WO2024098830A1 - 一种用于内窥镜的锁紧装置、内窥镜以及锁紧装置 - Google Patents

一种用于内窥镜的锁紧装置、内窥镜以及锁紧装置 Download PDF

Info

Publication number
WO2024098830A1
WO2024098830A1 PCT/CN2023/107953 CN2023107953W WO2024098830A1 WO 2024098830 A1 WO2024098830 A1 WO 2024098830A1 CN 2023107953 W CN2023107953 W CN 2023107953W WO 2024098830 A1 WO2024098830 A1 WO 2024098830A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating shaft
brake disc
traction
locking device
disc
Prior art date
Application number
PCT/CN2023/107953
Other languages
English (en)
French (fr)
Inventor
金鸿雁
时强强
Original Assignee
南微医学科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南微医学科技股份有限公司 filed Critical 南微医学科技股份有限公司
Publication of WO2024098830A1 publication Critical patent/WO2024098830A1/zh

Links

Definitions

  • the present application relates to the field of medical devices, and in particular to a locking device for an endoscope, an endoscope, and a locking device.
  • endoscope equipment mainly consists of traction wires, bendable parts, light sources, and lenses.
  • a locking device will be installed at the rear end of the endoscope.
  • the front end lens of the endoscope enters the human body through a minimally invasive incision.
  • the front end lens of the endoscope is adjusted to a suitable position, and then the lens of the endoscope is fixed at a certain angle.
  • the movement of the bendable part is controlled by the locking device at the rear end of the endoscope, and then the observation angle of the front end lens of the endoscope is adjusted to directly observe the lesions in the relevant parts. Therefore, as an important component in actual surgical operations, the endoscope locking device plays a vital role in realizing the observation of the lesion site.
  • a locking hand wheel is usually used to adjust and lock the lens. Since there are problems such as insufficient stability, low positioning accuracy, and inflexible bending angle when the locking hand wheel is used to manipulate the lens during operation, it has become a technical problem that technical personnel in this field need to solve to provide a locking device for an endoscope to improve the angular flexibility and stability of the endoscope lens during operation.
  • the present invention provides a locking device for an endoscope to solve the problems of insufficient operational stability, low precision and inflexible bending angle of the existing locking device for endoscopes.
  • the present invention also provides an endoscope using the locking device and a locking device.
  • a locking device for an endoscope comprises a first rotating wheel, a first rotating shaft, a brake disc, and a brake disc driving assembly; the first rotating wheel is connected to the first end of the first rotating shaft; a first traction disc is provided at the second end of the first rotating shaft; the rotation of the first rotating shaft can be controlled by the first rotating wheel, and the first traction disc is driven to rotate, and the rotation of the first traction disc adjusts the first traction wire, thereby adjusting the observation angle of the endoscope in the first dimension; the brake disc is provided on at least one side of the outer circumference of the first rotating shaft or the first traction disc, and the tightness of the fit between the brake disc and the first rotating shaft or the outer circumference of the first traction disc can be adjusted by the brake disc driving assembly, so that the rotation damping of the first rotating shaft is within a first preset damping range.
  • the brake disc as a whole is a frame structure clamped on the circumferential surface of the first rotating shaft or the first traction disc, and the frame structure has a brake disc opening that can be opened up and down;
  • the brake disc drive assembly has a fastener, and the fastener is arranged at least at one end of the brake disc opening, and the force applied to the brake disc can be adjusted through the fastener, thereby changing the clamping force applied by the brake disc to the first rotating shaft and the first traction disc to adjust the tightness of the brake disc and the outer circumferential surface of the first rotating shaft or the first traction disc, so that the rotational damping of the first rotating shaft is within a first preset damping range.
  • a boss is provided at the root of the brake disc opposite to the brake disc opening, and the brake disc is fixed in the body of the locking device through the boss.
  • a gap is provided at the root of the brake disc to increase the elastic deformation space of the brake disc.
  • the boss is disposed between a first clamping column and a second clamping column on the body, thereby fixing the brake disc in the body of the locking device.
  • the fastener includes: a stud, and an upper nut and a lower nut cooperating with the stud, the upper nut is arranged at the upper port of the brake disc opening, and the lower nut is arranged at the lower port of the brake disc opening; a first thread pair is formed between the upper nut and the first section of the stud, and a second thread pair is formed between the lower nut and the second section of the stud, and the first thread pair and the second thread pair have opposite thread rotation directions; the force applied to the brake disc is adjusted by rotating the stud.
  • the fastener includes: a stud, and an internal thread cooperating with the stud is provided at the opening position of the frame structure; wherein the upper port of the opening cooperates with the first section of the stud to form a third thread pair, and the lower port of the opening cooperates with the second section of the stud to form a fourth thread pair, and the third thread pair and the fourth thread pair have opposite thread rotation directions; the stud is rotated to adjust the force applied to the brake disc.
  • a gripping portion extending out of the housing of the machine body is provided on the stud; the gripping portion is used by an operator of the locking device to rotate the stud.
  • the stud is provided with an end surface abutting against the outer surface of the shell of the body.
  • the locking device also includes: a second rotating wheel and a second rotating shaft; the second rotating wheel is connected to the first end of the second rotating shaft, and the first rotating shaft and the second rotating shaft are coaxial, and the second rotating shaft is sleeved on the outer circumferential surface of the first rotating shaft; a second traction disk is provided on the second rotating shaft near the second end; the rotation of the second rotating shaft can be controlled by the second rotating wheel, and the second traction disk is driven to rotate, and the rotation of the second traction disk adjusts the second traction wire, thereby adjusting the observation angle of the endoscope in the second dimension; the second dimension is in a different direction dimension from the first dimension; the brake disk is also clamped on the circumference of the second rotating shaft or the second traction disk as a whole; when the brake disk applies a clamping force to the first rotating shaft and the first traction disk, a corresponding clamping force is also applied to the second rotating shaft and the second traction disk; so that the rotation of the second rotating shaft
  • the brake disc is arranged on one side of the outer circumference of the first rotating shaft, and the tightness of the fit between the brake disc and the outer circumference of the first rotating shaft can be adjusted through the brake disc drive assembly so that the rotational damping of the first rotating shaft is within a first preset range.
  • a locking device for an endoscope further includes a second rotating wheel and a second rotating shaft; the second rotating wheel is connected to the first end of the second rotating shaft, and the second rotating shaft is coaxial with the first rotating shaft; a second traction disk is provided at a position of the second rotating shaft near the second end, and a brake disk is located on at least one side of the outer circumference of the second rotating shaft; while adjusting the tightness of the fit between the brake disk and the outer circumference of the first rotating shaft, the tightness of the fit between the brake disk and the outer circumference of the second rotating shaft is also adjusted synchronously, so that the rotational damping of the second rotating shaft is within a second preset damping range; the rotation of the second traction disk is used to adjust the second traction wire of the endoscope, thereby adjusting the observation angle of the endoscope in the second dimension, and the second dimension is in a different direction dimension from the first dimension.
  • an O-ring is sleeved at the location where the outer circumference of the first rotating shaft and/or the outer circumference of the second rotating shaft contacts the brake disc.
  • the contact surface between the brake disc and the outer circumference of the first rotating shaft and/or the outer circumference of the second rotating shaft is provided with a surface texture for increasing friction.
  • a positioning hole is provided at one end of the brake disc body, and the positioning hole can be rotatably mounted on a fixing column of the housing of the locking device; by adjusting the swing angle of the brake disc around the fixing column, the tightness of the fit between the brake disc and the first rotating shaft and the second rotating shaft can be adjusted.
  • a circular arc through hole is provided on the brake disc body of the brake disc; a brake disc drive assembly It includes a driving member, whose main body is coaxially arranged with the first rotating shaft.
  • the driving member also has a cantilever connected to the driving member main body and extending to one radial side.
  • the cantilever is provided with a cantilever column extending in the axial direction.
  • the cantilever column is inserted into an arc-shaped through hole provided on the brake disc.
  • the brake disc drive assembly also includes a lever having a set length that is significantly larger than the diameter of the drive member body, one end of which is fixedly connected to the drive member body, and the other end of which extends in a radial direction and provides an operating surface that is easy to shift; by shifting the lever, the drive member can be rotated.
  • a spacer is provided at the axial gap between the first traction sheave and the second traction sheave.
  • the brake disc and the brake disc drive assembly are divided into two groups, which provide damping for the first rotating shaft and the second rotating shaft respectively.
  • the embodiment of the present application also provides an endoscope, which includes a first rotating wheel, a first rotating shaft, a brake disc, and a brake disc driving assembly; the first rotating wheel is connected to the first end of the first rotating shaft; a first traction disc is arranged at the second end of the first rotating shaft; the rotation of the first rotating shaft can be controlled by the first rotating wheel, and the first traction disc is driven to rotate; the brake disc is arranged on at least one side of the first rotating shaft or the outer circumference of the first traction disc, and the tightness of the fit between the brake disc and the first rotating shaft or the outer circumference of the first traction disc can be adjusted by the brake disc driving assembly, so that the rotation damping of the first rotating shaft is within a first preset damping range; the rotation of the first traction disc is used to adjust the first traction wire, thereby adjusting the observation angle of the endoscope lens in the first dimension; through this adjustment and in combination with the damping provided by the above-mentioned brake disc, the endoscope lens can be
  • An embodiment of the present application also provides a locking device, which includes a first rotating wheel, a first rotating shaft, a brake disc, and a brake disc driving assembly; the first rotating wheel is connected to the first end of the first rotating shaft; a first functional disc is arranged at the second end of the first rotating shaft; the rotation of the first rotating shaft can be controlled by the first rotating wheel, and the first functional disc can be driven to rotate; the brake disc is arranged on at least one side of the outer circumference of the first rotating shaft or the first functional disc, and the brake disc driving assembly can adjust the tightness of the fit between the brake disc and the first rotating shaft or the outer circumference of the first functional disc, so that the rotation damping of the first rotating shaft is within a first preset damping range.
  • the present invention provides a locking device for an endoscope, comprising a first rotating wheel, a first rotating shaft, a brake disc, and a brake disc driving assembly; the first rotating wheel is connected to the first end of the first rotating shaft; a first traction disc is arranged near the second end of the first rotating shaft; the rotation of the first rotating shaft can be controlled by the first rotating wheel, and the first traction disc is driven to rotate, and the rotation of the first traction disc adjusts the first traction wire, thereby adjusting the observation angle of the endoscope in the first dimension; the brake disc is arranged on at least one side of the outer circumference of the first rotating shaft, and the degree of tightness of the brake disc and the first rotating shaft or the outer circumference of the first traction disc can be adjusted by the brake disc driving assembly, thereby providing desired damping for the rotation of the first rotating shaft, and then realizing that when the locking device is working, the lens located at the distal bending part of the endoscope can be reliably fixed when it is rotated to a required angle through the
  • the brake disc as a whole is a frame structure clamped on the circumference of the first rotating shaft or the first traction disc, and the frame structure has a brake disc opening that can be opened up and down;
  • the brake disc drive assembly has a fastener, and the fastener is provided at least at one end of the brake disc opening, and the force applied to the brake disc can be adjusted by the fastener, so as to obtain the effect of adjusting the tightness of the fit between the brake disc and the first rotating shaft or the outer circumference of the first traction disc by changing the clamping force applied by the brake disc to the first rotating shaft and the first traction disc, thereby providing the desired damping to the rotation of the first rotating shaft.
  • the fastener is implemented using a threaded substructure. The above preferred embodiment can achieve continuous adjustment of the clamping degree, and can be reliably maintained at any adjustment position, meeting the requirements Various degrees of operating feel.
  • the brake disc is arranged on one side of the outer circumference of the first rotating shaft, and the tightness of the brake disc and the outer circumference of the first rotating shaft can be adjusted by the brake disc driving assembly, so as to provide the desired damping to the rotation of the first rotating shaft.
  • This preferred embodiment has the characteristics of simple structure and convenient operation.
  • FIG1A is a schematic cross-sectional view of a locking device for an endoscope provided in a first embodiment of the present application
  • FIG1B is a schematic structural diagram of a brake disc drive assembly of the locking device in FIG1A ;
  • FIG2A is a schematic structural diagram of the locking device in FIG1A from another viewing angle
  • FIG2B is a schematic diagram of the brake disc structure of the locking device in FIG2A ;
  • FIG3 is a left side view corresponding to the locking device in FIG2A ;
  • FIG4 is a top view corresponding to the locking device in FIG2A ;
  • FIG5 is a schematic structural diagram of the first traction disk of the locking device in FIG2A;
  • FIG6 is a schematic structural diagram of another connection method between the brake disc upper plate and the brake disc lower plate of the locking device in FIG2A;
  • FIG7 is a schematic diagram of a state where the locking device in FIG2A is locked
  • FIG8 is a schematic cross-sectional view of the locking device provided in the second embodiment
  • FIG9 is a schematic structural diagram of a first functional disk of a locking device provided in a second embodiment
  • FIG10 is a schematic diagram of a locking state of the locking device provided in the second embodiment
  • FIG11 is a schematic cross-sectional view of a locking device for an endoscope provided in a third embodiment
  • FIG12 is a schematic diagram of the locking device for the endoscope in FIG11 when it is unlocked
  • FIG13 is a schematic diagram of the locking device for the endoscope in FIG11 when locked
  • FIG14 is a schematic diagram of the brake disc structure in the locking device for an endoscope in FIG11 ; wherein the left side is a stereoscopic view of the overall structure of the brake disc, and the right side is a front view of a disc of the brake disc;
  • FIG15 is a schematic diagram of the structure of a driving member in the locking device for an endoscope in FIG11;
  • FIG16 is a schematic structural diagram of the first traction disk in the locking device for the endoscope in FIG11;
  • FIG17 is a schematic diagram of the overall structure of an endoscope provided in the fourth embodiment.
  • FIG. 18 is a schematic cross-sectional view of a locking device for an endoscope provided in the fifth embodiment.
  • Partial reference numerals of the first embodiment 10-locking device; 100-rotor assembly; 110-first rotor assembly; 111-first rotor; 113-first rotating shaft; 115-first traction disk; 1151-first traction disc groove; 1153-first traction wire; 1155-first traction hole; 1157-first traction disc center hole; 130-second rotating wheel assembly; 131-second rotating wheel; 133-second rotating shaft; 135-second traction disc; 1351-second traction disc groove; 150-isolation sheet; 300-brake disc; 310-brake disc body (frame structure); 311-brake disc upper disc; 313-brake disc lower disc; 315- Brake disc opening; 3151-brake disc opening upper port; 3153-brake disc opening lower port; 317-gap; 330-boss; 500-brake disc drive assembly; 510-fastener; 511-stud; 513-upper nut; 515-lower nut; 530-grip portion;
  • Second embodiment part reference numerals: 115'-first functional disk; 135'-second functional disk; the rest refer to the reference numerals of the first embodiment.
  • Partial reference numerals of the third embodiment 210-locking device; 2100-rotor assembly; 2110-first rotor assembly; 2111-first rotor; 2113-first shaft; 2115-first traction disk; 21151-first traction disk groove; 21153-first traction wire; 21155-first traction hole; 21157-first traction disk center hole; 2130 - second rotating wheel assembly; 2131 - second rotating wheel; 2133 - second rotating shaft; 2135 - second traction disk; 21351 - second traction disk groove; 2150-isolating disc; 2170-O-type sealing ring; 2170-1-first set of O-type sealing rings; 2170-2-second set of O-type sealing rings; 2300-brake disc; 2310-brake disc body; 2310-1-first brake disc body, 2310-2-second brake disc body; 2330-brake disc groove; 2350-arc-shaped through hole; 2370-positioning hole; 2500-brake disc drive assembly; 2510-drive member; 2511-drive
  • Partial reference numerals 2-endoscope; 210-locking device; 20-light source assembly; 30-traction wire; 40-suction tube; 50-irrigation tube; 60- Aviation connector; 70-lens; 80-bendable part; 90-catheter; 2530-lever; 2700-handle;
  • Partial reference numerals of the fifth embodiment 210'-locking device; 2115'-first functional disk; 2135'-second functional disk; the rest refer to the figure marks of the third embodiment.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of this application, the meaning of "plurality” is at least two, such as two, three, etc., unless otherwise clearly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • installed can be a fixed connection, a detachable connection, or an integral connection
  • it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • a first feature being “above” or “below” a second feature may mean that the first and second features are in direct contact, or that the first and second features are in indirect contact through an intermediate medium.
  • a first feature being “above”, “above” or “above” a second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • a first feature being “below”, “below” or “below” a second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is lower in level than the second feature.
