WO2024103650A1 - 一种液态源供应装置、方法及半导体工艺系统 - Google Patents

一种液态源供应装置、方法及半导体工艺系统 Download PDF

Info

Publication number
WO2024103650A1
WO2024103650A1 PCT/CN2023/093402 CN2023093402W WO2024103650A1 WO 2024103650 A1 WO2024103650 A1 WO 2024103650A1 CN 2023093402 W CN2023093402 W CN 2023093402W WO 2024103650 A1 WO2024103650 A1 WO 2024103650A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
liquid
gas
liquid storage
valve
Prior art date
Application number
PCT/CN2023/093402
Other languages
English (en)
French (fr)
Inventor
纪雪峰
陈亮
范威威
Original Assignee
上海良薇机电工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海良薇机电工程有限公司 filed Critical 上海良薇机电工程有限公司
Publication of WO2024103650A1 publication Critical patent/WO2024103650A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • B08B9/032Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/08Pipe-line systems for liquids or viscous products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D3/00Arrangements for supervising or controlling working operations
    • F17D3/01Arrangements for supervising or controlling working operations for controlling, signalling, or supervising the conveyance of a product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere

Definitions

  • the present invention relates to the field of semiconductor production technology, and in particular to a liquid source supply device, method and semiconductor process system.
  • liquid source supply equipment such as gas cylinders
  • the entire semiconductor production line needs to be shut down to replace the liquid source supply equipment.
  • the pipeline pressure cannot be determined when the liquid source is supplied normally or when the gas cylinder is replaced. If there is a pressure change, semiconductor production will be affected.
  • the purpose of the present invention is to provide a liquid source supply device, method and semiconductor process system to address the deficiencies in the prior art, so as to solve the problems existing in the related art such as the need to shut down the machine to replace gas cylinders, the inability to clean the pipelines during the production process, the inability to remove gas from the liquid source, the inability to detect changes in pipeline pressure, and the inability to detect leakage.
  • the present invention provides a liquid source supply device, comprising:
  • a liquid storage unit used for storing a liquid source
  • a buffer unit is disposed downstream of the liquid storage unit and communicated with the liquid storage unit to buffer the liquid state. source;
  • gas supply unit being disposed upstream of the liquid storage unit and the buffer unit and being communicated with the liquid storage unit and the buffer unit respectively, and being used to supply gas to the liquid storage unit and the buffer unit respectively, so that the liquid source of the liquid storage unit flows toward the buffer unit and the liquid source of the buffer unit flows downstream;
  • gas-liquid separation unit being arranged downstream of the buffer unit and being in communication with the buffer unit, for performing gas-liquid separation on the liquid source flowing downstream of the buffer unit to remove gas in the liquid source, and flowing the liquid source undergoing gas-liquid separation to the process chamber;
  • An exhaust unit the exhaust unit being in communication with the liquid storage unit and configured to provide a vacuum negative pressure to the liquid storage unit;
  • a purge unit is connected to the liquid storage unit and is used to supply gas to the liquid storage unit, and to purge the liquid storage unit before and after the liquid storage unit is replaced.
  • the buffer unit is also connected to the exhaust unit and the purge unit respectively.
  • the liquid storage unit comprises:
  • a liquid storage element, the liquid storage element is respectively connected to the buffer unit, the gas supply unit, the exhaust unit, and the purge unit, and is used to store a liquid source;
  • first valve element being disposed in a pipeline communicating with the liquid storage element and being located upstream of the liquid storage element, downstream of the gas supply unit, downstream of the exhaust unit, and downstream of the purge unit;
  • the second valve element being disposed in a pipeline communicating with the liquid storage element and being located downstream of the liquid storage element, upstream of the buffer unit, downstream of the exhaust unit, and downstream of the purge unit;
  • a first weight monitoring element which is disposed below the liquid storage element and is used to monitor weight information of the liquid storage element
  • a first pressure monitoring element which is disposed in a pipeline connected to the liquid storage element and located upstream of the liquid storage element, and is used to monitor pressure information at an inlet position of the liquid storage element;
  • a second pressure monitoring element is disposed in a pipeline connected to the liquid storage element and located downstream of the liquid storage element, and is used to monitor pressure information at an outlet position of the liquid storage element.
  • the buffer unit includes:
  • a buffer element is respectively connected to the liquid storage unit, the gas supply unit, and the gas-liquid separation unit, and is used to buffer the liquid state source;
  • valve element disposed in a pipeline communicating with the buffer element and being located between the liquid storage unit and the buffer element;
  • a second weight monitoring element is disposed below the buffer element and is used to monitor weight information of the buffer element.
  • the buffer unit further comprises:
  • the thirteenth valve element being disposed in a pipeline connected to the buffer element and being located upstream of the buffer element, downstream of the gas supply unit, downstream of the exhaust unit, and downstream of the purge unit;
  • the fourteenth valve element being disposed in a pipeline connected to the buffer element, and being located downstream of the buffer element, upstream of the gas-liquid separation unit, downstream of the exhaust unit, and downstream of the purge unit;
  • the seventh pressure monitoring element being disposed in a pipeline connected to the buffer element and located upstream of the buffer element, and being used to monitor pressure information at an inlet position of the buffer element;
  • An eighth pressure monitoring element is disposed in a pipeline connected to the buffer element and located downstream of the buffer element, and is used to monitor pressure information at an outlet position of the buffer element.
  • the gas supply unit comprises:
  • a first gas supply element which is disposed upstream of the liquid storage unit and communicated with the liquid storage unit, and is used to supply gas to the liquid storage unit so that the liquid source of the liquid storage unit flows toward the buffer unit;
  • a second gas supply element which is disposed upstream of the buffer unit and communicated with the buffer unit, and is used to supply gas to the buffer unit so that the liquid source of the buffer unit flows toward the gas-liquid separation unit;
  • valve element disposed in a pipeline communicating with the first gas supply element and being located between the first gas supply element and the liquid storage unit;
  • a fifth valve element is disposed in a pipeline communicating with the second gas supply element and is located between the second gas supply element and the buffer unit.
  • the gas supply unit further comprises:
  • a fifth pressure monitoring element which is disposed in a pipeline connected to the first gas supply element and is located upstream of the liquid storage unit, and is used to monitor pressure information of the pipeline connected to the first gas supply element;
  • a sixth pressure monitoring element is provided in the pipeline connected to the second gas supply element and is located upstream of the buffer unit, and is used to monitor the pressure information of the pipeline connected to the second gas supply element.
  • the gas-liquid separation unit comprises:
  • a gas-liquid separation element which is disposed downstream of the buffer unit and communicated with the buffer unit, and is used to perform gas-liquid separation on the liquid source flowing downstream of the buffer unit to remove gas in the liquid source, and flow the liquid source undergoing gas-liquid separation to the process chamber;
  • the first vacuum element being in communication with the gas-liquid separation element and being used for providing a vacuum negative pressure to the gas-liquid separation element;
  • valve element disposed in a pipeline communicating with the gas-liquid separation element and being located between the buffer element and the gas-liquid separation element;
  • the seventh valve element being disposed in a pipeline communicating with the gas-liquid separation element and being located between the gas-liquid separation element and the process chamber;
  • valve element an eighth valve element, the eighth valve element being disposed in a pipeline communicating with the gas-liquid separation element and being located downstream of the seventh valve element;
  • a ninth valve element wherein the ninth valve element is arranged in a pipeline connected to the gas-liquid separation element and is located between the gas-liquid separation element and the first vacuum element.
  • the gas-liquid separation unit further comprises:
  • a fault monitoring element which is arranged on one side of the gas-liquid separation element and is used to monitor whether the gas-liquid separation element has a fault
  • a twelfth valve element is arranged in a pipeline connected to the gas-liquid separation element, located between the buffer element and the process chamber, and is arranged in parallel with the sixth valve element and the seventh valve element.
  • the exhaust unit comprises:
  • the second vacuum element being in communication with the liquid storage unit and configured to provide a vacuum negative pressure to the liquid storage unit;
  • a tenth valve element disposed in a pipeline communicating with the second vacuum element and being located between the second vacuum element and the liquid storage unit;
  • a third pressure monitoring element is provided in a pipeline connected to the second vacuum element, and is used to monitor pressure information of the pipeline connected to the second vacuum element.
  • the purge unit includes:
  • the third gas supply element being in communication with the liquid storage unit and being used to supply gas to the liquid storage unit and purge the liquid storage unit before and after the replacement of the liquid storage unit;
  • the eleventh valve element being disposed in a pipeline communicating with the third gas supply element and being located between the third gas supply element and the liquid storage unit;
  • a fourth pressure monitoring element wherein the fourth pressure monitoring element is disposed in a pipeline connected to the third gas supply element and is used to monitor pressure information of the pipeline connected to the third gas supply element.
  • it also includes:
  • a safety assurance unit is arranged at the top of the environment where the liquid source supply device is located, and is used to monitor environmental information.
  • the security unit includes:
  • a smoke monitoring element which is disposed on the top of the environment where the liquid source supply device is located, and is used to monitor smoke information in the environment;
  • a liquid spraying element which is disposed on the top of the environment where the liquid source supply device is located, and is used to spray liquid into the environment;
  • An ultraviolet infrared switch which is arranged at the top of the environment where the liquid source supply device is located, and is used to monitor whether there is an open flame in the environment;
  • a blowing element is arranged at the top of the environment where the liquid source supply device is located, and is used to discharge the gas in the environment.
  • the present invention provides a liquid source supply method, which is applied to the liquid source supply device as described in the first aspect.
  • the present invention provides a semiconductor process system, comprising:
  • a liquid source supply device as described in the first aspect is described.
  • the present invention adopts the above technical solution, and has the following technical effects compared with the prior art:
  • a liquid source supply device, method and semiconductor process system of the present invention utilize a liquid storage unit and a buffer unit for dual backup.
  • the buffer unit continues to supply the liquid source to the process chamber, thereby avoiding the situation of shutdown and startup, greatly improving production efficiency, improving production yield, and reducing unnecessary losses;
  • the dual functions of the exhaust unit and the purge unit when replacing the liquid storage unit, the pipeline unit connected to the liquid storage unit can be exhausted and purged to ensure that the pipeline unit is clean and free of impurities and avoid contamination of the replaced liquid storage unit;
  • utilizing the gas-liquid separation unit to perform gas-liquid separation on the liquid source transported by the buffer unit to avoid the liquid source carrying trace gas from entering the process chamber and ensure production stability; and arranging a pressure monitoring element in each unit can monitor the pipeline pressure to ensure that the pipeline pressure is normal and avoid pressure changes and pipeline leakage.
  • FIG1 is a schematic diagram of a liquid source supply device according to an embodiment of the present invention (I);
  • FIG2 is a schematic diagram of a liquid storage unit according to an embodiment of the present invention.
  • FIG3 is a schematic diagram of a buffer unit according to an embodiment of the present invention (I);
  • FIG4 is a schematic diagram of a gas supply unit according to an embodiment of the present invention.
  • FIG5 is a schematic diagram of a gas-liquid separation unit according to an embodiment of the present invention (I);
  • FIG6 is a schematic diagram of an exhaust unit according to an embodiment of the present invention.
  • FIG7 is a schematic diagram of a purge unit according to an embodiment of the present invention.
  • FIG8 is a schematic diagram of a gas-liquid separation unit according to an embodiment of the present invention (II);
  • FIG9 is a schematic diagram of a liquid source supply device according to an embodiment of the present invention (II);
  • FIG10 is a schematic diagram of a buffer unit according to an embodiment of the present invention (II);
  • FIG11 is a schematic diagram of a liquid source supply device according to an embodiment of the present invention (III);
  • FIG. 12 is a schematic diagram of a security unit according to an embodiment of the present invention.
  • FIG. 13 is a specific embodiment of a liquid source supply device according to an embodiment of the present invention.
  • the reference numerals are: 100, liquid storage unit; 110, liquid storage element; 120, first valve element; 130, second valve element; 140, first weight monitoring element; 150, first pressure monitoring element; 160, second pressure monitoring element;
  • gas supply unit 310, first gas supply element; 320, second gas supply element; 330, fourth valve element; 340, fifth valve element; 350, fifth pressure monitoring element; 360, sixth pressure monitoring element;
  • gas-liquid separation unit 400, gas-liquid separation unit; 410, gas-liquid separation element; 420, first vacuum element; 430, sixth valve element; 440, seventh valve element; 450, eighth valve element; 460, ninth valve element; 470, fault monitoring element; 480, twelfth valve element;
  • 700 safety assurance unit
  • 710 smoke monitoring element
  • 720 liquid spray element
  • 730 ultraviolet infrared switch
  • 740 air blowing element.
  • connection is not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect.
  • the "multiple”/"several” involved in this application refers to two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there can be three relationships, for example, “A and/or B” can mean: A exists alone, A and B exist at the same time, and B exists alone.
  • the character “/” generally indicates that the objects before and after are in an “or” relationship.
  • first”, “second”, “third”, etc. involved in this application are only used to distinguish similar objects and do not represent a specific ordering of the objects.
  • This embodiment relates to the liquid source supply device of the present invention.
  • An illustrative embodiment of the present invention is a liquid source supply device, comprising a liquid storage unit 100, a buffer unit 200, a gas supply unit 300, a gas-liquid separation unit 400, an exhaust unit 500 and a purge unit 600.
  • the liquid storage unit 100 is used to store a liquid source;
  • the buffer unit 200 is disposed downstream of the liquid storage unit 100 and communicated with the liquid storage unit 100, and is used to buffer the liquid source;
  • the gas supply unit 300 is disposed upstream of the liquid storage unit 100 and the buffer unit 200, and is respectively communicated with the liquid storage unit 100 and the buffer unit 200, and is used to supply gas to the liquid storage unit 100 and the buffer unit 200, respectively, so that the liquid source of the liquid storage unit 100 flows to the buffer unit 200, and the liquid source of the buffer unit 200 flows downstream;
  • the gas-liquid separation unit 600 is used to store a liquid source;
  • Unit 400 is arranged downstream of the buffer unit 200 and is connected to the buffer unit 200.
  • the exhaust unit 500 is connected to the liquid storage unit 100, and is used to provide a vacuum negative pressure to the liquid storage unit 100
  • the purge unit 600 is connected to the liquid storage unit 100, and is used to supply gas to the liquid storage unit 100, and purge the liquid storage unit 100 before and after the liquid storage unit 100 is replaced.
  • the liquid source includes but is not limited to TEOS, TMA, BDEAS, DEMS, ATRP, HCDS, 4MS, OMCTS, TEB, TEPO, TICL4, DIPAS, BTBAS, and TDMAT.
  • the liquid storage unit 100 includes a liquid storage element 110, a first valve element 120, a second valve element 130, a first weight monitoring element 140, a first pressure monitoring element 150, and a second pressure monitoring element 160.
  • the liquid storage element 110 is respectively connected to the buffer unit 200, the gas supply unit 300, the exhaust unit 500, and the purge unit 600 for storing a liquid source;
  • the first valve element 120 is disposed in a pipeline connected to the liquid storage element 110, and is located upstream of the liquid storage element 110, downstream of the gas supply unit 300, downstream of the exhaust unit 500, and downstream of the purge unit 600;
  • the second valve element 130 is disposed in a pipeline connected to the liquid storage element 110, and is located downstream of the liquid storage element 110, upstream of the buffer unit 200, and downstream of the exhaust unit 500.
  • the first weight monitoring element 140 is arranged below the liquid storage element 110, and is used to monitor the weight information of the liquid storage element 110;
  • the first pressure monitoring element 150 is arranged in the pipeline connected to the liquid storage element 110, and is located upstream of the liquid storage element 110, and is used to monitor the pressure information of the inlet position of the liquid storage element 110;
  • the second pressure monitoring element 160 is arranged in the pipeline connected to the liquid storage element 110, and is located downstream of the liquid storage element 110, and is used to monitor the pressure information of the outlet position of the liquid storage element 110.
  • the liquid storage element 110 includes a liquid storage body, a first inlet, a first outlet, a first inlet valve, and a first outlet valve.
  • the first inlet is arranged at the upper part of the liquid storage body and is connected to the gas supply unit 300; the first outlet is arranged at the upper part of the liquid storage body and is connected to the buffer unit 200; the first inlet valve is arranged at the first inlet to control the opening and closing of the first inlet; the first outlet valve is arranged at the first outlet to control the opening and closing of the first outlet.
  • the first inlet is composed of a first air inlet pipe and a first air inlet interface.
  • the first air inlet pipe is connected to the liquid storage body; the first air inlet interface is arranged at the end of the first air inlet pipe and is used to communicate with the gas supply unit 300.
  • the first outlet is composed of a first air outlet pipe and a first air outlet interface.
  • the first air outlet pipe is connected to the liquid storage body; the first air outlet interface is arranged at the end of the first air outlet pipe and is used to communicate with the buffer unit 200.
  • the first inlet valve is arranged on the first air inlet pipe, including but not limited to a manual diaphragm valve and a pneumatic diaphragm valve.
  • the first inlet valve is a manual diaphragm valve.
  • the first outlet valve is arranged on the first air outlet pipe, including but not limited to a manual diaphragm valve and a pneumatic diaphragm valve.
  • the first outlet valve is a manual diaphragm valve.
  • the liquid storage element 110 includes but is not limited to a liquid storage tank, a liquid storage cylinder, etc.
  • the first valve element 120 includes, but is not limited to, a diaphragm valve.
  • the first valve element 120 includes but is not limited to a manual diaphragm valve and a pneumatic diaphragm valve.
  • the first valve element 120 includes a first pneumatic diaphragm valve.
  • the first pneumatic diaphragm valve is disposed in a pipeline connected to the liquid storage element 110 and is located upstream of the liquid storage element 110, downstream of the gas supply unit 300, downstream of the exhaust unit 500, and downstream of the purge unit 500. Downstream of unit 600.
  • the second valve element 130 includes, but is not limited to, a diaphragm valve.
  • the second valve element 130 includes but is not limited to a manual diaphragm valve and a pneumatic diaphragm valve.
