WO2024100430A1 - 電力変換装置及びその制御方法 - Google Patents

電力変換装置及びその制御方法 Download PDF

Info

Publication number
WO2024100430A1
WO2024100430A1 PCT/IB2022/000660 IB2022000660W WO2024100430A1 WO 2024100430 A1 WO2024100430 A1 WO 2024100430A1 IB 2022000660 W IB2022000660 W IB 2022000660W WO 2024100430 A1 WO2024100430 A1 WO 2024100430A1
Authority
WO
WIPO (PCT)
Prior art keywords
power conversion
voltage
conversion device
switch
output
Prior art date
Application number
PCT/IB2022/000660
Other languages
English (en)
French (fr)
Inventor
貴之 猪狩
滋春 山上
ジョルジョ ロビソン
克和 桑原
Original Assignee
日産自動車株式会社
ルノー エス. ア. エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス. ア. エス. filed Critical 日産自動車株式会社
Priority to PCT/IB2022/000660 priority Critical patent/WO2024100430A1/ja
Publication of WO2024100430A1 publication Critical patent/WO2024100430A1/ja

Links

Images

Definitions

  • the present invention relates to a power conversion device and a control method thereof.
  • Power conversion devices that use LC resonance with switching elements and an LC resonant circuit to perform power conversion have been known for some time.
  • low-frequency AC power with an effective voltage of 200 V and a frequency of 50 Hz is converted into high-frequency AC power boosted by an E-class inverter circuit that uses LC resonance with switching elements and an LC resonant circuit, and the high-frequency AC power is rectified into DC power by an E-class rectifier circuit, making it a so-called E ⁇ 2 class power conversion device.
  • the loss that occurs during switching can be reduced by zero-voltage switching using LC resonance, and the passive elements used in the power conversion device can be made smaller by increasing the frequency of the switching operation.
  • the class E rectifier circuit has at least a rectifier element such as a diode connected in parallel to the output of the class E inverter circuit, and a choke inductor connected in series to the rectifier element, and rectifies the boosted high-frequency AC power from the inverter circuit into DC power.
  • This conventional power conversion device had the problem that the peak voltage of the high-frequency AC power applied to both ends of the rectifier element of the class E rectifier circuit was several times the voltage of the DC power output by the class E rectifier circuit.
  • the present invention aims to provide a power conversion device and a control method thereof that can suppress the peak voltage of the AC power applied to both ends of the rectifier element of the rectifier circuit.
  • One aspect of the present invention is a method for controlling a power conversion device that includes an inverter circuit having a first switch and an LC resonant circuit and outputting AC power, a rectifier circuit having a first rectifier element and a choke inductor and converting AC power input from the inverter circuit into DC power and outputting it, a switching circuit having a second switch and a second rectifier element and connected to the output of the rectifier circuit, and a controller that controls the operation of the first switch and the second switch.
  • the controller operates the duty ratio of the second switch based on the output voltage of the power conversion device.
  • FIG. 1 is a circuit diagram showing a configuration of a power conversion device according to each embodiment.
  • FIG. 2 shows the operation of the switching circuit and the waveform of the voltage across the first diode of the rectifier circuit in the power conversion device according to the first embodiment.
  • FIG. 3 shows the operation of the switching circuit and the waveform of the voltage across the first diode of the rectifier circuit in the power conversion device according to the second embodiment.
  • FIG. 1 is a circuit diagram showing the configuration of a power conversion device 1 according to each embodiment of the present invention.
  • the power conversion device 1 shown in FIG. 1 has an input terminal connected to a low-frequency AC power source Vi with an effective value of 200 V and a frequency of 50 Hz, and an output terminal connected to a DC load 10 such as a battery.
  • the power conversion device 1 converts the AC power supplied from the AC power source Vi into DC power and supplies it to the DC load 10.
  • the power conversion device 1 comprises an inverter circuit 2, a rectifier circuit 3, a switching circuit 4, an output capacitor Co, and a control unit 8.
  • the power conversion device 1 also comprises, as necessary, a first current detection unit 6 that detects the input current of the power conversion device 1, a voltage detection unit 7 that detects the output voltage of the power conversion device 1, and a second current detection unit 9 that detects the output current of the power conversion device 1.
  • the control unit 8 controls the operation of the inverter circuit 2 and the switching circuit 4, and can detect the detection values of the first current detection unit 6, the voltage detection unit 7, and the second current detection unit 9, as well as the voltage of the AC power source Vi.
  • the inverter circuit 2 is a class E inverter circuit capable of high-frequency switching by achieving low-loss switching using resonance from the LC resonant circuit 5.
  • the inverter circuit 2 includes a first choke inductor L1, a first switch Q1, a first shunt capacitor C1, and an LC resonant circuit 5, and by turning the first switch Q1 on and off using the control unit 8, the low-frequency AC input voltage from the AC power source Vi is made high-frequency to generate a high-frequency AC current.
  • the first switch Q1 uses a semiconductor switching element such as an N-channel MOSFET.
  • a series circuit of a first choke inductor L1 and a first switch Q1 is connected across the AC power source Vi.
  • a first current detector 6 for detecting the input current of the power conversion device 1 is connected to the series circuit of the first choke inductor L1 and the first switch Q1 as necessary.
  • a first shunt capacitor C1 is connected in parallel across both ends of the first switch Q1.
  • the connection terminal between the first choke inductor L1 and the switch Q1 is connected to the LC resonant circuit 5.
  • the LC resonant circuit 5 is a series resonant circuit in which a resonant inductor Lr and a resonant capacitor Cr are connected in series.
  • the resonant frequency of the series resonant circuit of the resonant inductor Lr and the resonant capacitor Cr changes the voltage across the switch Q1 into a high-frequency sine wave.
  • the rectifier circuit 3 is a class E rectifier circuit having a first diode D1 and a second shunt capacitor C2 connected in parallel to the input of the rectifier circuit 3 and a second choke inductor L2 at the output of the rectifier circuit 3, and rectifies the high-frequency AC current from the LC resonant circuit 5 and outputs the resulting DC voltage or low-frequency AC voltage as an output voltage.
