WO2024103273A1 - 负极材料、电池 - Google Patents

负极材料、电池 Download PDF

Info

Publication number
WO2024103273A1
WO2024103273A1 PCT/CN2022/132157 CN2022132157W WO2024103273A1 WO 2024103273 A1 WO2024103273 A1 WO 2024103273A1 CN 2022132157 W CN2022132157 W CN 2022132157W WO 2024103273 A1 WO2024103273 A1 WO 2024103273A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrode material
artificial graphite
graphite particles
graphitization
Prior art date
Application number
PCT/CN2022/132157
Other languages
English (en)
French (fr)
Inventor
黄健
张宝煊
刘若琦
杨书展
任建国
Original Assignee
开封瑞丰新材料有限公司
贝特瑞新材料集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 开封瑞丰新材料有限公司, 贝特瑞新材料集团股份有限公司 filed Critical 开封瑞丰新材料有限公司
Priority to CN202280004500.5A priority Critical patent/CN116057734A/zh
Priority to KR1020247003661A priority patent/KR20240073848A/ko
Priority to PCT/CN2022/132157 priority patent/WO2024103273A1/zh
Publication of WO2024103273A1 publication Critical patent/WO2024103273A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of negative electrode materials, and in particular, to negative electrode materials and batteries.
  • Graphite has become the mainstream negative electrode material for commercial lithium-ion batteries due to its advantages such as high electronic conductivity, large lithium ion diffusion coefficient, layered structure with small volume change before and after lithium insertion, high lithium insertion capacity and low lithium insertion potential.
  • the graphitization equipment of traditional graphite negative electrode mainly includes two categories: crucible furnace and box furnace. Both of them are intermittent operation. Continuous production cannot be achieved because the graphitization process requires power off. In addition, due to the limited characteristics of the heating and cooling process of the equipment, the heating and cooling rate is slow, resulting in a long production cycle. Generally speaking, the graphitization cycle ranges from 15 to 50 days. In the process of graphitization production, volatile matter, impurity elements, etc. in the raw materials escape under high temperature conditions, thereby forming pores inside and/or on the surface of the graphite. Generally speaking, artificial graphite has a certain number of pore structures.
  • the presence of pores can increase the diffusion channel of Li+ inside the graphite material and reduce the diffusion resistance of Li+, thereby effectively improving the rate performance of the material.
  • too many pore structures will lead to an increase in the specific surface area of the material, which will lead to the deterioration of the first effect and cycle performance of the product.
  • simply improving the pore structure does not achieve the optimal rate performance, and there is still a lot of room for improvement.
  • Most researchers stay at the exploration of the influence of a single factor on the performance of graphite materials, and have not conducted in-depth research from the perspective of synergy between multiple factors to maximize the rate performance of graphite.
  • the present application provides a negative electrode material and a battery, which can increase the active sites and diffusion channels for lithium ion deintercalation in the negative electrode material and improve the high-rate charge and discharge performance of the negative electrode material.
  • the present application provides a negative electrode material
  • the negative electrode material comprises artificial graphite
  • the artificial graphite has pores inside and/or on the surface
  • the oil absorption value of the negative electrode material is O mL/100g
  • the pore volume is V cm 3 /kg
  • the specific surface area is S m 2 /g, wherein 400 ⁇ O*V*S ⁇ 1500
  • the pore volume was measured using the ASAP2460 equipment of the American Micromeritics Company and the BJH Desorption cumulative volume of pores model. Calculated within the aperture range.
  • the oil absorption value of the negative electrode material is O mL/100g, 43 ⁇ O ⁇ 60.
  • the pore volume of the negative electrode material is V cm 3 /kg, 5 ⁇ V ⁇ 8.
  • the specific surface area of the negative electrode material is S m 2 /g, 1.78 ⁇ S ⁇ 3.0.
  • the particle size of the negative electrode material satisfies the following relationship: 0.9 ⁇ (D90-D10)/D50 ⁇ 1.8, and 10 ⁇ m ⁇ D50 ⁇ 30 ⁇ m.
  • the negative electrode material further includes amorphous carbon.
  • the negative electrode material further includes amorphous carbon, and the mass percentage of the amorphous carbon in the negative electrode material is 0.1 wt % to 5 wt %.
  • an intensity ratio ID / IG of the peak intensity ID in the range of 1300 cm -1 to 1400 cm -1 to the peak intensity IG in the range of 1580 cm -1 to 1620 cm -1 is 0.03 ⁇ ID / IG ⁇ 0.10 .
  • the negative electrode material includes artificial graphite primary particles and/or artificial graphite secondary particles.
  • the pores include at least one of micropores and mesopores.
  • the present application provides a battery, comprising the artificial graphite negative electrode material according to the first aspect.
  • the pore volume of artificial graphite within a certain range can increase the diffusion channel of Li + , and the specific surface area within a certain range can ensure sufficient electrochemical reaction interface, promote the diffusion of lithium ions at the solid-liquid interface and in the solid phase, reduce concentration polarization, and help improve the capacity and rate performance of negative electrode materials.
  • the rate performance may not be effectively improved if only sufficient pore volume and specific surface area are met, because lithium ion deintercalation not only requires diffusion channels and reaction interfaces, but also requires electrolyte as a medium. Some pores cannot be infiltrated by electrolyte due to the influence of surface morphology or other factors, and cannot play their role.
  • the negative electrode material provided in this application is produced and processed by a continuous graphitization process, with continuous feeding and discharging, and the paths and times of all materials are consistent, so that the time and temperature of passing through the high temperature zone are consistent, and the graphitization process controls the heating rate or cooling rate of the calcination and graphitization stages, so that volatile matter, impurity elements and other substances in the material can escape evenly and quickly, and at the same time, a certain amount of additives are introduced to achieve precise control of the pore volume inside and/or on the surface of the graphite.
  • the coordinated use of the above-mentioned processes can accurately control the relationship between the specific surface area, oil absorption value, and pore volume to meet 400 ⁇ O*V*S ⁇ 1500.
  • the negative electrode material provided in the present application has low energy consumption per unit mass, has obvious advantages in cost and production cycle, and is environmentally friendly.
  • FIG1 is a scanning electron microscope image of the artificial graphite negative electrode material provided in Example 12 of the present application.
  • a method for preparing a negative electrode material comprises the following steps:
  • the preparation method of the negative electrode material provided in the present application is to crush the low calcined coke powder obtained by calcining raw coke into coke powder, the heating rate in the low-temperature calcination stage is slow, which is conducive to the slow escape of volatiles, and the early formation process of the pore structure is controlled.
  • the mixture of coke powder, binder, additive and solvent is pressed, and the precursor is directly placed in a continuous graphitization furnace.
  • the heating rate is extremely fast, and the precursor can reach the graphitization temperature in a short time after rapid heating.
  • the additives evaporate and escape quickly, and further form pores inside and/or on the surface of the graphite particles.
  • the presence of pores is conducive to the improvement of specific surface area and oil absorption value, and increases the reactive area of the negative electrode active material in the electrode, which is conducive to the improvement of the high-rate charge and discharge performance of the material.
  • the process from entering the furnace to leaving the furnace in the continuous graphitization furnace is completed in only a few hours, and the thermal energy utilization rate is high, which can reduce production costs.
  • the raw coke feedstock includes at least one of petroleum coke, needle coke, pitch coke, and isotropic coke.
  • the heating rate of the calcination process can be 2°C/min, 3°C/min, 5°C/min, 6°C/min, 8°C/min, 9°C/min or 10°C/min, etc. It can be understood that the heating rate of the calcination process within the above range is conducive to the slow escape of volatiles in the raw materials, the initial formation of a pore structure, and the subsequent rapid heating process of the graphitization process to obtain a negative electrode material that satisfies 400 ⁇ O*V*S ⁇ 1500.
  • the temperature of the calcination treatment can be 500°C, 550°C, 600°C, 700°C, 750°C, 800°C, 850°C, 900°C, 1000°C or 1200°C, etc., but is not limited to the listed values, and other values not listed in the numerical range are also applicable. It can be understood that the calcination treatment temperature within the above range is conducive to the discharge of volatile substances and other substances in the raw coke material.
  • the holding time of the calcination treatment can be 3h, 4h, 4.5h, 5h, 5.5h or 6h, etc., but is not limited to the listed values, and other values not listed in the numerical range are also applicable.
  • the holding time of the calcination treatment is 3h to 4h,
  • shaping comprises at least one of comminuting, spheronizing, or classifying.
  • the median particle size of the coke powder obtained by shaping is 10 ⁇ m to 20 ⁇ m, more specifically, it can be 12 ⁇ m, 13 ⁇ m, 14 ⁇ m, 16 ⁇ m, 18 ⁇ m, 18.5 ⁇ m, 19 ⁇ m or 20 ⁇ m, etc., but it is not limited to the listed values, and other values not listed in the numerical range are also applicable. After many tests, it was found that controlling the median particle size of the coke powder within the above range is conducive to taking into account the processing performance, capacity and rate performance.
  • the mass content of carbon in the coke powder is ⁇ 80%, specifically 80%, 81%, 82%, 85%, 90%, 95% or 96%, etc., but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
  • the solvent includes at least one of water, ethanol, acetone, benzene, toluene, quinoline, tetrahydrofuran, and carbon tetrachloride.
  • the binder includes at least one of heavy oil, mineral oil, coal tar, asphalt, petroleum resin, phenolic resin, epoxy resin, coumarone resin, potato starch, wheat starch, corn starch, sweet potato starch, arrowroot starch and cassava flour.
  • the asphalt can be at least one of petroleum-based liquid asphalt and coal-based liquid asphalt.
  • the petroleum-based liquid asphalt can be petroleum asphalt, modified asphalt and mesophase asphalt, etc.
  • the additive includes one of boron oxide, boron carbide, boron nitride, silicon carbide, boron carbide, boron nitride, boric acid, boron chloride and sodium borate.
  • the additive acts as a graphitization catalyst on the one hand, and on the other hand, it volatilizes and escapes by rapid temperature increase and decrease during the graphitization process, which is conducive to the formation of stable pores inside and/or on the surface of the artificial graphite.
  • the mass ratio of coke powder, binder, solvent, and additive is 100:(3-20):(5-50):(1-5), specifically 100:3:5:1, 100:10:15:1, 100:15:20:5, 100:20:20:1, 100:20:15:3, 100:10:10:5, or 100:15:25:2, etc., but is not limited to the listed values, and other values not listed in the numerical range are also applicable.
  • the additive content is controlled within the above range, which is beneficial to the catalytic graphitization process on the one hand, and can form a certain number of pores inside the graphite on the other hand.