  • a locking hand wheel is usually used to adjust the endoscope lens.
  • problems such as insufficient stability, low positioning accuracy, and inflexible bending angle when the endoscope locking device operates the lens.
  • the present application provides a locking device for an endoscope, which includes a first rotating wheel, a first rotating shaft, a brake disc, and a brake disc driving assembly, wherein the first rotating wheel is connected to the first end of the first rotating shaft; the first rotating shaft is provided with a first traction disc near the second end; the first rotating wheel can control the rotation of the first rotating shaft and drive the first traction disc to rotate, and the rotation of the first traction disc adjusts the first traction wire, thereby adjusting the observation angle of the endoscope in the first dimension; the brake disc is arranged on at least one side of the outer circumference of the first rotating shaft, and the brake disc driving assembly can adjust the tightness of the brake disc and the first rotating shaft or the outer circumference of the first traction disc, so that the rotation damping of the first rotating shaft is within the first preset damping range, thereby providing the first rotating shaft with the desired damping.
  • the first traction disc controls the retraction and release of the first traction wire, thereby realizing the adjustment of the angle and position of the endoscope lens by the first traction wire, which is conducive to the bending and fixing of the distal bending portion of the endoscope at any angle, and finally realizing the combination of flexibility and stability of the positioning angle of the endoscope lens during the operation of the endoscope, thereby improving the efficiency of the operation.
  • FIG1A the cross-sectional structure diagram of the locking device 10 for an endoscope provided in this embodiment; wherein, the left side of FIG1A is the first end of the locking device 10, i.e., one end of the rotating wheel assembly 100; the right side of FIG1A is the second end of the locking device 10, i.e., one end of the brake disc 300; in this figure, due to the viewing angle, the brake disc drive assembly 500 cannot be displayed, and can be understood by referring to FIG1B and subsequent schematic diagrams, FIG1B shows the structure of the brake disc drive assembly 500.
  • FIG2A is a structural schematic diagram of the locking device 10 in FIG1A at another viewing angle, i.e., a structural schematic diagram of the end of the brake disc 300 facing outside the paper; in this figure, the locking device 10 is in an unlocked state.
  • FIG3 is a structural schematic diagram of the locking device 10 in FIG2A from the left; and
  • FIG4 is a structural schematic diagram of the locking device 10 in FIG2A from a top view.
  • the locking device 10 includes the following components or parts: a rotating wheel assembly 100 ; a brake disc 300 ; and a brake disc drive assembly 500 .
  • the rotating wheel assembly 100 is located at the first end of the locking device 10 (left side of FIG. 1A)
  • the brake disc 300 is located at the second end of the locking device 10 (right side of FIG. 1A)
  • the brake disc drive assembly 500 is also located at the second end of the locking device 10 (right side of FIG. 1A) and is arranged at one end of the brake disc 300.
  • the brake disc drive assembly 500 is connected to the brake disc 300 through a fastener 510, so as to apply a force to the brake disc 300.
  • the locking device 10 also includes the following components: a handle; this component is not shown in the drawings of the present application, but as a necessary component in the operation of the endoscope, those skilled in the art can easily understand the purpose of this component; the handle is actually the body of the locking device 10, which provides a positioning basis for other components; it is called a handle because it is actually used as a handle in the overall structure of the endoscope, and is generally designed as two interlocking covers that can be disassembled according to assembly and repair needs; in the present embodiment, the handle is a hollow circular shell made of plastic material, which is used to provide an installation position for the rotating wheel assembly 100 and the brake disc 300.
  • the components related to the above-mentioned body and the locking device 10 are mainly the first clamping column and the second clamping column, and the brake disc 300 is fixed to the body of the locking device 10 by the first clamping column and the second clamping column.
  • the rotating wheel assembly 100 includes: a first rotating wheel assembly 110 , a second rotating wheel assembly 130 , and an isolation sheet 150 .
  • the wheel assembly 100 includes: a first wheel assembly 110 , a second wheel assembly 130 , and an isolation sheet 150 ; the first wheel assembly 110 includes: a first wheel 111 , a first shaft 113 , and a first traction disk 115 ; the second wheel assembly 130 includes: a second wheel 131 , a second shaft 133 , and a second traction disk 135 .
  • the first rotating wheel 111 is connected to the first end of the first rotating shaft 113, and serves as an operating handle disposed on the first rotating shaft 113.
  • the first rotating wheel 111 is disposed at the first end of the first rotating shaft 113 (left side of FIG. 1A).
  • the first traction plate 115 is disposed at the other end of the first rotating shaft 113, i.e., the second end of the first rotating shaft 113 (right side of FIG. 1A).
  • the second rotating wheel 131 is connected to the first end of the second rotating shaft 133, and the second rotating shaft 133 and the first rotating shaft 113 are coaxial.
  • the coaxiality is achieved by sleeve-mounting the second rotating shaft 133 on the outer circumference of the first rotating shaft 113.
  • the second traction plate 135 is disposed at a position close to the second end of the second rotating shaft 133. As can be seen from the figure, the second traction plate 135 is disposed at a position closer to the first end than the first traction plate 115 (right side of FIG. 1A).
  • first rotating wheel 111 is located closer to the first end of the second rotating wheel 131, and a boss extending toward the second end is provided on the first rotating wheel 111, and a corresponding groove is provided on the second rotating wheel 131, so that the boss is embedded in the groove, thereby shortening the installation dimensions of the first rotating wheel 111 and the second rotating wheel 131 in the axial direction.
  • coaxial arrangement of the first rotating shaft 113 and the second rotating shaft 133 can also be arranged in other different ways, for example, the two are arranged from both ends to each other. If this arrangement is adopted, the layout of the entire locking mechanism is obviously different from that of the present embodiment, but the principle is not essentially different.
  • the structure of the traction plate will be introduced next. Since the second traction plate 135 has the same structure as the first traction plate 115, please refer to the description of the first traction plate 115 for the structure of the second traction plate 135, which will not be repeated here.
  • Fig. 5 is a schematic diagram of the structure of the first traction plate 115 in the locking device 10.
  • the figure also shows the first rotating shaft 113 connected to the first traction plate 115.
  • the specific structure of the first traction plate 115 is described in detail below in conjunction with Fig. 5, and Fig. 1A can also be referred to at the same time.
  • the first traction disc 115 is disposed at the second end of the first rotating shaft 113; the first traction disc 115 has a position for fixing the first traction wire 1153, and the first rotating wheel 111 can control the rotation of the first rotating shaft 113 and drive the first traction disc 115 to rotate.
  • the rotation of the first traction disc 115 adjusts the extension distance of the first traction wire 1153, and the first traction wire 1153 can be adjusted.
  • the lens of the endoscope is pulled to adjust the observation angle of the endoscope in the first dimension to a suitable angle.
  • the first traction disk 115 includes: a first traction disk groove 1151 , a first traction wire 1153 , a first traction hole 1155 , and a first traction disk center hole 1157 .
  • the first traction disk 115 is a hollow disk structure.
  • the first traction disk groove 1151 is located on the outer circumference of the first traction disk 115.
  • the first traction wire 1153 enters the first traction disk 115 through the first traction disk groove 1151.
  • Symmetrical bidirectional first traction holes 1155 are provided on the circumference of the first traction disk 115.
  • the symmetrical first traction holes 1155 are used for collecting and releasing the first traction wire 1153.
  • the first traction disk 115 is provided with a first traction disk center hole 1157 at the center of the disk, which is fixed with the first rotating shaft 113. Through this structure, the first traction disk 115 is installed at the second end of the first rotating shaft 113.
  • first traction wire 1153 is fixed on the first traction disk 115 and can be immersed in the first traction disk groove 1151.
  • the retraction and release of the first traction wire 1153 can be adjusted by rotating the first traction disk 115, thereby adjusting the observation angle of the endoscope in the first dimension; specifically, the rotation of the first traction disk 115 can control the winding and retraction of the first traction wire 1153 in the first dimension, thereby adjusting the extension distance thereof;
  • the first traction wire 1153 is composed of two traction lines, and the observation angle of the first dimension is the up and down direction, and the two traction lines of the first traction wire 1153 separately control the observation angle of the endoscope in the up and down directions; in the present embodiment, the composition and control dimension of the above-mentioned first traction wire 1153 are only a schematic, and other possible compositions and control methods for the traction wire are not excluded.
  • the second traction disc 135 has a similar structure, the difference being that it is disposed at the second end of the second rotating shaft 133.
  • the second traction disc 135 is used to fix the second traction wire, and the composition of the second traction wire is similar to that of the first traction wire 1153.
  • the retraction and extension of the second traction wire can be adjusted, thereby adjusting the observation angle of the endoscope in the second dimension, for example, the observation angle of the endoscope in the left and right directions; specifically, the rotation of the second traction disc 135 can control the winding and extension of the second traction wire in the second dimension, thereby adjusting the extension distance thereof.
  • the first traction wire 1153 and the second traction wire are both buried in the catheter of the endoscope, and the two ends of each traction wire are respectively positioned at the curved end and the traction disk end of the endoscope catheter, one end of which is connected to the corresponding traction disk, and the other end is fixed in the catheter.
  • the traction wire drives the rotation of the distal bendable part of the catheter, thereby driving the lens end of the endoscope to rotate in a certain dimension (first or second), so that the lens of the endoscope can be deflected to a certain angle to change the observation angle.
  • FIG. 2A is a schematic diagram of the structure of the locking device 10 in an unlocked state
  • FIG. 2A is a schematic diagram of the structure of the brake disc 300 .
  • the brake disc 300 includes a brake disc body 310 and a boss 330 .
  • the brake disc body 310 is a frame structure clamped on the circumference of the first rotating shaft 113 or the first traction disc 115, and the frame structure is provided with a brake disc opening that can be opened up and down, through which the circumference of the first rotating shaft 113 or the first traction disc 115 is clamped, and a boss 330 is provided at the root position of the frame structure of the brake disc body 310, through which the brake disc body 310 is fixed to the body of the locking device 10.
  • the boss is specifically provided between the first clamping column and the second clamping column on the body, so that the brake disc body 310 is fixed to the body of the locking device 10.
  • the brake disc body 310 includes a brake disc upper disc 311 , a brake disc lower disc 313 , a brake disc opening 315 , and a gap 317 .
  • FIG. 3 is a left side view corresponding to the locking device in FIG. 2A ;
  • Fig. 4 is a top view corresponding to the locking device in Fig. 2A.
  • the brake disc body 310 is a disc-shaped frame structure as a whole, and the brake disc body 310 of the disc-shaped frame structure is composed of a brake disc upper disc 311 of a semicircular frame and a brake disc lower disc 313 of a semicircular frame, and the brake disc upper disc 311 and the brake disc lower disc 313 are connected through a boss 330 at the root position of the brake disc body 310 opposite to the brake disc opening 315, and the boss 330 provides a positioning basis for the upper and lower opening of the brake disc upper disc 311 and the brake disc lower disc 313, and a gap 317 for increasing the elastic deformation space is provided at this position; a corresponding brake disc opening 315 is formed between the above-mentioned brake disc upper disc 311 and the brake disc lower disc 313, and the circumference of the first rotating shaft 113 or the first traction disc 115 is clamped through the brake disc opening 315, so that the first rotating shaft 113 and the first traction disc 115 obtain a clamping force.
  • a brake disc body 310 with a frame structure is used, wherein the brake disc upper disc 311 and the brake disc lower disc 313 at one end of the frame structure are arranged on the outer peripheral surface of the first rotating shaft 113 (the right side of FIG. 1A ), and the brake disc upper disc 311 and the brake disc lower disc 313 at the other end of the frame structure are arranged on the outer peripheral surface of the second rotating shaft 133 (the middle of FIG. 1A ); in addition, the brake disc upper disc 311 and the brake disc lower disc 313 are arranged opposite to each other on the outer peripheral surface of each rotating shaft, the brake disc upper disc 311 is located at the upper position of the outer peripheral surface of each rotating shaft (the upper part of FIG.
  • the brake disc lower disc 313 is located at the Surface textures for increasing friction are provided at the lower position of the outer circumference of each rotating shaft (below FIG. 2A ), and on the contact surfaces between the brake disc upper disc 311, the brake disc lower disc 313 and each rotating shaft; in addition, a through hole is provided on the same side of the brake disc upper disc 311, the brake disc lower disc 313 and the same side as the brake disc opening 315 (the left side of FIG. 2A ), and the brake disc drive assembly 500 is connected to the brake disc body 310 through the through hole.
  • the fasteners of the brake disc drive assembly 500 are connected to the through holes on the brake disc opening upper port 3151 and the brake disc opening lower port 3153.
  • the boss 330 is plate-shaped and is located on the same side (the right side of Figure 2A) of the brake disc upper plate 311 and the brake disc lower plate 313 opposite to the brake disc opening 315, and the boss 330 forms an opening toward the brake disc body 310, clamping the brake disc upper plate 311 and the brake disc lower plate 313 from both sides, providing positioning for the brake disc upper plate 311 and the brake disc lower plate 313.
  • Figure 6 is a structural schematic diagram of another connection method between the brake disc upper plate 311 and the brake disc lower plate 313 of the locking device 10 in Figure 2A; as shown in Figure 6, the connection method between the brake disc upper plate 311 and the brake disc lower plate 313 is hinged, the boss 330 is shaft-shaped, and the shaft-shaped boss 330 is inserted into the hinged part of the brake disc upper plate 311 and the brake disc lower plate 313, and the shaft-shaped boss 330 provides a rotation axis for the brake disc upper plate 311 and the brake disc lower plate 313.
  • the brake disc drive assembly 500 is introduced.
  • the brake disc drive assembly 500 includes: a fastener 510 ; and a gripping portion 530 .
  • the fastener 510 is arranged on the frame structure of the brake disc body 310 and is located at the position of the brake disc opening 315.
  • the fastener 510 is specifically arranged in the through hole on the brake disc body 310.
  • the brake disc upper disc 311 and the brake disc lower disc 313 are connected by the fastener 510.
  • a gripping portion 530 is arranged at one end of the fastener 510.
  • the gripping portion 530 extends out of the shell of the locking device 10 body for the operator of the locking device 10 to rotate the fastener 510.
  • the gripping portion 530 is a knob, and the knob has a set length significantly larger than the radius of the first rotating wheel 111 in the radial direction perpendicular to the first rotating shaft 113.
  • the fastener 510 is driven to rotate by rotating the knob, and the fastener 510 rotates in the through hole on the brake disc body 310, so as to adjust the force applied to the brake disc 300.
  • the first preset damping range is not specifically limited in the embodiment of the present application, and can be adaptively adjusted according to the actual use conditions of the locking device 10.
  • the fastener 510 includes two implementations, which are described below respectively.
  • a first implementation of the fastener 510 includes: a stud 511 , an upper nut 513 , and a lower nut 515 .
  • the stud 511 is the main body of the fastener 510 and is arranged to pass through the through hole on the brake disc body 310; at least two sections of threads with opposite rotation directions are arranged on the outer circumference of the stud 511; an upper nut 513 and a lower nut 515 are arranged to cooperate with the stud 511; wherein the upper nut 513 is fixedly arranged on the upper side of the upper port 3151 of the brake disc opening, and the lower nut 515 is fixedly arranged on the lower side of the lower port 3153 of the brake disc opening; a first thread pair is formed between the upper nut 513 and the first section of the stud 511, and a second thread pair is formed between the lower nut 515 and the second section of the stud 511, and the first thread pair and the second thread pair have opposite thread rotation directions; by rotating the stud 511, the force applied to the brake disc 300 can be adjusted.
  • an internal thread cooperating with the stud 511 is provided in the through hole at the opening position of the frame structure of the brake disc body 310; wherein, the upper port 3151 of the brake disc opening cooperates with the first section of the stud 511 to form a third thread pair, and the lower port 3153 of the brake disc opening cooperates with the second section of the stud 511 to form a fourth thread pair, and the third thread pair and the fourth thread pair have opposite thread rotation directions; through the rotation of the stud 511, the surface thread of the stud 511 cooperates with the upper port 3151 and the lower port 3153 of the brake disc opening, thereby applying force to or reducing the force on the brake disc 300; its working principle is similar to the previous method of using a nut.
  • the handle 530 is rotated to drive the stud 511 to rotate synchronously, so that the stud 511 and the upper nut 513 and the lower nut 515 can work together (the first implementation method), or the stud 511 and the upper port 3151 and the lower port 3153 of the brake disc opening can work together (the second implementation method), thereby adjusting the force applied to the brake disc body 310; since the brake disc body 310 is a frame structure that allows it to be opened up and down
  • the brake disc opening 315 clamps the brake disc body 310 on the outer circumference of the first rotating shaft 113 and the second rotating shaft 133; by adjusting the force applied to the brake disc body 310, the clamping force applied by the brake disc body 310 to the first rotating shaft 113 and the second rotating shaft 133 can be changed, so that the rotation damping of the first rotating shaft 113 is within the first preset damping range, and the rotation damping of the second rotating shaft 133 is within the second preset damping range