  • the second valve element 130 includes a second pneumatic diaphragm valve, which is disposed in a pipeline connected to the liquid storage element 110 and is located downstream of the liquid storage element 110 , upstream of the buffer unit 200 , downstream of the exhaust unit 500 , and downstream of the purge unit 600 .
  • the first weight monitoring element 140 is disposed directly below the liquid storage element 110 , that is, the liquid storage element 110 is placed above the first weight detection element 104 .
  • the first weight monitoring element 140 includes but is not limited to a weight sensor and a scale.
  • the first weight monitoring element 140 is a first weighing scale.
  • the first pressure monitoring element 150 is disposed between the liquid storage element 110 and the first valve element 120 .
  • the first pressure monitoring element 150 is a pressure sensor.
  • the second pressure monitoring element 160 is disposed between the liquid storage element 110 and the second valve element 130 .
  • the second pressure monitoring element 160 is a pressure sensor.
  • the buffer unit 200 includes a buffer element 210, a third valve element 220 and a second weight monitoring element 230.
  • the buffer element 210 is respectively connected to the liquid storage unit 100, the gas supply unit 300 and the gas-liquid separation unit 400, and is used to buffer the state source;
  • the third valve element 220 is arranged in a pipeline connected to the buffer element 210, and is located between the liquid storage unit 100 and the buffer element 210;
  • the second weight monitoring element 230 is arranged below the buffer element 210, and is used to monitor the weight information of the buffer element 210.
  • the buffer element 210 is in communication with the liquid storage element 110 .
  • the buffer element 210 includes a buffer body, a second inlet, a third inlet, a second outlet, a second inlet valve, a third inlet valve and a third outlet valve.
  • the second inlet is arranged at the upper part of the buffer body and communicates with the gas supply unit 300;
  • the third inlet is arranged at the upper part of the buffer body and communicates with the liquid storage element 110;
  • the second outlet is arranged at the upper part of the buffer body and communicates with the gas-liquid separation unit 400;
  • the second inlet valve is arranged at the second inlet to control the opening and closing of the second inlet;
  • the third inlet valve is arranged at the third inlet to control the opening and closing of the third inlet;
  • the second outlet valve is arranged at the second outlet to control the opening and closing of the second outlet.
  • the second inlet is composed of a second air inlet pipe and a second air inlet interface.
  • the second air inlet pipe is connected to the buffer body; the second air inlet interface is arranged at the end of the second air inlet pipe and is used to be connected to the gas supply unit 300.
  • the third inlet is composed of a third air inlet pipe and a third air inlet interface.
  • the third air inlet pipe is connected to the buffer body; the third air inlet interface is arranged at the end of the third air inlet pipe and is used to communicate with the liquid storage element 110.
  • the second outlet is composed of a second air outlet pipe and a second air outlet interface.
  • the second air outlet pipe is connected to the buffer body; the second air outlet interface
  • the outlet is arranged at the end of the second air outlet pipe, and is used to communicate with the gas-liquid separation unit 400.
  • the second inlet valve is arranged on the second air inlet pipe, including but not limited to a manual diaphragm valve and a pneumatic diaphragm valve.
  • the second inlet valve is a manual diaphragm valve.
  • the third inlet valve is arranged on the third air inlet pipe, including but not limited to a manual diaphragm valve and a pneumatic diaphragm valve.
  • the third inlet valve is a manual diaphragm valve.
  • the second outlet valve is arranged on the second air outlet pipe, including but not limited to a manual diaphragm valve and a pneumatic diaphragm valve.
  • the second outlet valve is a manual diaphragm valve.
  • the buffer element 210 includes but is not limited to a buffer tank, a buffer cylinder, etc.
  • the third valve element 220 includes, but is not limited to, a diaphragm valve.
  • the third valve element 220 includes but is not limited to a manual diaphragm valve and a pneumatic diaphragm valve.
  • the third valve element 220 includes a plurality of diaphragm valves, and the plurality of diaphragm valves are spaced apart and arranged in pipelines respectively connected to the liquid storage element 110 and the buffer element 210 .
  • the third valve element 220 includes a third pneumatic diaphragm valve, a first manual diaphragm valve and a fourth pneumatic diaphragm valve.
  • the third pneumatic diaphragm valve is disposed at the inlet of the pipeline connected to the liquid storage element 110; the first manual diaphragm valve is disposed downstream of the third pneumatic diaphragm valve; and the fourth pneumatic diaphragm valve is disposed at the outlet of the pipeline connected to the buffer element 210 and downstream of the first manual diaphragm valve.
  • the second weight monitoring element 230 is disposed directly below the buffer element 210 , that is, the buffer element 210 is placed on the second weight monitoring element 230 .
  • the second weight monitoring element 230 includes but is not limited to a weight sensor and a scale.
  • the second weight monitoring element 230 is a second weighing scale.
  • the gas supply unit 300 includes a first gas supply element 310, a second gas supply element 320, a fourth valve element 330 and a fifth valve element 340.
  • the first gas supply element 310 is disposed upstream of the liquid storage unit 100 and communicated with the liquid storage unit 100, and is used to supply gas to the liquid storage unit 100 so that the liquid source of the liquid storage unit 100 flows to the buffer unit 200;
  • the second gas supply element 320 is disposed upstream of the buffer unit 200 and communicated with the buffer unit 200, and is used to supply gas to the buffer unit 200 so that the liquid source of the buffer unit 200 flows to the gas-liquid separation unit 400;
  • the fourth valve element 330 is disposed in a pipeline connected to the first gas supply element 310 and is located between the first gas supply element 310 and the liquid storage unit 100;
  • the fifth valve element 340 is disposed in a pipeline connected to the second gas supply element 320 and is located between the second gas supply element 320 and the buffer unit 200.
  • the first gas supply element 310 is in communication with the liquid storage element 110 for supplying gas to the liquid storage element 110 ;
  • the second gas supply element 320 is in communication with the buffer element 210 for supplying gas to the buffer element 210 .
  • the first gas supply element 310 includes a first gas supply source and a third outlet.
  • the third outlet is disposed at the first gas supply source. source, and is connected to the liquid storage element 110.
  • the third outlet is composed of a third gas outlet pipe and a third gas outlet interface.
  • the third gas outlet pipe is connected to the first gas supply source; the third gas outlet interface is arranged at the end of the third gas outlet pipe and is used to communicate with the liquid storage element 110.
  • the second gas supply element 320 includes a second gas supply source and a fourth outlet.
  • the fourth outlet is disposed at the second gas supply source and communicated with the buffer element 210.
  • the fourth outlet is composed of a fourth gas outlet pipe and a fourth gas outlet interface.
  • the fourth gas outlet pipe is connected to the second gas supply source; the fourth gas outlet interface is arranged at the end of the fourth gas outlet pipe and is used to communicate with the liquid storage element 110.
  • the fourth valve element 330 includes but is not limited to a diaphragm valve, a pressure regulating valve, and a one-way valve.
  • the fourth valve element 330 includes but is not limited to a manual diaphragm valve and a pneumatic diaphragm valve.
  • the fourth valve element 330 includes a plurality of diaphragm valves, pressure regulating valves and one-way valves, wherein the plurality of diaphragm valves, pressure regulating valves and one-way valves are arranged at intervals in pipelines connected to the first gas supply element 310 and the liquid storage element 110 respectively.
  • the fourth valve element 330 includes a second manual diaphragm valve, a first one-way valve, a first pressure regulating valve, a third manual diaphragm valve and a fifth pneumatic diaphragm valve.
  • the second manual diaphragm valve is arranged at the inlet of the pipeline connected to the first gas supply element 310; the first one-way valve is arranged downstream of the second manual diaphragm valve; the first pressure regulating valve is arranged downstream of the first one-way valve; the third manual diaphragm valve is arranged downstream of the first pressure regulating valve; the fifth pneumatic diaphragm valve is arranged at the outlet of the pipeline connected to the liquid storage element 110, and is located downstream of the third manual diaphragm valve.
  • the fifth valve element 340 includes but is not limited to a diaphragm valve, a pressure regulating valve, and a one-way valve.
  • the fifth valve element 340 includes but is not limited to a manual diaphragm valve and a pneumatic diaphragm valve.
  • the fifth valve element 340 includes a plurality of diaphragm valves, pressure regulating valves and one-way valves, wherein the plurality of diaphragm valves, pressure regulating valves and one-way valves are arranged at intervals in pipelines respectively connected to the second gas supply element 320 and the buffer element 210 .
  • the fifth valve element 340 includes a fourth manual diaphragm valve, a second one-way valve, a second pressure regulating valve, a fifth manual diaphragm valve and a sixth pneumatic diaphragm valve.
  • the fourth manual diaphragm valve is arranged at the inlet of the pipeline connected to the second gas supply element 320; the second one-way valve is arranged downstream of the ninth manual diaphragm valve; the second pressure regulating valve is arranged downstream of the second one-way valve; the fifth manual diaphragm valve is arranged downstream of the second pressure regulating valve; the sixth pneumatic diaphragm valve is arranged at the outlet of the pipeline connected to the buffer element 210 and is located downstream of the fifth manual diaphragm valve.
  • the gas supply unit 300 further includes a fifth pressure monitoring element 350 and a sixth pressure monitoring element 360.
  • the fifth pressure monitoring element 350 is disposed in a pipeline connected to the first gas supply element 310 and is located upstream of the liquid storage unit 100, and is used to monitor the pressure information of the pipeline connected to the first gas supply element 310;
  • the sixth pressure monitoring element 360 is disposed in a pipeline connected to the second gas supply element 320 and is located upstream of the buffer unit 200, and is used to monitor the pressure information of the pipeline connected to the second gas supply element 320.
  • the pressure information of the pipeline is disposed in a pipeline connected to the first gas supply element 310 and is located upstream of the liquid storage unit 100, and is used to monitor the pressure information of the pipeline connected to the first gas supply element 310;
  • the sixth pressure monitoring element 360 is disposed in a pipeline connected to the second gas supply element 320 and is located upstream of the buffer unit 200, and is used to monitor the pressure information of the pipeline connected to the second gas supply element 320.
  • the fifth pressure monitoring element 350 is disposed between the first pressure regulating valve and the third manual diaphragm valve.
  • the fifth pressure monitoring element 350 is a pressure sensor.
  • the sixth pressure monitoring element 360 is disposed between the second pressure regulating valve and the fifth manual diaphragm valve.
  • the sixth pressure monitoring element 360 is a pressure sensor.
  • the gas-liquid separation unit 400 includes a gas-liquid separation element 410 , a first vacuum element 420 , a sixth valve element 430 , a seventh valve element 440 , an eighth valve element 450 and a ninth valve element 460 .
  • the gas-liquid separation element 410 is arranged downstream of the buffer unit 200 and is connected to the buffer unit 200, and is used to perform gas-liquid separation on the liquid source flowing downstream of the buffer unit 200 to remove the gas in the liquid source, and flow the liquid source undergoing gas-liquid separation to the process chamber;
  • the first vacuum element 420 is connected to the gas-liquid separation element 410, and is used to provide vacuum negative pressure to the gas-liquid separation element 410;
  • the sixth valve element 430 is arranged in a pipeline connected to the gas-liquid separation element 410, and is located between the buffer element 210 and the gas-liquid separation element 410;
  • the seventh valve element 440 is arranged in a pipeline connected to the gas-liquid separation element 410, and is located between the gas-liquid separation element 410 and the process chamber;
  • the eighth valve element 450 is arranged in a pipeline connected to the gas-liquid separation element 410, and is located downstream of the seventh valve element 440;
  • the ninth valve element 460 is arranged in a pipeline connected to the gas
  • the gas-liquid separation element 410 is disposed downstream of the buffer element 210 and communicated with the buffer element 210 .
  • the gas-liquid separation element 410 includes a gas-liquid separator, a fourth inlet, a fifth outlet, and a sixth outlet.
  • the fourth inlet is disposed at one end of the gas-liquid separator and communicates with the buffer element 210;
  • the fifth outlet is disposed at one end of the gas-liquid separator and communicates with the external vacuum negative pressure;
  • the sixth outlet is disposed at one end of the gas-liquid separator and communicates with the process chamber.
  • the fourth inlet is composed of a fourth air inlet pipe and a fourth air inlet interface.
  • the fourth air inlet pipe is connected to the gas-liquid separator; the fourth air inlet interface is arranged at the end of the fourth air inlet pipe and is used to be connected to the buffer element 210.
  • the fifth outlet is composed of a fifth air outlet pipe and a fifth air outlet interface.
  • the fifth air outlet pipe is connected to the gas-liquid separator; the fifth air outlet interface is arranged at the end of the fifth air outlet pipe for connecting to the external vacuum negative pressure.
  • the sixth outlet is composed of a sixth gas outlet pipe and a sixth gas outlet interface.
  • the sixth gas outlet pipe is connected to the gas-liquid separator; the sixth gas outlet interface is arranged at the end of the sixth gas outlet pipe and is used to communicate with the process chamber.
  • the first vacuum element 420 provides vacuum negative pressure to the gas-liquid separation element 410 to separate the gas dissolved in the liquid source inside the gas-liquid separation element 410 from the liquid source; and under the action of the vacuum negative pressure, the separated gas is discharged to the outside through the first vacuum element 420.
  • the first vacuum element 420 is a vacuum pump.
  • the sixth valve element 430 includes, but is not limited to, a diaphragm valve.
  • the sixth valve element 430 includes but is not limited to a manual diaphragm valve and a pneumatic diaphragm valve.
  • the sixth valve element 430 includes a seventh pneumatic diaphragm valve, wherein the seventh pneumatic diaphragm valve is disposed in a pipeline respectively connected to the buffer element 210 and the gas-liquid separation element 410 , and is disposed close to the gas-liquid separation element 410 .
  • the seventh valve element 440 includes, but is not limited to, a diaphragm valve.
  • the seventh valve component 440 includes but is not limited to a manual diaphragm valve and a pneumatic diaphragm valve.
  • the seventh valve component 440 includes an eighth pneumatic diaphragm valve, wherein the eighth pneumatic diaphragm valve is disposed in a pipeline respectively connected to the gas-liquid separation component 410 and the process chamber, and is disposed close to the gas-liquid separation component 410 .
  • the eighth valve component 450 includes, but is not limited to, a diaphragm valve.
  • the eighth valve component 450 includes but is not limited to a manual diaphragm valve and a pneumatic diaphragm valve.
  • the eighth valve component 450 includes a sixth manual diaphragm valve, wherein the sixth manual diaphragm valve is disposed in a pipeline connected to the gas-liquid separation component 410 and the process chamber respectively, and is located downstream of the eighth pneumatic diaphragm valve.
  • the ninth valve component 460 includes, but is not limited to, a diaphragm valve.
  • the ninth valve component 460 includes but is not limited to a manual diaphragm valve and a pneumatic diaphragm valve.
  • the ninth valve component 460 includes a ninth pneumatic diaphragm valve, wherein the ninth pneumatic diaphragm valve is disposed in a pipeline respectively connected to the gas-liquid separation component 410 and the first vacuum component 420 , and is disposed close to the gas-liquid separation component 410 .
  • the exhaust unit 500 includes a second vacuum element 510, a tenth valve element 520 and a third pressure monitoring element 530.
  • the second vacuum element 510 is connected to the liquid storage unit 100 and is used to provide vacuum negative pressure to the liquid storage unit 100;
  • the tenth valve element 520 is arranged in the pipeline connected to the second vacuum element 510 and is located between the second vacuum element 510 and the liquid storage unit 100;
  • the third pressure monitoring element 530 is arranged in the pipeline connected to the second vacuum element 510 and is used to monitor the pressure information of the pipeline connected to the second vacuum element 510.
  • the second vacuum element 510 is communicated with the liquid storage element 110 and the buffer element 210 respectively.
  • the second vacuum element 510 includes a vacuum generator, a fifth inlet, a sixth inlet and a seventh outlet.
  • the fifth inlet is arranged at one end of the vacuum generator and is connected to the liquid storage element 110 and the buffer element 210 respectively;
  • the sixth inlet is arranged at one end of the vacuum generator for the inflow of external gas;
  • the seventh outlet is arranged at one end of the vacuum generator for discharging gas from the pipeline connected to the liquid storage element 110.
  • the fifth inlet is composed of a fifth air inlet pipe and a fifth air inlet interface.
  • the fifth air inlet pipe is connected to the vacuum generator; the fifth air inlet interface is arranged at the end of the fifth air inlet pipe, and is used to communicate with the liquid storage element 110 and the buffer element 210 respectively.
  • the sixth inlet is composed of a sixth air inlet pipe and a sixth air inlet interface.
  • the sixth air inlet pipe is connected to the vacuum generator; the sixth air inlet interface is arranged at the end of the sixth air inlet pipe and is used to be connected to an external air source.
  • the seventh outlet is composed of a seventh air outlet pipe and a seventh air outlet interface.
  • the seventh air outlet pipe is connected to the vacuum generator; the seventh air outlet interface is arranged at the end of the seventh air outlet pipe for connecting with the outside.
  • the second vacuum element 510 is a vacuum generator.
  • the tenth valve element 520 includes, but is not limited to, a diaphragm valve.
  • the tenth valve element 520 includes but is not limited to a manual diaphragm valve and a pneumatic diaphragm valve.
  • the tenth valve component 520 includes a plurality of diaphragm valves, and the plurality of diaphragm valves are disposed at intervals in pipelines respectively connected to the liquid storage component 110 and the second vacuum component 510 .
  • the tenth valve element 520 includes a seventh manual diaphragm valve and a tenth pneumatic diaphragm valve.
  • the seventh manual diaphragm valve is disposed in a pipeline respectively connected to the liquid storage element 110 and the second vacuum element 510, and is disposed close to the second vacuum element 510;
  • the tenth pneumatic diaphragm valve is disposed in a pipeline respectively connected to the liquid storage element 110 and the second vacuum element 510, and is disposed close to the liquid storage element 110.
  • the third pressure monitoring element 530 is disposed between the seventh manual diaphragm valve and the tenth pneumatic diaphragm valve.
  • the third pressure monitoring element 530 is a pressure sensor.
  • the purge unit 600 includes a third gas supply element 610, an eleventh valve element 620 and a fourth pressure monitoring element 630.
  • the third gas supply element 610 is connected to the liquid storage unit 100, and is used to supply gas to the liquid storage unit 100, and purge the liquid storage unit 100 before and after the replacement of the liquid storage unit 100;
  • the eleventh valve element 620 is arranged in the pipeline connected to the third gas supply element 610, and is located between the third gas supply element 610 and the liquid storage unit 100;
  • the fourth pressure monitoring element 630 is arranged in the pipeline connected to the third gas supply element 610, and is used to monitor the pressure information of the pipeline connected to the third gas supply element 610.
  • the third gas supply element 610 is communicated with the liquid storage element 110 and the buffer element 210 respectively.
  • the third gas supply element 610 includes a third gas supply source and an eighth outlet, wherein the eighth outlet is disposed at the third gas supply source and is connected to the liquid storage element 110 and the buffer element 210 respectively.
