的实际占用区域较少,用户由第一表面所朝向的一侧观看显示模组时,第一导电部分的隐蔽性较高,可以在一定程度上避免第一导电部分影响电子设备的外观一致性。同时,第一导电部分将多个导电孔电连接在一起,只需借助一条导电线即可将多个导电孔的电位引出至第二导电部分,因此可以减小第三导电部分的结构复杂度和占用面积,能够避免第三导电部分影响电子设备的外观一致性。
在第一方面的一种可能的实现方式中,第二导电子部分和第三导电部分均呈线状,且第二导电子部分和第三导电部分的宽度均小于或者等于10μm。具体的,第二导电子部分和第三导电部分的宽度可以为1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm。这样一来,第二导电子部分和第三导电部分对用户不可见,可以进一步提升电子设备的外观一致性。
在第一方面的一种可能的实现方式中,导电孔包括主体部和耐磨部,耐磨部设置于主体部的朝向第一表面的一端,且主体部与耐磨部电导通,耐磨部的远离主体部的一端形成第一检测电极的上述至少部分,耐磨部的材料包括镍元素和金元素。这样一来,可以借助耐磨部提升导电孔的耐磨和耐划伤性能,避免导电孔在使用过程中产生材料损失,而导致不能与手指接触,因此可以延长第一检测电极的使用寿命。且镍元素和金元素的组合物的硬度较大,有利于提升耐磨性能。
第二方面,还提供了一种电子设备,该电子设备包括显示模组、信号采集电路和处理器。显示模组为上述第一方面任一技术方案所述的显示模组。信号采集电路与导电孔的朝向第二表面的一端电连接。处理器与信号采集电路电连接。
由于本申请提供的电子设备包括上述第一方面任一技术方案所述的显示模组,因此二者可以解决相同的技术问题,并达到相同的效果。
在第二方面的一种可能的实现方式中,电子设备还包括壳体和第二检测电极,壳体的内部形成容置空间,信号采集电路和处理器容置于容置空间内,壳体包括背盖,背盖与显示模组相对设置。第二检测电极设置于该背盖上,且第二检测电极的至少部分裸露于背盖的背对显示模组的表面,第二检测电极也与信号采集电路电连接。
这样一来,当电子设备佩戴于用户手腕等部位时,第二检测电极与手腕等部位的皮肤接触,能够检测用户的ECG、体温、心率、体脂、电压等生物信号,且当第一检测电极被手指按压时,该手指的按压力可以驱动电子设备与手腕等部位皮肤紧贴,由此在保证第一检测电极的检测精度的同时,还能够保证第二检测电极的检测精度。
在第二方面的一种实现方式中,第一检测电极和第二检测电极为心电图检测电极。这样一来,在检测时,第一检测电极和第二检测电极同时实现检测,以同时获得用户的左手电位和右手电位,从而可以得到左右手电位差,进而得到心电信号。同时当第一检测电极被手指按压时,该手指的按压力可以驱动第二检测电极与手腕皮肤紧贴,由此能够保证ECG的检测精度。
在第二方面的一种实现方式中,电子设备为智能手表或智能手环。
附图说明
图1为本申请一些实施例提供的电子设备的结构示意图;
图2为图1所示电子设备中手表本体的爆炸图;
图3为图2所示手表本体中显示模组的结构示意图;
图4为本申请一些实施例提供的电子设备在ECG检测时的手势示意图;
图5为图4所示电子设备由方向D1看去时的结构示意图;
图6为图4所示电子设备由方向D2看去时的一种受力状态示意图;
图7为图4所示电子设备由方向D2看去时的另一种受力状态示意图;
图8为本申请又一些实施例提供的电子设备中手表本体的剖视图;
图9为图8所示电子设备中显示模组的放大图;
图10为图9所示显示模组的俯视图;
图11为图9所示显示模组中透光盖板、多个导电孔和连接电极的装配结构的仰视图;
图12为图11所示装配结构在区域I处的放大图;
图13为本申请一些实施例提供的显示模组的加工方法的流程图;
图14为图13所示显示模组的加工方法中步骤S200的一种方法流程图;
图15为图8所示手表本体的仰视图;
图16为本申请一些实施例提供的电子设备内电路板组件的电路框图;
图17为本申请一些实施例提供的电子设备的控制方法的流程图;
图18为本申请又一些实施例提供的电子设备内显示模组的剖视图;
图19为图18所示显示模组的俯视图;
图20为图18所示显示模组中单个导电孔的结构示意图;
图21为图18所示显示模组内透光盖板的第二表面的结构示意图;
图22为图21所示结构中区域II的放大图。
具体实施方式
在本申请实施例中,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本申请实施例中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
本申请提供一种电子设备,该电子设备用于实现人体生物信号的检测,以判断人体的健康状况。具体的,电子设备包括但不限于智能手表、智能手环、智能眼镜和智能衣服等穿戴设备,手机、平板电脑、笔记本电脑、膝上型电脑(laptop computer)、个人数码助理(personal digital assistant,PDA)、个人计算机、智能电视、车载设备等终端设备,以及数码相机、随身听、收音机等电子产品。
请参阅图1,图1为本申请一些实施例提供的电子设备100的结构示意图。在本实施例以及下文各实施例中,是以电子设备100为智能手表进行示例性说明,这不能认为是对电子设备100的结构形式构成的特殊限制。智能手表包括手表本体2和表带 1。手表本体2用于实现智能手表的主要功能,表带1用于将手表本体2佩戴于人体的手腕上。
在一些实施例中,请继续参阅图1,表带1可以包括第一表带部分11和第二表带部分12,第一表带部分11的一端和第二表带部分12的一端连接于手表本体2的相对两端。第一表带部分11的另一端设有第一锁持部111,第二表带部分12的另一端设有第二锁持部121。第一锁持部111和第二锁持部121可拆卸地彼此锁持,以将手表本体2佩戴于人体的手腕上。
其中,第一锁持部111和第二锁持部121组成的配合结构可以为钩扣、暗扣、蝴蝶扣、皮带按扣、折叠安全扣、折叠扣或针扣等表扣结构,本申请对此不做具体限定。
下面主要对手表本体2进行介绍。
请继续参阅图1,手表本体2大致呈圆盘状。在此基础上,为了方便后文各实施例的描述,针对本实施例以及下文各实施例所述的手表本体2,建立XYZ坐标系。具体的,定义手表本体2的厚度方向为Z轴方向,与Z轴方向垂直的平面为XY平面,手表本体2上用于连接第一表带部分11的位置为第一位置A,手表本体2上用于连接第二表带部分12的位置为第二位置B,第一位置A和第二位置B位于XY平面内,基于此,定义第一位置A、第二位置B的排列方向为X轴方向,XY平面内与X轴方向垂直的方向为Y轴方向。可以理解的是,手表本体2的坐标系设置可以根据实际需要进行灵活设置,在此不做具体限定。在其他一些实施例中,手表本体2也可以大致呈椭圆盘状、三角形盘状、多边形盘状、矩形盘状,在此不做具体限定。
请一并参阅图1和图2,图2为图1所示电子设备100中手表本体2的爆炸图。手表本体2包括表身21、显示模组22、上表壳23、下表壳24、电路板组件25和电池(图中未示出)。
可以理解的是,图1和图2仅示意性的示出了手表本体2包括的一些部件,这些部件的实际形状、实际大小、实际位置和实际构造不受图1和图2的限制。
表身21为手表本体2的支撑框架,第一位置A和第二位置B位于表身21上。表身21的材料可以采用不锈钢,以保证表身21的结构强度以及对其他部件的支撑强度。
上表壳23连接于表身21沿Z轴方向的一端,下表壳24连接于表身21沿Z轴方向的另一端。上表壳23和下表壳24的材料包括但不限于不锈钢等金属材料和聚碳酸酯(polycarbonate,PC)、PC+玻璃纤维、ABS塑料(acrylonitrile butadiene styrene plastic)等塑胶。
上表壳23、表身21和下表壳24组成手表本体2的壳体,下表壳24形成该壳体的背盖。壳体的内部形成容置空间,电路板组件25和电池容置于该容置空间内。