  • the locking device 10 can have a non-locking state and a locking state, and can provide different degrees of damping in the middle position between the two.
  • the second preset damping range is not specifically limited in this application, and can be adaptively adjusted according to the actual use conditions of the locking device 10.
  • the first preset damping range can be the same as or different from the second preset damping range.
  • Figure 2A shows a schematic diagram of the locking device 10 when it is in an unlocked state
  • Figure 4 also shows the process of switching the locking device 10 from an unlocked state to a locked state
  • Figure 4 is a top view corresponding to the locking device in Figure 2A
  • Figure 7 shows a schematic diagram of the locking device 10 when it is in a locked state.
  • FIGS. 2A and 7 are both structural schematic diagrams of the locking device 10 in FIG1A after it rotates clockwise so that the second end of the locking device 10, that is, one end of the brake disc 300, faces outside the paper.
  • the working process of the locking device 10 is described below, with emphasis on the process of switching between the locked state and the unlocked state.
  • the knob of the gripping portion 530 When the endoscope locking device 10 needs to be locked, the knob of the gripping portion 530 is rotated counterclockwise by a certain angle (as shown in FIG. 4 from position B to position A), and the knob of the gripping portion 530 drives the stud 511 to rotate counterclockwise. Since a first thread pair is formed between the upper nut 513 and the first section of the stud 511, and a second thread pair is formed between the lower nut 515 and the second section of the stud 511, the first thread pair and the second thread pair have opposite thread rotation directions.
  • the surface thread of the stud 511 cooperates with the upper nut 513 and the lower nut 515, so that the upper nut 513 and the lower nut 515 move along the axial direction of the stud 511 in the direction in which the two are close to each other. Since the upper nut 513 The lower nut 515 is fixed on the inner surface of the through hole of the brake disc body 310, so that the opening degree of the brake disc opening 315 is gradually reduced, and the clamping force applied by the brake disc body 310 of the frame structure to the first rotating shaft 113 and the second rotating shaft 133 is gradually increased, and the damping of the rotation of the first rotating shaft 113 and the second rotating shaft 133 is gradually increased.
  • the first rotating shaft 213 and the second rotating shaft 233 gradually stop rotating under the effect of the above-mentioned damping, and the first traction disc groove 2151 and the second traction disc groove 2351 stop winding and releasing the traction wires in the left and right directions and the up and down directions of each traction wire in the catheter are fixed, and the locking device 10 enters the locking state, that is, the angle and direction of the endoscope lens are locked.
  • the above process is the process of Figure 2A changing to Figure 7.
  • the knob of the gripping portion 530 is rotated clockwise by a certain angle (as shown in FIG. 4 , from position A to position B).
  • the gripping portion 530 drives the stud 511 to rotate, and the surface thread of the stud 511 cooperates with the upper nut 513 and the lower nut 515.
  • the upper nut 513 and the lower nut 515 move along the axial direction of the stud 511 in a direction away from each other, and the opening degree of the brake disc opening 315 gradually increases.
  • the clamping force applied by the brake disc body 310 of the frame structure to the first rotating shaft 113 and the second rotating shaft 133 gradually decreases, and then the damping of the rotation of the first rotating shaft 113 and the second rotating shaft 133 gradually decreases to disappear.
  • the first rotating shaft 213 and the second rotating shaft 233 increase their rotation under the condition that the above-mentioned damping gradually decreases.
  • the locking device 10 is out of the above-mentioned locked state and enters the above-mentioned unlocked state.
  • the first traction disc 215 and the second traction disc 235 can be flexibly rotated as the operator operates the first rotating wheel 211 and the second rotating wheel 231; the traction wires associated with the above traction discs can be flexibly wound and retracted under the traction of the traction discs, so that the angle of the endoscope lens can be flexibly adjusted.
  • Figures 2A and 7. The above process is the process of Figure 7 changing to Figure 2A. It can be seen that when in the position of Figure 7, the brake disc opening 315 formed between the brake disc upper disc 311 and the brake disc lower disc 313 is smaller, and when it reaches the position of Figure 2A, the brake disc opening 315 formed between the two is larger.
  • the gripping portion 530 can be operated to be located at different positions between A and B, so that the locking device 10 is in different damping states, thereby obtaining different tightness of the adjustment wheel according to the need to rotate the wheel.
  • the locking device 10 when adjusting the endoscope, it can be set to a suitable state as needed.
  • the lens angle of the endoscope can be freely adjusted through the wheel, and when locking, the endoscope is in a fixed state and the lens angle does not change; if it is in the damping state between the above-mentioned two states, it will provide the operator with the hand feeling of turning the wheel, making it easy to operate.
  • the rotating wheel assembly 100 only includes the first rotating wheel assembly, that is, the locking device 10 can only adjust the angle of the endoscope in one dimension.
  • the first rotating wheel 111 and the second rotating wheel 131 mentioned above are in relative positions, rather than at the same end as in this embodiment.
  • the second embodiment of the present application provides a locking device; the purpose of providing this embodiment is to:
  • the principle of the first embodiment is extended to other possible application occasions, rather than being limited to endoscopes.
  • the locking device 10' is usually used in detection scenarios.
  • the first traction disc 115 and the second traction disc 135 in the rotating wheel assembly 100 are replaced with the first functional disc 115' and the second functional disc 135' to realize various possible adjustment functions.
  • the structure of the first functional disc 115' and the second functional disc 135' can be structurally adjusted according to the function and application scenario of the locking device 10'. This embodiment is not specifically limited.
  • the locking device 10' includes: a first rotating wheel 111, a first rotating shaft 113, a brake disc 300, and a brake disc driving assembly 500.
  • the first rotating wheel 111 is connected to the first end of the first rotating shaft 113; the first rotating shaft 113 is provided with a first functional disk 115' near the second end; the first rotating wheel 111 can control the rotation of the first rotating shaft 113 and drive the first functional disk 115' to rotate, and the rotation of the first functional disk 115' adjusts the first traction wire 1153, thereby adjusting the observation angle of the endoscope in the first dimension.
  • the brake disc 300 as a whole is a frame structure clamped on the circumference of the first rotating shaft 113 or the first functional disc 115', and the frame structure has a brake disc opening 315 that allows it to be opened up and down.
  • the brake disc drive assembly 500 has a fastener 510, which is arranged at one end of the brake disc opening 315.
  • the fastener 510 can be used to adjust the force applied to the brake disc 300, thereby changing the clamping force applied by the brake disc 300 to the first rotating shaft 113 and the first functional disc 115', so that the rotational damping of the first rotating shaft 113 is within a first preset damping range, that is, the required damping is provided for the rotation of the first rotating shaft 113.
  • the locking device 10' provided by the second embodiment described above may also include other necessary structures, such as detection equipment and display equipment used to cooperate with the locking device. It should be understood that the working process of the locking device of this embodiment is similar to that of the first embodiment. Please refer to the first embodiment, and this embodiment will not be described in detail. It should be emphasized that Figures 8 to 10 appear to have the same structure as Figures 1A, 2A and 5 of the first embodiment. They are only used to exemplarily show that the components in the second embodiment have the same functions as the components in the first embodiment, and do not limit their structures to be the same. It can be understood that the components in the second embodiment that have the same functions as those in the first embodiment may be the same or different in structure.
  • the third embodiment of the present application provides another locking device for an endoscope.
  • the third embodiment of the present application is described in detail below in conjunction with Figures 11 to 16.
  • This embodiment has essentially the same principle as the first and second embodiments, that is, by adjusting the brake disc disposed on at least one side of the outer circumference of the rotating shaft (the first rotating shaft and/or the second rotating shaft) or the traction disc (or the functional disc), the desired damping is provided to the rotation of the rotating shaft.
  • the third embodiment adopts a different structure, which has the advantage of being more concise in structure.
  • FIG11 the cross-sectional structure diagram of the locking device 210 for an endoscope provided in this embodiment; wherein, the left side of FIG11 is the second end of the locking device 210, i.e., one end of the brake disc 2300; the right side of FIG11 is the first end of the locking device 210, i.e., one end of the rotating wheel assembly 2100; in this figure, the locking device 210 is in a locked state.
  • FIG12 is a structural schematic diagram of the locking device 210 in FIG11 in an unlocked state.
  • FIG13 is a structural schematic diagram of the locking device 210 in FIG11 in a locked state. Both FIG12 and FIG13 are structural schematic diagrams from a perspective in which the locking device 210 in FIG11 rotates counterclockwise so that the second end of the locking device 210, i.e., one end of the brake disc 2300, faces outside the paper.
  • the locking device 210 includes the following components or parts: a rotating wheel assembly 2100 , a brake disc 2300 , a brake disc driving assembly 2500 , and a handle 2700 .
  • the brake disc 2300 is arranged near the second end of the locking device 210 (left side of FIG. 11), the brake disc drive assembly 2500 is located at a roughly middle position of the locking device 210 (middle of FIG. 11), and the rotating wheel assembly 2100 is located at the first end of the locking device 210 (right side of FIG. 11).
  • the brake disc 2300 and the brake disc drive assembly 2500 are connected through the driving member body 2510.
  • the brake disc drive assembly 2500 provides damping in the rotation direction to the rotating wheel assembly 2100 through the brake disc 2300.
  • the handle 2700 is actually the body of the locking device 210, which provides a positioning basis for other components; it is called a handle because it actually serves as a handle in the overall structure of the endoscope. Its specific structure is described in the subsequent description.
  • the rotor assembly 2100 includes: a first rotor assembly 2110 , a second rotor assembly 2130 , an isolation sheet 2150 , and an O-ring 2170 .
  • the wheel assembly 2100 includes a first wheel assembly 2110, a second wheel assembly 2130, an isolation plate 2150 and an O-ring 2170;
  • the first wheel assembly 2110 includes a first wheel 2111, a first rotating shaft 2113 and a first traction disk 2115;
  • the second wheel assembly 2130 includes a second wheel 2131, a second rotating shaft 2133 and a second traction disk 2135.
  • the first rotating wheel 2111 is connected to the first end of the first rotating shaft 2113, and serves as an operating handle disposed on the first rotating shaft 2113.
  • the first rotating wheel 2111 is disposed at the first end of the first rotating shaft 2113 (right side of FIG. 11 ).
  • the first traction plate 2115 is disposed at the other end of the first rotating shaft 2113, i.e., the second end of the first rotating shaft 2113 (left side of FIG. 11 ).
  • the second rotating wheel 2131 is connected to the first end of the second rotating shaft 2133, and the second rotating shaft 2133 and the first rotating shaft 2113 are coaxial.
  • the coaxiality is achieved by sleeve-mounting the second rotating shaft 2133 on the outer circumference of the first rotating shaft 2113.
  • the second traction plate 2135 is disposed at a position close to the second end of the second rotating shaft 2133. As can be seen from the figure, the second traction plate 2135 is disposed at a position closer to the first end (right side of FIG. 11 ) relative to the first traction plate 2115.
  • an O-ring 2170 is sleeved on the first rotating shaft 2130, and there are two groups of O-rings 2170, each group having two O-rings arranged adjacent to each other; the first group of O-rings 2170-1 is close to the first traction disk 2115 and is located closer to the second end relative to the first rotating shaft 2113 (the left side of FIG. 11 ), and the second group of O-rings 2170-2 is close to the second traction disk 2135 and is located closer to the first end relative to the second rotating shaft 2133 (the middle of FIG.
  • the first rotating wheel 2111 is located closer to the first end of the second rotating wheel 2131, and a boss extending toward the second end is provided on the first rotating wheel 2111, while a corresponding groove is provided on the second rotating wheel 2131, so that the boss is embedded in the groove, thereby shortening the installation dimensions of the first rotating wheel 2111 and the second rotating wheel 2131 in the axial direction.
  • the coaxial arrangement of the first rotating shaft 2113 and the second rotating shaft 2133 may also be in other different ways.
  • the two may be arranged opposite to each other from both ends. If this arrangement is adopted, the layout of the entire locking device will be significantly different from that of the present embodiment, but the principle is not essentially different.
  • the first traction disk 2115 has a position for fixing the first traction wire 21153.
  • the extension distance of the first traction wire 21153 can be adjusted, and the first traction wire 21153 can pull the lens of the endoscope, so that the endoscope is at a suitable angle in the dimension controlled by the first traction wire 21153.
  • Fig. 16 shows a structural diagram of the first traction plate 2115.
  • the figure also shows a first rotating shaft 2113 connected to the first traction plate 2115.
  • the specific structure of the first traction plate 2115 is described in detail below in conjunction with Fig. 16, and Fig. 11 can be referred to at the same time.
  • the first traction disc 2115 includes: a first traction disc groove 21151, a first traction wire 21153, The first traction hole 21155 and the first traction disk center hole 21157.
  • the first traction disk 2115 is a hollow disk structure, and the first traction disk groove 21151 is located on the outer circumference of the first traction disk 2115.
  • the first traction wire 21153 enters the first traction disk 2115 through the first traction disk groove 21151.
  • the circumferential surface of the first traction disk 2115 is provided with symmetrical bidirectional first traction holes 21155.
  • the symmetrical first traction holes 21155 are used for collecting and releasing the first traction wire 21153.
  • the first traction disk 2115 is provided with a first traction disk center hole 21157 at the center of the disk, which is embedded and fixed with the first rotating shaft 2113. Through this structure, the first traction disk 2115 is installed on the second end of the first rotating shaft 2113.
  • One end of the first traction wire 21153 is fixed on the first traction disk 2115 and can be immersed in the first traction disk groove 21151.
  • the retraction and extension of the first traction wire 21153 can be adjusted, thereby adjusting the observation angle of the endoscope in the first dimension; specifically, the rotation of the first traction disk 2115 can control the winding and retraction of the first traction wire 21153 in the first dimension, thereby adjusting the extension distance thereof.
  • the second traction disc 2135 has a similar structure, the difference being that it is arranged at the second end of the second rotating shaft 2133.
  • the second traction disc 2135 is used to fix the second traction wire.
  • the retraction and release of the second traction wire can be adjusted, thereby adjusting the observation angle of the endoscope in the second dimension; specifically, the rotation of the second traction disc 2135 can control the winding and release of the second traction wire in the second dimension, thereby adjusting the extension distance thereof.
  • the traction wire is buried in the catheter of the endoscope, and the two ends of the traction wire are respectively positioned at the curved end and the traction disc end of the endoscope catheter, one end of which is connected to the traction disc, and the other end is fixed in the catheter.
  • the traction wire drives the rotation of the distal bendable part of the catheter, thereby driving the end of the endoscope to rotate in a certain dimension (up and down, or left and right), so that the endoscope lens can be deflected to a certain angle to change the observation angle.
  • An isolation sheet 2150 is provided at the axial gap between the first traction disk 2115 and the second traction disk 2135 to isolate the two disks.
  • the brake disc 2300 includes: a brake disc body 2310, a brake disc groove 2330, an arc-shaped through hole 2350, and a positioning hole 2370.
  • the brake disc drive assembly 2500 includes: a driving member 2510 and a lever 2530 (see FIG15).
  • the driving member 2510 is located at the second end position of the brake disc drive assembly 2500 (the middle left side of FIG11), and the lever 2530 is located at the first end position of the brake disc drive assembly 2500 (the middle right side of FIG11).
  • the lower end of the lever 2530 is fixedly connected to the outer peripheral surface of the driving member body 2515 in the driving member 2510.
  • the lever 2530 has a set length that is significantly larger than the diameter of the driving member 2510.
  • the upper end of the lever 2530 extends in the radial direction (the upper end of FIG11), and provides an operating surface that is easy to shift.
  • the structure of the driving member 2510 will be described in detail after the structure of the brake disc 2300 is described later.
  • the handle 2700 whose name comes from its use as the handle of the endoscope, is equivalent to the body that provides the positioning basis in the present application.
  • the handle 2700 is generally designed as two mutually interlocking covers that can be disassembled according to the needs of assembly and repair.
  • the relevant structure provided by the body is mainly the fixing column 2710.
  • the handle 2700 is a hollow round shell made of plastic material, and the fixing column 2710 is located on the inner surface of the shell of the handle 2700, which is used to provide an installation position for the brake disc 2300; in the present embodiment, the fixing column 2710 is a solid plastic cylinder, and the brake disc 2300 can be rotatably mounted on the fixing column 2710 through its positioning hole 2370, so as to obtain a rotatable installation positioning.
  • Fig. 14 shows a structural diagram of the brake disc 2300.
  • the brake disc 2300 is described in detail below in conjunction with Fig. 14, and reference may also be made to Figs. 11 and 10.
  • the brake disc 2300 includes: a brake disc body 2310 , a brake disc groove 2330 , an arc-shaped through hole 2350 , and a positioning hole 2370 .