  • the eighth outlet is composed of an eighth outlet pipe and an eighth outlet interface.
  • the eighth outlet pipe is connected to the third gas supply source; the eighth outlet interface is arranged at the end of the eighth outlet pipe and is used to communicate with the liquid storage element 110 and the buffer element 210.
  • the eleventh valve element 620 includes but is not limited to a diaphragm valve, a micro-leakage valve, a one-way valve, and a pressure regulating valve.
  • the eleventh valve element 620 includes but is not limited to a manual diaphragm valve and a pneumatic diaphragm valve.
  • the eleventh valve element 620 includes a plurality of diaphragm valves, micro-leakage valves, pressure regulating valves and one-way valves, which are arranged at intervals in pipelines connected to the liquid storage element 110 and the third gas supply element 610, respectively.
  • the eleventh valve element 620 includes an eleventh pneumatic diaphragm valve, a pneumatic micro-leakage valve, a third one-way valve, a third pressure regulating valve and The twelfth pneumatic diaphragm valve.
  • the eleventh pneumatic diaphragm valve is arranged in the pipelines respectively connected to the liquid storage element 110 and the third gas supply element 610, and is arranged close to the third gas supply element 610;
  • the pneumatic micro-leakage valve is arranged downstream of the eleventh pneumatic diaphragm valve;
  • the third one-way valve is arranged downstream of the pneumatic micro-leakage valve;
  • the third pressure regulating valve is arranged downstream of the third one-way valve;
  • the twelfth pneumatic diaphragm valve is arranged in the pipelines respectively connected to the liquid storage element 110 and the third gas supply element 610, is located downstream of the third pressure regulating valve, and is arranged close to the liquid storage element 110.
  • the fourth pressure monitoring element 630 is disposed between the third pressure regulating valve and the twelfth pneumatic diaphragm valve.
  • the fourth pressure monitoring element 630 is a pressure sensor.
  • the fourth valve element 330 is opened, and the first gas supply element 310 supplies gas to the liquid storage element 110;
  • the liquid source of the liquid storage element 110 is transported to the buffer element 210;
  • the fifth valve element 340 is opened, and the second gas supply element 320 supplies gas to the buffer element 210;
  • the liquid source of the buffer element 210 is transported to the gas-liquid separation element 410;
  • the sixth valve component 430 , the seventh valve component 440 and the ninth valve component 460 are opened, and the liquid source of the buffer component 210 enters the gas-liquid separation component 410 ;
  • the liquid source enters the process chamber after being subjected to gas-liquid separation treatment by the gas-liquid separation element 410;
  • the gas after the gas-liquid separation process in the gas-liquid separation element 410 enters the outside through the first vacuum element 420 .
  • the fourth valve element 330 is opened, and the liquid storage element 110 resumes supplying the liquid source to the buffer element 210 .
  • the advantage of this embodiment is that a liquid storage unit and a buffer unit are used for dual backup.
  • the liquid source of the liquid storage unit is insufficient, only the liquid storage unit can be closed, and the buffer unit continues to supply the liquid source to the process chamber, thereby avoiding shutdown and startup, greatly improving production efficiency, improving production yield, and reducing unnecessary losses.
  • the pipeline unit connected to the liquid storage unit can be exhausted and purged to ensure that the pipeline unit is clean and free of impurities, thereby avoiding contamination of the replaced liquid storage unit.
  • This embodiment is a variation of Embodiment 1.
  • the difference between this embodiment and Embodiment 1 is that the structure of the gas-liquid separation unit 400 is different.
  • the gas-liquid separation unit 400 further includes a fault monitoring element 470 and a twelfth valve element 480.
  • the fault monitoring element 470 is disposed on one side of the gas-liquid separation element 410 to monitor whether the gas-liquid separation element 410 has a fault;
  • the twelfth valve element 480 is disposed in a pipeline connected to the gas-liquid separation element 410, located between the buffer element 210 and the process chamber, and is disposed in parallel with the sixth valve element 430 and the seventh valve element 440.
  • the fault monitoring element 470 is a liquid leakage sensor.
  • the twelfth valve element 480 includes, but is not limited to, a diaphragm valve.
  • the twelfth valve element 480 includes but is not limited to a manual diaphragm valve and a pneumatic diaphragm valve.
  • the twelfth valve component 480 includes a plurality of diaphragm valves, and the plurality of diaphragm valves are spaced apart and arranged in pipelines respectively connected to the buffer component 210 and the process chamber.
  • the twelfth valve element 480 includes a thirteenth pneumatic diaphragm valve and a fourteenth pneumatic diaphragm valve.
  • the thirteenth pneumatic diaphragm valve is disposed in a pipeline respectively connected to the buffer element 210 and the process chamber, and is disposed close to the buffer element 210;
  • the fourteenth pneumatic diaphragm valve is disposed in a pipeline respectively connected to the buffer element 210 and the process chamber, and is disposed close to the process chamber.
  • the thirteenth pneumatic diaphragm valve is arranged in parallel with the sixth valve element 430
  • the fourteenth pneumatic diaphragm valve is arranged in parallel with the seventh valve element 440 .
  • the twelfth valve element 480 is opened, and the liquid source of the buffer element 210 directly enters the process chamber.
  • the advantage of this embodiment is that, in the event of a failure in the gas-liquid separation unit, the twelfth valve element can be temporarily opened so that the liquid source can still be delivered to the process chamber, thereby avoiding shutdown of the production line.
  • This embodiment is a variation of Embodiments 1 to 2.
  • the buffer unit 200 is also connected to the exhaust unit 500 and the purge unit 600 , respectively.
  • the buffer unit 200 further includes a thirteenth valve element 240, a fourteenth valve element 250, a seventh pressure monitoring element 260 and an eighth pressure monitoring element 270.
  • the thirteenth valve element 240 is arranged in a pipeline connected to the buffer element 210, and is located upstream of the buffer element 210, downstream of the gas supply unit 300, downstream of the exhaust unit 500, and downstream of the purge unit 600;
  • the fourteenth valve element 250 is arranged in a pipeline connected to the buffer element 210, and is located downstream of the buffer element 210, upstream of the gas-liquid separation unit 400, downstream of the exhaust unit 500, and downstream of the purge unit 600;
  • the seventh pressure monitoring element 260 is arranged in a pipeline connected to the buffer element 210, and is located upstream of the buffer element 210, and is used to monitor the pressure information of the inlet position of the buffer element 210;
  • the eighth pressure monitoring element 270 is arranged in a pipeline connected to the buffer element 210, and is located downstream of the buffer element 210, and is
  • the thirteenth valve element 240 is arranged downstream of the second gas supply element 320, downstream of the second vacuum element 510, and downstream of the third gas supply element 610; the fourteenth valve element 250 is arranged upstream of the gas-liquid separation element 410, downstream of the second vacuum element 510, and downstream of the third gas supply element 610.
  • the thirteenth valve element 240 includes, but is not limited to, a diaphragm valve.
  • the thirteenth valve component 240 includes but is not limited to a manual diaphragm valve and a pneumatic diaphragm valve.
  • the thirteenth valve element 240 includes a fifteenth pneumatic diaphragm valve, which is disposed in a pipeline connected to the buffer element 210 and is located upstream of the buffer element 210, downstream of the second gas supply element 320, downstream of the second vacuum element 510, and downstream of the third gas supply element 610.
  • the fourteenth valve element 250 includes, but is not limited to, a diaphragm valve.
  • the fourteenth valve component 250 includes but is not limited to a manual diaphragm valve and a pneumatic diaphragm valve.
  • the fourteenth valve element 250 includes a sixteenth pneumatic diaphragm valve, which is disposed in a pipeline connected to the buffer element 210 and is located downstream of the buffer element 210, upstream of the gas-liquid separation element 410, downstream of the second vacuum element 510, and downstream of the third gas supply element 610.
  • the seventh pressure monitoring element 260 is disposed between the buffer element 210 and the thirteenth valve element 240 .
  • the seventh pressure monitoring element 260 is a pressure sensor.
  • the eighth pressure monitoring element 270 is disposed between the buffer element 210 and the fourteenth valve element 250 .
  • the eighth pressure monitoring element 270 is a pressure sensor.
  • the tenth valve element 520 further includes a seventeenth pneumatic diaphragm valve, wherein the seventeenth pneumatic diaphragm valve is disposed in a pipeline respectively connected to the buffer element 210 and the second vacuum element 510 , and is disposed close to the buffer element 210 .
  • the eleventh valve element 620 further includes an eighteenth pneumatic diaphragm valve, which is disposed in a pipeline connected to the buffer element 210 and the third gas supply element 610 , downstream of the third pressure regulating valve, and close to the buffer element 210 .
  • This embodiment is a variation of Embodiments 1 to 3.
  • the liquid source supply device further includes a safety unit 700.
  • the safety unit 700 is disposed on the top of the environment where the liquid source supply device is located, and is used to monitor environmental information.
  • the safety guarantee unit 700 includes a smoke monitoring element 710, a liquid spraying element 720, an ultraviolet infrared switch 730 and an air blowing element 740.
  • the smoke monitoring element 710 is arranged at the top of the environment where the liquid source supply device is located, and is used to monitor the smoke information of the environment;
  • the liquid spraying element 720 is arranged at the top of the environment where the liquid source supply device is located, and is used to spray liquid to the environment;
  • the ultraviolet infrared switch 730 is arranged at the top of the environment where the liquid source supply device is located, and is used to monitor whether there is an open flame in the environment;
  • the air blowing element 740 is arranged at the top of the environment where the liquid source supply device is located, and is used to discharge the gas in the environment.
  • the smoke monitoring element 710 is a smoke detector.
  • the liquid spraying element 720 is a spray head.
  • the ultraviolet infrared switch 730 is an infrared switch (IR Switch).
  • the air blowing element 740 includes, but is not limited to, an exhaust fan.
  • the safety assurance unit 700 further includes a gas monitoring element, a flame monitoring element, and a temperature monitoring element.
  • a smoke monitoring element is used to issue an early warning
  • a liquid spray element is used for spraying to reduce the concentration of related gases and liquids in the environment to prevent explosions
  • a blowing element can be used to quickly discharge the gases in the environment to the exhaust gas treatment system.
  • This embodiment relates to the liquid source supply method of the present invention, which is applied to the liquid source supply device as described in Examples 1 to 4.
  • An exemplary embodiment of the present invention is a liquid source supply method, comprising:
  • the purge unit supplies gas to the pipeline unit connected to the liquid storage unit;
  • the connection between the liquid storage unit and the gas supply unit and the buffer unit is opened.
  • the method further comprises:
  • the liquid source supply method includes:
  • the third valve element 220 and the fourth valve element 330 are closed to disconnect the liquid storage element 110 from the buffer element 210 and the first gas supply element 310;
  • the third valve element 220 and the fourth valve element 330 are closed to disconnect the liquid storage element 110 from the buffer element 210 and the first gas supply element 310;
  • the third gas supply element 610 is started, the eleventh valve element 620, the first valve element 120 and the second valve element 130 are opened, and the third gas supply element 610 supplies gas to the pipeline connected to the liquid storage element 110;
  • the exhaust step and the purge step are repeated, and the fourth pressure monitoring element 630, the first pressure monitoring element 150, and the second pressure monitoring element 160 are observed until the pressure of the pipeline reaches the second preset pressure threshold, and the eleventh valve element 620 is closed to maintain the pressure for three hours;
  • the third valve element 220 and the fourth valve element 330 are opened to open the communication between the liquid storage element 110 and the buffer element 210 and the first gas supply element 310 , and the use of the liquid storage element 110 is restored.
  • liquid source supply method of this embodiment is as follows:
  • the system opens the second vacuum element 510, and the gas GN2 flows through one side of the pipeline, pumping the inside of one side of the seventh manual diaphragm valve to negative pressure, and exhausting the gas in the pipeline.
  • the system observes that the value of the third pressure monitoring element 530 is negative, indicating that the second vacuum element 510 is working normally.
  • the system opens the tenth pneumatic diaphragm valve. Every 5 seconds, the system will detect the values of the third pressure monitoring element 530, the first pressure detection element 150, and the second pressure detection element 160. When the pressure drops to -10psig, the tenth pneumatic diaphragm valve is automatically closed. Switch to the purge step.
  • the system automatically opens the eleventh pneumatic diaphragm valve and the pneumatic micro-leakage valve, and the purge gas flows into the pipe. If the value of the fourth pressure detection element 630 rises normally, the system opens the twelfth pneumatic diaphragm valve and detects the values of the first pressure detection element 150 and the second pressure detection element 160. When the pressure rises to 100 psig, the twelfth pneumatic diaphragm valve is closed. Switch back to the exhaust step.
  • Maintain negative pressure Observe whether there is any change in the values of the first pressure monitoring element 150 and the second pressure monitoring element 160. If there is no change, the system repeats the exhaust step and the purge step several times, keeps the pipeline in a negative pressure state, closes the first pneumatic diaphragm valve, the second pneumatic diaphragm valve, and the tenth pneumatic diaphragm valve, and waits for going online;
  • Liquid source supply When going online, manually open the first manual diaphragm valve, and slowly open the first inlet valve and the first outlet valve of the liquid storage element 110. Click Go Online, and the system automatically opens the third pneumatic diaphragm valve, the fourth pneumatic diaphragm valve, and the fifth pneumatic diaphragm valve to restore the liquid source supply.
  • This embodiment is a variation of Embodiment 5.
  • liquid source supply method further comprises:
  • the communication between the buffer unit and the process chamber is started.
  • the liquid source supply method further includes:
  • the twelfth valve element 480 is opened to allow the buffer element 210 to communicate with the process chamber.
  • liquid source supply method of this embodiment is as follows:
  • This embodiment relates to a semiconductor process system of the present invention.
  • An illustrative embodiment of the present invention is a semiconductor process system, comprising a liquid source supply device as described in any one of Embodiments 1 to 3.
  • the semiconductor process system also includes a plurality of process chambers, and the plurality of process chambers are respectively connected to the liquid source supply device.
  • process chambers are respectively communicated with the gas-liquid separation unit 400 .
  • process chambers are also connected to the purge units 600 respectively.
  • a seventeenth pneumatic diaphragm valve, an eighteenth pneumatic diaphragm valve and an eighth manual diaphragm valve are further provided on the pipelines communicating with the third gas supply element 610 and the gas-liquid separation element 410.
  • the seventeenth pneumatic diaphragm valve is provided at the inlet of the pipelines communicating with the gas-liquid separation element 410 and the process chamber respectively; the eighteenth pneumatic diaphragm valve is provided at the pipelines communicating with the third gas supply element 610 and the process chamber respectively, and is located downstream of the seventeenth pneumatic diaphragm valve; the eighth manual diaphragm valve is provided at the outlet of the pipelines communicating with the gas-liquid separation element 410 and the process chamber respectively, and is located downstream of the eighteenth pneumatic diaphragm valve.
  • This embodiment relates to a specific implementation of the present invention.
  • a liquid source supply device includes a liquid source container module, a liquid source buffer module, a gas supply module, a gas-liquid separation module, an exhaust module, a purge module and a life safety protection module.
  • the liquid source container module includes a container tank (steel cylinder), a pneumatic diaphragm valve PV1L, a pneumatic diaphragm valve PV2L, a pressure sensor PT1L and a pressure sensor PT2L.
  • the liquid source buffer module includes a buffer tank (steel cylinder), a pneumatic diaphragm valve LPIL, a manual diaphragm valve MV2L, a pneumatic diaphragm valve RCV, a pneumatic diaphragm valve PV1R, a pneumatic diaphragm valve PV2R, a pressure sensor PT1R and a pressure sensor PT12R.
  • a buffer tank (steel cylinder), a pneumatic diaphragm valve LPIL, a manual diaphragm valve MV2L, a pneumatic diaphragm valve RCV, a pneumatic diaphragm valve PV1R, a pneumatic diaphragm valve PV2R, a pressure sensor PT1R and a pressure sensor PT12R.
  • the gas supply module includes a first PUSH GAS Intlet, a second PUSH GAS Intlet, a manual diaphragm valve MV5L, a one-way valve CV2, a one-way valve CV3, a pressure regulating valve REG, a pressure regulating valve REG, a manual diaphragm valve MV4L, a pneumatic diaphragm valve PV5L, a manual diaphragm valve MV5R, a one-way valve CV3, a pressure regulating valve REG, a manual diaphragm valve MV4R, a pneumatic diaphragm valve PV5R, a pressure sensor PT5L and a pressure sensor PT5R.
  • the gas-liquid separation module includes DEGASSER, pneumatic diaphragm valve LPIR, pneumatic diaphragm valve PV6R, manual diaphragm valve MV2R, pneumatic diaphragm valve PV9R, pneumatic diaphragm valve PV7R and pneumatic diaphragm valve PV8R.
  • the gas-liquid separation module also includes a liquid leakage monitoring sensor.
  • the exhaust module includes a vacuum generator VG/BV/CV, a manual diaphragm valve MV3, a pneumatic diaphragm valve PV3L, a pneumatic diaphragm valve PV3R and a pressure sensor PT3.
  • the purge module includes Purge gas Intlet, pneumatic diaphragm valve PGI, pneumatic micro-leakage valve PGBV, check valve CV1, pressure regulating valve REG, pneumatic diaphragm valve PV4L, pneumatic diaphragm valve PV4R and pressure sensor PT4.
  • the purge module further comprises a pneumatic diaphragm valve LPVn, wherein n ⁇ 1.
  • the life safety protection module includes a gas detector, flame detector, temperature sensor, smoke sensor, weighing system and pressure system, and is equipped with a touch control module and an audible and visual alarm module.
  • the system opens VG/BV/CV, and the GN2 gas flows through one side of the pipeline, pumping the inside of the MV3 pipe to a negative pressure, and exhausting the gas in the pipeline.
  • the system observes that the PT3 value is negative, indicating that VG is working normally.
  • PV3L The system turns on PV3L. Every 5 seconds, the system will detect the values of PT3, PT1L, and PT2L. When the pressure drops to -10psig, PV3L will be automatically turned off and switched to the purge step.
  • the system automatically opens PGI and PGBV, and the purge gas flows into the tube.
  • PV4L If the PT4 value rises normally, the system will open PV4L and detect the PT1L and PT2L values. When the pressure rises to 100psig, PV4L will be closed and the system will switch to the exhaust step.
  • the system turns off PV3L and VG and maintains pressure for 3 hours.
  • the system detects whether there is any change in the values of PT1L and PT2L. If there is no change, it automatically performs PT calibration and several exhaust and purges before changing the bottle.
  • the system will be vented and purged several times to keep the pipeline in a negative pressure state, close PV1L, PV2L, and PV3L, and wait for it to go online.
  • the first PUSH GAS Intlet pressurizes the container tank, allowing the original liquid in the container tank to flow out from the other end.
  • the raw liquid flows from the container tank into the buffer tank through the pipeline where the LPIL is located, so as to replenish the buffer tank with the raw liquid.
  • the system closes the RCV and LPIL and stops supplying liquid to the container tank.
  • the raw liquid flows through the DEGASSER, where the gas molecules are separated and supplied to the process pipeline.
  • the system automatically turns off LPIR and PV6R and turns on PV7R and PV8R.
  • the purge module presses the liquid between the gas-liquid separation module and the process pipeline back to the liquid source buffer module, and closes the manual diaphragm valve, PV6R and PV9R of the liquid source buffer module;