  • the mixture is mixed in a manner including at least one of mechanical stirring and ultrasonic dispersion.
  • mechanical stirring is used for mixing, a propeller stirrer, a turbine stirrer, a flat paddle stirrer, etc. may be used, as long as the components in the mixture are fully mixed and uniform.
  • the stirring rate is 10 r/min to 1000 r/min, specifically 10 r/min, 50 r/min, 70 r/min, 100 r/min, 120 r/min, 150 r/min, 200 r/min, 300 r/min, 350 r/min, 400 r/min, 500 r/min or 1000 r/min, etc., which are not limited here.
  • the stirring rate is controlled within the above range, which is conducive to mixing the components to form a uniform mixture.
  • the stirring can be carried out at room temperature or in a preheated state.
  • the stirring temperature can be controlled at 25° C. to 200° C. It can be understood that appropriate preheating is conducive to mixing the components to form a uniform mixture.
  • the profiling method includes at least one of extrusion, molding, roller pressing, and isostatic pressing.
  • the pressing pressure can be 5MPa, 15MPa, 25MPa, 30MPa, 35MPa, 40MPa, 45MPa, 50MPa, 55MPa, 60MPa, 70MPa, 80MPa, 90MPa or 100MPa, etc.
  • the pressing process can improve the fluidity of the material during the graphitization process on the one hand, and improve the loading and production capacity of the material on the other hand.
  • the holding temperature of the graphitization treatment can be specifically 2800°C, 2900, 3000°C, 3100°C, 3150°C, 3180°C or 3200°C, etc., but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
  • the holding time of the graphitization treatment can be 2h, 2.5h, 3h, 3.5h, 3.8h, 4h, 4.5h or 5h, etc., but is not limited to the listed values, and other values not listed in the numerical range are also applicable.
  • the holding time of the graphitization treatment is 2h to 3h.
  • the graphitization heating rate may be 12°C/min, 13°C/min, 14°C/min, 16°C/min, 18°C/min, 18.5°C/min or 20°C/min, etc., but is not limited to the listed values, and other values not listed in the numerical range are also applicable. Rapid heating can be beneficial to the formation of pores inside and/or on the surface of the graphite material and the control of the specific surface area.
  • the cooling rate after graphitization treatment is 15°C/min to 25°C/min, specifically 15°C/min, 16°C/min, 17°C/min, 18°C/min, 20°C/min, 21°C/min, 22°C/min, 23°C/min, 24°C/min or 25°C/min, etc., but is not limited to the listed values, and other unlisted values within the numerical range are also applicable. Rapid cooling can be beneficial to the control of the specific surface area and oil absorption value of the material, while greatly shortening the cycle of graphitization processing and reducing production costs.
  • At least one of pulverization, screening and demagnetization is further performed.
  • pulverization, demagnetization and screening are further performed in sequence.
  • the pulverization method is any one of a mechanical pulverizer, a jet pulverizer, and a low-temperature pulverizer.
  • the screening method is any one of a fixed screen, a drum screen, a resonance screen, a roller screen, a vibrating screen and a chain screen, and the screening mesh number is 100 to 500 meshes.
  • the screening mesh number can be 100 mesh, 200 mesh, 250 mesh, 325 mesh, 400 mesh, 500 mesh, etc.
  • the particle size of the negative electrode material is controlled within the above range, which is beneficial to the improvement of the processing performance of the negative electrode material.
  • the demagnetization equipment is any one of a permanent magnetic drum magnetic separator, an electromagnetic iron remover and a pulsating high gradient magnetic separator.
  • the demagnetization is to ultimately control the magnetic substance content of the negative electrode material, avoid the discharge effect of the magnetic substance on the lithium-ion battery and the safety of the battery during use.
  • a negative electrode material includes artificial graphite, wherein the artificial graphite has pores inside and/or on the surface, the oil absorption value of the negative electrode material is O mL/100g, the pore volume is V cm 3 /kg, and the specific surface area is S m 2 /g, wherein 400 ⁇ O*V*S ⁇ 1500, the pore volume is tested by using ASAP2460 equipment of Mack Company of the United States, and the BJH Desorption cumulative volume of pores model is used. Calculated within the pore size range.
  • the negative electrode material provided in the present application is produced and processed by a continuous graphitization process.
  • the material is first calcined by rapidly heating up at a low temperature, and then rapidly heated up at a high temperature for graphitization.
  • a certain amount of additives is added to the raw material to achieve precise control of the pores inside and/or on the surface of the graphite, so that the pore volume, specific surface area, and oil absorption value of the material meet the ideal control design requirements.
  • the pore volume of artificial graphite within a certain range can increase the diffusion channel of Li + , and the specific surface area within a certain range can ensure sufficient electrochemical reaction interface, promote the diffusion of lithium ions at the solid-liquid interface and in the solid phase, reduce concentration polarization, and help improve the capacity and rate performance of negative electrode materials.
  • the rate performance may not be effectively improved if only sufficient pore volume and specific surface area are met, because lithium ion deintercalation not only requires diffusion channels and reaction interfaces, but also requires electrolyte as a medium. Some pores cannot be infiltrated by electrolyte due to the influence of surface morphology or other factors, and cannot play their role.
  • the oil absorption value of the negative electrode material is 0 mL/100 g, 43 ⁇ 0 ⁇ 60; specifically, it can be 43, 44, 45, 47, 49, 51, 52, 53, 54, 55, 57, 59 or 60, etc., which are not limited here.
  • the oil absorption value of the material is controlled within the above range, which is conducive to improving the adsorption and wetting performance of the material to the electrolyte, and the electrochemical performance of the negative electrode material is better.
  • the pore volume of the negative electrode material is V cm 3 /kg, 5 ⁇ V ⁇ 8, and specifically can be 5.1, 5.2, 5.5, 5.8, 6.0, 6.2, 6.5, 6.8, 7.0, 7.2, 7.5 or 8.0, etc., which are not limited here.
  • the pores undergo electrochemical reactions inside the electrode, the pores create more lithium ion diffusion channels and electrochemical reaction interfaces for the negative electrode material, which can promote the diffusion of lithium ions at the solid-liquid interface and in the solid phase, reduce concentration polarization, and help improve the rate performance of the negative electrode material.
  • the specific surface area of the negative electrode material is S m 2 /g, 1.78 ⁇ S ⁇ 3.0; specifically, it can be 1.79, 1.85, 1.95, 2.00, 2.25, 2.43, 2.57, 2.61, 2.72, 2.85, 2.90 or 3.0, etc., which are not limited here. It can be understood that too large a specific surface area easily leads to the formation of a solid electrolyte membrane, consumes too much irreversible lithium salt, and reduces the initial efficiency of the battery.
  • the pores include at least one of micropores and mesopores.
  • the particle size D 50 of the negative electrode material is 10 ⁇ m to 30 ⁇ m, and may be 10 ⁇ m, 11 ⁇ m, 12 ⁇ m, 13 ⁇ m, 14 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m or 30 ⁇ m, etc., which is not limited here.
  • the particle size of the negative electrode material satisfies the following relationship: 0.9 ⁇ (D 90 -D 10 )/D 50 ⁇ 1.8, which may be 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7 or 1.8, etc., which are not limited here.
  • the particle size of the negative electrode material satisfies the above relationship, which can ensure that the particle size distribution of the negative electrode material is relatively concentrated and the packing density is appropriate.
  • the volume-based cumulative particle size distribution of the particle size distribution determination is measured by laser diffraction method
  • D10 represents the particle size corresponding to when the cumulative particle size distribution percentage of the powder reaches 10%
  • D50 represents the particle size corresponding to when the cumulative particle size distribution percentage reaches 50%
  • D90 represents the particle size corresponding to when the cumulative particle size distribution percentage reaches 90%.
  • the negative electrode material further includes amorphous carbon.
  • the negative electrode material also includes amorphous carbon, and the mass proportion of amorphous carbon in the negative electrode material is 0.1wt% to 5wt%.
  • the mass proportion of amorphous carbon in the negative electrode material can specifically be 0.1wt%, 0.3wt%, 0.5wt%, 1wt%, 2wt%, 3wt%, 4wt% or 5wt%.
  • the presence of amorphous carbon provides more irregular and open diffusion paths for lithium ions, which is beneficial to the improvement of the material rate performance.
  • the intensity ratio of the peak intensity ID in the range of 1300 cm -1 to 1400 cm -1 to the peak intensity IG in the range of 1580 cm -1 to 1620 cm -1 of the negative electrode material is determined by Raman spectroscopy, ID / IG , 0.03 ⁇ ID /IG ⁇ 0.10 , specifically 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09 or 0.1, etc., which are not limited here.
  • the intensity ratio ID / IG of the negative electrode material is controlled within the above range, the degree of graphitization of the negative electrode material can be improved, and the quality of the graphite crystal is better.
  • the negative electrode material includes artificial graphite primary particles and/or artificial graphite secondary particles.
  • the pores include at least one of micropores and mesopores.
  • the specific capacity of the negative electrode material is 320mAh/g to 370mAh/g, specifically 320mAh/g, 340mAh/g, 342mAh/g, 345mAh/g, 353mAh/g, 355mAh/g, 357mAh/g, 360mAh/g, 365mAh/g or 370mAh/g, etc., without limitation herein.
  • a battery comprises the above-mentioned negative electrode material.
  • the precursor was graphitized at 3000°C in a continuous graphitization furnace to obtain a graphitized product.
  • the heating curve was as follows: the temperature was increased to 3000°C at a heating rate of 16.5°C/min, and the temperature was kept at 3000°C for 3 hours. After the temperature was kept, the temperature was cooled to 30°C at a cooling rate of 16.0°C/min.
  • the graphitized product is processed by steps such as breaking up, demagnetizing, and 250 mesh screening to obtain an artificial graphite negative electrode material.
  • the negative electrode material comprises primary artificial graphite particles and secondary artificial graphite particles, most of which are primary artificial graphite particles.
  • the precursor was graphitized at 2950°C in a continuous graphitization furnace to obtain a graphitized product.
  • the heating curve was as follows: the temperature was increased to 2950°C at a heating rate of 15°C/min, and the temperature was kept at 2950°C for 3 hours. After the temperature was kept, the temperature was cooled to 30°C at a cooling rate of 20°C/min.
  • the graphitized product is processed by steps such as breaking up, demagnetizing, and 250 mesh screening to obtain an artificial graphite negative electrode material.
  • the negative electrode material comprises primary artificial graphite particles and secondary artificial graphite particles, most of which are primary artificial graphite particles.
  • the precursor was graphitized at 2900°C in a continuous graphitization furnace to obtain a graphitized product.
  • the heating curve was as follows: the temperature was increased to 2900°C at a heating rate of 18°C/min, and the temperature was kept at 2900°C for 3 hours. After the temperature was kept, the temperature was cooled to 30°C at a cooling rate of 21.5°C/min.
  • the graphitized product is processed by steps such as breaking up, demagnetizing, and 250 mesh screening to obtain an artificial graphite negative electrode material.