  • the brake disc 2300 is an arc-shaped plate structure as a whole.
  • the brake disc 2300 is arranged on at least one side of the outer circumference of the first rotating shaft 2113.
  • a brake disc groove 2330 is provided at the lower end of the brake disc body 2310.
  • the inner surface of the brake disc groove 2330 is the fitting surface where the brake disc 2300 contacts the outer circumference of the first rotating shaft 2130 and/or the outer circumference of the second rotating shaft 2140.
  • the inner surface of the brake disc groove 2330 is provided with surface textures that increase friction so as to facilitate fitting with the outer circumference of the first rotating shaft 2113 and/or the second rotating shaft 2133.
  • the fitting surfaces of the brake disc groove 2330 and the first rotating shaft 2113 and the second rotating shaft 2133 are in contact through the O-ring 2170.
  • the surface texture on the brake disc groove 2330 can be driven by the brake disc body 2310 to produce extrusion with the O-ring 2170, thereby hindering the rotation of the first rotating shaft 2113 and the second rotating shaft 2133.
  • a positioning hole 2370 is provided at one end of the arc surface of the brake disc body 2310, and the positioning hole 2370 can be rotatably sleeved on the fixed column 2710 on the handle 2700, thereby realizing the fixed axis swing of the brake disc body 2310 around the positioning hole 2370.
  • An arc-shaped through hole 2350 is provided on the arc surface of the brake disc body 2310, so that the cantilever column 2519 can be inserted into the arc-shaped through hole 2350 and slide in the arc-shaped through hole 2350.
  • the brake disc body 2310 can be provided as shown in FIG. 14, and is provided as two arc-shaped plates arranged in parallel in front and back, namely the first brake disc body 2310-1 and the second brake disc body 2310-2.
  • Fig. 15 shows a structural diagram of a driving member 2510 as a component of the brake disc driving assembly 2500.
  • the specific structure of the driving member 2510 is described in detail below in conjunction with Fig. 15, and Fig. 11 can also be referred to.
  • the driving member 2510 includes: a driving member outer edge platform 2511 , a driving member hollow hole 2513 , a driving member body 2515 , a cantilever 2517 , and a cantilever column 2519 .
  • the driving member body 2515 is a hollow tube, located at the lower end of the driving member 2510.
  • the driving member body 2515 is provided with a driving member hollow hole 2513, and the driving member body 2515 is mounted on the outer diameter surface of the second rotating shaft 2133 through the driving member hollow hole 2513; a symmetrical driving member outer edge platform 2511 is provided on the outer circumferential surface of the driving member body 2515, and the driving member outer edge platform 2511 is fixed to the lower end of the lever 2530.
  • a cantilever 2517 is fixed to the front end of the driving member body 2515 (left side of FIG.
  • a cantilever column 2519 is fixed to the upper front end of the cantilever 2517 (upper left side of FIG. 15).
  • the cantilever column 2519 extends along the extension direction of the first rotating shaft 2113 and the second rotating shaft 2133, and is inserted into the arc-shaped through hole 2350 on the brake disc 2300.
  • the driving lever 2530 swings to drive the driving member 2510 to rotate, thereby driving the cantilever column 2519 to slide in the arc-shaped through hole 2350.
  • the lever 2530 is toggled to drive the driving member 2510 to rotate synchronously, so that the cantilever column 2519 can slide in the arc-shaped through hole 2350, and then the cantilever column 2519 moves along the arc-shaped through hole 2350, so that the brake disc 2300 is driven to swing around the positioning hole 2370, so that the surface texture on the inner surface of the brake disc groove 2330 on the brake disc 2300 is squeezed with the O-ring 2170, so that the tightness of the brake disc 2300 and the outer circumference of the first rotating shaft 2113 and the outer circumference of the second rotating shaft 2133 can be adjusted, thereby providing the first rotating shaft 2113 and the second rotating shaft 2133 with the desired damping.
  • the locking device 210 can have a non-locking state and a locking state, and can provide different degrees of damping in the middle position between the two.
  • a clamping brake disc with multiple contact surfaces may also be used to contact and fit the outer circumference of the first rotating shaft 2130 and/or the outer circumference of the second rotating shaft 2140 from multiple sides to achieve a braking effect.
  • Those skilled in the art may design based on the above disclosed implementations and the technical knowledge in the field.
  • FIG. 12 and FIG. 13 The following mainly refers to FIG. 12 and FIG. 13 to describe the working process of the locking device 210 in detail.
  • FIG. 12 is a schematic diagram showing the locking device 210 in FIG. 11 in an unlocked state.
  • FIG. 13 is a schematic diagram showing the locking device 210 in FIG. 11 in a locked state.
  • FIG. 12 and FIG. 13 are both structural schematic diagrams showing the locking device 210 in FIG. 11 rotated counterclockwise so that the second end of the locking device 210, i.e., one end of the brake disc 2300, faces outside the paper.
  • the working process of the locking device 210 is briefly described below with reference to FIG. 11 to FIG. 13, with emphasis on the operation process of switching between the locked state and the unlocked state.
  • the lever 2530 When the endoscope locking device 210 needs to be locked, the lever 2530 is rotated clockwise along the handle 2700 by a certain angle (as shown in FIG. 12 , from position A to position B), and the lever 2530 drives the driving member 2510 to rotate around the second rotating shaft 2133, and at the same time drives the cantilever column 2519 on the driving member 2510 to slide in the arc-shaped through hole 2350, driving the brake disc 2300 to rotate clockwise around the positioning hole 2370, thereby causing the surface texture on the brake disc groove 2330 on the brake disc 2300 to be squeezed with the O-ring 2170.
  • the first rotating shaft 2113 and the second rotating shaft 2133 are in contact with and squeezed at least one side of the outer circumference, so as to rotate with the first rotating shaft 2113 and the second rotating shaft 2133 to generate friction.
  • the first rotating shaft 2113 and the second rotating shaft 2133 stop rotating under the action of the friction.
  • the first traction disc groove 21151 and the second traction disc groove 21351 stop winding the traction wire in the left and right and up and down directions.
  • the traction length of the traction wire in the catheter in the up and down and left and right directions is fixed, and the locking device enters a locked state, that is, the angle and direction of the endoscope lens are locked.
  • the above process is the process of Figure 12 changing to Figure 13.
  • the brake disc groove 2330 does not contact the first rotating shaft 2113 when it is in the position of Figure 12, and contacts the first rotating shaft 2113 when it reaches the position of Figure 13; the second rotating shaft 2133 is blocked at this angle, but its actual change is consistent.
  • the lever 2530 When the locking device 210 needs to be unlocked, the lever 2530 is rotated counterclockwise along the handle 2700 by a certain angle (from position B to position A as shown in Figure 13), and the lever 2530 drives the driving member 2510 to rotate around the second rotating shaft 2133.
  • the cantilever column 2519 on the driving member 2510 is driven to slide in the arc-shaped through hole 2350, driving the brake disc 2300 to rotate around the positioning hole 2370, thereby causing the upper surface texture of the brake disc groove 2330 on the brake disc 2300 to separate from the O-ring 2170, so that the friction force loaded on the first rotating shaft 2113 and the second rotating shaft 2133 gradually decreases until it disappears, and the locking device 210 is out of the above-mentioned locked state and enters the above-mentioned unlocked state.
  • the first traction disk 2115 and the second traction disk 2135 can be flexibly rotated as the operator operates the first rotating wheel 2111 and the second rotating wheel 2131; the traction wires associated with the above traction disks can be flexibly wound and retracted under the traction of each traction disk, so that the angle of the endoscope lens can be flexibly adjusted.
  • the above process is the process of changing from Figure 13 to Figure 12. It can be seen that the surface texture of the brake disk groove 2330 is in contact with the first rotating shaft 2113 when in the position of Figure 13, and is not in contact with the first rotating shaft 2113 when in the position of Figure 12; although the second rotating shaft 2133 is blocked in this perspective, the actual change is consistent.
  • the lever 2530 can be operated to be located at different positions between A and B, so that the locking device is in different damping states, thereby obtaining different tightness of the adjustment wheel according to the need to rotate the wheel.
  • this locking device when adjusting the endoscope, it can be set to a suitable state as needed.
  • unlocking the lens angle of the endoscope can be freely adjusted through the wheel, and when locking, the endoscope is in a fixed state and the lens angle will not change; if it is in the damping state between the above-mentioned two states, it will provide the operator with the hand feeling of turning the wheel, so that it is easy to operate.
  • the principle of the above embodiment is briefly described below.
  • the combination of the lever 2530 and the driving member 2510 forms a lever mechanism. Since the lever 2530 is relatively long, equivalent to the long arm end of the lever, the brake disc 2300 can be easily driven to swing through its cantilever column 2519 by toggling the driving member 2510. On the contrary, it is difficult for the lever 2530 to swing when the brake disc 2300 swings.
  • the cantilever column 2519 and the arc-shaped through hole 2350 of the brake disc 2300 are closely matched, so that there is a large friction between the two, and the lever 2530 is equivalent to providing it with a load that hinders its movement. Therefore, it is difficult for the brake disc 2300 to be driven by That is to say, the locking device has a good locking property, and when the lever 2530 is moved to any position, it can stay there without external force and will not loosen easily.
  • the rotating wheel assembly 2100 only includes the first rotating wheel assembly, that is, the locking device can only adjust the angle of the endoscope in one dimension.
  • the first rotating wheel 2110 and the second rotating wheel 2120 mentioned above are in relative positions, rather than at the same end as in the present embodiment.
  • the locking device for the endoscope can also divide the brake disc and the brake disc drive assembly into two groups, respectively providing damping for the first rotating shaft and the second rotating shaft.
  • the observation angles of the endoscope in the first dimension and the second dimension can be controlled and adjusted separately.
  • the second dimension and the first dimension are in different direction dimensions.
  • the brake disc 2300 can be divided from top to bottom according to the position of the isolation sheet along 2150 in Figure 11, and is divided into brake disc part one and brake disc part two.
  • the position and structure of brake disc drive component one can be analogous to the brake disc drive component 2500 in Figure 11 (right side of Figure 11), and brake disc drive component two can be located on the other side of brake disc drive component one (left side of Figure 11); brake disc part one is arranged on one side of the outer circumference of the first rotating shaft, and brake disc part two is arranged on one side of the outer circumference of the second rotating shaft; brake disc drive component one can adjust the tightness of the fit between the brake disc part one and the outer circumference of the first rotating shaft, so as to provide the first rotating shaft with the desired damping, and the rotation of the first traction disc is used to adjust the first traction wire, so as to adjust the observation angle of the endoscope in the first dimension; brake disc drive component two can adjust the tightness of the fit between the brake disc part two and
  • the above-mentioned preferred embodiment enables the endoscope to independently adjust the observation angle of another dimension while ensuring that the observation angle of one dimension is determined.
  • the fourth embodiment of the present application provides an endoscope, and with reference to FIG17, its structure and working process are specifically described in combination with FIG11 to FIG16.
  • the original parts having the same functions as those of the third embodiment are named as much as possible to facilitate understanding.
  • the description of this embodiment is based on the naming provided in this embodiment, and there is no need to forcibly correspond to the third embodiment.
  • FIG17 a schematic diagram of the overall structure of the endoscope 2 provided in this embodiment.
  • FIG. 17 a cross-sectional structural diagram of the endoscope 2 provided in this embodiment is shown; wherein, the left side of FIG. 17 is the rear end of the endoscope, i.e., one end of the locking device 210 and the light source assembly 20, and the rear end of the endoscope is the end held by the operator during the actual operation; the right side of FIG. 17 is the front end of the endoscope structure device, i.e., one end of the lens 70 and the bendable portion 80, and the front end of the endoscope is used to utilize the movement control of the bendable portion during the operation to achieve the peek at the pathological condition of the relevant part.
  • the locking device 210 is in an unlocked state.
  • the left side of FIG. 17 is referred to as the rear
  • the right side of FIG. 17 is referred to as the front.
  • the endoscope 2 includes: a locking device 210 , a light source assembly 20 , a traction wire 30 , a suction tube 40 , a flushing tube 50 , an aviation joint 60 , a lens 70 , a bendable portion 80 , a catheter 90 , a lever 2530 , and a handle 2700 .
  • the light source assembly 20 and the locking device 210 are both embedded in the handle 2700.
  • the handle 2700 is used for the operator to hold the endoscope.
  • the light source assembly 20 can provide an illumination source for the lens 70 during observation.
  • the handle 2700 is located at the rear end of the endoscope 2 (left side of FIG. 17 ), and the bendable portion 80 and the lens 70 are located at the front end of the endoscope 2 (right side of FIG. 17 ).
  • the two are connected to each other through a catheter 90.
  • the front end of the endoscope 2 is located in FIG.
  • the locking device 210 is wrapped inside the catheter 90, and the traction wire 30 connected to the lens 70 is wrapped.
  • the so-called wrapping does not mean tight wrapping, but providing a dedicated pipe for each traction wire, and the pipe has a suitable radial size.
  • the catheter 90 itself is made of a flexible material so that it can adapt to the patient's curved cavity, and the observation angle of the lens 70 at the lesion site is adjusted through the bendable part 80.
  • the handle 2700 is controlled by the surgical operator, and the surgical operator can use the lever 2530 to perform in vitro manipulation of the locking device 210 as needed, thereby realizing the observation of the lesion site in the patient's body at different angles.
  • the endoscope 2 can achieve any angle bending of the flexible traction wire 30 through the locking device 210, and the locking device 210 can adjust the angle of the lens 70 at a fixed position by adjusting the extension length of the traction wire 30.
  • the lever 2530 to adjust the locking and unlocking working states of the locking device 210, please refer to the third embodiment, which will not be described in detail here.
  • the endoscope 2 in this embodiment adopts the locking device provided in the third embodiment, in fact, of course, the locking device provided in the first embodiment of the present application can also be adopted; when using this locking device, the specific setting method of the locking device can refer to the description of the first embodiment, and will not be repeated here.
  • FIG. 17 (upper right of FIG. 17 ) also shows the suction tube 40, the flushing tube 50 and the aviation connector 60 that cooperate with the lens 70.
  • the suction tube 40 and the flushing tube 50 are used to remove the visual obstructions in the observation area of the lens 70, which can ensure the clarity of the operating field of the lens 70 and facilitate direct observation of the lesions in the relevant parts.
  • the aviation connector 60 is used to connect the required wires.
  • the fifth embodiment of the present application provides a locking device; the purpose of providing this locking device embodiment is to promote the locking device for an endoscope provided in the third embodiment of the present application to a wider range of occasions.
  • the locking device 210' is usually used in detection scenarios.
  • the first traction disc 2115 and the second traction disc 2135 in the rotating wheel assembly 2100 are replaced with the first functional disc 2115' and the second functional disc 2135' to realize various possible adjustment functions.
  • the structure of the first functional disc 2115' and the second functional disc 2135' can be structurally adjusted according to the function and application scenario of the locking device 210'. This embodiment is not specifically limited.
  • the locking device 210' includes: a first rotating wheel 2111, a first rotating shaft 2113, a brake disc 2300, and a brake disc driving assembly 2500.
  • the first rotating wheel 2111 is connected to the first end of the first rotating shaft 2113; the first rotating shaft 2113 is provided with a first functional disc 2115' near the second end; the brake disc 2300 is arranged on at least one side of the outer circumference of the first rotating shaft 2113, and the brake disc drive assembly 2500 can adjust the tightness of the brake disc 2300 and the outer circumference of the first rotating shaft 2113 so that the rotational damping of the first rotating shaft 2113 is within a first preset damping range, thereby providing the desired damping for the rotation of the first rotating shaft 2113.
  • the locking device 210' also includes: a second rotating wheel 2131 and a second rotating shaft 2133; the second rotating wheel 2131 is connected to the first end of the second rotating shaft 2133, the second rotating shaft 2133 is provided with a second functional disc 2135' near the second end, and the second rotating shaft 2133 and the first rotating shaft 2113 are coaxial; the brake disc 2300 is located on at least one side of the outer circumference of the second rotating shaft 2133; while adjusting the tightness of the fit between the brake disc 2300 and the outer circumference of the first rotating shaft 2113, the brake disc will also be adjusted synchronously The tightness of the fit between 2300 and the outer circumference of the second rotating shaft 2133 is adjusted so that the damping of the rotation of the second rotating shaft 2133 is within the second preset damping range, thereby providing the desired damping for the rotation synchronization of the second rotating shaft 2133.
  • FIG18 and FIG11 of the second embodiment appear to have the same structure, they are only used to exemplarily show that the components in the fifth embodiment have the same functions as the components in the second embodiment, and do not limit their structures to be the same. It can be understood that the components in the fifth embodiment and the second embodiment that have the same functions can be the same or different in structure.
  • the locking device 210' provided by the fifth embodiment may also include other necessary structures, such as a detection device and a display device used to cooperate with the locking device. It should be understood that the working process of the locking device of this embodiment is similar to that of the third embodiment. Please refer to the third embodiment, and this embodiment will not be described in detail.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Endoscopes (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)