  • the cathode of the first diode D1 is connected to one end of the resonant capacitor Cr.
  • the anode of the first diode D1 is connected to one end of the first shunt capacitor C1.
  • the second shunt capacitor C2 is connected in parallel to the first diode D1.
  • One end of the second choke inductor L2 is connected to the cathode of the first diode D1 and one end of the second shunt capacitor C2.
  • a switching circuit 4 consisting of a second switch Q2 and a second diode D2 is arranged.
  • the second switch Q2 is, for example, a semiconductor switching element such as an N-channel MOSFET.
  • One end of the second switch Q2 is connected to the other end of the second choke inductor L2.
  • the other end of the second switch Q2 is connected to the other end of the second shunt capacitor C2.
  • the anode of the second diode D2 is connected to the other end of the second shunt capacitor C2 and one end of the second switch Q2.
  • a DC load 10 is connected via an output capacitor Co.
  • a voltage detection unit 7 for detecting the output voltage of the power conversion device 1 is connected as necessary.
  • a second current detection unit 9 for detecting the output current of the power conversion device 1 is connected as necessary.
  • the rectifier circuit 3 rectifies the high-frequency AC current of the LC resonant circuit 5.
  • the voltage across the first diode D1 of the rectifier circuit 3 becomes a positive AC voltage that is the half-wave rectification of the applied AC current of frequency fr, and the positive AC voltage is smoothed by the second shunt capacitor C2 to generate a DC voltage that supplies power to the second choke inductor L2.
  • the switching circuit 4 arranged after the rectifier circuit 3 when the second switch Q2 is on, the current from the second choke inductor L2 flows through the second switch Q2, so the output voltage Vs of the rectifier circuit 3, which is the voltage at the connection point between the second switch Q2, the second diode D2, and the second choke inductor L2, becomes almost zero.
  • the second switch Q2 when the second switch Q2 is off, the current from the second choke inductor L2 flows to the DC load 10 via the second diode D2, and the output voltage Vs of the rectifier circuit 3 becomes almost equal to the output voltage Vo applied to the DC load 10.
  • the peak voltage Vd1_peak of the voltage Vd1 across the first diode D1 is a value according to the average voltage Vavg, and is several times the average voltage Vavg. In other words, the peak voltage Vd1_peak of the voltage Vd1 across the first diode D1 can also be reduced by reducing the average voltage Vavg.
  • the on/off of the second switch Q2 of the switching circuit 4, i.e., the duty ratio Ds is controlled by the control unit 8.
  • the output voltage Vo is maintained at a constant value by the output capacitor Co, regardless of fluctuations in the output voltage Vs of the rectifier circuit 3.
  • FIG. 2 shows the operation of the switching circuit 4 of the power conversion device 1 and the waveform of the voltage Vd1 across the first diode D1 of the rectifier circuit 3 in the first embodiment.
  • the output voltage Vs of the rectifier circuit 3 is usually a constant DC voltage equal to the output voltage Vo of the power conversion device 1.
  • a half-wave rectified high-frequency AC voltage with a peak voltage Vd1_peak several times the output voltage Vs of the rectifier circuit 3 is applied as the voltage Vd1 across the first diode D1 of the rectifier circuit 3 with a period of 1/fr.
  • control unit 8 controls the duty ratio Ds of the second switch Q2 of the switching circuit 4, thereby arbitrarily controlling the output voltage Vs of the rectifier circuit 3.
  • the power conversion device 1 includes a voltage detection unit 7 that detects the output voltage Vo.
  • the control unit 8 detects the output voltage Vo of the power conversion device 1 by the voltage detection unit 7, and operates the duty ratio Ds of the second switch Q2 based on the detected output voltage Vo so that the peak voltage Vd1_peak of the first diode D1 of the rectifier circuit 3 does not exceed a desired value that is arbitrarily set. For example, when the duty ratio Ds is zero, the output voltage Vo of the power conversion device 1 is equal to the output voltage Vs of the rectifier circuit 3.
  • the control unit 8 determines that the output voltage Vo of the power conversion device 1 when the duty ratio Ds is zero is higher than a predetermined value
  • the control unit sets the duty ratio Ds of the second switch Q2 to a predetermined value based on the output voltage Vo of the power conversion device 1 at this time. That is, the control unit turns the second switch Q2 on and off at a period Ts and a predetermined value of the duty ratio Ds.
  • the output voltage Vs of the rectifier circuit 3 becomes zero during the on-period of Ts ⁇ Ds, and becomes a rectangular voltage waveform that is equal to the output voltage Vo during the off-period of Ts ⁇ (1-Ds).
  • the output voltage Vo is maintained at a constant value by the output capacitor Co, regardless of fluctuations in the output voltage Vs of the rectifier circuit 3.
  • the peak voltage Vd1_peak of the first diode D1 of the rectifier circuit 3 can be suppressed by manipulating the duty ratio Ds of the second switch Q2 to reduce the average voltage Vavg of the output voltage Vs of the rectifier circuit 3.
  • the duty ratio Ds of the second switch Q2 is controlled under the condition of a specific output voltage Vo or output current Io.
  • the peak voltage Vd1_peak of the first diode D1 of the rectifier circuit 3 is several times the average voltage Vavg of the rectifier circuit 3.
  • the peak voltage Vd1_peak which is the peak value of the voltage applied to the first diode D1 also depends on the output current Io of the power conversion device 1. For this reason, even under the same average voltage Vavg of the rectifier circuit 3, the peak voltage Vd1_peak of the first diode D1 becomes larger when the output current Io is large.
  • the peak voltage Vd1_peak of the first diode D1 may not become excessive even if the average voltage Vavg of the rectifier circuit 3 is not reduced by performing the switching operation of the second switch Q2 of the switching circuit 4.
  • the power conversion device 1 includes a voltage detection unit 7 that detects the output voltage Vo of the power conversion device 1 and a second current detection unit 9 that detects the output current Io.
  • control unit 8 determines that the peak voltage Vd1_peak of the first diode D1 of the rectifier circuit 3 exceeds a desired value that has been arbitrarily set based on the output voltage Vo detected by the voltage detection unit 7 and the output current Io detected by the second current detection unit 9, it performs switching operation on the switching circuit 4 as in the first embodiment to suppress the peak voltage Vd1_peak of the first diode D1 of the rectifier circuit 3.
