WO2024099298A1 - 一种组合阀及空压机组的油路系统 - Google Patents

一种组合阀及空压机组的油路系统 Download PDF

Info

Publication number
WO2024099298A1
WO2024099298A1 PCT/CN2023/130123 CN2023130123W WO2024099298A1 WO 2024099298 A1 WO2024099298 A1 WO 2024099298A1 CN 2023130123 W CN2023130123 W CN 2023130123W WO 2024099298 A1 WO2024099298 A1 WO 2024099298A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
chamber
cut
temperature control
valve
Prior art date
Application number
PCT/CN2023/130123
Other languages
English (en)
French (fr)
Inventor
郑亚晏
Original Assignee
泛亚气体技术(无锡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泛亚气体技术(无锡)有限公司 filed Critical 泛亚气体技术(无锡)有限公司
Publication of WO2024099298A1 publication Critical patent/WO2024099298A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/12Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors

Definitions

  • the utility model relates to the technical field of air compressors, in particular to an oil circuit system of a combined valve and an air compressor unit.
  • the compressor When the compressor is working, it needs to be sprayed with a proper amount of oil for cooling and lubrication.
  • a valve body When supplying oil to the compressor, a valve body is often required to control the oil circuit.
  • the existing combination valve is often only suitable for regulating the oil supply of one compressor.
  • the utility model provides a combination valve with a simple structure and simplified pipeline connection, and an oil circuit system of an air compressor unit including the combination valve.
  • the utility model provides a combination valve, which comprises:
  • a valve seat wherein an oil cut-off chamber, two temperature control chambers and two oil inlet channels respectively connected to the two temperature control chambers are provided in the valve seat, the oil cut-off chamber is respectively connected to the two temperature control chambers through the two oil supply channels, and the valve seat is provided with a first oil inlet and a second oil inlet respectively connected to the oil cut-off chamber, an oil outlet connected to the oil supply channel, a third oil inlet connected to the oil inlet channel and an oil return port connected to the temperature control chamber;
  • the oil cut-off valve core is arranged in the oil cut-off chamber and can move in the oil cut-off chamber, and is used to connect one of the oil supply passages to the second oil inlet and the other oil supply passage to the first oil inlet, or to connect both of the oil supply passages to the first oil inlet at the same time;
  • a temperature control valve core is arranged in the temperature control cavity and is used for connecting or disconnecting the oil supply channel and the temperature control cavity.
  • combination valve also includes:
  • a piston is disposed in the oil cut-off chamber and is used to push the oil cut-off valve core to move in the oil cut-off chamber under the action of an external force.
  • valve seat is provided with an air inlet connected to the oil cut-off chamber, which is used to introduce gas into the oil cut-off chamber to apply external force to the piston.
  • the oil cut-off valve core and the piston are arranged in sequence from top to bottom in the oil cut-off chamber, and the piston is used to push the oil cut-off valve core to move in the vertical direction.
  • the air inlet is arranged at the bottom of the oil cut-off chamber.
  • the oil cut-off chamber is arranged at a middle position in the valve seat, and the two temperature control chambers are arranged on both sides of the oil cut-off chamber.
  • first oil inlet and the second oil inlet are arranged on opposite sides of the valve seat along a direction perpendicular to the moving direction of the oil cut-off valve core.
  • the oil outlet and the third oil inlet are arranged on the upper part of the valve seat.
  • the position where the oil supply channel is connected to the temperature control chamber is arranged above the position where the oil inlet channel is connected to the temperature control chamber, and the temperature control valve core can move in the vertical direction according to the change of oil temperature in the oil supply channel to open or disconnect the oil supply channel and the temperature control chamber.
  • combination valve also includes:
  • An oil filter is connected to the temperature control chamber and the oil return port respectively, and is used for filtering the oil flowing out of the temperature control chamber and discharging it through the oil return port.
  • the number of the oil filters is four, and two oil filters are correspondingly arranged in each temperature control chamber.
  • At least two filter oil chambers are provided in the valve seat, which are respectively arranged corresponding to the oil filters and are connected to the temperature control chamber through return oil channels respectively.
  • the return oil port on the valve seat passes through the filter oil chamber.
  • the oil filter chamber passes through two opposite ends of the valve seat, and the open ends of the oil filter chamber are respectively connected to the oil filters.
  • the oil cut-off valve core is a two-position three-way valve core; and/or, the temperature control valve core is a thermostat.
  • An oil circuit system for an air compressor unit comprising:
  • a combination valve according to any one of the above embodiments, wherein the oil return ports of the combination valve are respectively connected to two compressors for providing cooling oil to the compressors;
  • An oil separator barrel wherein the exhaust hole of the oil separator barrel is in communication with the oil cut-off chamber, so as to push the oil cut-off valve core to move in the oil cut-off chamber through the gas separated by the oil separator barrel, and the oil outlet of the oil separator barrel is in communication with the first oil inlet of the valve seat;
  • a cooler wherein the oil inlet of the cooler is communicated with the oil outlet on the valve seat, and the oil outlet of the cooler is communicated with the third oil inlet of the valve seat;
  • Auxiliary oil tank the oil outlet of the auxiliary oil tank is connected with the second oil inlet on the valve seat.
  • the combination valve provided in the present embodiment is provided with an oil cut-off chamber and two temperature control chambers, the oil cut-off chamber is connected with the two temperature control chambers through two oil supply channels respectively, the oil cut-off chamber is provided with an oil cut-off valve core, and the valve seat is provided with a first oil inlet and a second oil inlet connected with the oil cut-off chamber, and the oil cut-off valve core is controlled to move in the oil cut-off chamber to connect one of the oil supply channels with the second oil inlet and the other oil supply channel with the first oil inlet, or to connect the two oil supply channels with the first oil inlet at the same time.
  • the combination valve can complete the normal oil supply of the two compressors under different working conditions, simplify the connection of the pipelines, and reduce leakage at the pipeline connections.
  • FIG1 is a first perspective view of a combination valve according to an embodiment of the utility model
  • FIG2 is a second viewing angle view of the combination valve according to the embodiment of the utility model
  • FIG3 is a main cross-sectional view of the oil cut-off valve core of the combination valve of the utility model embodiment when it is in the first position, and the direction of the arrow in the figure represents the direction of the oil circuit;
  • FIG4 is a main cross-sectional view of the oil cut-off valve core of the combination valve according to the embodiment of the utility model when it is in the second position, and the direction of the arrow in the figure represents the direction of the oil circuit;
  • FIG5 is a schematic diagram of the assembly structure of the combination valve and the oil filter according to an embodiment of the utility model
  • FIG6 is a main cross-sectional view of a valve seat according to an embodiment of the utility model
  • FIG. 7 is a side sectional view of the valve seat according to an embodiment of the utility model.