Abstract

一种用于内窥镜的锁紧装置(10,10',210)、内窥镜(2)以及锁紧装置(210'),用于内窥镜的锁紧装置(10,10',210)包括第一转轮(111,2111)、第一转轴(113,2113)、制动盘(300,2300)、制动盘驱动组件(500,2500);第一转轮(111,2111)连接于第一转轴(113,2113)的第一端;第一转轴(113,2113)靠第二端位置设置有第一牵引盘(115,2115);通过第一转轮(111,2111)可控制第一转轴(113,2113)的旋转,并带动第一牵引盘(115,2115)旋转,第一牵引盘(115,2115)的旋转调整第一牵引丝(1153,21153),从而调整内窥镜在第一维度的观察角度;制动盘(300,2300)设置在第一转轴(113,2113)外周面的至少一侧,通过制动盘驱动组件(500,2500)能够调整制动盘(300,2300)与第一转轴(113,2113)或者第一牵引盘(115,2115)外周面贴合的松紧程度,以使第一转轴(113,2113)的旋转阻尼在第一预设阻尼范围内;该用于内窥镜的锁紧装置(10,10',210),可提高操作过程中内窥镜的镜头的角度灵活性与稳定性。

Description

一种用于内窥镜的锁紧装置、内窥镜以及锁紧装置 技术领域
本申请涉及医疗器械领域,尤其涉及一种用于内窥镜的锁紧装置、内窥镜以及锁紧装置。
背景技术
随着国家医疗体制的改革,医疗技术的进步,先进医疗设备的普及,内窥镜设备越来越广泛地应用于日常的医疗手术中。
内窥镜设备作为一种常用的医疗器械,主要组成部分为牵引丝、可弯曲部分、光源以及镜头等。为了便于病变部位的观察,会在内窥镜的后端装配锁紧装置。在实际的应用中,内窥镜前端镜头经过微创切口进入人体内部,通常会将内窥镜前端镜头调整到适宜位置后,再将内窥镜的镜头固定在某个角度,通过内窥镜后端的锁紧装置实现可弯曲部分的运动操控,进而实现对内窥镜前端镜头观察角度的调节,直接窥视相关部位的病变情况。因此,内窥镜锁紧装置作为实际手术操作中的重要组件,对于实现病变部位的观察起到至关重要的作用。
现有的内窥镜锁紧装置中,通常使用锁定手轮实现镜头的调整以及锁定,由于存在操作过程中锁定手轮操纵镜头时稳定性不够、定位精度不高、弯曲角度不灵活等问题,因此,提供一种用于内窥镜的锁紧装置,以提高操作过程中内窥镜的镜头的角度灵活性与稳定性,成为本领域技术人员需要解决的技术问题。
发明内容
本发明提供一种用于内窥镜的锁紧装置,以解决现有内窥镜锁紧装置操作稳定性不够、精密度不高、弯曲角度不灵活的问题。本发明另外提供一种使用上述锁紧装置的内窥镜以及一种锁紧装置。
根据本发明实施例提供的用于内窥镜的锁紧装置,包括第一转轮、第一转轴、以及制动盘、制动盘驱动组件;第一转轮连接于第一转轴第一端;第一转轴靠第二端位置设置有第一牵引盘;通过第一转轮可控制第一转轴的旋转,并带动第一牵引盘旋转,第一牵引盘的旋转调整第一牵引丝,从而调整内窥镜在第一维度的观察角度;制动盘设置在第一转轴或者第一牵引盘外周面的至少一侧,通过制动盘驱动组件能够调整制动盘与第一转轴或者第一牵引盘外周面贴合的松紧程度,以使第一转轴的旋转阻尼在第一预设阻尼范围内。
在本申请的一个实施例中,制动盘整体为夹持在第一转轴或者第一牵引盘的周面上的框架结构,框架结构具有使其可以上下张开的制动盘开口;制动盘驱动组件具有紧固件,紧固件至少设置在制动盘开口的一端,通过紧固件能够调整向制动盘施加的作用力,从而通过改变制动盘对第一转轴、第一牵引盘所施加的夹持力,以调整制动盘与第一转轴或者第一牵引盘外周面贴合的松紧程度,以使第一转轴的旋转阻尼在第一预设阻尼范围内。
在本申请的一个实施例中,与制动盘开口相对的制动盘根部位置设置有凸台,通过凸台,制动盘被固定于锁紧装置的机体内。
在本申请的一个实施例中,制动盘根部位置设置有增加制动盘的弹性变形空间的间隙。
在本申请的一个实施例中,凸台被设置在机体上的第一夹持柱、第二夹持柱夹持之间,从而实现制动盘被固定于锁紧装置的机体内。
在本申请的一个实施例中,紧固件包括:螺柱,以及与螺柱配合的上螺母、下螺母,上螺母设置于制动盘开口的上端口,下螺母设置于制动盘开口的下端口;上螺母与螺柱第一段之间构成第一螺纹副、下螺母与螺柱第二段之间构成第二螺纹副,第一螺纹副与第二螺纹副具有相反的螺纹旋向;通过旋转螺柱,以调整向制动盘施加的作用力。
在本申请的一个实施例中,紧固件包括:螺柱,并且框架结构的开口位置设置有与螺柱配合工作的内螺纹;其中,开口的上端口与螺柱第一段配合形成第三螺纹副、开口的下端口与螺柱的第二段配合形成第四螺纹副,第三螺纹副与第四螺纹副具有相反的螺纹旋向;旋转螺柱,以调整向制动盘施加的作用力。
在本申请的一个实施例中,螺柱上设置有伸出到机体的壳体外的握持部;握持部供锁紧装置的操作者旋转螺柱之用。
在本申请的一个实施例中,螺柱设置有与机体的壳体的外表面抵靠的端面。
在本申请的一个实施例中,锁紧装置还包括:第二转轮,第二转轴;第二转轮连接于第二转轴第一端,并且第一转轴和第二转轴同轴,第二转轴套设在第一转轴外周面上;第二转轴靠第二端位置设置有第二牵引盘;通过第二转轮可控制第二转轴的旋转,并带动第二牵引盘旋转,第二牵引盘的旋转调整第二牵引丝,从而调整内窥镜在第二维度的观察角度;第二维度与第一维度处于不同的方向维度;制动盘整体还夹持在第二转轴或者第二牵引盘的周面上;在制动盘对第一转轴、第一牵引盘施加夹持力时,同样对第二转轴、第二牵引盘施加相应的夹持力;以使第二转轴的旋转提供需要的阻尼在第二预设阻尼范围内。
在本申请的一个实施例中,制动盘设置在第一转轴外周面的一侧,通过制动盘驱动组件能够调整制动盘与第一转轴外周面贴合的松紧程度,以使第一转轴的旋转阻尼在第一预设范围内。
在本申请的一个实施例中,用于内窥镜的锁紧装置,还包括第二转轮、第二转轴;第二转轮连接于第二转轴的第一端,并且第二转轴和第一转轴同轴;第二转轴靠第二端位置设置有第二牵引盘,制动盘位于第二转轴外周面的至少一侧;调整制动盘与第一转轴外周面的贴合的松紧程度的同时,也会同步调整制动盘与第二转轴外周面的贴合的松紧程度,以使第二转轴的旋转阻尼在第二预设阻尼范围内;第二牵引盘的旋转用于调整内窥镜的第二牵引丝,从而调整内窥镜在第二维度的观察角度,第二维度与第一维度处于不同的方向维度。
在本申请的一个实施例中,第一转轴外周面和/或第二转轴外周面与制动盘贴合处套设有O型密封圈。
在本申请的一个实施例中,制动盘与第一转轴外周面和/或第二转轴外周面接触的贴合面,设置增大摩擦力的表面纹路。
在本申请的一个实施例中,制动盘本体的一端设置有定位孔,定位孔可旋转的套设在锁紧装置的壳体的固定柱上;通过调整制动盘绕固定柱摆动的角度,能够调整制动盘与第一转轴和第二转轴贴合的松紧程度。
在本申请的一个实施例中,制动盘的制动盘本体上设置圆弧状通孔;制动盘驱动组件 包括驱动件,其本体与第一转轴同轴设置,驱动件还具有与驱动件本体连接并向径向一侧伸出的悬臂,悬臂上设置在轴向上伸出的悬臂柱,悬臂柱插入制动盘上设置的圆弧状通孔中;驱动件转动,悬臂柱随之在圆弧状通孔中滑动,进而带动制动盘围绕固定柱摆动,从而调整制动盘绕固定柱摆动的角度。
在本申请的一个实施例中,制动盘驱动组件还包括拨杆,拨杆具有设定的显著大于驱动件本体直径的长度,其一端固定连接驱动件本体,其另一端在径向方向上伸出并提供便于拨动的操作表面;通过拨动拨杆,能够使驱动件转动。
在本申请的一个实施例中,在第一牵引盘和第二牵引盘的轴向间隙处设置有隔离片。
在本申请的一个实施例中,制动盘、制动盘驱动组件分为两组,分别为第一转轴和第二转轴提供阻尼。
本申请实施例还提供一种内窥镜,其包括第一转轮、第一转轴、以及制动盘、制动盘驱动组件;第一转轮连接于第一转轴第一端;第一转轴靠第二端位置设置有第一牵引盘;通过第一转轮可控制第一转轴的旋转,并带动第一牵引盘旋转;制动盘设置在第一转轴或者第一牵引盘外周面的至少一侧,通过制动盘驱动组件能够调整制动盘与第一转轴或者第一牵引盘外周面贴合的松紧程度,以使第一转轴的旋转阻尼在第一预设阻尼范围内;第一牵引盘的旋转用于调整第一牵引丝,从而调整内窥镜的镜头在第一维度的观察角度;通过该调整并结合上述制动盘提供的阻尼,能够根据需要带动内窥镜的镜头转动到并停留在第一维度的需要的观察角度。
本申请实施例还提供一种锁紧装置,其包括第一转轮、第一转轴、以及制动盘、制动盘驱动组件;第一转轮连接于第一转轴的第一端;第一转轴靠第二端位置设置有第一功能盘;通过第一转轮可控制第一转轴的旋转,并带动第一功能盘旋转;制动盘设置在第一转轴或者第一功能盘外周面的至少一侧,通过制动盘驱动组件能够调整制动盘与第一转轴或者第一功能盘外周面贴合的松紧程度,以使第一转轴的旋转阻尼在第一预设阻尼范围内。
本发明提供的一种用于内窥镜的锁紧装置,包括第一转轮、第一转轴、以及制动盘、制动盘驱动组件;第一转轮连接于第一转轴第一端;第一转轴靠第二端位置设置有第一牵引盘;通过第一转轮可控制第一转轴的旋转,并带动第一牵引盘旋转,第一牵引盘的旋转调整第一牵引丝,从而调整内窥镜在第一维度的观察角度;制动盘设置在第一转轴外周面的至少一侧,通过制动盘驱动组件能够调整制动盘与第一转轴或者第一牵引盘外周面贴合的松紧程度,从而对第一转轴旋转提供符合期望的阻尼,进而实现锁紧装置工作时,通过第一牵引丝的牵引,使位于内窥镜远端弯曲部的镜头可以在旋转到满足要求的角度时被可靠的固定,最终实现内窥镜操作过程中内窥镜的镜头所处于的角度灵活性与稳定性,提高手术的效率。
在本申请的优选实施方案之一中,制动盘整体为夹持在第一转轴或者第一牵引盘的周面上的框架结构,框架结构具有使其可以上下张开的制动盘开口;制动盘驱动组件具有紧固件,紧固件至少设置在制动盘开口的一端,通过紧固件能够调整向制动盘施加的作用力,从而通过改变制动盘对第一转轴、第一牵引盘所施加的夹持力,获得调整制动盘与第一转轴或者第一牵引盘外周面贴合的松紧程度的效果,实现对第一转轴旋转提供符合期望的阻尼。该优选实施方案的进一步优选方式中,使用螺纹副结构实现紧固件。上述优选实施方式能够实现夹持程度的连续的调节,并可以可靠的保持于任何一个调节位置,满足所需要 的各种程度的操作手感。
在本申请的优选实施方案之二中,制动盘设置在第一转轴外周面的一侧,通过制动盘驱动组件能够调整制动盘与第一转轴外周面贴合的松紧程度,从而对第一转轴旋转提供符合期望的阻尼。该优选实施方案具有结构简洁,操作方便的特点。
附图说明
通过参照附图的以下详细描述,本申请实施例的上述和其他目的、特征和优点将变得更容易理解。在附图中,将以示例以及非限制性的方式对申请的多个实施例进行说明,其中:
图1A为本申请第一实施例提供的一种用于内窥镜的锁紧装置的剖面结构示意图;
图1B为图1A中的锁紧装置的制动盘驱动组件结构示意图;
图2A为图1A中的锁紧装置在另一视角下的结构示意图;
图2B为图2A中的锁紧装置的制动盘结构示意图;
图3为图2A中的锁紧装置对应的左视图;
图4为图2A中的锁紧装置对应的俯视图;
图5为图2A中的锁紧装置的第一牵引盘结构示意图;
图6为图2A中的锁紧装置的制动盘上盘与制动盘下盘的另一种连接方式的结构示意图;
图7为图2A中的锁紧装置锁定时的状态示意图;
图8为第二实施例提供的锁紧装置的剖面结构示意图;
图9为第二实施例提供的锁紧装置的第一功能盘的结构示意图;
图10为第二实施例提供的锁紧装置锁定时的状态示意图;
图11为第三实施例提供的一种用于内窥镜的锁紧装置的剖面结构示意图;
图12为图11中的用于内窥镜的锁紧装置的非锁定时的状态示意图;
图13为图11中的用于内窥镜的锁紧装置的锁定时的状态示意图;
图14为图11中的用于内窥镜的锁紧装置中的制动盘结构示意图;其中,左侧为制动盘整体结构的立体图,右侧为制动盘一个盘片的正视图;
图15为图11中的用于内窥镜的锁紧装置中的驱动件结构示意图;
图16为图11中的用于内窥镜的锁紧装置中的第一牵引盘结构示意图;
图17为第四实施例提供的一种内窥镜的整体结构示意图;
图18为第五实施例提供的一种用于内窥镜的锁紧装置的剖面结构示意图。
附图标记:
第一实施例部分附图标记:
10-锁紧装置;
100-转轮组件;110-第一转轮组件;111-第一转轮;113-第一转轴;115-第一牵引盘;
1151-第一牵引盘凹槽;1153-第一牵引丝;1155-第一牵引孔;1157-第一牵引盘中心孔;130-第二转轮组件;131-第二转轮;133-第二转轴;135-第二牵引盘;1351-第二牵引盘凹槽;150-隔离片;
300-制动盘;310-制动盘本体(框架结构);311-制动盘上盘;313-制动盘下盘;315-
制动盘开口;3151-制动盘开口上端口;3153-制动盘开口下端口;317-间隙;330-凸台;
500-制动盘驱动组件;510-紧固件;511-螺柱;513-上螺母;515-下螺母;530-握持
部;
第二实施例部分附图标记:
115’-第一功能盘;135’-第二功能盘;其余参照第一实施例的附图标记。
第三实施例部分附图标记:
210-锁紧装置;
2100-转轮组件;2110-第一转轮组件;2111-第一转轮;2113-第一转轴;2115-第一
牵引盘;21151-第一牵引盘凹槽;21153-第一牵引丝;21155-第一牵引孔;21157-第一牵引盘中心孔;
2130-第二转轮组件;2131-第二转轮;2133-第二转轴;2135-第二牵引盘;21351-第
二牵引盘凹槽;
2150-隔离片;2170-O型密封圈;2170-1-第一组O型密封圈;2170-2-第二组O型密
封圈;
2300-制动盘;2310-制动盘本体;2310-1-第一制动盘本体,2310-2-第二制动盘本体;
2330-制动盘凹槽;2350-圆弧状通孔;2370-定位孔;
2500-制动盘驱动组件;2510-驱动件;2511-驱动件外缘平台;2513-驱动件中空孔;
2515-驱动件本体;2517-悬臂;2519-悬壁柱;2530-拨杆;
2700-手柄;2710-固定柱;
第四实施例部分附图标记:
2-内窥镜;210-锁紧装置;20-光源组件;30-牵引丝;40-吸引管;50-冲洗管;60-
航空接头;70-镜头;80-可弯曲部;90-导管;2530-拨杆;2700-手柄;
第五实施例部分附图标记:
210’-锁紧装置;2115’-第一功能盘;2135’-第二功能盘;其余参照第三实施例的
附图标记。
具体实施方式
下面详细描述本申请的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
现有通常技术的内窥镜中,通常使用锁定手轮实现内窥镜的镜头的调整,在该操作过程中,存在诸多内窥镜锁紧装置操纵镜头时稳定性不够、定位精度不高、弯曲角度不灵活等问题。
有鉴于此,本申请提供了一种用于内窥镜的锁紧装置,其包括第一转轮、第一转轴、以及制动盘、制动盘驱动组件,其中,第一转轮连接于第一转轴第一端;第一转轴靠第二端位置设置有第一牵引盘;通过第一转轮可控制第一转轴的旋转,并带动第一牵引盘旋转,第一牵引盘的旋转调整第一牵引丝,从而调整内窥镜在第一维度的观察角度;制动盘设置在第一转轴外周面的至少一侧,通过制动盘驱动组件能够调整制动盘与第一转轴或者第一牵引盘外周面贴合的松紧程度,以使第一转轴的旋转阻尼在第一预设阻尼范围内,进而对第一转轴提供符合期望的阻尼。通过上述对第一转轴旋转施加阻尼,第一牵引盘对于第一牵引丝进行收放控制,进而实现第一牵引丝对内窥镜的镜头的角度、位置的调整,有利于内窥镜远端弯曲部在任何角度下的弯曲与固定,最终实现内窥镜操作过程中内窥镜的镜头的定位角度的灵活性与稳定性的结合,提高了手术的效率。
下面结合附图对本公开的几种可选地实现方式进行介绍,当本领域技术人员应当理解,下述实现方式仅是示意性的,并非是穷尽式的列举,在这些实现方式的基础上,本领域技术人员可以对某些特征或者某些示例进行替换、拼接或者组合,这些仍应视为本公开的公开内容。
下面结合附图1A-附图7详细介绍本申请第一实施例。该实施例的优点在于,能够提供连续、稳定的操作手感,调节可靠性高。
如图1A所示,本实施例提供的用于内窥镜的锁紧装置10的剖面结构示意图;其中,图1A的左侧为锁紧装置10的第一端,即转轮组件100一端;图1A右侧为锁紧装置10的第二端,即制动盘300一端;在该图中,由于视角关系,无法显示制动盘驱动组件500,可以参考图1B及后续示意图进行理解,图1B示出了制动盘驱动组件500的结构。图2A为图1A中的锁紧装置10在另一视角下的结构示意图,即制动盘300一端朝向纸面外的视角下的结构示意图;在该图中,锁紧装置10处于非锁定状态。图3为图2A中的锁紧装置10的左视结构示意图;图4为图2A中的锁紧装置10的俯视结构示意图。
结合图1A及图1B的示意,锁紧装置10包括如下组件或者部件:转轮组件100;制动盘300;制动盘驱动组件500。
上述各个部件的布置方式大致可以描述如下:转轮组件100位于锁紧装置10第一端 (图1A左侧),制动盘300位于锁紧装置10第二端(图1A右侧),制动盘驱动组件500同样位于锁紧装置10第二端(图1A右侧),并设置在制动盘300的一端。制动盘驱动组件500通过紧固件510与制动盘300实现连接,进而能够向制动盘300施加作用力。
在本实施例中,锁紧装置10还包括以下组件:手柄;本申请的附图中并未示出该组件,但是作为内窥镜操作过程中的必要组件,本领域技术人员能够较为容易的理解该组件的用途;手柄实际为锁紧装置10的机体,为其他各个部件提供定位基础;之所以称为手柄,实际是就其在内窥镜的整体结构中是作为手柄而言,一般设计为可根据装配修理需要拆卸的两个相互扣合的罩体;在本实施例中,手柄为塑料材质中空圆壳体,用于为转轮组件100、制动盘300提供安装位置,在本实施例中,上述机体与锁紧装置10相关的组件主要为第一夹持柱、第二夹持柱,通过第一夹持柱、第二夹持柱实现将制动盘300固定于锁紧装置10的机体内。
接下来介绍转轮组件100,转轮组件100包括:第一转轮组件110、第二转轮组件130、隔离片150。
以下详细介绍各个部件。
转轮组件100包括:第一转轮组件110、第二转轮组件130、隔离片150;第一转轮组件110包括:第一转轮111、第一转轴113、第一牵引盘115;第二转轮组件130包括:第二转轮131、第二转轴133、第二牵引盘135。
第一转轮111连接于第一转轴113第一端,作为设置在第一转轴113上的操作把手;本实施例中,第一转轮111设置在第一转轴113的第一端(图1A左侧);第一牵引盘115设置在第一转轴113的另一端,即第一转轴113的第二端(图1A右侧);第二转轮131连接于第二转轴133的第一端,并且第二转轴133和第一转轴113同轴,在本实施例中,作为一种最为可能的布置方式,具体是通过第二转轴133套设在第一转轴113外周面上实现上述同轴;第二牵引盘135设置在第二转轴133的靠第二端位置。从图中可以看出,第二牵引盘135设置在相对第一牵引盘115的更靠第一端的位置(图1A右侧)。此外,第一转轮111位于第二转轮131的更靠第一端的位置,并且第一转轮111上设置有向第二端伸出的凸台,而第二转轮131上则设置有相应的凹槽,使凸台嵌入凹槽,从而缩短了第一转轮111和第二转轮131在轴向上的安装尺寸。当然,第一转轴113和第二转轴133的同轴布置方式,也完全可以采取其他不同的方式,例如,采用两者从两端相对的布置方式,如果采用此种布置方式,则整个锁紧机构的布局与本实施例有明显区别,但其原理并无本质差别。
在介绍完上述各转轴与转轮的结构及连接关系后,接下来介绍牵引盘的结构,由于第二牵引盘135与第一牵引盘115具有同样的结构,因此关于第二牵引盘135的结构请参考第一牵引盘115的描述,此处不再赘述。