在此基础上,需要说明的是,为了方便后文各实施例的描述,后文中,描述表身21和下表壳24所使用的“外表面”是指被描述对象的背对容置空间的表面,后文中将不做一一赘述。
显示模组22固定于上表壳23。显示模组22用于显示时针、分针、秒针、表盘、数字时间、天气、气温、ECG、人体温度、心率、体脂、电压等数值或者图形。
显示模组22与电路板组件25电连接,电路板组件25用于控制显示模组22显示上述数值、图形或者其他图像。
请参阅图3,图3为图2所示手表本体2中显示模组22的结构示意图。显示模组22包括依次层叠设置并固定连接的透光盖板221、触控模组222、显示面板(英文名称:panel)223、第一胶黏层224和第二胶黏层225。
可以理解的是,图3仅示意性的示出了显示模组22包括的一些部件,这些部件的实际形状、实际大小、实际位置和实际构造不受图3的限制。在其他实施例中,显示模组22也可以不包括触控模组222、第一胶黏层224和第二胶黏层225中的至少一个。
其中,透光盖板221主要用于对触控模组222和显示面板223起到防水、防尘、防划伤保护作用。透光盖板221的材质包括但不限于玻璃和蓝宝石。在其他一些实施例中,当显示模组22不包括触控模组222时,透光盖板221也可以为偏光片,该偏光片在起到偏光效果的同时,还对显示面板223起到保护作用。
触控模组222用于实现触摸位置及轨迹的检测,以便于控制执行相应的操作,由此实现人机交互。触控模组222包括但不限于红外线式触控模组、电阻式触控模组、表面声波式触控模组和电容式触控模组四种。其中,当触控模组222为电容式触控模组时,具体的,触控模组222可以为自电容式触控模组,也可以为互电容式触控模组,在此不做具体限定。
显示面板223为显示数值和图形的核心器件。显示面板223可以为柔性显示屏,也可以为刚性显示屏。例如,显示面板223可以为有机发光二极管(organic light-emitting diode,OLED)显示屏,有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light-emitting diode,AMOLED)显示屏,迷你发光二极管(mini organic light-emitting diode)显示屏,微型发光二极管(micro organic light-emitting diode)显示屏,微型有机发光二极管(micro organic light-emitting diode)显示屏,量子点发光二极管(quantum dot light emitting diode,QLED)显示屏,液晶显示屏(liquid crystal display,LCD)。
当显示面板223为不能自发光的显示屏时,比如为LCD时,显示模组22还可以包括背光模组,背光模组设置于显示面板223的背对透光盖板221的一侧,以提供背光。该背光模组包括但不限于直下式背光模组和侧入式背光模组。
显示面板223包括显示部分223a和非显示部分223b。显示部分223a为显示面板223上用于显示数值或者图形的部分。换句话说,显示部分223a也即是显示面板223内布局有阵列像素点的部分。该显示部分223a为被非显示部分223a包围的一个确定区域,当电子设备100因跌落、撞击、划伤等事故而在该显示部分223a出现黑斑、亮线时,该黑斑以及亮线处的部分显示面板仍然属于显示面板223的显示部分223a。一般情况下,透光盖板221上与该显示部分223a相对的部分为透光部分。也就是说,该部分透光盖板221与显示部分223a之间未设置遮光油墨层、遮光胶带等遮光层,能够允许显示部分223a生成的图像光穿过。由此实现图像、视频显示。非显示部分223a为显示面板223内不用于显示的区域。换句话说,非显示部分223a也即是显示面板223内未布局阵列像素点的区域。该非显示部分223a内通常具有信号走线和封装结构。一般情况下,透光盖板221上与该非显示部分223a相对的部分的内表面设有遮光油墨层、遮光胶带等遮光层,以防止用户观看到内部走线和封装结构,由此可以保证电子设备的外观。
第一胶黏层224设置于透光盖板221与触控模组222之间,透光盖板221与触控模组222借助第一胶黏层224粘接在一起。第二胶黏层225设置于触控模组222与显示面板223之间,触控模组222与显示面板223借助第二胶黏层225粘接在一起。第一胶黏层224和第二胶黏层225的材料包括但不限于光学透明胶(optically clear adhesive,OCA)。
在上述基础上,请继续参阅图3,手表本体2还包括第一电连接结构226和第二电连接结构227。
第一电连接结构226用于实现触控模组222与前述电路板组件25的互连。第二电连接结构227用于实现显示面板223与前述电路板组件25的互连。
第一电连接结构226和第二电连接结构227包括但不限于柔性电路板(flexible printed circuit board,FPC)、印制电路板(printed circuit board,PCB)、导线、由柔性结构和导线编织形成的结构。第一电连接结构226与触控模组222之间,以及第二电连接结构227与显示面板223之间的连接方式包括但不限于焊接、各向异性导电胶膜(anisotropic conductive film,ACF)粘接、弹簧接触、弹性顶针接触和平面金属接触,在此不做具体限定。
随着技术的发展,在电子设备中,集成了越来越多的功能,尤其是集成了越来越多的与外界人体交互检测的功能,比如对人体的ECG、体温、体脂、电压等信号的检测。用于检测这些信号的电极通常布置在背盖上。在检测过程中,电极与用户皮肤的贴合度较低,导致检测精度和准确性较低,出现无法检测或者需要反复检测的问题。
下面以ECG电极为例说明上述问题,请参阅图4和图5,图4为本申请一些实施例提供的电子设备100在ECG检测时的手势示意图,图5为图4所示电子设备100由方向D1看去时的结构示意图。电子设备100包括用于检测ECG的第一电极K1和第二电极K2。第一电极K1的数量为两个,两个第一电极K1设置于下表壳24,且至少部分裸露于下表壳24的外表面。第二电极K2设置于表身21,且至少部分裸露于表身21的外表面。第一电极K1用于与手腕的皮肤接触,以实现用户佩戴手的电位检测,用户另一只手的手指贴合第二电极K2,以实现另一只手的电位检测,由此可以得到用户佩戴手与另一只手的电位差,以获得心电信号。
但是,当用户另一只手的手指接触第二电极K2时,请参阅图6和图7,图6为图4所示电子设备100由方向D2看去时的一种受力状态示意图,图7为图4所示电子设备100由方向D2看去时的另一种受力状态示意图。该另一只手的手指施加至第二电极K2的力F不能保证绝对的水平,容易向上或者向下倾斜,导致手表本体2产生歪斜,从而导致第一电极K1以及第二电极K2不能与佩戴手腕的皮肤有效贴合,进而导致测量精度及准确性降低,出现无法检测或者需要反复检测的问题。
为了解决上述问题,请参阅图8,图8为本申请又一些实施例提供的电子设备100中手表本体2的剖视图。本实施例中,显示模组22内,透光盖板221的背对显示面板223的表面设有第一检测电极26。第一检测电极26可以为ECG检测电极、体温检测电极、心率检测电极、体脂检测电极和电压检测电极中的一个。透光盖板221上设有导电孔27,电子设备100还包括第三电连接结构28。导电孔27将第一检测电极27的检测电位引入电子设备100的内部,并进一步通过第三电连接结构28引入电路板组件 25,以实现信号采集和处理。显示模组22内的其他结构组成可以与图3所示显示模组22相同。