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Pipeline Systems (AREA)

Abstract

一种液态源供应装置、方法及半导体工艺系统,包括储液单元(100)、缓冲单元(200)、气体供应单元(300)、气液分离单元(400)、排气单元(500)、吹扫单元(600)、管路单元和压力监测单元。本液态源供应装置利用储液单元(100)和缓冲单元(200)进行双重备份,在储液单元(100)的液态源不足的情况下,可以仅关闭储液单元(100),缓冲单元(200)继续向工艺腔室供应液态源,避免出现停机再启动的情况;利用排气单元(500)和吹扫单元(600)的双重作用,可以在更换储液单元(100)时,对于储液单元(100)连通的管路单元进行排气和吹扫,保证管路单元洁净无杂质,避免污染更换后的储液单元(100);利用气液分离单元(400)对液态源进行气液分离,避免携带微量气体的液态源进入工艺腔室,保证生产稳定性。

Description

一种液态源供应装置、方法及半导体工艺系统 技术领域
本发明涉及半导体生产技术领域,尤其涉及一种液态源供应装置、方法及半导体工艺系统。
背景技术
在半导体生产过程中,稳定的液态源供应能够保障生产效率、生产良率。然而,由于液态源供应设备(如气瓶)等容积有限,导致在液态源的重量低于安全阈值时,需要将整个半导体生产线停机,以更换液态源供应设备。
在停机过程中,由于更换气瓶会导致管路中存在杂质,导致更换后需要对管路进行清洁。进而导致整个停机维护时间延长,从而导致生产损失。
此外,在液态源供应过程中,由于是通过气压方式驱动液态源流动,因此液态源中会溶解一定的气体,如果不对溶解于液态源中的气体进行去除,会导致半导体生产良率低,造成损失。
液态源正常供应和更换气瓶时无法对管路压力进行确定,若存在压力变化会导致半导体生产受到影响。
另外,在工艺流程中,由于管路密封性原因以及部分设备出现损坏,导致会出现漏液情况,进而无法保障安全。
目前针对相关技术中存在的需要停机更换气瓶、无法在生产过程中对管路进行清洁、无法去除液态源中的气体、无法侦测管路压力变化、无法检测漏液情况等问题,尚未提出有效的解决方案。
发明内容
本发明的目的是针对现有技术中的不足,提供一种液态源供应装置、方法及半导体工艺系统,以解决相关技术中存在的需要停机更换气瓶、无法在生产过程中对管路进行清洁、无法去除液态源中的气体、无法侦测管路压力变化、无法检测漏液情况等问题。
为实现上述目的,本发明采取的技术方案是:
第一方面,本发明提供一种液态源供应装置,包括:
储液单元,用于储存液态源;
缓冲单元,所述缓冲单元设置于所述储液单元的下游,并与所述储液单元连通,用于缓冲液态 源;
气体供应单元,所述气体供应单元设置于所述储液单元、所述缓冲单元的上游,并分别与所述储液单元、所述缓冲单元连通,用于分别向所述储液单元、所述缓冲单元供应气体,以使所述储液单元的液态源向所述缓冲单元流动、所述缓冲单元的液态源向下游流动;
气液分离单元,所述气液分离单元设置于所述缓冲单元的下游,并与所述缓冲单元连通,用于对所述缓冲单元向下游流动的液态源进行气液分离以除去液态源中的气体,并将进行气液分离的液态源向工艺腔室流动;
排气单元,所述排气单元与所述储液单元连通,用于向所述储液单元提供真空负压;
吹扫单元,所述吹扫单元与所述储液单元连通,用于向所述储液单元供应气体,在所述储液单元的更换前后,对所述储液单元进行吹扫。
在其中的一些实施例中,所述缓冲单元还分别与所述排气单元、所述吹扫单元连通。
在其中的一些实施例中,所述储液单元包括:
储液元件,所述储液元件分别与所述缓冲单元、所述气体供应单元、所述排气单元、所述吹扫单元连通,用于储存液态源;
第一阀元件,所述第一阀元件设置于与所述储液元件连通的管路,并位于所述储液元件的上游、所述气体供应单元的下游、所述排气单元的下游、所述吹扫单元的下游;
第二阀元件,所述第二阀元件设置于与所述储液元件连通的管路,并位于所述储液元件的下游、所述缓冲单元的上游、所述排气单元的下游、所述吹扫单元的下游;
第一重量监测元件,所述第一重量监测元件设置于所述储液元件的下方,用于监测所述储液元件的重量信息;
第一压力监测元件,所述第一压力监测元件设置于与所述储液元件连通的管路,并位于所述储液元件的上游,用于监测所述储液元件的进口位置的压力信息;
第二压力监测元件,所述第二压力监测元件设置于与所述储液元件连通的管路,并位于所述储液元件的下游,用于监测所述储液元件的出口位置的压力信息。
在其中的一些实施例中,所述缓冲单元包括:
缓冲元件,所述缓冲元件分别与所述储液单元、所述气体供应单元、所述气液分离单元连通,用于缓冲液态源;
第三阀元件,所述第三阀元件设置于与所述缓冲元件连通的管路,并位于所述储液单元与所述缓冲元件之间;
第二重量监测元件,所述第二重量监测元件设置于所述缓冲元件的下方,用于监测所述缓冲元件的重量信息。
在其中的一些实施例中,所述缓冲单元还包括:
第十三阀元件,所述第十三阀元件设置于与所述缓冲元件连通的管路,并位于所述缓冲元件的上游、所述气体供应单元的下游、所述排气单元的下游、所述吹扫单元的下游;
第十四阀元件,所述第十四阀元件设置于与所述缓冲元件连通的管路,并位于所述缓冲元件的下游、所述气液分离单元的上游、所述排气单元的下游、所述吹扫单元的下游;
第七压力监测元件,所述第七压力监测元件设置于与所述缓冲元件连通的管路,并位于所述缓冲元件的上游,用于监测所述缓冲元件的进口位置的压力信息;
第八压力监测元件,所述第八压力监测元件设置于与所述缓冲元件连通的管路,并位于所述缓冲元件的下游,用于监测所述缓冲元件的出口位置的压力信息。
在其中的一些实施例中,所述气体供应单元包括:
第一气体供应元件,所述第一气体供应元件设置于所述储液单元的上游,并与所述储液单元连通,用于向所述储液单元供应气体,以使所述储液单元的液态源向所述缓冲单元流动;
第二气体供应元件,所述第二气体供应元件设置于所述缓冲单元的上游,并与所述缓冲单元连通,用于向所述缓冲单元供应气体,以使所述缓冲单元的液态源向所述气液分离单元流动;
第四阀元件,所述第四阀元件设置于与所述第一气体供应元件连通的管路,并位于所述第一气体供应元件与所述储液单元之间;
第五阀元件,所述第五阀元件设置于与所述第二气体供应元件连通的管路,并位于所述第二气体供应元件与所述缓冲单元之间。
在其中的一些实施例中,所述气体供应单元还包括:
第五压力监测元件,所述第五压力监测元件设置于与所述第一气体供应元件连通的管路,并位于所述储液单元的上游,用于监测与所述第一气体供应元件连通的管路的压力信息;
第六压力监测元件,所述第六压力监测元件设置于与所述第二气体供应元件连通的管路,并位于所述缓冲单元的上游,用于监测与所述第二气体供应元件连通的管路的压力信息。
在其中的一些实施例中,所述气液分离单元包括:
气液分离元件,所述气液分离元件设置于所述缓冲单元的下游,并与所述缓冲单元连通,用于对所述缓冲单元向下游流动的液态源进行气液分离以除去液态源中的气体,并将进行气液分离的液态源向工艺腔室流动;
第一真空元件,所述第一真空元件与所述气液分离元件连通,用于向所述气液分离元件提供真空负压;
第六阀元件,所述第六阀元件设置于与所述气液分离元件连通的管路,并位于所述缓冲元件与所述气液分离元件之间;
第七阀元件,所述第七阀元件设置于与所述气液分离元件连通的管路,并位于所述气液分离元件与工艺腔室之间;
第八阀元件,所述第八阀元件设置于与所述气液分离元件连通的管路,并位于所述第七阀元件的下游;
第九阀元件,所述第九阀元件设置于与所述气液分离元件连通的管路,并位于所述气液分离元件与所述第一真空元件之间。
在其中的一些实施例中,所述气液分离单元还包括:
故障监测元件,所述故障监测元件设置于所述气液分离元件的一侧,用于监测所述气液分离元件是否出现故障;
第十二阀元件,所述第十二阀元件设置于与所述气液分离元件连通的管路,位于所述缓冲元件与工艺腔室之间,并与所述第六阀元件、所述第七阀元件并联设置。
在其中的一些实施例中,所述排气单元包括:
第二真空元件,所述第二真空元件与所述储液单元连通,用于向所述储液单元提供真空负压;
第十阀元件,所述第十阀元件设置于与所述第二真空元件连通的管路,并位于所述第二真空元件与所述储液单元之间;
第三压力监测元件,所述第三压力监测元件设置于与所述第二真空元件连通的管路,用于监测与所述第二真空元件连通的管路的压力信息。
在其中的一些实施例中,所述吹扫单元包括:
第三气体供应元件,所述第三气体供应元件与所述储液单元连通,用于向所述储液单元供应气体,在所述储液单元的更换前后,对所述储液单元进行吹扫;
第十一阀元件,所述第十一阀元件设置于与所述第三气体供应元件连通的管路,并位于所述第三气体供应元件与所述储液单元之间;
第四压力监测元件,所述第四压力监测元件设置于与所述第三气体供应元件连通的管路,用于监测与所述第三气体供应元件连通的管路的压力信息。
在其中的一些实施例中,还包括:
安全保障单元,所述安全保障单元设置于所述液态源供应装置所处环境的顶部,用于监测环境信息。
在其中的一些实施例中,所述安全保障单元包括:
烟雾监测元件,所述烟雾监测元件设置于所述液态源供应装置所处环境的顶部,用于监测环境的烟雾信息;
液体喷淋元件,所述液体喷淋元件设置于所述液态源供应装置所处环境的顶部,用于向环境喷淋液体;
紫外红外开关,所述紫外红外开关设置于所述液态源供应装置所处环境的顶部,用于监测环境中是否存在明火;
鼓风元件,所述鼓风元件设置于所述液态源供应装置所处环境的顶部,用于将环境的气体排出。
第二方面,本发明提供一种液态源供应方法,应用于如第一方面所述的液态源供应装置。
第三方面,本发明提供一种半导体工艺系统,包括:
如第一方面所述的液态源供应装置。
本发明采用以上技术方案,与现有技术相比,具有如下技术效果:
本发明的一种液态源供应装置、方法及半导体工艺系统,利用储液单元和缓冲单元进行双重备份,在储液单元的液态源不足的情况下,可以仅关闭储液单元,缓冲单元继续向工艺腔室供应液态源,避免出现停机在启动的情况,大大提高生产效率,提高生产良率,减少无谓的损失;利用排气单元和吹扫单元的双重作用,可以在更换储液单元时,对于储液单元连通的管路单元进行排气和吹扫,保证管路单元洁净无杂质,避免污染更换后的储液单元;利用气液分离单元对缓冲单元输送的液态源进行气液分离,避免携带微量气体的液态源进入工艺腔室,保证生产稳定性;在各单元设置压力监测元件,可以监测管路压力,确保管路压力正常,避免出现压力变化和管路漏液。
附图说明
图1是根据本发明实施例的液态源供应装置的示意图(一);
图2是根据本发明实施例的储液单元的示意图;
图3是根据本发明实施例的缓冲单元的示意图(一);
图4是根据本发明实施例的气体供应单元的示意图;
图5是根据本发明实施例的气液分离单元的示意图(一);
图6是根据本发明实施例的排气单元的示意图;
图7是根据本发明实施例的吹扫单元的示意图;
图8是根据本发明实施例的气液分离单元的示意图(二);
图9是根据本发明实施例的液态源供应装置的示意图(二);
图10是根据本发明实施例的缓冲单元的示意图(二);
图11是根据本发明实施例的液态源供应装置的示意图(三);
图12是根据本发明实施例的安全保障单元的示意图;
图13是根据本发明实施例的液态源供应装置的具体实施例。
其中的附图标记为:100、储液单元;110、储液元件;120、第一阀元件;130、第二阀元件;140、第一重量监测元件;150、第一压力监测元件;160、第二压力监测元件;
200、缓冲单元;210、缓冲元件;220、第三阀元件;230、第二重量监测元件;240、第十三阀元件;250、第十四阀元件;260、第七压力监测元件;270、第八压力监测元件;
300、气体供应单元;310、第一气体供应元件;320、第二气体供应元件;330、第四阀元件;340、第五阀元件;350、第五压力监测元件;360、第六压力监测元件;
400、气液分离单元;410、气液分离元件;420、第一真空元件;430、第六阀元件;440、第七阀元件;450、第八阀元件;460、第九阀元件;470、故障监测元件;480、第十二阀元件;
500、排气单元;510、第二真空元件;520、第十阀元件;530、第三压力监测元件;
600、吹扫单元;610、第三气体供应元件;620、第十一阀元件;630、第四压力监测元件;
700、安全保障单元;710、烟雾监测元件;720、液体喷淋元件;730、紫外红外开关;740、鼓风元件。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行描述和说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。基于本申请提供的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其他类似情景。此外,还可以理解的是,虽然这种开发过程中所作出的努力可能是复杂并且冗长的,然而对于与本申请公开的内容相关的本领域的普通技术人员而言,在本申请揭露的技术内容的基础上进行的一些设计, 制造或者生产等变更只是常规的技术手段,不应当理解为本申请公开的内容不充分。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域普通技术人员显式地和隐式地理解的是,本申请所描述的实施例在不冲突的情况下,可以与其它实施例相结合。
除非另作定义,本申请所涉及的技术术语或者科学术语应当为本申请所属技术领域内具有一般技能的人士所理解的通常意义。本申请所涉及的“一”、“一个”、“一种”、“该”等类似词语并不表示数量限制,可表示单数或复数。本申请所涉及的术语“包括”、“包含”、“具有”以及它们任何变形,意图在于覆盖不排他的包含;例如包含了一系列步骤或单元(单元)的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可以还包括没有列出的步骤或单元,或可以还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。本申请所涉及的“连接”、“相连”、“耦接”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电气的连接,不管是直接的还是间接的。本申请所涉及的“多个”/“若干”是指两个或两个以上。“和/或”描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请所涉及的术语“第一”、“第二”、“第三”等仅仅是区别类似的对象,不代表针对对象的特定排序。