  • control unit 8 determines that the peak voltage Vd1_peak of the first diode D1 of the rectifier circuit 3 is equal to or lower than a desired value set arbitrarily based on the output voltage Vo detected by the voltage detection unit 7 and the output current Io detected by the second current detection unit 9, it operates the duty ratio Ds of the second switch Q2 of the switching circuit 4 to zero to turn off the switching operation.
  • the operation of the switching circuit 4 at this time and the waveform of the voltage across the first diode D1 of the rectifier circuit 3 are shown in FIG. 3.
  • the switching circuit 4 is caused to perform a switching operation as in the first embodiment to suppress the peak voltage Vd1_peak of the first diode D1 of the rectifier circuit 3. Then, when it is determined that the peak voltage Vd1_peak of the first diode D1 of the rectifier circuit 3 is equal to or lower than the desired value, the switching operation of the switching circuit 4 is stopped. This makes it possible to improve the power conversion efficiency of the power conversion device 1.
  • conditions of the output voltage Vo and output current Io that provide high power conversion efficiency for the input voltage and input current of the power conversion device 1 are acquired in advance and stored in the control unit 8. Then, based on the previously acquired conditions, the control unit 8 operates the duty ratio Ds of the second switch Q2 so as to provide conditions that provide high power conversion efficiency for the current values of the input voltage, input current, output voltage Vo, and output current Io of the power conversion device 1.
  • the power conversion device 1 includes a first current detection unit 6, a voltage detection unit 7, and a second current detection unit 9.
  • the control unit 8 detects the current values detected by the first current detection unit 6, the voltage detection unit 7, and the second current detection unit 9 and the current value of the AC voltage of the AC power source Vi, and estimates the peak voltage Vd1_peak of the first diode D1 of the rectifier circuit 3 based on these detected current values.
  • control unit 8 determines that the peak voltage Vd1_peak of the first diode D1 of the rectifier circuit 3 exceeds a desired value that has been arbitrarily set, it causes the switching circuit 4 to perform a switching operation as in the first embodiment, thereby suppressing the peak voltage Vd1_peak of the first diode D1 of the rectifier circuit 3.
  • the peak voltage Vd1_peak of the first diode D1 of the rectifier circuit 3 is equal to or lower than a desired value that is arbitrarily set, there is no problem in manipulating the duty ratio Ds of the second switch Q2 to control the average voltage Vavg of the rectifier circuit 3 to an arbitrary voltage.
  • the control unit 8 determines that the peak voltage Vd1_peak of the first diode D1 of the rectifier circuit 3 is equal to or lower than a desired value that has been arbitrarily set, the control unit 8 operates the duty ratio Ds of the second switch Q2 so as to increase the power conversion efficiency based on the current values of the detected input voltage, input current, output voltage Vo, and output current Io of the power conversion device 1 and the previously acquired conditions.
  • the peak voltage Vd1_peak of the first diode D1 of the rectifier circuit 3 exceeds a desired value that is arbitrarily set, the peak voltage Vd1_peak of the first diode D1 of the rectifier circuit 3 can be suppressed, and when the peak voltage Vd1_peak of the first diode D1 of the rectifier circuit 3 is equal to or lower than the desired value that is arbitrarily set, the power conversion efficiency of the power conversion device 1 can be improved.
  • the input voltage, input current, output voltage Vo, and output current Io of the power conversion device 1 are detected, and the control unit 8 calculates the power conversion efficiency of the power conversion device 1 from the detected input voltage, input current, output voltage Vo, and output current Io.
  • the power conversion device 1 includes a first current detection unit 6, a voltage detection unit 7, and a second current detection unit 9.
  • the control unit 8 detects the values detected by the first current detection unit 6, the voltage detection unit 7, and the second current detection unit 9, and the AC voltage value of the AC power source Vi.
  • the control unit 8 controls the switching circuit 4 to perform a switching operation as in the first embodiment, thereby suppressing the peak voltage Vd1_peak of the first diode D1 of the rectifier circuit 3.
  • the control unit 8 determines that the peak voltage Vd1_peak of the first diode D1 of the rectifier circuit 3 is equal to or lower than the desired value, it calculates the power conversion efficiency of the power conversion device 1 based on the detected input and output voltages and currents under each operating condition when the duty ratio Ds of the second switch Q2 is changed.
  • the power conversion efficiency when the average output voltage of the rectifier circuit 3 is Vavg1 is ⁇ 1
  • the power conversion efficiency when it is Vavg2 is ⁇ 2. If ⁇ 1> ⁇ 2, it is determined that the efficiency of the power conversion device 1 has decreased by changing the duty ratio from Ds1 to Ds2, and the current duty ratio Ds2 is changed in a direction closer to Ds1.
  • the next duty ratio Ds is determined intermittently and repeatedly based on the power conversion efficiency when the duty ratio Ds of the second switch Q2 of the switching circuit 4 is changed. This allows the power conversion device 1 to operate while maintaining a high power conversion efficiency.
  • a configuration including a class E inverter circuit 2, a class E rectifier circuit 3 having a choke inductor L2 on the output side, and a switching circuit 4 arranged between the class E rectifier circuit 3 and the DC load 10 is given as an example, but the present invention is not limited to such a configuration.
  • a current resonant type inverter circuit generally called an LLC type, which uses a resonant circuit to generate high-frequency current
  • a bridge-type rectifier circuit having an output inductor or a power conversion device having a switching circuit arranged after the choke inductor of the rectifier circuit
  • the voltage applied to the rectifier of the rectifier circuit can be reduced by manipulating the duty ratio of the switching circuit.
  • the input of the inverter circuit 2 is described as an AC power source Vi with an input terminal having an effective value of 200 V and a low frequency of 50 Hz, but this is not limited to this, and the device can operate in the same way even if a DC power source is used instead of the AC power source Vi.
  • the power conversion device 1 of the present invention can be used to charge a storage battery from AC power or to supply external power from an electric vehicle.