这样一来,请继续参阅图8,用户可以有目的性的通过手指等部位皮肤接触第一检测电极26,以实现信号的检测。且在检测过程中,手指等部位皮肤的按压力F的方向大致与手表本体2的厚度方向(也即是Z轴方向)平行,在该按压力F的作用下,手表本体2产生歪斜的概率降低,用户手指等部位皮肤与第一检测电极26能够有效贴合,从而保证了测量精度及准确性,降低了出现无法检测或者需要反复检测的可能性。
下面结合附图详细介绍上述实施例。
请参阅图9,图9为图8所示电子设备100中显示模组22的放大图。为了方便本实施例以及下文各实施例的描述,定义透光盖板221的背对显示面板223的表面为第一表面S1,透光盖板221的朝向显示面板223的表面为第二表面S2。导电孔27的轴向由第一表面S1指向第二表面S2。具体的,导电孔27的轴向可以垂直于第一表面S1或第二表面S2,也可以相对于第一表面S1和第二表面S2倾斜一定角度,在此不做具体限定。导电孔27贯穿透光盖板221,也就是说,导电孔27的轴向上的一端位于第一表面S1,另一端位于第二表面S2。
导电孔27包括设置于透光盖板221上的通孔以及设置于该通孔的内壁上或者填充于通孔内的导电介质,该导电介质的材料可以包括铜、银、锡、钨、金等元素中的至少一种,导电介质的材料也可以包括氧化铟锡、纳米银、碳纳米导电材料、金属网格、导电聚合物PEDOT、石墨烯中的至少一种。基于此,上述实施例中,“导电孔27的轴向”具体是指:通孔的轴向;“导电孔27贯穿透光盖板221”具体是指:通孔贯穿透光盖板221,且导电介质沿通孔的轴向覆盖整个通孔。
导电孔27可以设置于透光盖板221上与非显示部分223b正对的部分内,也可以设置于透光盖板221上与显示部分223a正对的部分内。
在图9所示的实施例中,导电孔27设置于透光盖板221上与非显示部分223b正对的部分内。由于非显示部分223b不用于显示,因此,导电孔27对电子设备100的外观影响较小,有利于保证电子设备100的外观一致性。
在上述实施例中,导电孔27的直径可以小于或者等于20微米(μm),具体的,导电孔27的直径可以为1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm、12μm、14μm、15μm、17μm、18μm、19μm、20μm。这样一来,导电孔27对用户肉眼基本不可见,因此对电子设备100的外观影响较小。
在其他实施例中,导电孔27的直径也可以大于20微米,比如为21μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm、100μm或者1纳米(nm)。
在其他实施例中,当导电孔27设置于透光盖板221上与显示部分223a正对的部分内时,导电孔27的直径可以小于或者等于10μm,以避免导电孔27影响显示。
导电孔27的数量可以为一个,也可以为多个。其中,“多个”是指两个及两个以上的数量。在一些实施例中,请一并参阅图9和图10,图10为图9所示显示模组22的俯视图。导电孔27的数量为多个,具体为三个,这样可以提升容错率,保证电连接可靠性。在其他一些实施例中,导电孔27的数量也可以为两个、四个、五个、六个等等,在此不做具体限定。
当导电孔27的数量为多个时,该多个导电孔27可以均设置于透光盖板221上与非显示部分223b正对的部分内,也可以均设置于透光盖板221上与显示部分223a正对的部分内,还可以一部分设置于透光盖板221上与非显示部分223b正对的部分内,另一部分设置于透光盖板221上与显示部分223a正对的部分内。
在图9和图10所示实施例中,多个导电孔27均设置于透光盖板221上与非显示部分223b正对的部分内。这样一来,多个导电孔27对电子设备100的外观影响均较小,有利于保证电子设备100的外观一致性。
导电孔27的朝向第一表面S1的一端与第一检测电极26电导通。
在一些实施例中,请继续参阅图9和图10,显示模组22还包括透明导电层29。透明导电层29的材料包括氧化铟锡、纳米银、碳纳米导电材料、金属网格、导电聚合物PEDOT、石墨烯中的至少一种。透明导电层29设置于第一表面S1,且透明导电层29覆盖导电孔27的朝向第一表面S1的一端,并与该导电孔27电导通。在此基础上,透明导电层29的至少部分形成上述第一检测电极26。具体的,透明导电层29可以部分形成上述第一检测电极26,也可以整体形成上述第一检测电极26。在图10所示的实施例中,透明导电层29的部分形成第一检测电极26。具体的,透明导电层29上用于与用户手指接触的部分形成第一检测电极26。需要说明的是,一般情况下,透明导电层29上用于与用户手指接触的该部分周围或者下方通常设置有标识,该标识用于标识该部分透明导电层29的位置,以使用户能够快速找到第一检测电极26。其中,标识可以为具有特殊形状的凹槽、凸棱或者涂层,也可以为显示面板223显示的图形,在此不做具体限定。
这样一来,第一检测电极26由透明导电层29形成,避免第一检测电极26影响电子设备100的外观,且当第一检测电极26设置于第一表面S1上与显示部分223a正对的区域时,可以避免第一检测电极26干扰图像显示。
在上述实施例中,第一检测电极26可以设置于第一表面S1上与显示部分223a正对的区域,也可以设置于第一表面S1上与非显示部分223b正对的区域。
在一些实施例中,请重点参阅图10,透明导电层29包括第一透明导电部分291、第二透明导电部分292和第三透明导电部分293。
其中,第一透明导电部分291位于第一表面S1上与非显示部分223b正对的区域,且该第一透明导电部分291覆盖导电孔27的朝向第一表面S1的一端,并与导电孔27电导通。
另外,第二透明导电部分292位于第一表面S1上与显示部分223a正对的区域,且第二透明导电部分292形成上述第一检测电极26。
再者,第三透明导电部分293连接于第一透明导电部分291与第二透明导电部分292之间,且第三透明导电部分293与第一透明导电部分291、第二透明导电部分292均电导通。
这样一来,第一检测电极26位于第一表面S1上与显示部分223a正对的区域,在信号检测过程中,可以借助显示部分223a显示用于指示第一检测电极26位置的标识,以利于用户快速确定第一检测电极26的位置。在其他场景下,显示部分223a可以显示其他的数字或者图形。既标识了第一检测电极26的位置,又保证了电子设备100 的外观一致性。
在上述实施例中,显示部分223a显示的标识可以为指纹形状,并显示于显示部分223a上与第一检测电极26正对的部分上。当然,显示部分223a显示的标识也可以为其他形状,比如箭头形状,且该标识也可以位于显示部分223a上的其他区域,只要能够指示第一检测电极26的位置即可,在此不做具体限定。
在其他实施例中,第一检测电极26也可以位于第一表面S1上与非显示部分223b正对的区域。在此基础上,可以在透光盖板221上与第一检测电极26正对的部分上设置具有特殊形状的凹槽、凸棱、涂层等标识,以标识第一检测电极26的位置。
在其他实施例中,当第一检测电极26位于第一表面S1上与非显示部分223b正对的区域时,第一检测电极26也可以为非透明电极。这样一来,第一检测电极26自身可以作为标识,以指示位置,无需另外设置标识。
请返回参阅图9,导电孔27的朝向第二表面S2的一端借助第三电连接结构28与上述电路板组件25电连接。第三电连接结构28包括但不限于FPC、PCB、导线、由柔性结构和导线编织形成的结构,第三电连接结构28包括第一端281和第二端(图中未示出),第一端281与导电孔27的朝向第二表面S2的一端电连接,第二端与电路板组件25电连接。这样一来,借助第三电连接结构28,可以拉远电路板组件25与导电孔27的距离,以将电路板组件25布局在空间富余的区域,有利于手表本体2内部各结构的合理布局。