实施例1
本实施例涉及本发明的液态源供应装置。
本发明的一个示意性实施例,如图1所示,一种液态源供应装置,包括储液单元100、缓冲单元200、气体供应单元300、气液分离单元400、排气单元500和吹扫单元600。其中,储液单元100用于储存液态源;缓冲单元200设置于储液单元100的下游,并与储液单元100连通,用于缓冲液态源;气体供应单元300设置于储液单元100、缓冲单元200的上游,并分别与储液单元100、缓冲单元200连通,用于分别向储液单元100、缓冲单元200供应气体,以使储液单元100的液态源向缓冲单元200流动、缓冲单元200的液态源向下游流动;气液分离单元400设置于缓冲单元200的下游,并与缓冲单元200连通,用于对缓冲单元200向下游流动的液态源进行气液分离以除去液态源中的气体,并将进行气液分离的液态源向工艺腔室流动;排气单元500与储液单元100连通,用于向储液单元100提供真空负压;吹扫单元600与储液单元100连通,用于向储液单元100供应气体,在储液单元100的更换前后,对储液单元100进行吹扫。
在本发明中,液态源包括但不限于TEOS、TMA、BDEAS、DEMS、ATRP、HCDS、4MS、OMCTS、TEB、TEPO、TICL4、DIPAS、BTBAS、TDMAT。
如图2所示,储液单元100包括储液元件110、第一阀元件120、第二阀元件130、第一重量监测元件140、第一压力监测元件150和第二压力监测元件160。其中,储液元件110分别与缓冲单元200、气体供应单元300、排气单元500、吹扫单元600连通,用于储存液态源;第一阀元件120设置于与储液元件110连通的管路,并位于储液元件110的上游、气体供应单元300的下游、排气单元500的下游、吹扫单元600的下游;第二阀元件130设置于与储液元件110连通的管路,并位于储液元件110的下游、缓冲单元200的上游、排气单元500的下游、吹扫单元600的下游;第一重量监测元件140设置于储液元件110的下方,用于监测储液元件110的重量信息;第一压力监测元件150设置于与储液元件110连通的管路,并位于储液元件110的上游,用于监测储液元件110的进口位置的压力信息;第二压力监测元件160设置于与储液元件110连通的管路,并位于储液元件110的下游,用于监测储液元件110的出口位置的压力信息。
储液元件110包括储液主体、第一进口、第一出口、第一进口阀、第一出口阀。其中,第一进口设置于储液主体的上部,并与气体供应单元300连通;第一出口设置于储液主体的上部,并与缓冲单元200连通;第一进口阀设置于第一进口,用于控制第一进口的开闭;第一出口阀设置于第一出口,用于控制第一出口的开闭。
其中,第一进口由第一进气管和第一进气接口构成。第一进气管与储液主体连通;第一进气接口设置于第一进气管的端部,用于与气体供应单元300连通。
其中,第一出口由第一出气管和第一出气接口构成。第一出气管与储液主体连通;第一出气接口设置于第一出气管的端部,用于与缓冲单元200连通。
其中,第一进口阀设置于第一进气管。其包括但不限于手动隔膜阀、气动隔膜阀。优选地,第一进口阀为手动隔膜阀。
其中,第一出口阀设置于第一出气管。其包括但不限于手动隔膜阀、气动隔膜阀。优选地,第一出口阀为手动隔膜阀。
在其中的一些实施例中,储液元件110包括但不限于储液罐、储液钢瓶等。
在其中的一些实施例中,第一阀元件120包括但不限于隔膜阀。
在其中的一些实施例中,第一阀元件120包括但不限于手动隔膜阀、气动隔膜阀。
具体地,第一阀元件120包括第一气动隔膜阀。其中,第一气动隔膜阀设置于与储液元件110连通的管路,并位于储液元件110的上游、气体供应单元300的下游、排气单元500的下游、吹扫 单元600的下游。
在其中的一些实施例中,第二阀元件130包括但不限于隔膜阀。
在其中的一些实施例中,第二阀元件130包括但不限于手动隔膜阀、气动隔膜阀。
具体地,第二阀元件130包括第二气动隔膜阀。其中,第二气动隔膜阀设置于与储液元件110连通的管路,并位于储液元件110的下游、缓冲单元200的上游、排气单元500的下游、吹扫单元600的下游。
第一重量监测元件140设置于储液元件110的正下方,即储液元件110放置于第一重量检测元件104之上。
在其中的一些实施例中,第一重量监测元件140包括但不限于重量传感器、磅秤。
优选地,第一重量监测元件140为第一磅秤。
第一压力监测元件150设置于储液元件110与第一阀元件120之间。
在其中的一些实施例中,第一压力监测元件150为压力传感器。
第二压力监测元件160设置于储液元件110与第二阀元件130之间。
在其中的一些实施例中,第二压力监测元件160为压力传感器。
如图3所示,缓冲单元200包括缓冲元件210、第三阀元件220和第二重量监测元件230。其中,缓冲元件210分别与储液单元100、气体供应单元300、气液分离单元400连通,用于缓冲液态源;第三阀元件220设置于与缓冲元件210连通的管路,并位于储液单元100与缓冲元件210之间;第二重量监测元件230设置于缓冲元件210的下方,用于监测缓冲元件210的重量信息。
具体地,缓冲元件210与储液元件110连通。
缓冲元件210包括缓冲主体、第二进口、第三进口、第二出口、第二进口阀、第三进口阀和第三出口阀。其中,第二进口设置于缓冲主体的上部,并与气体供应单元300连通;第三进口设置于缓冲主体的上部,并与储液元件110连通;第二出口设置于缓冲主体的上部,并与气液分离单元400连通;第二进口阀设置于第二进口,用于控制第二进口的开闭;第三进口阀设置于第三进口,用于控制第三进口的开闭;第二出口阀设置于第二出口,用于控制第二出口的开闭。
其中,第二进口由第二进气管和第二进气接口构成。第二进气管与缓冲主体连通;第二进气接口设置于第二进气管的端部,用于与气体供应单元300连通。
其中,第三进口由第三进气管和第三进气接口构成。第三进气管与缓冲主体连通;第三进气接口设置于第三进气管的端部,用于与储液元件110连通。
其中,第二出口由第二出气管和第二出气接口构成。第二出气管与缓冲主体连通;第二出气接 口设置于第二出气管的端部,用于与气液分离单元400连通。
其中,第二进口阀设置于第二进气管。其包括但不限于手动隔膜阀、气动隔膜阀。优选地,第二进口阀为手动隔膜阀。
其中,第三进口阀设置于第三进气管。其包括但不限于手动隔膜阀、气动隔膜阀。优选地,第三进口阀为手动隔膜阀。
其中,第二出口阀设置于第二出气管。其包括但不限于手动隔膜阀、气动隔膜阀。优选地,第二出口阀为手动隔膜阀。
在其中的一些实施例中,缓冲元件210包括但不限于缓冲罐、缓冲钢瓶等。
在其中的一些实施例中,第三阀元件220包括但不限于隔膜阀。
在其中的一些实施例中,第三阀元件220包括但不限于手动隔膜阀、气动隔膜阀。
在其中的一些实施例中,第三阀元件220包括若干隔膜阀,若干隔膜阀间隔设置于分别与储液元件110、缓冲元件210连通的管路。
具体地,第三阀元件220包括第三气动隔膜阀、第一手动隔膜阀和第四气动隔膜阀。其中,第三气动隔膜阀设置于与储液元件110连通的管路的进口;第一手动隔膜阀设置于第三气动隔膜阀的下游;第四气动隔膜阀设置于与缓冲元件210连通的管路的出口,并位于第一手动隔膜阀的下游。
第二重量监测元件230设置于缓冲元件210的正下方,即缓冲元件210放置于第二重量监测元件230之上。
在其中的一些实施例中,第二重量监测元件230包括但不限于重量传感器、磅秤。
优选地,第二重量监测元件230为第二磅秤。
如图4所示,气体供应单元300包括第一气体供应元件310、第二气体供应元件320、第四阀元件330和第五阀元件340。其中,第一气体供应元件310设置于储液单元100的上游,并与储液单元100连通,用于向储液单元100供应气体,以使储液单元100的液态源向缓冲单元200流动;第二气体供应元件320设置于缓冲单元200的上游,并与缓冲单元200连通,用于向缓冲单元200供应气体,以使缓冲单元200的液态源向气液分离单元400流动;第四阀元件330设置于与第一气体供应元件310连通的管路,并位于第一气体供应元件310与储液单元100之间;第五阀元件340设置于与第二气体供应元件320连通的管路,并位于第二气体供应元件320与缓冲单元200之间。
具体地,第一气体供应元件310与储液元件110连通,用于向储液元件110供应气体;第二气体供应元件320与缓冲元件210连通,用于向缓冲元件210供应气体。
第一气体供应元件310包括第一气体供应源和第三出口。其中,第三出口设置于第一气体供应 源,并与储液元件110连通。
其中,第三出口由第三出气管和第三出气接口构成。第三出气管与第一气体供应源连通;第三出气接口设置于第三出气管的端部,用于与储液元件110连通。
第二气体供应元件320包括第二气体供应源和第四出口。其中,第四出口设置于第二气体供应源,并与缓冲元件210连通。
其中,第四出口由第四出气管和第四出气接口构成。第四出气管与第二气体供应源连通;第四出气接口设置于第四出气管的端部,用于与储液元件110连通。
在其中的一些实施例中,第四阀元件330包括但不限于隔膜阀、调压阀、单向阀。
在其中的一些实施例中,第四阀元件330包括但不限于手动隔膜阀、气动隔膜阀。
在其中的一些实施例中,第四阀元件330包括若干隔膜阀、调压阀和单向阀。其中,若干隔膜阀、调压阀、单向阀间隔设置于分别与第一气体供应元件310与储液元件110连通的管路。
具体地,第四阀元件330包括第二手动隔膜阀、第一单向阀、第一调压阀、第三手动隔膜阀和第五气动隔膜阀。其中,第二手动隔膜阀设置于与第一气体供应元件310连通的管路的进口;第一单向阀设置于第二手动隔膜阀的下游;第一调压阀设置于第一单向阀的下游;第三手动隔膜阀设置于第一调压阀的下游;第五气动隔膜阀设置于与储液元件110连通的管路的出口,并位于第三手动隔膜阀的下游。
在其中的一些实施例中,第五阀元件340包括但不限于隔膜阀、调压阀、单向阀。
在其中的一些实施例中,第五阀元件340包括但不限于手动隔膜阀、气动隔膜阀。
在其中的一些实施例中,第五阀元件340包括若干隔膜阀、调压阀和单向阀。其中,若干隔膜阀、调压阀、单向阀间隔设置于分别与第二气体供应元件320与缓冲元件210连通的管路。
具体地,第五阀元件340包括第四手动隔膜阀、第二单向阀、第二调压阀、第五手动隔膜阀和第六气动隔膜阀。其中,第四手动隔膜阀设置于与第二气体供应元件320连通的管路的进口;第二单向阀设置于第九手动隔膜阀的下游;第二调压阀设置于第二单向阀的下游;第五手动隔膜阀设置于第二调压阀的下游;第六气动隔膜阀设置于缓冲元件210连通的管路的出口,并位于第五手动隔膜阀的下游。
进一步地,气体供应单元300还包括第五压力监测元件350和第六压力监测元件360。其中,第五压力监测元件350设置于与第一气体供应元件310连通的管路,并位于储液单元100的上游,用于监测与第一气体供应元件310连通的管路的压力信息;第六压力监测元件360设置于与第二气体供应元件320连通的管路,并位于缓冲单元200的上游,用于监测与第二气体供应元件320连通 的管路的压力信息。
在其中的一些实施例中,第五压力监测元件350设置于第一调压阀与第三手动隔膜阀之间。
在其中的一些实施例中,第五压力监测元件350为压力传感器。
在其中的一些实施例中,第六压力监测元件360设置于第二调压阀与第五手动隔膜阀之间。
在其中的一些实施例中,第六压力监测元件360为压力传感器。
如图5所示,气液分离单元400包括气液分离元件410、第一真空元件420、第六阀元件430、第七阀元件440、第八阀元件450和第九阀元件460。其中,气液分离元件410设置于缓冲单元200的下游,并与缓冲单元200连通,用于对缓冲单元200向下游流动的液态源进行气液分离以除去液态源中的气体,并将进行气液分离的液态源向工艺腔室流动;第一真空元件420与气液分离元件410连通,用于向气液分离元件410提供真空负压;第六阀元件430设置于与气液分离元件410连通的管路,并位于缓冲元件210与气液分离元件410之间;第七阀元件440设置于与气液分离元件410连通的管路,并位于气液分离元件410与工艺腔室之间;第八阀元件450设置于与气液分离元件410连通的管路,并位于第七阀元件440的下游;第九阀元件460设置于气液分离元件410连通的管路,并位于气液分离元件410与第一真空元件420之间。
具体地,气液分离元件410设置于缓冲元件210的下游,并与缓冲元件210连通。
气液分离元件410包括气液分离器、第四进口、第五出口和第六出口。其中,第四进口设置于气液分离器的一端,并与缓冲元件210连通;第五出口设置于气液分离器的一端,并与外界真空负压连通;第六出口设置于气液分离器的一端,并与工艺腔室连通。
其中,第四进口由第四进气管、第四进气接口构成。第四进气管与气液分离器连通;第四进气接口设置于第四进气管的端部,用于与缓冲元件210连通。
其中,第五出口由第五出气管和第五出气接口构成。第五出气管与气液分离器连通;第五出气接口设置于第五出气管的端部,用于与外界真空负压连通。
其中,第六出口由第六出气管和第六出气接口构成。第六出气管与气液分离器连通;第六出气接口设置于第六出气管的端部,用于与工艺腔室连通。
第一真空元件420向气液分离元件410提供真空负压,以使位于气液分离元件410内部的溶解于液态源的气体与液态源分离;并在真空负压的作用,被分离的气体通过第一真空元件420向外界排出。
在其中的一些实施例中,第一真空元件420为真空泵。
在其中的一些实施例中,第六阀元件430包括但不限于隔膜阀。
在其中的一些实施例中,第六阀元件430包括但不限于手动隔膜阀、气动隔膜阀。
具体地,第六阀元件430包括第七气动隔膜阀。其中,第七气动隔膜阀设置于分别与缓冲元件210、气液分离元件410连通的管路,并靠近气液分离元件410设置。
在其中的一些实施例中,第七阀元件440包括但不限于隔膜阀。