  • the embodiment of the utility model provides a combination valve, as shown in FIG. 1 , FIG. 3 and FIG. 4 , the combination valve comprises a valve seat 1 , and an oil cut-off valve core 2 and a temperature control valve core 3 arranged in the valve seat 1 .
  • an oil cut-off chamber 10 As shown in FIG. 6 , an oil cut-off chamber 10 , two temperature control chambers 11 and two oil inlet channels 13 respectively connected to the two temperature control chambers 11 are provided in the valve seat 1 .
  • the oil cut-off chamber 10 is respectively connected to the two temperature control chambers 11 through two oil supply channels 12 .
  • valve seat 1 is further provided with a first oil inlet 14 and a second oil inlet 15 respectively communicating with the oil cut-off chamber 10 , an oil outlet 16 communicating with the oil supply channel 12 , and a third oil inlet 17 communicating with the oil inlet channel 13 .
  • the oil cut-off valve core 2 of this embodiment is arranged in the oil cut-off chamber 10 and can move in the oil cut-off chamber 10, and is used to connect one of the oil supply channels 12 with the second oil inlet 15 and the other oil supply channel 12 with the first oil inlet 14 or to connect both oil supply channels 12 with the first oil inlet 14 at the same time.
  • valve seat 1 is further provided with an oil return port 21 communicating with the temperature control chamber 11 , through which the oil in the valve seat 1 can be discharged for cooling and lubricating the compressor.
  • the temperature control valve core 3 of the present embodiment is disposed in the temperature control chamber 11 , and is used to connect or disconnect the oil supply passage 12 and the temperature control chamber 11 .
  • the combination valve provided in the present embodiment is provided with an oil cut-off chamber 10 and two temperature control chambers 11, the oil cut-off chamber 10 is connected with the two temperature control chambers 11 through two oil supply channels 12 respectively, the oil cut-off chamber 10 is provided with an oil cut-off valve core 2, and the valve seat 1 is provided with a first oil inlet 14 and a second oil inlet 15 connected with the oil cut-off chamber 10, and the oil cut-off valve core 2 is controlled to move in the oil cut-off chamber 10 to connect one of the oil supply channels 12 with the second oil inlet 15 and the other oil supply channel 12 with the first oil inlet 14, or to connect the two oil supply channels 12 with the first oil inlet 14 at the same time, so that the combination valve can complete the normal oil supply of the two compressors under different working conditions, simplify the connection of the pipelines, and reduce leakage at the pipeline connections.
  • the oil cut-off valve core 2 of the present embodiment can move in the vertical direction within the oil cut-off chamber 10 , and has a first position and a second position in the vertical direction.
  • the oil cut-off valve core 2 when the oil cut-off valve core 2 is in its first position, the oil cut-off valve core 2 will connect the second oil inlet 15 with the oil supply channel 12 located on the left side of the oil cut-off chamber 10, and at the same time, the first oil inlet 14 will connect with the oil supply channel 12 located on the right side of the oil cut-off chamber 10. The oil entering through the second oil inlet 15 will flow into the oil supply channel 12 on the right, while the oil entering through the second oil inlet 15 will flow into the oil supply channel 12 on the left.
  • the oil cut-off valve core 2 when the oil cut-off valve core 2 is in its second position, the oil cut-off valve core 2 will simultaneously connect the first oil inlet 14 to the oil supply channels 12 located on the left and right sides of the oil cut-off chamber 10. At this time, the oil entering through the first oil inlet 14 will flow into the oil supply channels 12 on the left and right sides respectively, and at the same time, the second oil inlet 15 is blocked and no oil will enter.
  • the oil discharged from the oil return port 21 connected to the left and right temperature control chambers 11 can be used to spray oil on the corresponding two compressors.
  • the oil return port 21 connected to the left temperature control chamber 11 is used to spray oil on one of the compressors
  • the oil return port 21 connected to the right temperature control chamber 11 is used to spray oil on the other compressor.
  • the oil cut-off valve core 2 can be moved to the first position, so that the oil entering the valve seat 1 through the first oil inlet 14 all enters the oil supply channel 12 on the right side, and is finally discharged through the oil return port 21 connected to the right temperature control chamber 11 to spray oil to the running compressor.
  • the oil cut-off valve core 2 can be moved to the second position, so that the oil entering the valve seat 1 through the first oil inlet 14 enters the oil supply channel 12 on the left and the oil supply channel 12 on the right respectively, and is finally discharged through the two oil return ports 21, so as to spray oil to both compressors at the same time.
  • the normal oil supply of the two compressors under different working conditions can be quickly adjusted by switching the oil cut-off valve core 2 back and forth between the two positions in the oil cut-off chamber 10, and the structure is simple and the operation is convenient.
  • a piston 4 is further provided in the oil cut-off chamber 10, and the piston 4 is against the oil cut-off valve core 2.
  • the piston 4 can push the oil cut-off valve core 2 upward under the action of external force to switch it between the first position and the second position.
  • the transmission structure is stable and easy to operate.
  • an air inlet 20 can also be set on the oil cut-off chamber 10.
  • the high-pressure gas introduced into the oil cut-off chamber 10 through the air inlet 20 will give thrust to the piston 4, thereby pushing the oil cut-off valve core 2 to move from the first position to the second position in the oil cut-off chamber 10.
  • the air inlet 12 of this embodiment can be separately connected to a similar air supply device to adjust the air supply at any time according to the changes in the air consumption of the equipment to drive the movement of the piston 4; or, the air inlet 12 can be directly connected to an oil separator barrel connected to two compressors, and the gas generated by the oil separator barrel can be used to drive the movement of the piston 4.
  • the piston 4 and the oil cut-off valve core 2 of the present embodiment are arranged in sequence from top to bottom in the oil cut-off chamber 10, so that it can be ensured that the piston 4 can directly push the oil cut-off valve core 2 to move from the first position to the second position when subjected to an external force; and when the external force is removed, the oil cut-off valve core 2 will press the piston 4 downward under the action of its gravity, thereby returning to its first position.
  • the air inlet 20 is directly disposed at the bottom of the valve seat 1 , so that the high-pressure gas injected into the oil cut-off chamber 10 can directly act on the piston 4 to exert an upward thrust thereon, thereby improving the transmission efficiency.
  • the oil cut-off chamber 10 is arranged in the middle position of the valve seat 1, and the two temperature control chambers 11 are arranged on both sides of the oil cut-off chamber 10, that is, the oil cut-off chamber is arranged in the middle position of the two temperature control chambers 11, and the left and right sides of the oil cut-off chamber 10 are respectively connected to the two temperature control chambers 11 through the oil supply channel 12.
  • first oil inlet 14 and the second oil inlet 15 are arranged on opposite sides of the valve seat 1 along the direction perpendicular to the movement of the oil cut-off valve core 2.
  • first oil inlet 14 and the second oil inlet 15 are arranged on the front and rear sides of the valve seat 1.
  • they can also be arranged on the left and right sides of the valve seat 1, and the setting positions of the two oil inlets can be determined according to the specific structure of the oil cut-off valve core 2.