在上述基础上,为了便于连接第一端281,请继续参阅图9,第二表面S2上设有连接电极30。连接电极30覆盖导电孔27的朝向第二表面S2的一端,并与导电孔27电导通。当导电孔27的数量为多个时,连接电极30覆盖多个导电孔27的朝向第二表面S2的一端,并与多个导电孔27中的至少一个导电孔27电导通。这样一来,可以借助连接电极30与第一端281电连接,方便操作。
在上述实施例中,连接电极30可以为透明电极,也可以为非透明电极。
当连接电极30为透明电极时,连接电极30的材料可以包括氧化铟锡、纳米银、碳纳米导电材料、金属网格、导电聚合物PEDOT、石墨烯中的至少一种。这样一来,当用户由第一表面S1所朝向的一侧观看显示模组22时,连接电极30对用户不可见,可以避免连接电极30影响手表本体2的外观一致性。
当连接电极30为非透明电极时,连接电极30的材料可以包括铜、银、锡、钨、金等元素中的至少一种。这样一来,连接电极30的导电性能较优,能量损失较少。
下文各实施例是在连接电极30为非透明电极的基础上进行的说明,这不能认为是对本申请构成的特殊限制。
连接电极30可以为矩形、圆形、三角形等形状的实心区域,也可以为镂空状区域。
在一些实施例中,当导电孔27的数量为多个时,请参阅图11和图12,图11为图9所示显示模组22中透光盖板221、多个导电孔27和连接电极30的装配结构的仰视图,图12为图11所示装配结构在区域I处的放大图。连接电极30包括多个第一电极部分301和至少一个第二电极部分302。
其中,多个第一电极部分301的数量与多个所述导电孔27的数量相等并一一对应,每个第一电极部分301覆盖对应导电孔27的朝向第二表面S2的一端。第一电极部分 301的面积可以与导电孔27的截面面积相等,也可以略大于导电孔27的截面面积。在图12所示的实施例中,第一电极部分301的面积略大于导电孔27的截面面积。第一电极部分301的形状可以为圆形、方形、多边形、三角形、椭圆形等等,在此不做具体限定。在图12所示的实施例中,第一电极部分301的形状为圆形。在此基础上,第一电极部分301的面积大于所覆盖导电孔27的朝向第二表面S2的一端端面的面积。这样一来,有利于第一电极部分301覆盖导电孔27,且第一电极部分301与导电孔27的电导通的可靠性较高。
另外,至少一个第二电极部分302连接于多个第一电极部分301之间。
这样一来,连接电极30为镂空状结构,连接电极30的用料成本较少,且在第二表面S2的实际占用区域较少,用户由第一表面S1所朝向的一侧观看显示模组22时,连接电极30的隐蔽性较高,可以在一定程度上避免连接电极30影响手表本体2的外观一致性。
在一些实施例中,请继续参阅图12,第二电极部分302呈线状,且第二电极部分302的线宽可以小于或者等于10μm。具体的,第二电极部分302的线宽可以为1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm。这样一来,第二电极部分302对用户不可见,可以进一步提升手表本体2的外观一致性。
需要说明的是,第二电极部分302的数量及连接方式,可以根据第二电极部分302的总长度小,将多个第一电极部分301电连接在一起的两个设计目标进行灵活设计,本申请对此不做具体限定,图12仅给出了一种连接方式,这不能认为是对本申请构成的特殊限制。
连接电极30与第一端281电连接。具体的,请返回参阅图9,连接电极30与第一端281之间可以借助各向异性导电胶膜31电连接。各向异性导电胶膜31的颜色可调性较优,可以选择为与透光盖板221上遮光层的颜色一致,以保证手表本体2的外观一致性。
在其他实施例中,连接电极30与第一端281之间也可以借助焊锡电连接,在此不做具体限定。
在其他实施例中,导电孔27的朝向第二表面S2的一端也可以直接与上述电路板组件25通过焊锡、ACF等材料电连接,在此不做具体限定。
以上介绍了显示模组22的结构,在此基础上,本申请还提供了一种显示模组22的加工方法。请参阅图13,图13为本申请一些实施例提供的显示模组22的加工方法的流程图。本实施例中,显示模组22的加工方法包括下面的步骤S100-步骤S600。
步骤S100:请参阅图13中的(a),提供透光盖板221。透光盖板221的材料包括但不限于玻璃和蓝宝石。透光盖板221包括相对的第一表面S1和第二表面S2。
步骤S200:请参阅图13中的(b),在透光盖板221上设置导电孔27。
其中,导电孔27可以包括设置于透光盖板221上的通孔以及设置于该通孔的内壁上或者填充于通孔内的导电介质,该导电介质的材料可以包括铜、银、锡、钨、金等元素中的至少一种,导电介质的材料也可以包括氧化铟锡、纳米银、碳纳米导电材料、金属网格、导电聚合物PEDOT、石墨烯中的至少一种。
另外,导电孔27的数量可以为一个,也可以为多个。当导电孔27的数量为多个 时,该多个导电孔27可以同时成型,也可以先后成型,在此不做具体限定。
下面以单个导电孔27为例介绍上述步骤S200的具体方法。具体的,请参阅图14,图14为图13所示显示模组22的加工方法中步骤S200的一种方法流程图,步骤S200可以包括下面的步骤S201-步骤S203。
步骤S201:请参阅图14中的(a),在透光盖板221上设置通孔a。
其中,通孔a的轴向上的一端位于第一表面S1,另一端位于第二表面S2。通孔a的轴向可以垂直于第一表面S1或第二表面S2,也可以相对于第一表面S1和第二表面S2倾斜一定角度,在此不做具体限定。
另外,在透光盖板221上设置通孔a的工艺包括但不限于干法化学、湿法化学、激光转孔或者机械钻孔等工艺。当透光盖板221的材料为光敏玻璃时,在透光盖板221上设置通孔a的工艺也可以为激光激活和湿法蚀刻结合的工艺。
步骤S202:请参阅图14中的(b),在通孔a内设置导电介质b。
其中,在通孔a内设置导电介质b的工艺包括但不限于电镀和丝印塞孔等工艺。
步骤S203:请参阅图14中的(c),去除导电介质b的伸出通孔a的两端开口的部分,以形成导电孔27。
其中,去除导电介质b的伸出通孔a的两端开口的部分的工艺包括但不限于化学机械抛光(CMP)等工艺。
步骤S300:请参阅图13中的(c),在第二表面S2设置连接电极30,并使连接电极30覆盖导电孔27的朝向第二表面S2的一端且与导电孔27电导通。当导电孔27的数量为多个时,使连接电极30覆盖多个导电孔27的朝向第二表面S2的一端,并与多个导电孔27中的至少一个导电孔27电导通。
其中,在第二表面S2设置连接电极30的工艺可以为制作重布线层(re-distributed layer,RDL)的工艺。这样形成的连接电极30在第二表面S2的实际占用区域较少,用户由第一表面S1所朝向的一侧观看连接电极30时,连接电极30的隐蔽性较高,可以在一定程度上避免连接电极30影响显示模组22的外观一致性。
步骤S400:在第一表面S1设置第一检测电极26,并使第一检测电极26与导电孔27的朝向第一表面S1的一端电导通。当导电孔27的数量为多个时,使第一检测电极26与多个导电孔27中的至少一个导电孔电连接。
在一些实施例中,步骤S300具体可以包括:请参阅图13中的(d),在第一表面S1设置透明导电层29,并使透明导电层29覆盖导电孔27的朝向第一表面S1的一端且与该导电孔27电导通。当导电孔27的数量为多个时,使透明导电层29覆盖多个导电孔27的朝向第一表面S1的一端且与该多个导电孔27中的至少一个导电孔电导通。透明导电层29的至少部分形成上述第一检测电极26。这样一来,第一检测电极26由透明导电层29形成,避免第一检测电极26影响电子设备100的外观。
在上述实施例中,透明导电层29的材料包括氧化铟锡、纳米银、碳纳米导电材料、金属网格、导电聚合物PEDOT、石墨烯中的至少一种。
当透明导电层29的材料为纳米银或者碳纳米导电材料时,在第一表面S1设置透明导电层29的工艺可以为丝印工艺。当透明导电层29的材料为氧化铟锡时,在第一表面S1设置透明导电层29的工艺可以为化学沉积工艺。