在其中的一些实施例中,第七阀元件440包括但不限于手动隔膜阀、气动隔膜阀。
具体地,第七阀元件440包括第八气动隔膜阀。其中,第八气动隔膜阀设置于分别与气液分离元件410、工艺腔室连通的管路,并靠近气液分离元件410设置。
在其中的一些实施例中,第八阀元件450包括但不限于隔膜阀。
在其中的一些实施例中,第八阀元件450包括但不限于手动隔膜阀、气动隔膜阀。
具体地,第八阀元件450包括第六手动隔膜阀。其中,第六手动隔膜阀设置于分别与气液分离元件410、工艺腔室连通的管路,并位于第八气动隔膜阀的下游。
在其中的一些实施例中,第九阀元件460包括但不限于隔膜阀。
在其中的一些实施例中,第九阀元件460包括但不限于手动隔膜阀、气动隔膜阀。
具体地,第九阀元件460包括第九气动隔膜阀。其中,第九气动隔膜阀设置于分别与气液分离元件410、第一真空元件420连通的管路,并靠近气液分离元件410设置。
如图6所示,排气单元500包括第二真空元件510、第十阀元件520和第三压力监测元件530。其中,第二真空元件510与储液单元100连通,用于向储液单元100提供真空负压;第十阀元件520设置于与第二真空元件510连通的管路,并位于第二真空元件510与储液单元100之间;第三压力监测元件530设置于与第二真空元件510连通的管路,用于监测与第二真空元件510连通的管路的压力信息。
具体地,第二真空元件510分别与储液元件110、缓冲元件210连通。
第二真空元件510包括真空发生器、第五进口、第六进口和第七出口。其中,第五进口设置于真空发生器的一端,并分别与储液元件110、缓冲元件210连通;第六进口设置于真空发生器的一端,用于外界气体流入;第七出口设置于真空发生器的一端,用于排出与储液元件110连通的管路的气体。
其中,第五进口由第五进气管、第五进气接口构成。第五进气管与真空发生器连通;第五进气接口设置于第五进气管的端部,用于分别与储液元件110、缓冲元件210连通。
其中,第六进口由第六进气管、第六进气接口构成。第六进气管与真空发生器连通;第六进气接口设置于第六进气管的端部,用于与外界气源连通。
其中,第七出口由第七出气管、第七出气接口构成。第七出气管与真空发生器连通;第七出气接口设置于第七出气管的端部,用于与外界连通。
在其中的一些实施例中,第二真空元件510为真空发生器。
在其中的一些实施例中,第十阀元件520包括但不限于隔膜阀。
在其中的一些实施例中,第十阀元件520包括但不限于手动隔膜阀、气动隔膜阀。
在其中的一些实施例中,第十阀元件520包括若干隔膜阀,若干隔膜阀间隔设置于分别与储液元件110、第二真空元件510连通的管路。
具体地,第十阀元件520包括第七手动隔膜阀和第十气动隔膜阀。其中,第七手动隔膜阀设置于分别与储液元件110、第二真空元件510连通的管路,并靠近第二真空元件510设置;第十气动隔膜阀设置于分别与储液元件110、第二真空元件510连通的管路,并靠近储液元件110设置。
在其中的一些实施例中,第三压力监测元件530设置于第七手动隔膜阀与第十气动隔膜阀之间。
在其中的一些实施例中,第三压力监测元件530为压力传感器。
如图7所示,吹扫单元600包括第三气体供应元件610、第十一阀元件620和第四压力监测元件630。其中,第三气体供应元件610与储液单元100连通,用于向储液单元100供应气体,在储液单元100的更换前后,对储液单元100进行吹扫;第十一阀元件620设置于与第三气体供应元件610连通的管路,并位于第三气体供应元件610与储液单元100之间;第四压力监测元件630设置于与第三气体供应元件610连通的管路,用于监测与第三气体供应元件610连通的管路的压力信息。
具体地,第三气体供应元件610分别与储液元件110、缓冲元件210连通。
第三气体供应元件610包括第三气体供应源和第八出口。其中,第八出口设置于第三气体供应源,并分别与储液元件110、缓冲元件210连通。
其中,第八出口由第八出气管和第八出气接口构成。第八出气管与第三气体供应源连通;第八出气接口设置于第八出气管的端部,用于与储液元件110、缓冲元件210连通。
在其中的一些实施例中,第十一阀元件620包括但不限于隔膜阀、微漏阀、单向阀、调压阀。
在其中的一些实施例中,第十一阀元件620包括但不限于手动隔膜阀、气动隔膜阀。
在其中的一些实施例中,第十一阀元件620包括若干隔膜阀、微漏阀、调压阀和单向阀。若干隔膜阀、微漏阀、调压阀和单向阀间隔地设置于分别与储液元件110、第三气体供应元件610连通的管路。
具体地,第十一阀元件620包括第十一气动隔膜阀、气动微漏阀、第三单向阀、第三调压阀和 第十二气动隔膜阀。其中,第十一气动隔膜阀设置于分别与储液元件110、第三气体供应元件610连通的管路,并靠近第三气体供应元件610设置;气动微漏阀设置于第十一气动隔膜阀的下游;第三单向阀设置于气动微漏阀的下游;第三调压阀设置于第三单向阀的下游;第十二气动隔膜阀设置于分别与储液元件110、第三气体供应元件610连通的管路,位于第三调压阀的下游,并靠近储液元件110设置。
在其中的一些实施例中,第四压力监测元件630设置于第三调压阀和第十二气动隔膜阀之间。
在其中的一些实施例中,第四压力监测元件630为压力传感器。
本实施例的使用方法如下:
(一)供应液态源;
在储液元件110的液态源的重量满足要求的情况下,开启第三阀元件220;
开启第四阀元件330,第一气体供应元件310向储液元件110供应气体;
在气体压力的作用下,储液元件110的液态源被输送至缓冲元件210;
开启第五阀元件340,第二气体供应元件320向缓冲元件210供应气体;
在气体压力的作用下,缓冲元件210的液态源被输送至气液分离元件410;
开启第六阀元件430、第七阀元件440和第九阀元件460,缓冲元件210的液态源进入气液分离元件410;
在经气液分离元件410进行气液分离处理后的液态源进入工艺腔室;
在经气液分离元件410进行气液分离处理后的气体通过第一真空元件420进入外界。
(二)更换储液单元100;
在储液元件110的液态源的重量不满足要求的情况下,关闭第三阀元件220和第四阀元件330;
开启第十一阀元件620;
在第一压力监测元件150的压力数值与第二压力监测元件160的压力数值相等的情况下,关闭储液元件110的第一进口阀和第一出口阀;
开启第十阀元件520,对与储液元件110连通的相关管路元件进行排气;
在第三压力监测元件530的压力数值满足要求的情况下,关闭第十阀元件520;
开启第十一阀元件620,对与储液元件110连通的相关管路元件进行吹扫;
在第四压力监测元件630的压力数值满足要求的情况下,关闭第十一阀元件620;
重复排气和吹扫若干次,在第三压力监测元件530的压力数值满足要求的情况下,关闭第十阀元件520;
在第一压力监测元件150的压力数值与第二压力监测元件160的压力数值没有变动的情况下,更换储液元件110;
在更换完成后,重复排气和吹扫若干次,在第四压力监测元件630的压力数值满足要求的情况下,关闭第十一阀元件620;
在第一压力监测元件150的压力数值与第二压力监测元件160的压力数值没有变动的情况下,重复排气和吹扫若干次,在第三压力监测元件530的压力数值满足要求的情况下,关闭第十阀元件520;
开启第三阀元件220,并开启储液元件110的第一进口阀和第一出口阀;
开启第四阀元件330,储液元件110恢复向缓冲元件210供应液态源。
本实施例的优点在于,利用储液单元和缓冲单元进行双重备份,在储液单元的液态源不足的情况下,可以仅关闭储液单元,缓冲单元继续向工艺腔室供应液态源,避免出现停机在启动的情况,大大提高生产效率,提高生产良率,减少无谓的损失;利用排气单元和吹扫单元的双重作用,可以在更换储液单元时,对于储液单元连通的管路单元进行排气和吹扫,保证管路单元洁净无杂质,避免污染更换后的储液单元。
实施例2
本实施例为实施例1的一个变形实施例。本实施例与实施例1的区别在于:气液分离单元400的结构不同。
如图8所示,气液分离单元400还包括故障监测元件470和第十二阀元件480。其中,故障监测元件470设置于气液分离元件410的一侧,用于监测气液分离元件410是否出现故障;第十二阀元件480设置于与气液分离元件410连通的管路,位于缓冲元件210与工艺腔室之间,并与第六阀元件430、第七阀元件440并联设置。
在其中的一些实施例中,故障监测元件470为漏液传感器。
在其中的一些实施例中,第十二阀元件480包括但不限于隔膜阀。
在其中的一些实施例中,第十二阀元件480包括但不限于手动隔膜阀、气动隔膜阀。
在其中的一些实施例中,第十二阀元件480包括若干隔膜阀,若干隔膜阀间隔设置于分别与缓冲元件210、工艺腔室连通的管路。
具体地,第十二阀元件480包括第十三气动隔膜阀和第十四气动隔膜阀。其中,第十三气动隔膜阀设置于分别与缓冲元件210、工艺腔室连通的管路,并靠近缓冲元件210设置;第十四气动隔膜阀设置于分别与缓冲元件210、工艺腔室连通的管路,并靠近工艺腔室设置。
其中,第十三气动隔膜阀与第六阀元件430并联设置,第十四气动隔膜阀与第七阀元件440并联设置。
本实施例的使用方法如下:
(三)关闭气液分离单元400
关闭第六阀元件430、第七阀元件440和第九阀元件460;
开启第十二阀元件480,缓冲元件210的液态源直接进入工艺腔室。
本实施例的优点在于,在气液分离单元出现故障的情况下,可以通过临时开启第十二阀元件,使得液态源仍然可以向工艺腔室输送,避免产线停机。
实施例3
本实施例为实施例1~2的一个变形实施例。
如图9所示,缓冲单元200还分别与排气单元500、吹扫单元600连通。
如图10所示,缓冲单元200还包括第十三阀元件240、第十四阀元件250、第七压力监测元件260和第八压力监测元件270。其中,第十三阀元件240设置于与缓冲元件210连通的管路,并位于缓冲元件210的上游、气体供应单元300的下游、排气单元500的下游、吹扫单元600的下游;第十四阀元件250设置于与缓冲元件210连通的管路,并位于缓冲元件210的下游、气液分离单元400的上游、排气单元500的下游、吹扫单元600的下游;第七压力监测元件260设置于与缓冲元件210连通的管路,并位于缓冲元件210的上游,用于监测缓冲元件210的进口位置的压力信息;第八压力监测元件270设置于与缓冲元件210连通的管路,并位于缓冲元件210的下游,用于监测缓冲元件210的出口位置的压力信息。
具体地,第十三阀元件240设置于第二气体供应元件320的下游、第二真空元件510的下游、第三气体供应元件610的下游;第十四阀元件250设置于气液分离元件410的上游、第二真空元件510的下游、第三气体供应元件610的下游。
在其中的一些实施例中,第十三阀元件240包括但不限于隔膜阀。
在其中的一些实施例中,第十三阀元件240包括但不限于手动隔膜阀、气动隔膜阀。
具体地,第十三阀元件240包括第十五气动隔膜阀。其中,第十五气动隔膜阀设置于与缓冲元件210连通的管路,并位于缓冲元件210的上游、第二气体供应元件320的下游、第二真空元件510的下游、第三气体供应元件610的下游。
在其中的一些实施例中,第十四阀元件250包括但不限于隔膜阀。
在其中的一些实施例中,第十四阀元件250包括但不限于手动隔膜阀、气动隔膜阀。
具体地,第十四阀元件250包括第十六气动隔膜阀。其中,第十六气动隔膜阀设置于与缓冲元件210连通的管路,并位于缓冲元件210的下游、气液分离元件410的上游、第二真空元件510的下游、第三气体供应元件610的下游。
第七压力监测元件260设置于缓冲元件210与第十三阀元件240之间。
在其中的一些实施例中,第七压力监测元件260为压力传感器。
第八压力监测元件270设置于缓冲元件210与第十四阀元件250之间。
在其中的一些实施例中,第八压力监测元件270为压力传感器。
进一步地,第十阀元件520还包括第十七气动隔膜阀。其中,第十七气动隔膜阀设置于分别与缓冲元件210、第二真空元件510连通的管路,并靠近缓冲元件210设置。
进一步地,第十一阀元件620还包括第十八气动隔膜阀。其中,第十八气动隔膜阀设置于分别与缓冲元件210、第三气体供应元件610连通的管路,位于第三调压阀的下游,并靠近缓冲元件210设置。
本实施例的使用方法同实施例1基本相同,区别仅在于:本实施例需要产线停机,以对缓冲单元进行清洁、更换。
实施例4
本实施例为实施例1~3的一个变形实施例。
如图11所示,液态源供应装置还包括安全保障单元700。其中,安全保障单元700设置于液态源供应装置所处环境的顶部,用于监测环境信息。
如图12所示,安全保障单元700包括烟雾监测元件710、液体喷淋元件720、紫外红外开关730和鼓风元件740。其中,烟雾监测元件710设置于液态源供应装置所处环境的顶部,用于监测环境的烟雾信息;液体喷淋元件720设置于液态源供应装置所处环境的顶部,用于向环境喷淋液体;紫外红外开关730设置于液态源供应装置所处环境的顶部,用于监测环境中是否存在明火;鼓风元件740设置于液态源供应装置所处环境的顶部,用于将环境的气体排出。
在其中的一些实施例中,烟雾监测元件710为烟雾探测器。
在其中的一些实施例中,液体喷淋元件720为喷淋头。
在其中的一些实施例中,紫外红外开关730为红紫外开关(IR Switch)。
在其中的一些实施例中,鼓风元件740包括但不限于排气扇。
在其中的一些实施例中,安全保障单元700还包括气体监测元件、火焰监测元件、温度监测元件。
本实施例的优点在于,在液态源供应装置出现泄漏、燃烧的情况下,利用烟雾监测元件进行预警;使用液体喷淋元件进行喷淋,以降低环境内的相关气体、液体的浓度,防止出现爆炸;通过鼓风元件可以快速将环境内的气体排放至废气处理系统。
实施例5
本实施例涉及本发明的液态源供应方法,应用于如实施例1~实施例4所述的液态源供应装置。
本发明的一个示意性实施例,一种液态源供应方法,包括:
(排气步骤):
在储液单元的液态源的重量达到预设重量阈值的情况下,关闭储液单元与气体供应单元、缓冲单元的连通;
启动排气单元,向与储液单元连通的管路单元提供真空负压,以排除管路单元的内部气体;
在管路单元的压力达到第一预设压力阈值的情况下,关闭排气单元;
(吹扫步骤):