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

第1スイッチ(Q1)とLC共振回路(5)とを有し、交流電力を出力するインバータ回路(2)と、第1整流素子(D1)とチョークインダクタ(L2)とを有し、インバータ回路(2)から入力された交流電力を直流電力に変換して出力する整流回路(3)と、第2スイッチ(Q2)と第2整流素子(D2)とを有し、整流回路(3)の出力に接続されたスイッチング回路(4)と、第1スイッチ(Q1)と第2スイッチ(Q2)の動作を制御する制御部(8)とを備えた電力変換装置(1)の制御方法である。制御部(8)は、電力変換装置(1)の出力電圧に基づいて第2スイッチ(Q2)の時比率を操作する。

Description

電力変換装置及びその制御方法
 本発明は、電力変換装置及びその制御方法に関する。
 従来より、スイッチング素子とLC共振回路によるLC共振を利用して電力変換を行う電力変換装置が知られている。特許文献1に記載の従来例の電力変換装置では、例えば実効値電圧200V、周波数50Hzの低周波の交流電力を、スイッチング素子とLC共振回路によるLC共振を利用したE級インバータ回路によって昇圧された高周波の交流電力に変換し、その高周波の交流電力をE級整流回路によって直流電力に整流する、いわゆるE^2級電力変換装置である。このような従来例の電力変換装置では、LC共振を利用したゼロ電圧スイッチングによって、スイッチング時に発生する損失を低減することができ、また、スイッチング動作を高周波化することで、電力変換装置に使用する受動素子を小型化することができる。
特開2021−145433号公報
 特許文献1に記載の従来例の電力変換装置では、E級整流回路は、少なくとも、E級インバータ回路の出力に並列接続されたダイオード等の整流素子と、整流素子に直列接続されたチョークインダクタとを有し、インバータ回路からの昇圧された高周波の交流電力を直流電力に整流する。このような従来例の電力変換装置では、E級整流回路の整流素子の両端にかかる高周波の交流電力のピーク電圧は、E級整流回路の出力する直流電力の電圧の数倍に及ぶという問題があった。
 本発明は、整流回路の整流素子の両端にかかる交流電力のピーク電圧を抑制することができる電力変換装置及びその制御方法を提供することを目的とする。
 本発明の一態様は、第1スイッチとLC共振回路とを有し、交流電力を出力するインバータ回路と、第1整流素子とチョークインダクタとを有し、インバータ回路から入力された交流電力を直流電力に変換して出力する整流回路と、第2スイッチと第2整流素子とを有し、整流回路の出力に接続されたスイッチング回路と、第1スイッチと第2スイッチの動作を制御する制御部とを備えた電力変換装置の制御方法である。制御部は、電力変換装置の出力電圧に基づいて第2スイッチの時比率を操作する。
 本発明の一態様によれば、整流回路の整流素子の両端にかかる交流電力のピーク電圧を抑制することができる。
図1は、各実施形態に係る電力変換装置の構成を示す回路図である。 図2は、第1実施形態に係る電力変換装置における、スイッチング回路の動作と、整流回路の第1ダイオードの両端電圧の波形を示したものである。 図3は、第2実施形態に係る電力変換装置における、スイッチング回路の動作と、整流回路の第1ダイオードの両端電圧の波形を示したものである。
 以下、本発明のいくつかの実施形態に係る電力変換装置及びその制御方法を、図面を参照しながら詳細に説明する。各実施形態に係る電力変換装置及びその制御方法の図中の同一または相当部分には、同一符号を付してその説明を省略する。
 図1は、本発明の各実施形態に係る電力変換装置1の構成を示す回路図である。
 図1に示す電力変換装置1は、入力端子が実効値200V、周波数50Hzなどの低周波の交流電源Viに接続され、出力端子は例えばバッテリーのような直流負荷10に接続され、交流電源Viから供給された交流電力を直流電力に変換して、直流負荷10に供給する。
 電力変換装置1は、インバータ回路2と、整流回路3と、スイッチング回路4と、出力キャパシタCoと、制御部8とを備える。また、電力変換装置1は、必要に応じて、電力変換装置1の入力電流を検出する第1電流検出部6と、電力変換装置1の出力電圧を検出する電圧検出部7と、電力変換装置1の出力電流を検出する第2電流検出部9とを備える。制御部8は、インバータ回路2とスイッチング回路4の動作を制御するとともに、第1電流検出部6、電圧検出部7、第2電流検出部9の検出値や、交流電源Viの電圧を検出することができる。
 インバータ回路2は、LC共振回路5による共振を利用して低損失なスイッチングを実現することで高周波のスイッチングが可能なE級インバータ回路である。インバータ回路2は、第1チョークインダクタL1と、第1スイッチQ1と、第1シャントキャパシタC1と、LC共振回路5を備え、制御部8により第1スイッチQ1をオン・オフすることで、交流電源Viからの低周波の交流入力電圧を高周波化して高周波の交流電流を生成する。第1スイッチQ1は、例えば、Nチャネル型MOSFETなどの半導体スイッチング素子を用いる。