需要说明的是,步骤S400可以在步骤S300之后执行,也可以在步骤S300之前执行,还可以与步骤S300同时执行,在此不做具体限定。在图13所示的实施例中,步骤S400在步骤S300之后执行。
步骤S500:请参阅图13中的(e),在连接电极30上连接第三电连接结构28。
其中,第三电连接结构28包括但不限于FPC、PCB、导线、由柔性结构和导线编织形成的结构。
另外,在连接电极30上连接第三电连接结构28的工艺包括但不限于焊接和ACF 31粘接工艺。其中,焊接工艺包括但不限于热压焊(hot bar)工艺和表面贴装(surface mounted technology,SMT)工艺。
步骤S600:请参阅图13中的(f),在透光盖板221上设置触控模组222和显示面板223,并使得触控模组222和显示面板223位于第二表面S2所朝向的一侧。
具体的,在透光盖板221上设置触控模组222和显示面板223的工艺可以为采用第一胶黏层224和第二胶黏层225的粘接工艺。
由此实现了显示模组22的加工,此方法简单,方便操作。
以上介绍了本申请实施提供的电子设备100中显示模组22的结构及加工方法,在此基础上,电子设备100上还可以设置其他的检测电极。
在一些实施例中,请返回参阅图8,手表本体2还包括第二检测电极32。第二检测电极32设置于下表壳24,下表壳24与显示模组22相对设置,第二检测电极32的至少部分裸露于下表壳24的背对显示模组22的表面(也即是前文所述的下表壳24的外表面)。第二检测电极32可以为ECG检测电极、体温检测电极、心率检测电极、体脂检测电极或者电压检测电极。
需要说明的是,第二检测电极32可以位于下表壳24的背对显示模组22的表面,也可以镶嵌于下表壳24的内部,第二检测电极32的部分裸露于下表壳24的背对显示模组22的表面,或者,第二检测电极32的背对显示模组22的表面与下表壳24的背对显示模组22的表面共面,以使第二检测电极32的背对显示模组22的表面裸露。本实施例是以第二检测电极32位于下表壳24的背对显示模组22的表面进行示例性说明,这不能认为是对本申请构成的特殊限制。
第二检测电极32可以为金属片,金属片的形状可以为圆形、环形、方形、多边形、三角形或者其他不规则的形状等等,在此不做具体限定。金属片的面积越大,采集信号的高频噪声越小,但是金属片的面积受下表壳24尺寸的限制,同时由于下表壳24上通常还设有其他检测电极,比如利用光电容积描记(photoplethysmograph,PPG)技术实现心率检测的光电体积描记器,因此金属片的面积还受到其他检测电极的制约,在实际设计时,可以在这些制约条件下,尽可能地增大金属片的设置面积,或者设置多个彼此间隔的金属片,该多个彼此间隔的金属片用于检测同一信号。
在一些实施例中,请参阅图15,图15为图8所示手表本体2的仰视图。第二检测电极32包括两个金属片,该两个金属片的形状为弧形延伸的长条状,该两个金属片用于检测同一信号。
上述实施例中,金属片的材料可以包括铜、铝、银、锡、钨、金等元素中的至少一种。在一些实施例中,金属片可以采用铝作为基底,表面设置镀层。铝基底用于减 小成本及重量,镀层用于提高信号采集质量,降低噪声干扰。镀层的材料包括但不限于银、不锈钢和镍,具体的,银的采集信号质量要优于不锈钢和镍等常用金属的采集信号质量。其中,镀层的厚度可以为10μm。
第二检测电极32与上述电路板组件25电连接,该电连接方式包括但不限于焊接、弹簧接触、弹性顶针接触和平面金属接触,在此不做具体限定。当然第二检测电极32与电路板组件25之间还可以采用FPC、PCB、导线、由柔性结构和导线编织形成的结构连接,在此不做具体限定。
这样一来,当电子设备100佩戴于用户手腕等部位时,请继续参阅图8,第二检测电极32与手腕等部位的皮肤接触,能够检测用户的ECG、体温、心率、体脂、电压等生物信号,且当第一检测电极26被手指按压时,该手指的按压力F可以驱动手表本体2与手腕等部位的皮肤紧贴,由此在保证第一检测电极26的检测精度的同时,还能够保证第二检测电极32的检测精度。
在一些实施例中,请继续参阅图8,第一检测电极26和第二检测电极32均为ECG检测电极。这样一来,在检测时,第一检测电极26和第二检测电极32同时实现检测,以同时获得用户的左手电位和右手电位,从而可以得到左右手电位差,进而得到心电信号。同时当第一检测电极26被手指按压时,该手指的按压力F可以驱动第二检测电极32与手腕皮肤紧贴,由此能够保证ECG的检测精度。
需要说明的是,本实施例以及后文各实施例是以第一检测电极26和第二检测电极32均为ECG检测电极进行示例性说明。
根据以上各实施例的描述,第一检测电极26和第二检测电极32均与电路板组件25电连接,电路板组件25用于实现信号的采集、处理和计算。
请参阅图16,图16为本申请一些实施例提供的电子设备100内电路板组件25的电路框图。电路板组件25包括信号采集电路251和处理器252。
第一检测电极26和第二检测电极32均与信号采集电路251电连接,信号采集电路251与处理器252电连接。同时,处理器252还与显示面板223电连接。信号采集电路251根据第一检测电极26和第二检测电极32输入的电位差计算得到心电信号;信号采集电路251将心电信号转为数字信号传送到处理器252。处理器252将心电信号传输至显示面板223显示出,以方便用户读取。
在上述基础上,本申请还提供一种电子设备100的控制方法,该控制方法用于控制图8所示电子设备100。请参阅图17,图17为本申请一些实施例提供的电子设备100的控制方法的流程图。本实施例中,电子设备100的控制方法可以包括下面的步骤S10-步骤S50。
步骤S10:接收指示信号,该指示信号用于指示启动ECG检测程序。
其中,指示信号可以由电子设备100上的按键触发,也可以由触控模组222接收到的预设手势时触发,还可以为用户选择显示面板显示的预设选项时触发,本申请对此不做具体限定。
步骤S20:显示面板223显示标识,该标识用于标识第一检测电极26的位置。
其中,标识可以为显示面板223在第一检测电极26的正下方位置显示的指纹图样。当然,标识还可以为显示面板223在其他位置显示的其他图样,本申请对此不做具体 限定。
步骤S30:执行第一提示操作,该第一提示操作用于提示用户手指按压第一检测电极26。
其中,第一提示操作可以为语音提醒、灯光提醒、振动提醒或者显示面板显示的图形或者文字提醒,在此不做具体限定。
步骤S40:当第一检测电极26和第二检测电极32接收到心电信号时,持续检测预设时间,以得到预设时间的心电信号。
其中,预设时间可以为10秒(s)、20s、30s等等,在此不做具体限定。预设时间内持续检测心电信号,以得到多个心电信号。
当第一检测电极26和第二检测电极32接收到心电信号时,持续检测预设时间的同时,还包括:执行第二提示操作,该第二提示操作用于提示用户手指保持按压预设时间并倒计时。由此避免用户中断检测。
步骤S50:显示面板显示上述预设时间的心电信号。
其中,显示面板可以通过图形、文字或者数字等方式显示上述预设时间的心电信号。在其他实施例中,预设时间的心电信号也可以储存至存储器中,以方便用户后续查看。为了提升信号的检测精度,请参阅图18和图19,图18为本申请又一些实施例提供的电子设备100内显示模组22的剖视图,图19为图18所示显示模组22的俯视图。本实施例与图8所示实施例的不同之处包括:本实施例中,导电孔27的朝向第一表面S1的一端裸露于第一表面S1,且导电孔27的朝向第一表面S1的一端形成第一检测电极26的至少部分。
显示模组22的其他结构可以与图9所示显示模组相同,在此不做赘述。