启动吹扫单元,吹扫单元向与储液单元连通的管路单元供应气体;
在管路单元的压力达到第二预设压力阈值的情况下,关闭吹扫单元;
(第一保压步骤):
重复排气步骤和吹扫步骤,直至管路单元的压力达到第一预设压力阈值;
(更换步骤):
更换储液单元;
(第二保压步骤):
在更换步骤之后,重复排气步骤和吹扫步骤,直至管路单元的压力达到第二预设压力阈值;
(第三保压步骤):
在第二保压步骤之后,重复排气步骤和所述吹扫步骤,直至管路单元的压力达到第一预设压力阈值;
(供应液态源步骤):
在第三保压步骤之后,开启储液单元与气体供应单元、缓冲单元的连通。
进一步地,在排气步骤之前,还包括:
(回压步骤):
在储液单元的液态源的重量达到预设重量阈值的情况下,关闭储液单元与气体供应单元、缓冲单元的连通;
启动吹扫单元,在储液单元的上游压力和下游压力相等的情况下,关闭储液单元。
具体地,液态源供应方法包括:
(回压步骤):
在储液元件110的液态源的重量达到第一重量监测元件140的预设重量阈值的情况下,关闭第三阀元件220和第四阀元件330,以断开储液元件110与缓冲元件210、第一气体供应元件310的连通;
启动第三气体供应元件610,打开第十一阀元件620、第一阀元件120和第二阀元件130,观察第一压力监测元件150和第二压力监测元件160,在储液元件110的上游压力和下游压力相等的情况下,关闭储液元件110;
(排气步骤):
在储液元件110的液态源的重量达到第一重量监测元件140的预设重量阈值的情况下,关闭第三阀元件220和第四阀元件330,以断开储液元件110与缓冲元件210、第一气体供应元件310的连通;
启动第二真空元件510,打开第十阀元件520、第一阀元件120和第二阀元件130,向与储液元件110连通的管路单元提供真空负压,以排除管路的内部气体;
观察第三压力监测元件530、第一压力监测元件150、第二压力监测元件160,在管路的压力达到第一预设压力阈值的情况下,关闭第二真空元件510;
(吹扫步骤):
启动第三气体供应元件610,打开第十一阀元件620、第一阀元件120和第二阀元件130,第三气体供应元件610向与储液元件110连通的管路供应气体;
观察第四压力监测元件630、第一压力监测元件150、第二压力监测元件160,在管路的压力达到第二预设压力阈值的情况下,关闭第三气体供应元件610;
(第一保压步骤):
重复排气步骤和吹扫步骤,观察第三压力监测元件530、第一压力监测元件150、第二压力监测元件160,直至管路的压力达到第一预设压力阈值,关闭第十阀元件520,保压3小时;
(更换步骤):
关闭第二真空元件510,启动第三气体供应元件610,在第十一阀元件620的气动微漏阀关闭,一定流量气体从第三气体供应元件610流出的情况下,更换储液元件110;
(第二保压步骤):
在更换步骤之后,重复排气步骤和吹扫步骤,观察第四压力监测元件630、第一压力监测元件150、第二压力监测元件160,直至管路的压力达到第二预设压力阈值,关闭第十一阀元件620,保压三小时;
(第三保压步骤):
在第二保压步骤之后,重复排气步骤和所述吹扫步骤,观察第三压力监测元件530、第一压力监测元件150、第二压力监测元件160,直至管路的压力达到第一预设压力阈值;
(供应液态源步骤):
在第三保压步骤之后,打开第三阀元件220和第四阀元件330,以开启储液元件110与缓冲元件210、第一气体供应元件310的连通,恢复储液元件110的使用。
更具体地,本实施例的液态源供应方法如下:
正常工作:在储液元件110未向缓冲元件210供应液态源的情况下,所有的手动隔膜阀、调压阀均启动,第一气动隔膜阀、第二气动隔膜阀、第三气动隔膜阀、第四气动隔膜阀、第十一气动隔膜阀、第十气动隔膜阀、第十二气动隔膜阀、第十三气动隔膜阀、第十四气动隔膜阀、第十六气动隔膜阀、第十五气动隔膜阀、第十七气动隔膜阀、第十八气动隔膜阀和气动微漏阀为关,其余气动隔膜阀为开;
在储液元件110向缓冲元件210供应液态源的情况下,第四气动隔膜阀和第三气动隔膜阀开。
(1)回压:手动关闭第一手动隔膜阀,系统关闭第三气动隔膜阀、第四气动隔膜阀、第五气动隔膜阀,打开第十一气动隔膜阀、气动微漏阀,观察第四压力检测元件630数值,若正常上升,打开第二气动隔膜阀、第一气动隔膜阀、第十二气动隔膜阀,观察第一压力检测元件150和第二压力检测元件160,待2个压力数值一样,手动关闭储液元件110上的第一进口阀和第一出口阀,在屏幕上点击更换钢瓶,系统会自动关闭第十二气动隔膜阀。
(2)排气:系统打开第二真空元件510,一侧管路GN2气体流过,将第七手动隔膜阀一侧管内抽至负压,并将管路内气体排出,系统观察第三压力监测元件530数值为负,说明第二真空元件510正常工作。系统打开第十气动隔膜阀。每隔5s,系统会检测第三压力监测元件530、第一压力检测元件150、第二压力检测元件160数值,当压力降低至-10psig时,自动关闭第十气动隔膜阀。切换至吹扫步骤。
(3)吹扫:系统自动打开第十一气动隔膜阀,气动微漏阀,吹扫气体流向管内,若第四压力检测元件630数值正常上升,系统再打开第十二气动隔膜阀,检测第一压力检测元件150、第二压力检测元件160数值,当压力上升至100psig时,关闭第十二气动隔膜阀。切换回排气步骤。
(4)保负压:重复循环排气步骤和吹扫步骤若干次,完成后管路压力保持负压状态,压力为-10psig不变,视为吹扫干净。系统关闭第十气动隔膜阀和第二真空元件510,保压3h。系统检测第一压力监测元件150、第二压力监测元件160有无数值变化,无变化后,自动进行压力校正和换瓶前的几次排气和吹扫。
(5)更换储液单元100:点击屏幕换瓶确认,系统关闭气动微漏阀,打开第十二气动隔膜阀和第十一气动隔膜阀。气动微漏阀关闭时,会有小流量气体从第十一气动隔膜阀一侧流向管路内部,以保证换瓶时管路内的洁净。拆开储液元件110上的第一进口、第一出口与第一气体供应元件310、缓冲元件210相连的接头,开始手动更换储液元件110。
(6)保正压:更换储液元件110结束后,重复排气步骤和吹扫步骤若干次,完成后对管路保正压到100psig,关闭第十一气动隔膜阀和第十二气动隔膜阀,保压3h。
(7)保负压:观察第一压力监测元件150、第二压力监测元件160有无数值变化。无变化后,系统重复排气步骤和吹扫步骤若干次,将管路保持负压状态,关闭第一气动隔膜阀、第二气动隔膜阀、第十气动隔膜阀,等待上线;
(8)液态源供应:上线时,手动打开第一手动隔膜阀,缓慢打开储液元件110的第一进口阀和第一出口阀。点击上线,系统自动打开第三气动隔膜阀、第四气动隔膜阀和第五气动隔膜阀,恢复液态源供应。
本实施例的技术效果与实施例1基本相同,在此不再赘述。
实施例6
本实施例为实施例5的一个变形实施例。
进一步地,液态源供应方法还包括:
(屏蔽气液分离单元):
在气液分离单元出现故障的情况下,关闭气液分离单元与缓冲单元、工艺腔室、真空负压单元的连通;
启动缓冲单元与工艺腔室的连通。
具体地,液态源供应方法还包括:
在气液分离元件410出现故障的情况下,关闭第六阀元件430、第七阀元件440和第九阀元件460;
打开第十二阀元件480,以使缓冲元件210与工艺腔室连通。
更具体地,本实施例的液态源供应方法如下:
(9)屏蔽气液分离单元400:系统关闭第七气动隔膜阀、第八气动隔膜阀和第九气动隔膜阀。系统打开第十三气动隔膜阀和第十四气动隔膜阀;更换气液分离元件410。
(10)更换/维修气液分离单元400:更换/维修气液分离元件410结束后,系统关闭第十三气动隔膜阀和第十四气动隔膜阀,系统打开第七气动隔膜阀、第八气动隔膜阀和第九气动隔膜阀。
本实施例的技术效果同实施例2基本相同,在此不再赘述。
实施例7
本实施例涉及本发明的半导体工艺系统。
本发明的一个示意性实施例,一种半导体工艺系统,包括如实施例1~3任一所述的液态源供应装置。
进一步地,半导体工艺系统还包括若干工艺腔室,若干工艺腔室分别与液态源供应装置连通。
具体地,若干工艺腔室分别与气液分离单元400连通。
进一步地,若干工艺腔室还分别与吹扫单元600连通。
对于每一工艺腔室而言,在其与第三气体供应元件610、气液分离元件410连通的管路上,还设置有第十七气动隔膜阀、第十八气动隔膜阀和第八手动隔膜阀。其中,第十七气动隔膜阀设置于分别与气液分离元件410与工艺腔室连通的管路的入口;第十八气动隔膜阀设置于分别与第三气体供应元件610与工艺腔室连通的管路,并位于第十七气动隔膜阀的下游;第八手动隔膜阀设置于分别与气液分离元件410与工艺腔室连通的管路的出口,并位于第十八气动隔膜阀的下游。
实施例8
本实施例涉及本发明的一个具体实施方式。
如图13所示,一种液态源供应装置,包括液态源容器模块、液态源缓冲模块、气体供应模块、气液分离模块、排气模块、吹扫模块和生命安全保障模块构成。
其中,液态源容器模块包括容器罐(钢瓶)、气动隔膜阀PV1L、气动隔膜阀PV2L、压力传感器PT1L和压力传感器PT2L。
其中,液态源缓冲模块包括缓冲罐(钢瓶)、气动隔膜阀LPIL、手动隔膜阀MV2L、气动隔膜阀RCV、气动隔膜阀PV1R、气动隔膜阀PV2R、压力传感器PT1R和压力传感器PT12R。
气体供应模块包括第一PUSH GAS Intlet、第二PUSH GAS Intlet、手动隔膜阀MV5L、单向阀CV2、单向阀CV3、调压阀REG、调压阀REG、手动隔膜阀MV4L、气动隔膜阀PV5L、手动隔膜阀MV5R、单向阀CV3、调压阀REG、手动隔膜阀MV4R、气动隔膜阀PV5R、压力传感器PT5L和压力传感器PT5R。
气液分离模块包括DEGASSER、气动隔膜阀LPIR、气动隔膜阀PV6R、手动隔膜阀MV2R、气动隔膜阀PV9R、气动隔膜阀PV7R和气动隔膜阀PV8R。
进一步地,气液分离模块还包括漏液监测传感器。
排气模块包括真空发生器VG/BV/CV、手动隔膜阀MV3、气动隔膜阀PV3L、气动隔膜阀PV3R和压力传感器PT3。
吹扫模块包括Purge gas Intlet、气动隔膜阀PGI、气动微漏阀PGBV、单向阀CV1、调压阀REG、气动隔膜阀PV4L、气动隔膜阀PV4R和压力传感器PT4。
进一步地,吹扫模块还包括气动隔膜阀LPVn,其中,n≥1。
生命安全保障模块包括包含气体侦测器、火焰探测器、温度传感器、烟雾传感器、称重系统及压力系统,并配备触摸控制模组及声光报警模组。
本实施例的使用方法如下:
(1)正常工作
当容器罐未供液时,所有手动隔膜阀、调压阀状态为开,PV1L、PV2L、PV3L、PV4L、PV1R、PV2R、PV3R、PV4R、RCV、LPIL、PV7R、PV8R、LPV1、LPV2、LPV3、LPV4、PGI和PGBV为关,其余气动隔膜阀为开。
当容器罐进行供液时,RCV和LPIL开。
(2)回压
手动关闭MV2L,系统关闭PV5L、LPIL、RCV,打开PGI、PGBV。
观察PT4数值,若正常上升,打开PV4L、PV1L、PV2L,观察PT1L和PT2L,待2个PT数值一样,手动关闭容器罐的两个手动隔膜阀,在屏幕上点击更换钢瓶,系统会自动关闭PV4L。
(3)排气
系统打开VG/BV/CV,一侧管路GN2气体流过,将MV3一侧管内抽至负压,并将管路内气体排出,系统观察PT3数值为负,说明VG正常工作。
系统打开PV3L。每隔5s,系统会检测PT3、PT1L、PT2L数值,当压力降低至-10psig时,自动关闭PV3L,切换至吹扫步骤。
(4)吹扫
系统自动打开PGI、PGBV,吹扫气体流向管内。
若PT4数值正常上升,系统再打开PV4L,检测PT1L、PT2L数值,当压力上升至100psig时,关闭PV4L。切换至排气步骤。
(5)保负压
重复循环步骤(3)和步骤(4)(次数可调),完成后管路压力保持负压状态,压力为-10psig不变,视为吹扫干净。
系统关闭PV3L和VG,保压3h。
系统检测PT1L、PT2L有无数值变化,无变化后,自动进行PT校正和换瓶前的几次排气和吹扫。
(6)换瓶
点击屏幕换瓶确认,系统关闭PGBV,打开PV4L和PGI。
PGBV关闭时,会有小流量气体从PGI一侧流向管路内部,以保证换瓶时管路内的洁净。
拆开容器罐上两个手动隔膜阀与上部分管路相连的接头,开始手动换瓶。
(7)保正压
换瓶结束后,重复步骤(3)和(4)若干次,完成后对管路保正压到100psig,关闭PV4L和PGI,保压3h,观察PT1L、PT2L有无数值变化。
无变化后,系统再排气吹扫几次,将管路保持负压状态,关闭PV1L、PV2L、PV3L,等待上线。
(8)上线
上线时,手动打开MV2L,缓慢打开容器罐的两个手动隔膜阀。
点击上线,系统自动打开PV5L、LPIL和RCV,恢复原液供应。
第一PUSH GAS Intlet对容器罐内加压,使容器罐内原液从另一端流出。
对容器罐来说,原液从容器罐内经LPIL所在管路流入缓冲罐,对缓冲罐进行原液补充。
补充至缓冲罐的磅秤数值到达设定值,系统关闭RCV和LPIL,停止容器罐供液。
对缓冲罐来说,经过加压后,原液流经DEGASSER,分离出气体分子,供应到工艺管路。
进一步地,对于气液分离模块而言,在其漏液时,其工作步骤如下:
当检测到漏液时,系统自动关闭LPIR、PV6R,打开PV7R、PV8R。
(9)更换DEGASSER
在工艺管路闲暇时更换DEGASSER,全程需手动操作。
吹扫模块将气液分离模块与工艺管路间的液体压回至液态源缓冲模块,关闭液态源缓冲模块的手动隔膜阀、PV6R和PV9R;
打开PV1R和PV3R,排气模块抽至负压,观察PT2R的压力,压力到-10psig不变;
关闭PV3R,打开PV4R,吹扫模块进行吹扫,观察PT2R的压力,压力到100psig不变;
重复上述排气和吹扫步骤,管路内保持负压状态,压力为-10psig,保压三小时;
观察PT2R,若无压力变化,关闭与气液分离模块相连的所有阀门,更换DEGASSER;
重复上述排气和吹扫步骤,管路内保持正压状态,压力为100psig,保压三小时;
观察PT2R,若无压力变化,排气模块抽至负压,DEGASSER可在负压状态下重新恢复使用。
以上所述仅为本发明较佳的实施例,并非因此限制本发明的实施方式及保护范围,对于本领域技术人员而言,应当能够意识到凡运用本发明说明书及图示内容所作出的等同替换和显而易见的变化所得到的方案,均应当包含在本发明的保护范围内。