 交流電源Viの両端には、第1チョークインダクタL1と第1スイッチQ1との直列回路が接続される。第1チョークインダクタL1と第1スイッチQ1との直列回路には、電力変換装置1の入力電流を検出するための第1電流検出部6が必要に応じて接続される。第1スイッチQ1の両端には、第1シャントキャパシタC1が並列に接続される。第1チョークインダクタL1とスイッチQ1との接続端は、LC共振回路5に接続される。
 LC共振回路5は、共振インダクタLrと共振キャパシタCrとが直列に接続された直列共振回路である。第1スイッチQ1がオフの時に、共振インダクタLrと共振キャパシタCrとの直列共振回路による共振周波数によりスイッチQ1の両端電圧を高周波の正弦波状に変化させる。
 整流回路3は、整流回路3の入力に並列に接続された第1ダイオードD1および第2シャントキャパシタC2と整流回路3の出力に第2チョークインダクタL2を有するE級整流回路であり、LC共振回路5からの高周波の交流電流を整流して、得られた直流電圧又は低周波の交流電圧を出力電圧として出力する。第1ダイオードD1のカソードは、共振キャパシタCrの一端に接続される。第1ダイオードD1のアノードは第1シャントキャパシタC1の一端に接続される。第2シャントキャパシタC2は、第1ダイオードD1に並列に接続される。第2チョークインダクタL2の一端は、第1ダイオードD1のカソードと第2シャントキャパシタC2の一端に接続される。
 整流回路3と直流負荷10の間には、第2スイッチQ2と第2ダイオードD2からなるスイッチング回路4が配置されている。第2スイッチQ2は、例えば、Nチャネル型MOSFETなどの半導体スイッチング素子を用いる。第2スイッチQ2の一端は、第2チョークインダクタL2の他端に接続される。第2スイッチQ2の他端は、第2シャントキャパシタC2の他端に接続される。第2ダイオードD2のアノードは、第2シャントキャパシタC2の他端および第2スイッチQ2の一端に接続される。第2ダイオードのカソードと第2スイッチQ2の他端の間には、出力キャパシタCoを介して、直流負荷10が接続されている。第2ダイオードのカソードと第2スイッチQ2の他端の間には、電力変換装置1の出力電圧を検出するための電圧検出部7が必要に応じて接続されている。第2ダイオードのカソードと直流負荷10の間には、電力変換装置1の出力電流を検出するための第2電流検出部9が必要に応じて接続されている。
 インバータ回路2の第1スイッチQ1が制御部8の制御により高周波の周波数frでオン・オフ動作を繰り返すと、LC共振回路5に周波数frの高周波の交流電流が発生する。整流回路3は、LC共振回路5の高周波の交流電流を整流する。その際、整流回路3の第1ダイオードD1の両端電圧は、印加された周波数frの交流電流が半波整流された正の交流電圧となり、この正の交流電圧を第2シャントキャパシタC2により平滑化した直流電圧が第2チョークインダクタL2に電力を供給する。
 整流回路3の後段に配置されたスイッチング回路4では、第2スイッチQ2がオンの時には、第2チョークインダクタL2からの電流が第2スイッチQ2を通じて流れるため、第2スイッチQ2と第2ダイオードD2と第2チョークインダクタL2の接続点の電圧である整流回路3の出力電圧Vsがほぼゼロになる。これに対して、第2スイッチQ2がオフの時には、第2チョークインダクタL2からの電流が第2ダイオードD2を介して直流負荷10に流れ、整流回路3の出力電圧Vsは直流負荷10に印加される出力電圧Voにほぼ等しくなる。
 ここで、整流回路3の出力電圧Vsの平均電圧Vavgは、スイッチング回路4の第2スイッチQ2が動作周期におけるオン時間の比率である時比率Dsを用いて、Vavg=Vo×(1−Ds)で表すことができる。そして、第1ダイオードD1の両端電圧Vd1のピーク電圧Vd1_peakは、平均電圧Vavgに応じた値であり、かつ、平均電圧Vavgの数倍となる。すなわち、平均電圧Vavgを小さくすることに応じて、第1ダイオードD1の両端電圧Vd1のピーク電圧Vd1_peakも小さくすることができる。なお、スイッチング回路4の第2スイッチQ2のオン・オフすなわち時比率Dsは、制御部8により制御されている。なお、出力電圧Voは、整流回路3の出力電圧Vsの変動にかかわらず、出力キャパシタCoにより、一定の値に保たれる。
(第1実施形態)
 図2は、第1実施形態における、電力変換装置1のスイッチング回路4の動作と、整流回路3の第1ダイオードD1の両端電圧Vd1の波形を示したものである。
 整流回路3のE級整流回路としての一般的な使用方法では、整流回路3の出力電圧Vsは、通常、電力変換装置1の出力電圧Voと等しい一定の値の直流電圧である。そして、整流回路3の出力電圧Vsの数倍のピーク電圧Vd1_peakの半波整流された高周波の交流電圧が1/frの周期で整流回路3の第1ダイオードD1の両端電圧Vd1として印加される。
 一方、第1実施形態では、制御部8によりスイッチング回路4の第2スイッチQ2の時比率Dsを制御することによって、整流回路3の出力電圧Vsを任意に制御する。