  • the oil outlet 16 and the third oil inlet 17 are both arranged on the upper part of the valve seat 1, so that in combination with the setting positions of the first oil inlet 14, the second oil inlet 15 and the air inlet 20, entanglement of the pipes connecting these oil ports and air ports can be avoided.
  • the utility model does not limit the shape of the valve seat 2, and the first oil inlet 14, the second oil inlet 15, the third oil inlet 17, etc. can be adjusted at any time according to the shape of the valve seat.
  • a cooler can be connected between the oil outlet 16 connected to the oil supply channel 12 and the third oil inlet 17 connected to the oil inlet channel 13.
  • the inlet of the cooler is connected to the oil outlet 16, and the outlet of the cooler is connected to the third oil inlet 17.
  • a part of the oil can enter the cooler through the oil outlet 16 for cooling, and then enter the oil inlet channel 13 in the valve seat 1 from the third oil inlet 17, and finally flow into the temperature control chamber 11. In this way, the cooling oil sprayed into the compressor can be further cooled to improve the cooling effect.
  • the oil supply channel 12 is connected to the upper position of the cavity wall of the temperature control cavity 11, and the oil inlet channel 13 is connected to the lower position of the cavity wall of the temperature control cavity 11.
  • the temperature control valve core 3 is vertically arranged in the temperature control cavity 11. The oil entering the oil supply channel 12 through the first oil inlet 14 will partially enter the temperature control valve core 3. The temperature control valve core 3 will move up and down according to the oil temperature in the oil supply channel 12 to connect or disconnect the oil supply channel 12 and the temperature control cavity 11.
  • the temperature sensing component in the temperature control valve core 3 will expand and drive the temperature control valve core 3 to move downward, blocking the connecting position between the oil supply channel 12 and the temperature control chamber 11, so that all the oil in the oil supply channel 12 can enter the cooler connected between the oil outlet 16 and the third oil inlet 17 for cooling, and then flow into the temperature control chamber 11 through the oil inlet channel 13; if the oil temperature flowing into the temperature control chamber 11 through the oil inlet channel 13 is too low, the temperature sensing component in the temperature control valve core 3 will shrink to drive the temperature control valve core 3 to move upward, thereby connecting the oil supply channel 12 with the temperature control chamber 11. At this time, part of the hot oil in the oil supply channel 12 will also enter the temperature control chamber 11 to mix with the low-temperature oil flowing into the oil inlet channel 13 and then be discharged through the oil return port 21.
  • the combination valve further includes an oil filter 5 for connecting the temperature control cavity 11 in the valve seat 1 and the oil drain port 21.
  • the oil flowing out of the temperature control cavity 11 can be filtered through the oil filter 5 and then discharged from the oil return port 21 to spray oil on the two compressors, thereby preventing the impurities in the oil from affecting the operation of the mechanical structure of the air compressor or even damaging the mechanical structure.
  • each temperature control chamber 11 corresponds to at least two oil filters 5, that is, the oil flowing out of each temperature control chamber 11 is filtered by two oil filters 5 and then discharged from the oil return port 21 to ensure sufficient filtering of the oil.
  • two filter oil chambers 19 are further provided in the valve seat 1, which are respectively arranged corresponding to the temperature control chamber 11.
  • the filter oil chamber 19 is connected with the temperature control chamber 11 through the return oil channel 18.
  • the oil filter 18 is fixed on the valve seat 1 and is connected with the filter oil chamber 19.
  • the oil discharge port 21 on the valve seat 1 passes through the filter chamber 19, so that the oil flowing out of the temperature control chamber 11 can enter the filter 5 through the filter oil chamber 19 for filtration and then be discharged from the return oil port 21.
  • the two filter oil chambers 19 in the valve seat 1 of this embodiment respectively penetrate the upper surface and the lower surface of the valve seat 1 , and the upper and lower open ends of each filter oil chamber 19 are respectively connected to an oil filter 5 to ensure that the oil coming out of the filter oil chamber 19 enters the oil filter 5 at the upper and lower parts of the valve seat 1 for filtration.
  • connection between two oil filters 5 in each filter oil chamber 19 of the present embodiment is only exemplary, and technicians in this field can set the number and position of the oil filters 5 connected to each filter oil chamber 19 as needed, as long as the oil discharged from the filter oil chamber 19 is sufficiently filtered.
  • the oil cut-off valve core 2 of this embodiment can adopt a two-position three-way valve core and other valve core structures that can achieve the above functions.
  • the temperature control valve core 3 of this embodiment can use an existing thermostat to realize the function of connecting or disconnecting the oil supply channel 12 and the temperature control chamber 11.
  • the structure and working principle of the thermostat they belong to the existing technology and will not be described in detail in this embodiment.
  • the embodiment of the utility model further provides an oil circuit system of an air compressor unit, and the oil circuit system of the air compressor unit mainly includes an oil separation barrel, a cooler, an auxiliary oil tank and a combination valve as described in any of the above embodiments.
  • the two oil return ports 21 in the combination valve are respectively connected to the two compressors for injecting oil into the compressors.
  • the oil separator barrel is used to collect the oil-gas mixture discharged from the two compressors after operation, and to separate the oil-gas mixture.
  • the exhaust port of the oil separator barrel is connected to the air inlet 20 on the valve seat 1, so as to push the piston 4 to move by the gas separated by the oil separator barrel.
  • the oil outlet of the oil separator barrel is connected to the first oil inlet 14 on the valve seat 1, so as to supply oil to the valve seat 1.
  • oil separator is a commonly used device in a compressor, and its specific working principle and structure also belong to the prior art and will not be described in detail.
  • the inlet of the cooler is communicated with the oil outlet 16 on the valve seat 1 , and the outlet of the cooler is communicated with the third oil inlet 17 of the valve seat 1 , so as to further cool down the oil entering the valve body 1 .
  • the auxiliary oil tank is communicated with the second oil inlet 15 on the valve seat 1, so as to allow oil to flow into the compressor when the oil cut-off valve core 3 in the combined valve is in the first position to ensure the normal operation of the compressor.
  • the oil-gas mixture produced by the two compressors will enter the oil separation barrel together for oil-gas separation, and a portion of the separated gas will enter the oil cut-off chamber 10 through the air inlet 20 of the valve seat 1 to push the piston 4 to move upward, so that the oil cut-off valve core 2 is in the second position.
  • the oil separated in the oil separation barrel can enter the valve seat 1 through the first oil inlet 14 on the valve seat 1, and finally be filtered through the oil filter 5 and reused for oil injection to the two compressors.
  • the oil circuit system of the air compressor unit in this embodiment can directly separate the oil and gas mixture produced by the two compressors.
  • the separated gas can be used to control the movement of the oil cut-off valve core 2, and the separated oil can be recycled and reused for cooling and lubricating the compressor. This can achieve resource recycling and ensure automatic switching of the oil circuits of the two compressors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