这样一来,无需在第一表面S1单独设置第一检测电极26,因此工艺简单,成本较低。同时,用户也可以有目的性的通过手指等部位皮肤接触导电孔27的朝向第一表面S1的一端,以实现信号的检测。且在检测过程中,手指等部位皮肤的按压力F的方向大致与手表本体2的厚度方向(也即是Z轴方向)平行,在该按压力F的作用下,手表本体2产生歪斜的概率降低,用户手指等部位皮肤与导电孔27的朝向第一表面S1的一端能够有效贴合,从而保证了测量精度及准确性,降低了出现无法检测或者需要反复检测的可能性。
在上述实施例中,导电孔27的数量可以为一个,也可以为多个。当导电孔27的数量为一个时,该导电孔27的朝向第一表面S1的一端形成第一检测电极26;当导电孔27的数量为多个时,该多个导电孔27的朝向第一表面S1的一端共同形成第一检测电极26。
在一些实施例中,请参阅图18和图19,导电孔27的数量为多个,多个导电孔27阵列分布,多个导电孔27的朝向第一表面S1的一端共同形成第一检测电极26。这样一来,可以提升容错率,提升检测的精度。导电孔27可以设置于透光盖板221上与显示部分223a正对的部分内,也可以设置于透光盖板221上与非显示部分223b正对的部分内,在此不做具体限定。
在一些实施例中,请参阅图18和图19,导电孔27设置于透光盖板221上与显示部分223a正对的部分内。当导电孔27的数量为多个时,该多个导电孔27均设置于透 光盖板221上与显示部分223a正对的部分内。
这样一来,第一检测电极26位于第一表面S1上与显示部分223a正对的区域,在信号检测过程中,可以借助显示部分223a显示用于指示第一检测电极26位置的标识,以利于用户快速确定第一检测电极26的位置。在其他场景下,显示部分223a可以显示其他的数字或者图形。既标识了第一检测电极26的位置,又保证了电子设备100的外观一致性。
在上述实施例中,可选的,导电孔27的直径可以小于或者等于20μm。具体的,导电孔27的直径可以为1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm、12μm、14μm、15μm、17μm、18μm、19μm、20μm。这样一来,导电孔27对用户肉眼基本不可见,由此可以避免导电孔27干扰显示。
请参阅图20,图20为图18所示显示模组22中单个导电孔27的结构示意图。导电孔27可以包括设置于透光盖板221上的通孔a以及设置于该通孔a的内壁上或者填充于通孔a内的导电介质b,该导电介质b的材料可以包括铜、银、锡、钨、金等元素中的至少一种,导电介质b的材料也可以包括氧化铟锡、纳米银、碳纳米导电材料中的至少一种。
上述通孔a内,导电介质b的朝向第一表面S1的一端可以伸出第一表面S1,也可以与第一表面S1平齐,还可以略低于第一表面S1,只要能够被用户手指接触到即可,同时此三种情况均可以认为导电孔27的朝向第一表面S1的一端裸露于第一表面S1。图20给出了导电介质b的朝向第一表面S1的一端伸出第一表面S1的示例,这不能认为是对本申请构成的特殊限制。
在上述实施例中,沿通孔a的轴向,各位置的导电介质的材料可以相同,也可以不同。在一些实施例中,请继续参阅图20,导电孔27包括主体部271和耐磨部272。主体部271和耐磨部272为上述导电介质b中的两部分。耐磨部272设置于主体部271的朝向第一表面S1的一端,且主体部271与耐磨部272电导通,耐磨部272的远离主体部271的一端形成第一检测电极26的上述至少部分。这样一来,可以借助耐磨部272提升导电孔27的耐磨和耐划伤性能,避免导电孔27在使用过程中产生材料损失,而导致不能与手指接触,因此可以延长第一检测电极26的使用寿命。
在上述实施例中,耐磨部272的材料可以包括镍元素和金元素。镍元素和金元素的组合物的硬度较大,有利于提升耐磨性能。
请参阅图21,图21为图18所示显示模组22内透光盖板221的第二表面S2的结构示意图。透光盖板221的第二表面S2设有导电层33。
导电层33可以为透明导电层,也可以为非透明导电层。
当导电层33为透明导电层时,导电层33的材料可以包括氧化铟锡、纳米银、碳纳米导电材料、金属网格、导电聚合物PEDOT、石墨烯中的至少一种。这样一来,当用户由第一表面S1所朝向的一侧观看显示模组22时,导电层33对用户不可见,可以避免导电层33影响电子设备100的外观一致性。
当导电层33为非透明导电层时,导电层33的材料可以包括铜、银、锡、钨、金等元素中的至少一种。这样一来,导电层33的导电性能较优,能量损失较少。
下文各实施例是在导电层33为非透明导电层的基础上进行的说明,这不能认为是 对本申请构成的特殊限制。
请继续参阅图21,导电层33包括第一导电部分331、第二导电部分332和第三导电部分333。
其中,第一导电部分331位于第二表面S2上与显示部分223a正对的区域,且第一导电部分331覆盖多个导电孔27的朝向第二表面S2的一端,并与多个导电孔27中的至少一个导电孔电导通。
另外,第二导电部分332位于第二表面S2上与非显示部分223b正对的区域,第二导电部分332形成连接电极,该连接电极用于与信号采集电路电连接。具体的,该连接电极可以借助第三电连接结构28与电路板组件25上的信号采集电路电连接。
再者,第三导电部分333连接于第一导电部分331与第二导电部分332之间,并与第一导电部分331、第二导电部分332电导通。
这样一来,借助第一导电部分331和第三导电部分333将多个导电孔27的电位引入第二导电部分332,以进一步借助第三电连接结构28引入电路板组件25,此布局合理,有利于保证电子设备的外观一致性。
在上述实施例中,第一导电部分331可以为实心面状结构,也可以为镂空状结构。在一些实施例中,请参阅图22,图22为图21所示结构中区域II的放大图。第一导电部分331包括多个第一导电子部分331a和至少一个第二导电子部分331b。
其中,多个第一导电子部分331a的数量与多个导电孔27的数量相等并一一对应,每个第一导电子部分331a覆盖于对应导电孔27的朝向第二表面S2的一端。第一导电子部分331a的面积可以与导电孔27的截面面积相等,也可以略大于导电孔27的截面面积。在图22所示的实施例中,第一导电子部分331a的面积略大于导电孔27的截面面积。第一导电子部分331a的形状可以为圆形、方形、多边形、三角形、椭圆形等等,在此不做具体限定。在图22所示的实施例中,第一导电子部分331a的形状为圆形。
另外,至少一个第二导电子部分331b连接于多个第一导电子部分331a之间。
这样一来,第一导电部分331为镂空状结构,第一导电部分331的用料成本较少,且在第二表面S2的实际占用区域较少,用户由第一表面S1所朝向的一侧观看显示模组22时,第一导电部分331的隐蔽性较高,可以在一定程度上避免第一导电部分331影响手表本体2的外观一致性。同时,第一导电部分331将多个导电孔27电连接在一起,只需借助一条导电线即可将多个导电孔27的电位引出至第二导电部分332,因此可以减小第三导电部分333的结构复杂度和占用面积,能够避免第三导电部分333影响手表本体2的外观一致性。
在上述基础上,可选的,第二导电子部分331b和第三导电部分333均呈线状,且第二导电子部分331b和第三导电部分333的宽度均小于或者等于10μm。具体的,第二导电子部分331b和第三导电部分333的宽度可以为1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm。这样一来,第二导电子部分331b和第三导电部分333对用户不可见,可以进一步提升电子设备100的外观一致性。
需要说明的是,第二导电子部分331b的数量及连接方式,可以根据第二导电子部分331b的总长度小,将多个第一导电子部分331a电连接在一起的两个设计目标进行灵活设计,本申请对此不做具体限定,图22仅给出了一种连接方式,这不能认为是对 本申请构成的特殊限制。