 第1実施形態では、電力変換装置1は、出力電圧Voを検知する電圧検出部7を備える。制御部8は、電力変換装置1の出力電圧Voを電圧検出部7により検知し、検知した出力電圧Voに基づいて、整流回路3の第1ダイオードD1のピーク電圧Vd1_peakが任意に設定した所望の値を上回らないように第2スイッチQ2の時比率Dsを操作する。例えば、時比率Dsがゼロの時、電力変換装置1の出力電圧Voは、整流回路3の出力電圧Vsと等しい。そして、制御部8が、時比率Dsがゼロの時の電力変換装置1の出力電圧Voが所定の値よりも高いと判断したときには、このときの電力変換装置1の出力電圧Voに基づき、第2スイッチQ2の時比率Dsを所定の値に設定する。すなわち、制御部は、第2スイッチQ2を、周期Ts、所定の値の時比率Dsでオン・オフする。すると、整流回路3の出力電圧Vsは、図2に示すように、Ts×Dsのオン期間でゼロとなり、Ts×(1−Ds)のオフ期間で出力電圧Voと等しい値となる矩形波状に電圧波形になる。そして、整流回路3の出力電圧Vsの平均電圧Vavgは、Vavg=Vo×(1−Ds)のようになる。この時、第1ダイオードD1のピーク電圧Vd1_peakは、第2スイッチQ2が常時オフ(Ds=0)の時に比べて、Vavg/Vo=(1−Ds)の大きさに抑制される。なお、出力電圧Voは、整流回路3の出力電圧Vsの変動にかかわらず、出力キャパシタCoにより、一定の値に保たれる。
 このように、第1実施形態では、第2スイッチQ2の時比率Dsを操作して整流回路3の出力電圧Vsの平均電圧Vavgを低減することにより、整流回路3の第1ダイオードD1のピーク電圧Vd1_peakを抑制することができる。
(第2実施形態)
 第2実施形態では、電力変換装置1において、特定の出力電圧Voまたは出力電流Ioの条件で第2スイッチQ2の時比率Dsの制御を行うものである。
 整流回路3の第1ダイオードD1のピーク電圧Vd1_peakは、整流回路3の平均電圧Vavgの数倍の電圧になる。また、第1ダイオードD1に加わる電圧のピーク値であるピーク電圧Vd1_peakは、電力変換装置1の出力電流Ioにも依存する。このため、同じ整流回路3の平均電圧Vavgの条件でも、出力電流Ioが大きいときに第1ダイオードD1のピーク電圧Vd1_peakはより大きくなる。したがって、電力変換装置1の出力電圧Voまたは出力電流Ioが低い条件では、スイッチング回路4の第2スイッチQ2のスイッチング動作を行って整流回路3の平均電圧Vavgを低減しなくても、第1ダイオードD1のピーク電圧Vd1_peakが過剰な電圧とならないこともある。
 第2実施形態では、電力変換装置1は、電力変換装置1の出力電圧Voを検知する電圧検出部7と出力電流Ioを検知する第2電流検出部9を備える。
 制御部8は、電圧検出部7が検知した出力電圧Voと第2電流検出部9が検知した出力電流Ioに基づき、整流回路3の第1ダイオードD1のピーク電圧Vd1_peakが任意に設定した所望の値を上回ると判断した場合には、第1実施形態のようにスイッチング回路4をスイッチング動作させて、整流回路3の第1ダイオードD1のピーク電圧Vd1_peakを抑制する。
 そして、制御部8は、電圧検出部7が検知した出力電圧Voと第2電流検出部9が検知した出力電流Ioに基づき、整流回路3の第1ダイオードD1のピーク電圧Vd1_peakが任意に設定した所望の値以下であると判断した場合には、スイッチング回路4の第2スイッチQ2の時比率Dsをゼロへ操作してスイッチング動作をオフにする。このときのスイッチング回路4の動作と、整流回路3の第1ダイオードD1の両端電圧の波形を示したものが図3である。これにより、整流回路3の第1ダイオードD1のピーク電圧Vd1_peakが所望の値を上回ると判断した際には、第1実施形態のようにスイッチング回路4をスイッチング動作させて整流回路3の第1ダイオードD1のピーク電圧Vd1_peakを抑制する。そして、整流回路3の第1ダイオードD1のピーク電圧Vd1_peakが所望の値以下であると判断した際には、スイッチング回路4のスイッチング動作を停止させる。このことにより、電力変換装置1の電力変換効率を向上させることができる。
(第3実施形態)
 第3実施形態では、電力変換装置1の入力電圧と入力電流に対する電力変換効率の高くなる出力電圧Voと出力電流Ioの条件を制御部8にあらかじめ取得して記憶しておく。そして、制御部8は、あらかじめ取得した条件に基づき、現在の電力変換装置1の入力電圧、入力電流、出力電圧Vo、出力電流Ioの値において電力変換効率が高くなる条件となるように第2スイッチQ2の時比率Dsを操作する。
 第3実施形態では、電力変換装置1は、第1電流検出部6と、電圧検出部7と、第2電流検出部9とを備える。制御部8は、第1電流検出部6と電圧検出部7と第2電流検出部9との検知した現在の値と交流電源Viの交流電圧の現在の値を検知し、これらの検知した現在の値に基づき整流回路3の第1ダイオードD1のピーク電圧Vd1_peakを推定する。
 制御部8は、整流回路3の第1ダイオードD1のピーク電圧Vd1_peakが任意に設定した所望の値を上回ると判断した場合には、第1実施形態のようにスイッチング回路4をスイッチング動作させて、整流回路3の第1ダイオードD1のピーク電圧Vd1_peakを抑制する。