请参见图5,图5为锁紧装置10中的第一牵引盘115的结构示意图。该图中还示出了与第一牵引盘115连接的第一转轴113。以下结合图5详细说明第一牵引盘115的具体结构,也可同时参考图1A。
第一牵引盘115设置在第一转轴113的第二端;第一牵引盘115上具有固定第一牵引丝1153的位置,通过第一转轮111可控制第一转轴113的旋转,并带动第一牵引盘115旋转,第一牵引盘115的旋转调整第一牵引丝1153伸出的距离,而第一牵引丝1153又可 以牵引内窥镜的镜头,从而调整内窥镜在第一维度的观察角度,使其处于合适的角度。
根据图5所示出的,第一牵引盘115包括:第一牵引盘凹槽1151、第一牵引丝1153、第一牵引孔1155、第一牵引盘中心孔1157。
第一牵引盘115为中空盘体结构,第一牵引盘凹槽1151位于第一牵引盘115外周面上,第一牵引丝1153通过第一牵引盘凹槽1151进入第一牵引盘115内,第一牵引盘115的圆周面上设有对称的双向第一牵引孔1155,对称的第一牵引孔1155用于第一牵引线1153的收入与放出,第一牵引盘115的盘中心位置设有第一牵引盘中心孔1157,与第一转轴113嵌合固定,通过该结构,将第一牵引盘115安装在第一转轴113的第二端。
第一牵引丝1153的一端固定在第一牵引盘115上,并可以没入第一牵引盘凹槽1151,通过旋转第一牵引盘115能够调整第一牵引丝1153的收放,从而调整内窥镜在第一维度的观察角度;具体而言,第一牵引盘115的旋转,能够控制第一维度的第一牵引丝1153的缠绕收放,从而调整其伸出的距离;作为一种可能的布置方式,在本实施例中,第一牵引丝1153由两根牵引线组成,第一维度的观察角度为上下方向,第一牵引丝1153的两根牵引线分别单独控制内窥镜在上下方向的观察角度;在本实施例中,上述第一牵引丝1153的组成及控制维度仅为一种示意,不排除对于该牵引丝其他可能的组成及控制方式。
类似第一牵引盘115,第二牵引盘135具有类似的结构,其区别是其设置在第二转轴133靠第二端位置。该第二牵引盘135用于固定第二牵引丝,并且第二牵引丝的组成方式与上述第一牵引丝1153类似,通过旋转第二牵引盘135能够调整第二牵引丝的收放,从而调整内窥镜在第二维度的观察角度,例如,内窥镜在左右方向的观察角度;具体而言,第二牵引盘135的旋转,能够控制第二维度的第二牵引丝的缠绕收放,从而调整其伸出的距离。
在本实施例中,上述第一牵引丝1153、第二牵引丝均埋藏在内窥镜的导管中,各牵引丝的两个端头分别定位在内窥镜导管的弯曲端和牵引盘端,其一端与对应的牵引盘连接,另一端固定在导管中,一般的,一条牵引丝一端被相应牵引盘牵引后,当牵引盘进行转动时,由于导管的柔性,通过牵引丝带动导管远端可弯曲部分的转动,进而带动内窥镜的镜头端在某个维度(第一,或者第二)上转动,使内窥镜的镜头能够向某个角度偏转,改变观察视角。
通过上述内容介绍了转轮组件100,接下来介绍制动盘300。
请参考图2A及图2B的示意,图2A中的锁紧装置10处于非锁定状态的结构示意图,图2A为制动盘300的结构示意图。
制动盘300包括:制动盘本体310、凸台330。
制动盘本体310为夹持在第一转轴113或者第一牵引盘115的周面上的框架结构,该框架结构上设置有可上下张开的制动盘开口,通过该制动盘开口将第一转轴113或第一牵引盘115的周面进行夹持,并且在制动盘本体310框架结构的根部位置设置有凸台330,通过凸台330,制动盘本体310被固定于锁紧装置10的机体内。在本实施例中,具体为凸台被设置在机体上的第一夹持柱、第二夹持柱夹持之间,从而实现制动盘本体310被固定于锁紧装置10的机体内。
制动盘本体310包括:制动盘上盘311、制动盘下盘313、制动盘开口315、间隙317。
请参考图2A、图2B、图3、图4,其中,图3为图2A中的锁紧装置对应的左视图; 图4为图2A中的锁紧装置对应的俯视图。制动盘本体310整体为圆盘状框架结构,该圆盘状框架结构的制动盘本体310由半圆形框架的制动盘上盘311和半圆形框架的制动盘下盘313共同组成,并且制动盘上盘311和制动盘下盘313,通过与制动盘开口315相对的制动盘本体310根部位置的凸台330实现连接,凸台330为制动盘上盘311和制动盘下盘313的上下张开提供定位基础,并且该位置处设置有增加弹性变形空间的间隙317;上述制动盘上盘311和制动盘下盘313之间形成相应的制动盘开口315,通过制动盘开口315将第一转轴113或者第一牵引盘115的周面进行夹持,使第一转轴113、第一牵引盘115获得夹持力。在制动盘本体310框架结构上,制动盘开口315一侧还设置有通孔,通孔用于连接制动盘驱动组件500,并与其配合工作。
在本实施例中,作为具体的实施方式,具体是框架结构的制动盘本体310,其框架结构中一端的制动盘上盘311与制动盘下盘313设置在第一转轴113的外周面上(图1A右侧),框架结构中另一端的制动盘上盘311与制动盘下盘313设置在第二转轴133的外周面上(图1A中间);此外,制动盘上盘311与制动盘下盘313在各转轴的外周面上相对设置,制动盘上盘311位于各转轴外周面的上方位置(图2A上方)、制动盘下盘313位于各转轴外周面的下方位置(图2A下方),并且在制动盘上盘311、制动盘下盘313与各转轴的接触面,设置有用于增大摩擦力的表面纹路;此外,在制动盘上盘311、制动盘下盘313的同一侧,与制动盘开口315相同的一侧(图2A左侧)设置有通孔,通过通孔实现制动盘驱动组件500与制动盘本体310的连接,在本实施例中,具体是制动盘驱动组件500的紧固件通过制动盘开口上端口3151与制动盘开口下端口3153上的通孔实现连接。
作为本实施例一种可行的方式,如图2A所示,凸台330为板状,位于制动盘上盘311与制动盘下盘313与制动盘开口315相对的同一侧(图2A右侧),并且,凸台330朝向制动盘本体310形成开口,从两侧夹持制动盘上盘311与制动盘下盘313,为制动盘上盘311与制动盘下盘313提供定位。
作为本实施例另一种可行的方式,如图6所示,图6为图2A中的锁紧装置10的制动盘上盘311与制动盘下盘313的另一种连接方式的结构示意图;如图6所示,制动盘上盘311与制动盘下盘313的连接方式为铰接,凸台330为轴状,轴状凸台330插入制动盘上盘311与制动盘下盘313的铰接部位,轴状凸台330为制动盘上盘311与制动盘下盘313提供旋转轴。
接下来介绍制动盘驱动组件500,为了便于理解,可以参考图1B中的示意,也可参考图2A。
如图1B所示出的,制动盘驱动组件500包括:紧固件510;握持部530。
紧固件510设置在制动盘本体310框架结构上,并位于与制动盘开口315位置,紧固件510具体设置在制动盘本体310上的通孔内,通过紧固件510,将制动盘上盘311和制动盘下盘313连接;紧固件510的一端设置有握持部530,该握持部530伸出锁紧装置10机体的壳体外,供锁紧装置10的操作者旋转紧固件510;作为具体的实施方式,握持部530为一旋钮,在旋钮垂直于第一转轴113径向方向上,具有设定的显著大于第一转轮111半径的长度;通过旋转旋钮带动紧固件510旋转,紧固件510在制动盘本体310上的通孔内旋转,能够调整向制动盘300施加的作用力;从而改变制动盘300对第一转轴113、第一牵引盘115所施加的夹持力,以使第一转轴113的旋转阻尼在第一预设阻尼范围内,也 就是说,对第一转轴113的旋转提供需要的阻尼。其中,第一预设阻尼范围本申请实施例不做具体限定,可根据实际锁紧装置10的使用工况适应性调整。
为了便于理解,接下来详细介绍紧固件510。紧固件510包括两种实现方式,以下分别介绍。
紧固件510的第一种实现方式,包括:螺柱511、上螺母513、下螺母515。
螺柱511作为紧固件510的主体,设置为穿过制动盘本体310上的通孔;螺柱511外周面上,至少设置有两段旋向设置相反的螺纹;与螺柱511配合,还设置有上螺母513及下螺母515;其中,上螺母513固定设置于制动盘开口上端口3151上侧,下螺母515固定设置于制动盘开口下端口3153下侧;上螺母513与螺柱511第一段之间构成第一螺纹副、下螺母515与螺柱511第二段之间构成第二螺纹副,第一螺纹副与第二螺纹副具有相反的螺纹旋向;通过旋转螺柱511,实现对制动盘300施加的作用力的调整。由于上述第一螺纹副和第二螺纹副的螺纹旋向不同,因此,螺柱511向一个方向旋转,上螺母513和下螺母515会向两者靠近的方向沿着螺柱511的轴向运动,或者相反。这样,就通过制动盘本体310的制动盘开口315实现了对第一转轴113、第二转轴133的握持,增加或者减少了转轴承受的阻尼。
在本实施例中,作为另一种可行的方式,制动盘本体310框架结构的开口位置,在通孔内设置有与螺柱511配合工作的内螺纹;其中,制动盘开口上端口3151与螺柱511第一段配合形成第三螺纹副、制动盘开口下端口3153与螺柱511的第二段配合形成第四螺纹副,第三螺纹副与第四螺纹副具有相反的螺纹旋向;通过螺柱511的旋转,螺柱511的表面螺纹与制动盘开口上端口3151、制动盘开口下端口3153配合,进而向制动盘300施加作用力或者减少作用力;其作用原理和前面采用螺母的方式类似。
通过上面两种实现方式,在内窥镜进行工作时,通过旋转握持部530,带动螺柱511同步转动,实现螺柱511与上螺母513、下螺母515的配合工作(第一种实现方式),或者,实现螺柱511与制动盘开口上端口3151、制动盘开口下端口3153的配合工作(第二种实现方式),进而实现对制动盘本体310施加的作用力的调整;由于制动盘本体310为框架结构具有使其可以上下张开的制动盘开口315,第一转轴113、第二转轴133的外周面上夹持制动盘本体310;通过上述对制动盘本体310施加的作用力的调整,可以改变制动盘本体310对第一转轴113、第二转轴133所施加的夹持力,以使第一转轴113的旋转阻尼在第一预设阻尼范围内,第二转轴133的旋转阻尼在第二预设阻尼范围内,也就是说,对第一转轴113、第二转轴133的旋转提供需要的阻尼。一般的,锁紧装置10可具有非锁定时状态和锁定时状态,并可以在介于两者的中间位置时提供不同程度的阻尼。其中,第二预设阻尼范围本申请不做具体限定,可根据实际锁紧装置10的使用工况适应性调整。第一预设阻尼范围可以与第二预设阻尼范围相同,也可以不同。
以下结合图2A、图4、图7,详细介绍锁紧装置10的工作过程。
图2A示出了锁紧装置10处于非锁定状态时的示意图;图4同时示出了将锁紧装置10从非锁定状态到锁定状态的切换过程(图4为图2A中的锁紧装置对应的俯视图);图7示出了锁紧装置10处于锁定状态时的示意图。
图2A、图7均为图1A中的锁紧装置10顺时针旋转后,使得锁紧装置10的第二端,即制动盘300一端朝向纸面外的视角下的结构示意图。下面参照图2A、图4、图7简要介 绍锁紧装置10的工作过程,重点是在锁定状态与非锁定状态切换的过程。
当需要将内窥镜锁紧装置10进行锁定时,通过将握持部530旋钮沿逆时针旋转一定角度(如图4示出由B位置到A位置),握持部530旋钮带动螺柱511逆时针转动,由于上螺母513与螺柱511第一段之间构成的第一螺纹副,下螺母515与螺柱511第二段之间构成第二螺纹副,上述第一螺纹副与第二螺纹副具有相反的螺纹旋向,因此,当螺柱511逆时针转动,螺柱511的表面螺纹与上螺母513、下螺母515的配合工作,使得上螺母513和下螺母515向两者靠近的方向沿着螺柱511的轴向运动,由于上螺母513、下螺母515固定在制动盘本体310的通孔内表面,进而使得制动盘开口315的开口程度逐渐减小,该框架结构的制动盘本体310对第一转轴113、第二转轴133所施加夹持力逐渐增加,进而对第一转轴113、第二转轴133旋转的阻尼逐渐增加,第一转轴213、第二转轴233在上述阻尼的作用下逐渐停止转动,第一牵引盘凹糟2151、第二牵引盘凹槽2351停止对左右及上下方向牵引丝的收放缠绕,各牵引丝在导管内上下及左右方向牵引长度被固定,锁紧装置10进入锁定状态,即实现内窥镜的镜头的角度与方向锁定。请参考图2A、图7、上述过程是图2A变化到图7的过程,可以看出制动盘上盘311、制动盘下盘313在图2A位置时,两者之间形成的制动盘开口315较大,到图7位置时则两者之间形成的制动盘开口315较小。
当需要将内窥镜锁紧装置10进行解锁时,通过将握持部530旋钮沿顺时针旋转一定角度(如图4示出由A位置到B位置),握持部530带动螺柱511转动,螺柱511的表面螺纹与上螺母513、下螺母515的配合工作,上螺母513和下螺母515会向两者远离的方向沿着螺柱511的轴向运动,制动盘开口315的开口程度逐渐增加,该框架结构的制动盘本体310对第一转轴113、第二转轴133所施加夹持力逐渐减小,进而对第一转轴113、第二转轴133旋转的阻尼逐渐减小至消失,第一转轴213、第二转轴233在上述阻尼逐渐减小的情况下增加转动,当上述阻尼消失时,锁紧装置10就脱离上述锁定状态,进入上述非锁定状态。此时,第一牵引盘215、第二牵引盘235便可以随着操作者对第一转轮211和第二转轮231的操作而灵活旋转;与上述各牵引盘相关的牵引丝在牵引盘的牵引下,能够灵活的缠绕收放,从而使内窥镜的镜头的角度得到灵活调整。请参考图2A、图7,上述过程是图7变化到图2A的过程,可以看出图7位置时,制动盘上盘311、制动盘下盘313之间形成的制动盘开口315较小,到图2A位置时则两者之间形成的制动盘开口315较大。
在上述锁定和解锁的位置中间,可以通过对握持部530的操作,使其位于A、B中间的不同位置,使锁紧装置10处于不同的阻尼状态,从而根据转动转轮的需要,获得不同的调整转轮的松紧度。通过该锁紧装置10,可以在对内窥镜进行调整时,根据需要将其设定在合适的状态,解锁时可以通过转轮自由的调节内窥镜的镜头角度,锁定时使内窥镜处于固定状态,镜头角度不会发生变化;如果处于上述两者中间的阻尼状态,则会给操纵者提供其需要的拨动转轮的手感,从而使其便于操纵。
与第一实施例类似,作为优选实施例,显然,在其基本原理上也可以存在别的变形。例如,转轮组件100仅仅包括第一转轮组件,即锁紧装置10只能在一个维度上调整内窥镜的角度。当然,还有一些其他可能的变形方式。例如,前面已经提到的第一转轮111和第二转轮131处于相对的位置,而不是如本实施例的处于同一端。
对应于前述第一实施例,本申请第二实施例提供一种锁紧装置;提供该实施例的目的, 是将第一实施例的原理推广到其他可能的应用场合,而不是仅仅限于内窥镜。
以下结合附图8-10说明其结构以及工作过程,同时可以参照第一实施例中附图1A-附图7。在该实施例中与上述第一实施例具有相同功能的原件尽量采用相同的命名,以便于理解。需要说明的是,第一实施例与第二实施例尽管存在共同的创新点,但仍然存在显著差异之处,因此,对于本实施例的描述就以本实施例提供的命名为准,不用与第一实施例强行对应。
锁紧装置10’,通常应用于检测场景,结合实施例一描述过程,转轮组件100中的第一牵引盘115及第二牵引盘135替换为第一功能盘115’及第二功能盘135’,用于实现各种可能的调整功能。需要理解的是,第一功能盘115’及第二功能盘135’的结构可根据锁紧装置10’的功能及应用场景需要进行结构上的调整。本实施例不作具体限定。
锁紧装置10’,包括:第一转轮111、第一转轴113、以及制动盘300、制动盘驱动组件500。
第一转轮111连接于第一转轴113第一端;第一转轴113靠第二端位置设置有第一功能盘115’;通过第一转轮111可控制第一转轴113的旋转,并带动第一功能盘115’旋转,第一功能盘115’的旋转调整第一牵引丝1153,从而调整内窥镜在第一维度的观察角度。
制动盘300整体为夹持在第一转轴113或者第一功能盘115’的周面上的框架结构,框架结构通过具有使其可以上下张开的制动盘开口315。
制动盘驱动组件500具有紧固件510,紧固件510设置在制动盘开口315的一端,通过紧固件510能够调整向制动盘300施加的作用力,从而改变制动盘300对第一转轴113、第一功能盘115’所施加的夹持力,以使第一转轴113的旋转阻尼在第一预设阻尼范围内,也就是对第一转轴113的旋转提供需要的阻尼。
使用上述第二实施例提供的锁紧装置10’还可以包括其他必要的结构,例如用于与锁紧装置配合的检测设备、显示设备等。需要理解的是,本实施例的锁紧装置工作过程与实施例一类似,请参考实施例一,本实施例不作过多赘述。需要强调的是,附图8-附图10与第一实施例中附图1A、附图2A和附图5看起来结构相同,仅为示例性展示第二实施例中部件与第一实施例中部件具有相同功能,而非限定其结构一定相同.可以理解的是,第二实施例与第一实施例中具有相同功能的部件,在结构上可以相同,也可以不同。
本申请第三实施例提供另一种用于内窥镜的锁紧装置。
下面结合附图11-附图16详细介绍本申请第三实施例。该实施例具有与上述第一实施例、第二实施例本质上相同的原理,即都是通过调整设置在转轴(第一转轴和/或第二转轴)或者牵引盘(或者功能盘)外周面的至少一侧的制动盘,对转轴的旋转提供符合期望的阻尼。但是,在制动盘的具体实现方式上,该第三实施例采用了不同的结构,该结构的优势在于结构上更为简洁。
如图11所示,本实施例提供的用于内窥镜的锁紧装置210的剖面结构示意图;其中,图11左侧为锁紧装置210的第二端,即制动盘2300一端;图11的右侧为锁紧装置210的第一端,即转轮组件2100一端;在该图中,锁紧装置210处于锁定状态。图12为图11中的锁紧装置210处于非锁定状态的结构示意图。图13为图11中的锁紧装置210处于锁定状态的结构示意图。图12、13均为图11中的锁紧装置210逆时针旋转后,使锁紧装置210的第二端,即制动盘2300一端朝向纸面外的视角下的结构示意图。
如图11所示,锁紧装置210包括如下组件或者部件:转轮组件2100、制动盘2300、制动盘驱动组件2500、手柄2700。
上述各个部件的布置方式大致可以描述如下:制动盘2300靠锁紧装置210第二端布置(图11左侧),制动盘驱动组件2500位于锁紧装置210的大致中间位置(图11中间),转轮组件2100位于锁紧装置210第一端(图11右侧)。制动盘2300与制动盘驱动组件2500通过驱动件本体2510实现连接。制动盘驱动组件2500通过制动盘2300向转轮组件2100提供转动方向的阻尼。
手柄2700,在本实施例中,实际为锁紧装置210的机体,为其他各个部件提供定位基础;之所以称为手柄,实际是就其在内窥镜的整体结构中是作为手柄而言的,其具体结构见后续说明。
转轮组件2100包括:第一转轮组件2110、第二转轮组件2130、隔离片2150、O型密封圈2170。
以下详细介绍各个部件。
转轮组件2100包括第一转轮组件2110、第二转轮组件2130、隔离片2150及O型密封圈2170;第一转轮组件2110包括第一转轮2111、第一转轴2113、第一牵引盘2115;第二转轮组件2130包括第二转轮2131、第二转轴2133、第二牵引盘2135。
第一转轮2111连接于第一转轴2113第一端,作为设置在第一转轴2113上的操作把手;本实施例中,第一转轮2111设置在第一转轴2113的第一端(图11右侧);第一牵引盘2115设置在第一转轴2113的另一端,即第一转轴2113的第二端(图11左侧);第二转轮2131连接于第二转轴2133的第一端,并且第二转轴2133和第一转轴2113同轴,在本实施例中,作为一种最为可能的布置方式,具体是通过第二转轴2133套设在第一转轴2113外周面上实现上述同轴;第二牵引盘2135设置在第二转轴2133的靠第二端位置。从图中可以看出,第二牵引盘2135设置在相对第一牵引盘2115的更靠第一端(图11右侧)的位置。此外,第一转轴2130上套设有O型密封圈2170,O型密封圈2170共有两组,每组有两个且相邻布置;其中第一组O型密封圈2170-1紧靠第一牵引盘2115且位于相对于第一转轴2113更靠第二端的位置(图11左侧),第二组O型密封圈2170-2紧靠第二牵引盘2135且位于相对于第二转轴2133更靠第一端的位置(图11中间);此外,第一转轮2111位于第二转轮2131的更靠第一端的位置,并且第一转轮2111上设置有向第二端伸出的凸台,而第二转轮2131上则设置有相应的凹槽,使凸台嵌入凹槽,从而缩短了第一转轮2111和第二转轮2131在轴向上的安装尺寸。当然,第一转轴2113和第二转轴2133的同轴布置方式,也完全可以采取其他不同的方式,例如,采用两者从两端相对的布置方式,如果采用此种布置方式,则整个锁紧装置的布局与本实施例有明显区别,但其原理并无本质差别。