本实用新型提供了一种组合阀及空压机组的油路系统,属于空气压缩机技术领域。该组合阀包括阀座,阀座内设有断油腔、两个温控腔以及分别与两个温控腔连通的两个进油通道,断油腔分别通过两个供油通道与两个所述温控腔连通,阀座上设有分别与断油腔连通的第一进油口和第二进油口、与供油通道连通的出油口、与进油通道连通的第三进油口以及与温控腔连通的回油口;断油阀芯,断油阀芯设置在断油腔内并能够在断油腔内移动,用于将一个供油通道与第二进油口导通而另一个供油通道与第一进油口导通或同时将两个供油通道与第一进油口导通;该组合阀能够完成两个压缩机在不同工况下的正常供油,简化了管路的连接,减少管路连接处的泄露。

Description

一种组合阀及空压机组的油路系统 技术领域
本实用新型涉及空气压缩机技术领域,尤其涉及一种组合阀及空压机组的油路系统。
背景技术
压缩机在其工作时需要对其喷入适量的油进行冷却润滑等,在向压缩机内供油时常常需要阀体来控制油路,而现有的组合阀往往只适用于对一个压缩机的供油进行调节。
随着用气量需求的逐渐提升,有时需要两台压缩机同时进行工作才能达到需要的用气量。这时,当设备用气量高时可以同时启动两台压缩机,当设备用气量不高时可以只运行其中一台压缩机,另一台压缩机可空载运行或停止运行来达到气量调节的目的。此时需要对两台压缩机分别设置一个阀体以实现对相应的压缩机的油路进行控制,这样会使得连接阀体管路设计繁杂,不仅维护安装困难,还增加了管路的压降和泄露的风险。
实用新型内容
针对现有技术中存在的上述技术问题,本实用新型提供一种结构简单、且简化管路连接的组合阀及包含该组合阀的空压机组的油路系统。
本实用新型实施例提供了一种组合阀,所述组合阀包括:
阀座,所述阀座内设有断油腔、两个温控腔以及分别与两个所述温控腔连通的两个进油通道,所述断油腔分别通过两个所述供油通道与两个所述温控腔连通,所述阀座上设有分别与所述断油腔连通的第一进油口和第二进油口、与所述供油通道连通的出油口、与所述进油通道连通的第三进油口以及与所述温控腔连通的回油口;
断油阀芯,所述断油阀芯设置在所述断油腔内并能够在所述断油腔内移动,用于将一个所述供油通道与所述第二进油口导通而另一个所述供油通道与所述第一进油口导通或同时将两个所述供油通道与所述第一进油口导通;
温控阀芯,所述温控阀芯设置在所述温控腔内,用于导通或断开所述供油通道和所述温控腔。
进一步地,所述组合阀还包括:
活塞,所述活塞设置在所述断油腔内,用于在外力作用下推动所述断油阀芯在所述断油腔内移动。
进一步地,所述阀座上还设有与所述断油腔连通的进气口,用于向所述断油腔内通入气体以对所述活塞施加外力。
进一步地,所述断油阀芯和所述活塞在所述断油腔内从上往下依次设置,所述活塞用于推动所述断油阀芯在竖直方向上移动。
进一步地,所述进气口设置在所述断油腔的腔底。
进一步地,所述断油腔设于所述阀座内的中部位置,两个所述温控腔设置在所述断油腔的两侧。
进一步地,所述第一进油口和所述第二进油口设置在所述阀座沿垂直所述断油阀芯移动方向的相对的两侧。
进一步地,所述出油口和所述第三进油口设置在所述阀座的上部。
进一步地,所述供油通道与所述温控腔连通的位置设于所述进油通道与所述温控腔连通的位置的上方,所述温控阀芯能够根据所述供油通道内的油温变化在竖向方向移动,以导通或断开所述供油通道和所述温控腔。
进一步地,所述组合阀还包括:
油过滤器,其分别连通所述温控腔和所述回油口,用于将所述温控腔内流出的油进行过滤并通过所述回油口排出。
进一步地,所述油过滤器的数量为为四个,每个所述温控腔对应设置两个所述油过滤器。
进一步地,所述阀座内至少设有两个过滤油腔,其分别与所述油过滤器对应设置,并分别通过回油通道与所述温控腔连通,所述阀座上的回油口贯通至所述过滤油腔。
进一步地,所述过滤油腔贯通阀座相对的两端,所述过滤油腔的敞口端分别连通所述油过滤器。
进一步地,所述断油阀芯为两位三通阀芯;和/或,所述温控阀芯为节温器。
一种空压机组的油路系统,所述油路系统包括:
上述任一项实施例所述的一种组合阀,所述组合阀的回油口分别与两个压缩机连通,用于向所述压缩机提供冷却油;
油分桶,所述油分桶的排气孔与所述断油腔连通,以用于通过所述油分桶分离出的气体推动所述断油阀芯在所述断油腔内移动,所述油分桶的出油口与所述阀座的第一进油口连通;
冷却器,所述冷却器的进油口与所述阀座上的出油口连通,所述冷却器的出油口与所述阀座的第三进油口连通;
副油箱,所述副油箱的出油口与所述阀座上的第二进油口连通。
与现有技术相比,本实用新型实施例的有益效果在于:
本实施例提供的组合阀内设有一个断油腔和两个温控腔,断油腔分别通过两个供油通道与两个温控腔连通,断油腔设有断油阀芯,阀座上设有与断油腔连通的第一进油口和第二进油口,通过控制断油阀芯在断油腔内移动以将一个所述供油通道与所述第二进油口导通而另一个所述供油通道与所述第一进油口导通或同时将两个所述供油通道与所述第一进油口导通,这样可以使得该组合阀能够完成两个压缩机在不同工况下的正常供油,简化了管路的连接,减少管路连接处的泄露。
附图说明
图1为本实用新型实施例组合阀的第一视角图;
图2为本实用新型实施例组合阀的第二视角图;
图3为本实用新型实施例组合阀的断油阀芯处于第一位置时的主剖视图,图中箭头方向代表油路走向;
图4为本实用新型实施例组合阀的断油阀芯处于第二位置时的主剖视图图中箭头方向代表油路走向;
图5为本实用新型实施例组合阀与油过滤器的装配结构示意图;
图6为本实用新型实施例阀座的主剖视图;
图7为本实用新型实施例阀座的侧剖视图。
图中的附图标记所表示的构件:
1-阀座,10-断油腔,11-温控腔,12-供油通道,13-进油通道,14-第一进油口,15-第二进油口,16-出油口,17-第三进油口,18-回油通道,19-过滤油腔,2-断油阀芯,20-进气口,21-回油口,3-温控阀芯,4-活塞,5-油过滤器。
具体实施方式
为使本领域技术人员更好的理解本实用新型的技术方案,下面结合附图和具体实施方式对本实用新型作详细说明。
本实用新型实施例提供了一种组合阀,如图1、图3以及图4所示,该组合阀包括阀座1以及设置在阀座1内的断油阀芯2和温控阀芯3。
如图6所示,阀座1内设有断油腔10、两个温控腔11以及分别与两个温控腔11连通的两个进油通道13,断油腔10分别通过两个供油通道12与两个温控腔11连通。
如图1和图2所示,阀座1上还设有分别与断油腔10连通的第一进油口14和第二进油口15、与供油通道12连通的出油口16、与进油通道13连通的第三进油口17。
本实施例的断油阀芯2设置在断油腔10内,并能够在断油腔10内移动,用于将其中一个供油通道12与第二进油口15导通而另一个供油通道12与第一进油口14导通或同时将两个供油通道12与第一进油口14导通。
如图7所示,阀座1上还设有与温控腔11连通的回油口21,通过该回油口21可以将阀座1内的油排出,以用于冷却润滑压缩机。
如图3和图4所示,本实施例的温控阀芯3设置在温控腔11内,用于导通或断开供油通道12和温控腔11。
本实施例提供的组合阀内设有一个断油腔10和两个温控腔11,断油腔10分别通过两个供油通道12与两个温控腔11连通,断油腔10设有断油阀芯2,阀座1上设有与断油腔10连通的第一进油口14和第二进油口15,通过控制断油阀芯2在断油腔10内移动以将其中一个供油通道12与第二进油口15导通而另一个供油通道12与第一进油口14导通或同时将两个供油通道12与第一进油口14导通,这样可以使得该组合阀完成两个压缩机在不同工况下的正常供油,简化了管路的连接,减少管路连接处的泄露。
如图3和图4所示,本实施例的断油阀芯2能够在断油腔10内的竖直方向上移动,并在该竖直方向具有第一位置和第二位置。
具体地,如图3所示,当断油阀芯2处于其第一位置时,断油阀芯2会将第二进油口15与位于断油腔10左侧的供油通道12导通,同时第一进油口14会与位于断油腔10右侧的供油通道12导通。此时通过第一进口14进入 的油会流入右侧的供油通道12,而通过第二进油口15进入的油会流入到左侧的供油通道12。
如图4所示,当断油阀芯2处于其第二位置时,断油阀芯2会将第一进油口14与位于断油腔10左右两侧的供油通道12同时导通。此时通过第一进油口14进入的油会分别流入到左右两侧的供油通道12内,同时,第二进油口15被封堵不再进油。
本实施例的分别连通左右两个温控腔11的回油口21排出的油可以用于分别对对应的两台压缩机进行喷油。现假设连通左侧温控腔11的回油口21用于对其中一台压缩机进行喷油,连通右侧温控腔11的回油口21用于对另一台压缩机进行喷油。
当设备用气量不多时,可以只启动一台压缩机,另一台压缩机可以空载,以达到气量调解的目的。此时可以将断油阀芯2移动至第一位置,这样通过第一进油口14进入至阀座1内的油全部进入至右侧的供油通道12内,并最终通过连通右侧温控腔11的回油口21排出,以对运行的那台压缩机进行喷油。
当设备用气量增加时,需要同时启动两台压缩机,以增加产生的气量。此时可以将断油阀芯2移动至第二位置,这样通过第一进油口14进入至阀座1内的油分别进入至左侧的供油通道12和右侧的供油通道12内,并最终通过两个回油口21排出,以同时对两台压缩机均进行喷油。
本实施例通过断油阀芯2在断油腔10内的两个位置之间来回切换即可快速调整完成两台压缩机在不同工况下的正常供油,结构简单,操作方便。
如图3和图4所示,在一些实施例中,在断油腔10内还设有活塞4,活塞4与断油阀芯2相抵,活塞4受到外力作用能够向上推动断油阀芯2使其在第一位置和第二位置之间切换,该传动结构稳定,易操作。
当然,上述通过活塞4带动断油阀芯2移动仅为示例性,本领域的技术人员也可以采用其它可控的机械结构来带动断油阀芯2运动,本实施例不再进行赘述。
进一步地,为了便于对活塞4施加外力,在一些实施例中,断油腔10上还可以设置进气口20,通过该进气口20向断油腔10内通入高压气体会给活塞4推力,从而推动断油阀芯2在断油腔10内由第一位置移动到第二位置。
需要说明的是,本实施例的进气口12可以单独连接类似供气的设备,以用于根据设备用气量的变化随时调整供气量以带动活塞4运动;或者,进气口12可以直接连接到两台压缩机连通的油分桶内,利用油分桶产生的气体带动活塞4运动。
优选地,本实施例的活塞4和断油阀芯2在断油腔10内从上往下依次设置,这样可以保证活塞4受到外力能够直接推动断油阀芯2由第一位置移动第二位置;而当撤去外力之后,断油阀芯2在其重力作用下会压着活塞4向下运动,从而回到其第一位置出。
继续如图3和图4所示,在一些实施例中,进气口20直接设置在阀座1的底部,这样向断油腔10内注入的高压气体能够直接作用在活塞4上以对其施加向上的推力,从而提高传动效率。
在一些实施例中,断油腔10设置在阀座1的中部位置,两个温控腔11设置在断油腔10的两侧,即断油腔设置在两个温控腔11的中间位置,断油腔10的左右两侧分别通过供油通道12与两个温控腔11连通。
在一些实施例中,第一进油口14和第二进油口15设置在阀座1沿垂直断油阀芯2移动方向的相对的两侧。比如如图3和图4所示,第一进油口14和和第二进油口15设置在阀座1的前后两侧。当然也可以设置在阀座1的左右两侧,这个可以根据断油阀芯2的具体结构来确定两个进油口的设置位置。