  • the negative electrode material comprises primary artificial graphite particles and secondary artificial graphite particles, most of which are primary artificial graphite particles.
  • the precursor was graphitized at 3000°C in a continuous graphitization furnace to obtain a graphitized product.
  • the heating curve was as follows: heating to 3000°C at a heating rate of 20°C/min, keeping at 3000°C for 3h, and cooling to 30°C at a cooling rate of 16.6°C/min after keeping.
  • the graphitized product is processed by steps such as breaking up, demagnetizing, and 250 mesh screening to obtain an artificial graphite negative electrode material.
  • the negative electrode material comprises primary artificial graphite particles and secondary artificial graphite particles, most of which are primary artificial graphite particles.
  • the calcination temperature in step (1) is 500°C.
  • the negative electrode material comprises primary artificial graphite particles and secondary artificial graphite particles, most of which are primary artificial graphite particles.
  • the calcination temperature in step (1) is 1200°C.
  • the negative electrode material comprises primary artificial graphite particles and secondary artificial graphite particles, most of which are primary artificial graphite particles.
  • Example 1 The difference from Example 1 is that the calcination time in step (1) is 3 hours.
  • the negative electrode material comprises primary artificial graphite particles and secondary artificial graphite particles, most of which are primary artificial graphite particles.
  • Example 1 The difference from Example 1 is that the calcination time in step (1) is 6 hours.
  • the negative electrode material comprises primary artificial graphite particles and secondary artificial graphite particles, most of which are primary artificial graphite particles.
  • step (3) the coke powder is evenly mixed with coal tar, quinoline and silicon carbide in a mass ratio of 100:3:15:2 to obtain a mixture.
  • the negative electrode material comprises primary artificial graphite particles and secondary artificial graphite particles, most of which are primary artificial graphite particles.
  • step (3) the coke powder is evenly mixed with coal tar, quinoline and silicon carbide in a mass ratio of 100:20:15:2 to obtain a mixture.
  • the negative electrode material comprises primary artificial graphite particles and secondary artificial graphite particles, most of which are secondary artificial graphite particles.
  • step (3) the coke powder is evenly mixed with coal tar, quinoline and silicon carbide in a mass ratio of 100:5:5:2 to obtain a mixture.
  • the negative electrode material comprises primary artificial graphite particles and secondary artificial graphite particles, most of which are primary artificial graphite particles.
  • step (3) the coke powder is evenly mixed with coal tar, quinoline and silicon carbide in a mass ratio of 100:5:50:2 to obtain a mixture.
  • FIG1 An electron microscope photograph of the negative electrode material is shown in FIG1 . It can be seen from FIG1 that the negative electrode material is composed of primary particles and secondary particles.
  • step (3) the coke powder is evenly mixed with coal tar, quinoline and silicon carbide in a mass ratio of 100:5:15:1 to obtain a mixture.
  • the negative electrode material comprises primary artificial graphite particles and secondary artificial graphite particles, most of which are primary artificial graphite particles.
  • step (3) the coke powder is evenly mixed with coal tar, quinoline and silicon carbide in a mass ratio of 100:5:15:5 to obtain a mixture.
  • the negative electrode material comprises primary artificial graphite particles and secondary artificial graphite particles, most of which are primary artificial graphite particles.
  • the pressing pressure in step (4) is 5 MPa.
  • the negative electrode material comprises primary artificial graphite particles and secondary artificial graphite particles, most of which are primary artificial graphite particles.
  • the pressing pressure in step (4) is 100 MPa.
  • the negative electrode material comprises primary artificial graphite particles and secondary artificial graphite particles, most of which are primary artificial graphite particles.
  • the temperature of the graphitization treatment in step (5) is 2800°C.
  • the negative electrode material comprises primary artificial graphite particles and secondary artificial graphite particles, most of which are primary artificial graphite particles.
  • the temperature of the graphitization treatment in step (5) is 3200°C.
  • the negative electrode material comprises primary artificial graphite particles and secondary artificial graphite particles, most of which are primary artificial graphite particles.
  • the holding time of the graphitization treatment in step (5) is 2 hours.
  • the negative electrode material comprises primary artificial graphite particles and secondary artificial graphite particles, most of which are primary artificial graphite particles.
  • the holding time of the graphitization treatment in step (5) is 5 hours.
  • the negative electrode material comprises primary artificial graphite particles and secondary artificial graphite particles, most of which are primary artificial graphite particles.
  • the precursor obtained in step (4) is loaded into a graphite crucible, and then the graphite crucible is transferred to an Acheson furnace, and the negative electrode material is obtained through a high-temperature graphitization process.
  • the maximum temperature of the graphitization process is 2900°C
  • the maximum temperature holding time is 3h
  • the heating rate of the graphitization process is 0.6°C/min
  • the cooling rate is 0.1°C/min.
  • the Daqing petroleum coke was crushed and shaped by a shaping equipment to obtain crushed and shaped coke powder.
  • the coke powder with a median particle size of 15 ⁇ m was directly loaded into a graphite crucible, and then the graphite crucible was transferred to an Acheson furnace for high-temperature graphitization to obtain the negative electrode material.
  • the highest temperature of the graphitization process was 2900°C, the highest temperature holding time was 8h, the heating rate of the graphitization process was 0.7°C/min, and the cooling rate was 0.1°C/min.
  • Daqing petroleum coke was calcined at 800°C for 4h, with a heating rate of 1.5°C/min, and then put into a continuous graphitization furnace.
  • the heating curve is as follows: the temperature was increased to 2900°C at a heating rate of 8°C/min, and kept at 2900°C for 3h. After keeping, it was cooled to 30°C at a cooling rate of 10°C/min. The material was crushed and shaped, and the median particle size was controlled to be 15um to obtain the negative electrode material.
  • the particle size distribution range of the composite negative electrode material was tested by Malvern laser particle size analyzer.
  • the test was carried out using the ASAP2460 equipment from Micromeritics, USA.
  • the pore volume V was calculated using the BJH Desorption cumulative volume of pores model. Calculated within the aperture range.
  • the surface morphology of the negative electrode material particles was observed using a Hitachi S4800 scanning electron microscope.
  • the oil absorption value O is the amount of linseed oil added when the torque generated by the change in viscosity characteristics reaches 70% of the maximum torque, and the unit is mL/100g.
  • the ratio of the peak intensity ID of the composite negative electrode material in the range of 1300cm -1 to 1400cm -1 to the peak intensity IG in the range of 1580cm -1 to 1620cm -1 was measured, namely ID / IG .
  • the negative electrode materials, carboxymethyl cellulose, conductive carbon black, and styrene-butadiene rubber prepared in Examples 1 to 22 and Comparative Examples 1 to 3 were magnetically stirred in deionized water for 8 hours at a mass ratio of 95:1.5:1.5:2 to make them evenly mixed.
  • the mixed slurry was coated on a copper foil and dried in vacuum at 60°C as a working electrode.
  • Metal lithium was used as the counter electrode and reference electrode, the diaphragm was Celgard2325, the electrolyte was 1 mol ⁇ L-1LiPF6-EC (ethylene carbonate)/DMC (dimethyl carbonate)/EMC (ethyl methyl carbonate) (volume ratio of 1:1:1), and the CR2016 button cell was assembled in a glove box filled with high-purity argon.
  • the diaphragm was Celgard2325
  • the electrolyte was 1 mol ⁇ L-1LiPF6-EC (ethylene carbonate)/DMC (dimethyl carbonate)/EMC (ethyl methyl carbonate) (volume ratio of 1:1:1)
  • the CR2016 button cell was assembled in a glove box filled with high-purity argon.
  • the first discharge capacity/first discharge efficiency test was carried out on a LAND battery tester, and the charge and discharge conditions were as follows: standing for 2 hours; discharge: 0.1C to 0.005V, 0.09C, 0.08C...0.02C to 0.001V; standing for 15 minutes; charge: 0.1C to 1.5V; standing for 15 minutes.
  • the button half-cell was tested for rate performance at 25 ⁇ 2°C, and the charge-discharge specific capacity and coulomb efficiency of 0.2C, 1C and 2C were obtained.
  • Charge-discharge conditions for button rate test 10.1C discharge to 0.01V, constant voltage for 5h, 0.1C charge to 1.5V; 20.2C discharge to 0.01V, constant voltage to 0.01C, 0.2C charge to 1.5V; 30.2C discharge to 0.01V, constant voltage to 0.01C, 2C charge to 1.5V; 40.2C discharge to 0.01V, constant voltage to 0.01C, 0.2C charge to 1.5V; 51C discharge to 0.01V, constant voltage to 0.01C; 0.2C charge to 1.5V; 62C discharge to 0.01V.
  • the negative electrode material prepared in each embodiment is used as the negative electrode active material, and the mass percentage of the negative electrode active material, the conductive agent, the binder, and the dispersant is 95.2:1.5:2:1.3, dissolved in deionized water and mixed, and the solid content is controlled to be 50wt%, and coated on an 8 ⁇ m thick copper foil collector, and vacuum dried to obtain a negative electrode sheet; lithium iron phosphate, polyvinylidene fluoride and conductive agent carbon black are mixed with solvent NMP (N-methylpyrrolidone) in a mass ratio of 95:2:3, and then coated on a 16 ⁇ m thick aluminum foil, and vacuum dried to obtain a positive electrode sheet; the coated positive and negative electrode sheets are subjected to sheet making, winding, drying, liquid injection, sealing, formation, and volume separation processes to make a 554065 soft-pack lithium-ion battery.
  • solvent NMP N-methylpyrrolidone
  • the obtained soft-pack battery was charged and discharged on the LAND battery test system of Wuhan Jinnuo Electronics Co., Ltd., at room temperature, 1C/1C current charging and discharging, and the charging and discharging voltage was limited to 3.0V-4.35V, and the first efficiency and 500-week capacity retention rate tests were performed (the compaction density of the negative electrode sheet was 1.60g/cm 3 );
  • the graphite prepared in the present application has pores formed inside and/or on the surface, and the high-rate charge and discharge performance of the material is significantly improved. This is because when the negative electrode material is made into an electrode for lithium-ion batteries, after the electrolyte is injected, the effective electrochemical reaction space inside the material is sufficient, which is conducive to improving the rate performance of the negative electrode material.
  • the negative electrode material prepared in Comparative Example 1 has an oil absorption value O that is too large, and O*V*S is out of the above range, resulting in poor rate and cycle performance of the material.
  • the artificial graphite pores are not rich enough, the pore volume V is too small, O*V*S is out of the above range, and the lithium ions do not have sufficient diffusion channels, which is not conducive to improving the rate performance of the negative electrode material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请提供一种负极材料及电池,负极材料包括人造石墨,所述人造石墨内部和/或表面具有孔,所述负极材料的吸油值为O mL/100g,孔体积为V cm3/kg,比表面积为S m2/g,其中,400≤O*V*S≤1500。本申请提供的负极材料,能够在不影响加工性能的前提下,提高负极材料对电解液的吸附、浸润能力,提升负极材料的大倍率充放电性能。