在上述基础上,第二导电部分332的结构形式可以呈实心面状,也可以为由线状金属层组成的网状结构,在此不做具体限定。图21给出了第二导电部分332呈实心面状的示例,这不能认为是对本申请构成的具体限定。
以上介绍了本申请又一些实施例提供的显示模组22的结构,该显示模组22的加工方法与图8所示显示模组22的加工方法的不同之处在于:在加工图18所示显示模组22时,导电孔27的朝向第一表面S1的部分形成第一检测电极26的至少部分,因此无需设置专门的第一检测电极26。
在一些实施例中,导电孔27包括主体部271和耐磨部272。主体部271和耐磨部272为上述导电介质b中的两部分。耐磨部272设置于主体部271的朝向第一表面S1的一端,且主体部271与耐磨部272电导通,耐磨部272的远离主体部271的一端形成第一检测电极26的上述至少部分。耐磨部272的硬度大于主体部271的硬度。
在上述基础上,导电孔27的加工方法包括:首先,在透光盖板221上设置通孔a。其次,在通孔a内设置第一导电介质,第一导电介质也即是主体部271。然后,在第一导电介质的朝向第一表面S1的一端设置第二导电介质,第二导电介质也即是耐磨部272,第二导电介质与第一导电介质电导通,第二导电介质的硬度大于第一导电介质的硬度,且第二导电介质的远离第一导电介质的一端形成第一检测电极26的上述至少部分。
其中,第二导电介质的材料包括但不限于镍和金。在第一导电介质的朝向第一表面S1的一端设置第二导电介质的工艺包括电镀或者喷涂工艺。
另外,包括图18所示显示模组的电子设备100的控制方法可以与前述电子设备100的控制方法相同,在此不做赘述。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (21)

  1. 一种显示模组,其特征在于,包括:
    透光盖板;
    显示面板,所述显示面板与所述透光盖板层叠设置;
    导电孔,所述导电孔贯穿所述透光盖板;其中,
    所述导电孔的轴向由所述透光盖板的背对所述显示面板的第一表面指向所述透光盖板的朝向所述显示面板的第二表面;
    第一检测电极,所述第一检测电极设置于所述第一表面,且与所述导电孔的朝向所述第一表面的一端电导通。
  2. 根据权利要求1所述的显示模组,其特征在于,还包括:
    透明导电层,所述透明导电层设置于所述第一表面,且所述透明导电层覆盖所述导电孔的朝向所述第一表面的一端,并与所述导电孔电导通;其中,
    所述透明导电层的至少部分形成所述第一检测电极。
  3. 根据权利要求2所述的显示模组,其特征在于,所述显示面板包括显示部分和非显示部分;
    所述导电孔设置于所述透光盖板上与所述非显示部分正对的部分内;
    所述透明导电层包括第一透明导电部分、第二透明导电部分和第三透明导电部分;其中,
    所述第一透明导电部分位于所述第一表面上与所述非显示部分正对的区域,且所述第一透明导电部分覆盖所述导电孔的朝向所述第一表面的一端,并与所述导电孔电导通;
    所述第二透明导电部分位于所述第一表面上与所述显示部分正对的区域,且所述第二透明导电部分形成所述第一检测电极;
    所述第三透明导电部分连接于所述第一透明导电部分与所述第二透明导电部分之间,且所述第三透明导电部分与所述第一透明导电部分、所述第二透明导电部分均电导通。
  4. 根据权利要求3所述的显示模组,其特征在于,所述导电孔的数量为多个,多个所述导电孔均设置于所述透光盖板上与所述非显示部分正对的部分内;
    所述第一透明导电部分覆盖多个所述导电孔的朝向所述第一表面的一端,并与多个所述导电孔中的至少一个导电孔电导通。
  5. 根据权利要求4所述的显示模组,其特征在于,还包括:
    连接电极,所述连接电极设置于所述第二表面,且所述连接电极覆盖多个所述导电孔的朝向所述第二表面的一端,并与多个所述导电孔中的至少一个导电孔电导通。
  6. 根据权利要求5所述的显示模组,其特征在于,所述连接电极包括多个第一电极部分和至少一个第二电极部分,其中,
    所述多个第一电极部分的数量与多个所述导电孔的数量相等并一一对应,每个所述第一电极部分覆盖对应导电孔的朝向所述第二表面的一端,所述至少一个第二电极部分连接于所述多个第一电极部分之间。
  7. 根据权利要求6所述的显示模组,其特征在于,所述第一电极部分呈圆形,所 述第一电极部分的面积大于所覆盖导电孔的朝向所述第二表面的一端端面的面积。
  8. 根据权利要求6或7所述的显示模组,其特征在于,所述第二电极部分呈线状,所述第二电极部分的宽度小于或者等于10微米。
  9. 根据权利要求2-8任一项所述的显示模组,其特征在于,所述透明导电层的材料包括氧化铟锡、纳米银、碳纳米导电材料、金属网格、导电聚合物PEDOT、石墨烯中的至少一种。
  10. 根据权利要求1所述的显示模组,其特征在于,
    所述导电孔的朝向所述第一表面的一端裸露于所述第一表面,且形成所述第一检测电极的至少部分。
  11. 根据权利要求10所述的显示模组,其特征在于,所述显示面板包括显示部分;
    所述导电孔设置于所述透光盖板上与所述显示部分正对的部分内。
  12. 根据权利要求11所述的显示模组,其特征在于,所述导电孔的数量为多个,多个所述导电孔均设置于所述透光盖板上与所述显示部分正对的部分内;多个所述导电孔的朝向所述第一表面的一端形成所述第一检测电极。
  13. 根据权利要求12所述的显示模组,其特征在于,所述显示面板还包括非显示部分;
    所述显示模组还包括:
    导电层,所述导电层设置于所述第二表面,所述导电层包括第一导电部分、第二导电部分和第三导电部分;其中,
    所述第一导电部分位于所述第二表面上与所述显示部分正对的区域,且所述第一导电部分覆盖多个所述导电孔的朝向所述第二表面的一端,并与多个所述导电孔中的至少一个导电孔电导通;
    所述第二导电部分位于所述第二表面上与所述非显示部分正对的区域,所述第二导电部分形成连接电极;
    所述第三导电部分连接于所述第一导电部分与所述第二导电部分之间,并与
    所述第一导电部分、所述第二导电部分电导通。
  14. 根据权利要求13所述的显示模组,其特征在于,所述第一导电部分包括多个第一导电子部分和至少一个第二导电子部分;
    所述多个第一导电子部分的数量与多个所述导电孔的数量相等并一一对应,每个所述第一导电子部分覆盖于对应的导电孔的朝向所述第二表面的一端,所述至少一个第二导电子部分连接于所述多个第一导电子部分之间。
  15. 根据权利要求14所述的显示模组,其特征在于,所述第二导电子部分和所述第三导电部分均呈线状,且所述第二导电子部分和所述第三导电部分的宽度均小于或者等于10微米。
  16. 根据权利要求1-15任一项所述的显示模组,其特征在于,所述导电孔的直径小于或者等于20微米。
  17. 根据权利要求10-15任一项所述的显示模组,其特征在于,所述导电孔包括主体部和耐磨部,所述耐磨部设置于所述主体部的朝向所述第一表面的一端,且所述主体部与所述耐磨部电导通,所述耐磨部的远离所述主体部的一端形成第一检测电极的 所述至少部分,所述耐磨部的材料包括镍元素和金元素。
  18. 一种电子设备,其特征在于,包括:
    显示模组,所述显示模组为权利要求1-17任一项所述的显示模组;
    信号采集电路,所述信号采集电路与所述导电孔的朝向所述第二表面的一端电连接;
    处理器,所述处理器与所述信号采集电路电连接。
  19. 根据权利要求18所述的电子设备,其特征在于,还包括:
    壳体,所述壳体的内部形成容置空间,所述信号采集电路和所述处理器容置于所述容置空间内,所述壳体包括背盖,所述背盖与所述显示模组相对设置;
    第二检测电极,所述第二检测电极设置于所述背盖上,且所述第二检测电极的至少部分裸露于所述背盖的背对所述显示模组的表面,所述第二检测电极也与所述信号采集电路电连接。