请参见图16,第一牵引盘2115上具有固定第一牵引丝21153的位置,通过旋转第一牵引盘2115,能够调整第一牵引丝21153伸出的距离,而第一牵引丝21153又可以牵引内窥镜的镜头,从而使内窥镜在该第一牵引丝21153所控制的维度上,处于合适的角度。
图16示出第一牵引盘2115的结构图。该图中还示出了与第一牵引盘2115连接的第一转轴2113。以下结合图16详细说明第一牵引盘2115的具体结构,可同时参考图11。
图16所示出的,第一牵引盘2115包括:第一牵引盘凹槽21151、第一牵引丝21153、 第一牵引孔21155、第一牵引盘中心孔21157。
第一牵引盘2115为中空盘体结构,第一牵引盘凹槽21151位于第一牵引盘2115外周面上,第一牵引丝21153通过第一牵引盘凹槽21151进入第一牵引盘2115内,第一牵引盘2115的圆周面上设有对称的双向第一牵引孔21155,对称的第一牵引孔21155用于第一牵引线21153的收入与放出,第一牵引盘2115的盘中心位置设有第一牵引盘中心孔21157,与第一转轴2113嵌合固定,通过该结构,将第一牵引盘2115安装在第一转轴2113第二端。
第一牵引丝21153的一端固定在第一牵引盘2115上,并可以没入第一牵引盘凹槽21151,通过旋转第一牵引盘2115能够调整第一牵引丝21153的收放,从而调整内窥镜在第一维度的观察角度;具体而言,第一牵引盘2115的旋转,能够控制第一维度的第一牵引丝21153的缠绕收放,从而调整其伸出的距离。
类似第一牵引盘,第二牵引盘2135具有类似的结构,其区别是其设置在第二转轴2133靠第二端位置。该第二牵引盘2135用于固定第二牵引丝,通过旋转第二牵引盘2135能够调整第二牵引丝的收放,从而调整内窥镜在第二维度的观察角度;具体而言,第二牵引盘2135的旋转,能够控制第二维度的第二牵引丝的缠绕收放,从而调整其伸出的距离。牵引丝埋藏在内窥镜的导管中,牵引丝的两个端头分别定位在内窥镜导管的弯曲端和牵引盘端,其一端与牵引盘连接,另一端固定在导管中,一般的,一条牵引丝一端被牵引盘牵引后,当牵引盘进行转动时,由于导管的柔性,通过牵引丝带动导管远端可弯曲部分的转动,进而带动内窥镜的镜头端在某个维度(上下,或者左右)上转动,使内窥镜的镜头能够向某个角度偏转,改变观察视角。
在第一牵引盘2115和第二牵引盘2135的轴向间隙处设置有隔离片2150,以便将两者隔离开。
以下介绍制动盘2300以及制动盘驱动组件2500;由于两者联系紧密,介绍过程中内容存在相互交叉。请参考图14、图15。
制动盘2300包括:制动盘本体2310、制动盘凹槽2330、圆弧状通孔2350、定位孔2370。制动盘驱动组件2500包括:驱动件2510、拨杆2530(见图15)。驱动件2510位于制动盘驱动组件2500靠第二端位置(图11中间靠左侧),拨杆2530位于制动盘驱动组件2500第一端位置(图11中间靠右侧),拨杆2530下端与驱动件2510中的驱动件本体2515外周面固定连接,拨杆2530具有设定的显著大于驱动件2510直径的长度,拨杆2530上端在径向方向上伸出(图11上端),并提供便于拨动的操作表面。驱动件2510的结构在后续介绍了制动盘2300的结构之后进行详细介绍。
手柄2700,其名称是从其作为内窥镜的手柄而来,在本申请中相当于提供定位基础的机体,手柄2700一般设计为可根据装配修理需要拆卸的两个相互扣合的罩体,对于本申请的内窥镜锁紧装置而言,机体提供的相关结构主要是固定柱2710。在本实施例中,手柄2700为塑料材质中空圆壳体,固定柱2710位于手柄2700壳体的内表面,用于为制动盘2300提供安装位置;本实施例中,固定柱2710为实心塑料圆柱,制动盘2300通过其定位孔2370可旋转的套装在该固定柱2710上,从而获得可旋转的安装定位。
图14示出制动盘2300的结构图。以下结合图14详细介绍制动盘2300,也可参考图11、图10。
如前所述,制动盘2300包括:制动盘本体2310、制动盘凹槽2330、圆弧状通孔2350、定位孔2370。
制动盘2300在本实施例中整体为弧形板结构,制动盘2300设置在第一转轴2113外周面的至少一侧,制动盘本体2310的下端设有制动盘凹槽2330,制动盘凹槽2330的内表面就是制动盘2300与第一转轴2130外周面和/或第二转轴2140外周面接触的贴合面,制动盘凹槽2330的内表面设置有增大摩擦力的表面纹路,以便于与第一转轴2113和/或第二转轴2133外周面贴合,制动盘凹槽2330与第一转轴2113、第二转轴2133的贴合面通过O型密封圈2170接触,制动盘凹槽2330上的表面纹路能够在制动盘本体2310带动下,与O型密封圈2170产生挤压,阻碍第一转轴2113、第二转轴2133的转动。制动盘本体2310弧形面一端设置有定位孔2370,定位孔2370可旋转套设于手柄2700上的固定柱2710上,进而实现制动盘本体2310绕定位孔2370的定轴摆动。制动盘本体2310弧形面上设有圆弧状通孔2350,实现悬壁柱2519能够插入圆弧状通孔2350,并在该圆弧状通孔2350内滑动。为了与第一转轴2113和第二转轴2133同步贴合,制动盘本体2310可以如图14所示,设置为前后平行设置的两个弧形板,分别为第一制动盘本体2310-1和第二制动盘本体2310-2。
图15示出作为制动盘驱动组件2500的组成部件驱动件2510的结构图。以下结合图15详细说明驱动件2510的具体结构,也可参考图11。
如图15所示出的,驱动件2510包括:驱动件外缘平台2511、驱动件中空孔2513、驱动件本体2515、悬臂2517、悬壁柱2519。
驱动件本体2515为中空管,位于驱动件2510的下端,驱动件本体2515上设置有驱动件中空孔2513,驱动件本体2515就是通过该驱动件中空孔2513套装在第二转轴2133外径面上;驱动件本体2515的外圆周面上设置有对称的驱动件外缘平台2511,通过上述驱动件外缘平台2511与拨杆2530的下端固定。通过拨动拨杆2530,可以带动驱动件2510转动。驱动件本体2515的前端(图15左侧)沿上下方向固定有悬臂2517,悬臂2517的上前端(图15左上侧)固定有悬壁柱2519。悬壁柱2519沿着第一转轴2113和第二转轴2133的延伸方向伸出,插入制动盘2300上的圆弧状通孔2350内,通过驱动拨杆2530摆动带动驱动件2510转动,进而带动悬壁柱2519在圆弧状通孔2350内滑动。
在内窥镜进行工作时,通过拨动拨杆2530,带动驱动件2510同步转动,实现悬臂柱2519在圆弧状通孔2350内的滑动,进而通过悬臂柱2519沿着圆弧状通孔2350的移动,驱动制动盘2300绕定位孔2370摆动,使制动盘2300上制动盘凹槽2330内表面上的表面纹路与O型密封圈2170产生挤压,实现制动盘2300与第一转轴2113外周面、第二转轴2133外周面贴合的松紧程度的调整,从而对第一转轴2113、第二转轴2133提供符合期望的阻尼。一般的,通过上述调整,锁紧装置210可具有非锁定时状态和锁定时状态,并可以在介于两者的中间位置时提供不同程度的阻尼。
以上仅仅是制动盘2300的一种实现方式,实际上,也可以考虑采用具有多个接触面的抱紧式的制动盘,从多侧向第一转轴2130外周面和/或第二转轴2140外周面接触贴合,实现制动效果。本领域技术人员可以在上述披露的实施方式的启示下,结合本领域的技术知识,进行设计。
以下重点参考图12、图13,详细介绍锁紧装置210的工作过程。
图12示出了图11中的锁紧装置210处于非锁定状态时的示意图。图13示出了图11中的锁紧装置210处于锁定时的状态示意图。图12、图13均为图11中的锁紧装置210逆时针旋转后,使锁紧装置210的第二端,即制动盘2300一端朝向纸面外的视角下的结构示意图。下面参照图11至图13简要介绍锁紧装置210的工作过程,重点是在锁定状态与非锁定状态切换的操作过程。
当需要将内窥镜锁紧装置210进行锁定时,通过拨杆2530沿手柄2700顺时针转动一定角度(如图12示出由A位置到B位置),拨杆2530带动驱动件2510绕第二转轴2133转动,同时驱动驱动件2510上的悬壁柱2519在圆弧状通孔2350内滑动,带动制动盘2300绕定位孔2370顺时针转动,进而导致制动盘2300上的制动盘凹槽2330上的表面纹路与O型密封圈2170产生挤压,实现与第一转轴2113、第二转轴2133外周面至少一侧贴合接触并挤压,从而与第一转轴2113、第二转轴2133旋转产生摩擦力,第一转轴2113、第二转轴2133在摩擦力的作用下停止转动,第一牵引盘凹槽21151、第二牵引盘凹槽21351停止对左右及上下方向牵引丝的收放缠绕,牵引丝在导管内上下及左右方向牵引长度被固定,锁紧装置进入锁定状态,即实现内窥镜的镜头的角度与方向锁定。请参考图12、图13,上述过程是图12变化到图13的过程,可以看出制动盘凹槽2330在图12位置时没有与第一转轴2113接触,到图13位置时则与第一转轴2113接触;在该视角下第二转轴2133被遮挡,但其实际变化是一致的。
当需要将锁紧装置210进行解锁时,通过拨杆2530沿手柄2700逆时针转动一定角度(如图13示出由B位置到A位置),拨杆2530带动驱动件2510绕第二转轴2133转动,同时驱动驱动件2510上的悬壁柱2519在圆弧状通孔2350内滑动,带动制动盘2300绕定位孔2370转动,进而导致制动盘2300上的制动盘凹槽2330上表面纹路与O型密封圈2170实现分离,使加载在第一转轴2113、第二转轴2133上的摩擦力逐渐减小直到消失,锁紧装置210就脱离上述锁定状态,进入上述非锁定状态。此时,第一牵引盘2115、第二牵引盘2135便可以随着操作者对第一转轮2111和第二转轮2131的操作而灵活旋转;与上述牵引盘相关的牵引丝在各牵引盘的牵引下,能够灵活的缠绕收放,从而使内窥镜的镜头的角度得到灵活调整。参考图12、图13,上述过程是从图13变化到图12的过程,可以看出制动盘凹槽2330的表面纹路在图13位置时与第一转轴2113接触,到图12位置时则没有与第一转轴2113接触;虽然该视角下第二转轴2133被遮挡,但其实际变化是一致的。
在上述锁定和解锁的位置中间,可以通过对拨杆2530的操作,使其位于A、B中间的不同位置,使锁紧装置处于不同的阻尼状态,从而根据转动转轮的需要,获得不同的调整转轮的松紧度。通过该锁紧装置,可以在对内窥镜进行调整时,根据需要将其设定在合适的状态,解锁时可以通过转轮自由的调节内窥镜的镜头角度,锁定时使内窥镜处于固定状态,镜头角度不会发生变化;如果处于上述两者中间的阻尼状态,则会给操纵者提供其需要的拨动转轮的手感,从而使其便于操纵。
以下对上述实施例的原理简要说明,拨杆2530和驱动件2510的组合形成一个杠杆机构,由于拨杆2530较长,相当于杠杆的长臂端,可以轻松的通过拨动驱动件2510,通过其悬壁柱2519带动制动盘2300摆动,而相反,制动盘2300摆动则很难带动拨杆2530;并且,悬臂柱2519与制动盘2300的圆弧状通孔2350配合紧密,使两者之间具有较大的摩擦力,而拨杆2530又相当于为其提供了阻碍其运动的负载,因此,制动盘2300很难由 于松动原因导致其位置移动;也就是说,上述锁紧装置具有较好的锁止特性,将拨杆2530拨动到任何一个被拨动到的位置,在没有外力的情况下,都可以在此悬停,不会轻易松动。
上述第一实施例为优选实施例,显然,在其基本原理上也可以存在别的变形。例如,转轮组件2100仅仅包括第一转轮组件,即锁紧装置只能在一个维度上调整内窥镜的角度。当然,还有一些其他可能的变形方式。例如,前面已经提到的第一转轮2110和第二转轮2120处于相对的位置,而不是如本实施例的处于同一端。
在上述的实施例中,进一步的,用于内窥镜的锁紧装置,还可以将制动盘、制动盘驱动组件分为两组,分别为第一转轴和第二转轴提供阻尼。进而实现内窥镜在第一维度、第二维度的观察角度单独控制与调整。上述的第二维度与第一维度处于不同的方向维度。
其中,制动盘2300可按照图11中沿2150隔离片位置从上到下进行分割,切分为制动盘一部和制动盘二部,参考图11的锁紧装置构造,制动盘驱动组件一的位置与构造可类比图11中的制动盘驱动组件2500(图11右侧)、制动盘驱动组件二可位于制动盘驱动组件一的另一侧(图11左侧);制动盘一部设置在第一转轴外周面的某一侧,制动盘二部设置在第二转轴外周面的某一侧;制动盘驱动组件一能够调整制动盘一部与第一转轴外周面贴合的松紧程度,从而对第一转轴提供符合期望的阻尼,第一牵引盘的旋转用于调整第一牵引丝,从而调整内窥镜在第一维度的观察角度;制动盘驱动组件二能够调整制动盘二部与第二转轴外周面贴合的松紧程度,从而对第二转轴提供符合期望的阻尼,第二牵引盘的旋转用于调整第二牵引丝,从而调整内窥镜在第二维度的观察角度。
上述的优选实施例,能够使内窥镜在保证某一维度观察角度确定的情形下,实现另一维度观察角度的独立调整。
本申请第四实施例提供一种内窥镜,参照附图17,具体结合附图11-附图16说明其结构以及工作过程。在该实施例中与上述第三实施例具有相同功能的原件尽量采用与其相同的命名,以便于理解。需要说明的是,但第三实施例与第四实施例尽管存在共同的创新点,但仍然存在显著差异之处,因此,对于本实施例的描述就以本实施例提供的命名为准,不用与第三实施例强行对应。
如图17所示,本实施例提供的内窥镜2的整体结构示意图;
下面结合附图17详细介绍本申请第四实施例。
如图17所示,本实施例提供的内窥镜2的剖面结构示意图;其中,图17左侧为内窥镜的后端,即锁紧装置210和光源组件20的一端,该内窥镜的后端为实际手术过程中操作人员的把持端;图17的右侧为内窥镜结构装置的前端,即镜头70和可弯曲部80的一端,该内窥镜的前端用于手术过程中利用可弯曲部分的运动操控,实现相关部位病变情况的窥视。在该图中,锁紧装置210处于非锁定状态。以下介绍时,将图17左侧称为后方,图17右侧称为前方。
如图17所示,内窥镜2包括:锁紧装置210、光源组件20、牵引丝30、吸引管40、冲洗管50、航空接头60、镜头70、可弯曲部80、导管90、拨杆2530、手柄2700。
光源组件20与锁紧装置210均内嵌于手柄2700内,手柄2700用于操作人员对内窥镜的把持,光源组件20可为镜头70提供观察时的照明光源,手柄2700位于内窥镜2的后端(图17左侧),可弯曲部80与镜头70位于内窥镜2的前端(图17右侧),两者之间通过导管90相互连接。在进行微创手术时,一般的,内窥镜2的前端即在处于图17中的 非锁定状态下沿患者腔道推送到手术部位;导管90内部包裹着锁紧装置210连接到镜头70的牵引丝30,此处所谓包裹,并非紧密包裹,而是为每一根牵引丝提供一个专用管道,管道具有合适的径向的尺寸。其导管90本身采用具有柔韧性的材料制成,使其能够适应于患者的弯曲的腔道,通过可弯曲部80调整镜头70在病灶部位的观察角度。手柄2700掌控在手术操作者手中,手术操作者利用拨杆2530能够根据需要对锁紧装置210进行体外操控,进而实现患者体内病灶部位在不同角度下的观察。
其中,内窥镜2可通过锁紧装置210,实现柔性牵引丝30的任意角度弯曲,锁紧装置210通过调整牵引丝30中的伸出长度,进而实现镜头70在固定位置的角度调整。上述利用拨杆2530实现锁紧装置210锁定与非锁定工作状态的调整的详细过程,请参考实施例三,此处不作过多赘述。
尽管本实施例中的内窥镜2采用了第三实施例提供的锁紧装置,实际上,当然也可以采用本申请第一实施例提供的锁紧装置;在使用该锁紧装置的情况下,具体的锁紧装置的设置方式可以参考第一实施例的描述,在此不再重复叙述。
图17的前端(图17右上方)还示出与镜头70相配合工作的吸引管40、冲洗管50以及航空接头60。吸引管40及冲洗管50用于清除镜头70观察区域的视线阻挡物,可以保证镜头70操作视野的清晰,便于直接窥视相关部位的病变情况。航空接头60用于接入所需的导线。
本申请第五实施例提供一种锁紧装置;提供该锁紧装置实施例的目的,在于将本申请第三实施例提供的用于内窥镜的锁紧装置推广到更为广泛的场合。
以下结合附图18说明其结构以及工作过程,同时可以参照附图11-附图16。在该实施例中与上述第三实施例具有相同功能的原件尽量采用相同的命名,以便于理解。需要说明的是,第三实施例与第五实施例尽管存在共同的创新点,但仍然存在显著差异之处,因此,对于本实施例的描述就以本实施例提供的命名为准,不用与第三实施例强行对应。
锁紧装置210’,通常应用于检测场景,结合实施例三描述过程,转轮组件2100中的第一牵引盘2115及第二牵引盘2135替换为第一功能盘2115’及第二功能盘2135’,用于实现各种可能的调整功能。需要理解的是,第一功能盘2115’及第二功能盘2135’的结构可根据锁紧装置210’的功能及应用场景需要进行结构上的调整。本实施例不作具体限定。
锁紧装置210’,包括:第一转轮2111、第一转轴2113、以及制动盘2300、制动盘驱动组件2500。
第一转轮2111连接于第一转轴2113的第一端;第一转轴2113靠第二端位置设置有第一功能盘2115’;制动盘2300设置在第一转轴2113外周面的至少一侧,通过制动盘驱动组件2500能够调整制动盘2300与第一转轴2113外周面贴合的松紧程度,以使第一转轴2113的旋转阻尼在第一预设阻尼范围内,从而对第一转轴2113旋转提供符合期望的阻尼。
可选的,锁紧装置210’,还包括:第二转轮2131、第二转轴2133;第二转轮2131连接于第二转轴2133第一端,第二转轴2133靠第二端位置设置有第二功能盘2135’,并且第二转轴2133和第一转轴2113同轴;制动盘2300位于第二转轴2133外周面的至少一侧;调整制动盘2300与第一转轴2113外周面的贴合的松紧程度的同时,也会同步调整制动盘 2300与第二转轴2133外周面的贴合的松紧程度,以使第二转轴2133的旋转的阻尼在第二预设阻尼范围内,从而对第二转轴2133的旋转同步提供符合期望的阻尼。需要强调的是,附图18与第二实施例中附图11看起来结构相同,仅为示例性展示第五实施例中部件与第二实施例中部件具有相同功能,而非限定其结构一定相同。可以理解的是,第五实施例与第二实施例中具有相同功能的部件,在结构上可以相同,也可以不同。
使用上述第五实施例提供的锁紧装置210’还可以包括其他必要的结构,例如用于与锁紧装置配合的检测设备、显示设备等。需要理解的是,本实施例的锁紧装置工作过程与实施例三类似,请参考实施例三,本实施例不作过多赘述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
最后应说明的是:以上实施方式仅用以说明本申请的技术方案,而非对其进行限制;尽管参照前述实施方式对本申请已经进行了详细的说明,但本领域的普通技术人员应当理解:其依然可以对前述实施方式所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请实施方式技术方案的范围。