Description

负极材料、电池 技术领域
本申请涉及负极材料技术领域,具体地讲,涉及负极材料、电池。
背景技术
石墨由于具备电子电导率高、锂离子扩散系数大、层状结构在嵌锂前后体积变化小、嵌锂容量高和嵌锂电位低等优点,成为目前主流的商业化锂离子电池负极材料。
传统石墨负极的石墨化设备主要有坩埚炉及箱体炉两大类,二者均为间歇式作业,因石墨化过程需要断电而无法实现连续生产,而且由于设备的升温及冷却过程特点受限,升降温速率较慢,导致生产周期长,通常而言,石墨化周期在15~50天不等。在石墨化生产的过程中,原料中的挥发分、杂质元素等在高温条件下逸出,从而在石墨内部和/或表面形成孔隙。一般而言,人造石墨均具有一定数量的孔结构,一方面,孔的存在可以增加Li+在石墨材料内部的扩散通道,减小Li+的扩散阻力,从而有效提高材料的倍率性能,另一方面,过多的孔结构又会导致材料比表面积的增大,进而导致产品首效和循环性能的恶化。事实上,单纯的改善孔结构,倍率性能并没有达到最优,还是有很大的改善空间的。研究者大都停留在单个因素对石墨材料性能影响的探究,并没有从多种因素之间协同的角度进行深入的研究,最大程度改善石墨的倍率性能。
因此,在石墨材料已经发展很成熟的现阶段,单一地改善一种参数已经无法满足市场对于低成本、高性能石墨材料的需求,需要对多种因素协同起来的作用机理进行探究,开发出满足市场需求的石墨负极材料。
申请内容
鉴于此,本申请提供负极材料、电池,能够提高负极材料中锂离子脱嵌的活性位点和扩散通道,提升负极材料的大倍率充放电性能。
第一方面,本申请提供一种负极材料,所述负极材料包括人造石墨,所述人造石墨内部和/或表面具有孔,所述负极材料的吸油值为O mL/100g,孔体积为V cm 3/kg,比表面积为S m 2/g,其中,400≤O*V*S≤1500,
所述孔体积采用美国麦克公司ASAP2460设备进行测试、采用BJH Desorption cumulative volume of pores模型在
Figure PCTCN2022132157-appb-000001
孔径范围内计算得到。
在一些实施方式中,所述负极材料的吸油值为O mL/100g,43≤O≤60。
在一些实施方式中,所述负极材料的孔体积V cm 3/kg,5≤V≤8。
在一些实施方式中,所述负极材料的比表面积为S m 2/g,1.78≤S≤3.0。
在一些实施方式中,所述负极材料的粒径满足以下关系式:0.9≤(D90-D10)/D50≤1.8,且10μm≤D50≤30μm。
在一些实施方式中,所述负极材料还包括无定形碳。
在一些实施方式中,所述负极材料还包括无定形碳,所述无定形碳在所述负极材料中的质量占比为0.1wt%~5wt%。
在一些实施方式中,通过拉曼光谱测定负极材料,位于1300cm -1~1400cm -1范围内的峰强度I D与位于1580cm -1~1620cm -1范围内的峰强度I G的强度比I D/I G,0.03≤I D/I G≤0.10。
在一些实施方式中,所述负极材料包括人造石墨一次颗粒和/或人造石墨二次颗粒。
在一些实施方式中,所述孔包括微孔和介孔中的至少一种。
第二方面,本申请提供一种电池,所述电池包括根据第一方面所述的人造石墨负极材料。
本申请的技术方案至少具有以下有益的效果:
本领域技术人员已知人造石墨一定范围内的孔体积可以增加Li +的扩散通道,一定范围内的比表面积可以保证足够的电化学反应界面,促进锂离子在固液界面及固相内的扩散,降低浓差极化,有利于提高负极材料的容量和倍率性能。申请人在此基础上经过深入研究发现,只满足足够的孔体积和比表面积,倍率性能未必可以得到有效提升,因为锂离子脱嵌不仅需要扩散通道和反应界面,还需要有电解液作为介质,有一些孔受表面形貌或其他因素的影响不能被电解液浸润,就不能发挥其作用,其对应的表面自然也无法发生电化学反应,相当于“有效电化学反应空间”不够。而电解液浸润能力,通常使用吸油值来体现。本申请针对孔体积、比表面积和吸油值三个因素组合起来进行大量的实验探索,将负极材料的O*V*S控制在上述范围内,代表负极材料中能够进行有效锂离子脱嵌的反应空间比较充足,有利于提高人造石墨负极材料的大倍率充放电性能。
本申请提供的负极材料,通过连续石墨化工艺生产加工而成,持续进料和出料,所有物料经过的路径和时间都一致,进而经过高温区的时间和温度保持一致,且石墨化过程通过对煅烧和石墨化阶段升温速率或降温速率的控制,使得材料内挥发分、杂质元素等物质能够均匀快速逸出,同时,引入一定量的添加剂,实现石墨内部和/或表 面孔体积的精准控制。上述工艺的协同使用,可以精确控制比表面积、吸油值、孔体积的关系满足400≤O*V*S≤1500。
本申请提供的负极材料单位质量内的能耗低,成本和生产周期具有明显的优势,且环境友好。
附图说明
图1为本申请实施例12提供的人造石墨负极材料的扫描电镜图片。
具体实施方式
为更好地说明本申请,便于理解本申请的技术方案,下面对本申请进一步详细说明。但下述的实施例仅仅是本申请的简易例子,并不代表或限制本申请的权利保护范围,本申请保护范围以权利要求书为准。
在负极材料领域,针对连续石墨化设备的开发持续几十年,早在1987年就有专利(US06619591)公开了可以对含碳材料进行连续石墨化处理的设备,近些年,申请人也不断在对连续石墨化设备进行开发,比如2019年申请的授权公告号为CN211425033U的专利公开了一种立式连续锂电池负极材料生产用炉窑,可以实现从排料口连续排料,同时从物料管道连续加料。由于连续石墨化工艺与传统工艺相比,石墨化的时间从几天缩短到几小时,能耗的降低是相当的显著,但石墨化的时间大大缩短导致与常规人造石墨相比,连续石墨化工艺得到人造石墨微观结构的改变,尤其是人造石墨内部孔结构的改变、晶型的变化等。长久以来,业内经过验证认为,这种改变难以满足人造石墨的性能要求,且是难以改善的,因此三四十年来即使连续石墨化设备一直存在,连续石墨化的人造石墨负极产品始终未有成功量产的先例。
近年来,随着能源进一步紧张,为了进一步降低人造石墨的成本,申请人持续对连续石墨化设备应用进行开发,目的在于开发出在性能上能与目前常规石墨化负极材料相当甚至是更好的人造石墨负极材料,以降低人造石墨负极材料的能耗,进而降低成本。申请人经过大量的制备工艺的开发,开发出能够改善快速升降温对人造石墨产品带来不利改变的多种手段,经过对产品的筛选,得到一系列不同型号的人造石墨负极材料。这些人造石墨负极材料虽然微观结构与常规人造石墨产品不同,但其电性能均能与常规人造石墨品保持基本相当,甚至在某些方面的电性能、加工性能表现更为优越或稳定,已经具备替代常规人造石墨产品的条件。
以下以申请人开发的其中一种制备工艺为例对该制备工艺及与之相关的产品做进一步详细说明。
一种负极材料的制备方法,包括以下步骤:
S10,将生焦置于500~1200℃温度下进行3h~6h煅烧处理,煅烧处理过程的升温速率为2~10℃/min,自然冷却后得到低煅焦;
S20,将低煅焦进行整形处理,得到中值粒径为10μm~20μm的焦粉;
S30,将包含焦粉、粘结剂、添加剂及溶剂的混合物在5Mpa~100Mpa压力下压型,得到前驱体,焦粉、添加剂的质量比为100:(1~5);
S40,将前驱体置于连续石墨化炉内在12℃/min~20℃/min的升温速率下升温至2800℃~3200℃,再在2800℃~3200℃保温2h~5h后,在15℃/min~25℃/min的降温速率下冷却至30℃,得到负极材料。
本申请提供的负极材料的制备方法,将生焦煅烧处理得到的低煅焦粉粹成焦粉,低温煅烧阶段升温速率较慢,有助于挥发分缓慢逸出,控制孔结构前期的形成过程,将焦粉、粘结剂、添加剂及溶剂的混合物压型,前驱体直接置于连续石墨化炉内,升温速度极快,能够经过快速升温后在较短时间内使得前驱体达到石墨化温度,添加剂快速挥发逸出,在石墨颗粒的内部和/或表面进一步形成孔,孔的存在有利于比表面积和吸油值的提升,增加了负极活性材料在电极中的可反应面积,有利于材料大倍率充放电性能的提升。另外,连续石墨化炉内物料从进炉至出炉过程仅在数小时内完成,热能利用率高,能够降低生产成本。
在一些实施方式中,生焦原料包括石油焦、针状焦、沥青焦和各项同性焦中的至少一种。