Claims (10)

  1. 一种液态源供应装置,其特征在于,包括:
    储液单元,用于储存液态源;
    缓冲单元,所述缓冲单元设置于所述储液单元的下游,并与所述储液单元连通,用于缓冲液态源;
    气体供应单元,所述气体供应单元设置于所述储液单元、所述缓冲单元的上游,并分别与所述储液单元、所述缓冲单元连通,用于分别向所述储液单元、所述缓冲单元供应气体,以使所述储液单元的液态源向所述缓冲单元流动、所述缓冲单元的液态源向下游流动;
    气液分离单元,所述气液分离单元设置于所述缓冲单元的下游,并与所述缓冲单元连通,用于对所述缓冲单元向下游流动的液态源进行气液分离以除去液态源中的气体,并将进行气液分离的液态源向工艺腔室流动;
    排气单元,所述排气单元与所述储液单元连通,用于向所述储液单元提供真空负压;
    吹扫单元,所述吹扫单元与所述储液单元连通,用于向所述储液单元供应气体,在所述储液单元的更换前后,对所述储液单元进行吹扫。
  2. 根据权利要求1所述的液态源供应装置,其特征在于,所述储液单元包括:
    储液元件,所述储液元件分别与所述缓冲单元、所述气体供应单元、所述排气单元、所述吹扫单元连通,用于储存液态源;
    第一阀元件,所述第一阀元件设置于与所述储液元件连通的管路,并位于所述储液元件的上游、所述气体供应单元的下游、所述排气单元的下游、所述吹扫单元的下游;
    第二阀元件,所述第二阀元件设置于与所述储液元件连通的管路,并位于所述储液元件的下游、所述缓冲单元的上游、所述排气单元的下游、所述吹扫单元的下游;
    第一重量监测元件,所述第一重量监测元件设置于所述储液元件的下方,用于监测所述储液元件的重量信息;
    第一压力监测元件,所述第一压力监测元件设置于与所述储液元件连通的管路,并位于所述储液元件的上游,用于监测所述储液元件的进口位置的压力信息;
    第二压力监测元件,所述第二压力监测元件设置于与所述储液元件连通的管路,并位于所述储液元件的下游,用于监测所述储液元件的出口位置的压力信息。
  3. 根据权利要求1所述液态源供应装置,其特征在于,所述缓冲单元包括:
    缓冲元件,所述缓冲元件分别与所述储液单元、所述气体供应单元、所述气液分离单元连通,用于缓冲液态源;
    第三阀元件,所述第三阀元件设置于与所述缓冲元件连通的管路,并位于所述储液单元与所述缓冲元件之间;
    第二重量监测元件,所述第二重量监测元件设置于所述缓冲元件的下方,用于监测所述缓冲元件的重量信息。
  4. 根据权利要求1所述的液态源供应装置,其特征在于,所述气体供应单元包括:
    第一气体供应元件,所述第一气体供应元件设置于所述储液单元的上游,并与所述储液单元连通,用于向所述储液单元供应气体,以使所述储液单元的液态源向所述缓冲单元流动;
    第二气体供应元件,所述第二气体供应元件设置于所述缓冲单元的上游,并与所述缓冲单元连通,用于向所述缓冲单元供应气体,以使所述缓冲单元的液态源向所述气液分离单元流动;
    第四阀元件,所述第四阀元件设置于与所述第一气体供应元件连通的管路,并位于所述第一气体供应元件与所述储液单元之间;
    第五阀元件,所述第五阀元件设置于与所述第二气体供应元件连通的管路,并位于所述第二气体供应元件与所述缓冲单元之间。
  5. 根据权利要求1所述的液态源供应装置,其特征在于,所述气液分离单元包括:
    气液分离元件,所述气液分离元件设置于所述缓冲单元的下游,并与所述缓冲单元连通,用于对所述缓冲单元向下游流动的液态源进行气液分离以除去液态源中的气体,并将进行气液分离的液态源向工艺腔室流动;
    第一真空元件,所述第一真空元件与所述气液分离元件连通,用于向所述气液分离元件提供真空负压;
    第六阀元件,所述第六阀元件设置于与所述气液分离元件连通的管路,并位于所述缓冲元件与所述气液分离元件之间;
    第七阀元件,所述第七阀元件设置于与所述气液分离元件连通的管路,并位于所述气液分离元件与工艺腔室之间;
    第八阀元件,所述第八阀元件设置于与所述气液分离元件连通的管路,并位于所述第七阀元件的下游;
    第九阀元件,所述第九阀元件设置于与所述气液分离元件连通的管路,并位于所述气液分离元件与所述第一真空元件之间。
  6. 根据权利要求1所述的液态源供应装置,其特征在于,所述排气单元包括:
    第二真空元件,所述第二真空元件与所述储液单元连通,用于向所述储液单元提供真空负压;
    第十阀元件,所述第十阀元件设置于与所述第二真空元件连通的管路,并位于所述第二真空元件与所述储液单元之间;
    第三压力监测元件,所述第三压力监测元件设置于与所述第二真空元件连通的管路,用于监测与所述第二真空元件连通的管路的压力信息。
  7. 根据权利要求1所述的液态源供应装置,其特征在于,所述吹扫单元包括:
    第三气体供应元件,所述第三气体供应元件与所述储液单元连通,用于向所述储液单元供应气体,在所述储液单元的更换前后,对所述储液单元进行吹扫;
    第十一阀元件,所述第十一阀元件设置于与所述第三气体供应元件连通的管路,并位于所述第三气体供应元件与所述储液单元之间;
    第四压力监测元件,所述第四压力监测元件设置于与所述第三气体供应元件连通的管路,用于监测与所述第三气体供应元件连通的管路的压力信息。
  8. 根据权利要求1~7任一所述的液态源供应装置,其特征在于,还包括:
    安全保障单元,所述安全保障单元设置于所述液态源供应装置所处环境的顶部,用于监测环境信息。
  9. 一种液态源供应方法,应用于如权利要求1~8任一所述的液态源供应装置。
  10. 一种半导体工艺系统,其特征在于,包括:
    如权利要求1~8任一所述的液态源供应装置。
PCT/CN2023/093402 2022-11-20 2023-05-11 一种液态源供应装置、方法及半导体工艺系统 WO2024103650A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211451356.8 2022-11-20
CN202211451356.8A CN115789520A (zh) 2022-11-20 2022-11-20 一种液态源供应装置、方法及半导体工艺系统

Publications (1)

Publication Number Publication Date
WO2024103650A1 true WO2024103650A1 (zh) 2024-05-23

Family

ID=85439147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093402 WO2024103650A1 (zh) 2022-11-20 2023-05-11 一种液态源供应装置、方法及半导体工艺系统

Country Status (2)

Country Link
CN (1) CN115789520A (zh)
WO (1) WO2024103650A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115789520A (zh) * 2022-11-20 2023-03-14 上海良薇机电工程有限公司 一种液态源供应装置、方法及半导体工艺系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1900577A (zh) * 2005-07-19 2007-01-24 东京毅力科创株式会社 脉动减轻装置和检查装置
US20140373938A1 (en) * 2010-10-27 2014-12-25 Jaidip Shah Liquid Supply System
US8925562B1 (en) * 2014-01-31 2015-01-06 Hitachi Kokusai Electric Inc. Substrate processing apparatus and method of manufacturing semiconductor device
CN209386019U (zh) * 2018-09-25 2019-09-13 至砾机电设备(上海)有限公司 一种减小液态源切换过程中流量波动的装置
CN111415888A (zh) * 2020-04-07 2020-07-14 芯米(厦门)半导体设备有限公司 半导体工业的供液系统
CN113808971A (zh) * 2020-06-17 2021-12-17 东京毅力科创株式会社 基片处理装置和气体供给配管的吹扫方法
CN216413026U (zh) * 2021-12-20 2022-04-29 江苏芯德半导体科技有限公司 自动供液气液分离药液回流系统
CN115264386A (zh) * 2022-06-09 2022-11-01 上海至纯系统集成有限公司 气态流体输送系统及方法
CN115254815A (zh) * 2022-06-28 2022-11-01 上海至纯系统集成有限公司 一种液态前驱体供液设备
CN115789520A (zh) * 2022-11-20 2023-03-14 上海良薇机电工程有限公司 一种液态源供应装置、方法及半导体工艺系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1900577A (zh) * 2005-07-19 2007-01-24 东京毅力科创株式会社 脉动减轻装置和检查装置
US20140373938A1 (en) * 2010-10-27 2014-12-25 Jaidip Shah Liquid Supply System
US8925562B1 (en) * 2014-01-31 2015-01-06 Hitachi Kokusai Electric Inc. Substrate processing apparatus and method of manufacturing semiconductor device
CN209386019U (zh) * 2018-09-25 2019-09-13 至砾机电设备(上海)有限公司 一种减小液态源切换过程中流量波动的装置
CN111415888A (zh) * 2020-04-07 2020-07-14 芯米(厦门)半导体设备有限公司 半导体工业的供液系统
CN113808971A (zh) * 2020-06-17 2021-12-17 东京毅力科创株式会社 基片处理装置和气体供给配管的吹扫方法
CN216413026U (zh) * 2021-12-20 2022-04-29 江苏芯德半导体科技有限公司 自动供液气液分离药液回流系统
CN115264386A (zh) * 2022-06-09 2022-11-01 上海至纯系统集成有限公司 气态流体输送系统及方法
CN115254815A (zh) * 2022-06-28 2022-11-01 上海至纯系统集成有限公司 一种液态前驱体供液设备
CN115789520A (zh) * 2022-11-20 2023-03-14 上海良薇机电工程有限公司 一种液态源供应装置、方法及半导体工艺系统

Also Published As

Publication number Publication date
CN115789520A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2024103650A1 (zh) 一种液态源供应装置、方法及半导体工艺系统
CN102654241B (zh) 气体减压供给装置、具有该气体减压供给装置的气瓶柜、阀箱以及基板处理装置
CN115738775A (zh) 一种混气装置、方法及半导体工艺系统
CN106006525A (zh) 一种三甲基铝的安全输送装置
CN101276732A (zh) 一种微电子气源柜吹扫系统
US7198056B2 (en) High purity chemical delivery system
CN210979351U (zh) 一种用于特殊气体输送的集装格供应系统
CN112121602A (zh) 一种水洗式废气处理设备
CN201282131Y (zh) 一种微电子气源柜吹扫系统
CN208090318U (zh) 一种全自动特殊液体供应柜
CN101482222A (zh) 高纯二乙基锌的安全输送装置
CN201348138Y (zh) 一种高纯二乙基锌的安全输送装置
CN212644233U (zh) 一种气体分流柜管路排布结构
TW202002123A (zh) 用於供氣設備的具有高溫高壓氣沖能力的氣沖系統
CN211147965U (zh) 一种气体管道的测试设备
CN213853810U (zh) 一种水洗式废气处理设备
CN207609991U (zh) 一种有效去除气泡的tma缓冲装置
CN208951692U (zh) 一种实现过流报警的液态源供应装置
CN111024322A (zh) 一种气体管道的测试设备
CN205644103U (zh) 吹水及抽真空一体化设备
CN115419825B (zh) 气瓶综合处理系统及其处理方法
CN221015114U (zh) 一种bog压缩机过滤器在线氮气吹扫装置
CN218565136U (zh) 一种高压可燃易爆性实验气体的安全输运装置
CN209558035U (zh) 一种工业液氯输入管道控制台
CN209587662U (zh) 一种大流量液态源供应装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23890094

Country of ref document: EP

Kind code of ref document: A1