Claims (21)

  1. 一种用于内窥镜的锁紧装置,其特征在于,包括第一转轮、第一转轴、以及制动盘、制动盘驱动组件;
    所述第一转轮连接于所述第一转轴第一端;所述第一转轴靠第二端位置设置有第一牵引盘;通过所述第一转轮可控制所述第一转轴的旋转,并带动所述第一牵引盘旋转,所述第一牵引盘的旋转调整第一牵引丝,从而调整所述内窥镜在第一维度的观察角度;
    所述制动盘设置在所述第一转轴或者所述第一牵引盘外周面的至少一侧,通过所述制动盘驱动组件能够调整所述制动盘与所述第一转轴或者所述第一牵引盘外周面贴合的松紧程度,以使所述第一转轴的旋转阻尼在第一预设阻尼范围内。
  2. 根据权利要求1所述的用于内窥镜的锁紧装置,其特征在于,所述制动盘整体为夹持在所述第一转轴或者所述第一牵引盘的周面上的框架结构,所述框架结构具有使其可以上下张开的制动盘开口;
    所述制动盘驱动组件具有紧固件,所述紧固件至少设置在所述制动盘开口的一端,通过所述紧固件能够调整向所述制动盘施加的作用力,从而通过改变所述制动盘对所述第一转轴、所述第一牵引盘所施加的夹持力,以调整所述制动盘与所述第一转轴或者所述第一牵引盘外周面贴合的松紧程度,以使所述第一转轴的旋转阻尼在所述第一预设阻尼范围内。
  3. 根据权利要求2所述的用于内窥镜的锁紧装置,其特征在于,与所述制动盘开口相对的所述制动盘根部位置设置有凸台,通过所述凸台,所述制动盘被固定于所述锁紧装置的机体内。
  4. 根据权利要求3所述的用于内窥镜的锁紧装置,其特征在于,所述制动盘根部位置设置有增加所述制动盘的弹性变形空间的间隙。
  5. 根据权利要求3所述的用于内窥镜的锁紧装置,其特征在于,所述凸台被设置在所述机体上的第一夹持柱、第二夹持柱夹持之间,从而实现所述制动盘被固定于所述锁紧装置的机体内。
  6. 根据权利要求2所述的用于内窥镜的锁紧装置,其特征在于,所述紧固件包括:螺柱,以及与所述螺柱配合的上螺母、下螺母,所述上螺母设置于所述制动盘开口的上端口,所述下螺母设置于所述制动盘开口的下端口;
    所述上螺母与所述螺柱第一段之间构成第一螺纹副、所述下螺母与所述螺柱第二段之间构成第二螺纹副,所述第一螺纹副与所述第二螺纹副具有相反的螺纹旋向;
    通过旋转所述螺柱,以调整向所述制动盘施加的作用力。
  7. 根据权利要求2所述的用于内窥镜的锁紧装置,其特征在于,所述紧固件包括:螺柱,并且所述框架结构的开口位置设置有与所述螺柱配合工作的内螺纹;其中,所述开口的上端口与所述螺柱第一段配合形成第三螺纹副、所述开口的下端口与所述螺柱的第二段配合形成第四螺纹副,所述第三螺纹副与所述第四螺纹副具有相反的螺纹旋向;
    旋转所述螺柱,以调整向所述制动盘施加的作用力。
  8. 根据权利要求6或者权利要求7所述的用于内窥镜的锁紧装置,其特征在于, 所述螺柱上设置有伸出到所述机体的壳体外的握持部;所述握持部供所述锁紧装置的操作者旋转所述螺柱之用。
  9. 根据权利要求8所述的用于内窥镜的锁紧装置,其特征在于,所述螺柱设置有与所述机体的壳体的外表面抵靠的端面。
  10. 根据权利要求2所述的用于内窥镜的锁紧装置,其特征在于,所述锁紧装置还包括:第二转轮,第二转轴;
    所述第二转轮连接于所述第二转轴第一端,并且所述第一转轴和所述第二转轴同轴,所述第二转轴套设在所述第一转轴外周面上;所述第二转轴靠第二端位置设置有第二牵引盘;通过所述第二转轮可控制所述第二转轴的旋转,并带动所述第二牵引盘旋转,所述第二牵引盘的旋转调整第二牵引丝,从而调整所述内窥镜在第二维度的观察角度;所述第二维度与所述第一维度处于不同的方向维度;所述制动盘整体还夹持在所述第二转轴或者所述第二牵引盘的周面上;在所述制动盘对所述第一转轴、所述第一牵引盘施加夹持力时,同样对所述第二转轴、所述第二牵引盘施加相应的夹持力;以使所述第二转轴的旋转阻尼在第二预设阻尼范围内。
  11. 根据权利要求1所述的用于内窥镜的锁紧装置,其特征在于,所述制动盘设置在所述第一转轴外周面的一侧,通过所述制动盘驱动组件能够调整所述制动盘与所述第一转轴外周面贴合的松紧程度,以使所述第一转轴的旋转阻尼在所述第一预设阻尼范围内。
  12. 根据权利要求11所述的用于内窥镜的锁紧装置,其特征在于,包括第二转轮、第二转轴;所述第二转轮连接于所述第二转轴的第一端,并且所述第二转轴和所述第一转轴同轴;所述第二转轴靠第二端位置设置有第二牵引盘,所述制动盘位于所述第二转轴外周面的至少一侧;调整所述制动盘与所述第一转轴外周面的贴合的松紧程度的同时,也会同步调整所述制动盘与所述第二转轴外周面的贴合的松紧程度,以使所述第二转轴的旋转阻尼在第二预设阻尼范围内;所述第二牵引盘的旋转用于调整所述内窥镜的第二牵引丝,从而调整所述内窥镜在第二维度的观察角度,所述第二维度与所述第一维度处于不同的方向维度。
  13. 根据权利要求12所述的用于内窥镜的锁紧装置,其特征在于,所述第一转轴外周面和/或所述第二转轴外周面与所述制动盘贴合处套设有O型密封圈。
  14. 根据权利要求12所述的用于内窥镜的锁紧装置,其特征在于,所述制动盘与所述第一转轴外周面和/或所述第二转轴外周面接触的贴合面,设置增大摩擦力的表面纹路。
  15. 根据权利要求12所述的用于内窥镜的锁紧装置,其特征在于,所述制动盘本体的一端设置有定位孔,所述定位孔可旋转的套设在所述锁紧装置的壳体的固定柱上;通过调整所述制动盘绕所述固定柱摆动的角度,能够调整所述制动盘与所述第一转轴和所述第二转轴贴合的松紧程度。
  16. 根据权利要求15所述的用于内窥镜的锁紧装置,其特征在于,所述制动盘的制动盘本体上设置圆弧状通孔;
    所述制动盘驱动组件包括驱动件,其本体与所述第一转轴同轴设置,所述驱动件还具有与所述驱动件本体连接并向径向一侧伸出的悬臂,所述悬臂上设置在轴向上伸 出的悬臂柱,所述悬臂柱插入所述制动盘上设置的圆弧状通孔中;所述驱动件转动,所述悬臂柱随之在所述圆弧状通孔中滑动,进而带动所述制动盘围绕所述固定柱摆动,从而调整所述制动盘绕所述固定柱摆动的角度。
  17. 根据权利要求16所述的用于内窥镜的锁紧装置,其特征在于,所述制动盘驱动组件还包括拨杆,所述拨杆具有设定的显著大于所述驱动件本体直径的长度,其一端固定连接所述驱动件本体,其另一端在径向方向上伸出并提供便于拨动的操作表面;通过拨动所述拨杆,能够使所述驱动件转动。
  18. 根据权利要求12所述的用于内窥镜的锁紧装置,其特征在于,在所述第一牵引盘和所述第二牵引盘的轴向间隙处设置有隔离片。
  19. 根据权利要求12所述的用于内窥镜的锁紧装置,其特征在于,所述制动盘、所述制动盘驱动组件分为两组,分别为所述第一转轴和所述第二转轴提供阻尼。
  20. 一种内窥镜,其特征在于,包括第一转轮、第一转轴、以及制动盘、制动盘驱动组件;
    所述第一转轮连接于所述第一转轴第一端;所述第一转轴靠第二端位置设置有第一牵引盘;通过所述第一转轮可控制所述第一转轴的旋转,并带动所述第一牵引盘旋转;
    所述制动盘设置在所述第一转轴或者所述第一牵引盘外周面的至少一侧,通过所述制动盘驱动组件能够调整所述制动盘与所述第一转轴或者第一牵引盘外周面贴合的松紧程度,以使所述第一转轴的旋转阻尼在第一预设阻尼范围内;
    所述第一牵引盘的旋转用于调整第一牵引丝,从而调整所述内窥镜的镜头在第一维度的观察角度;通过该调整并结合上述制动盘提供的阻尼,能够根据需要带动所述内窥镜的镜头转动到并停留在第一维度的需要的观察角度。
  21. 一种锁紧装置,其特征在于,包括第一转轮、第一转轴、以及制动盘、制动盘驱动组件;
    所述第一转轮连接于所述第一转轴的第一端;所述第一转轴靠第二端位置设置有第一功能盘;通过所述第一转轮可控制所述第一转轴的旋转,并带动所述第一功能盘旋转;
    所述制动盘设置在所述第一转轴或者所述第一功能盘外周面的至少一侧,通过所述制动盘驱动组件能够调整所述制动盘与所述第一转轴或者所述第一功能盘外周面贴合的松紧程度,以使所述第一转轴的旋转阻尼在第一预设阻尼范围内。
PCT/CN2023/107953 2022-11-08 2023-07-18 一种用于内窥镜的锁紧装置、内窥镜以及锁紧装置 WO2024098830A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211394554.5 2022-11-08
CN202211394554.5A CN115670348A (zh) 2022-11-08 2022-11-08 一种用于内窥镜调整的锁紧装置、内窥镜以及锁紧装置

Publications (1)

Publication Number Publication Date
WO2024098830A1 true WO2024098830A1 (zh) 2024-05-16

Family

ID=85050425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/107953 WO2024098830A1 (zh) 2022-11-08 2023-07-18 一种用于内窥镜的锁紧装置、内窥镜以及锁紧装置

Country Status (2)

Country Link
CN (1) CN115670348A (zh)
WO (1) WO2024098830A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115670348A (zh) * 2022-11-08 2023-02-03 南微医学科技股份有限公司 一种用于内窥镜调整的锁紧装置、内窥镜以及锁紧装置
CN117281452B (zh) * 2023-11-24 2024-02-06 上海宇度医学科技股份有限公司 一种内窥镜手轮锁紧机构及内窥镜

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170325659A1 (en) * 2015-06-02 2017-11-16 Youcare Technology Co., Ltd.(Wuhan) Self-locking angle adjustment mechanism for endoscope
CN111528769A (zh) * 2020-05-12 2020-08-14 江苏唯德康医疗科技有限公司 一种医用内窥镜装置
CN112244949A (zh) * 2020-09-10 2021-01-22 杭州德柯医疗科技有限公司 多向调弯的介入器械
WO2021230734A1 (ko) * 2020-05-15 2021-11-18 주식회사 다인그룹 내시경
CN114947700A (zh) * 2022-05-23 2022-08-30 苏州欧谱曼迪科技有限公司 内窥镜弯曲状态锁定机构及其内窥镜
CN115530722A (zh) * 2022-10-10 2022-12-30 南微医学科技股份有限公司 一种用于内窥镜调整的锁紧装置、内窥镜以及锁紧装置
CN115568804A (zh) * 2022-10-13 2023-01-06 南微医学科技股份有限公司 一种用于内窥镜调整的锁紧装置、内窥镜以及锁紧装置
CN115670348A (zh) * 2022-11-08 2023-02-03 南微医学科技股份有限公司 一种用于内窥镜调整的锁紧装置、内窥镜以及锁紧装置
CN218792187U (zh) * 2022-10-13 2023-04-07 南微医学科技股份有限公司 一种用于内窥镜调整的锁紧装置、内窥镜以及锁紧装置
CN218792186U (zh) * 2022-10-10 2023-04-07 南微医学科技股份有限公司 一种用于内窥镜调整的锁紧装置、内窥镜以及锁紧装置
CN219680575U (zh) * 2022-11-08 2023-09-15 南微医学科技股份有限公司 一种用于内窥镜调整的锁紧装置、内窥镜以及锁紧装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170325659A1 (en) * 2015-06-02 2017-11-16 Youcare Technology Co., Ltd.(Wuhan) Self-locking angle adjustment mechanism for endoscope
CN111528769A (zh) * 2020-05-12 2020-08-14 江苏唯德康医疗科技有限公司 一种医用内窥镜装置
WO2021230734A1 (ko) * 2020-05-15 2021-11-18 주식회사 다인그룹 내시경
CN112244949A (zh) * 2020-09-10 2021-01-22 杭州德柯医疗科技有限公司 多向调弯的介入器械
CN114947700A (zh) * 2022-05-23 2022-08-30 苏州欧谱曼迪科技有限公司 内窥镜弯曲状态锁定机构及其内窥镜
CN115530722A (zh) * 2022-10-10 2022-12-30 南微医学科技股份有限公司 一种用于内窥镜调整的锁紧装置、内窥镜以及锁紧装置
CN218792186U (zh) * 2022-10-10 2023-04-07 南微医学科技股份有限公司 一种用于内窥镜调整的锁紧装置、内窥镜以及锁紧装置
CN115568804A (zh) * 2022-10-13 2023-01-06 南微医学科技股份有限公司 一种用于内窥镜调整的锁紧装置、内窥镜以及锁紧装置
CN218792187U (zh) * 2022-10-13 2023-04-07 南微医学科技股份有限公司 一种用于内窥镜调整的锁紧装置、内窥镜以及锁紧装置
CN115670348A (zh) * 2022-11-08 2023-02-03 南微医学科技股份有限公司 一种用于内窥镜调整的锁紧装置、内窥镜以及锁紧装置
CN219680575U (zh) * 2022-11-08 2023-09-15 南微医学科技股份有限公司 一种用于内窥镜调整的锁紧装置、内窥镜以及锁紧装置

Also Published As

Publication number Publication date
CN115670348A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2024098830A1 (zh) 一种用于内窥镜的锁紧装置、内窥镜以及锁紧装置
US11051794B2 (en) Apparatus for pitch and yaw rotation
WO2020135748A1 (zh) 一种柔性手术工具系统
WO2018041213A1 (zh) 柔性手术工具系统
JP4109662B2 (ja) 内視鏡
US20110152609A1 (en) User interface support devices for endoscopic surgical instruments
JP2019524416A (ja) 可撓性手術器械システム
CN115530722A (zh) 一种用于内窥镜调整的锁紧装置、内窥镜以及锁紧装置
CN219680575U (zh) 一种用于内窥镜调整的锁紧装置、内窥镜以及锁紧装置
CN218792186U (zh) 一种用于内窥镜调整的锁紧装置、内窥镜以及锁紧装置
CN218792187U (zh) 一种用于内窥镜调整的锁紧装置、内窥镜以及锁紧装置
CN115568804A (zh) 一种用于内窥镜调整的锁紧装置、内窥镜以及锁紧装置
CN109730748A (zh) 提拉操作器械
CN219982830U (zh) 一种用于内窥镜调整的锁紧装置以及锁紧装置、内窥镜
CN116158717A (zh) 一种用于内窥镜调整的锁紧装置以及锁紧装置、内窥镜
CN219270847U (zh) 一种用于内窥镜调整的锁紧装置、内窥镜及锁紧装置
CN219270845U (zh) 一种用于内窥镜调整的锁紧装置以及一种锁紧装置
CN116473485A (zh) 一种用于内窥镜调整的锁紧装置、内窥镜及锁紧装置
CN116195951A (zh) 一种用于内窥镜调整的锁紧装置以及一种锁紧装置
CN116138707A (zh) 一种用于内窥镜调整的锁紧装置以及一种锁紧装置