在一些实施方式中,煅烧处理过程的升温速率具体可以为2℃/min、3℃/min、5℃/min、6℃/min、8℃/min、9℃/min或10℃/min等。可以理解地,煅烧处理的升温速率在上述范围内,有利于原料中的挥发分缓慢逸出,初步形成孔结构,与后续石墨化过程快速升温配合起来,获得满足400≤O*V*S≤1500的负极材料。
在一些实施方式中,煅烧处理的温度具体可以是500℃、550℃、600℃、700℃、750℃、800℃、850℃、900℃、1000℃或1200℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。可以理解地,煅烧处理温度在上述范围内,有利于生焦原料中挥发分等物质的排出。
在一些实施方式中,煅烧处理的保温时间具体可以是3h、4h、4.5h、5h、5.5h或 6h等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。优选地,煅烧处理的保温时间为3h~4h,
在一些实施方式中,整形包括粉碎、球化或分级中的至少一种。
整形得到的焦粉的中值粒径为10μm~20μm,更具体地,可以是12μm、13μm14μm、16μm、18μm、18.5μm、19μm或20μm等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。经过多次试验发现,焦粉的中值粒径控制在上述范围内,有利于兼顾加工性能、容量和倍率性能。
在一些实施方式中,焦粉中的碳的质量含量≥80%,具体可以是80%、81%、82%、85%、90%、95%或96%等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
在一些实施方式中,溶剂包括水、乙醇、丙酮、苯、甲苯、喹啉、四氢呋喃和四氯化碳中的至少一种。
在一些实施方式中,粘结剂包括重油、矿物质油、煤焦油、沥青、石油树脂、酚醛树脂、环氧树脂、古玛隆树脂、土豆淀粉、小麦淀粉、玉米淀粉、红薯淀粉、葛粉和木薯粉中的至少一种。沥青可以是石油系液态沥青和煤系液态沥青中的至少一种。具体地,石油系液态沥青可以是石油沥青、改质沥青和中间相沥青等。
在一些实施方式中,添加剂包括氧化硼、碳化硼、氮化硼、碳化硅、碳化硼、氮化硼、硼酸、氯化硼和硼酸钠中的一种,添加剂一方面作为石墨化催化剂,另一方面在石墨化过程中通过快速升降温挥发逸出,有利于在人造石墨内部和/或表面形成稳定的孔。
在一些实施方式中,焦粉、粘结剂、溶剂、添加剂的质量比为100:(3~20):(5~50):(1~5),具体可以是100:3:5:1、100:10:15:1、100:15:20:5、100:20:20:1、100:20:15:3、100:10:10:5或100:15:25:2等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。添加剂含量控制在上述范围内,一方面有利于催化石墨化过程,另一方面可在石墨内部形成一定数量的孔。
在一些实施方式中,混合物混合的方式包括机械搅拌和超声分散中的至少一种。当混合采用机械搅拌时,可以采用旋浆式搅拌器、涡轮式搅拌器、平浆式搅拌器等,只要使得混合物中各组分充分混合均匀即可。
在一些实施方式中,搅拌速率为10r/min~1000r/min,具体可以是10r/min、50r/min、70r/min、100r/min、120r/min、150r/min、200r/min、300r/min、350r/min、400r/min、500r/min 或1000r/min等,在此不做限定。搅拌速率控制在上述范围内,有利于的各组分混合形成均一的混合物。
搅拌可以在常温下进行,也可以在预热状态下进行,优选地,搅拌温度可以控制在25℃~200℃,可以理解地,适当的预热有利于的各组分混合形成均一的混合物。
在一些实施方式中,压型的方式包括挤压、模压、辊压、等静压中的至少一种。
在一些实施方式中,压型的压力具体可以是5MPa、15MPa、25MPa、30MPa、35MPa、40MPa、45MPa、50MPa、55MPa、60MPa、70MPa、80MPa、90MPa或100MPa等,通过压型处理一方面可以提升石墨化过程中物料的流动性;另一方面可提升物料的装炉量和产能。
在一些实施方式中,石墨化处理的保温温度具体可以是2800℃、2900、3000℃、3100℃、3150℃、3180℃或3200℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
在一些实施方式中,石墨化处理的保温时间具体可以是2h、2.5h、3h、3.5h、3.8h、4h、4.5h或5h等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。优选地,石墨化处理的保温时间为2h~3h。
在一些实施方式中,石墨化处理升温速率具体可以是12℃/min、13℃/min、14℃/min、16℃/min、18℃/min、18.5℃/min或20℃/min等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。快速升温可以有利于材料石墨内部和/或表面孔的形成及比表面积的控制。
在一些实施方式中,石墨化处理后的降温速率为15℃/min~25℃/min,具体可以是15℃/min、16℃/min、17℃/min、18℃/min、20℃/min、21℃/min、22℃/min、23℃/min、24℃/min或25℃/min等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。快速降温可以有利于材料比表面积及吸油值的控制,同时大大缩短石墨化加工的周期,降低生产成本。
在一些实施方式中,石墨化处理后,还进行粉碎、筛分和除磁中的至少一种。优选地,碳化处理后,还依次进行粉碎、除磁和筛分。
在一些实施方式中,粉碎方式为机械式粉碎机、气流粉碎机和低温粉碎机中任意一种。
在一些实施方式中,筛分的方式为固定筛、滚筒筛、共振筛、滚轴筛、振动筛和链条筛中任意一种,筛分的目数为100~500目,具体地,筛分的目数可以是100目、 200目、250目、325目、400目、500目等,负极材料的粒径控制在上述范围内,有利于负极材料加工性能的提升。
在一些实施方式中,除磁的设备为永磁筒式磁选机、电磁除铁机和脉动高梯度磁选机中任意一种,除磁是为了最终控制负极材料的磁性物质含量,避免磁性物质对锂离子电池的放电效果以及电池在使用过程中的安全性。
一种负极材料,包括人造石墨,人造石墨内部和/或表面具有孔,负极材料的吸油值为O mL/100g,孔体积为V cm 3/kg,比表面积为S m 2/g,其中,400≤O*V*S≤1500,孔体积采用美国麦克公司ASAP2460设备进行测试、采用BJH Desorption cumulative volume of pores模型在
Figure PCTCN2022132157-appb-000002
孔径范围内计算得到。
本申请提供的负极材料,通过连续石墨化工艺生产加工而成,先对材料在低温下快速升温进行煅烧,再在高温下快速升温进行石墨化处理,同时,在原料中加入一定量的添加剂,实现石墨内部和/或表面孔的精准控制,使材料孔体积、比表面积、吸油值达到理想调控设计要求。
本领域技术人员已知人造石墨一定范围内的孔体积可以增加Li +的扩散通道,一定范围内的比表面积可以保证足够的电化学反应界面,促进锂离子在固液界面及固相内的扩散,降低浓差极化,有利于提高负极材料的容量和倍率性能。申请人在此基础上经过深入研究发现,只满足足够的孔体积和比表面积,倍率性能未必可以得到有效提升,因为锂离子脱嵌不仅需要扩散通道和反应界面,还需要有电解液作为介质,有一些孔受表面形貌或其他因素的影响不能被电解液浸润,就不能发挥其作用,其对应的表面自然也无法发生电化学反应,相当于“有效电化学反应空间”不够。而电解液浸润能力,通常使用吸油值来体现。本申请针对孔体积、比表面积和吸油值三个因素组合起来进行大量的实验探索,将负极材料的O*V*S控制在上述范围内,代表负极材料中能够进行有效锂离子脱嵌的反应空间比较充足,有利于提高人造石墨负极材料的大倍率充放电性能。