进一步地,在一些实施例中,出油口16和第三进油口17均设置在阀座1的上部,这样配合第一进油口14、第二进油口15以及进气口20的设置位置,可以避免连接这些油口以及气口的管路发生缠绕。
本实用新型对阀座2的形状不做限定,且第一进油口14、第二进油口15、第三进油口17等可以根据阀座的形状随时调整位置。
在一些实施例中,与供油通道12连通的出油口16以及与进油通道13连通的第三进油口17之间可以连接冷却器,冷却器的入口与出油口16连通,冷却器的出口与第三进油口17连通,当通过第一进油口14送入到供油通道12内的油的温度过高时,一部分油可通过出油口16进入到冷却器内冷却,然后再从第三进油口17进入至阀座1内的进油通道13内,最终再流入至温控腔11内,这样可以对喷入到压缩机内的冷却油进行进一步地降温,以提高冷却效果。
进一步地,如图3和图4所示,在一些实施例中,供油通道12与温控腔11的腔壁靠上的位置连通,进油通道13与温控腔11的腔壁靠下的位置连通,温控阀芯3在温控腔11内竖向设置,通过第一进油口14进入到供油通道12内的油会有部分进入到温控阀芯3,温控阀芯3会根据供油通道12内的油温进行上下移动,以导通或断开供油通道12和温控腔11。
具体地,如果供油通道12内的油温过高,温控阀芯3内的感温组件会热胀从而带动温控阀芯3向下运动,将供油通道12与温控腔11的连通位置封堵,这样供油通道12内的油可以全部进入至连接出油口16和第三进油口17之间的冷却器进行冷却,然后再由进油通道13流入至温控腔11内;如果通过进油通道13流入温控腔11内的油温过低,温控阀芯3内的感温组件会冷缩以带动温控阀芯3向上运动,从而会将供油通道12与温控腔11的导通,此时供油通道12内的部分热油也会进入到温控腔11内,以与进油通道13流入的低温油进行混合再通过回油口21排出。
如图5所示,在一些实施例中,组合阀还包括用于连通阀座1内温控腔11和排油口21的油过滤器5,通过该油过滤器5可以将从温控腔11内流出的油进行过滤,再从回油口21排出以对两台压缩机进行喷油,从而避免因为油中杂质对空压机的机械结构的运行造成影响,甚至损害机械结构。
至于油过滤器5的数量可以至少为四个,每个控温控11分别至少对应两个油过滤器5,也即每个温控腔11流出的油分别通过两个油过滤5进行过滤后再从回油口21排出,以保证对油的充分过滤。
如图6和图7所示,在一些实施例中,阀座1内还设有两个分别与温控腔11对应设置的过滤油腔19,过滤油腔19通过回油通道18与温控腔11连通,油过滤器18固定在阀座1上并与过滤油腔19连通,阀座1上的排油口21贯通至过滤腔19内,这样通过温控腔11流出的油可以通过过滤油腔19进入到过滤器5内进行过滤再从回油口21排出。
继续如图5和图7所示,本实施例阀座1内的两个过滤油腔19分别贯通阀座1的上表面和下表面,每个过滤油腔19的上下两个敞口端分别连接一个油过滤器5,以保证从过滤油腔19出来的油分别进入阀座1上部的下部的油过滤器5进行过滤。
当然,本实施例的每个过滤油腔19连通两个油过滤器5仅为示例性,本领域的技术人员可以根据需要设置连接每个过滤油腔19的油过滤器5的数量以及位置等,只要保证对过滤油腔19排出的油进行充分过滤即可。
优选地,本实施例的断油阀芯2可以采用二位三通阀芯以及其它可以实现上述功能的阀芯结构。
优选地,本实施的温控阀芯3可以采用现有节温器来实现导通或断开供油通道12和温控腔11的功能,至于节温器的结构及工作原理,属于现有技术,本实施例不再进行赘述。
本实用新型实施例还提供了一种空压机组的油路系统,该空压机组的油路系统主要包括油分桶、冷却器、副油箱以及上述任一项实施例所述的一种组合阀。
组合阀中的两个回油口21分别与两台压缩机连通,以用于向压缩机喷油。
油分桶用于分别收集两台压缩机工作后排出的油气混合物,并对油气混合物进行油气分离,油分桶的排气口与阀座1上的进气口20连通,以用于通过油分桶分离的气体推动活塞4移动,油分桶的出油口与阀座1上的第一进油口14连通,以用于向阀座1内进行供油。
需要说明的是,油分桶属于压缩机内常用的设备,其具体的工作原理和结构也属于现有技术,不再进行赘述。
冷却器的入口与阀座1上的出油口16连通,冷却器的出口与阀座1的第三进油口17连通,以用于对进入到阀体1内的油进行再降温。
副油箱与所述阀座1上的第二进油口15连通,以用于组合阀内的断油阀芯3在第一位置时,向压缩机通入油以保证该压缩机正常运行。
下面详细说明一下该空压机组的油路系统的使用方法:
当两台压缩机同时启动时,这两台压缩机产生的油气混合物会一同进入到油分桶内进行油气分离,分离出来的一部分气体会通过阀座1的进气口20进入到断油腔10内,以推动活塞4向上运动,从而使得断油阀芯2处于第二位置。此时,油分桶内分离出来的油可以通过阀座1上的第一进油口14进入到阀座1内,并最终通过油过滤器5过滤后再重新用于对两个压缩机喷油。
当只运行一台压缩机,另一台压缩机空载时,其产生的油气混合物会减少,进而油分桶分离出来的气体不足以推动活塞4,断油阀芯2会从第二位置移动至第一位置,这样油分桶内分离出来的油仅会通过阀座1上侧的排油 口21排出,以用于对运行的那一台压缩机喷油,另一台空载的压缩机可以通过副油箱供油以对其进行喷油。
本实施例的空压机组的油路系统可直接将两个压缩机产生的油气混合物进行油气分离,分离出来的气可用于控制断油阀芯2移动,分离出来的油可回收利用再用于对压缩机进行冷却润滑,这样可以实现资源的回收利用,还能保证两个压缩机油路的自动切换。
以上实施例仅为本实用新型的示例性实施例,不用于限制本实用新型。本领域技术人员可以在本实用新型的实质和保护范围内,对本实用新型做出各种修改或等同替换,这种修改或等同替换也应视为落在本实用新型的保护范围内。