 そして、電力変換装置1では、整流回路3の第1ダイオードD1のピーク電圧Vd1_peakが任意に設定した所望の値以下である場合には、第2スイッチQ2の時比率Dsを操作して、整流回路3の平均電圧Vavgを任意の電圧に制御しても問題が無い。
 この特性を利用し、電力変換装置1の入力電圧と入力電流に対する電力変換効率の高くなる出力電圧Voと出力電流Ioの条件を制御部8にあらかじめ取得して記憶しておく。そして、制御部8が整流回路3の第1ダイオードD1のピーク電圧Vd1_peakが任意に設定した所望の値以下であると判断した場合には、検知した電力変換装置1の入力電圧、入力電流、出力電圧Vo、出力電流Ioの現在の値と予め取得した条件に基づき、制御部8は電力変換効率が高くなるように第2スイッチQ2の時比率Dsを操作する。
 このことにより、第3実施形態では、整流回路3の第1ダイオードD1のピーク電圧Vd1_peakが任意に設定した所望の値を上回るときには、整流回路3の第1ダイオードD1のピーク電圧Vd1_peakを抑制できるとともに、整流回路3の第1ダイオードD1のピーク電圧Vd1_peakが任意に設定した所望の値以下であるときには、電力変換装置1の電力変換効率を向上させることができる。
(第4実施形態)
 第4実施形態では、電力変換装置1の入力電圧、入力電流、出力電圧Vo、出力電流Ioを検知し、制御部8はそれら検知した入力電圧、入力電流、出力電圧Vo、出力電流Ioより電力変換装置1の電力変換効率を演算する。
 ここで、制御部8はスイッチング回路4の第2スイッチQ2の時比率Dsをある時比率Ds1のときの整流回路3の平均電圧Vavg1である状態から、スイッチング回路4の時比率を時比率Ds2に変化させたときに整流回路3の平均電圧Vavg2に変化したとする。すると、各々の平均電圧Vavg1、Vavg2は、それぞれVavg1=Vo×(1−Ds1)、Vavg2=Vo×(1−Ds2)で表される。
 第4実施形態では、電力変換装置1は、第1電流検出部6と、電圧検出部7と、第2電流検出部9とを備える。制御部8は、第1電流検出部6と電圧検出部7と第2電流検出部9との検知した値と交流電源Viの交流電圧の値を検知する。
 制御部8は、整流回路3の第1ダイオードD1のピーク電圧Vd1_peakが所望の値を上回る際には、第1実施形態のようにスイッチング回路4をスイッチング動作させて、整流回路3の第1ダイオードD1のピーク電圧Vd1_peakを抑制する。
 制御部8は、整流回路3の第1ダイオードD1のピーク電圧Vd1_peakが所望の値以下であると判断した場合には、第2スイッチQ2の時比率Dsを変化させたときの各々の動作条件において、検知した入力・出力の電圧・電流に基づき電力変換装置1の電力変換効率を演算する。ここで、整流回路3の平均出力電圧がVavg1であるときの電力変換効率をη1、Vavg2であるときの電力変換効率をη2とする。そして、η1>η2の場合には、時比率をDs1からDs2に変化させたことで電力変換装置1の効率が低下したと判断し、現在の時比率Ds2をDs1の方向に近づける方向に変化させる。また、η1<η2であった場合には、時比率をDs1からDs2に変化させたことで電力変換装置1の電力変換効率が向上したと判断し、現在の時比率Ds2をDs1からより遠ざける方向に変化させる。このようにスイッチング回路4の第2スイッチQ2の時比率Dsを変化させたときの電力変換効率に基づき次の時比率Dsを決定することを断続的に繰り返す。このことで、電力変換装置1を電力変換効率が高い状態を維持しながら動作させることができる。
 なお、各実施形態に係る電力変換装置1では、E級インバータ回路2と、出力側にチョークインダクタL2を持つE級整流回路3と、E級整流回路3と直流負荷10の間に配置されたスイッチング回路4の構成を例として挙げているが、本発明はこのような構成に限定されるものではない。例えば、共振回路を利用し高周波電流を生成する一般的にLLC型と呼ばれるような電流共振型インバータ回路、出力インダクタを持つブリッジ型の整流回路、整流回路のチョークインダクタの後段に配置されたスイッチング回路を有する電力変換装置などにおいても、スイッチング回路の時比率を操作することで、整流回路の整流器に印加される電圧を低減することができる。
 また、各実施形態に係る電力変換装置1では、インバータ回路2の入力は、入力端子が実効値200V、周波数50Hzなどの低周波の交流電源Viとして説明したが、これには限定されず、交流電源Viの代わりに直流電源であっても同様に動作をすることができる。
 本発明の電力変換装置1は、交流電力から蓄電池への充電や、電動車両からの外部給電に適用可能である。
1 電力変換装置
2 インバータ回路
3 整流回路
4 スイッチング回路
5 LC共振回路
6 第1電流検出部
7 電圧検出部
8 制御部
9 第2電流検出部
10 直流負荷10
C1 第1シャントキャパシタ
C2 第2シャントキャパシタ
Cr 共振キャパシタ
Co 出力キャパシタ
D1 第1ダイオード
D2 第2ダイオード
Io 出力電流
L1 第1チョークインダクタ
L2 第2チョークインダクタ
Q1 第1スイッチ
Q2 第2スイッチ
Vi 交流電源
Vo 出力電圧