  20. 根据权利要求19所述的电子设备,其特征在于,所述第一检测电极和所述第二检测电极为心电图检测电极。
  21. 根据权利要求18-20任一项所述的电子设备,其特征在于,所述电子设备为智能手表或智能手环。
PCT/CN2023/112921 2022-11-16 2023-08-14 一种显示模组和电子设备 WO2024103862A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211436030.8 2022-11-16
CN202211436030.8A CN118092125A (zh) 2022-11-16 2022-11-16 一种显示模组和电子设备

Publications (1)

Publication Number Publication Date
WO2024103862A1 true WO2024103862A1 (zh) 2024-05-23

Family

ID=91083743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/112921 WO2024103862A1 (zh) 2022-11-16 2023-08-14 一种显示模组和电子设备

Country Status (2)

Country Link
CN (1) CN118092125A (zh)
WO (1) WO2024103862A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10729347B1 (en) * 2017-01-31 2020-08-04 Verily Life Sciences Llc Device with light-processing component covered by light-permeable touchable electrode for detecting biologic activity
CN211932877U (zh) * 2019-12-07 2020-11-17 安徽积善家生物医学科技有限公司 一种基于大数据分析的人体健康度监测设备
CN212382609U (zh) * 2019-11-29 2021-01-22 深圳市汇顶科技股份有限公司 一种可穿戴设备
CN112535482A (zh) * 2019-09-05 2021-03-23 Oppo广东移动通信有限公司 电子设备及可穿戴设备
CN113876329A (zh) * 2020-07-03 2022-01-04 华为技术有限公司 一种心电检测装置
CN114256212A (zh) * 2021-12-16 2022-03-29 武汉天马微电子有限公司 显示模组及其制作方法、显示装置
CN216495266U (zh) * 2021-11-29 2022-05-13 深圳市汇顶科技股份有限公司 生物特征信息的检测装置和电子设备
CN217566091U (zh) * 2022-02-18 2022-10-14 荣耀终端有限公司 可穿戴设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10729347B1 (en) * 2017-01-31 2020-08-04 Verily Life Sciences Llc Device with light-processing component covered by light-permeable touchable electrode for detecting biologic activity
CN112535482A (zh) * 2019-09-05 2021-03-23 Oppo广东移动通信有限公司 电子设备及可穿戴设备
CN212382609U (zh) * 2019-11-29 2021-01-22 深圳市汇顶科技股份有限公司 一种可穿戴设备
CN211932877U (zh) * 2019-12-07 2020-11-17 安徽积善家生物医学科技有限公司 一种基于大数据分析的人体健康度监测设备
CN113876329A (zh) * 2020-07-03 2022-01-04 华为技术有限公司 一种心电检测装置
CN216495266U (zh) * 2021-11-29 2022-05-13 深圳市汇顶科技股份有限公司 生物特征信息的检测装置和电子设备
CN114256212A (zh) * 2021-12-16 2022-03-29 武汉天马微电子有限公司 显示模组及其制作方法、显示装置
CN217566091U (zh) * 2022-02-18 2022-10-14 荣耀终端有限公司 可穿戴设备

Also Published As

Publication number Publication date
CN118092125A (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
US10162445B2 (en) Electrode sheet for pressure detection and pressure detecting module including the same
US10725575B2 (en) Temperature-compensated electrode sheet capable of detecting pressure and touch input device
US8780284B2 (en) Capacitive input device and electro-optical apparatus with input function
KR101743385B1 (ko) 터치 스크린 스택업
US20150169109A1 (en) Touch panel
JP5194496B2 (ja) タッチパネル
JP2013225279A (ja) タッチパネル及びその製造方法
CN111857401B (zh) 显示设备
JP2002041231A (ja) 画面入力型表示装置
US9983342B2 (en) Backlight structures for an electronic device with sensor circuitry
CN101639745A (zh) 触摸面板和显示单元
JP2014095992A (ja) 電子機器
CN113496655A (zh) 显示设备
WO2024103862A1 (zh) 一种显示模组和电子设备
US20150123934A1 (en) Touch sensor module
KR102555984B1 (ko) 압력 센서를 갖는 표시 장치
CN110489003B (zh) 显示设备
JP2015099578A (ja) タッチパネル及びその製造方法
CN213751027U (zh) 电子产品与触控感应显示模块
CN213092288U (zh) 触控元件以及包含触控元件的装置
JP7505860B2 (ja) 入力装置及び電子機器
CN114253413A (zh) 电子产品与触控感应显示模块
JP2021071846A (ja) タッチセンサ
JP2020160862A (ja) タッチセンサ
KR20160076490A (ko) 터치 입력 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23890301

Country of ref document: EP

Kind code of ref document: A1