Claims (15)

  1. 一种组合阀,其特征在于,所述组合阀包括:
    阀座,所述阀座内设有断油腔、两个温控腔以及分别与两个所述温控腔连通的两个进油通道,所述断油腔分别通过两个供油通道与两个所述温控腔连通,所述阀座上设有分别与所述断油腔连通的第一进油口和第二进油口、与所述供油通道连通的出油口、与所述进油通道连通的第三进油口以及与所述温控腔连通的回油口;
    断油阀芯,所述断油阀芯设置在所述断油腔内并能够在所述断油腔内移动,用于将一个所述供油通道与所述第二进油口导通而另一个所述供油通道与所述第一进油口导通或同时将两个所述供油通道与所述第一进油口导通;
    温控阀芯,所述温控阀芯设置在所述温控腔内,用于导通或断开所述供油通道和所述温控腔。
  2. 如权利要求1所述的一种组合阀,其特征在于,所述组合阀还包括:
    活塞,所述活塞设置在所述断油腔内,用于在外力作用下推动所述断油阀芯在所述断油腔内移动。
  3. 如权利要求2所述的一种组合阀,其特征在于,所述阀座上还设有与所述断油腔连通的进气口,用于向所述断油腔内通入气体以对所述活塞施加外力。
  4. 如权利要求3所述的一种组合阀,其特征在于,所述断油阀芯和所述活塞在所述断油腔内从上往下依次设置,所述活塞用于推动所述断油阀芯在竖直方向上移动。
  5. 如权利要求4所述的一种组合阀,其特征在于,所述进气口设置在所述断油腔的腔底。
  6. 如权利要求1所述的一种组合阀,其特征在于,所述断油腔设于所述阀座内的中部位置,两个所述温控腔设置在所述断油腔的两侧。
  7. 如权利要求6所述的一种组合阀,其特征在于,所述第一进油口和所述第二进油口设置在所述阀座沿垂直所述断油阀芯移动方向的相对的两侧。
  8. 如权利要求6所述的一种组合阀,其特征在于,所述出油口和所述第三进油口设置在所述阀座的上部。
  9. 如权利要求1所述的一种组合阀,其特征在于,所述供油通道与所述温控腔连通的位置设于所述进油通道与所述温控腔连通的位置的上方,所述 温控阀芯能够根据所述供油通道内的油温变化在竖直方向上移动,以导通或断开所述供油通道和所述温控腔。
  10. 如权利要求1所述的一种组合阀,其特征在于,所述组合阀还包括:
    油过滤器,其分别连通所述温控腔和所述回油口,用于将所述温控腔内流出的油进行过滤并通过所述回油口排出。
  11. 如权利要求10所述的一种组合阀,其特征在于,所述油过滤器的数量为四个,每个所述温控腔对应设置两个所述油过滤器。
  12. 如权利要求11所述的一种组合阀,其特征在于,所述阀座内至少设有两个过滤油腔,其分别与所述油过滤器对应设置,并分别通过回油通道与所述温控腔连通,所述阀座上的回油口贯通至所述过滤油腔。
  13. 如权利要求12所述的一种组合阀,其特征在于,所述过滤油腔贯通阀座相对的两端,所述过滤油腔的敞口端分别连通所述油过滤器。
  14. 如权利要求1-13任一项所述的一种组合阀,其特征在于,所述断油阀芯为两位三通阀芯;和/或,所述温控阀芯为节温器。
  15. 一种空压机组的油路系统,其特征在于,所述油路系统包括:
    如权利要求1-14任一项所述的一种组合阀,所述组合阀的回油口分别与两个压缩机连通,用于向所述压缩机提供冷却油;
    油分桶,所述油分桶的排气孔与所述断油腔连通,用于通过所述油分桶分离出的气体推动所述断油阀芯在所述断油腔内移动,所述油分桶的出油口与所述阀座的第一进油口连通;
    冷却器,所述冷却器的进油口与所述阀座上的出油口连通,所述冷却器的出油口与所述阀座的第三进油口连通;
    副油箱,所述副油箱的出油口与所述阀座上的第二进油口连通。
PCT/CN2023/130123 2022-11-08 2023-11-07 一种组合阀及空压机组的油路系统 WO2024099298A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222974756.9 2022-11-08
CN202222974756.9U CN218439654U (zh) 2022-11-08 2022-11-08 一种组合阀及空压机组的油路系统