Claims (7)

  1.  第1スイッチとLC共振回路とを有し、交流電力を出力するインバータ回路と、
     第1整流素子とチョークインダクタとを有し、前記インバータ回路から入力された前記交流電力を直流電力に変換して出力する整流回路と、
     第2スイッチと第2整流素子とを有し、前記整流回路の出力に接続されたスイッチング回路と、
     前記第1スイッチと前記第2スイッチの動作を制御する制御部と
    を備えた電力変換装置の制御方法において、
     前記制御部は、前記電力変換装置の出力電圧に基づいて前記第2スイッチの時比率を操作する
    電力変換装置の制御方法。
  2.  前記制御部は、
     前記電力変換装置の出力電圧を検知し、
     検知した前記出力電圧に基づいて、前記第2スイッチの前記時比率を操作する
    請求項1に記載の電力変換装置の制御方法。
  3.  前記制御部は、
     前記電力変換装置の出力電圧と出力電流を検知し、
     検知した前記出力電圧と出力電流に基づいて、前記第2スイッチの時比率を操作する
    請求項1に記載の電力変換装置の制御方法。
  4.  前記制御部は、
     検知した前記出力電圧と出力電流に基づき前記第1整流素子に加わる電圧のピーク値が所定値を上回ると判断した場合には、前記電力変換装置の出力電圧に基づいて前記第2スイッチの時比率を操作し、
     検知した前記出力電圧と出力電流に基づき前記電圧のピーク値が所定値以下であると判断した場合には、前記第2スイッチの前記時比率をゼロへ操作する
    請求項3に記載の電力変換装置の制御方法。
  5.  前記制御部は、
     前記電力変換装置の入力電圧と入力電流に対する前記電力変換装置の電力変換効率が高くなる出力電圧と出力電流の条件を予め取得し、
     前記電力変換装置の入力電圧、入力電流、出力電圧及び出力電流を検知し、
     検知した前記入力電圧、前記入力電流、前記出力電圧及び前記出力電流に基づき前記第1整流素子に加わる電圧のピーク値が所定値を上回ると判断した場合には、前記電力変換装置の出力電圧に基づいて前記第2スイッチの時比率を操作し、
     前記電圧のピーク値が所定値以下であると判断した場合には、予め取得した前記条件と検知した前記入力電圧、前記入力電流、前記出力電圧及び前記出力電流に基づき、前記電力変換効率が高くなるように前記第2スイッチの前記時比率を操作する
    請求項1に記載の電力変換装置の制御方法。
  6.  前記制御部は、
     前記電力変換装置の入力電圧、入力電流、出力電圧及び出力電流を検知し、
     検知した前記入力電圧、前記入力電流、前記出力電圧及び前記出力電流に基づき前記電力変換装置の電力変換効率を演算し、
     検知した前記入力電圧、前記入力電流、前記出力電圧及び前記出力電流に基づき前記第1整流素子に加わる電圧のピーク値が所定値を上回ると判断した場合には、前記電力変換装置の出力電圧に基づいて前記第2スイッチの時比率を操作し、
     前記電圧のピーク値が所定値以下であると判断した場合には、前記電力変換効率が高くなるように前記第2スイッチの前記時比率を操作する
    請求項1に記載の電力変換装置の制御方法。
  7.  第1スイッチとLC共振回路とを有し、交流電力を出力するインバータ回路と、
     第1整流素子とチョークインダクタとを有し、前記インバータ回路から入力された前記交流電力を直流電力に変換して出力する整流回路と、
     第2スイッチと第2整流素子とを有し、前記整流回路の出力に接続されたスイッチング回路と、
     前記第1スイッチと前記第2スイッチの動作を制御する制御部と
    を備え、
     前記制御部は、電力変換装置の出力電圧に基づいて前記第2スイッチの時比率を操作する
    電力変換装置。
PCT/IB2022/000660 2022-11-10 2022-11-10 電力変換装置及びその制御方法 WO2024100430A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IB2022/000660 WO2024100430A1 (ja) 2022-11-10 2022-11-10 電力変換装置及びその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2022/000660 WO2024100430A1 (ja) 2022-11-10 2022-11-10 電力変換装置及びその制御方法

Publications (1)

Publication Number Publication Date
WO2024100430A1 true WO2024100430A1 (ja) 2024-05-16

Family

ID=91032013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/000660 WO2024100430A1 (ja) 2022-11-10 2022-11-10 電力変換装置及びその制御方法

Country Status (1)

Country Link
WO (1) WO2024100430A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05176532A (ja) * 1991-09-25 1993-07-13 Yamaha Corp 電源回路
JP2002078321A (ja) * 2000-08-30 2002-03-15 Toyota Industries Corp スイッチングレギュレータ
JP2004248343A (ja) * 2003-02-10 2004-09-02 Victor Co Of Japan Ltd 定電力制御回路
JP2021145433A (ja) * 2020-03-11 2021-09-24 日産自動車株式会社 力率改善回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05176532A (ja) * 1991-09-25 1993-07-13 Yamaha Corp 電源回路
JP2002078321A (ja) * 2000-08-30 2002-03-15 Toyota Industries Corp スイッチングレギュレータ
JP2004248343A (ja) * 2003-02-10 2004-09-02 Victor Co Of Japan Ltd 定電力制御回路
JP2021145433A (ja) * 2020-03-11 2021-09-24 日産自動車株式会社 力率改善回路

Similar Documents

Publication Publication Date Title
CN110226282B (zh) Llc谐振转换器
US9209697B2 (en) Switching power-supply device
CN108028605B (zh) 具有保持操作的转换器
JP4774987B2 (ja) スイッチング電源装置
US9667153B2 (en) Switching power supply apparatus for generating control signal for lowering switching frequency of switching devices
US8711580B2 (en) Resonant conversion system with over-current protection processes
US8054653B2 (en) DC power supply for varying output voltage according to load current variation
US8488346B2 (en) Power conversion apparatus and method
US20130016531A1 (en) Power supply device and method of controlling power supply device
CN106028496B (zh) Led点亮装置以及led照明装置
JP6012822B1 (ja) 電力変換装置
CN111130353A (zh) 开关电源装置
US9831786B2 (en) Switching power-supply device
US20120092909A1 (en) Power conversion apparatus
US9433060B2 (en) Power factor correction circuit, operating device for a light-emitting means and method for controlling a power factor correction circuit
JP2009273324A (ja) スイッチング電源装置
CN114189166A (zh) 轻载控制电路、方法及谐振变换器
JP2009232662A (ja) Dc/dcコンバータ
WO2024100430A1 (ja) 電力変換装置及びその制御方法
WO2010098486A1 (ja) Dc-dcコンバータ
KR100420964B1 (ko) 역률보상 단일단 컨버터
US7095158B2 (en) A/D converter with adjustable internal connection and method for the sameoperating
CN114825975A (zh) 电源供应器及驱动方法
EP1313203A2 (en) Half-bridge converters
CN117375381B (zh) Dc/dc变换器及其控制方法、功率变换装置和储能系统