在一些实施方式中,负极材料的吸油值为O mL/100g,43≤O≤60;具体可以是43、44、45、47、49、51、52、53、54、55、57、59或60等,在此不做限定。材料的吸油值控制在上述范围内,有利于提高材料的对电解液的吸附、浸润性能更好,负极材料的电化学性能更好。
在一些实施方式中,负极材料的孔体积V cm 3/kg,5≤V≤8,具体可以是5.1、5.2、5.5、5.8、6.0、6.2、6.5、6.8、7.0、7.2、7.5或8.0等,在此不做限定。孔在电极内部 发生电化学反应时,孔为负极材料创造了更多的锂离子扩散通道和电化学反应界面,能够促进锂离子在固液界面及固相内的扩散,降低浓差极化,有利于提高负极材料的倍率性能。
在一些实施方式中,负极材料的比表面积为S m 2/g,1.78≤S≤3.0;具体可以是1.79、1.85、1.95、2.00、2.25、2.43、2.57、2.61、2.72、2.85、2.90或3.0等,在此不做限定。可以理解地,过大的比表面积容易导致固态电解质膜形成,消耗不可逆锂盐过多,降低电池的首次效率低。
在一些实施方式中,孔包括微孔和介孔中的至少一种。
在一些实施方式中,负极材料的粒径D 50为10μm~30μm。具体可以是10μm、11μm、12μm、13μm、14μm、15μm、20μm、25μm或30μm等,在此不做限定。
在一些实施方式中,负极材料的粒径满足以下关系式:0.9≤(D 90-D 10)/D 50≤1.8,具体可以是0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7或1.8等,在此不做限定。负极材料的粒径满足上述关系,能够确保负极材料的粒度分布比较集中及合适的堆积密度。
需要说明的是,采用激光衍射法测得粒径分布测定的体积基准累计粒度分布,D 10表示粉末累计粒度分布百分比达到10%时所对应的粒径,D 50表示累计粒度分布百分比达到50%时所对应的粒径,D 90表示累计粒度分布百分比达到90%时所对应的粒径。
在一些实施方式中,负极材料还包括无定形碳。
在一些实施方式中,负极材料还包括无定形碳,无定形碳在负极材料中的质量占比为0.1wt%~5wt%,无定形碳在负极材料中的质量占比具体可以为0.1wt%、0.3wt%、0.5wt%、1wt%、2wt%、3wt%、4wt%或5wt%,无定形碳的存在,为锂离子提供更多不规则更开放的扩散路径,有利于材料倍率性能的提升。
在一些实施方式中,通过拉曼光谱测定负极材料,位于1300cm -1~1400cm -1范围内的峰强度I D与位于1580cm -1~1620cm -1范围内的峰强度I G的强度比I D/I G,0.03≤I D/I G≤0.10,具体可以是0.03、0.04、0.05、0.06、0.07、0.08、0.09或0.1等,在此不做限定。负极材料的强度比I D/I G控制在上述范围内,能够提高负极材料石墨化程度,石墨晶体质量更好。
在一些实施方式中,负极材料包括人造石墨一次颗粒和/或人造石墨二次颗粒。
在一些实施方式中,孔包括微孔和介孔中的至少一种。
在一些实施方式中,负极材料的比容量为320mAh/g~370mAh/g,具体可以是320mAh/g、340mAh/g、342mAh/g、345mAh/g、353mAh/g、355mAh/g、357mAh/g、360mAh/g、365mAh/g或370mAh/g等,在此不做限定。
一种电池,包含上述负极材料。
本领域的技术人员将理解,以上描述的电池的制备方法仅是实施例。在不背离本申请公开的内容的基础上,可以采用本领域常用的其他方法,也可以制备成其他种类的电池进行测试,比如钠离子电池、钾离子电池等。
下面分多个实施例对本申请实施例进行进一步的说明。其中,本申请实施例不限定于以下的具体实施例。在保护范围内,可以适当的进行变更实施。
实施例1
本实施例的复合负极材料的制备方法,包括以下步骤:
(1)将大庆石油焦在800℃温度下进行煅烧处理4h,煅烧处理过程的升温速率为5℃/min,冷却得到低煅焦;
(2)将低煅焦进行粉碎并经整形设备整形,得到粉碎整形后的焦粉,中值粒径控制为15um;
(3)将焦粉与煤焦油、喹啉、碳化硅按照质量比100:5:15:2混合均匀后得到混合物;
(4)将混合物在20MPa压力下压型得到前驱体;
(5)将前驱体经连续石墨化炉3000℃石墨化处理得到石墨化品,升温曲线如下:按照16.5℃/min的升温速率升温至3000℃,在3000℃保温3h,保温后按照16.0℃/min的降温速率冷却至30℃;
(6)将石墨化品经打散、除磁,250目筛分等工序处理,得到人造石墨负极材料。
上述负极材料包含一次颗粒人造石墨和二次颗粒人造石墨,其中大部分是一次颗粒人造石墨。
实施例2
本实施例的复合负极材料的制备方法,包括以下步骤:
(1)将宝钢沥青焦在750℃温度下进行煅烧处理4h,煅烧处理过程的升温速率为3℃/min,冷却得到低煅焦;
(2)将低煅焦进行粉碎并经整形设备整形,得到粉碎整形后的焦粉,中值粒径控制为15um;
(3)将焦粉与淀粉、水、硼酸钠按照质量比100:6:20:2混合均匀后得到混合物A;
(4)将混合物在20MPa压力下压型得到前驱体;
(5)将前驱体经连续石墨化炉2950℃石墨化处理得到石墨化品,升温曲线如下:按照15℃/min的升温速率升温至2950℃,在2950℃保温3h,保温后按照20℃/min的降温速率冷却至30℃;
(6)将石墨化品经打散、除磁,250目筛分等工序处理,得到人造石墨负极材料。
上述负极材料包含一次颗粒人造石墨和二次颗粒人造石墨,其中大部分是一次颗粒人造石墨。
实施例3
本实施例的复合负极材料的制备方法,包括以下步骤:
(1)将大庆石油焦在800℃温度下进行煅烧处理4h,煅烧处理过程的升温速率为6℃/min,冷却得到低煅焦;
(2)将低煅焦进行粉碎并经整形设备整形,得到粉碎整形后的焦粉,中值粒径控制为15um;
(3)将焦粉与煤焦油、喹啉、氮化硼按照质量比100:5:15:3混合均匀后得到混合物A;
(4)将混合物在20MPa压力下压型得到前驱体;
(5)将前驱体经连续石墨化炉2900℃石墨化处理得到石墨化品,升温曲线如下:按照18℃/min的升温速率升温至2900℃,在2900℃保温3h,保温后按照21.5℃/min的降温速率冷却至30℃;
(6)将石墨化品经打散、除磁,250目筛分等工序处理,得到人造石墨负极材料。
上述负极材料包含一次颗粒人造石墨和二次颗粒人造石墨,其中大部分是一次颗粒人造石墨。
实施例4
本实施例的复合负极材料的制备方法,包括以下步骤:
(1)将大庆石油焦在800℃温度下进行煅烧处理4h,煅烧处理过程的升温速率为5℃/min,冷却得到低煅焦;
(2)将低煅焦进行粉碎并经整形设备整形,得到粉碎整形后的焦粉,中值粒径控制为15um;
(3)将焦粉与淀粉、水、碳化硼按照质量比100:6:20:2混合均匀后得到混合物A;
(4)将混合物在20MPa压力下压型得到前驱体;
(5)将前驱体经连续石墨化炉3000℃石墨化处理得到石墨化品,升温曲线如下:按照20℃/min的升温速率升温至3000℃,在3000℃保温3h,保温后按照16.6℃/min的降温速率冷却至30℃;
(6)将石墨化品经打散、除磁,250目筛分等工序处理,得到人造石墨负极材料。
上述负极材料包含一次颗粒人造石墨和二次颗粒人造石墨,其中大部分是一次颗粒人造石墨。
实施例5
与实施例1不同的是,步骤(1)中煅烧温度为500℃。
上述负极材料包含一次颗粒人造石墨和二次颗粒人造石墨,其中大部分是一次颗粒人造石墨。
实施例6
与实施例1不同的是,步骤(1)中煅烧温度为1200℃。
上述负极材料包含一次颗粒人造石墨和二次颗粒人造石墨,其中大部分是一次颗粒人造石墨。
实施例7
与实施例1不同的是,步骤(1)中煅烧时间为3h。
上述负极材料包含一次颗粒人造石墨和二次颗粒人造石墨,其中大部分是一次颗粒人造石墨。
实施例8
与实施例1不同的是,步骤(1)中煅烧时间为6h。
上述负极材料包含一次颗粒人造石墨和二次颗粒人造石墨,其中大部分是一次颗粒人造石墨。
实施例9
与实施例1不同的是,步骤(3)中焦粉与煤焦油、喹啉、碳化硅的按照质量比100:3:15:2混合均匀后得到混合物。
上述负极材料包含一次颗粒人造石墨和二次颗粒人造石墨,其中大部分是一次颗粒人造石墨。
实施例10