Publications (1)

Publication Number Publication Date
WO2024099298A1 true WO2024099298A1 (zh) 2024-05-16

Family

ID=85075313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/130123 WO2024099298A1 (zh) 2022-11-08 2023-11-07 一种组合阀及空压机组的油路系统

Country Status (3)

Country Link
CN (1) CN218439654U (zh)
TW (1) TWM653124U (zh)
WO (1) WO2024099298A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218439654U (zh) * 2022-11-08 2023-02-03 泛亚气体技术(无锡)有限公司 一种组合阀及空压机组的油路系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216093A (ja) * 1988-02-25 1989-08-30 Hitachi Ltd 油冷式スクリュー圧縮機の給油装置
CN101139992A (zh) * 2007-10-19 2008-03-12 无锡压缩机股份有限公司 螺杆压缩机油路系统多功能集成阀
CN211051058U (zh) * 2019-09-25 2020-07-21 张家港圣美意机械有限公司 一种多向式过滤器
CN217682543U (zh) * 2022-06-30 2022-10-28 英格索兰技术研发(上海)有限公司 组合阀、油处理组件和设备
CN218439654U (zh) * 2022-11-08 2023-02-03 泛亚气体技术(无锡)有限公司 一种组合阀及空压机组的油路系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216093A (ja) * 1988-02-25 1989-08-30 Hitachi Ltd 油冷式スクリュー圧縮機の給油装置
CN101139992A (zh) * 2007-10-19 2008-03-12 无锡压缩机股份有限公司 螺杆压缩机油路系统多功能集成阀
CN211051058U (zh) * 2019-09-25 2020-07-21 张家港圣美意机械有限公司 一种多向式过滤器
CN217682543U (zh) * 2022-06-30 2022-10-28 英格索兰技术研发(上海)有限公司 组合阀、油处理组件和设备
CN218439654U (zh) * 2022-11-08 2023-02-03 泛亚气体技术(无锡)有限公司 一种组合阀及空压机组的油路系统

Also Published As

Publication number Publication date
CN218439654U (zh) 2023-02-03
TWM653124U (zh) 2024-03-21

Similar Documents

Publication Publication Date Title
WO2024099298A1 (zh) 一种组合阀及空压机组的油路系统
CN101443609A (zh) 带低压蒸汽喷射的经济制冷系统
CN104344589B (zh) 空气源热泵系统及其控制方法
CN201628421U (zh) 满液式螺杆水、地源热泵机组用中间回油冷却装置
JP2016537547A (ja) 内燃機関の燃料供給システム
CN110762017B (zh) 进气结构、排气结构、压缩机、控制方法及空调器
JPS60101297A (ja) 容積形回転圧縮機
CN110219715A (zh) 一种闭式循环呼吸系统及汽车
CN107120861A (zh) 热泵系统
US20210404471A1 (en) Screw compressor with oil injection at multiple volume ratios
KR100737356B1 (ko) 수냉엔진 히트펌프
CN110242384B (zh) 发动机润滑集成模块
CN105756830A (zh) 组合式机械喷油-增压电磁喷气混合燃料喷射装置
CN214949922U (zh) 一种低环温制冷机组供油系统
CN211552114U (zh) 一种高温热泵机组
CN201705666U (zh) 一种中高压喷油螺杆机组循环油路控制结构
CN101799005B (zh) 一种中高压喷油螺杆机组循环油路控制系统
CN107246749B (zh) 工业超高温热泵机组
CN107100849A (zh) 变频压缩机电机冷却结构、控制方法及变频压缩机
CN206847126U (zh) 压缩机回油系统及双压缩机系统
CN111928547A (zh) 油分离器、回油系统及空调系统
CN218993734U (zh) 热泵机组
CN104748444A (zh) 多联机系统的回油组件和具有其的多联机系统
CN218817175U (zh) 一种双机双级离心式冷水机组供回油平衡系统
CN111921233B (zh) 一种油路脱气系统