与实施例1不同的是,步骤(3)中焦粉与煤焦油、喹啉、碳化硅的按照质量比100:20:15:2混合均匀后得到混合物。
上述负极材料包含一次颗粒人造石墨和二次颗粒人造石墨,其中大部分是二次颗粒人造石墨。
实施例11
与实施例1不同的是,步骤(3)中焦粉与煤焦油、喹啉、碳化硅的按照质量比100:5:5:2混合均匀后得到混合物。
上述负极材料包含一次颗粒人造石墨和二次颗粒人造石墨,其中大部分是一次颗粒人造石墨。
实施例12
与实施例1不同的是,步骤(3)中焦粉与煤焦油、喹啉、碳化硅的按照质量比100:5:50:2混合均匀后得到混合物。
上述负极材料的电镜照片见附图1,从附图1可以看出负极材料由一次颗粒和二次颗粒组成。
实施例13
与实施例1不同的是,步骤(3)中焦粉与煤焦油、喹啉、碳化硅的按照质量比100:5:15:1混合均匀后得到混合物。
上述负极材料包含一次颗粒人造石墨和二次颗粒人造石墨,其中大部分是一次颗 粒人造石墨。
实施例14
与实施例1不同的是,步骤(3)中焦粉与煤焦油、喹啉、碳化硅的按照质量比100:5:15:5混合均匀后得到混合物。
上述负极材料包含一次颗粒人造石墨和二次颗粒人造石墨,其中大部分是一次颗粒人造石墨。
实施例15
与实施例1不同的是,步骤(4)中的压型压力为5MPa。
上述负极材料包含一次颗粒人造石墨和二次颗粒人造石墨,其中大部分是一次颗粒人造石墨。
实施例16
与实施例1不同的是,步骤(4)中的压型压力为100MPa。
上述负极材料包含一次颗粒人造石墨和二次颗粒人造石墨,其中大部分是一次颗粒人造石墨。
实施例17
与实施例1不同的是,步骤(5)中的石墨化处理的温度为2800℃。
上述负极材料包含一次颗粒人造石墨和二次颗粒人造石墨,其中大部分是一次颗粒人造石墨。
实施例18
与实施例1不同的是,步骤(5)中的石墨化处理的温度为3200℃。
上述负极材料包含一次颗粒人造石墨和二次颗粒人造石墨,其中大部分是一次颗粒人造石墨。
实施例19
与实施例1不同的是,步骤(5)中的石墨化处理的保温时间为2h。
上述负极材料包含一次颗粒人造石墨和二次颗粒人造石墨,其中大部分是一次颗 粒人造石墨。
实施例20
与实施例1不同的是,步骤(5)中的石墨化处理的保温时间为5h。
上述负极材料包含一次颗粒人造石墨和二次颗粒人造石墨,其中大部分是一次颗粒人造石墨。
对比例1
与实施例1不同的是,将步骤(4)中得到的前驱体装入石墨坩埚内,然后再将石墨坩埚转移至艾奇逊炉内,经高温石墨化过程得到负极材料,石墨化过程最高温度2900℃,最高温度保温时间3h,石墨化过程升温速率为0.6℃/min,降温速率为0.1℃/min。
对比例2
将大庆石油焦粉碎并经整形设备整形处理,得到粉碎整形后的焦粉,得到的中值粒径为15μm的焦粉,直接装入石墨坩埚内,然后再将石墨坩埚转移至艾奇逊炉内,经高温石墨化得到负极材料,石墨化过程最高温度2900℃,最高温度保温时间8h,石墨化过程升温速率为0.7℃/min,降温速率为0.1℃/min。
对比例3
将大庆石油焦经800℃温度下进行4h煅烧处理,煅烧处理的升温速率为1.5℃/min,然后投入到连续石墨化炉中。升温曲线如下:按照8℃/min的升温速率升温至2900℃,在2900℃保温3h,保温后按照10℃/min的降温速率冷却至30℃,出料经粉碎整形,中值粒径控制为15um,得到负极材料。
测试方法
(1)负极材料的粒径的测试方法:
通过马尔文激光粒度仪测试复合负极材料的粒径分布范围。
(2)负极材料的孔体积的测试方式:
采用美国麦克公司ASAP2460设备进行测试,孔体积V采用BJH Desorption  cumulative volume of pores模型在
Figure PCTCN2022132157-appb-000003
孔径范围内计算得到。
(3)负极材料的比表面积的测试方式:
采用北京精微高博科学技术有限公司的动态比表面积快速测定仪JW-DX测试,单位为m 2/g。
(4)负极材料的表面形貌的测试方式:
采用日立公司S4800扫描电子显微镜观察负极材料颗粒的表面形貌。
(5)负极材料的吸油值的测试方式:
采用日本ASAHISOUKEN的ASAHI S-500吸油值测试仪测试,吸油值O为由粘度特性变化产生的扭矩达到最大扭矩的70%时滴加亚麻仁油的量,单位为mL/100g。
(6)负极材料的I D/I G的测试方式:
通过拉曼光谱测试,测得复合负极材料在1300cm -1~1400cm -1范围内的峰强度I D与在1580cm -1~1620cm -1范围内的峰强度I G的比值I D/I G
(7)电池性能的测试方法:
将实施例1~22和对比例1~3制备出的负极材料、羧甲基纤维素、导电炭黑、丁苯橡胶按照95:1.5:1.5:2的质量比在去离子水中磁力搅拌8h,使其混合均匀。将混合得到的浆料涂布在铜箔上,60℃真空干燥后作为工作电极。采用金属锂作为对电极和参比电极,隔膜为Celgard2325,电解液为1mol·L-1LiPF6-EC(碳酸乙烯酯)/DMC(碳酸二甲酯)/EMC(碳酸甲乙酯)(体积比为1:1:1),在充满高纯氩气的手套箱中完成CR2016型纽扣电池组装。
首次放电容量/首次放电效率测试在LAND电池测试仪上进行,充放电条件如下:静置2h;放电:0.1C至0.005V,0.09C,0.08C…0.02C至0.001V;静置15min;充电:0.1C至1.5V;静置15min。
扣式半电池在25±2℃环境下进行倍率性能测试,得到0.2C、1C和2C的充放电比容量和库伦效率。扣电倍率测试充放电条件:①0.1C放至0.01V,恒压5h,0.1C充至1.5V;②0.2C放至0.01V,恒压至0.01C,0.2C充至1.5V;③0.2C放至0.01V,恒压至0.01C,2C充至1.5V;④0.2C放至0.01V,恒压至0.01C,0.2C充至1.5V;⑤1C放 至0.01V,恒压至0.01C;0.2C充至1.5V;⑥2C放至0.01V。
全电池测试:将各实施例制得的负极材料作为负极活性材料,按照负极活性材料、导电剂、粘结剂、分散剂的质量百分比为95.2:1.5:2:1.3,溶解在去离子水中混合,控制固含量为50wt%,涂覆于8μm厚铜箔集流体上,真空烘干,制得负极极片;将磷酸铁锂、聚偏二氟乙烯和导电剂炭黑按照质量比为95:2:3与溶剂NMP(N-甲基吡咯烷酮)混匀后,涂布在16μm厚的铝箔上,真空烘干,制得正极极片;将涂布好的正、负极片经制片、卷绕、干燥、注液、封口及化成、分容等工序,制成554065型软包锂离子电池。
将得到的软包电池在武汉金诺电子有限公司LAND电池测试系统上进行充放电测试,在常温条件,1C/1C电流充放电,充放电电压限制在3.0V~4.35V,进行首效和500周容量保持率测试(负极极片压实密度为1.60g/cm 3);
上述实施例得到的负极材料的性能测试的结果如下表1所示,负极材料制成的电池性能测试的结果如下表2所示:
表1.负极材料性能比对结果表
Figure PCTCN2022132157-appb-000004
Figure PCTCN2022132157-appb-000005
表2.电池性能比对结果表
Figure PCTCN2022132157-appb-000006
Figure PCTCN2022132157-appb-000007
根据实施例1~20的测试数据可知,本申请实施例制得的石墨内部和/或表面形成孔,材料的大倍率充放电性能明显提升。这是因为,在负极材料被制成电极应用于锂离子电池时,在注入电解液后,材料内部的有效电化学反应空间充足,有利于提高负极材料的倍率性能。
对比例1制得的负极材料,吸油值O过大,O*V*S脱离上述范围,导致材料的倍率及循环性能均较差。
对比例2制得的负极材料,人造石墨孔不够丰富,孔体积V过小,O*V*S脱离上述范围,锂离子没有充足的扩散通道,不有利于提高负极材料倍率性能的提升。
对比例3制得的负极材料,制备过程中煅烧处理和石墨化处理的升温速率脱离本申请制备方法的优化范围,使得O*V*S脱离上述范围,容量、倍率性能较同等工艺条件下生产的实施例1要差。
本申请虽然以较佳实施例公开如上,但并不是用来限定权利要求,任何本领域技术人员在不脱离本申请构思的前提下,都可以做出若干可能的变动和修改,因此本申请的保护范围应当以本申请权利要求所界定的范围为准。

Claims (10)

  1. 一种负极材料,其特征在于,所述负极材料包括人造石墨,所述人造石墨内部和/或表面具有孔,所述负极材料的吸油值为O mL/100g,孔体积为V cm 3/kg,比表面积为S m 2/g,其中,400≤O*V*S≤1500,
    所述孔体积采用美国麦克公司ASAP2460设备进行测试、采用BJH Desorption cumulative volume of pores模型在
    Figure PCTCN2022132157-appb-100001
    孔径范围内计算得到。
  2. 根据权利要求1所述的负极材料,其特征在于,所述负极材料的吸油值为O mL/100g,43≤O≤60。
  3. 根据权利要求1所述的负极材料,其特征在于,所述负极材料的孔体积V cm 3/kg,5≤V≤8。
  4. 根据权利要求1所述的负极材料,其特征在于,所述负极材料的比表面积为S m 2/g,1.78≤S≤3.0。
  5. 根据权利要求1所述的负极材料,其特征在于,所述负极材料的粒径满足以下关系式:0.9≤(D90-D10)/D50≤1.8,且10μm≤D50≤30μm。
  6. 根据权利要求1~5任一项所述的负极材料,其特征在于,所述负极材料满足以下特征中的至少一种:
    (1)所述负极材料还包括无定形碳;
    (2)所述负极材料还包括无定形碳,所述无定形碳在所述负极材料中的质量占比为0.1wt%~5wt%。
  7. 根据权利要求1~5任一项所述的负极材料,其特征在于,通过拉曼光谱测定负极材料,位于1300cm -1~1400cm -1范围内的峰强度I D与位于1580cm -1~1620cm -1范围内的峰强度I G的强度比I D/I G,0.03≤I D/I G≤0.10。
  8. 根据权利要求1~5任一项所述的负极材料,其特征在于,所述负极材料包括人造石墨一次颗粒和/或人造石墨二次颗粒。
  9. 根据权利要求1~5任一项所述的负极材料,其特征在于,所述孔包括微孔和介孔中的至少一种。
  10. 一种电池,其特征在于,所述电池包括根据权利要求1至9任一项所述的负极材料。
PCT/CN2022/132157 2022-11-16 2022-11-16 负极材料、电池 WO2024103273A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280004500.5A CN116057734A (zh) 2022-11-16 2022-11-16 负极材料、电池
KR1020247003661A KR20240073848A (ko) 2022-11-16 2022-11-16 음극 소재, 배터리
PCT/CN2022/132157 WO2024103273A1 (zh) 2022-11-16 2022-11-16 负极材料、电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/132157 WO2024103273A1 (zh) 2022-11-16 2022-11-16 负极材料、电池

Publications (1)

Publication Number Publication Date
WO2024103273A1 true WO2024103273A1 (zh) 2024-05-23

Family

ID=86125933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132157 WO2024103273A1 (zh) 2022-11-16 2022-11-16 负极材料、电池

Country Status (3)

Country Link
KR (1) KR20240073848A (zh)
CN (1) CN116057734A (zh)
WO (1) WO2024103273A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117397056A (zh) * 2023-06-28 2024-01-12 贝特瑞新材料集团股份有限公司 负极材料、电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6619591B2 (en) 2001-03-30 2003-09-16 Eurocopter Deutschland Gmbh Method and arrangement for adjusting a door-side safety device of an airplane door
JP2014067680A (ja) * 2012-09-27 2014-04-17 Mitsubishi Chemicals Corp 非水系二次電池用黒鉛粒子及び、それを用いた非水系二次電池用負極並びに非水系二次電池
JP2019046925A (ja) * 2017-08-31 2019-03-22 日本カーボン株式会社 リチウムイオンキャパシタ用負極活物質
CN211425033U (zh) 2019-09-24 2020-09-04 开封格瑞丰特新材料有限公司 一种立式连续锂电池负极材料生产用炉窑
WO2022052994A1 (zh) * 2020-09-10 2022-03-17 贝特瑞新材料集团股份有限公司 石墨负极材料、负极和锂离子电池及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6619591B2 (en) 2001-03-30 2003-09-16 Eurocopter Deutschland Gmbh Method and arrangement for adjusting a door-side safety device of an airplane door
JP2014067680A (ja) * 2012-09-27 2014-04-17 Mitsubishi Chemicals Corp 非水系二次電池用黒鉛粒子及び、それを用いた非水系二次電池用負極並びに非水系二次電池
JP2019046925A (ja) * 2017-08-31 2019-03-22 日本カーボン株式会社 リチウムイオンキャパシタ用負極活物質
CN211425033U (zh) 2019-09-24 2020-09-04 开封格瑞丰特新材料有限公司 一种立式连续锂电池负极材料生产用炉窑
WO2022052994A1 (zh) * 2020-09-10 2022-03-17 贝特瑞新材料集团股份有限公司 石墨负极材料、负极和锂离子电池及其制备方法

Also Published As

Publication number Publication date
CN116057734A (zh) 2023-05-02
KR20240073848A (ko) 2024-05-27

Similar Documents

Publication Publication Date Title
WO2021056981A1 (zh) 一种锂电池硅基复合负极材料的制备方法
TWI594485B (zh) 鋰離子二次電池用負極材料、鋰離子二次電池用負極及鋰離子二次電池
KR102281034B1 (ko) 리튬 이온 이차 전지용 음극 재료, 리튬 이온 이차 전지용 음극 및 리튬 이온 이차 전지
WO2016074479A1 (zh) 一种热解无定型碳材料及其制备方法和用途
CN109888246B (zh) 一种具有梯度结构的氧化亚硅复合负极材料及其制备方法和应用
WO2021083199A1 (zh) 负极材料及其制备方法和锂离子电池
TW201841418A (zh) 鋰離子二次電池用負極活性物質、鋰離子二次電池用負極及鋰離子二次電池
CN105731427A (zh) 一种锂离子电池石墨负极材料及其制备方法
CN110828824B (zh) 一种长寿命天然石墨负极材料及其制备方法
WO2016202164A1 (zh) 一种炭/石墨/锡复合负极材料的制备方法
CN114044513B (zh) 功率型锂离子电池用煤基石墨/碳复合负极材料的制备方法
CN109888247B (zh) 一种锂离子电池用钛酸锌锂/碳纳米复合负极材料的制备方法
TW201935741A (zh) 鋰離子二次電池用負極活性物質、鋰離子二次電池用負極及鋰離子二次電池
TW201935738A (zh) 鋰離子二次電池用負極活性物質、鋰離子二次電池用負極及鋰離子二次電池
TW201935739A (zh) 鋰離子二次電池用負極活性物質、鋰離子二次電池用負極及鋰離子二次電池
WO2022257373A1 (zh) 负极材料及其制备方法与应用、负极片与应用
WO2024103273A1 (zh) 负极材料、电池
CN112928246A (zh) 一种复合材料、其制备方法及应用
CN115954472B (zh) 负极材料、电池
CN110429272B (zh) 一种类火龙果结构的硅碳复合负极材料及其制备方法
CN115881952A (zh) 负极材料及电池
WO2022257372A1 (zh) 石墨负极材料及其制备方法和应用
WO2024103272A1 (zh) 负极材料、电池
WO2024103274A1 (zh) 负极材料及电池
WO2024131202A1 (zh) 负极材料及电池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022955198

Country of ref document: EP

Effective date: 20240223